WorldWideScience

Sample records for upper river reaches

  1. A Summary of Fish Data in Six Reaches of The Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    .... The six LTRMP study reaches are Pools 4 (excluding Lake Pepin), 8, 13, and 26 of the Upper Mississippi River, an unimpounded reach of the Mississippi River near Cape Girardeau, Missouri, and the La Grange Pool of the Illinois River...

  2. 1994 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    .... The six LTRMP study reaches are Pools 4 (excluding Lake Pepin), 8,13, and 26 of the Upper Mississippi River, an unimpounded reach of the Mississippi River near Cape Girardeau, Missouri and the La Grange Pool of the Illinois River...

  3. 1996 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Burkhardt, Randy

    1997-01-01

    .... The six LTRMP study reaches are Pools 4 (excluding Lake Pepin), 8, 13, and 26 of the Upper Mississippi River, an unimpounded reach of the Mississippi River near Cape Girardeau, Missouri, and the La Grange Pool of the Illinois River...

  4. A Summary of Fish Data in Six Reaches of The Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 1,994 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1993...

  5. 1994 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,653 collections of fishes from stratified random sad permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1994...

  6. 1991 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1998-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,653 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1991...

  7. 1996 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Burkhardt, Randy

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,378 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1996...

  8. 1997 Annual Status Report A Summary of Fish Data in Six Reaches of The Upper Mississippi River System

    National Research Council Canada - National Science Library

    Burkhardt, Randy

    1998-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,797 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1997...

  9. 1998 Annual Status Report: A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Burkhardt, Randy

    2000-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,664 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1998...

  10. 1995 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,723 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1995...

  11. 1992 Annual Status Report: A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,221 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during I 992...

  12. Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China

    Science.gov (United States)

    You, Xingying; Tang, Jinwu

    2017-06-01

    Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of {}1.2‱, a silty clay content of the concave bank {>}{9.5}%, and a median diameter of the bed sediment {>}{0.158} mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long river

  13. Regulating N application for rice yield and sustainable eco-agro development in the upper reaches of Yellow River basin, China.

    Science.gov (United States)

    Zhang, Aiping; Liu, Ruliang; Gao, Ji; Yang, Shiqi; Chen, Zhe

    2014-01-01

    High N fertilizer and flooding irrigation applied to rice on anthropogenic-alluvial soil often result in N leaching and low recovery of applied fertilizer N from the rice fields in Ningxia irrigation region in the upper reaches of the Yellow River, which threatens ecological environment, food security, and sustainable agricultural development. This paper reported the regulating N application for rice yield and sustainable Eco-Agro development in the upper reaches of Yellow River basin. The results showed that reducing and postponing N application could maintain crop yields while substantially reducing N leaching losses to the environment and improving the nitrogen use efficiency. Considering the high food production, the minimum environmental threat, and the low labor input, we suggested that regulating N application is an important measure to help sustainable agricultural development in this region.

  14. [Effect of hydrochemistry characteristics under impact of human activity: a case study in the upper reaches of the Xijiang River basin].

    Science.gov (United States)

    Yu, Shil; Sun, Ping-an; Du, Wen-yue; He, Shi-yi; Li, Rui

    2015-01-01

    In this paper, observation and sampling were taken three times a month in a hydrological year for three typical sections of the middle and upper reaches of the Xijiang River basin, based on the data of hydrochemistry and flow, the article mainly discusses the evolution process of hydrochemistry in river under natural process and impact of human activity. Hydrochemical characteristics of 116. samples were analyzed in the study area. The hydrochemistry type in the middle and upper reaches of the Xijiang River basin belonged to HCO3- -Ca2+ type, and the chemical weathering type mainly came from carbonate rock weathering. Ca2+ and HCO3- were the main cations and anions, which reflected that hydrochemical characteristics of river in karst area mainly affected by the dissolution of carbonate rock. Na, Mg2, Ca2+ and Cl- mainly affected by natural conditions, the impact of human activity was little. K+, NO3-, SO4(2-) and HCO3- were affected by human activity in different degrees, and it showed different influence ways. This study had an important significance for the change of river hydrochemistry, water quality characteristics, and the effect on substance transported fluxes in the downstream of Pearl River and water quality protection in South China Monsoon Area.

  15. Land Use/Land Cover Changes and Its Response to Hydrological Characteristics in the Upper Reaches of Minjiang River

    Science.gov (United States)

    Ma, Kai; Huang, Xiaorong; Guo, Biying; Wang, Yanqiu; Gao, Linyun

    2018-06-01

    Land use changes alter the hydrological characteristics of the land surface, and have significant impacts on hydrological cycle and water balance, the analysis of complex effects on natural systems has become one of the main concerns. In this study, we generated the land use conversion matrixes using ArcGIS and selected several landscape indexes (contagion index, CONTAG, Shannon's diversity index, SHDI, etc.) to evaluate the impact of land use/cover changes on hydrological process in the upper reaches of Minjiang River. We also used a statistical regression model which was established based on hydrology and precipitation data during the period of 1959-2008 to simulate the impacts of different land use conditions on rainfall and runoff in different periods. Our results showed that the simulated annual mean flow from 1985 to 1995 and 1995 to 2008 are 9.19 and 1.04 m3 s-1 lower than the measured values, respectively, which implied that the ecological protection measures should be strengthened in the study area. Our study could provide a scientific basis for water resource management and proper land use planning of upper reaches of Minjiang River.

  16. The Landscape Change of Qiang’s Settlements in the Upper Reaches of Minjiang River after Wenchuan Earthquake

    OpenAIRE

    Xiaofei Wen; Ying Meng; Changliu Wang

    2015-01-01

    Qiang ethnic group is one of the oldest ethnic groups in China, mainly living in upper reaches of Minjiang River in southwest of China. Qiang’s traditional settlements are valuable cultural heritages. Unfortunately, most of Qiang’s settlements were damaged during Wenchuan earthquake in 2008 in different degree. After the earthquake, settlements were reconstructed in different ways. The landscape of Qiang’s settlements had been changed greatly by dual influences, the destruction of earthquake ...

  17. Flood of August 24–25, 2016, Upper Iowa River and Turkey River, northeastern Iowa

    Science.gov (United States)

    Linhart, S. Mike; O'Shea, Padraic S.

    2018-02-05

    Major flooding occurred August 24–25, 2016, in the Upper Iowa River Basin and Turkey River Basin in northeastern Iowa following severe thunderstorm activity over the region. About 8 inches of rain were recorded for the 24-hour period ending at 4 p.m., August 24, at Decorah, Iowa, and about 6 inches of rain were recorded for the 24-hour period ending at 7 a.m., August 24, at Cresco, Iowa, about 14 miles northwest of Spillville, Iowa. A maximum peak-of-record discharge of 38,000 cubic feet per second in the Upper Iowa River at streamgage 05388250 Upper Iowa River near Dorchester, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at six locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and State Highway 76 about 3.5 miles south of Dorchester, Iowa, a distance of 15 river miles. Along the profiled reach of the Turkey River, a maximum peak-of-record discharge of 15,300 cubic feet per second at streamgage 05411600 Turkey River at Spillville, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 1–2 percent. A maximum peak discharge of 35,700 cubic feet per second occurred on August 25, 2016, along the profiled reach of the Turkey River at streamgage 05411850 Turkey River near Eldorado, Iowa, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at 11 locations along the Turkey River between County Road B64 in Elgin and 220th Street, located about 4.5 miles northwest of Spillville, Iowa, a distance of 58 river miles. The high-water marks were used to develop flood profiles for the Upper Iowa River and Turkey River.

  18. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    Science.gov (United States)

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-01-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats. PMID:27966673

  19. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Voytek, Emily B.; Lane, John W.

    2016-01-01

    The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers), thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling), and geophysical (electromagnetic-induction) methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared) may be useful in locating and protecting other currently unknown mussel populations.

  20. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon in the upper reaches of the Delaware River, northeastern USA

    Directory of Open Access Journals (Sweden)

    D. O. Rosenberry

    2016-10-01

    Full Text Available The remaining populations of the endangered dwarf wedgemussel (DWM (Alasmidonta heterodon in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers, thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling, and geophysical (electromagnetic-induction methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared may be useful in locating and protecting other currently unknown mussel populations.

  1. Identification of key factors affecting the water pollutant concentration in the sluice-controlled river reaches of the Shaying River in China via statistical analysis methods.

    Science.gov (United States)

    Dou, Ming; Zhang, Yan; Zuo, Qiting; Mi, Qingbin

    2015-08-01

    The construction of sluices creates a strong disturbance in water environmental factors within a river. The change in water pollutant concentrations of sluice-controlled river reaches (SCRRs) is more complex than that of natural river segments. To determine the key factors affecting water pollutant concentration changes in SCRRs, river reaches near the Huaidian Sluice in the Shaying River of China were selected as a case study, and water quality monitoring experiments based on different regulating modes were implemented in 2009 and 2010. To identify the key factors affecting the change rates for the chemical oxygen demand of permanganate (CODMn) and ammonia nitrogen (NH3-N) concentrations in the SCRRs of the Huaidian Sluice, partial correlation analysis, principal component analysis and principal factor analysis were used. The results indicate four factors, i.e., the inflow quantity from upper reaches, opening size of sluice gates, water pollutant concentration from upper reaches, and turbidity before the sluice, which are the common key factors for the CODMn and NH3-N concentration change rates. Moreover, the dissolved oxygen before a sluice is a key factor for the permanganate concentration from CODMn change rate, and the water depth before a sluice is a key factor for the NH3-N concentration change rate. Multiple linear regressions between the water pollutant concentration change rate and key factors were established via multiple linear regression analyses, and the quantitative relationship between the CODMn and NH3-N concentration change rates and key affecting factors was analyzed. Finally, the mechanism of action for the key factors affecting the water pollutant concentration changes was analyzed. The results reveal that the inflow quantity from upper reaches, opening size of sluice gates, permanganate concentration from CODMn from upper reaches and dissolved oxygen before the sluice have a negative influence and the turbidity before the sluice has a positive

  2. Contribution of River Mouth Reach to Sediment Load of the Yangtze River

    Directory of Open Access Journals (Sweden)

    C. Wang

    2015-01-01

    Full Text Available This paper examined the sediment gain and loss in the river mouth reach of the Yangtze River by considering sediment load from the local tributaries, erosion/accretion of the river course, impacts of sand mining, and water extraction. A quantitative estimation of the contribution of the river mouth reach to the sediment load of the Yangtze River was conducted before and after impoundment of the Three Gorges Dam (TGD in 2003. The results showed that a net sediment load loss of 1.78 million ton/yr (Mt/yr occurred from 1965 to 2002 in the study area. The contribution of this reach to the sediment discharge into the sea is not as high as what was expected before the TGD. With impoundment of the TGD, channel deposition (29.90 Mt/yr and a net sediment loss of 30.89 Mt/yr occurred in the river mouth reach from 2003 to 2012. The river mouth reach has acted as a sink but not a source of sediment since impoundment of the TGD, which has exacerbated the decrease in sediment load. Technologies should be advanced to measure changes in river channel morphology, as well as in water and sediment discharges at the river mouth reach.

  3. Dynamics of circulation and salt balance in the upper reaches of Periyar river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Varma, P.U.; Pylee, A.; Sankaranarayanan, V.N.

    The Eulerian residual currents of the upper reaches of Periyar estuary (Kerala, India) were directed down the estuary throughout the water column during the monsoon season. During the summer months the residual flow was directed up the estuary...

  4. Population trends of smallmouth bass in the upper Colorado River basin with an evaluation of removal effects

    Science.gov (United States)

    Breton, André R.; Winkelman, Dana L.; Hawkins, John A.; Bestgen, Kevin R.

    2014-01-01

    Smallmouth bass Micropterus dolomieu were rare in the upper Colorado River basin until the early 1990’s when their abundance dramatically increased in the Yampa River sub-basin. Increased abundance was due primarily to colonization from Elkhead Reservoir, which was rapidly drawn down twice, first to make improvements to the dam (1992) and a second time for reservoir expansion (2005), and allowed escapement of resident bass to the river through an unscreened outlet. Elkhead Reservoir is located on Elkhead Creek, a tributary of the Yampa River. The rapid Elkhead Reservoir drawdown in 1992 was followed by a period of drought years with low, early runoff in the Yampa River sub-basin that benefitted smallmouth bass reproduction. This combination of factors allowed smallmouth bass to establish a self-sustaining population in the Yampa River. Subsequently, successful recruitment allowed smallmouth bass to disperse upstream and downstream in the Yampa River and eventually move into the downstream Green River. Smallmouth bass were also likely introduced, by unknown means, into the upper Colorado River and have since dispersed in this sub-basin. The rapid increase of smallmouth bass in the upper Colorado River basin overlapped with significant reductions in native fish populations in some locations. The threat to these native fishes initiated intensive mechanical removal of smallmouth bass by the Upper Colorado River Endangered Fish Recovery Program.In general, three factors explain fluctuating patterns in smallmouth bass density in the upper Colorado River basin in the last decade: reductions due to electrofishing removal, bass recovery after exploitation due to recruitment and immigration, and changes due to environmental factors not related to electrofishing and other management actions. Our analyses indicated that smallmouth bass densities were substantially reduced in most years by 7 electrofishing removal efforts. Less often, but dramatically in some cases

  5. [Dynamics of soil erosion at upper reaches of Minjiang River based on GIS].

    Science.gov (United States)

    He, Xingyuan; Hu, Zhibi; Li, Yuehui; Hu, Yuanman

    2005-12-01

    Based on TM and ETM imagines, and employing GIS technique and empirical Revised Universal Soil Loss Equation (RUSLE) model, this paper studied the dynamics of soil erosion at the upper reaches of Minjiang River during three typical periods, with the main affecting factors analyzed. The results showed that the soil erosion area was increased by 1.28%, 1.84 % and 1.70% in 1986, 1995 and 2000, respectively. The average erosion modulus was increased from 832.64 t x km(-2) x yr(-1) in 1986 to 1048.74 t x km(-2) yr(-2) in 1995 and reached 1362.11 t x km(-2) yr(-1) in 2000, and soil loss was mainly of slight and light erosion, companying with a small quantity of middling erosion. The area of soil erosion was small, and the degree was light. There was a significant correlation between slope and soil loss, which mainly happened in the regions with a slope larger than 25 degrees, and accounted for 93.65%, 93.81% and 92.71% of the total erosion in 1986, 1995 and 2000, respectively. As for the altitude, middling, semi-high and high mountains and dry valley were liable to soil erosion, which accounted for 98.21%, 97.63% and 99.27% of the total erosion in 1986, 1995 and 2000, respectively. Different vegetation had a significant effect on soil erosion, and shrub and newly restored forest were the main erosion area. Excessive depasture not only resulted in the degradation of pasture, but also led to slight soil erosion. Land use type and soil type also contributed to soil loss, among which, dry-cinnamon soil and calcic gray-cinnamon soil were the most dangerous ones needing more protection. Soil loss was also linearly increased with increasing population and households, which suggested that the increase of population and households was the driving factor for soil loss increase in this area.

  6. Eutrophication Potential of Wastewater Treatment Plants in the Upper Reaches of Svratka River

    Directory of Open Access Journals (Sweden)

    Jan Grmela

    2014-01-01

    Full Text Available During the year 2012 thirteen selected sites were monitored in the stretch between Brno reservoir and Nedvědice village. Based on the former monitoring, samples from the major tributaries (Besenek, Loucka, Nedvedicka, Lube, Bily brook and Svratka River above and below monitored area were taken. Besides the water from tributaries and the river also samples of water discharged from sewage treatment plants in villages Nedvědice, Doubravník, Březina and Veverská Bítýška were taken. Basic chemical and physical parameters of water were measured. Major impact of monitoring was to target the amount of nutrients, especially phosphorus. Requirements for salmonid (Svratka upper, Nedvedicka, Loucka, Besenek, Bily brook or cyprinid (Lube, Kurimka, Svratka lower waters quality meet at all localities. Wastewater treatment plants (WWTP meet the emission standards in all cases. Monitoring of the amount of nutrients out-flowing from WWTP at extreme flows is not usually carried out at all. Based on our results, the phosphorus inflow into Brno reservoir would be up to 50 t per year in the case of average flow 7.96 m3.s−1 of Svratka River in Veverská Bítýška.

  7. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  8. Projected risk of population declines for native fish species in the Upper Mississippi River

    Science.gov (United States)

    Crimmins, S.M.; Boma, P.; Thogmartin, W.E.

    2015-01-01

    Conservationists are in need of objective metrics for prioritizing the management of habitats. For individual species, the threat of extinction is often used to prioritize what species are in need of conservation action. Using long-term monitoring data, we applied a Bayesian diffusion approximation to estimate quasi-extinction risk for 54 native fish species within six commercial navigation reaches along a 1350-km gradient of the upper Mississippi River system. We found a strong negative linear relationship between quasi-extinction risk and distance upstream. For some species, quasi-extinction estimates ranged from nearly zero in some reaches to one in others, suggesting substantial variability in threats facing individual river reaches. We found no evidence that species traits affected quasi-extinction risk across the entire system. Our results indicate that fishes within the upper Mississippi River system face localized threats that vary across river impact gradients. This suggests that conservation actions should be focused on local habitat scales but should also consider the additive effects on downstream conditions. We also emphasize the need for identification of proximate mechanisms behind observed and predicted population declines, as conservation actions will require mitigation of such mechanisms. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  9. Long Term Resource Monitoring Program Annual Status Report, 1999: Macroinvertebrate Sampling in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Sauer, Jennifer

    2000-01-01

    In 1992, macroinvertebrate sampling was initiated in Pools 4, 8, 13, 26, and the Open River reach of the Mississippi River, and La Orange Pool of the Illinois River as part of the Long Term Resource Monitoring Program...

  10. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    Science.gov (United States)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  11. High diversity of nitrogen-fixing bacteria in upper reaches of Heihe River, Northwestern China

    Science.gov (United States)

    Tai, X. S.; Mao, W. L.; Liu, G. X.; Chen, T.; Zhang, W.; Wu, X. K.; Long, H. Z.; Zhang, B. G.

    2013-03-01

    Vegetation plays a key role to water conservation in southern Qilian Mountains (Northwestern China), the upper reaches of Heihe River. Nitrogen-fixing bacteria are crucial for vegetation protection because they can supply plants with nitrogen source. Nevertheless, little is known about nitrogen-fixing bacteria in this region. In present study, nifH gene clone libraries were established for detecting the difference of nitrogen-fixing bacterial communities between Potentilla parvifolia shrub and Carex alrofusca meadow in the southern Qilian Mountains. All the identified nitrogen-fixing bacterial clones belonged to Proteobacteria. At the genus level, the Azospirillum sp. was only detected in shrub soil while Thiocapsa sp., Derxiasp., Ectothiorhodospira sp., Mesorhizobium sp., Klebsiella sp., Ensifer sp., Methylocella sp. and Peseudomonas sp. were just detected in meadow soil. Shannon-Wiener index of nifH gene ranged from 1.5 to 2.8 and was higher in meadow soil than shrub soil. Contrarily, the nifH gene copies and CFUs of cultured nitrogen-fixing bacteria ranged from 0.4 × 107 to 6.9 × 107 copies g-1 soil and 0.97 × 106 to 12.78 × 106 g-1 soil, respectively. Furthermore, both of them were lower in meadow soil than shrub soil. Statistical analysis revealed that diversity and copies of nifH gene mostly correlated with aboveground biomass in shrub soil. In meadow soil, nifH gene diversity was principally affected by altitude while copies did by soil available K.

  12. Long-term Sediment Accumulation in Mid-channel Bars of the Upper Reach of the Lower Mississippi River.

    Science.gov (United States)

    Wang, B.; Xu, Y. J.

    2016-02-01

    A recent study reported that about 44% of the total Mississippi River suspended load reaching the Old River Control Structure (ORCS) was trapped upstream of the Gulf of Mexico by overbank storage and channel bed aggradation. Considering an average annual sediment load of 120 million metric tons passing ORCS to the Mississippi River main channel, the trapped sediment load would be equivalent to annually rebuilding 44-km2 coastal land of 1 meter in depth, assuming a sedimentation bulk density of 1.2 tons m-3. No study has yet demonstrated such a high sediment accumulation rate within the confined river channel or on a floodplain area that surrounds the only unleeved stretch ( 30-km long) of the Lower Mississippi River downstream of ORCS. In this study, we utilized satellite images taken from 1983 to 2013 and analyzed changes in surface area of nine major mid-channel and point bars over a 130-km river reach from ORCS to Baton Rouge. Using river stage records and the estimated surface areas, we developed a stage - surface area rating curve for each of the bars and estimated changes in bar volume over time. We found that more than half of the bars have grown, while the others have shrunken in the past three decades. As a whole, there was a substantial net gain of surface area and volume accretion. Sediment trapping was most prevalent during the spring floods, especially during the period from 2007 to 2011 when two large floods occurred. This paper presents the channel morphological change and sediment accumulation rates under different flow conditions, and discusses their implications for the current understanding and practices of the Mississippi River sediment diversion.

  13. Monitoring Glacier Changes of Recent 50 Years in the Upper Reaches of Heihe River Basin Based on Remotely-Sensed Data

    International Nuclear Information System (INIS)

    Qiang, Bie; Lei, He; Chuan-yan, Zhao

    2014-01-01

    The upper reach of the Heihe River Basin was selected as the study area. The distribution data of glaciers in the study area has been automatically derived from topographic maps made in 1960 and from Landsat TM images in 1990, 2000 and 2010 by object-oriented image interpretation method combined with expert knowledge rules. Spatial-temporal variations of glaciers were analyzed with GIS technology. Results show that glaciers have shrunk significantly by 138.90 km 2 during the period from 1960 to 2010. Compared with the data of 1960, 35.6% of glaciers have been retreating and the calculated average rate of glaciers retreating is 2.78 km 2 every year since 1960. The glacial retreating has been most significant if the glaciers have lower-elevation ablation areas and low-elevation accumulation areas. The temperature rising is the key factor of glacier retreating

  14. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the

  15. On geo-basis of river regulation——A case study for the middle reaches of the Yangtze River

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    From the point of view that people have to obey the river’s geo-attributes in the river regulation, the definition and the meaning of the geo-attributes of a river are discussed. The geo-basis of the river regulation of the middle reaches of the Yangtze River is expounded in five aspects, including the structural geomorphology environment of flood storage and discharge, the distribution characteristics of subsidence and the sedimentation areas of Dongting Basin, the history evolution of Jianghan Basin, the function of Jianghan Basin and Dongting Basin as the flood water detention areas of Jingjiang River reach in ancient time, and the geological characteristic of Jingjiang River reach. Based on the geo-attributes of the middle reaches of the Yangtze River, some ideas about the middle reach regulation of the Yangtze River are put forward: to process the interchange between the lakes and diked marsh areas in Dongting Basin, to canal the new river route as the flood diversion channel of Jingjiang River reach with the paleo river, to recover the function of Jianghan Basin as flood detention area of the middle reaches. And we should take into consideration the geo-environment of the whole Yangtze River in the river regulation of middle reaches.

  16. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  17. Cryospheric Change Impacts on Alpine Hydrology: Combining Model With Observations in the Upper Reaches of Hei River, China

    Science.gov (United States)

    Li, X.; Chen, R.; Wang, G.; Liu, J.; Yang, Y.; Han, C.; Song, Y.; Liu, Z.; Kang, E.

    2017-12-01

    Cryospheric change impacts largely on alpine hydrology but they are still unclear owing to rare observations and suitable models in the Western Cold Regions of China (WCRC), where many large rivers including almost inland rivers originate and some of them flow to adjacent countries. The upstream of the inland river provides nearly almost water resources to the arid mid-downstream areas, such as the Hei River. Based on the long term field observation in WCRC, a Cryospheric Basin Hydrological Model (CBHM) was created to evaluate the cryospheric impacts on streamflow in the upper reaches of Hei river (UHR), and relationships between Cryosphere and streamflow were further discussed by using measured data. The NorESM1-ME were chosen to project future streamflow under scenarios RCP2.6, RCP4.5 and RCP8.5. The monthly basin runoff in UHR was simulated with a coefficient of efficiency about 0.93 and 0.94, and a mass balance error about 2.5% and -0.2% during the calibration period from 1960 to 1990 and validation period from 1991 to 2013, respectively. The CBHM results were then well validated by measured evapotranspiration (ET), soil temperature, glacier area, water balance of land covers etc. in UHR. It found that the moraine-talus region was the major runoff contribution (60.5%) area though its area proportion was only about 20%, whereas the total runoff contribution of meadow and grassland was only about 27% but their area ratio was about 70% in UHR. Glacier and snow cover contributed 3.5% and 25.4% fresh water in average to streamflow during 1960 to 2013 in HUR. Owing to the increased air temperature (2.9 oC/54a) and precipitation (69.2 mm/54a) in the past 54 years, glacial and snow melting runoff increased 9.8% and 12.1%, respectively. The air temperature rise decreased and brought forward the snowmelt flood peak, and increased the winter flow due to permafrost degradation in UHR. Glaciers would disappear in the near future owing to its small size and increasing air

  18. Habits and Habitats of Fishes in the Upper Mississippi River

    Science.gov (United States)

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  19. Simulating and predicting snow and glacier meltwater to the runoff of the Upper Mekong River basin in Southwest China

    Science.gov (United States)

    Han, Z.; Long, D.; Hong, Y.

    2017-12-01

    Snow and glacier meltwater in cryospheric regions replenishes groundwater and reservoir storage and is critical to water supply, hydropower development, agricultural irrigation, and ecological integrity. Accurate simulating and predicting snow and glacier meltwater is therefore fundamental to develop a better understanding of hydrological processes and water resource management for alpine basins and its lower reaches. The Upper Mekong River (or the Lancang River in China) as one of the most important transboundary rivers originating from the Tibetan Plateau (TP), features active dam construction and complicated water resources allocation of the stakeholders. Confronted by both climate change and significant human activities, it is imperative to examine contributions of snow and glacier meltwater to the total runoff and how it will change in the near future. This will greatly benefit hydropower development in the upper reach of the Mekong and better water resources allocation and management across the relevant countries. This study aims to improve snowfall and snow water equivalent (SWE) simulation using improved methods, and combines both modeling skill and remote sensing (i.e., passive microwave-based SWE, and satellite gravimetry-based total water storage) to quantify the contributions of snow and glacier meltwater there. In addition, the runoff of the Lancang River under a range of climate change scenarios is simulated using the improved modeling scheme to evaluate how climate change will impact hydropower development in the upper reaches.

  20. Spatial Patterns of Mercury Bioaccumulation in the Upper Clark Fork River Basin, MT

    Science.gov (United States)

    Staats, M. F.; Langner, H.; Moore, J. N.

    2010-12-01

    The Upper Clark Fork River Basin (UCFRB) in Montana has a legacy of historic gold/silver mine waste that contributes large quantities of mercury into the watershed. Mercury bioaccumulation at higher levels of the aquatic food chain, such as the mercury concentration in the blood of pre-fledge osprey, exhibit an irregular spatial signature based on the location of the nests throughout the river basin. Here we identify regions with a high concentration of bioavailable mercury and the major factors that allow the mercury to bioaccumulate within trophic levels. This identification is based on the abundance of mercury sources and the potential for mercury methylation. To address the source term, we did a survey of total mercury in fine sediments along selected UCFRB reaches, along with the assessment of environmental river conditions (percentage of backwaters/wetlands, water temperature and pH, etc). In addition, we analyzed the mercury levels of a representative number of macroinvertebrates and fish from key locations. The concentration of total mercury in sediment, which varies from reach to reach (tributaries of the Clark Fork River, 5mg/kg) affects the concentration of mercury found at various trophic levels. However, reaches with a low supply of mine waste-derived mercury can also yield substantial concentrations of mercury in the biota, due to highly favorable conditions for mercury methylation. We identify that the major environmental factor that affects the methylation potential in the UCFRB is the proximity and connectivity of wetland areas to the river.

  1. Bank retreat of a meandering river reach case study : River Irwell

    NARCIS (Netherlands)

    Duran, R.; Beevers, L.; Crosato, A.; Wright, N.G.

    2009-01-01

    Lack of data is often considered a limitation when undertaking morphological studies. This research deals with the morphological study of a small river experiencing bank erosion for which only limited data are available. A reach of the meandering gravel-bed river Irwell (United Kingdom) is taken as

  2. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.

    Science.gov (United States)

    Iuppariello, Luigi; D'Addio, Giovanni; Romano, Maria; Bifulco, Paolo; Lanzillo, Bernardo; Pappone, Nicola; Cesarelli, Mario

    2016-01-01

    Robot-mediated therapy (RMT) has been a very dynamic area of research in recent years. Robotics devices are in fact capable to quantify the performances of a rehabilitation task in treatments of several disorders of the arm and the shoulder of various central and peripheral etiology. Different systems for robot-aided neuro-rehabilitation are available for upper limb rehabilitation but the biomechanical parameters proposed until today, to evaluate the quality of the movement, are related to the specific robot used and to the type of exercise performed. Besides, none study indicated a standardized quantitative evaluation of robot assisted upper arm reaching movements, so the RMT is still far to be considered a standardised tool. In this paper a quantitative kinematic assessment of robot assisted upper arm reaching movements, considering also the effect of gravity on the quality of the movements, is proposed. We studied a group of 10 healthy subjects and results indicate that our advised protocol can be useful for characterising normal pattern in reaching movements.

  3. How to find the sedimentary archive of fluvial pollution in a bedrock-confined river reach

    Science.gov (United States)

    Elznicova, Jitka; Matys Grygar, Tomas; Kiss, Timea; Lelkova, Tereza; Balogh, Marton; Sikora, Martin

    2016-04-01

    The Ohre River springs in the Eastern Germany and it is a tributary of the Labe (Elbe) River in Northwest Bohemia. The river received pollution from several sources during the last five centuries. Most of the pollution sources located along the upper and middle reaches, where the depositional and erosional pattern of the river is highly variable. The upper part of the catchment consists of mainly felsic rocks and the river has a broad floodplain. The middle reach and its right-bank tributaries are deeply incised into the Doupovske Hory Mts., which consists of mafic volcanic rocks; whereas the left-bank tributaries are incised into intrusive and metamorphic rocks of the Krusne Hory Mts. (Ore mountains) with several local ore mines (Ag, Pb and U) in particular in around Olovi and Jachymov. Due to the geologic and geomorphologic complexity, deposition of historical sediments in the middle reach has been spatially limited and uneven, and anomalous background concentrations of risk elements are expected. As a consequence, in the middle reach of the Ohre River it is difficult to find a useful sedimentary archive of historical pollution, though it is desired for two main reasons: (1) to decipher the undocumented and poorly described pollution history from the Krusne Hory Mts. and (2) to better understand the retention of pollutants in the transport zones of a confined river system. Based on historical maps we identified a side-bar (35x320 m) in the middle reach of the river near Straz on Ohre and aimed to describe its formation, its recent erosion/deposition history and to evaluate its sedimentary archive value. In the first half of the 19th century it was an island separated from the valley edge by a side channel. Since then there has been no apparent lateral accretion of the bar (its shape has not been changed), but the upstream part of the side channel aggraded by a sediment plug. We evaluated the current bar topography and geomorphology by a detailed field survey

  4. Dynamic channel adjustments in the Jingjiang Reach of the Middle Yangtze River

    Science.gov (United States)

    Xia, Junqiang; Deng, Shanshan; Lu, Jinyou; Xu, Quanxi; Zong, Quanli; Tan, Guangming

    2016-03-01

    Significant channel adjustments have occurred in the Jingjiang Reach of the Middle Yangtze River, because of the operation of the Three Gorges Project (TGP). The Jingjiang Reach is selected as the study area, covering the Upper Jingjiang Reach (UJR) and Lower Jingjiang Reach (LJR). The reach-scale bankfull channel dimensions in the study reach were calculated annually from 2002 to 2013 by means of a reach-averaged approach and surveyed post-flood profiles at 171 sections. We find from the calculated results that: the reach-scale bankfull widths changed slightly in the UJR and LJR, with the corresponding depths increasing by 1.6 m and 1.0 m the channel adjustments occurred mainly with respect to bankfull depth because of the construction of large-scale bank revetment works, although there were significant bank erosion processes in local regions without the bank protection engineering. The reach-scale bankfull dimensions in the UJR and LJR generally responded to the previous five-year average fluvial erosion intensity during flood seasons, with higher correlations being obtained for the depth and cross-sectional area. It is concluded that these dynamic adjustments of the channel geometry are a direct result of recent human activities such as the TGP operation.

  5. Application of sediment characteristics and transport conditions to resource management in selected main-stem reaches of the Upper Colorado River, Colorado and Utah, 1965-2007

    Science.gov (United States)

    Williams, Cory A.; Schaffrath, Keelin R.; Elliott, John G.; Richards, Rodney J.

    2013-01-01

    The Colorado River Basin provides habitat for 14 native fish, including 4 endangered species protected under the Federal Endangered Species Act of 1973. These endangered fish species once thrived in the Colorado River system, but water-resource development, including the building of numerous diversion dams and several large reservoirs, and the introduction of non-native fish, resulted in large reductions in the numbers and range of the four species through loss of habitat and stream function. Understanding how stream conditions and habitat change in response to alterations in streamflow is important for water administrators and wildlife managers and can be determined from an understanding of sediment transport. Characterization of the processes that are controlling sediment transport is an important first step in identifying flow regimes needed for restored channel morphology and the sustained recovery of endangered fishes within these river systems. The U.S. Geological Survey, in cooperation with the Upper Colorado River Endangered Fish Recovery Program, Bureau of Reclamation, U.S. Fish and Wildlife Service, Argonne National Laboratory, Western Area Power Administration, and Wyoming State Engineer’s Office, began a study in 2004 to characterize sediment transport at selected locations on the Colorado, Gunnison, and Green Rivers to begin addressing gaps in existing datasets and conceptual models of the river systems. This report identifies and characterizes the relation between streamflow (magnitude and timing) and sediment transport and presents the findings through discussions of (1) suspended-sediment transport, (2) incipient motion of streambed material, and (3) a case study of sediment-transport conditions for a reach of the Green River identified as a razorback sucker spawning habitat (See report for full abstract).

  6. Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998

    Science.gov (United States)

    Paschke, Suzanne S.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    Drainage from abandoned and inactive mines and from naturally mineralized areas in the San Juan Mountains of southern Colorado contributes metals to the upper Animas River near Silverton, Colorado. Tracer-injection studies and associated synoptic sampling were performed along two reaches of the upper Animas River to develop detailed profiles of stream discharge and to locate and quantify sources of metal loading. One tracer-injection study was performed in September 1997 on the Animas River reach from Howardsville to Silverton, and a second study was performed in August 1998 on the stream reach from Eureka to Howardsville. Drainage in the upper Animas River study reaches contributed aluminum, calcium, copper, iron, magnesium, manganese, sulfate, and zinc to the surface-water system in 1997 and 1998. Colloidal aluminum, dissolved copper, and dissolved zinc were attenuated through a braided stream reach downstream from Eureka. Instream dissolved copper concentrations were lower than the State of Colorado acute and chronic toxicity standards downstream from the braided reach to Silverton. Dissolved iron load and concentrations increased downstream from Howardsville and Arrastra Gulch, and colloidal iron remained constant at low concentrations downstream from Howardsville. Instream sulfate concentrations were lower than the U.S. Environmental Protection Agency's secondary drinking-water standard of 250 milligrams per liter throughout the two study reaches. Elevated zinc concentrations are the primary concern for aquatic life in the upper Animas River. In the 1998 Eureka to Howardsville study, instream dissolved zinc load increased downstream from the Forest Queen mine, the Kittimack tailings, and Howardsville. In the 1997 Howardsville to Silverton study, there were four primary areas where zinc load increased. First, was the increase downstream from Howardsville and abandoned mining sites downstream from the Cunningham Gulch confluence, which also was measured during

  7. Bank retreat study of a meandering river reach case study : River Irwell

    NARCIS (Netherlands)

    Duran, R.; Beevers, L.; Crosato, A.; Wright, N.

    2010-01-01

    Lack of data is often considered a limitation when undertaking morphological studies. This research deals with morphological studies of small rivers experiencing bank erosion processes when only limited data are available. A reach of the meandering gravel-bed river Irwell (United Kingdom) is taken

  8. Sedimentary record and luminescence chronology of palaeoflood events along the Gold Gorge of the upper Hanjiang River, middle Yangtze River basin, China

    Science.gov (United States)

    Guo, Yongqiang; Huang, Chun Chang; Zhou, Yali; Pang, Jiangli; Zha, Xiaochun; Fan, Longjiang; Mao, Peini

    2018-05-01

    Palaeoflood slackwater deposits (SWDs) along the river banks have important implications for the reconstruction of the past hydro-climatic events. Two palaeoflood SWD beds were identified in the Holocene loess-soil sequences on the cliff river banks along the Gold Gorge of the upper Hanjiang River by field investigation and laboratory analysis. They have recorded two palaeoflood events which were dated by optically stimulated luminescence to 3.2-2.8 ka and 2.1-1.8 ka, respectively. The reliability of the ages obtained for the two events are further confirmed by the presence of archaeological remains and good regional pedostratigraphic correlation. The peak discharges of two palaeoflood events at the studied sites were estimated to be 16,560-17,930 m3/s. A correlation with the palaeoflood events identified in the other reaches shows that great floods occurred frequently during the episodes of 3200-2800 and 2000-1700 a BP along the upper Hanjiang River valley during the last 4000 years. These phases of palaeoflood events in central China are well correlated with the climatic variability identified by δ18O record in the stalagmites from the middle Yangtze River Basin and show apparent global linkages. Palaeoflood studies in a watershed scale also imply that strengthened human activities during the Shang dynasty (BCE 1600-1100) and Han dynasty (BCE206-CE265) may have caused accelerated soil erosion along the upper Hanjiang River valley.

  9. Runoff Simulation in the Upper Reaches of Heihe River Basin Based on the RIEMS–SWAT Model

    Directory of Open Access Journals (Sweden)

    Songbing Zou

    2016-10-01

    Full Text Available In the distributed hydrological simulations for complex mountain areas, large amounts of meteorological input parameters with high spatial and temporal resolutions are necessary. However, the extreme scarcity and uneven distribution of the traditional meteorological observation stations in cold and arid regions of Northwest China makes it very difficult in meeting the requirements of hydrological simulations. Alternatively, regional climate models (RCMs, which can provide a variety of distributed meteorological data with high temporal and spatial resolution, have become an effective solution to improve hydrological simulation accuracy and to further study water resource responses to human activities and global climate change. In this study, abundant and evenly distributed virtual weather stations in the upper reaches of the Heihe River Basin (HRB of Northwest China were built for the optimization of the input data, and thus a regional integrated environmental model system (RIEMS based on RCM and a distributed hydrological model of soil and water assessment tool (SWAT were integrated as a coupled climate–hydrological RIEMS-SWAT model, which was applied to simulate monthly runoff from 1995 to 2010 in the region. Results show that the simulated and observed values are close; Nash–Sutcliffe efficiency is higher than 0.65; determination coefficient (R2 values are higher than 0.70; percent bias is controlled within ±20%; and root-mean-square-error-observation standard deviation ratio is less than 0.65. These results indicate that the coupled model can present basin hydrological processes properly, and provide scientific support for prediction and management of basin water resources.

  10. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  11. Nonnative Fishes in the Upper Mississippi River System

    Science.gov (United States)

    Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.

    2009-01-01

    The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for

  12. Hydrology of the Upper Malad River basin, southeastern Idaho

    Science.gov (United States)

    Pluhowski, Edward J.

    1970-01-01

    The report area comprises 485 square miles in the Basin and Range physiographic province. It includes most of eastern' Oneida County and parts of Franklin, Bannock, and Power Counties of southeastern Idaho. Relief is about 5,000 feet; the floor of the Malad Valley is at an average altitude of about 4,400 feet. Agriculture is, by far, ,the principal economic .activity. In 1960 the population of the upper Malad River basin was about 3,600, of which about 60 percent resided in Malad City, the county seat of Oneida County. The climate is semiarid throughout the Malad Valley and its principal tributary valleys; ,above 6,500 feet the climate is subhumid. Annual precipitation ranges from about 13 inches in the lower Malad Valley to more than 30 inches on the highest peaks of the Bannock and Malad ranges. Owing to ,the normally clear atmospheric conditions, large daily and seasonal temperature fluctuations are common. Topography, distance from the Pacific Ocean, .and the general atmospheric circulation are the principal factors governing the climate of the Malad River basin. The westerlies transport moisture from the P.acific Ocean toward southeastern Idaho. The north-south tren4ing mountains flanking the basin are oriented orthogonally to the moisture flux so that they are very effective in removing precipitable water from the air. A minimum uplift of 6,000 feet is required to transport moisture from the Pacific source region; accordingly, most air masses are desiccated long before they reach the Malad basin. Heaviest precipitation is generally associated with steep pressure gradients in the midtroposphere that are so oriented as to cause a deep landward penetration of moisture from the Pacific Ocean. Annual water yields in the project area range from about 0.8 inch in the, lower Malad Valley to more than 19 inches on the high peaks north and east of Malad City. The mean annual water yield for the entire basin is 4 inches, or about 115,000 acre-feet. Evaporation is

  13. Trend-outflow method for understanding interactions of surface water with groundwater and atmospheric water for eight reaches of the Upper Rio Grande

    Science.gov (United States)

    Liu, Yi; Sheng, Zhuping

    2011-11-01

    SummaryAtmospheric water, surface water, and groundwater interact very actively through hydrologic processes such as precipitation, infiltration, seepage, irrigation, drainage, evaporation, and evapotranspiration in the Upper Rio Grande Basin. A trend-outflow method has been developed in this paper to gain a better understanding of the interactions based on cumulated inflow and outflow data for any river reaches of interest. A general trend-outflow equation was derived by associating the net interaction of surface water with atmospheric water as a polynomial of inflow and the net interaction of surface water with groundwater as a constant based on surface water budget. Linear and quadratic relations are probably two common trend-outflow types in the real world. It was found that trend-outflows of the Upper Rio Grande reaches, Española, Albuquerque, Socorro-Engle, Palomas, and Rincon are linear with inflow, while those of reaches, Belen, Mesilla and Hueco are quadratic. Reaches Belen, Mesilla and Hueco are found as water deficit reaches mainly for irrigated agriculture in extreme drought years.

  14. Summary of sediment data from the Yampa river and upper Green river basins, Colorado and Utah, 1993-2002

    Science.gov (United States)

    Elliott, John G.; Anders, Steven P.

    2004-01-01

    The water resources of the Upper Colorado River Basin have been extensively developed for water supply, irrigation, and power generation through water storage in upstream reservoirs during spring runoff and subsequent releases during the remainder of the year. The net effect of water-resource development has been to substantially modify the predevelopment annual hydrograph as well as the timing and amount of sediment delivery from the upper Green River and the Yampa River Basins tributaries to the main-stem reaches where endangered native fish populations have been observed. The U.S. Geological Survey, in cooperation with the Colorado Division of Wildlife and the U.S. Fish and Wildlife Service, began a study to identify sediment source reaches in the Green River main stem and the lower Yampa and Little Snake Rivers and to identify sediment-transport relations that would be useful in assessing the potential effects of hydrograph modification by reservoir operation on sedimentation at identified razorback spawning bars in the Green River. The need for additional data collection is evaluated at each sampling site. Sediment loads were calculated at five key areas within the watershed by using instantaneous measurements of streamflow, suspended-sediment concentration, and bedload. Sediment loads were computed at each site for two modes of transport (suspended load and bedload), as well as for the total-sediment load (suspended load plus bedload) where both modes were sampled. Sediment loads also were calculated for sediment particle-size range (silt-and-clay, and sand-and-gravel sizes) if laboratory size analysis had been performed on the sample, and by hydrograph season. Sediment-transport curves were developed for each type of sediment load by a least-squares regression of logarithmic-transformed data. Transport equations for suspended load and total load had coefficients of determination of at least 0.72 at all of the sampling sites except Little Snake River near

  15. [Effects of sub-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion].

    Science.gov (United States)

    Yang, Meng; Li, Xiu-zhen; Yang, Zhao-ping; Hu, Yuan-man; Wen, Qing-chun

    2007-11-01

    Based on GIS, the spatial distribution of soil loss and sediment yield in Heishui and Zhenjiangguan sub-watersheds at the upper reaches of Minjiang River was simulated by using sediment delivery-distribution (SEDD) model, and the effects of land use/cover types on soil erosion and sediment yield were discussed, based on the simulated results and related land use maps. A landscape index named location-weighted landscape contrast index (LCI) was calculated to evaluate the effects of landscape components' spatial distribution, weight, and structure of land use/cover on soil erosion. The results showed the soil erosion modulus varied with land use pattern, and decreased in the order of bare rock > urban/village > rangeland > farmland > shrub > forest. There were no significant differences in sediment yield modules among different land use/covers. In the two sub-watersheds, the spatial distribution of land use/covers on slope tended to decrease the final sediment load at watershed outlet, hut as related to relative elevation, relative distance, and flow length, the spatial distribution tended to increase sediment yield. The two sub-watersheds had different advantages as related to landscape components' spatial distribution, but, when the land use/cover weight was considered, the advantages of Zhenjiangguan sub-watershed increased. If the land use/cover structure was considered in addition, the landscape pattern of Zhenjiangguan subwatershed was better. Therefore, only the three elements, i.e., landscape components' spatial distribution, land use/cover weight, and land use/cover structure, were considered comprehensively, can we get an overall evaluation on the effects of landscape pattern on soil erosion. The calculation of LCI related to slope suggested that this index couldn' t accurately reflect the effects of land use/cover weight and structure on soil erosion, and thus, needed to be modified.

  16. RiverCare communication strategy for reaching beyond

    Science.gov (United States)

    Cortes Arevalo, Juliette; den Haan, Robert Jan; Berends, Koen; Leung, Nick; Augustijn, Denie; Hulscher, Suzanne J. M. H.

    2017-04-01

    Effectively communicating river research to water professionals and researchers working in multiple disciplines or organizations is challenging. RiverCare studies the mid-term effects of innovative river interventions in the Netherlands to improve river governance and sustainable management. A total of 21 researchers working at 5 universities are part of the consortium, which also includes research institutes, consultancies, and water management authorities. RiverCare results do not only benefit Dutch river management, but can also provide useful insights to challenges abroad. Dutch partner organizations actively involved in RiverCare are our direct users. However, we want to reach water professionals from the Netherlands and beyond. To communicate with and disseminate to these users, we set up a communication strategy that includes the following approaches : (1) Netherlands Centre of River studies (NCR) website to announce activities post news, not limited to RiverCare; (2) A RiverCare newsletter that is published twice per year to update about our progress and activities; (3) A multimedia promotional providing a 'first glance' of RiverCare. It consists of four video episodes and an interactive menu; (4) An interactive knowledge platform to provide access, explain RiverCare results and gather feedback about the added value and potential use of these results; and (5) A serious gaming environment titled Virtual River where actors can play out flood scaling intervention and monitoring strategies to assess maintenance scenarios. The communication strategy and related approaches are being designed and developed during the project. We use participatory methods and systematic evaluation to understand communication needs and to identify needs for improvement. As a first step, RiverCare information is provided via the NCR website. The active collaboration with the NCR is important to extend communication efforts beyond the RiverCare consortium and after the program ends

  17. Differences in Ichthyophonus prevalence and infection severity between upper Yukon River and Tanana River chinook salmon, Oncorhynchus tshawytscha (Walbaum), stocks.

    Science.gov (United States)

    Kocan, R; Hershberger, P

    2006-08-01

    Two genetically distinct populations of chinook salmon, Oncorhynchus tshawytscha (Walbaum), were simultaneously sampled at the confluence of the Yukon and Tanana rivers in 2003. Upper Yukon-Canadian fish had significantly higher infection prevalence as well as more severe infections (higher parasite density in heart tissue) than the lower Yukon-Tanana River fish. Both populations had migrated the same distance from the mouth of the Yukon River at the time of sampling but had significantly different distances remaining to swim before reaching their respective spawning grounds. Multiple working hypotheses are proposed to explain the differences between the two stocks: (1) the two genetically distinct populations have different inherent resistance to infection, (2) genetically influenced differences in feeding behaviour resulted in temporal and/or spatial differences in exposure, (3) physiological differences resulting from different degrees of sexual maturity influenced the course of disease, and (4) the most severely infected Tanana River fish either died en route or fatigued and were unable to complete their migration to the Tanana River, thus leaving a population of apparently healthier fish.

  18. Variations of Hydrological Regime in the Jingjiang Reach of the Yangtze River after Operation of the Three Gorges Project

    Science.gov (United States)

    Zhu, Y.-H.; Guo, X.-H.; Hu, W.; Qu, G.; He, G.-S.

    2012-04-01

    The Three Gorges Project (TGP) of China has been in operation since 2003. In October 2010 the water level at the Three Gorges Dam (TGD) rose to the normal storage water level of 175 m, indicting the realization of the integrated targets of the TGP in terms of flood protection, electricity generation, navigation, etc. The operation of the TGP has changed the flow and sediment conditions (i.e. the hydrological regime) of the river channel downstream. The 347.2 km Jingjiang Reach, part of the middle reach of the Yangtze River, is very closely dowstream of the TGD and is affected relatively earlier and significant by the project operation. Based on the measured prototype hydrological data from 1950 to 2010, variations of the hydrological regime in the Jingjiang Reach after operation of the TGP are analyzed. The results showing that the runoff of the river is of no clear variation tendency during the last 60 years. However, after the operation of the TGP, the sediment concentration of the flow in the Jingjiang Reach decreased by 75%; coarsening of the suspended load and bed load in the river is evident; the water level at the same flow rate has a tendency to decline, with the margin of decline of the upper Jingjiang Reach being larger than that of the lower Reach, and that at smaller flow rate being larger than at larger flow rate. The flow and sediment diversion from the Yangtze River to the Dongting Lake via the three outlets also has a tendency to decrease; the degree of dcrease of the sediment diversion is much larger than that of the flow diversion. After the operation of the TGP, except the 2006 is a special low flow year, in which the decrease of the ratios of flow and sediment diversion are relatively large, the ratios are of no clear unidirectional variation tendency in the other years. Due to the operation of the TGP, within one year, the flow diversion in October is decreased comparing with that before the operation. Keywords: The Three Gorges Project, the

  19. Evaluating Regime Change of Sediment Transport in the Jingjiang River Reach, Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Li He

    2018-03-01

    Full Text Available The sediment regime in the Jingjiang river reach of the middle Yangtze River has been significantly changed from quasi-equilibrium to unsaturated since the impoundment of the Three Gorges Dam (TGD. Vertical profiles of suspended sediment concentration (SSC and sediment flux can be adopted to evaluate the sediment regime at the local and reach scale, respectively. However, the connection between the vertical concentration profiles and the hydrologic conditions of the sub-saturated channel has rarely been examined based on field data. Thus, vertical concentration data at three hydrological stations in the reach (Zhicheng, Shashi, and Jianli are collected. Analyses show that the near-bed concentration (within 10% of water depth from the riverbed may reach up to 15 times that of the vertical average concentration. By comparing the fractions of the suspended sediment and bed material before and after TGD operation, the geomorphic condition under which the distinct large near-bed concentrations occur have been examined. Based on daily discharge-sediment hydrographs, the reach scale sediment regime and availability of sediment sources are analyzed. In total, remarkable large near-bed concentrations may respond to the combination of wide grading suspended particles and bed material. Finally, several future challenges caused by the anomalous vertical concentration profiles in the unsaturated reach are discussed. This indicates that more detailed measurements or new measuring technologies may help us to provide accurate measurements, while a fractional dispersion equation may help us in describing. The present study aims to gain new insights into regime change of sediment suspension in the river reaches downstream of a very large reservoir.

  20. BANK STABILIZATION, SHORELINE LAND-USE, AND THE DISTRIBUTION OF LARGE WOODY DEBRIS IN A REGULATED REACH OF THE UPPER MISSOURI RIVER, NORTH DAKOTA, USA

    Science.gov (United States)

    Large woody debris (LWD) is an important component of ecosystem function in floodplain rivers. We examined the effects on LWD distribution of shoreline land use, bank stabilization, local channel geomorphology, and distance from the dam in the Garrison Reach, a regulated reach of...

  1. Groundwater and surface-water interaction within the upper Smith River Watershed, Montana 2006-2010

    Science.gov (United States)

    Caldwell, Rodney R.; Eddy-Miller, Cheryl A.

    2013-01-01

    The 125-mile long Smith River, a tributary of the Missouri River, is highly valued as an agricultural resource and for its many recreational uses. During a drought starting in about 1999, streamflow was insufficient to meet all of the irrigation demands, much less maintain streamflow needed for boating and viable fish habitat. In 2006, the U.S. Geological Survey, in cooperation with the Meagher County Conservation District, initiated a multi-year hydrologic investigation of the Smith River watershed. This investigation was designed to increase understanding of the water resources of the upper Smith River watershed and develop a detailed description of groundwater and surface-water interactions. A combination of methods, including miscellaneous and continuous groundwater-level, stream-stage, water-temperature, and streamflow monitoring was used to assess the hydrologic system and the spatial and temporal variability of groundwater and surface-water interactions. Collectively, data are in agreement and show: (1) the hydraulic connectedness of groundwater and surface water, (2) the presence of both losing and gaining stream reaches, (3) dynamic changes in direction and magnitude of water flow between the stream and groundwater with time, (4) the effects of local flood irrigation on groundwater levels and gradients in the watershed, and (5) evidence and timing of irrigation return flows to area streams. Groundwater flow within the alluvium and older (Tertiary) basin-fill sediments generally followed land-surface topography from the uplands to the axis of alluvial valleys of the Smith River and its tributaries. Groundwater levels were typically highest in the monitoring wells located within and adjacent to streams in late spring or early summer, likely affected by recharge from snowmelt and local precipitation, leakage from losing streams and canals, and recharge from local flood irrigation. The effects of flood irrigation resulted in increased hydraulic gradients

  2. 75 FR 76632 - Drawbridge Operation Regulation; Upper Mississippi River, Hannibal, MO

    Science.gov (United States)

    2010-12-09

    ... Operation Regulation; Upper Mississippi River, Hannibal, MO AGENCY: Coast Guard, DHS. ACTION: Notice of... temporary deviation from the regulation governing the operation of the Hannibal Railroad Drawbridge across the Upper Mississippi River, mile 309.9, at Hannibal, Missouri. The deviation is necessary to allow...

  3. 77 FR 28488 - Drawbridge Operation Regulation; Upper Mississippi River, Hannibal, MO

    Science.gov (United States)

    2012-05-15

    ... Operation Regulation; Upper Mississippi River, Hannibal, MO AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Hannibal Railroad Drawbridge across the Upper Mississippi River, mile 309.9, at Hannibal, Missouri. The deviation is necessary to allow the replacement of eight wire rope...

  4. 78 FR 64887 - Drawbridge Operation Regulation; Upper Mississippi River, Hannibal, MO

    Science.gov (United States)

    2013-10-30

    ... Operation Regulation; Upper Mississippi River, Hannibal, MO AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Hannibal Railroad Drawbridge across the Upper Mississippi River, mile 309.9, at Hannibal, Missouri. The deviation is necessary to allow the bridge owner time to replace...

  5. Spatially explicit habitat models for 28 fishes from the Upper Mississippi River System (AHAG 2.0)

    Science.gov (United States)

    Ickes, Brian S.; Sauer, J.S.; Richards, N.; Bowler, M.; Schlifer, B.

    2014-01-01

    Environmental management actions in the Upper Mississippi River System (UMRS) typically require pre-project assessments of predicted benefits under a range of project scenarios. The U.S. Army Corps of Engineers (USACE) now requires certified and peer-reviewed models to conduct these assessments. Previously, habitat benefits were estimated for fish communities in the UMRS using the Aquatic Habitat Appraisal Guide (AHAG v.1.0; AHAG from hereon). This spreadsheet-based model used a habitat suitability index (HSI) approach that drew heavily upon Habitat Evaluation Procedures (HEP; U.S. Fish and Wildlife Service, 1980) by the U.S. Fish and Wildlife Service (USFWS). The HSI approach requires developing species response curves for different environmental variables that seek to broadly represent habitat. The AHAG model uses species-specific response curves assembled from literature values, data from other ecosystems, or best professional judgment. A recent scientific review of the AHAG indicated that the model’s effectiveness is reduced by its dated approach to large river ecosystems, uncertainty regarding its data inputs and rationale for habitat-species response relationships, and lack of field validation (Abt Associates Inc., 2011). The reviewers made two major recommendations: (1) incorporate empirical data from the UMRS into defining the empirical response curves, and (2) conduct post-project biological evaluations to test pre-project benefits estimated by AHAG. Our objective was to address the first recommendation and generate updated response curves for AHAG using data from the Upper Mississippi River Restoration-Environmental Management Program (UMRR-EMP) Long Term Resource Monitoring Program (LTRMP) element. Fish community data have been collected by LTRMP (Gutreuter and others, 1995; Ratcliff and others, in press) for 20 years from 6 study reaches representing 1,930 kilometers of river and >140 species of fish. We modeled a subset of these data (28 different

  6. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    Science.gov (United States)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  7. Insect community structure and function in Upper Three Runs, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J.C.; English, W.R. [Clemson Univ., SC (United States). Dept. of Entomology; Looney, B.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-07-08

    A project to document the insect species in the upper reaches of Upper Three Runs at the Savannah River site was recently completed. This research was supported by the US Department of Energy under the National Environmental Research Park Program. The work was performed by the Department of Entomology at Clemson University in clemson, SC, by John C. Morse (principal investigator), William R. English and their colleagues. The major output from this study was the dissertation of Dr. William R. English entitled ``Ecosystem Dynamics of a South Carolina Sandhills Stream.`` He investigated selected environmental resources and determined their dynamics and the dynamics of the aquatic invertebrate community structure in response to them.

  8. Application of the PRMS model in the Zhenjiangguan watershed in the Upper Minjiang River basin

    Directory of Open Access Journals (Sweden)

    L. Fang

    2015-05-01

    Full Text Available The PRMS model was established for Zhenjiangguan watershed in the upper reach of the Minjiang River basin, China. The results showed that PRMS had an acceptable performance in simulating monthly runoff in the study area. The analysis on the impacts of precipitation changes on hydrological processes indicated that both runoff and evapotranspiration increased with the increase of precipitation. Moreover, evapotranspiration had larger sensitivity to the change of precipitation than runoff.

  9. The Landscape Change of Qiang’s Settlements in the Upper Reaches of Minjiang River after Wenchuan Earthquake

    Directory of Open Access Journals (Sweden)

    Xiaofei Wen

    2015-09-01

    Full Text Available Qiang ethnic group is one of the oldest ethnic groups in China, mainly living in upper reaches of Minjiang River in southwest of China. Qiang’s traditional settlements are valuable cultural heritages. Unfortunately, most of Qiang’s settlements were damaged during Wenchuan earthquake in 2008 in different degree. After the earthquake, settlements were reconstructed in different ways. The landscape of Qiang’s settlements had been changed greatly by dual influences, the destruction of earthquake and reconstruction after earthquake. Researching the changing process of Qiang’s settlements landscape has great significance to the protection of cultural heritage and the inheritance of culture, especially in the period after earthquake. At first, Qiang’s settlements are classified into five types with typology method after field research, according to the different degree of destruction and the different model of reconstruction. The five types are settlements restored to original forms in original location, settlements rebuilt to traditional forms in original location, settlements transformed to traditional forms in original location, settlements rebuilt in new location according to unified planning and settlements rebuilt in new location by villagers themselves. Secondly, the five types of settlements are compared with traditional settlements from several aspects including geographical environment, location of settlements, forms of settlements, space structure, building materials and construction technology, in order to research for the change of the landscape characteristics. Finally, the changing processes of each type of settlements landscape are analyzed. The change of villagers’ demands for settlements space are analyzed with the changes of their production model, life style, traditional customs, cultural communication, national religion and spiritual pursuit. Based on this analysis, the main factors influencing the changes of Qiang

  10. Heavy Metals in Surface Soils in the Upper Reaches of the Heihe River, Northeastern Tibetan Plateau, China

    Directory of Open Access Journals (Sweden)

    Jianwei Bu

    2016-02-01

    Full Text Available The upper reaches of the Heihe River have been regarded as a hotspot for phytoecology, climate change, water resources and hydrology studies. Due to the cold-arid climate, high elevation, remote location and poor traffic conditions, few studies focused on heavy metal contamination of soils have been conducted or reported in this region. In the present study, an investigation was performed to provide information regarding the concentration levels, sources, spatial distributions, and environmental risks of heavy metals in this area for the first time. Fifty-six surface soil samples collected from the study area were analyzed for Cr, Mn, Ni, Cu, Zn, As, Cd and Pb concentrations, as well as TOC levels. Basic statistics, concentration comparisons, correlation coefficient analysis and multivariate analyses coupled with spatial distributions were utilized to delineate the features and the sources of different heavy metals. Risk assessments, including geoaccumulation index, enrichment factor and potential ecological risk index, were also performed. The results indicate that the concentrations of heavy metals have been increasing since the 1990s. The mean values of each metal are all above the average background values in the Qinghai Province, Tibet, China and the world, except for that of Cr. Of special note is the concentration of Cd, which is extremely elevated compared with all background values. The distinguished ore-forming conditions and well-preserved, widely distributed limestones likely contribute to the high Cd concentration. Heavy metals in surface soils in the study area are primarily inherited from parent materials. Nonetheless, anthropogenic activities may have accelerated the process of weathering. Cd presents a high background concentration level and poses a severe environmental risk throughout the whole region. Soils in Yinda, Reshui daban, Kekeli and Zamasheng in particular pose threats to the health of the local population, as well as

  11. Mercury Contributions from Flint Creek and other Tributaries to the Upper Clark Fork River in Northwestern Montana

    Science.gov (United States)

    Langner, H.; Young, M.; Staats, M. F.

    2013-12-01

    Methylmercury contamination in biota is a major factor diminishing the environmental quality of the Upper Clark Fork River (CFR), e.g. by triggering human consumption limits of fish. The CFR is subject to one of the largest Superfund cleanup projects in the US, but remediation and restoration is currently focused exclusively on other mining-related contaminants (As, Cu, Zn, Pb, Cd), which may be counterproductive with respect to the bio-availability of mercury, for example by creation of wetlands along mercury-contaminated reaches of the river. The identification and elimination of Hg sources is an essential step toward reducing the methylmercury exposure in the biota of the CFR watershed because a strong correlation exists between total mercury levels in river sediment and methylmercury levels in aquatic life. We analyzed duplicate samples from the top sediment layer of the main stem and significant tributaries to the Clark Fork River along a 240 km reach between Butte, MT and downstream of the Missoula Valley. Mercury concentrations were 1.3 × 1.6 (mean × SD, n = 35) in the main stem. Concentrations in tributaries varied widely (0.02 to 85 mg/kg) and seemed only loosely related to the number of historic precious metal mines in the watershed. In the upper reach of the CFR, elevated Hg levels are likely caused by residual contaminated sediments in the flood plain. Levels tend to decrease downstream until Drummond, MT, where Flint Creek contributes a significant amount of mercury, causing Hg levels in the main stem CFR to increase from 0.7 to 4 mg/kg. Levels continue to decrease downstream. Flint Creek is the single largest contributor of Hg to the CFR. Detailed sampling of the main stem Flint Creek and tributaries (26 sites) showed extremely high levels in two tributaries (22 to 85 mg/kg) where historic milling operations were located. Elimination of these point sources may be accomplished comparatively economically and may significantly reduce mercury levels in

  12. High diversity of nitrogen-fixing bacteria in the upper reaches of the Heihe River, northwestern China

    Directory of Open Access Journals (Sweden)

    X. S. Tai

    2013-08-01

    Full Text Available Vegetation plays a key role in water conservation in the southern Qilian Mountains (northwestern China, located in the upper reaches of the Heihe River. Nitrogen-fixing bacteria are crucial for the protection of the nitrogen supply for vegetation in the region. In the present study, nifH gene clone libraries were established to determine differences between the nitrogen-fixing bacterial communities of the Potentilla parvifolia shrubland and the Carex alrofusca meadow in the southern Qilian Mountains. All of the identified nitrogen-fixing bacterial clones belonged to the Proteobacteria. At the genus level, Azospirillum was only detected in the shrubland soil, while Thiocapsa, Derxia, Ectothiorhodospira, Mesorhizobium, Klebsiella, Ensifer, Methylocella and Pseudomonas were only detected in the meadow soil. The phylogenetic tree was divided into five lineages: lineages I, II and III mainly contained nifH sequences obtained from the meadow soils, while lineage IV was mainly composed of nifH sequences obtained from the shrubland soils. The Shannon–Wiener index of the nifH genes ranged from 1.5 to 2.8 and was higher in the meadow soils than in the shrubland soils. Based on these analyses of diversity and phylogeny, the plant species were hypothesised to influence N cycling by enhancing the fitness of certain nitrogen-fixing taxa. The number of nifH gene copies and colony-forming units (CFUs of the cultured nitrogen-fixing bacteria were lower in the meadow soils than in the shrubland soils, ranging from 0.4 × 107 to 6.9 × 107 copies g−1 soil and 0.97 × 106 to 12.78 × 106 g−1 soil, respectively. Redundancy analysis (RDA revealed that the diversity and number of the nifH gene copies were primarily correlated with aboveground biomass in the shrubland soil. In the meadow soil, nifH gene diversity was most affected by altitude, while copy number was most impacted by soil-available K. These results suggest that the nitrogen-fixing bacterial

  13. High diversity of nitrogen-fixing bacteria in the upper reaches of the Heihe River, northwestern China

    Science.gov (United States)

    Tai, X. S.; Mao, W. L.; Liu, G. X.; Chen, T.; Zhang, W.; Wu, X. K.; Long, H. Z.; Zhang, B. G.; Zhang, Y.

    2013-08-01

    Vegetation plays a key role in water conservation in the southern Qilian Mountains (northwestern China), located in the upper reaches of the Heihe River. Nitrogen-fixing bacteria are crucial for the protection of the nitrogen supply for vegetation in the region. In the present study, nifH gene clone libraries were established to determine differences between the nitrogen-fixing bacterial communities of the Potentilla parvifolia shrubland and the Carex alrofusca meadow in the southern Qilian Mountains. All of the identified nitrogen-fixing bacterial clones belonged to the Proteobacteria. At the genus level, Azospirillum was only detected in the shrubland soil, while Thiocapsa, Derxia, Ectothiorhodospira, Mesorhizobium, Klebsiella, Ensifer, Methylocella and Pseudomonas were only detected in the meadow soil. The phylogenetic tree was divided into five lineages: lineages I, II and III mainly contained nifH sequences obtained from the meadow soils, while lineage IV was mainly composed of nifH sequences obtained from the shrubland soils. The Shannon-Wiener index of the nifH genes ranged from 1.5 to 2.8 and was higher in the meadow soils than in the shrubland soils. Based on these analyses of diversity and phylogeny, the plant species were hypothesised to influence N cycling by enhancing the fitness of certain nitrogen-fixing taxa. The number of nifH gene copies and colony-forming units (CFUs) of the cultured nitrogen-fixing bacteria were lower in the meadow soils than in the shrubland soils, ranging from 0.4 × 107 to 6.9 × 107 copies g-1 soil and 0.97 × 106 to 12.78 × 106 g-1 soil, respectively. Redundancy analysis (RDA) revealed that the diversity and number of the nifH gene copies were primarily correlated with aboveground biomass in the shrubland soil. In the meadow soil, nifH gene diversity was most affected by altitude, while copy number was most impacted by soil-available K. These results suggest that the nitrogen-fixing bacterial communities beneath Potentilla

  14. Hydrodynamic Simulation of the Columbia River, Hanford Reach, 1940--2004

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Perkins, William A.; Richmond, Marshall C.

    2005-06-15

    Many hydrological and biological problems in the Columbia River corridor through the Hanford Site require estimates of river stage (water surface elevation) or river flow and velocity. Systematic collection of river stage data at locations in the Hanford Reach began in 1991, but many environmental projects need river stage information at unmeasured locations or over longer time periods. The Modular Aquatic Simulation System 1D (MASS1), a one-dimensional, unsteady hydrodynamic and water quality model, was used to simulate the Columbia River from Priest Rapids Dam to McNary Dam from 1940 to 2004, providing estimates of water surface elevation, volumetric flow rate, and flow velocity at 161 locations on the Hanford Reach. The primary input data were bathymetric/topographic cross sections of the Columbia River channel, flow rates at Priest Rapids Dam, and stage at McNary Dam. Other inputs included Yakima River and Snake River inflows. Available flow data at a gaging station just below Priest Rapids Dam was mean daily flow from 1940 to 1986 and hourly thereafter. McNary dam was completed in 1957, and hourly stage data are available beginning in 1975. MASS1 was run at an hourly timestep and calibrated and tested using 1991--2004 river stage data from six Hanford Reach locations (areas 100B, 100N, 100D, 100H, 100F, and 300). Manning's roughness coefficient in the Reach above each river recorder location was adjusted using an automated genetic algorithm and gradient search technique in three separate calibrations, corresponding to different data subsets, with minimization of mean absolute error as the objective. The primary calibration was based on 1999, a representative year, and included all locations. The first alternative calibration also used all locations but was limited in time to a high-flow period during spring and early summer of 1997. The second alternative calibration was based on 1999 and included only 300 Area stage data. Model goodness-of-fit for all

  15. Ephemeral stream reaches preserve the evolutionary and distributional history of threespine stickleback in the Santa Clara and Ventura River watersheds of southern California

    Science.gov (United States)

    Richmond, Jonathan Q.; Jacobs, David K.; Backlin, Adam R.; Swift, Camm C.; Dellith, Chris; Fisher, Robert N.

    2015-01-01

    Much remains to be understood about the evolutionary history and contemporary landscape genetics of unarmored threespine stickleback in southern California, where populations collectively referred to as Gasterosteus aculeatus williamsoni have severely declined over the past 70+ years and are now endangered. We used mitochondrial sequence and microsatellite data to assess the population genetics and phylogeography of unarmored populations sampled immediately downstream from the type locality of G. a. williamsoni in the upper Santa Clara River, and assessed their distinctiveness with respect to low-armor populations in the downstream sections of the river and the adjacent Ventura River. We also characterized the geographic limits of different plate morphs and evaluated the congruence of those boundaries with barriers to dispersal in both river systems and to neutral genetic variation. We show substantial population structuring within the upper reach of the Santa Clara River, but little partitioning between the lower Santa Clara and Ventura Rivers—we attribute these patterns to different ancestry between spatially subdivided populations within the same drainage, a predominance of downstream gene flow, and ability for coastal dispersal between the Santa Clara and Ventura Rivers. We also show that alleles from introduced low-plate stock have infiltrated a native population in at least one upper Santa Clara River tributary, causing this formerly unarmored population to become gradually low-plated over a 30 + year time period. Measures of genetic diversity, census surveys, and severe habitat disturbance all indicate that unarmored stickleback near the type locality are currently at high risk of extinction.

  16. Spatial and seasonal patterns in fish assemblage in Corrego Rico, upper Parana River basin

    Directory of Open Access Journals (Sweden)

    Erico L. H Takahashi

    Full Text Available The upper Paraná River basin drains areas of intensive industry and agriculture, suffering negative impacts. The Córrego Rico flows through sugar cane fields and receives urban wastewater. The aim of this work is to describe and to compare the fish assemblage structure in Córrego Rico. Six standardized bimonthly samples were collected between August 2008 and June 2009 in seven different stretches of Córrego Rico. Fishes were collected with an experimental seine and sieves, euthanized, fixed in formalin and preserved in ethanol for counting and identification. Data were recorded for water parameters, instream habitat and riparian features within each stretch. Non-metric multidimensional scaling, species richness and diversity analysis were performed to examine spatial and seasonal variation in assemblage structure. Fish assemblage structure was correlated with instream habitat and water parameters. The fish assemblage was divided in three groups: upper, middle and lower reaches. High values of richness and diversity were observed in the upper and lower stretches due to connectivity with a small lake and Mogi Guaçu River, respectively. Middle stretches showed low values of richness and diversity suggesting that a small dam in the middle stretch negatively impacts the fish assemblage. Seasonal differences in fish assemblage structure were observed only in the lower stretches.

  17. Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America.

    Science.gov (United States)

    Smolders, A J P; Lock, R A C; Van der Velde, G; Medina Hoyos, R I; Roelofs, J G M

    2003-04-01

    From 1997 until 1999 the extent and the ecological effects of zinc, copper, lead, and cadmium pollution were studied in different reaches of the South American Pilcomayo River. A comparison of metal concentrations in water, sediment, and chironomid larvae, as well as the diversity of macroinvertebrate species, was made between sites near the origin of the Pilcomayo River, with hardly any mining activities, sites in the Potosí region, with intensive mining, and sites located 500 km or further downstream of Potosí, in the Chaco plain. Samples were also collected in an unpolluted river (Cachi Mayu River) and in the Tarapaya River, which is strongly contaminated by mine tailings (1000 tons a day). The upper parts of the Pilcomayo River are strongly affected by the release of mine tailings from the Potosí mines where mean concentrations of lead, cadmium, copper, and zinc in water, filtered water, sediment, and chironomid larvae were up to a thousand times higher than the local background levels. The diversity of the benthic macroinvertebrate community was strongly reduced in the contaminated parts; 97% of the benthic macroinvertebrates consisted of chironomid larvae. The degree of contamination in the lower reaches of the river, however, was fairly low because of sedimentation processes and the strong dilution of mine tailings with enormous amounts of clean sediment from erosion processes. Analysis of sediment cores from the Ibibobo floodplain, however, reveal an increase of the heavy metal concentrations in the lower reaches since the introduction of the contaminating flotation process in the mine industry in 1985.

  18. PNW River Reach Files -- 1:100k Waterbodies (polygons)

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — This feature class includes the POLYGON waterbody features from the 2001 version of the PNW River Reach files Arc/INFO coverage. Separate, companion feature classes...

  19. Simulation of Columbia River Floods in the Hanford Reach

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Serkowski, John A.; Perkins, William A.; Richmond, Marshall C.

    2017-01-30

    Columbia River water elevations and flows in the Hanford Reach affect the environment and facilities along the shoreline, including movement of contaminants in groundwater, fish habitat, and infrastructure subject to flooding. This report describes the hydraulic simulation of hypothetical flood flows using the best available topographic and bathymetric data for the Hanford Reach and the Modular Aquatic Simulation System in 1 Dimension (MASS1) hydrodynamic model. The MASS1 model of the Hanford Reach was previously calibrated to field measurements of water surface elevations. The current model setup can be used for other studies of flow, water levels, and temperature in the Reach. The existing MASS1 channel geometry and roughness and other model configuration inputs for the Hanford Reach were used for this study, and previous calibration and validation results for the model are reprinted here for reference. The flood flows for this study were simulated by setting constant flow rates obtained from the U.S. Army Corps of Engineers (USACE) for the Columbia, Snake, and Yakima Rivers, and a constant water level at McNary Dam, and then running the model to steady state. The discharge levels simulated were all low-probability events; for example, a 100-year flood is one that would occur on average every 100 years, or put another way, in any given year there is a 1% chance that a discharge of that level or higher will occur. The simulated floods and their corresponding Columbia River discharges were 100-year (445,000 cfs), 500-year (520,000 cfs), and the USACE-defined Standard Project Flood (960,000 cfs). The resulting water levels from the steady-state floods can be viewed as “worst case” outcomes for the respective discharge levels. The MASS1 output for water surface elevations was converted to the North American Vertical Datum of 1988 and projected across the channel and land surface to enable mapping of the floodplain for each scenario. Floodplain maps show that for

  20. PNW River Reach Files -- 1:100k Watercourses (arcs)

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — This feature class includes the ARC features from the 2001 version of the PNW River Reach files Arc/INFO coverage. Separate, companion feature classes are also...

  1. Climate influences on upper Limpopo River flow

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... Keywords: Limpopo Valley, hydro-meteorology, surface water deficit. * To whom all ... millenia and there is a history of drought impacts on vegetation. (Ekblom et ... water budget of the upper Limpopo River valley using direct.

  2. Watershed Fact Sheet: Improving Utah's Water Quality, Upper Bear River Watershed

    OpenAIRE

    Extension, USU

    2012-01-01

    The Upper Watershed of the Bear River Basin extends from the river's headwaters to Pixley Dam in Wyoming. This is the largest watershed in the Bear River Basin, with an area of about 2,000 square miles.

  3. Delaware River and Upper Bay Sediment Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The area of coverage consists of 192 square miles of benthic habitat mapped from 2005 to 2007 in the Delaware River and Upper Delaware Bay. The bottom sediment map...

  4. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    Science.gov (United States)

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  5. 78 FR 69995 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-11-22

    ... Operation Regulation; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the bridge owner time...

  6. 78 FR 21537 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-04-11

    ... Operation Regulations; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the Front Street 5K Run...

  7. Numerical modelling of ice floods in the Ning-Meng reach of the Yellow River basin

    NARCIS (Netherlands)

    Wang, C.

    2017-01-01

    The Ning-Meng reach of the Yellow River basin is located in the Inner Mongolia region at the Northern part of the Yellow River. Due to the special geographical conditions, the river flow direction is towards the North causing the Ning-Meng reach to freeze up every year in wintertime. Both during the

  8. 75 FR 81125 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2010-12-27

    ... Operation Regulation; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... the Upper Mississippi River, mile 481.4, at Rock Island, Illinois. The deviation is necessary to allow... Rock Island, Illinois to open on signal if at least 24 hours advance notice is given for 44 days from...

  9. Neotectonic Activity from the Upper Reaches of the Arabian Gulf and Possibilities of New Oil Fields

    Science.gov (United States)

    Sissakian, V. K.; Abdul Ahad, A. D.; Al-Ansari, N.; Knutsson, S.

    2018-03-01

    Upper reaches of the Arabian Gulf consist of different types of fine sediments including the vast Mesopotamia Plain sediments, tidal flat sediments and estuarine sabkha sediments. The height of the plain starts from zero meter and increases northwards to three meters with extremely gentle gradient. The vast plain to the north of the Arabian Gulf is drained by Shat Al-Arab (Shat means river in Iraqi slang language) and Khor Al-Zubair (Khor means estuary). The former drains the extreme eastern part of the plain; whereas, the latter drains the western part. Shat Al-Arab is the resultant of confluence of the Tigris and Euphrates rivers near Al-Qurna town; about 160 km north of the Arabian Gulf mouth at Al-Fao town; whereas, the length of Khor Al-Zubair is about 50 km; as measured from Um Qasir Harbor. The drainage system around Khor Al-Zubair is extremely fine dendritic; whereas around Shat Al-Arab is almost parallel running from both sides of the river towards the river; almost perpendicularly. The fine dendritic drainage around Khor Al-Zubair shows clear recent erosional activity, beside water divides, abandoned irrigation channels and dislocated irrigational channels and estuarine distributaries; all are good indication for a Neotectonic activity in the region. These may indicate the presence of subsurface anticlines, which may represent oil fields; since tens of subsurface anticlines occur in near surroundings, which are oil fields.

  10. An Evaluation of River Health for the Weihe River in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Jinxi Song

    2015-01-01

    Full Text Available Excessive socioeconomic activities in the Weihe River region have caused severe ecosystem degradation, and the call for the recovery and maintenance of the river health has drawn great attention. Based on the connotation of river health, previous research findings, and status quo of the Weihe River ecosystem, in this study, we developed a novel health evaluation index system to quantitatively determine the health of the Weihe River in Shaanxi Province. The river in the study area was divided into five reaches based on the five hydrological gauging stations, and appropriate evaluation indices for each river section were selected according to the ecological environmental functions of that section. A hybrid approach integrating analytic hierarchy process (AHP and a fuzzy synthetic evaluation method was applied to measure the river health. The results show that Linjiancun-Weijiabao reach and Weijiabao-Xianyang reach are in the “moderate” level of health and Lintong-Huaxian reach and downstream of Huaxian reach are in the “poor” health rating, whereas Xianyang-Lintong reach is in the “sick” rating. Moreover, the most sensitive factors were determined, respectively, for each reach from upper stream to lower stream in the study area.

  11. Predicting losing and gaining river reaches in lowland New Zealand based on a statistical methodology

    Science.gov (United States)

    Yang, Jing; Zammit, Christian; Dudley, Bruce

    2017-04-01

    The phenomenon of losing and gaining in rivers normally takes place in lowland where often there are various, sometimes conflicting uses for water resources, e.g., agriculture, industry, recreation, and maintenance of ecosystem function. To better support water allocation decisions, it is crucial to understand the location and seasonal dynamics of these losses and gains. We present a statistical methodology to predict losing and gaining river reaches in New Zealand based on 1) information surveys with surface water and groundwater experts from regional government, 2) A collection of river/watershed characteristics, including climate, soil and hydrogeologic information, and 3) the random forests technique. The surveys on losing and gaining reaches were conducted face-to-face at 16 New Zealand regional government authorities, and climate, soil, river geometry, and hydrogeologic data from various sources were collected and compiled to represent river/watershed characteristics. The random forests technique was used to build up the statistical relationship between river reach status (gain and loss) and river/watershed characteristics, and then to predict for river reaches at Strahler order one without prior losing and gaining information. Results show that the model has a classification error of around 10% for "gain" and "loss". The results will assist further research, and water allocation decisions in lowland New Zealand.

  12. Automated River Reach Definition Strategies: Applications for the Surface Water and Ocean Topography Mission

    Science.gov (United States)

    Frasson, Renato Prata de Moraes; Wei, Rui; Durand, Michael; Minear, J. Toby; Domeneghetti, Alessio; Schumann, Guy; Williams, Brent A.; Rodriguez, Ernesto; Picamilh, Christophe; Lion, Christine; Pavelsky, Tamlin; Garambois, Pierre-André

    2017-10-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure water surface heights and widths for rivers wider than 100 m. At its native resolution, SWOT height errors are expected to be on the order of meters, which prevent the calculation of water surface slopes and the use of slope-dependent discharge equations. To mitigate height and width errors, the high-resolution measurements will be grouped into reaches (˜5 to 15 km), where slope and discharge are estimated. We describe three automated river segmentation strategies for defining optimum reaches for discharge estimation: (1) arbitrary lengths, (2) identification of hydraulic controls, and (3) sinuosity. We test our methodologies on 9 and 14 simulated SWOT overpasses over the Sacramento and the Po Rivers, respectively, which we compare against hydraulic models of each river. Our results show that generally, height, width, and slope errors decrease with increasing reach length. However, the hydraulic controls and the sinuosity methods led to better slopes and often height errors that were either smaller or comparable to those of arbitrary reaches of compatible sizes. Estimated discharge errors caused by the propagation of height, width, and slope errors through the discharge equation were often smaller for sinuosity (on average 8.5% for the Sacramento and 6.9% for the Po) and hydraulic control (Sacramento: 7.3% and Po: 5.9%) reaches than for arbitrary reaches of comparable lengths (Sacramento: 8.6% and Po: 7.8%). This analysis suggests that reach definition methods that preserve the hydraulic properties of the river network may lead to better discharge estimates.

  13. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  14. 78 FR 46258 - Safety Zone; Upper Mississippi River, Mile 662.8 to 663.9

    Science.gov (United States)

    2013-07-31

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 662.8 to 663.9 AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone for all waters of the Upper Mississippi River, from mile 662.8 to 663.9, extending the entire width of the river. This safety...

  15. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  16. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    Science.gov (United States)

    Cui, X.; Liu, S.; Wei, X.

    2012-05-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently-completed research programs (one of them known as "973 of the China National Major Fundamental Science" with funding of 3.5 million USD in 2002 to 2008). This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful because the results from a small spatial scale (e.g. forest stand level) can help interpret the findings at a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation at both spatial scales. The impact magnitudes caused by forest harvesting indicate that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yields in the Minjiang River watershed. In addition, different types of forests have different magnitudes of ET with old-growth natural

  17. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River.

    Science.gov (United States)

    Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A

    2015-11-01

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed

  18. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River

    Energy Technology Data Exchange (ETDEWEB)

    Degteva, M.O.; Shagina, N.B.; Shishkina, E.A.; Vozilova, A.V.; Volchkova, A.Y.; Vorobiova, M.I. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Wieser, A. [Helmholtz Centrum Munich, Neuherberg (Germany); Fattibene, P.; Della Monaca, S. [Instituto Superiore di Sanita, Rome (Italy); Ainsbury, E.; Moquet, J. [Public Health England, Chilton, Didcot (United Kingdom); Anspaugh, L.R. [University of Utah, Salt Lake City, UT (United States); Napier, B.A. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-11-15

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated {sup 89,90}Sr, the EPR and FISH assays were supported by measurements of {sup 90}Sr-body burdens and estimates of {sup 90}Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from {sup 137}Cs incorporated in donors' soft tissues. It is shown here that the

  19. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River

    International Nuclear Information System (INIS)

    Degteva, M.O.; Shagina, N.B.; Shishkina, E.A.; Vozilova, A.V.; Volchkova, A.Y.; Vorobiova, M.I.; Wieser, A.; Fattibene, P.; Della Monaca, S.; Ainsbury, E.; Moquet, J.; Anspaugh, L.R.; Napier, B.A.

    2015-01-01

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated "8"9","9"0Sr, the EPR and FISH assays were supported by measurements of "9"0Sr-body burdens and estimates of "9"0Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from "1"3"7Cs incorporated in donors' soft tissues. It is shown here that the TRDS

  20. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    Science.gov (United States)

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.

    2015-01-01

    This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs.

  1. Modelling the combined impact of radionuclide discharges reaching rivers

    International Nuclear Information System (INIS)

    Hilton, J.; Small, S.; Hornby, D.; Scarlett, P.; Harvey, M.; Simmonds, J.; Bexon, A.; Jones, A.

    2003-01-01

    The Agency currently authorises direct and indirect (via sewerage systems) discharges of liquid radioactive wastes to rivers from nuclear sites and other registered users of radioactivity. Discharges are normally authorised on a site-by-site basis, taking into account the radiological assessment. Radiological assessments are normally made using dilution models to estimate radionuclide activities in the effluents themselves and in the receiving rivers. These data are then combined with information on habits and dose factor information to give a dose assessment for individuals exposed to the discharge. For each site the highest radiological impact is expected immediately downstream of the disposal point where concentrations of radionuclides and resulting doses are highest. The concentration and doses are expected to decline with increasing distance downstream of the disposal point. However, if discharges are made into the river from other establishments higher up the catchment, the total dose may be higher. Recent Environment Agency research projects provided evidence of the potential radiological significance of multiple discharges to a single river. In the light of these studies, the Agency require a robust modelling tool to assist in the assessment of the effects of combined discharges to river systems. The aim of this R and D project was to develop and test modelling tools that could be used to make assessments of the impact of multiple radiological discharge into river systems and to trial them on the upper Thames river system

  2. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Science.gov (United States)

    Cui, X.; Liu, S.; Wei, X.

    2012-11-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008). This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level) can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of evapotranspiration (ET), with

  3. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Directory of Open Access Journals (Sweden)

    X. Cui

    2012-11-01

    Full Text Available Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008. This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of

  4. 78 FR 28139 - Drawbridge Operation Regulation; Tuckahoe River, Between Corbin City and Upper Township, NJ

    Science.gov (United States)

    2013-05-14

    ... Operation Regulation; Tuckahoe River, Between Corbin City and Upper Township, NJ AGENCY: Coast Guard, DHS... River, mile 8.0, between Corbin City and Upper Township, NJ. The deviation is necessary to facilitate... operating schedule, the State Highway Bridge, mile 8.0, between Corbin City and Upper Township, NJ shall...

  5. THE WATER QUALITY DEGRADATION OF UPPER AWASH RIVER ...

    African Journals Online (AJOL)

    Osondu

    2013-01-11

    Jan 11, 2013 ... Benthic macroinvertebrate based assessment of water quality in the ... of the upper Awash River had low water quality status which is likely to be ..... Frydenborg, R., McCarron, E., White, J.S. and ... A framework for biological.

  6. USGS Activities at Lake Roosevelt and the Upper Columbia River

    Science.gov (United States)

    Barton, Cynthia; Turney, Gary L.

    2010-01-01

    Lake Roosevelt (Franklin D. Roosevelt Lake) is the impoundment of the upper Columbia River behind Grand Coulee Dam, and is the largest reservoir within the Bureau of Reclamation's Columbia Basin Project (CBP). The reservoir is located in northeastern Washington, and stretches 151 miles from Grand Coulee Dam north to the Canadian border. The 15-20 miles of the Columbia River downstream of the border are riverine and are under small backwater effects from the dam. Grand Coulee Dam is located on the mainstem of the Columbia River about 90 miles northwest of Spokane. Since the late 1980s, trace-element contamination has been known to be widely present in Lake Roosevelt. Trace elements of concern include arsenic, cadmium, copper, lead, mercury, and zinc. Contaminated sediment carried by the Columbia River is the primary source of the widespread occurrence of trace-element enrichment present in Lake Roosevelt. In 2001, the U.S. Environmental Protection Agency (EPA) initiated a preliminary assessment of environmental contamination of the Lake Roosevelt area (also referred to as Upper Columbia River, UCR site, or UCR/LR site) and has subsequently begun remedial investigations of the UCR site.

  7. Challenges in merging fisheries research and management: The Upper Mississippi River experience

    Science.gov (United States)

    Garvey, J.; Ickes, B.; Zigler, S.

    2010-01-01

    The Upper Mississippi River System (UMRS) is a geographically diverse basin extending 10?? north temperate latitude that has produced fishes for humans for millennia. During European colonization through the present, the UMRS has been modified to meet multiple demands such as navigation and flood control. Invasive species, notably the common carp, have dominated fisheries in both positive and negative ways. Through time, environmental decline plus reduced economic incentives have degraded opportunities for fishery production. A renewed focus on fisheries in the UMRS may be dawning. Commercial harvest and corresponding economic value of native and non-native species along the river corridor fluctuates but appears to be increasing. Recreational use will depend on access and societal perceptions of the river. Interactions (e. g., disease and invasive species transmission) among fish assemblages within the UMRS, the Great Lakes, and other lakes and rivers are rising. Data collection for fisheries has varied in intensity and contiguousness through time, although resources for research and management may be growing. As fisheries production likely relies on the interconnectivity of fish populations and associated ecosystem processes among river reaches (e. g., between the pooled and unpooled UMRS), species-level processes such as genetics, life-history interactions, and migratory behavior need to be placed in the context of broad ecosystem- and landscape-scale restoration. Formal communication among a diverse group of researchers, managers, and public stakeholders crossing geographic and disciplinary boundaries is necessary through peer-reviewed publications, moderated interactions, and the embrace of emerging information technologies. ?? Springer Science+Business Media B.V. 2010.

  8. Fe and Mn Transport and Settling Modelling in the Upper Course of the Lerma River

    Directory of Open Access Journals (Sweden)

    García-Aragón Juan Antonio

    2013-06-01

    Full Text Available A metal transport and deposition model together with concentration measurements of Fe and Mn was developed in the Upper Course of the Lerma River, Mexico State. The hydraulic sections of 27.9 km of the Lerma River were measured in the field in order to supply the numerical model. A general mass balance equation considering full mixing in selected reaches of the Lerma River was developed and solved using the finite-difference method. At the same time a sampling campaign of water and sediment allowed us to obtain Fe and Mn concentrations in each phase. Metal concentrations were obtained by Energy Dispersive X-Ray Fluorescence Method (EDXRF. Partition coefficients for water and suspended sediment and for water and deposited sediment were calculated. Well defined periods and areas of deposition of Fe and Mn were obtained by the transport model and the spatial variation of the partition coefficients agree with the pattern obtained in the simulation. It is concluded that the current practice of constant values of the partition coefficients could not be used in modelling transport and deposition of metals if we are dealing with hydrologic extreme events and river sediment deposition areas.

  9. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  10. Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling

    Science.gov (United States)

    Anibas, Christian; Tolche, Abebe Debele; Ghysels, Gert; Nossent, Jiri; Schneidewind, Uwe; Huysmans, Marijke; Batelaan, Okke

    2017-12-01

    Among the advances made in analytical and numerical analysis methods to quantify groundwater/surface-water interaction, one methodology that stands out is the use of heat as an environmental tracer. A large data set of river and riverbed temperature profiles from the Aa River in Belgium has been used to examine the spatial-temporal variations of groundwater/surface-water interaction. Exchange fluxes were calculated with the numerical heat-transport code STRIVE. The code was applied in transient mode to overcome previous limitations of steady-state analysis, and allowed for the calculation of model quality. In autumn and winter the mean exchange fluxes reached -90 mm d-1, while in spring and early summer fluxes were -42 mm d-1. Predominantly gaining conditions occurred along the river reach; however, in a few areas the direction of flow changed in time. The river banks showed elevated fluxes up to a factor of 3 compared to the center of the river. Higher fluxes were detected in the upstream section of the reach. Due to the influence of exchange fluxes along the river banks, larger temporal variations were found in the downstream section. The exchange fluxes at the river banks seemed more driven by variable local exchange flows, while the center of the river was dominated by deep and steady regional groundwater flows. These spatial and temporal differences in groundwater/surface-water exchange show the importance of long-term investigations on the driving forces of hyporheic processes across different scales.

  11. Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling

    Science.gov (United States)

    Anibas, Christian; Tolche, Abebe Debele; Ghysels, Gert; Nossent, Jiri; Schneidewind, Uwe; Huysmans, Marijke; Batelaan, Okke

    2018-05-01

    Among the advances made in analytical and numerical analysis methods to quantify groundwater/surface-water interaction, one methodology that stands out is the use of heat as an environmental tracer. A large data set of river and riverbed temperature profiles from the Aa River in Belgium has been used to examine the spatial-temporal variations of groundwater/surface-water interaction. Exchange fluxes were calculated with the numerical heat-transport code STRIVE. The code was applied in transient mode to overcome previous limitations of steady-state analysis, and allowed for the calculation of model quality. In autumn and winter the mean exchange fluxes reached -90 mm d-1, while in spring and early summer fluxes were -42 mm d-1. Predominantly gaining conditions occurred along the river reach; however, in a few areas the direction of flow changed in time. The river banks showed elevated fluxes up to a factor of 3 compared to the center of the river. Higher fluxes were detected in the upstream section of the reach. Due to the influence of exchange fluxes along the river banks, larger temporal variations were found in the downstream section. The exchange fluxes at the river banks seemed more driven by variable local exchange flows, while the center of the river was dominated by deep and steady regional groundwater flows. These spatial and temporal differences in groundwater/surface-water exchange show the importance of long-term investigations on the driving forces of hyporheic processes across different scales.

  12. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  13. River reach classification for the Greater Mekong Region at high spatial resolution

    Science.gov (United States)

    Ouellet Dallaire, C.; Lehner, B.

    2014-12-01

    River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of

  14. 77 FR 28255 - Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5

    Science.gov (United States)

    2012-05-14

    ... on the Upper Mississippi River. Discussion of Rule The Coast Guard is establishing a temporary safety...-AA00 Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5 AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone for all waters of the...

  15. PNW River Reach Files -- 1:100k LLID Routed Streams (routes)

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — This feature class includes the ROUTE features from the 2001 version of the PNW River Reach files Arc/INFO coverage. Separate, companion feature classes are also...

  16. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    Science.gov (United States)

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  17. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  18. Quantifying hyporheic exchange dynamics in a highly regulated large river reach.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Zhou, T; Huang, M; Hou, Z; Bao, J; Arntzen, E; Mackley, R; Harding, S; Titzler, S; Murray, C; Perkins, W; Chen, X; Stegen, J; Thorne, P; Zachara, J

    2017-03-01

    Hyporheic exchange is an important mechanism taking place in riverbanks and riverbed sediments, where river water and shallow groundwater mix and interact with each other. The direction, magnitude, and residence time of the hyporheic flux that penetrates the river bed are critical for biogeochemical processes such as carbon and nitrogen cycling, and biodegradation of organic contaminants. Many approaches including field measurements and numerical methods have been developed to quantify the hyporheic exchanges in relatively small rivers. However, the spatial and temporal distributions of hyporheic exchanges in a large, regulated river reach remain less explored due to the large spatial domains, complexity of geomorphologic features and subsurface properties, and the great pressure gradient variations at the riverbed created by dam operations.

  19. Selenium in the upper Blackfoot River watershed, southeastern Idaho, 2001-12

    Science.gov (United States)

    Mebane, Christopher A.; Mladenka, Greg; Van Every, Lynn; Williams, Marshall L.; Hardy, Mark A.; Garbarino, John R.

    2014-11-05

    The upper Blackfoot River in southeastern Idaho receives runoff from 12 large phosphate mines. Waste shales that are removed to access the phosphate ore are highly enriched with selenium, resulting in elevated selenium in runoff from the mine waste dumps. In 2001, in cooperation with the Bureau of Land Management, the U.S. Geological Survey (USGS) began monitoring streamflow, selenium, and other water-quality parameters at a single location near the outlet of the upper Blackfoot River to the Blackfoot Reservoir. Water samples primarily were collected by a flow triggered, automated pump sampler, supplemented by manual point and equal-width integrated manual samples.

  20. Sorption Characteristics of Sediments in the Upper Mississippi River System Above Lake Pepin

    National Research Council Canada - National Science Library

    James, W

    1999-01-01

    This technical note examines equilibrium phosphorus processes and sorption characteristics for sediments collected from the Minnesota River, immediately upstream from its confluence with the Upper Mississippi River (UMR...

  1. Temporal changes in spatial patterns of submersed macrophytes in two impounded reaches of the Upper Mississippi River, USA, 1998-2009

    Science.gov (United States)

    De Jager, Nathan R.; Yin, Yao

    2011-01-01

    We examined temporal changes in spatial patterns of submersed aquatic macrophytes during a recent three-fold increase in macrophyte abundance and in response to the cumulative effects of management actions (island construction and water level management) and changes in regional environmental conditions (turbidity) in two navigation pools of the Upper Mississippi River, Pool 8 (managed) and Pool 13 (unmanaged). We used cross-correlograms to quantify changes in the degree and range of spatial correlation between submersed macrophytes and depth across the impounded portions of the two pools from 1998-2009. Along with increases in abundance, we observed gradual expansion of submersed macrophytes into deeper water in both pools. However, we detected no temporal change in spatial patterns in Pool 13, where the range of spatial correlation was ~ 1500-2500 m in length in the downriver direction and ~ 500-1000 m in length in the crossriver direction. We initially detected similar ranges of spatial correlation in Pool 8, but over time the range of correlation in the cross river direction increased from ~ 500 m in 1998 to ~ 2000 m by 2009. Thus, the expansion of submersed macrophytes into deeper water areas in Pool 8 appears to have occurred in the cross-river direction and led to increases in patch size and a more symmetrical patch configuration. Hence, very similar temporal changes in submersed macrophyte abundance corresponded with different diffusion dynamics and spatial patterns in the two pools. We hypothesize that management actions altered spatial patterns of depth, water flow and/or wind fetch and led to the differences in spatial patterns reported here.

  2. Channel morphodynamics in four reaches of the Lower Missouri River, 2006-07

    Science.gov (United States)

    Elliott, Caroline M.; Reuter, Joanna M.; Jacobson, Robert B.

    2009-01-01

    Channel morphodynamics in response to flow modifications from Gavins Point Dam are examined in four reaches of the Lower Missouri River. Measures include changes in channel morphology and indicators of sediment transport in four 6 kilometer long reaches located downstream from Gavins Point Dam, near Yankton, South Dakota, Kenslers Bend, Nebraska, Little Sioux, Iowa, and Miami, Missouri. Each of the four reaches was divided into 300 transects with a 20-meter spacing and surveyed during the summer in 2006 and 2007. A subset of 30 transects was randomly selected and surveyed 7-10 times in 2006-07 over a wide range of discharges including managed and natural flow events. Hydroacoustic mapping used a survey-grade echosounder and a Real Time Kinematic Global Positioning System to evaluate channel change. Acoustic Doppler current profiler measurements were used to evaluate bed-sediment velocity. Results indicate varying amounts of deposition, erosion, net change, and sediment transport in the four Lower Missouri River reaches. The Yankton reach was the most stable over monthly and annual time-frames. The Kenslers Bend and Little Sioux reaches exhibited substantial amounts of deposition and erosion, although net change was generally low in both reaches. Total, or gross geomorphic change was greatest in the Kenslers Bend reach. The Miami reach exhibited varying rates of deposition and erosion, and low net change. The Yankton, Kenslers Bend, and Miami reaches experienced net erosion during the time period that bracketed the managed May 2006 spring rise event from Gavins Point Dam.

  3. Simulated and observed 2010 floodwater elevations in selected river reaches in the Pawtuxet River Basin, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Olson, Scott A.; Flynn, Robert H.; Strauch, Kellan R.; Murphy, Elizabeth A.

    2014-01-01

    Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term streamgages in Rhode Island. In response to this event, hydraulic models were updated for selected reaches covering about 56 river miles in the Pawtuxet River Basin to simulate water-surface elevations (WSEs) at specified flows and boundary conditions. Reaches modeled included the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Dry Brook, Meshanticut Brook, Furnace Hill Brook, Flat River, Quidneck Brook, and two unnamed tributaries referred to as South Branch Pawtuxet River Tributary A1 and Tributary A2. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 using steady-state simulations. Updates to the models included incorporation of new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were assessed using high-water marks (HWMs) obtained in a related study following the March– April 2010 flood and the simulated water levels at the 0.2-percent annual exceedance probability (AEP), which is the estimated AEP of the 2010 flood in the basin. HWMs were obtained at 110 sites along the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Furnace Hill Brook, Flat River, and Quidneck Brook. Differences between the 2010 HWM elevations and the simulated 0.2-percent AEP WSEs from flood insurance studies (FISs) and the updated models developed in this study varied with most differences attributed to the magnitude of the 0.2-percent AEP flows. WSEs from the updated models generally are in closer agreement with the observed 2010 HWMs than with the FIS WSEs. The improved agreement of the updated simulated water elevations to

  4. Flood effects provide evidence of an alternate stable state from dam management on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Hupp, Cliff R.; Schenk, Edward R.; Galloway, Joel M.; Nustad, Rochelle A.

    2017-01-01

    We examine how historic flooding in 2011 affected the geomorphic adjustments created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND, USA. The largest flood since dam regulation occurred in 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until October, peaking with a flow of more than 4200 m3 s−1. Channel cross-section data and aerial imagery before and after the flood were compared with historic rates of channel change to assess the relative impact of the flood on the river morphology. Results indicate that the 2011 flood maintained trends in island area with the loss of islands in the reach just below the dam and an increase in island area downstream. Channel capacity changes varied along the Garrison Segment as a result of the flood. The thalweg, which has been stable since the mid-1970s, did not migrate. And channel morphology, as defined by a newly developed shoaling metric, which quantifies the degree of channel braiding, indicates significant longitudinal variability in response to the flood. These results show that the 2011 flood exacerbates some geomorphic trends caused by the dam while reversing others. We conclude that the presence of dams has created an alternate geomorphic and related ecological stable state, which does not revert towards pre-dam conditions in response to the flood of record. This suggests that management of sediment transport dynamics as well as flow modification is necessary to restore the Garrison Segment of the Upper Missouri River towards pre-dam conditions and help create or maintain habitat for endangered species. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. Distribution of radioactive "1"3"7Cs and "1"3"4Cs in river water and bottom sand for major rivers at Minami-Soma City in Fukushima

    International Nuclear Information System (INIS)

    Kajimoto, Tsuyoshi; Endo, Satoru; Shizuma, Kiyoshi; Naganuma, Takeshi

    2013-01-01

    A nuclear power plant accident, which occurred on March 11, 2011, caused severe radioactive contamination in Fukushima. We initiated an environmental radioactive survey in Minami-Soma City the following October. The city is located approximately 10-40 km north of the TEPCO's Fukushima Daiichi Nuclear Power Plant. The study reported here involves an environmental radioactive survey conducted along three rivers and their tributary streams. Water and bottom sands were collected from four to six sampling locations along each river. Water samples (1 L) were dried on thin Teflon sheets, and gamma-ray measurements were performed with a well-type Ge detector. Sand samples were homogenized after drying, and approximately 50 g were measured for gamma-rays with a low-background coaxial-type Ge detector. The Cs concentrations ("1"3"7Cs+"1"3"4Cs) were determined to be 10,000-20,000 Bq/kg in the bottom sand collected from the upper reaches of the rivers, whereas the concentrations measured from samples collected near coastal down reaches were measured at about 200 Bq/kg. The Cs concentrations measured in river water were about 0.8 Bq/L in the upper reaches of the rivers and 0.3 Bq/L in the lower reaches, indicating that the Cs concentration in water is quite low. It is necessary to study the behavior of the contaminants in the upper reaches of the river system, and determine if they will move to the down stream area hereafter. (author)

  6. Distribution of radioactive "1"3"7Cs and "1"3"4Cs in river water and bottom sand for major rivers at Minami-Soma City in Fukushima

    International Nuclear Information System (INIS)

    Kajimoto, Tsuyoshi; Endo, Satoru; Shizuma, Kiyoshi; Naganuma, Takeshi

    2012-01-01

    A nuclear power plant accident, which occurred on March 11, 2011, caused severe radioactive contamination in Fukushima. We initiated an environmental radioactive survey in Minami-Soma City the following October. The city is located approximately 10-40 km north of the TEPCO's Fukushima Daiichi Nuclear Power Plant. The study reported here involves an environmental radioactive survey conducted along three rivers and their tributary streams.Water and bottom sands were collected from four to six sampling locations along each river. Water samples (1 L) were dried on thin Teflon sheets, and gamma-ray measurements were performed with a well-type Ge detector. Sand samples were homogenized after drying, and approximately 50 g were measured for gamma-rays with a low-background coaxial-type Ge detector. The Cs concentrations ("1"3"7Cs+"1"3"4Cs) were determined to be 10,000-20,000 Bq/kg in the bottom sand collected from the upper reaches of the rivers, whereas the concentrations measured from samples collected near coastal down reaches were measured at about 200 Bq/kg. The Cs concentrations measured in river water were about 0.8 Bq/L in the upper reaches of the rivers and 0.3 Bq/L in the lower reaches, indicating that the Cs concentration in water is quite low. It is necessary to study the behavior of the contaminants in the upper reaches of the river system, and determine if they will move to the down stream area hereafter. (author)

  7. 77 FR 39393 - Special Local Regulation; Upper Mississippi River, Mile 842.0 to 840.0

    Science.gov (United States)

    2012-07-03

    ... is establishing a temporary special local regulation for all waters of the Upper Mississippi River... 1625-AA00 Special Local Regulation; Upper Mississippi River, Mile 842.0 to 840.0 AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary special local...

  8. Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    Interactions among hydrology and geomorphology create shifting mosaics of aquatic habitat patches in large river floodplains (e.g., main and side channels, floodplain lakes, and shallow backwater areas) and the connectivity among these habitat patches underpins high levels of biotic diversity and productivity. However, the diversity and connectivity among the habitats of most floodplain rivers have been negatively impacted by hydrologic and structural modifications that support commercial navigation and control flooding. We therefore tested the hypothesis that the rate of increase in patch richness (# of types) with increasing scale reflects anthropogenic modifications to habitat diversity and connectivity in a large floodplain river, the Upper Mississippi River (UMR). To do this, we calculated the number of aquatic habitat patch types within neighborhoods surrounding each of the ≈19 million 5-m aquatic pixels of the UMR for multiple neighborhood sizes (1–100 ha). For all of the 87 river-reach focal areas we examined, changes in habitat richness (R) with increasing neighborhood length (L, # pixels) were characterized by a fractal-like power function R = Lz (R2 > 0.92 (P z) measures the rate of increase in habitat richness with neighborhood size and is related to a fractal dimension. Variation in z reflected fundamental changes to spatial patterns of aquatic habitat richness in this river system. With only a few exceptions, z exceeded the river-wide average of 0.18 in focal areas where side channels, contiguous floodplain lakes, and contiguous shallow-water areas exceeded 5%, 5%, and 10% of the floodplain respectively. In contrast, z was always less than 0.18 for focal areas where impounded water exceeded 40% of floodplain area. Our results suggest that rehabilitation efforts that target areas with <5% of the floodplain in side channels, <5% in floodplain lakes, and/or <10% in shallow-water areas could improve habitat diversity across multiple scales in the UMR.

  9. Community Based Warning and Evacuation System against Debris Flow in the Upper Jeneberang River, Gowa, South Sulawesi

    Directory of Open Access Journals (Sweden)

    Sutikno Hardjosuwarno

    2008-07-01

    Full Text Available Gigantic collapse of the Caldera wall of Mt. Bawakaraeng (2,830 m in March 2004 had supplied the sediment volume of 230 million to the most upper stream of Jeneberang River, which flowed down to the lower reach in the form of debris flow which is triggered by rainfall. The purpose of the research is to provide a system which is able to forecast the occurrence of debris flow, to identify the weak points along the river course, to identify the hazard areas and how to inform effectively and efficiently the warning messages to the inhabitants in the dangerous area by using the existing modern equipment combined with the traditional one. The standard rainfall which is used to judge the occurrence of debris flow was established by Yano method. It is based on the historical data of rainfall that trigger and not trigger to the occurrence of debris flow which is widely used in Japan so far. The hazard area was estimated by Two-Dimensional Simulation Model for debris flow, the debris flow arrival time at each point in the river were estimated by dividing their distance from reference point by debris flow velocity, where the check dam no. 7-1 in Manimbahoi was designated as reference point. The existing evacuation routes were checked by field survey, the strength and coverage of sound for kentongan and manual siren were examined using sound pressure level at the location of the existing monitoring post and the effectiveness of warning and evacuation were evaluated by comparing the warning and evacuation time against the debris flow arrival time. It was resulted that debris flow occurrence was triggered by short duration of high rainfall intensity, long duration of low rainfall intensity and the outbreak of natural dam which is formed by land slide or bank collapses. The hazard area of upper Jeneberang River are mostly located on the river terraces where the local inhabitants earn their living through cultivating the river terraces as paddy fields, dry

  10. Wetland Management Reduces Sediment and Nutrient Loading to the Upper Mississippi River

    Science.gov (United States)

    Restored riparian wetlands in the Upper Mississippi River basin have the potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh...

  11. Landform-Sediment Assemblages Units of the Upper Mississippi River Valley

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Wisconsinan and Holocene Landform-Sediment Assemblages of the Upper Mississippi River Valley. Knowledge of the spatial distribution of natural and cultural resources...

  12. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    Science.gov (United States)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using

  13. 75 FR 52360 - Upper Truckee River Restoration and Golf Course Reconfiguration Project, El Dorado County, CA

    Science.gov (United States)

    2010-08-25

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Upper Truckee River Restoration and Golf Course... and comment the draft EIR/EIS for the Upper Truckee River Restoration and Golf Course Reconfiguration... include continuing existing golf course use, removal of the entire Lake Tahoe Golf Course, or...

  14. Major and trace elements in sediments of the upper course of Lerma river

    International Nuclear Information System (INIS)

    Tejeda, S.; Zarazua-Ortega, G.; Avila-Perez, P.; Garcia-Mejia, A.; Carapia-Morales, L.; Diaz-Delgado

    2006-01-01

    The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The concentration of six major and trace elements: titanium, manganese, iron, zinc, copper and lead in the surface sediments of the upper course of Lerma river was investigated, in order to identify its distribution along the river and to recognize the principal sites of pollution. The surface sediment samples were collected at 8 sites distributed following the stream flow direction of the river. Major and trace elements concentrations were determined by energy dispersive X-ray spectrometry. The results show that the metal concentrations in the sediments decrease in the sequence: Fe > Ti > Mn > Zn > Cu > Pb. Concentration of Fe, Mn and Ti were significantly higher than the other metals in site 8,200 meters downstream the Alzate Dam. The high concentrations and spatial variations of Zn, Cu and Pb in the middle sites of the upper course of the Lerma River indicate that the river pollution is probably associated with urban and industrial discharges. (author)

  15. Integrating lateral contributions along river reaches to improve SWOT discharge estimates

    Science.gov (United States)

    Beighley, E.; Zhao, Y.; Feng, D.; Fisher, C. K.; Raoufi, R.; Durand, M. T.; David, C. H.; Lee, H.; Boone, A. A.; Cretaux, J. F.

    2016-12-01

    Understanding the potential impacts of climate and land cover change at continental to global scales with a sufficient resolution for community scale planning and management requires an improved representation of the hydrologic cycle that is possible based on existing measurement networks and current Earth system models. The Surface Water and Ocean Topography (SWOT) mission, scheduled to launch in 2021, has the potential to address this challenge by providing measurements of water surface elevation, slope and extent for rivers wider than roughly 50-100 meters at a temporal sampling frequency ranging from days to weeks. The global uniformity and space/time resolution of the proposed SWOT measurements will enable hydrologic discovery, model advancements and new applications addressing the above challenges that are not currently possible or likely even conceivable. One derived data product planned for the SWOT mission is river discharge. Although there are several discharge algorithms that perform well for a range of conditions, this effort is focused on the MetroMan discharge algorithm. For example, in MetroMan, lateral inflow assumptions have been shown to impact performance. Here, the role of lateral inflows on discharge estimate performance is investigated. Preliminary results are presented for the Ohio River Basin. Lateral inflows are quantified for SWOT-observable river reaches using surface and subsurface runoff from North American Land Data Assimilation System (NLDAS) and lateral routing in the Hillslope River Routing (HRR) model. Frequency distributions for the fraction of reach-averaged discharge resulting from lateral inflow are presented. Future efforts will integrate lateral inflow characteristics into the MetroMan discharge algorithm and quantify the potential value of SWOT measurement in flood insurance applications.

  16. Integrated Hydro-geomorphological Monitoring System of the Upper Bussento river basin (Cilento and Vallo Diano Geopark, S-Italy)

    Science.gov (United States)

    Guida, D.; Cuomo, A.; Longobardi, A.; Villani, P.; Guida, M.; Guadagnuolo, D.; Cestari, A.; Siervo, V.; Benevento, G.; Sorvino, S.; Doto, R.; Verrone, M.; De Vita, A.; Aloia, A.; Positano, P.

    2012-04-01

    The Mediterranean river ecosystem functionings are supported by river-aquifer interactions. The assessment of their ecological services requires interdisciplinary scientific approaches, integrate monitoring systems and inter-institutional planning and management. This poster illustrates the Hydro-geomorphological Monitoring System build-up in the Upper Bussento river basin by the University of Salerno, in agreement with the local Basin Autorities and in extension to the other river basins located in the Cilento and Vallo Diano National Park (southern Italy), recently accepted in the European Geopark Network. The Monitoring System is based on a hierarchical Hydro-geomorphological Model (HGM), improved in a multiscale, nested and object-oriented Hydro-geomorphological Informative System (HGIS, Figure 1). Hydro-objects are topologically linked and functionally bounded by Hydro-elements at various levels of homogeneity (Table 1). Spatial Hydro-geomorpho-system, HG-complex and HG-unit support respectively areal Hydro-objects, as basin, sector and catchment and linear Hydro-objects, as river, segment, reach and section. Runoff initiation points, springs, disappearing points, junctions, gaining and water losing points complete the Hydro-systems. An automatic procedure use the Pfafstetter coding to hierarchically divide a terrain into arbitrarily small hydro-geomorphological units (basin, interfluve, headwater and no-contribution areas, each with a unique label with hierarchical topological properties. To obtain a hierarchy of hydro-geomorphological units, the method is then applied recursively on each basin and interbasin, and labels of the subdivided regions are appended to the existing label of the original region. The monitoring stations are ranked consequently in main, secondary, temporary and random and located progressively at the points or sections representative for the hydro-geomorphological responses by validation control and modeling calibration. The datasets

  17. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.

    Science.gov (United States)

    Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H

    2015-02-01

    The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC

  18. 78 FR 15292 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-03-11

    ... schedule that governs the Rock Island Railroad and Highway Drawbridge, across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the River Bandits 5K Run/Walk...) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation...

  19. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrological process simulation in an inland river basin in China, Heihe River basin. It is divided into the upper, middle, and lower reaches based on the distinctive hydrological characteristics in the Heihe River basin, and three hydrological models are selected, applied, and tested to simulate the hydrological cycling processes for each reach. The upper reach is the contributing area with the complex runoff generation processes, therefore, the hydrological informatic modeling system (HIMS is utilized due to its combined runoff generation mechanisms. The middle reach has strong impacts of intensive human activities on the interactions of surface and subsurface flows, so a conceptual water balance model is applied to simulate the water balance process. For the lower reach, as the dissipative area with groundwater dominating the hydrological process, a groundwater modeling system with the embedment of MODFLOW model is applied to simulate the groundwater dynamics. Statistical parameters and water balance analysis prove that the three models have excellent performances in simulating the hydrological process of the three reaches. Therefore, it is an effective way to simulate the hydrological process of inland river basin with multiple hydrological models according to the characteristics of each subbasin.

  20. Preface: Bridging the gap between theory and practice on the upper Mississippi River

    Science.gov (United States)

    Lubinski, Kenneth S.

    1995-01-01

    In July 1994, the Upper Mississippi River (UMR) served as a nexus for coalescing scientific information and management issues related to worldwide floodplain river ecosystems. The objective of the conference ‘Sustaining the Ecological Integrity of Large Floodplain Rivers: Application of Ecological Knowledge to River Management’, was to provide presentations of current ideas from the scientific community. To translate the many lessons learned on other river systems to operational decisions on the UMR, a companion workshop for managers and the general public was held immediately after the conference.An immediate local need for such sharing has existed for several years, as the U.S. Corps of Engineers is currently planning commercial navigation activities that will influence the ecological integrity of the river over the next half century. Recently, other equally important management issues have surfaced, including managing the river as an element of the watershed, and assessing its ecological value as a system instead of a collection of parts (Upper Mississippi River Conservation Committee, 1993). Regional and state natural resource agencies are becoming more convinced that they need to address these issues within their own authorities, however spatially limited, rather than relying on the U.S. Corps of Engineers to manage the ecosystem as an adjunct to its purpose of navigation support.

  1. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  2. Characteristics of radium isotopes in the middle and lower reaches of the Yangtze river

    International Nuclear Information System (INIS)

    Su Ni; Du Jinzhou; Duan Zonglian

    2010-01-01

    The paper studied the distribution pattern of radium isotopes in the middle and lower reaches of the Yangtze River based on the cruise survey in Jan. 2008. The results showed that dissolved 226 Ra and 228 Ra activities varied stably around 1.17-2.37 Bq/m 3 and 1.47-3.28 Bq/m 3 in the middle reaches, while they increased in the lower reaches. Dissolved Ra activities were much higher in the Dongting and the Poyang Lakes. The particulate Ra activity was found to increase downstream. Additionally, the yearly flux of dissolved Ra from the river to the ocean was estimated based on the monthly measured Ra activity in the Xuliujing and the runoff. The estimated flux varied between 0.74 x 10 12 -1.96 x 10 12 Bq/y. The dissolved Ra activity was found largest in the Yangtze estuary, medium in the Yangtze River, and smallest in the East China Sea. It indicated the filter effect of the Yangtze estuary to the fate of terrestrial Ra. (authors)

  3. Impact of energy development on water resources in the Upper Colorado River Basin. Completion report

    International Nuclear Information System (INIS)

    Flug, M.; Walker, W.R.; Skogerboe, G.V.; Smith, S.W.

    1977-08-01

    The Upper Colorado River Basin contains appreciable amounts of undeveloped coal, oil shale, and uranium resources, which are important in the national energy demand system. A mathematical model, which simulates the salt and water exchange phase of potential fuel conversions, has been developed, based on a subbasin analysis identifying available mineral and water resources. Potential energy developments are evaluated with respect to the resulting impacts upon both the quantity and salinity of the waters in the Colorado River. Model solutions are generated by use of a multilevel minimum cost linear programming algorithm, minimum cost referring to the cost of developing predetermined levels of energy output. Level one in the model analysis represents an aggregation of subbasins along state boundaries and thereby optimizes energy developments over the five states of the Upper Colorado River Basin. In each of the five second level problems, energy developments over a subbasin division within the respective states are optimized. Development policies which use high salinity waters of the Upper Colorado River enable a net salinity reduction to be realized in the Colorado River at Lee Ferry, Arizona

  4. Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years

    Science.gov (United States)

    Tan, Liangcheng; Cai, Yanjun; Cheng, Hai; Edwards, Lawrence R.; Gao, Yongli; Xu, Hai; Zhang, Haiwei; An, Zhisheng

    2018-01-01

    The upper Hanjiang River region is the recharge area of the middle route of South-to-North Water Transfer Project. The region is under construction of the Hanjiang-Weihe River Water Transfer Project in China. Monsoon precipitation variations in this region are critical to water resource and security of China. In this study, high-resolution monsoon precipitation variations were reconstructed in the upper Hanjiang River region over the past 6650 years from δ18O and δ13C records of four stalagmites in Xianglong cave. The long term increasing trend of stalagmite δ18O record since the middle Holocene is consistent with other speleothem records from monsoonal China. This trend follows the gradually decreasing Northern Hemisphere summer insolation, which indicates that solar insolation may control the orbital-scale East Asian summer monsoon (EASM) variations. Despite the declined EASM intensity since the middle Holocene, local precipitation may not have decreased remarkably, as revealed by the δ13C records. A series of centennial- to decadal-scale cyclicity was observed, with quasi-millennium-, quasi-century-, 57-, 36- and 22-year cycles by removing the long-term trend of stalagmite δ18O record. Increased monsoon precipitation during periods of 4390-3800 a BP, 3590-2960 a BP, 2050-1670 a BP and 1110-790 a BP had caused four super-floods in the upper reach of Hanjiang River. Dramatically dry climate existed in this region during the 5.0 ka and 2.8 ka events, coinciding with notable droughts in other regions of monsoonal China. Remarkably intensified and southward Westerly jet, together with weakened summer monsoon, may delay the onset of rainy seasons, resulting in synchronous decreasing of monsoon precipitation in China during the two events. During the 4.2 ka event and the Little Ice Age, the upper Hanjiang River region was wet, which was similar to the climate conditions in central and southern China, but was the opposite of drought observed in northern China. We

  5. Mitigation and enhancement techniques for the Upper Mississippi River system and other large river systems

    Science.gov (United States)

    Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.

    1982-01-01

    Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management

  6. 76 FR 38975 - Safety Zone; Upper Mississippi River, Mile 856.0 to 855.0, Minneapolis, MN

    Science.gov (United States)

    2011-07-05

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 856.0 to 855.0, Minneapolis, MN AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone for all waters of the Upper Mississippi River, from Mile 856.0 to 855.0, Minneapolis, Minnesota, and...

  7. Heavy Metal Pollution of Lakes along the Mid-Lower Reaches of the Yangtze River in China: Intensity, Sources and Spatial Patterns

    Science.gov (United States)

    Zeng, Haiao; Wu, Jinglu

    2013-01-01

    Lakes in the middle and lower reaches of the Yangtze River form a shallow lake group unique in the World that is becoming increasingly polluted by heavy metals. Previous studies have largely focused on individual lakes, with limited exploration of the regional pattern of heavy metal pollution of the lake group in this area. This paper explores the sources, intensity and spatial patterns of heavy metal pollution of lake sediments. A total of 45 sample lakes were selected and the concentrations of key metal elements in the sediments of each lake were measured. The cluster analysis (CA), principal component analysis (PCA) and Geo-accumulation index (Ig) analysis permitted analysis of the source and pollution intensity of the target lakes. Results suggested a notable spatial variation amongst the sample lakes. Lakes in the upper part of the lower reach of the Yangtze River surrounded by typical urban landscapes were strongly or extremely polluted, with high concentrations of Pb, Zn, Cu and Cd in their sediments. This was attributed to large amount of untreated industrial discharges and municipal sewage produced within the lake catchments. In contrast, the heavy-metal pollution of lakes in the Taihu Delta area was notably lower due to industrial restructuring and implementation of effective environmental protection measures. Lakes along the middle reach of Yangtze River surrounded by agricultural areas were unpolluted to moderately polluted by heavy metals overall. Our results suggested that lakes in the central part of China require immediate attention and efforts should be made to implement management plans to prevent further degradation of water quality in these lakes. PMID:23442559

  8. Managing the Mississippi River floodplain: Achieving ecological benefits requires more than hydrological connection to the river: Chapter

    Science.gov (United States)

    Schramm, Harold; Richardson, William B.; Knights, Brent C.

    2015-01-01

    Floodplains are vital to the structure and function of river-floodplain ecosystems. Among the many ecological services provided by floodplains are nutrient cycling and seasonal habitats for fish, including spawning, nursery, foraging and wintering habitats. Connections between the river channel and floodplain habitats are essential to realize these ecological services, but spatial and temporal aspects of the connection and contemporary geomorphology must also be considered in restoration efforts. This chapter synthesizes available information to compare floodplain function and needed management strategies in two extensive reaches (upper impounded and lower free-flowing) of the Mississippi River, USA. The upper impounded reach is the 523-km reach from about Minneapolis, Minnesota to Clinton, Iowa. This reach has been impounded and channelized for navigation. Mean annual water-level fluctuation ranges from 1 to 2 m in the navigation pools in this reach. Floodplain environmental conditions that affect nitrogen cycling and fish production vary seasonally and longitudinally within and among navigation pools. Significant issues affecting ecological services include sedimentation, constrained water level fluctuations, island erosion and seasonal hypoxia. The lower free-flowing reach, the 1570-km reach from the confluence of the Ohio and Mississippi rivers to the Gulf of Mexico, has no dams and average annual fluctuations of 7 m throughout most of the reach. Despite the substantial flood pulse, floodplain inundation is often brief and may not occur annually. Significant issues affecting floodplain ecological function are the short duration and thermal asynchrony of the flood pulse, sedimentation and loss of connection between the river channel and permanent/semi-permanent floodplain water bodies due to channel incision. Needs and strategies for floodplain enhancement to increase ecological services, particularly nitrogen cycling and fish production, differ along the

  9. Seed banks as a source of vegetation regeneration to support the recovery of degraded rivers: A comparison of river reaches of varying condition.

    Science.gov (United States)

    O'Donnell, Jessica; Fryirs, Kirstie A; Leishman, Michelle R

    2016-01-15

    Anthropogenic disturbance has contributed to widespread geomorphic adjustment and the degradation of many rivers. This research compares for river reaches of varying condition, the potential for seed banks to support geomorphic river recovery through vegetation regeneration. Seven river reaches in the lower Hunter catchment of south-eastern Australia were assessed as being in poor, moderate, or good condition, based on geomorphic and ecological indicators. Seed bank composition within the channel and floodplain (determined in a seedling emergence study) was compared to standing vegetation. Seed bank potential for supporting geomorphic recovery was assessed by measuring native species richness, and the abundance of different plant growth forms, with consideration of the roles played by different growth forms in geomorphic adjustment. The exotic seed bank was considered a limiting factor for achieving ecological restoration goals, and similarly analysed. Seed bank native species richness was comparable between the reaches, and regardless of condition, early successional and pioneer herbs, sedges, grasses and rushes dominated the seed bank. The capacity for these growth forms to colonise and stabilise non-cohesive sediments and initiate biogeomorphic succession, indicates high potential for the seed banks of even highly degraded reaches to contribute to geomorphic river recovery. However, exotic propagules increasingly dominated the seed banks of moderate and poor condition reaches and reflected increasing encroachment by terrestrial exotic vegetation associated with riparian degradation. As the degree of riparian degradation increases, the resources required to control the regeneration of exotic species will similarly increase, if seed bank-based regeneration is to contribute to both geomorphic and ecological restoration goals. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Crop domestication in the upper Madeira River basin

    Directory of Open Access Journals (Sweden)

    Charles Roland Clement

    Full Text Available Abstract Most native Amazonian crops were domesticated in the periphery of the basin. The upper Madeira River basin is an important part of this periphery where several important crops were domesticated and others are suspected to have been domesticated or arrived early. Some of these crops have been reasonably well studied, such as manioc, peanut, peach palm, coca and tobacco, while others are not as well known, such as the hot peppers Capsicum baccatum and C. frutescens, and still others need confirmation, such as cocoyam and annatto. We review the information available for manioc, peach palm, Capsicum, peanut, annatto and cocoyam. The state-of-the-art for Capsicum frutescens, annatto and cocoyam is insufficient to conclude definitively that they were domesticated in the upper Madeira, while all the others have at least one of their origins or centers of diversity in the upper Madeira.

  11. Flood risk control of dams and dykes in middle reach of Huaihe River

    Directory of Open Access Journals (Sweden)

    Zhen-kun MA

    2014-01-01

    Full Text Available Three stochastic mathematical models for calculation of the reservoir flood regulation process, river course flood release, and flood risk rate under flood control were established based on the theory of stochastic differential equations and features of flood control systems in the middle reach of the Huaihe River from Xixian to the Bengbu floodgate, comprehensively considering uncertain factors of hydrology, hydraulics, and engineering control. They were used to calculate the flood risk rate with flood regulation of five key reservoirs, including the Meishan, Xianghongdian, Nianyushan, Mozitan, and Foziling reservoirs in the middle reach of the Huaihe River under different flood frequencies, the flood risk rate with river course flood release under design and check floods for the trunk of the Huaihe River in conjunction with relevant flood storage areas, and the flood risk rate with operation of the Linhuaigang Project under design and check floods. The calculated results show that (1 the five reservoirs can withstand design floods, but the Xianghongdian and Foziling reservoirs will suffer overtopping accidents under check floods; (2 considering the service of flood storage areas under the design flood conditions of the Huaihe River, the mean flood risk rate with flood regulation of dykes and dams from Xixian to the Bengbu floodgate is about 0.2, and the trunk of the Huaihe River can generally withstand design floods; and (3 under a check flood with the flood return period of 1 000 years, the risk rate of overtopping accidents of the Linhuaigang Project is not larger than 0.15, indicating that it has a high flood regulation capacity. Through regulation and application of the flood control system of the Linhuigang Project, the Huaihe River Basin can withstand large floods, and the safety of the protected area can be ensured.

  12. SUSPENDED AND DISSOLVED MATTER FLUXES IN THE UPPER SELENGA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Sergey Chalov

    2012-01-01

    Full Text Available We synthesized recent field-based estimates of the dissolved ions (K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3-, biogens (NO3-, NO2-, PO43-(C, mg/l, heavy metal (Fesum, Mn, Pb and dissolved load (DL, kg/day, as far as suspended sediment concentration (SSC, mg/l and suspended load (SL, kg/day along upper Selenga river and its tributaries based on literature review and preliminary results of our 2011 field campaign. The crucial task of this paper is to provide full review of Russian, Mongolian and English-language literature which concern the matter fluxes in the upper part of Selenga river (within Mongolia. The exist estimates are compared with locations of 3 main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of suspended and dissolved matter transport is indicated along Tuul-Orkhon river system (right tributary of the Selenga River where Mongolia capital Ulanbaatar, gold mine Zaamar and few other mines are located. In measurement campaigns conducted in 2005, 2006 and 2008 the increase directly after the Zaamar mining site was between 167 to 383 kg/day for Fe, between 15 and 5260 kg/day for Mn. Our field campaign indicated increase of suspended load along Tuul river from 4280 kg/day at the upstream point to 712000 kg/day below Ulaanbaatar and Zaamar. The results provide evidence on a potential connection between increased dissolved and suspended matter fluxes in transboundary rivers and zones of matter supply at industrial and mining centers, along eroded river banks and pastured lands. The gaps in the understanding of matter load fluxes within this basin are discussed with regards to determining further goals of hydrological and geochemical surveys.

  13. Sources of nitrate in water from springs and the Upper Floridan aquifer, Suwannee River basin, Florida

    Science.gov (United States)

    Katz, B.G.; Hornsby, H.D.; Böhlke, John Karl

    1999-01-01

    In the Suwannee River basin of northern Florida, nitrate-N concentrations are 1.5 to 20 mg 1-1 in waters of the karstic Upper Floridan aquifer and in springs that discharge into the middle reach of the Suwannee River. During 1996-1997, fertilizers and animal wastes from farming operations in Suwannee County contributed approximately 49% and 45% of the total N input, respectively. Values of ??15N-NO3 in spring waters range from 3.9??? to 5.8???, indicating that nitrate most likely originates from a mixture of inorganic (fertilizers) and organic (animal waste) sources. In Lafayette County, animal wastes from farming operations and fertilizers contributed approximately 53% and 39% of the total N input, respectively, but groundwater near dairy and poultry farms has ??15N-NO3 values of 11.0-12.1???, indicative of an organic source of nitrate. Spring waters that discharge to the Suwannee River from Lafayette County have ??15N-NO3 values of 5.4-8.39???, which are indicative of both organic and inorganic sources. Based on analyses of CFCs, the mean residence time of shallow groundwater and spring water ranges between 8-12 years and 12-25 years, respectively.

  14. Estuarine characteristics of the lower reaches of the River Periyar (Cochin backwater)

    Digital Repository Service at National Institute of Oceanography (India)

    Sankaranarayanan, V.N.; Varma, P.U.; Balachandran, K.K.; Pylee, A.; Joseph, T.

    Lower reaches of river Periyar were studied to assess longitudinal extent of salt water intrusion into the system during different seasons and also its effect on the flushing of pollutants introduced by the industries. During SW monsoon season due...

  15. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China.

    Science.gov (United States)

    Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong

    2017-11-01

    This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mechanical and Hydrologic Effects of Riparian Vegetation on Critical Conditions for Streambank Stability: Upper Truckee River, California

    Science.gov (United States)

    Simon, A.; Pollen, N. L.; Langendoen, E. J.

    2005-05-01

    The Upper Truckee River is the single largest contributor of sediment to Lake Tahoe with a large proportion of the suspended-sediment load coming from eroding streambanks. Recent advances in quantifying streambank processes highlight the combined effects of hydraulic erosion at the bank toe with geotechnical stability of the upper part of the bank and resulted in the development of a deterministic model of bank-toe erosion and streambank stability (Simon et al., 1999). The use of riparian vegetation in schemes of bank stabilization and stream restoration have become popular but are often implemented on a trial and error basis because of a lack of quantifiable information on the mechanical and hydrologic effects of vegetation on bank stability. This study, conducted along an unstable reach of the Upper Truckee River, combines field data with numerical modeling to quantify (1) hydraulic and geotechnical driving and resisting forces that control bank failures, (2) the mechanical and hydrologic effects of vegetation on shear strength, and (3) the critical conditions for bank stability with and without indigenous riparian species. Tests were conducted using three top-bank treatments: bare (control), Lemmon's willow, and young Lodgepole pine. The susceptibility of the bank toe to erosion by hydraulic forces was quantified by conducting submerged jet tests of in situ material to determine the erodibility coefficient (k) and the critical shear stress of the material. Drained, shear-strength parameters (cohesion and friction angle) of the banks were determined from borehole shear tests at various depths. Pore-water pressure and matric suction were monitored at three depths (30, 100, and 150 cm) with digital tensiometers to calculate changes in apparent cohesion for the period (September 2003 - May 2004) and to differentiate between the hydrologic effects of the two species. Root reinforcement of the two species was quantified by determining the relation between root

  17. Complex hydro- and sediment dynamics survey of two critical reaches on the Hungarian part of river Danube

    International Nuclear Information System (INIS)

    Baranya, Sandor; Jozsa, Janos; Goda, Laszlo; Rakoczi, Laszlo

    2008-01-01

    Detailed hydrodynamic survey of two critical river reaches has been performed from hydro- and sediment dynamics points of view, in order to explore the main features, moreover, provide calibration and verification data to related 3D flow and sediment transport modelling. Special attention has been paid to compare moving and fix boat measurement modes for estimating various flow and large-scale bed form features, resulting in recommendations e.g. on the time period needed in stationary mode operation to obtain sufficiently stabilized average velocity profiles and related parameter estimations. As to the study reaches, the first comprises a 5 km long sandy-gravel bed reach of river Danube located in Central-Hungary, presenting problems for navigation. As a conventional remedy, groyne fields have been implemented to make and maintain the reach sufficiently deep, navigable even in low flow periods. As is usually the case, these works resulted in rather complex flow characteristics and related bed topography at places. The second site is another 5 km long reach of river Danube, close to the southern border to Serbia. There the river presents navigational problems similar to the previously mentioned reach, however, having entirely sand bed conditions, abundant in a variety of dunes, especially in the shallower parts. In both study reaches ADCP measurements were done with around 2.5 Hz sampling frequency both in moving boat operation mode providing overall, though locally moderately representative picture, and in fixed boat mode at a considerable number of selected verticals with 10 minutes long measuring time.

  18. The non-fisheries biological resources of the Hanford reach of the Columbia River

    International Nuclear Information System (INIS)

    Rickard, W.H.; Hanson, W.C.; Fitzner, R.E.

    1982-01-01

    The Hanford Reach is the only undammed segment of the Columbia River in the United States upstream from Bonneville Dam. The non-agricultural and non-recreational land-use policies imposed by the Department of Energy have permitted the Hanford Site to function as a refugium for wildlife for 35 years. The protection offered by the Hanford Site has been especially important for the Bald Eagle (Haliaeetus leurocephalus), mule deer (Odocileus hemionus), coyote (Canis latrans), and resident Great Basin Canada Goose (Branta canadensis moffitti). Island habitats are especially important for nesting geese and for mule deer fawning. Coyotes are important predators upon nesting geese and mule deer fawns. Salmon carcasses are an important winter food for Bald Eagles. Riparian plant communities along the Columbia River have been changing in response to changing water level fluctuations largely regulated by power generation schedules at upstream hydroelectric dams. There are no studies presently established to record the response of Columbia River shoreline plant communities to these kinds of fluctuating water levels. The existing information is summarized on birds and mammals closely allied with the Hanford Reach of the Columbia River. High trophic level wild animals are discussed as indicators of chemical contamination of food chains

  19. Seasonal variation in drifting eggs and larvae in the upper Yangtze, China.

    Science.gov (United States)

    Jiang, Wei; Liu, Huan-Zhang; Duan, Zhong-Hua; Cao, Wen-Xuan

    2010-05-01

    From 5 March to 25 July 2008, ichthyoplankton drifting into the Three Gorges Reservoir from the upper reaches of the Yangtze River were sampled daily to investigate the species composition, abundance, and seasonal variation in early-stage fishes in this area. Twenty-eight species belonging to five orders and 17 families or subfamilies were identified by analyzing fish eggs and larvae, and a total of 14.16 billion individuals were estimated drifting through the sampling section during the investigation. Among the ichthyoplankton sampled, species in Cultrinae, Cobitidae, Gobioninae and Gobiidae, along with the common carp (Cyprinus carpio Linnaeus), comprised 89.6% of the total amount. Six peaks of drift density were identified during the sampling period, and a significant correlation was found between drift density with water discharge. The dominant species were different in each drift peak, indicating different spawning times for the major species. The total amount of the four major Chinese carps that drifted through the sampling section was estimated as 0.88 billion, indicating an increase in the population sizes of these species in the upper reaches of the Yangtze River after construction of the Three Gorges Dam. Actually, these reaches have become the largest spawning area for the four major Chinese carps in the Yangtze River. The large total amount of eggs and larvae drifting through this section demonstrated that the upper reaches of the Yangtze River provided important spawning sites for many fish species, and that conservation of this area should be of great concern.

  20. Organic carbon in the sediments of the lower reaches of Periar River

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.; Venugopal, P.; Sankaranarayanan, V.N.

    reaches of Periyar River an area in Cochin Backwater, India which is polluted from different sources were studied for one year during 1981. Variations in colour and texture of sediments were brought about by changes in the grain size and state of oxidation...

  1. Changes in river discharge and hydrograph separation in the upper basins of Yangtze and Yellow Rivers on the Tibetan Plateau

    Science.gov (United States)

    Ding, Y.

    2017-12-01

    Systematic changes of river discharge and the concentration-discharge relation were explored to elucidate the response of river discharge to climate change as well as the connectivity of hydrologic and hydrochemical processes using hydrological data during 1956-2015 and chemical data during 2013-2015 at Yanshiping (YSP, 4,538 km2), Tuotuohe (TTH, 15,924 km2) and Zhimenda (ZMD, 137,704 km2) gauging sections in the upper basin of Yangtze River (UBYA), and at Huangheyan (HHY, 20,930 km2), Jimai (JM, 45,019 km2), Jungong (JG, 98,414 km2) and Tangnaihai (TNH, 121,972 km2) gauging sections in the upper basin of Yellow River (UBYE) on the Tibetan Plateau (TP). Results showed that annual discharge in UBYA presents a decreasing trend from 1950s to late 1970s and exhibits an increasing trend since 1970s due to increased temperature and precipitation. However, discharge in UBYE increases from 1950s to 1980s and decrease since late 1980s due to increased temperature and decreased precipitation. Snow/ice meltwater may play an important role on changes in river discharge from the most upper catchments, particularly for periods with increasing temperature, where snow cover, glaciers and frozen soils are widely distributed. Concentration/flux-discharge in discharge was dominated by a well-defined power law relation, with R2 values lower on rising than falling limbs. This finding has important implications for efforts to estimate annual concentrations and export of major solutes from similar catchments in cold regions where only river discharge is available. Concentrations of conservative solutes in discharge resulted from mixing of two end-members at the most upper gauging sections (YSP, TTH and HHY), and three end-members at the lower gauging sections (ZMD, JM, JG and TNH), with relatively constant solute concentrations in end-members. Relationship between the fractional contributions of meltwater and/or precipitation and groundwater and river discharge followed the same relation

  2. Potential water-quality effects of coal-bed methane production water discharged along the upper Tongue River, Wyoming and Montana

    Science.gov (United States)

    Kinsey, Stacy M.; Nimick, David A.

    2011-01-01

    Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to

  3. Multimetric index for assessing ecological condition of running waters in the upper reaches of the Piabanha-Paquequer-Preto Basin, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Darcilio F. Baptista

    2011-10-01

    Full Text Available The objective of this study was to develop a rapid multimetric index using benthic macrofauna as bioindicators of ecological conditions for the upper reaches of the Piabanha-Paquequer-Preto Basin located in the state of Rio de Janeiro, Brazil. A total of 33698 macroinvertebrates were collected in 27 sites. Benthic macroinvertebrates were sampled using the multi-habitat method that consists in sampling 20 m² of substrate collected in approximate proportion to the representation of all major habitat types in the reach. A subsampling procedure was used. The main steps followed to develop and test the index were: exclusion of unsuitable metrics using box-whisker plots, considering the degree of overlapping among interquartile limits (1º-3º and confirmed by Mann-Whitney U test (p < 0.05 using six reference rivers and six impaired rivers. From all the candidate potential metrics, 36 were considered suitable. After identifying redundant metrics, through Spearman correlation analysis, and considering practical application criteria, six core metrics were selected to compose the Piabanha-Paquequer-Preto Multimetric Index (PPPMI using the continuous method: Family richness, Shannon-Wiener family diversity, EPT family richness, %Diptera, %MOLD (Mollusca + Diptera and %Collectors. The sensitivity of the index was tested in 15 rivers using a Principal Components Analysis (PCA of the six environmental variables. The first axis of the PCA was highly correlated to the PPPMI scores (r = 0.703, p < 0.001. The PPPMI responded to a set of environmental variables associated to a gradient of human disturbance affecting the ecological condition of the waterbodies. This indicates that the PPPMI is an effective tool for biological monitoring and decision making in the hydrographic region of the Piabanha-Paquequer-Preto rivers.

  4. Temporal-spatial parameters of the upper limb during a Reach & Grasp Cycle for children.

    Science.gov (United States)

    Butler, Erin E; Ladd, Amy L; Lamont, Lauren E; Rose, Jessica

    2010-07-01

    The objective of this study was to characterize normal temporal-spatial patterns during the Reach & Grasp Cycle and to identify upper limb motor deficits in children with cerebral palsy (CP). The Reach & Grasp Cycle encompasses six sequential tasks: reach, grasp cylinder, transport to self (T(1)), transport back to table (T(2)), release cylinder, and return to initial position. Three-dimensional motion data were recorded from 25 typically developing children (11 males, 14 females; ages 5-18 years) and 12 children with hemiplegic CP (2 males, 10 females; ages 5-17 years). Within-day and between-day coefficients of variation for the control group ranged from 0 to 0.19, indicating good repeatability of all parameters. The mean duration of the Cycle for children with CP was nearly twice as long as controls, 9.5±4.3s versus 5.1±1.2s (U=37.0, P=.002), partly due to prolonged grasp and release durations. Peak hand velocity occurred at approximately 40% of each phase and was greater during the transport (T(1), T(2)) than non-transport phases (reach, return) in controls (PGrasp Cycle (rho=.957, PGrasp Cycle for quantitative evaluation of upper limb motor deficits. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Steelhead Spawning Surveys Near Locke Island, Hanford Reach of the Columbia River; TOPICAL

    International Nuclear Information System (INIS)

    DR Geist; RP Mueller

    1999-01-01

    In 1997, the National Marine Fisheries Service (NMFS) listed upper Columbia River steelhead trout (Oncorhynchus znykiss) as endangered. This action affected management of land-use activities along and within the Hanford Reach of the Columbia River, which flows through the U.S. Department of Energy (DOE) Hanford Site. Steelhead covered in this listing include all naturally spawned populations of steel-head and their progeny in streams in the Columbia River Basin upstream from the Yakima River to the United States/Canada border. The NMFS has identified a general listing of activities that could potentially result in harm to steelhead (62 FR 43937, August 18, 1997). One of these concerns includes land-use changes resulting in mass wasting or surface erosion. Landslide activity along the White Bluffs on the east ,side of Locke Island has redirected river flow into the island where substantial erosion has occurred. This erosion has exposed important anthropological and archaeological resources that were previously buried on the island. The DOE is working with affected tribes and other agencies to develop a plan for addressing the erosion of Locke Island. As part of this effort, the U.S. Army Corps of Engineers has prepared an assessment of potential alternatives to stabilize the erosion, including a no-action alternative. Steelhead historically spawned in the vicinity of Locke Island, but recent information on the occurrence of steelhead spawning or availability of spawning habitat was lacking. Therefore, the purpose of this study was to determine if steelhead spawned in the vicinity of Locke Island erosion and to evaluate the composition of substrate in the affected area. Surveys to document the occurrence of steelheads redds were conducted in Spring 1999. The surveys were conducted from the air as well as with the use of an underwater video camera. Neither aerial nor underwater surveys documented steelhead spawning within the survey area. Habitat surveys were

  6. Status and trends of selected resources in the Upper Mississippi River System

    Science.gov (United States)

    Johnson, Barry L.; Hagerty, Karen H.

    2010-01-01

    Like other large rivers, the Upper Mississippi River System (UMRS) serves a diversity of roles. The UMRS provides commercial and recreational fishing, floodplain agriculture, drinking water for many communities, an important bird migration pathway, a variety of recreational activities, and a navigation system that transports much of the country's agricultural exports. These multiple roles present significant management challenges. Regular assessment of the condition of the river is needed to improve management plans and evaluate their effectiveness. This report provides a summary of the recent status (mean and range of conditions) and trends (change in direction over time) for 24 indicators of the ecological condition of the Upper Mississippi and Illinois Rivers using data collected through the Long Term Resource Monitoring Program (LTRMP). The 24 indicators were grouped into seven categories: hydrology, sedimentation, water quality, land cover, aquatic vegetation, invertebrates, and fish. Most of the data used in the report were collected between about 1993 and 2004, although some older data were also used to compare to recent conditions.Historical observations and current LTRMP data clearly indicate that the UMRS has been changed by human activity in ways that have diminished the ecological health of the river. The data indicate that status and trends differ among regions, and we expect that regional responses to various ecological rehabilitation techniques will differ as well. The continuing role of the LTRMP will be to provide the data needed to assess changes in river conditions and to determine how those changes relate to management actions, natural variation, and the overall ecological integrity of the river system.

  7. [Residues and potential ecological risk assessment of metal in sediments from lower reaches and estuary of Pearl River].

    Science.gov (United States)

    Xie, Wen-Ping; Wang, Shao-Bing; Zhu, Xin-Ping; Chen, Kun-Ci; Pan, De-Bo; Hong, Xiao-You; Yin, Yi

    2012-06-01

    In order to investigate the heavy metal concentrations and their potential ecological risks in surface sediments of lower reaches and estuary of Pearl River, 21 bottom sediment samples were collected from lower reaches and estuary of Pearl River. Total contents of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg in these samples were measured by the inductively coupled plasma mass spectrometry (ICP-MS) and the atomic fluorescence spectrometry (AFS) and using the index of geoaccumulation and the potential ecological risk index to evaluate the pollution degree of heavy metals in the sediments. Results indicated that the concentration of total Fe and total Mn were 41658.73 and 1104.73 mg x kg(-1) respectively and toxic trace metals, such as Cr, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg were 86.62, 18.18, 54.10, 80.20, 543.60, 119.55, 4.28, 10.60, 20.26, 104.58 and 0.520 mg x kg(-1). The descending order of pollution degree of various metals is: Cd > As approximately Zn > Hg > Pb approximately Cu approximately Cr, while the single potential ecological risk followed the order: Cd > Hg > As > Cu > Pb > Zn > Cr. The pollution extent and potential ecological risk of Cd were the most serious among all heavy metals. The distribution pattern of Cd individual potential ecological risk indices is exactly the same as that of general potential ecological risk indices for all heavy metals. Clustering analysis indicates that the sampling stations may be classified into five groups which basically reflected the characteristics of the heavy metal contamination and sedimentation environments along the different river reaches in lower reaches and estuary of Pearl Rive. In general, the serious heavy metal pollution and the high potential ecological risk existed in three river reaches: Chengcun-Shawan, Chengcun-Shundegang and Waihai-Hutiaomen. The pollution degree and potential ecological risk are higher in related river reaches of Beijiang than that in other lower reaches and

  8. Geomorphic Controls on Floodplain Soil Organic Carbon in the Yukon Flats, Interior Alaska, From Reach to River Basin Scales

    Science.gov (United States)

    Lininger, K. B.; Wohl, E.; Rose, J. R.

    2018-03-01

    Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.

  9. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    Science.gov (United States)

    Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.

    2016-01-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  10. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.

    Science.gov (United States)

    García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory

    2016-07-05

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  11. [Oncomelania hupensis snail distribution in working areas of Yangtze River hydrologic agencies located in middle and lower reaches of Yangtze River in 2016].

    Science.gov (United States)

    Min, Xu; Suo-Xin, Huang; Zheng-Yuan, Zhao; Ben-Jiao, Hu; Jun, Fu; Si-Min, Dai; Li-Hong, Wen

    2016-10-13

    To understand the Oncomelania hupensis snail distribution in the working areas of Yangtze River hydrologic agencies located in the middle and lower reaches of the Yangtze River in 2016, so as to provide the evidence for assessing the risk of schistosome infection of hydrological workers and establishing the control strategies. The suspicious environments with O. hupensis snails in the above working areas were selected as study areas, and the snail situation was surveyed by the system sampling method combined with the environmental sampling method. The survey data were collected and analyzed statistically. Totally 19 working areas from 17 hydrological agencies were selected as the investigation sites, among which, 10 working areas from 9 agencies were found with O. hupensis snail distribution. The constituent ratio of the areas with snails reached to 38.81% of the investigation areas, the occurrence rate of frames with snails was 3.08%, and the average density of living snails was 0.07 /0.1 m 2 . By comparison, the average density of living snails and occurrence rate of frames with snails in hydrological agencies under the jurisdiction of the Middle Reaches Administrative Bureau were the most serious among three administrative bureaus of the Yangtze River Water Resources Commission. There are various degrees of O. hupensis breeding in the working areas of hydrological agencies located in the middle and lower reaches of the Yangtze River, and the hydrological workers are facing with the risk of schistosome infection.

  12. Characteristics of the navigational conditions and hydrotechnical infrastructure of the Upper Notec River

    Directory of Open Access Journals (Sweden)

    Grzegorz Nadolny

    2016-12-01

    Full Text Available The Upper Notec River is an important part of the waterway which is connecting Warta River and Bydgoszcz Canal. Tourist attractions are main reason for tourists visiting of the "Wielkopolska Loops". The article characterized hydrotechnical infrastructure, hydrological and depth conditions of the waterway which have an impact on the development of tourism and inland load shipping.

  13. Groundwater quality in the Upper Hudson River Basin, New York, 2012

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.

    2014-01-01

    Water samples were collected from 20 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, New York) in New York in August 2012 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Eleven of the wells sampled in the Upper Hudson River Basin are completed in sand and gravel deposits, and nine are completed in bedrock. Groundwater in the Upper Hudson River Basin was typically neutral or slightly basic; the water typically was moderately hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 7 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Two pesticides, an herbicide degradate and an insecticide degredate, were detected in two samples at trace levels; seven VOCs, including chloroform, four solvents, and the gasoline additive methyl tert-butyl ether (MTBE) were detected in four samples. The greatest radon-222 activity, 2,900 picocuries per liter, was measured in a sample from a bedrock well; the median radon activity was higher in samples from bedrock wells than in samples from sand and gravel wells. Coliform bacteria were

  14. Stomach Content of a Juvenile Bolivian River Dolphin (Inia geoffrensis boliviensis) from the Upper Madeira Basin, Bolivia

    NARCIS (Netherlands)

    Aliaga-Rossel, E.; Beerman, A.S.; Sarmiento, J.

    2010-01-01

    The article presents a study about the stomach content of a juvenile Bolivian river dolphin (Inia geoffrensis boliviensis), an endemic subspecies of the Amazon River dolphin, found in the upper Madeira River basin in Bolivia. The study finds that the stomach of Bolivian river dolphin contained a

  15. Setting the scene for SWOT: global maps of river reach hydrodynamic variables

    Science.gov (United States)

    Schumann, Guy J.-P.; Durand, Michael; Pavelsky, Tamlin; Lion, Christine; Allen, George

    2017-04-01

    Credible and reliable characterization of discharge from the Surface Water and Ocean Topography (SWOT) mission using the Manning-based algorithms needs a prior estimate constraining reach-scale channel roughness, base flow and river bathymetry. For some places, any one of those variables may exist locally or even regionally as a measurement, which is often only at a station, or sometimes as a basin-wide model estimate. However, to date none of those exist at the scale required for SWOT and thus need to be mapped at a continental scale. The prior estimates will be employed for producing initial discharge estimates, which will be used as starting-guesses for the various Manning-based algorithms, to be refined using the SWOT measurements themselves. A multitude of reach-scale variables were derived, including Landsat-based width, SRTM slope and accumulation area. As a possible starting point for building the prior database of low flow, river bathymetry and channel roughness estimates, we employed a variety of sources, including data from all GRDC records, simulations from the long-time runs of the global water balance model (WBM), and reach-based calculations from hydraulic geometry relationships as well as Manning's equation. Here, we present the first global maps of this prior database with some initial validation, caveats and prospective uses.

  16. 75 FR 1706 - Drawbridge Operation Regulations; Upper Mississippi River, Dubuque, IA

    Science.gov (United States)

    2010-01-13

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket Number USCG-2009-1097] Drawbridge Operation Regulations; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District has...

  17. 76 FR 6694 - Drawbridge Operation Regulation; Upper Mississippi River, Keokuk, IA

    Science.gov (United States)

    2011-02-08

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket Number USCG-2011-0029] Drawbridge Operation Regulation; Upper Mississippi River, Keokuk, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has...

  18. Dissolution of the Upper Seven Rivers and Salado salt in the interior Palo Duro Basin, Texas: Revision: Topical report

    International Nuclear Information System (INIS)

    DeConto, R.T.; Murphy, P.J.

    1987-09-01

    The Upper Seven Rivers and Salado Formations contain the uppermost salts within the interior Palo Duro Basin, Stratigraphic and structural evidence based on geophysical well logs indicate that both dissolution and facies change have influenced the thickness of these uppermost salts. The magnitude of vertical salt loss due to dissolution is interminable at this time because original salt thickness is unknown. Gradual thinning of the Upper Seven Rivers Formation is recognized from south to north across the Palo Duro Basin. Anhydrites within the formation pinch out toward the basin margins, indicating that section loss is in part depositionally controlled. Additionally, informal subdivision of the Upper Seven Rivers Formation suggests that salt dissolution has occurred in the uppermost salt. A northeast-trending zone of thin Upper Seven Rivers Formation in portions of Deaf Smith, Randall, Castro, and Parmer Counties is possibly related to Tertiary dissolution. In New Mexico, local thinning of the Upper Seven Rivers Formation may be associated with faulting. Triassic erosion on uplifted fault blocks has affected the Upper Permian section. The Salado salt margin is located within the interior Palo Duro Basin. Geophysical well logs and core evidence indicate that the salt margin has migrated basinward as a result of dissolution. Permian dissolution probably contributed to some salt loss. 106 refs., 31 figs., 2 tabs

  19. Synthesis of Upper Verde River research and monitoring 1993-2008

    Science.gov (United States)

    Daniel G. Neary; Alvin L. Medina; John N. Rinne

    2012-01-01

    This volume is a state-of-knowledge synthesis of monitoring and research conducted on the Upper Verde River (UVR) of Arizona. It contains information on the history, hydrology, soils, geomorphology, vegetation, and fish fauna of the area that can help land managers and other scientists in successfully conducting ecosystem management and future monitoring and research...

  20. Hydraulic and sedimentary processes causing anastomosing morphology of the upper Columbia River, British Columbia, Canada

    NARCIS (Netherlands)

    Makaske, B.; Smith, D.G.; Berendsen, H.J.A.; Boer, de A.G.; Nielen-Kiezebrink, van M.F.; Locking, T.

    2009-01-01

    The upper Columbia River, British Columbia, Canada, shows typical anastomosing morphology - multiple interconnected channels that enclose floodbasins - and lateral channel stability We analysed field data on hydraulic and sedimentary processes and show that the anastomosing morphology of the upper

  1. 77 FR 69761 - Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA

    Science.gov (United States)

    2012-11-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2012-0995] Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  2. 75 FR 76279 - Drawbridge Operation Regulation; Upper Mississippi River, Burlington, IA

    Science.gov (United States)

    2010-12-08

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-1058] Drawbridge Operation Regulation; Upper Mississippi River, Burlington, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  3. 78 FR 72022 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Science.gov (United States)

    2013-12-02

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-0964] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation from drawbridge regulation. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  4. 76 FR 79066 - Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA

    Science.gov (United States)

    2011-12-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2011-1018] Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  5. 76 FR 72308 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Science.gov (United States)

    2011-11-23

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2011-1039] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  6. 78 FR 76750 - Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA

    Science.gov (United States)

    2013-12-19

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-1008] Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation from drawbridge regulations. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  7. 75 FR 70817 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Science.gov (United States)

    2010-11-19

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-1039] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  8. 75 FR 78162 - Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA

    Science.gov (United States)

    2010-12-15

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-1084] Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  9. 77 FR 69759 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Science.gov (United States)

    2012-11-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2012-1002] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  10. Assessing summer and fall chinook salmon restoration in the Upper Clearwater River and principal tributaries. Annual report 1994

    International Nuclear Information System (INIS)

    Arnsberg, B.D.; Statler, D.P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a

  11. Temporal Analyses of Select Macroinvertebrates in the Upper Mississippi River System, 1992-1995

    National Research Council Canada - National Science Library

    Sauer, Jennifer

    1998-01-01

    The annual variability in mayflies (Ephemeroptera), fingernail clams (Sphaeriidae), and midges (chironomidae) in six study areas of the Upper Mississippi River System from 1992 to 1995 was examined...

  12. Kinbasket Reservoir and Upper Columbia River Kokanee spawner index 2005

    International Nuclear Information System (INIS)

    Manson, H.; Porto, L.

    2006-01-01

    The results of an escapement survey for tributaries to the Kinbasket Reservoir and the Upper Columbia River were provided. Two aerial surveys were conducted during October, 2005. The Kokanee were grouped in schools and summed in order to provide independent estimates. Otoliths of the fish were also extracted in order to determine their age. Results of the survey showed that an estimated 236,760 Kokanee fish were spawning within 11 index streams and rivers within the Kinbasket Reservoir drainage area. Mean fork length was estimated at 24.7 cm. While the Columbia River continues to be the most important Kokanee spawning location in the Kinbasket Reservoir drainage area, the 2005 Kokanee escapement index was the third lowest recorded since 1996. It was concluded that declining fish size and declining abundance may indicate reduced reservoir productivity. 5 refs., 1 tab., 4 figs

  13. Riverbed Micromorphology of the Yangtze River Estuary, China

    Directory of Open Access Journals (Sweden)

    Shuaihu Wu

    2016-05-01

    Full Text Available Dunes are present in nearly all fluvial channels and are vital in understanding sediment transport, deposition, and flow conditions during floods of rivers and estuaries. This information is pertinent for helping developing management practices to reduce risks in river transportation and engineering. Although a few recent studies have investigated the micromorphology of a portion of the Yangtze River estuary in China, our understanding of dune development in this large estuary is incomplete. It is also poorly understood how the development and characteristics of these dunes have been associated with human activities in the upper reach of the Yangtze River and two large-scale engineering projects in the estuarine zone. This study analyzed the feature in micromorphology of the entire Yangtze River estuary bed over the past three years and assessed the morphological response of the dunes to recent human activities. In 2012, 2014, and 2015, multi-beam bathymetric measurements were conducted on the channel surface of the Yangtze River estuary. The images were analyzed to characterize the subaqueous dunes and detect their changes over time. Bottom sediment samples were collected for grain size analysis to assess the physical properties of the dunes. We found that dunes in the Yangtze River estuary can be classified in four major classes: very large dunes, large dunes, medium dunes, and small dunes. Large dunes were predominant, amounting to 51.5%. There was a large area of dunes developed in the middle and upper reaches of the Yangtze River estuary and in the Hengsha Passage. A small area of dunes was observed for the first time in the turbidity maximum zone of the Yangtze River estuary. These dunes varied from 0.12 to 3.12 m in height with a wide range of wavelength from 2.83 to 127.89 m, yielding a range in height to wavelength of 0.003–0.136. Sharp leeside slope angles suggest that the steep slopes of asymmetrical dunes in the middle and upper

  14. Geochemistry of the Upper Parana River floodplain. Study of the Garcas Pond and Patos Pond

    International Nuclear Information System (INIS)

    Marcelo Bevilacqua Remor; Silvio Cesar Sampaio; Marcio Antonio Vilas Boas; Ralpho Rinaldo dos Reis

    2015-01-01

    The aim of this study was to investigate the temporal evolution of the supply of chemical elements to the Upper Parana River floodplain and identify trends in the geochemistry of its drainage basin. The primary factor that regulates the supply of chemical elements of the Upper Parana River floodplain is the flood pulse, which can be magnified by the El Nino-Southern Oscillation. Garcas Pond is affected by agriculture, urbanization, discharge of industrial effluents and hydroelectric power production activities. Patos Pond is affected by sugarcane burning, gold mining, agriculture and urbanization. (author)

  15. A Submersed Macrophyte Index of Condition for the Upper Mississippi River

    Science.gov (United States)

    Portions of the Upper Mississippi River are listed as impaired for aquatic life use under section 303(d) of the United States Clean Water Act by the State of Minnesota’s Pollution Control Agency and Wisconsin’s Department of Natural Resources for exceeding turbidity and eutrophic...

  16. Hydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida

    Science.gov (United States)

    Metz, P.A.; Lewelling, B.R.

    2009-01-01

    The upper Peace River from Bartow to Fort Meade, Florida, is described as a groundwater recharge area, reflecting a reversal from historical groundwater discharge patterns that existed prior to the 1950s. The upper Peace River channel and floodplain are characterized by extensive karst development, with numerous fractures, crevasses, and sinks that have been eroded in the near-surface and underlying carbonate bedrock. With the reversal in groundwater head gradients, river water is lost to the underlying groundwater system through these karst features. An investigation was conducted to evaluate the hydrologic conditions that influence streamflow losses in the karst region of the upper Peace River. The upper Peace River is located in a basin that has been altered substantially by phosphate mining and increases in groundwater use. These alterations have changed groundwater flow patterns and caused streamflow declines through time. Hydrologic factors that have had the greatest influence on streamflow declines in the upper Peace River include the lowering of the potentiometric surfaces of the intermediate aquifer system and Upper Floridan aquifer beneath the riverbed elevation due to below-average rainfall (droughts), increases in groundwater use, and the presence of numerous karst features in the low-water channel and floodplain that enhance the loss of streamflow. Seepage runs conducted along the upper Peace River, from Bartow to Fort Meade, indicate that the greatest streamflow losses occurred along an approximate 2-mile section of the river beginning about 1 mile south of the Peace River at Bartow gaging station. Along the low-water and floodplain channel of this 2-mile section, there are about 10 prominent karst features that influence streamflow losses. Losses from the individual karst features ranged from 0.22 to 16 cubic feet per second based on measurements made between 2002 and 2007. The largest measured flow loss for all the karst features was about 50 cubic

  17. Observed precipitation trends in the Yangtze river catchment from 1951 to 2002

    Institute of Scientific and Technical Information of China (English)

    SUBuda; JIANGTong; SHIYafeng; StefanBECKER; MracoGEMMER

    2004-01-01

    The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.

  18. 78 FR 16411 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-03-15

    ... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the Quad City Heart...-366-9826. [[Page 16412

  19. Harmonic analyses of stream temperatures in the Upper Colorado River Basin

    Science.gov (United States)

    Steele, T.D.

    1985-01-01

    Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)

  20. Genetic Diversity of Daphnia pulex in the Middle and Lower Reaches of the Yangtze River

    Science.gov (United States)

    Wang, Wenping; Zhang, Kun; Deng, Daogui; Zhang, Ya-Nan; Peng, Shuixiu; Xu, Xiaoxue

    2016-01-01

    Increased human activities and environmental changes may lead to genetic diversity variations of Cladocerans in water. Daphnia pulex are distributed throughout the world and often regarded as a model organism. The 16S rDNA, cytochrome c oxidase subunit I (COI), and 18S genes were used as molecular marks. The genetic diversity and phylogeny of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River were studied. For 16S rDNA, COI gene, and 18S gene, the A+T content (65.4%, 58.4%, and 54.6%) was significantly higher than the G+C content (34.6%, 41.6% and 45.4%). This result was consistent with higher A and T contents among invertebrates. Based on the genetic distances of 16S rDNA and COI genes, the genetic differences of D. pulex from 10 water bodies located in the middle and lower reaches of the Yangtze River in China was minimal (0%–0.8% for 16S rDNA and 0%–1.5% for COI gene). However, D. pulex evolved into two branches in the phylogenetic trees, which coincided with its geographical distribution. Compared with D. pulex from other countries, the average genetic distance of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River reached 9.1%–10.5%, thereby indicating that D. pulex may have evolved into different subspecies. PMID:27015539

  1. Genetic Diversity of Daphnia pulex in the Middle and Lower Reaches of the Yangtze River.

    Directory of Open Access Journals (Sweden)

    Wenping Wang

    Full Text Available Increased human activities and environmental changes may lead to genetic diversity variations of Cladocerans in water. Daphnia pulex are distributed throughout the world and often regarded as a model organism. The 16S rDNA, cytochrome c oxidase subunit I (COI, and 18S genes were used as molecular marks. The genetic diversity and phylogeny of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River were studied. For 16S rDNA, COI gene, and 18S gene, the A+T content (65.4%, 58.4%, and 54.6% was significantly higher than the G+C content (34.6%, 41.6% and 45.4%. This result was consistent with higher A and T contents among invertebrates. Based on the genetic distances of 16S rDNA and COI genes, the genetic differences of D. pulex from 10 water bodies located in the middle and lower reaches of the Yangtze River in China was minimal (0%-0.8% for 16S rDNA and 0%-1.5% for COI gene. However, D. pulex evolved into two branches in the phylogenetic trees, which coincided with its geographical distribution. Compared with D. pulex from other countries, the average genetic distance of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River reached 9.1%-10.5%, thereby indicating that D. pulex may have evolved into different subspecies.

  2. Numerical model of the lowermost Mississippi River as an alluvial-bedrock reach: preliminary results

    Science.gov (United States)

    Viparelli, E.; Nittrouer, J. A.; Mohrig, D. C.; Parker, G.

    2012-12-01

    Recent field studies reveal that the river bed of the Lower Mississippi River is characterized by a transition from alluvium (upstream) to bedrock (downstream). In particular, in the downstream 250 km of the river, fields of actively migrating bedforms alternate with deep zones where a consolidated substratum is exposed. Here we present a first version of a one-dimensional numerical model able to capture the alluvial-bedrock transition in the lowermost Mississippi River, defined herein as the 500-km reach between the Old River Control Structure and the Gulf of Mexico. The flow is assumed to be steady, and the cross-section is divided in two regions, the river channel and the floodplain. The streamwise variation of channel and floodplain geometry is described with synthetic relations derived from field observations. Flow resistance in the river channel is computed with the formulation for low-slope, large sand bed rivers due to Wright and Parker, while a Chezy-type formulation is implemented on the floodplain. Sediment is modeled in terms of bed material and wash load. Suspended load is computed with the Wright-Parker formulation. This treatment allows either uniform sediment or a mixture of different grain sizes, and accounts for stratification effects. Bedload transport rates are estimated with the relation for sediment mixtures of Ashida and Michiue. Previous work documents reasonable agreement between these load relations and field measurements. Washload is routed through the system solving the equation of mass conservation of sediment in suspension in the water column. The gradual transition from the alluvial reach to the bedrock reach is modeled in terms of a "mushy" layer of specified thickness overlying the non-erodible substrate. In the case of a fully alluvial reach, the channel bed elevation is above this mushy layer, while in the case of partial alluvial cover of the substratum, the channel bed elevation is within the mushy layer. Variations in base

  3. 77 FR 40518 - Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York...

    Science.gov (United States)

    2012-07-10

    ... 1625-AA00 Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York Bay, Lower New York Bay; New York, NY ACTION: Final rule. SUMMARY: The Coast Guard is establishing seven temporary safety zones for swim events within the Captain of the Port (COTP) New York Zone. These...

  4. Multistate models of bigheaded carps in the Illinois River reveal spatial dynamics of invasive species

    Science.gov (United States)

    Coulter, Alison A.; Brey, Marybeth; Lubejko, Matthew; Kallis, Jahn L.; Coulter, David P.; Glover, David C.; Whitledge, Gregory W.; Garvey, James E.

    2018-01-01

    Knowledge of the spatial distributions and dispersal characteristics of invasive species is necessary for managing the spread of highly mobile species, such as invasive bigheaded carps (Bighead Carp [Hypophthalmichthys nobilis] and Silver Carp [H. molitrix]). Management of invasive bigheaded carps in the Illinois River has focused on using human-made barriers and harvest to limit dispersal towards the Laurentian Great Lakes. Acoustic telemetry data were used to parameterize multistate models to examine the spatial dynamics of bigheaded carps in the Illinois River to (1) evaluate the effects of existing dams on movement, (2) identify how individuals distribute among pools, and (3) gauge the effects of reductions in movement towards the invasion front. Multistate models estimated that movement was generally less likely among upper river pools (Starved Rock, Marseilles, and Dresden Island) than the lower river (La Grange and Peoria) which matched the pattern of gated versus wicket style dams. Simulations using estimated movement probabilities indicated that Bighead Carp accumulate in La Grange Pool while Silver Carp accumulate in Alton Pool. Fewer Bighead Carp reached the upper river compared to Silver Carp during simulations. Reducing upstream movement probabilities (e.g., reduced propagule pressure) by ≥ 75% into any of the upper river pools could reduce upper river abundance with similar results regardless of location. Given bigheaded carp reproduction in the upper Illinois River is presently limited, reduced movement towards the invasion front coupled with removal of individuals reaching these areas could limit potential future dispersal towards the Great Lakes.

  5. Are two systemic fish assemblage sampling programmes on the upper Mississippi River telling us the same thing?

    Science.gov (United States)

    Dukerschein, J.T.; Bartels, A.D.; Ickes, B.S.; Pearson, M.S.

    2013-01-01

    We applied an Index of Biotic Integrity (IBI) used on Wisconsin/Minnesota waters of the upper Mississippi River (UMR) to compare data from two systemic sampling programmes. Ability to use data from multiple sampling programmes could extend spatial and temporal coverage of river assessment and monitoring efforts. We normalized for effort and tested fish community data collected by the Environmental Monitoring and Assessment Program-Great Rivers Ecosystems (EMAP-GRE) 2004–2006 and the Long Term Resource Monitoring Program (LTRMP) 1993–2006. Each programme used daytime electrofishing along main channel borders but with some methodological and design differences. EMAP-GRE, designed for baseline and, eventually, compliance monitoring, used a probabilistic, continuous design. LTRMP, designed primarily for baseline and trend monitoring, used a stratified random design in five discrete study reaches. Analysis of similarity indicated no significant difference between EMAP-GRE and LTRMP IBI scores (n=238; Global R= 0.052; significance level=0.972). Both datasets distinguished clear differences only between 'Fair' and 'Poor' condition categories, potentially supporting a 'pass–fail' assessment strategy. Thirteen years of LTRMP data demonstrated stable IBI scores through time in four of five reaches sampled. LTRMP and EMAPGRE IBI scores correlated along the UMR's upstream to downstream gradient (df [3, 25]; F=1.61; p=0.22). A decline in IBI scores from upstream to downstream was consistent with UMR fish community studies and a previous, empirically modelled human disturbance gradient. Comparability between EMAP-GRE (best upstream to downstream coverage) and LTRMP data (best coverage over time and across the floodplain) supports a next step of developing and testing a systemic, multi-metric fish index on the UMR that both approaches could inform.

  6. Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities

    Science.gov (United States)

    Zhou, Meirong; Xia, Junqiang; Lu, Jinyou; Deng, Shanshan; Lin, Fenfen

    2017-05-01

    In the past 50 years, the Shishou reach in the middle Yangtze River underwent significant channel evolution owing to the implementation of an artificial cutoff, the construction of bank revetment works and the operation of the Three Gorges Project (TGP). Based on the measured hydrological data and topographic data, the processes of channel evolution in this reach were investigated mainly from the adjustments in planform and cross-sectional geometries. The variation in planform geometry obtained in this study indicates that (i) the artificial cutoff at Zhongzhouzi caused the river regime to adjust drastically, with the mean rate of thalweg migration at reach scale of 42.0 m/a over the period 1966-1975; (ii) then the effect of this artificial cutoff reduced gradually, with the mean migration rate decreasing to 40 m/a owing to the occurrence of high water levels in 1993-1998; and (iii) the average annual rate of thalweg migration decreased to 29.3 m/a because of the impacts of various bank protection engineering and the TGP operation during the period 2002-2015. However, remarkable thalweg migration processes still occurred in local regions after the TGP operation, which resulted in significant bankline migration in local reaches of Beimenkou, Shijiatai, and Tiaoxiankou. In addition, the adjustments of bankfull channel geometry were investigated at section and reach scales after the TGP operation. Calculated results show that lateral channel migration in this reach was restricted by various river regulation works and that channel evolution was mainly characterized by an increase in bankfull depth and cross-sectional area. Empirical relationships were developed between the reach-scale bankfull dimensions (depth and area), the bankfull widths at specified sections, and the previous 5-year average fluvial erosion intensity during flood seasons, with high correlation degrees between them being obtained.

  7. Regional-scale controls on dissolved nitrous oxide in the Upper Mississippi River

    Science.gov (United States)

    Turner, P.A.; Griffis, T.J.; Baker, J.M.; Lee, X.; Crawford, John T.; Loken, Luke C.; Venterea, R.T.

    2016-01-01

    The U.S. Corn Belt is one of the most intensive agricultural regions of the world and is drained by the Upper Mississippi River (UMR), which forms one of the largest drainage basins in the U.S. While the effects of agricultural nitrate (NO3-) on water quality in the UMR have been well documented, its impact on the production of nitrous oxide (N2O) has not been reported. Using a novel equilibration technique, we present the largest data set of freshwater dissolved N2O concentrations (0.7 to 6 times saturation) and examine the controls on its variability over a 350 km reach of the UMR. Driven by a supersaturated water column, the UMR was an important atmospheric N2O source (+68 mg N2ONm-2 yr-1) that varies nonlinearly with the NO3-concentration. Our analyses indicated that a projected doubling of the NO3-concentration by 2050 would cause dissolved N2O concentrations and emissions to increase by about 40%.

  8. Development of an automated desktop procedure for defining macro-reaches for river longitudinal profiles

    CSIR Research Space (South Africa)

    Dollar, LH

    2006-07-01

    Full Text Available This paper presents an automated desktop procedure for delineating river longitudinal profiles into macro-reaches for use in Ecological Reserve assessments and to aid freshwater ecosystem conservation planning. The procedure was developed for use...

  9. Colonial waterbird predation on Lost River and Shortnose suckers in the Upper Klamath Basin

    Science.gov (United States)

    Evans, Allen F.; Hewitt, David A.; Payton, Quinn; Cramer, Bradley M.; Collis, Ken; Roby, Daniel D.

    2016-01-01

    We evaluated predation on Lost River Suckers Deltistes luxatus and Shortnose Suckers Chasmistes brevirostris by American white pelicans Pelecanus erythrorhynchos and double-crested cormorants Phalacrocorax auritus nesting at mixed-species colonies in the Upper Klamath Basin of Oregon and California during 2009–2014. Predation was evaluated by recovering (detecting) PIT tags from tagged fish on bird colonies and calculating minimum predation rates, as the percentage of available suckers consumed, adjusted for PIT tag detection probabilities but not deposition probabilities (i.e., probability an egested tag was deposited on- or off-colony). Results indicate that impacts of avian predation varied by sucker species, age-class (adult, juvenile), bird colony location, and year, demonstrating dynamic predator–prey interactions. Tagged suckers ranging in size from 72 to 730 mm were susceptible to cormorant or pelican predation; all but the largest Lost River Suckers were susceptible to bird predation. Minimum predation rate estimates ranged annually from <0.1% to 4.6% of the available PIT-tagged Lost River Suckers and from <0.1% to 4.2% of the available Shortnose Suckers, and predation rates were consistently higher on suckers in Clear Lake Reservoir, California, than on suckers in Upper Klamath Lake, Oregon. There was evidence that bird predation on juvenile suckers (species unknown) in Upper Klamath Lake was higher than on adult suckers in Upper Klamath Lake, where minimum predation rates ranged annually from 5.7% to 8.4% of available juveniles. Results suggest that avian predation is a factor limiting the recovery of populations of Lost River and Shortnose suckers, particularly juvenile suckers in Upper Klamath Lake and adult suckers in Clear Lake Reservoir. Additional research is needed to measure predator-specific PIT tag deposition probabilities (which, based on other published studies, could increase predation rates presented herein by a factor of roughly 2

  10. Food and condition of the catfish Synodontis in Upper Benue River ...

    African Journals Online (AJOL)

    Investigation was carried out on food and condition of the Catfish, Synodontis species in the Upper Benue River Basin, Nigeria from March to June, 2000. Fish samples were obtained twice monthly from different fish landing sites. Analysis showed that there was no significant difference between the sizes of males and ...

  11. Importance of physical and hydraulic characteristics to unionid mussels: A retrospective analysis in a reach of large river

    Science.gov (United States)

    Zigler, S.J.; Newton, T.J.; Steuer, J.J.; Bartsch, M.R.; Sauer, J.S.

    2008-01-01

    Interest in understanding physical and hydraulic factors that might drive distribution and abundance of freshwater mussels has been increasing due to their decline throughout North America. We assessed whether the spatial distribution of unionid mussels could be predicted from physical and hydraulic variables in a reach of the Upper Mississippi River. Classification and regression tree (CART) models were constructed using mussel data compiled from various sources and explanatory variables derived from GIS coverages. Prediction success of CART models for presence-absence of mussels ranged from 71 to 76% across three gears (brail, sled-dredge, and dive-quadrat) and 51% of the deviance in abundance. Models were largely driven by shear stress and substrate stability variables, but interactions with simple physical variables, especially slope, were also important. Geospatial models, which were based on tree model results, predicted few mussels in poorly connected backwater areas (e.g., floodplain lakes) and the navigation channel, whereas main channel border areas with high geomorphic complexity (e.g., river bends, islands, side channel entrances) and small side channels were typically favorable to mussels. Moreover, bootstrap aggregation of discharge-specific regression tree models of dive-quadrat data indicated that variables measured at low discharge were about 25% more predictive (PMSE = 14.8) than variables measured at median discharge (PMSE = 20.4) with high discharge (PMSE = 17.1) variables intermediate. This result suggests that episodic events such as droughts and floods were important in structuring mussel distributions. Although the substantial mussel and ancillary data in our study reach is unusual, our approach to develop exploratory statistical and geospatial models should be useful even when data are more limited. ?? 2007 Springer Science+Business Media B.V.

  12. Radionuclide concentrations in white sturgeons from the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Dauble, D.D.; Poston, T.M.

    1994-01-01

    We summarized radionuclide concentrations in white sturgeons Acipenser transmontanus from the Columbia River during a period when several plutonium-production reactors were operating at the Hanford Site in Washington State and compared these values to those measured several years after reactor shutdown. Studies conducted in the Hanford Reach of the Columbia River during 1953-1955 indicated that high concentrations of radionuclides (as total beta) were present in some internal organs on the external surface of white sturgeons. Average concentrations were about 1,480 Bq/kg for liver and kidney and exceeded 2,200 Bq/kg for fins and scutes. The principal radionuclides in the tissues of white sturgeons from the Hanford Reach during 1963-1967, the peak reactor operation interval, were 32 P, 65 Zn, and 51 Cr. Average concentrations of 32 P in muscle ranged from 925 to 2,109 Bq/kg and were typically two to seven times greater than 65 Zn. Average concentrations of radionuclides were usually in the order of gut contents much-gt carcass > muscle. Studies from 1989 to 1990 showed that radionuclide concentrations had decreased dramatically in white sturgeon tissue since the time of reactor operation. Maximum concentrations for artificial radionuclides ( 90 Sr, 60 Co, 137 Cs) in muscle and cartilage of white sturgeons in the Columbia River had declined to less than 4 Bq/kg. Formerly abundant radionuclides, including 32 P, 65 Zn, and 51 Cr, could not be detected in recent tissue samples. Further, radionuclide tissue burden in populations of sturgeons from the Hanford Reach and the upstream or downstream reference locations did not differ significantly. 34 refs., 3 figs., 4 tabs

  13. Environmental quality assessment of Upper Birim River (Ghana)

    International Nuclear Information System (INIS)

    Asmah, M. H.; Hodgson, I. O. A.; Cobbina, S. J.; Ablordey, A. A.

    2013-01-01

    The communities along the Upper Birim River use the water resource for domestic and agricultural purposes, and the environmental quality of the river was assessed to determine the level of pollution and associated health risk from consumption and direct contact with the water. The water quality was assessed by the physico-chemical and bacteriological quality parameters. In addition, the impacts of land use activities along the river were also evaluated. Water samples were collected from 6 locations from November 2010 to January 2011 (dry season), and March to May 2011 (wet season). While the mean values of the physico-chemical parameters were within the Ghana Standards Authority (GSA) safety limits for drinking water, the levels of Fe (33.56 ± 31.94 mg/L), As (0.052± 0.088 mg/L) and Mn (4.01± 4.42 mg/L) were higher than the recommended GSA limits. The faecal contaminations were high, as the mean total coliforms, mean faecal coliforms and the level of faecal streptococci were respectively 1925± 708 cfu/100 ml, 1073±900 cfu/100 mL and 16±9 cfu/100 ml. The water quality index (WQI) of 71.79 for the Birim River indicated that most uses of the water were protected, but a few might be threatened or impaired. Hazard quotients determined for Hg, As and Ag were less than 1 at all sampling stations, implying low health risk. Provision of adequate sanitary facilities, enforcement of environmental regulations and introduction of livelihood diversification programmes would safeguard the integrity of the River from adverse anthropogenic activities. (au)

  14. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  15. Upper Illinois River basin

    Science.gov (United States)

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  16. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    Science.gov (United States)

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in

  17. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    Science.gov (United States)

    2012-01-01

    This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points), Modified Ashworth scale (MA, 0–60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of

  18. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    Directory of Open Access Journals (Sweden)

    Frisoli Antonio

    2012-06-01

    Full Text Available Abstract This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points, Modified Ashworth scale (MA, 0–60 pts and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement and position of target to be reached (ipsilateral, central and contralateral peripersonal space. These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved

  19. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan; Heine, Ruben A.; Ickes, Brian

    2016-01-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  20. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    Science.gov (United States)

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  1. Spatial Structure and Temporal Variation of Fish Communities in the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Chick, John H; Ickes, Brian S; Pegg, Mark A; Barko, Valerie A; Hrabik, Robert A; Herzog, David P

    2005-01-01

    Variation in community composition (presence/absence data) and structure (relative abundance) of Upper Mississippi River fishes was assessed using data from the Long Term Resource Monitoring Program...

  2. Metal Chemical and Isotope Characterisation in the Upper Loire River Basin, France

    Science.gov (United States)

    Widory, D.; Nigris, R.; Morard, A.; Gassama, N.; Poirier, A.; Bourrain, X.

    2016-12-01

    The Water Framework Directive (WFD) elaborated by the European Commission regulates water resources in the EC based on five years management plans. A new management plan that started in 2016 imposes strict water quality criteria to its member states, including good status thresholds for metallic contaminants. The Loire River, the most important river in France, flows through areas with lithologies naturally containing high metal concentrations in the upper part of its basin. Understanding these metal fluxes into the river is thus a prerequisite to understand their potential impact on the quality of its water in regards to the criteria defined by the WFD. The Massif Central, a residue of the Hercynian chain, is composed of granitic and volcanic rocks. Both its upstream position in the Loire basin and its numerous metal mineralizations made this region a good candidate for characterizing the natural metal geochemical background of its surface waters. To fulfill this objective we focused on the Pb, Cd and Zn chemical and isotope characteristics of selected non-anthropized small watersheds. The investigated small watersheds were selected for supposedly draining a single lithology and undergoing (as far as possible) negligible to no anthropogenic pressure. Results showed that although the high metal potential of the upper part of the Loire River basin has been highly exploited by humans for centuries, metal concentrations during the hydrological cycle are still under the guidelines defined by the WFD. Isotope compositions/ratios are strongly related to the corresponding lithologies along the rivers and help precisely define the local geochemical background that can then be used to identify and quantify any anthropogenic inputs downstream.

  3. Detailed measured sections, cross sections, and paleogeographic reconstructions of the upper cretaceous and lower tertiary nonmarine interval, Wind River Basin, Wyoming: Chapter 10 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    Science.gov (United States)

    Johnson, Ronald C.

    2007-01-01

    Cretaceous Cody Shale was being eroded off a rising Owl Creek Mountains in latest Cretaceous time. The Paleocene Fort Union Formation unconformably overlies older units but with only slight angular discordance around much of the margins of the Wind River Basin. Pre-Fort Union erosion was most pronounced toward the Wind River Range to the southwest, where the Fort Union ultimately overlies strata as old as the upper part of the Cretaceous Cody Shale. The unconformity appears to die out toward the basin center. Coal-forming mires developed throughout the western part of the basin near the beginning of the Paleocene. River systems entering the basin from the Wind River Range to the southwest and the Granite Mountains to the south produced areas of sandy fluvial deposition along mountain fronts. A major river system appears to have entered the basin from about the same spot along the Wind River Range throughout much of the Paleocene, probably because it became incised and could not migrate laterally. The muddy floodplain facies that developed along the deep basin trough during latest Cretaceous time, expanded during the early part of the Paleocene. Coal-forming mires that characterize part of the lower Fort Union Formation reached maximum extent near the beginning of the late Paleocene and just prior to the initial transgression of Lake Waltman. From the time of initial flooding, Lake Waltman expanded rapidly, drowning the coal-forming mires in the central part of the basin and spreading to near basin margins. Outcrop studies along the south margin of the basin document that once maximum transgression was reached, the lake was rapidly pushed basinward and replaced by fluvial environments.

  4. Occurence of the Quagga Mussel Dreissena bugensis and the Zebra Mussel Dreissena polymorha in the Upper Mississippi River System

    Science.gov (United States)

    This manuscript reports on a range expansion of the invasive quagga mussel in the Great Rivers of the Upper Missippi River Basin. This research will be of interest to great river ecologists and to invasive species specialists.

  5. 77 FR 20716 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2012-04-06

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation...) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation...

  6. 77 FR 3607 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2012-01-25

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation...) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation...

  7. 78 FR 79312 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-12-30

    ... deviation from the operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow.... Army Rock Island Arsenal requested a temporary deviation for the Rock Island Railroad and Highway...

  8. 75 FR 17561 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2010-04-07

    ... issued a temporary deviation from the regulation governing the operations of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, Mile 482.9, Rock Island, Illinois. The deviation is... Manager, Docket Operations, telephone (202) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island...

  9. 76 FR 9223 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2011-02-17

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation...) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation...

  10. 75 FR 22228 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2010-04-28

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, Mile 482.9, Rock Island, Illinois. The deviation is... Manager, Docket Operations, telephone (202) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island...

  11. 77 FR 5398 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2012-02-03

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation...) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation...

  12. 75 FR 68974 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2010-11-10

    ..., has issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois... Operations, telephone 202-366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a...

  13. Interannual variability of phytoplankton in the main rivers of the Upper Paraná River floodplain, Brazil: influence of upstream reservoirs

    Directory of Open Access Journals (Sweden)

    LC. Rodrigues

    Full Text Available The interannual variation of phytoplankton communities in the three main rivers of the Upper Paraná River floodplain is evaluated in relation to changes in the hydrosedimentological regime. These changes are a result of climatic variability and the formation of Porto Primavera Reservoir, located at the upper Paraná River. Phytoplankton species richness and density were investigated in rivers during a prior period (1993-1994 and eight years after reservoir impoundment (2000-2007. Multiple analyses were conducted to test the differences between these time periods in order to find predictor variables for phytoplankton attributes. A total of 454 phytoplanktonic taxa were found. The regression analysis revealed significant differences between periods. In the years following construction of the Porto Primavera dam, species richness was lower in the Paraná River and density was higher in the three rivers. In general, the algal density decreased from 2005 to 2007. Diatoms and cyanobacteria contributed significantly to the total density during the period from March 1993 to February 1994. The years 2000-2007 presented the lowest diatom contribution to species richness and the highest cyanobacteria contribution. From 2000 on, cryptomonads and cyanobacteria dominated. The interannual variability of phytoplankton was probably influenced by changes in hydrosedimentological regime due to climatic variations (La Niña and El Niño - Southern Oscillation events - ENSO and the operational procedures associated with an upstream reservoirs. Studies on climatic variability and its effects on hydrosedimentological regimes of the Paraná, Baía and Ivinhema rivers and the biota therein are necessary to obtain subsidies for management, including decisions related to the operation of dams upstream and downstream of the study area, with the purpose of minimizing risks to the Environmental Protection Area.

  14. Hybridization threatens shoal bass populations in the Upper Chattahoochee River Basin: Chapter 37

    Science.gov (United States)

    Dakin, Elizabeth E; Porter, Brady A.; Freeman, Byron J.; Long, James M.; Tringali, Michael D.; Long, James M.; Birdsong, Timothy W.; Allen, Micheal S.

    2015-01-01

    Shoal bass are native only to the Apalachicola-Chattahoochee-Flint river system of Georgia, Alabama, and Florida, and are vulnerable to extinction as a result of population fragmentation and introduction of non-native species. We assessed the genetic integrity of isolated populations of shoal bass in the upper Chattahoochee River basin (above Lake Lanier, Big Creek, and below Morgan Falls Dam) and sought to identify rates of hybridization with non-native, illegally stocked smallmouth bass and spotted bass.

  15. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  16. A haptic-robotic platform for upper-limb reaching stroke therapy: Preliminary design and evaluation results

    Science.gov (United States)

    Lam, Paul; Hebert, Debbie; Boger, Jennifer; Lacheray, Hervé; Gardner, Don; Apkarian, Jacob; Mihailidis, Alex

    2008-01-01

    Background It has been shown that intense training can significantly improve post-stroke upper-limb functionality. However, opportunities for stroke survivors to practice rehabilitation exercises can be limited because of the finite availability of therapists and equipment. This paper presents a haptic-enabled exercise platform intended to assist therapists and moderate-level stroke survivors perform upper-limb reaching motion therapy. This work extends on existing knowledge by presenting: 1) an anthropometrically-inspired design that maximizes elbow and shoulder range of motions during exercise; 2) an unobtrusive upper body postural sensing system; and 3) a vibratory elbow stimulation device to encourage muscle movement. Methods A multi-disciplinary team of professionals were involved in identifying the rehabilitation needs of stroke survivors incorporating these into a prototype device. The prototype system consisted of an exercise device, postural sensors, and a elbow stimulation to encourage the reaching movement. Eight experienced physical and occupational therapists participated in a pilot study exploring the usability of the prototype. Each therapist attended two sessions of one hour each to test and evaluate the proposed system. Feedback about the device was obtained through an administered questionnaire and combined with quantitative data. Results Seven of the nine questions regarding the haptic exercise device scored higher than 3.0 (somewhat good) out of 4.0 (good). The postural sensors detected 93 of 96 (97%) therapist-simulated abnormal postures and correctly ignored 90 of 96 (94%) of normal postures. The elbow stimulation device had a score lower than 2.5 (neutral) for all aspects that were surveyed, however the therapists felt the rehabilitation system was sufficient for use without the elbow stimulation device. Conclusion All eight therapists felt the exercise platform could be a good tool to use in upper-limb rehabilitation as the prototype was

  17. A haptic-robotic platform for upper-limb reaching stroke therapy: Preliminary design and evaluation results

    Directory of Open Access Journals (Sweden)

    Boger Jennifer

    2008-05-01

    Full Text Available Abstract Background It has been shown that intense training can significantly improve post-stroke upper-limb functionality. However, opportunities for stroke survivors to practice rehabilitation exercises can be limited because of the finite availability of therapists and equipment. This paper presents a haptic-enabled exercise platform intended to assist therapists and moderate-level stroke survivors perform upper-limb reaching motion therapy. This work extends on existing knowledge by presenting: 1 an anthropometrically-inspired design that maximizes elbow and shoulder range of motions during exercise; 2 an unobtrusive upper body postural sensing system; and 3 a vibratory elbow stimulation device to encourage muscle movement. Methods A multi-disciplinary team of professionals were involved in identifying the rehabilitation needs of stroke survivors incorporating these into a prototype device. The prototype system consisted of an exercise device, postural sensors, and a elbow stimulation to encourage the reaching movement. Eight experienced physical and occupational therapists participated in a pilot study exploring the usability of the prototype. Each therapist attended two sessions of one hour each to test and evaluate the proposed system. Feedback about the device was obtained through an administered questionnaire and combined with quantitative data. Results Seven of the nine questions regarding the haptic exercise device scored higher than 3.0 (somewhat good out of 4.0 (good. The postural sensors detected 93 of 96 (97% therapist-simulated abnormal postures and correctly ignored 90 of 96 (94% of normal postures. The elbow stimulation device had a score lower than 2.5 (neutral for all aspects that were surveyed, however the therapists felt the rehabilitation system was sufficient for use without the elbow stimulation device. Conclusion All eight therapists felt the exercise platform could be a good tool to use in upper-limb rehabilitation as

  18. Variation of precipitation for the last 300 years over the middle and lower reaches of the Yellow River

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Jingyun; HAO; Zhixin; GE; Quansheng

    2005-01-01

    The precipitation at 17 stations over the middle and lower reaches of the Yellow River is reconstructed during the period of 1736―1910, using the snow and rainfall records in the Qing Dynasty, together with the instrumental observation data of precipitation and farmland soil moisture content. The soil physics model related to rainfall infiltration and the surface water balance equation are taken as main reconstruction methodology. The field infiltration experiment by artificial rainfall is conducted to check the reliability. And the precipitation series over the middle and lower reaches of the Yellow River and its 4 sub-regions are established, going back to 1736. Analysis of the time series indicates that the abrupt change of precipitation from high to low occurs around 1915 over the middle and lower reaches of the Yellow River. During the three periods of 1791―1805, 1816―1830 and 1886―1895, the precipitation is markedly higher than the mean of the series. While both the periods of 1916―1945 and 1981―2000 are characterized by less precipitation. Three periodicities of 22―25a, 3.9a and 2.7a are shown in the precipitation fluctuation over the middle and lower reaches of the Yellow River. Moreover, the periodical signal of 22―25a becomes weaker and weaker since the abrupt change of 1915 and disappears in the late 1940s, and then the periodical signal of 35―40a appears instead.

  19. Potential for Water Savings by Defoliation of Saltcedar (Tamarix spp.) by Saltcedar Beetles (Diorhabda carinulata) in the Upper Colorado River Basin

    Science.gov (United States)

    Nagler, P. L.; Nguyen, U.; Bateman, H. L.; Jarchow, C.; van Riper, C., III; Waugh, W.; Glenn, E.

    2016-12-01

    Northern saltcedar beetles (Diorhabda carinata) have spread widely in riparian zones on the Colorado Plateau since their initial release in 2002. One goal of the releases was to reduce water consumption by saltcedar in order to conserve water through reduction of evapotranspiration (ET). The beetle moved south on the Virgin River and reached Big Bend State Park in Nevada in 2014, an expansion rate of 60 km/year. This is important because the beetle's photoperiod requirement for diapause was expected to prevent them from moving south of 37°N latitude, where endangered southwest willow flycatcher habitat occurs. In addition to focusing on the rate of dispersal of the beetles, we used remote sensing estimates of ET at 13 sites on the Colorado, San Juan, Virgin and Dolores rivers and their tributaries to estimate riparian zone ET before and after beetle releases. We estimate that water savings from 2007-2015 was 31.5 million m3/yr (25,547 acre-ft/yr), amounting to 0.258 % of annual river flow from the Upper Colorado River Basin to the Lower Basin. Reasons for the relatively low potential water savings are: 1) baseline ET before beetle release was modest (0.472 m/yr); 2) reduction in ET was low (0.061 m/yr) because saltcedar stands tended to recover after defoliation; 3) riparian ET even in the absence of beetles was only 1.8 % of river flows, calculated as the before beetle average annual ET (472 mm/yr) times the total area of saltcedar (51,588 ha) divided by the combined total average annual flows (1964-2015) from the upper to lower catchment areas of the Colorado River Basin at the USGS gages (12,215 million m3/yr or 9.90 million acre-ft). Further research is suggested to concentrate on the ecological impacts (both positive and negative) of beetles on riparian zones and on identifying management options to maximize riparian health.

  20. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    International Nuclear Information System (INIS)

    Paller, M.

    1992-01-01

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70 degrees C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams ampersand Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS

  1. Classificação fitogeográfica das florestas do Alto Rio Xingu Phytogeographical classification of the Upper Xingu River forest

    Directory of Open Access Journals (Sweden)

    Natália Macedo Ivanauskas

    2008-01-01

    Full Text Available Este trabalho propõe a inclusão da categoria Floresta Estacional Perenifólia no sistema oficial de classificação da vegetação brasileira, devido às particularidades florísticas e fisionômicas da floresta da borda sul-amazônica, que atinge maior amplitude geográfica na região do Alto Rio Xingu. Para justificar essa inclusão são apresentadas as características ambientais (clima, solo, hidrologia e diferenças fisionômicas e florísticas entre as florestas do Alto Xingu e demais florestas ombrófilas da Bacia do Amazonas e estacionais do Planalto Central.This paper proposes the inclusion of the "Evergreen Seasonal Forest" category in the official system used to classify Brazilian forests. This proposal is based upon the floristic and physiognomic particularities of the Southern Amazonian forest, which reach a greater magnitude around the Upper Xingu River. In order to justify the inclusion, the paper reports environmental characteristics (climate, soil and hydrology as well as floristic and physiognomic differences between the Upper Xingu River forest and both the Ombrophilous Forest from the Amazon Basin and the Seasonal Forest of the Central Plateau.

  2. Development and implications of a sediment budget for the upper Elk River watershed, Humboldt County

    Science.gov (United States)

    Lee H. MacDonald; Michael W. Miles; Shane Beach; Nicolas M. Harrison; Matthew R. House; Patrick Belmont; Ken L. Ferrier

    2017-01-01

    A number of watersheds on the North Coast of California have been designated as sediment impaired under the Clean Water Act, including the 112 km2 upper Elk River watershed that flows into Humboldt Bay just south of Eureka. The objectives of this paper are to: 1) briefly explain the geomorphic context and anthropogenic uses of the Elk River...

  3. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  4. Do riparian plant community characteristics differ between Tamarix (L.) invaded and non-invaded sites on the upper Verde River, Arizona?

    Science.gov (United States)

    Tyler D. Johnson; Thomas E. Kolb; Alvin L. Medina

    2009-01-01

    Invasion by Tamarix (L.) can severely alter riparian areas of the western U.S., which are globally rare ecosystems. The upper Verde River, Arizona, is a relatively free-flowing river and has abundant native riparian vegetation. Tamarix is present on the upper Verde but is a minor component of the vegetation (8% of stems). This...

  5. 78 FR 18933 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-03-28

    ... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the Quad City Marathon..., Docket Operations, telephone (202) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal...

  6. 76 FR 9224 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2011-02-17

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation.... SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation for the Rock Island...

  7. Comparison of historical streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon

    Science.gov (United States)

    Hess, Glen W.; Stonewall, Adam J.

    2014-01-01

    In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The

  8. Reaching for 100% participation in a utility conservation programme: the Hood River project

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, Eric

    1989-04-01

    The Hood River Conservation Project (HRCP) was a major residential retrofit demonstration project. The project was intended to install as many cost-effective retrofit measures in all electrically heated homes in Hood River, OR, USA. To achieve 100% participation, HRCP offered a package of 'super' retrofit measures and paid for installation of these measures. Almost all (91%) of the eligible households participated, in stark contrast to the much lower participation levels achieved in other residential conservation programmes. Also, unlike other programmes, HRCP attracted larger fractions of traditionally hard-to-reach groups: low-income households; occupants of multifamily units; and renters. The key factors leading to this phenomenal success include: the offer of free retrofits; determination on the part of staff to enlist every eligible household; the use of community-based marketing approaches; and reliance on extensive word-of-mouth among Hood River residents. (author).

  9. Water and sediment temperatures at mussel beds in the upper Mississippi River basin

    Science.gov (United States)

    Newton, Teresa J.; Sauer, Jennifer; Karns, Byron

    2013-01-01

    Native freshwater mussels are in global decline and urgently need protection and conservation. Declines in the abundance and diversity of North American mussels have been attributed to human activities that cause pollution, waterquality degradation, and habitat destruction. Recent studies suggest that effects of climate change may also endanger native mussel assemblages, as many mussel species are living close to their upper thermal tolerances. Adult and juvenile mussels spend a large fraction of their lives burrowed into sediments of rivers and lakes. Our objective was to measure surface water and sediment temperatures at known mussel beds in the Upper Mississippi (UMR) and St. Croix (SCR) rivers to estimate the potential for sediments to serve as thermal refugia. Across four mussel beds in the UMR and SCR, surface waters were generally warmer than sediments in summer, and were cooler than sediments in winter. This suggests that sediments may act as a thermal buffer for mussels in these large rivers. Although the magnitude of this effect was usually cause mortality in laboratory studies. These data suggest that elevated water temperatures resulting from global warming, thermal discharges, water extraction, and/or droughts have the potential to adversely affect native mussel assemblages.

  10. Quantitative relations between chemical oxygen demand concentration and its influence factors in the sluice-controlled river reaches of Shaying River, China.

    Science.gov (United States)

    Dou, Ming; Li, Guiqiu; Li, Congying

    2015-01-01

    Recent research on the effects of dam and sluice construction on the water environment has attracted extensive attention from academia and governments alike. Because the operation of sluices greatly alters environmental factors such as water flow and sediment load, the water quality in sluice-controlled river reaches (SCRRs) undergoes complex changes compared with those in normal reaches. This work used river reaches near the Huaidian Sluice in Shaying River of China as a case study to analyse the effects of sluice operation on water quality evolution in SCRRs. The most influential factors affecting the rate of change in chemical oxygen demand (COD) concentration in SCRRs were identified through water quality monitoring experiments performed under various modes of sluice operation and by applying a statistical method 'partial correlation analysis'. Then, a hydrodynamic model incorporating sluice operation and a water quality transport and transform model incorporating the release of endogenous loads were developed. Using these two models, the processes of temporal and spatial change of COD concentrations in the SCRRs were simulated under various scenarios designed to represent the dominant factors of influence. Finally, the simulation results were used to develop empirical relationships between the rate of change in COD concentrations and the dominant factors of influence. The results reveal that three factors, i.e., water inflow concentration, gate opening size, and gate opening number, are the dominant factors of influence, and there are logarithmic relationships between the rate of change in COD concentration in the SCRRs and these factors.

  11. A proposal of conceptual model for Pertuso Spring discharge evaluation in the Upper Valley of Aniene River

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa

    2016-10-01

    Full Text Available The Upper Aniene River basin is part of a large karst aquifer, which interacts with the river, and represents the most important water resource in the southeast part of Latium Region, Central Italy, used for drinking, agriculture and hydroelectric supplies. This work provides hydrogeochemical data and their interpretations for 1 spring and 2 cross section of Aniene River, monitored from July 2014 to December 2015, in the Upper Valley of Aniene River, to identify flow paths and hydrogeochemical processes governing groundwater-surface water interactions in this region. These activities deal with the Environmental Monitoring Plan made for the catchment work project of the Pertuso Spring, in the Upper Valley of Aniene River, which is going to be exploited to supply an important drinking water network in the South part of Rome district. Discharge measurements and hydrogeochemical data were analyzed to develop a conceptual model of aquifer-river interaction, with the aim of achieving proper management and protection of this important hydrogeological system. All groundwater samples are characterized as Ca-HCO3 type. Geochemical modeling and saturation index computation of the water samples show that groundwater and surface water chemistry in the study area was evolved through the interaction with carbonate minerals. All groundwater samples were undersaturated with respect to calcite and dolomite, however some of the Aniene River samples were saturated with respect to dolomite. The analysis of Mg2+/Ca2+ ratios indicates that the dissolution of carbonate minerals is important for groundwater and surface water chemistry, depending on the hydrological processes, which control the groundwater residence time and chemical equilibria in the aquifer.

  12. Preliminary synthesis and assessment of environmental flows in the middle Verde River watershed, Arizona

    Science.gov (United States)

    Paretti, Nicholas; Brasher, Anne M. D.; Pearlstein, Susanna L.; Skow, Dena M.; Gungle, Bruce W.; Garner, Bradley D.

    2018-05-15

    A 3-year study was undertaken to evaluate the suitability of the available modeling tools for characterizing environmental flows in the middle Verde River watershed of central Arizona, describe riparian vegetation throughout the watershed, and estimate sediment mobilization in the river. Existing data on fish and macroinvertebrates were analyzed in relation to basin characteristics, flow regimes, and microhabitat, and a pilot study was conducted that sampled fish and macroinvertebrates and the microhabitats in which they were found. The sampling for the pilot study took place at five different locations in the middle Verde River watershed. This report presents the results of this 3-year study. The Northern Arizona Groundwater Flow Model (NARGFM) was found to be capable of predicting long-term changes caused by alteration of regional recharge (such as may result from climate variability) and groundwater pumping in gaining, losing, and dry reaches of the major streams in the middle Verde River watershed. Over the period 1910 to 2006, the model simulated an increase in dry reaches, a small increase in reaches losing discharge to the groundwater aquifer, and a concurrent decrease in reaches gaining discharge from groundwater. Although evaluations of the suitability of using the NARGFM and Basin Characteristic Model to characterize various streamflow intervals showed that smallerscale basin monthly runoff could be estimated adequately at locations of interest, monthly stream-flow estimates were found unsatisfactory for determining environmental flows.Orthoimagery and Moderate Resolution Imaging Spectroradiometer data were used to quantify stream and riparian vegetation properties related to biotic habitat. The relative abundance of riparian vegetation varied along the main channel of the Verde River. As would be expected, more upland plant species and fewer lowland species were found in the upper-middle section compared to the lower-middle section, and vice

  13. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  14. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  15. Reproductive aspects of piranhas Serrasalmus spilopleura and Serrasalmus marginatus into the Upper Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    Agostinho C. S.

    2003-01-01

    Full Text Available Construction of the Itaipu Dam, 150 km downstream from Sete Quedas Falls, resulted in the drowning of that natural geographic barrier, with consequent invasion of Serrasalmus marginatus in the upper stream. This event was followed by the reduction in the abundance of the native species, S. spilopleura. Analyzes of reproductive activity these species revealed that in lotic waters S. marginatus had a very intense reproductive activity while activity of S. spilopleura was nil. This, probably made it possible for the invading species to occupy new environments into the Upper Paraná River, using the river as an entry port. In the 1987-1988 period there was a marked decline in reproductive activity of S. spilopleura reflecting the negative effects of its interaction with the invading species, S. marginatus. The assertiveness of S. marginatus in caring for its offspring and aggressiveness in establishing its feeding territory may be the determining factor for its competitive superiority over S. spilopleura, and consequently its success in colonizing the Upper Paraná River. In addition to the negative interference of S. marginatus, a possible recruitment failure of S. spilopleura could have benefited the colonization of the floodplain by the invader species.

  16. Reproductive aspects of piranhas Serrasalmus spilopleura and Serrasalmus marginatus into the Upper Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    C. S. Agostinho

    Full Text Available Construction of the Itaipu Dam, 150 km downstream from Sete Quedas Falls, resulted in the drowning of that natural geographic barrier, with consequent invasion of Serrasalmus marginatus in the upper stream. This event was followed by the reduction in the abundance of the native species, S. spilopleura. Analyzes of reproductive activity these species revealed that in lotic waters S. marginatus had a very intense reproductive activity while activity of S. spilopleura was nil. This, probably made it possible for the invading species to occupy new environments into the Upper Paraná River, using the river as an entry port. In the 1987-1988 period there was a marked decline in reproductive activity of S. spilopleura reflecting the negative effects of its interaction with the invading species, S. marginatus. The assertiveness of S. marginatus in caring for its offspring and aggressiveness in establishing its feeding territory may be the determining factor for its competitive superiority over S. spilopleura, and consequently its success in colonizing the Upper Paraná River. In addition to the negative interference of S. marginatus, a possible recruitment failure of S. spilopleura could have benefited the colonization of the floodplain by the invader species.

  17. Reproductive aspects of piranhas Serrasalmus spilopleura and Serrasalmus marginatus into the upper Paraná River, Brazil.

    Science.gov (United States)

    Agostinho, C S

    2003-02-01

    Construction of the Itaipu Dam, 150 km downstream from Sete Quedas Falls, resulted in the drowning of that natural geographic barrier, with consequent invasion of Serrasalmus marginatus in the upper stream. This event was followed by the reduction in the abundance of the native species, S. spilopleura. Analyzes of reproductive activity these species revealed that in lotic waters S. marginatus had a very intense reproductive activity while activity of S. spilopleura was nil. This, probably made it possible for the invading species to occupy new environments into the Upper Paraná River, using the river as an entry port. In the 1987-1988 period there was a marked decline in reproductive activity of S. spilopleura reflecting the negative effects of its interaction with the invading species, S. marginatus. The assertiveness of S. marginatus in caring for its offspring and aggressiveness in establishing its feeding territory may be the determining factor for its competitive superiority over S. spilopleura, and consequently its success in colonizing the Upper Paraná River. In addition to the negative interference of S. marginatus, a possible recruitment failure of S. spilopleura could have benefited the colonization of the floodplain by the invader species.

  18. Cumulative effects of restoration efforts on ecological characteristics of an open water area within the Upper Mississippi River

    Science.gov (United States)

    Gray, B.R.; Shi, W.; Houser, J.N.; Rogala, J.T.; Guan, Z.; Cochran-Biederman, J. L.

    2011-01-01

    Ecological restoration efforts in large rivers generally aim to ameliorate ecological effects associated with large-scale modification of those rivers. This study examined whether the effects of restoration efforts-specifically those of island construction-within a largely open water restoration area of the Upper Mississippi River (UMR) might be seen at the spatial scale of that 3476ha area. The cumulative effects of island construction, when observed over multiple years, were postulated to have made the restoration area increasingly similar to a positive reference area (a proximate area comprising contiguous backwater areas) and increasingly different from two negative reference areas. The negative reference areas represented the Mississippi River main channel in an area proximate to the restoration area and an open water area in a related Mississippi River reach that has seen relatively little restoration effort. Inferences on the effects of restoration were made by comparing constrained and unconstrained models of summer chlorophyll a (CHL), summer inorganic suspended solids (ISS) and counts of benthic mayfly larvae. Constrained models forced trends in means or in both means and sampling variances to become, over time, increasingly similar to those in the positive reference area and increasingly dissimilar to those in the negative reference areas. Trends were estimated over 12- (mayflies) or 14-year sampling periods, and were evaluated using model information criteria. Based on these methods, restoration effects were observed for CHL and mayflies while evidence in favour of restoration effects on ISS was equivocal. These findings suggest that the cumulative effects of island building at relatively large spatial scales within large rivers may be estimated using data from large-scale surveillance monitoring programs. Published in 2010 by John Wiley & Sons, Ltd.

  19. Hydraulic Evaluation of Discharge Over Submerged Rock Wing Dams on the Upper Mississippi River

    National Research Council Canada - National Science Library

    Hendrickson, Jon

    1999-01-01

    .... This analysis was part of a study, done through the Corps of Engineers' Land Management System, to determine the impacts of zebra mussels on water quality and ecological conditions in the Upper Mississippi River (UMR). Wing dams...

  20. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Upper Naches River, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Upper Naches River Valley and Nile Slide area of interest on September 30th,...

  1. Spatiotemporal variability in salinity and hydraulic relationship with salt intrusion in the tidal reaches of the Minjiang River, Fujian Province, China.

    Science.gov (United States)

    Xie, Rongrong; Pang, Yong; Luo, Bingrong; Li, Jiabing; Wu, Chunshan; Zheng, Yuyi; Sun, Qiyuan; Zhang, Peng; Wang, Feifeng

    2017-04-01

    Salinity is one of the most important factors for tidal-affected water bodies including estuaries and tidal river reaches. However, due to the limitations of simultaneous manual monitoring in long-distance areas, studies of estuaries are preferred to tidal reaches. Hence, in this study, we investigated the tidal reach of the Minjiang River and five sets of field observations were used to determine the influence of saltwater intrusion in different seasons. During the dry and wet season with low discharge, the longitudinal salinity profiles showed that a station located about 45 km from the river mouth still suffered from saltwater intrusion especially when the upstream discharge was under 754 m 3  s -1 , where the periodical fluctuation in the salinity remained the same with the water level, but there was a time lag of approximately 4 h compared with the discharge process. However, during the wet season in April and May 2016, the monitored salinity was approximately at the detectable limit of 0.02-0.04 ppt at the station close to the river mouth, which indicated that there was no saltwater exchange into the river, although dual flow directions were observed in the survey periods. The major differences among five survey periods were mainly related to upstream discharge rather than the seasons, the tidal range, and tidal excursion. The conclusions of this study have strategic importance for protecting water sources by guiding the government to assess the optimal freshwater release time and discharge rate to prevent saltwater entering the important tidal-affected river reaches.

  2. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  3. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  4. 75 FR 71145 - San Joaquin River Restoration Program: Reach 4B, Eastside Bypass, and Mariposa Bypass Channel and...

    Science.gov (United States)

    2010-11-22

    ..., Eastside Bypass, and Mariposa Bypass Channel and Structural Improvements Project, Merced County, CA AGENCY... on the effects of the proposed Reach 4B, Eastside Bypass, and Mariposa Bypass Channel and Structural... Mariposa Bypass with the San Joaquin River (generally referred to as Reach 4B1). The improvements will...

  5. Two-dimensional numerical modelling of sediment and chemical constituent transport within the lower reaches of the Athabasca River.

    Science.gov (United States)

    Kashyap, Shalini; Dibike, Yonas; Shakibaeinia, Ahmad; Prowse, Terry; Droppo, Ian

    2017-01-01

    Flows and transport of sediment and associated chemical constituents within the lower reaches of the Athabasca River between Fort McMurray and Embarrass Airport are investigated using a two-dimensional (2D) numerical model called Environmental Fluid Dynamics Code (EFDC). The river reach is characterized by complex geometry, including vegetated islands, alternating sand bars and an unpredictable thalweg. The models were setup and validated using available observed data in the region before using them to estimate the levels of cohesive sediment and a select set of chemical constituents, consisting of polycyclic aromatic hydrocarbons (PAHs) and metals, within the river system. Different flow scenarios were considered, and the results show that a large proportion of the cohesive sediment that gets deposited within the study domain originates from the main stem upstream inflow boundary, although Ells River may also contribute substantially during peak flow events. The floodplain, back channels and islands in the river system are found to be the major areas of concern for deposition of sediment and associated chemical constituents. Adsorbed chemical constituents also tend to be greater in the main channel water column, which has higher levels of total suspended sediments, compared to in the flood plain. Moreover, the levels of chemical constituents leaving the river system are found to depend very much on the corresponding river bed concentration levels, resulting in higher outflows with increases in their concentration in the bed sediment.

  6. Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Dolloff, Dr. Charles A [USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech; Mathews, David C [Tennessee Valley Authority (TVA)

    2013-01-01

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.

  7. Abiotic features of a river from the Upper Tietê River Basin (SP, Brazil along an environmental gradient

    Directory of Open Access Journals (Sweden)

    Katharina Eichbaum Esteves

    2015-06-01

    Full Text Available Aim: This study aimed to assess the spatial and seasonal variation of the water quality and physical habitat characteristics along the upper-middle stretch of the Paraitinga River, a tributary of Tietê River, considering the potential influence of different riparian conditions along the stretch studied.MethodsSixteen sites with different riparian vegetation, including native forest, secondary forest, pasture, and eucalyptus were sampled during the dry and rainy seasons of 2004/2005, before the damming of the Paraitinga Reservoir. Several physicochemical and habitat parameters were determined and data analyzed in relation to spatial distribution and potential influence of riparian conditions.ResultsWater quality parameters were in general within the limits established by CONAMA for Class 2 waters, except for turbidity and total phosphorus. There were seasonal and spatial differences in the limnological parameters along the stretch studied and apparently they were related to point specific influences associated with land use and canopy cover. Habitat characteristics were markedly different between the upper and middle river stretches, especially in relation to depth, width, substrate and canopy cover.ConclusionsAlthough a direct influence on the observed variables could not be attributed solely to the riparian vegetation, vegetation cover seemed to affect particular stream characteristics. Open pasture and eucalyptus sites were subject to point specific effects that caused phosphorus inputs and higher turbidity and temperature, and showed different morphological features, suggesting that land use at the sub-watershed scale was an important factor affecting stream conditions.

  8. Assessment of bridge scour in the lower, middle, and upper Yangtze River estuary with riverbed sonar profiling techniques.

    Science.gov (United States)

    Zheng, Shuwei; Xu, Y Jun; Cheng, Heqin; Wang, Bo; Lu, Xuejun

    2017-12-12

    Riverbed scour of bridge piers can cause rapid loss in foundation strength, leading to sudden bridge collapse. This study used multi-beam echo sounders (Seabat 7125) to map riverbed surrounding the foundations of four major bridges in the lower, middle, and upper reaches of the 700-km Yangtze River Estuary (YRE) during June 2015 and September 2016. The high-resolution data were utilized to analyze the morphology of the bridge scour and the deformation of the wide-area riverbed (i.e., 5-18 km long and 1.3-8.3 km wide). In addition, previous bathymetric measurements collected in 1998, 2009, and 2013 were used to determine riverbed erosion and deposition at the bridge reaches. Our study shows that the scour depth surrounding the bridge foundations progressed up to 4.4-19.0 m in the YRE. Over the past 5-15 years, the total channel erosion in some river reaches was up to 15-17 m, possessing a threat to the bridge safety in the YRE. Tide cycles seemed to have resulted in significant variation in the scour morphology in the lower and middle YRE. In the lower YRE, the riverbed morphology displayed one long erosional ditch on both sides of the bridge foundations and a long-strip siltation area distributed upstream and downstream of the bridge foundations; in the middle YRE, the riverbed morphology only showed erosional morphology surrounding the bridge foundations. Large dunes caused deep cuts and steeper contours in the bridge scour. Furthermore, this study demonstrates that the high-resolution grid model formed by point cloud data of multi-beam echo sounders can clearly display the morphology of the bridge scour in terms of wide areas and that the sonar technique is a very useful tool in the assessment of bridge scours.

  9. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  10. Variation of Temperature and Precipitation in Urban Agglomeration and Prevention Suggestion of Waterlogging in Middle and Lower Reaches of Yangtze River

    Science.gov (United States)

    Na, Liu; Youjie, Jin; Jiaqi, Dai

    2018-03-01

    The variation trend of temperature and precipitation during flood season in the middle and lower reaches of the Yangtze River basin in recent 50 years and change characteristics of rainfall in five typical flood prone cities are analysed. Aiming at waterlogging problems in the urban agglomeration of middle and lower reaches of the Yangtze River, the comprehensive prevention and control suggestions are put forward. The results showed that: the temperature trend in the basin decreased and then increased, and the precipitation showed a downward-rising-downward trend, no mutation occurred; The incidence of heavy rainfall events in the five typical cities with daily rainfall more than 50mm showed an upward trend, and increased significantly after 2002. The intensity of precipitation increased gradually. Climate change makes urban agglomeration waterlogging disasters become increasingly prominent in the middle and lower reaches of the Yangtze River.

  11. Diversity and genetic distance in populations of Steindachnerina in the upper Paraná river floodplain of Brazil.

    Science.gov (United States)

    Oliveira, A V; Prioli, A J; Prioli, S M A P; Pavanelli, C S; Júlio, H F; Panarari, R S

    2002-08-01

    Whereas four species of the genus Steindachnerina occur in the Paraná river basin, S. insculpta was the only endemic species of the region under analysis, which is the third lower section of the upper Paraná river. Among other factors, this species has been characterised by the absence of spots in the basal region of the dorsal fin. However, various specimens with this characteristic appeared in the region after the construction of the Itaipu Hydroelectric Plant in 1982. An analysis of the genetic variability of Steindachnerina populations with or without spots is provided. Specimens were collected in different sites of the floodplain of the upper Paraná river and samples were compared by random amplified polymorphic DNA (RAPD) technique and morphological analyses. Ninety-eight amplified loci with nine random primers were analysed in 19 specimens of each phenotype. Data for genetic distance showed great divergences between the two phenotypes and indicate two different species. Spotted specimens may be identified as S. brevipinna, found in the region downstream Sete Quedas Falls. The species must have overcome the geographical barrier during the building of the Itaipu hydroelectric dam that submerged the waterfalls and which became an obstacle between the upper and middle Paraná river some 150 km downstream. Since phenotypes do not share dominant alleles, absence of gene flow has been suggested.

  12. Benthic metabolism and denitrification in a river reach: a comparison between vegetated and bare sediments

    Directory of Open Access Journals (Sweden)

    Pierluigi VIAROLI

    2009-02-01

    Full Text Available This study aims at comparing biogeochemical processes in a Vallisneria spiralis meadow and in unvegetated sediments in the upper reach of the Mincio River (Northern Italy. The main hypothesis of this work is that meadows of rooted macrophytes affect benthic metabolism, enhancing capacity to retain nutrients (assimilation and dissipate (denitrification nitrogen loadings. In order to highlight how plants affect benthic processes in the riverbed, oxygen, dissolved inorganic carbon (DIC, soluble reactive phosphorus (SRP and inorganic nitrogen fluxes, together with denitrification rates, were measured from February to November 2007 in intact cores collected from stands of V. spiralis and bare sediments. V. spiralis biomass, elemental composition and growth rates were concurrently measured. Macrophyte biomass ranged from 60 to 120 g m-2 (as dry matter; growth rates followed a seasonal pattern from 0.001 in winter up to 0.080 d-1 in summer. On an annual basis, the macrophyte meadow was autotrophic with net O2 production and dissolved inorganic carbon uptake, while the bare sediment was net heterotrophic. The concurrent N assimilation by macrophytes and losses through denitrification led to similar N uptake/dissipation rates, up to 2500 mmol m-2 y-1. Under the very high NO3 - concentrations of the Mincio River, the competition between primary production and denitrification processes was also avoided. A significant ammonium regeneration from sediments to the water column occurred in the V. spiralis meadow, where plant debris and particulate matter accumulated. Here, SRP was also released into the water column, whilst in the bare sediment SRP fluxes were close to zero. Overall, V. spiralis affected the benthic metabolism enhancing the ecosystem capacity to control nitrogen contamination. However, the actual N removal rates were not sufficient to mitigate the pollution discharge.

  13. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  14. The consummatory origins of visually guided reaching in human infants: a dynamic integration of whole-body and upper-limb movements.

    Science.gov (United States)

    Foroud, Afra; Whishaw, Ian Q

    2012-06-01

    Reaching-to-eat (skilled reaching) is a natural behaviour that involves reaching for, grasping and withdrawing a target to be placed into the mouth for eating. It is an action performed daily by adults and is among the first complex behaviours to develop in infants. During development, visually guided reaching becomes increasingly refined to the point that grasping of small objects with precision grips of the digits occurs at about one year of age. Integration of the hand, upper-limbs, and whole body are required for successful reaching, but the ontogeny of this integration has not been described. The present longitudinal study used Laban Movement Analysis, a behavioural descriptive method, to investigate the developmental progression of the use and integration of axial, proximal, and distal movements performed during visually guided reaching. Four infants (from 7 to 40 weeks age) were presented with graspable objects (toys or food items). The first prereaching stage was associated with activation of mouth, limb, and hand movements to a visually presented target. Next, reaching attempts consisted of first, the advancement of the head with an opening mouth and then with the head, trunk and opening mouth. Eventually, the axial movements gave way to the refined action of one upper-limb supported by axial adjustments. These findings are discussed in relation to the biological objective of reaching, the evolutionary origins of reaching, and the decomposition of reaching after neurological injury. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Spatial and temporal variability of soil moisture in a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg

    2010-05-01

    In order to assess the effects of river restoration on water quality, the biogeochemical functions of restored river reaches have to be quantified, and soil moisture is a key environmental variable controlling this functionality. Restored sections of rivers often are characterized by a dynamic mosaic of riparian zones with varying exposure to flooding. In this presentation, the spatial and temporal variability of soil moisture in riparian soils of a restored reach of the Alpine river Thur in northeastern Switzerland is shown. The study was part of the interdisciplinary project cluster RECORD, which was initiated to advance the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The studied river reach comprised the following three functional processing zones (FPZ) representing a lateral successional gradient with decreasing hydrological connectivity (i.e. decreasing flooding frequency and duration). (i) The grass zone developed naturally on a gravel bar after restoration of the channelized river section (mainly colonized by canary reed grass Phalaris arundinacae). The soil is loamy sand to sandy loam composed of up to 80 cm thick fresh sediments trapped and stabilized by the grass roots. (ii) The bush zone is composed of young willow trees (Salix viminalis) planted during restoration to stabilize older overbank deposits with a loamy fine earth. (iii) The mixed forest is a mature riparian hardwood forest with ash and maple as dominant trees developed on older overbank sediments with a silty loamy fine earth. The study period was between spring 2009 and winter 2009/2010 including three flood events in June, July and December 2009. The first and third flood inundated the grass zone and lower part of the bush zone while the second flood was bigger and swept through all the FPZs. Water contents in several soil depths were measured continuously in 30 minute intervals using Decagon EC-5 and EC-TM sensors. There were six spatial

  16. Radio telemetry data - Characterizing migration and survival for juvenile Snake River sockeye salmon between the upper Salmon River basin and Lower Granite Dam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project estimates survival and characterizes the migration of juvenile sockeye salmon between the upper Salmon River basin in central Idaho and Lower Granite...

  17. Bed-level adjustments in the Arno River, central Italy

    Science.gov (United States)

    Rinaldi, Massimo; Simon, Andrew

    1998-02-01

    Two distinct phases of bed-level adjustment over the last 150 years are identified for the principal alluvial reaches of the Arno River (Upper Valdarno and Lower Valdarno). The planimetric configuration of the river in these reaches is the result of a series of hydraulic works (canalization, rectification, artificial cut-offs, etc.) carried out particularly between the 18th and the 19th centuries. Subsequently, a series of interventions at basin level (construction of weirs, variations in land use), intense instream gravel-mining after World War II, and the construction of two dams on the Arno River, caused widespread degradation of the streambed. Since about 1900, total lowering of the channel bed is typically between 2 and 4 m in the Upper Valdarno Reach and between 5 and 8 m in some areas of the Lower Valdarno Reach. Bed-level adjustments with time are analyzed for a large number of cross-sections and described by an exponential-decay function. This analysis identified the existence of two main phases of lowering: the first, triggered at the end of the past century; the second, triggered in the interval 1945-1960 and characterized by more intense degradation of the streambed. The first phase derived from changes in land-use and land-management practices. The second phase is the result of the superimposition of two factors: intense instream mining of gravel, and the construction of the Levane and La Penna dams.

  18. The Reaches Project : Ecological and Geomorphic Dtudies Supporting Normative Flows in the Yakima River Basin, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Jack A.; Lorang, Mark N.; Matson, Phillip L. (University of Montana, Flathead Lake Biological Station, Poison, MT)

    2002-10-01

    The Yakima River system historically produced robust annual runs of chinook, sockeye, chum and coho salmon and steelhead. Many different stocks or life history types existed because the physiography of the basin is diverse, ranging from very dry and hot in the high desert of the lower basin to cold and wet in the Cascade Mountains of the headwaters (Snyder and Stanford 2001). Habitat diversity and life history diversity of salmonids are closely correlated in the Yakima Basin. Moreover, habitat diversity for salmonids and many other fishes maximizes in floodplain reaches of river systems (Ward and Stanford 1995, Independent Scientific Group 2000). The flood plains of Yakima River likely were extremely important for spawning and rearing of anadromous salmonids (Snyder and Stanford 2001). However, Yakima River flood plains are substantially degraded. Primary problems are: revetments that disconnect main and side channel habitats; dewatering associated with irrigation that changes base flow conditions and degrades the shallow-water food web; chemical and thermal pollution that prevents proper maturation of eggs and juveniles; and extensive gravel mining within the floodplain reaches that has severed groundwater-channel connectivity, increased thermal loading and increased opportunities for invasions of nonnative species. The Yakima River is too altered from its natural state to allow anything close to the historical abundance and diversity of anadromous fishes. Habitat loss, overharvest and dam and reservoir passage problems in the mainstem Columbia River downstream of the Yakima, coupled with ocean productivity variation, also are implicated in the loss of Yakima fisheries. Nonetheless, in an earlier analysis, Snyder and Stanford (2001) concluded that a significant amount of physical habitat remains in the five floodplain reaches of the mainstem river because habitat-structuring floods do still occur on the remaining expanses of floodplain environment. Assuming main

  19. Upper Colorado River Basin Climate Effects Network

    Science.gov (United States)

    Belnap, Jayne; Campbell, Donald; Kershner, Jeff

    2011-01-01

    The Upper Colorado River Basin (UCRB) Climate Effects Network (CEN) is a science team established to provide information to assist land managers in future decision making processes by providing a better understanding of how future climate change, land use, invasive species, altered fire cycles, human systems, and the interactions among these factors will affect ecosystems and the services they provide to human communities. The goals of this group are to (1) identify science needs and provide tools to assist land managers in addressing these needs, (2) provide a Web site where users can access information pertinent to this region, and (3) provide managers technical assistance when needed. Answers to the team's working science questions are intended to address how interactions among climate change, land use, and management practices may affect key aspects of water availability, ecosystem changes, and societal needs within the UCRB.

  20. First record of Arapaima gigas (Schinz, 1822) (Teleostei: Osteoglossomorpha), the "pirarucu", in the upper Paraná River basin, Southeast Brazil

    OpenAIRE

    Carvalho, Fernando; Casatti, Lilian; Manzotti, Angelo; Ravazzi, Délcero

    2015-01-01

    Arapaima gigas (Schinz), the "pirarucu", is one of largest freshwater fish of the Neotropical region, naturally occurring in the Amazon, Essequibo, and Orinoco river basins. Herein, it is first recorded from the Grande River, in the upper Paraná River basin. This record is based on the finding of one dead specimen on the left margin of the Grande River, and in situ observation of juveniles and adults in the river.

  1. Ichthyofauna species of the upper Kaniv reservoir and mouth area of the Desna River

    Directory of Open Access Journals (Sweden)

    Y. M. Sytnik

    2012-07-01

    Full Text Available It was studied the fish species of the upper part of Kaniv reservoir (Kyiv water area and the mouth area of the Desna River. The found and preceding data of ichthyological research were compared. The changes in the fish population were analyzed. Two new invasive alien fish species were discovered in the Kaniv reservoir and Desna River: Amur sleeper (Perccotus glenii and Stone moroco (Pseudorasdora parva. Generally the ichthyofauna composition of these water bodies was supplemented with seven unmarketable and dirt species.

  2. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  3. The ichthyofauna of drifting macrophyte mats in the Ivinhema River, upper Paraná River basin, Brazil

    Science.gov (United States)

    Bulla, C. K.; Gomes, Luiz Carlos; Miranda, Leandro E.; Agostinho, A. A.

    2011-01-01

    We describe the fish assemblages associated with drifting macrophyte mats and consider their possible role as dispersal vectors in the Ivinhema River, a major tributary of the upper Paraná River, Brazil. Fish associated with drifting mats were sampled in the main river channel during January and March 2005, when the wind and/or the increased water level were sufficient to transport macrophyte stands. Fish in the drifting mats were sampled with a floating sieve (4 m long x 2 m wide x 0.6 m high, and 2 mm mesh size). In the laboratory, larvae, juvenile, and adult fish were counted and identified to the lowest possible taxonomic level. In four drifting macrophyte mats we captured 218 individuals belonging to at least 28 species, 17 families, and 6 orders. Aphyocharax dentatus, Serrasalmus spp., and Trachelyopterus galeatus were the most abundant taxa associated with the mats, but species richness ranged from 6 to 24 species per mat. In addition, 85% of the total number of individuals caught was larvae and juveniles. Although preliminary and based on limited samples, this study of drifting macrophyte mats was the first one in the last unregulated stretch of the Paraná River remaining inside Brazilian territory, and alerts us to the potential role of macrophytes mats as dispersers of fish species in the region.

  4. Spawning of migratory fish species between two reservoirs of the upper Uruguay River, Brazil

    Directory of Open Access Journals (Sweden)

    David A. Reynalte-Tataje

    Full Text Available This study investigated the migratory fish spawning within the reservoirs of the Machadinho and Itá dams (upper Uruguay River, Brazil and its relationship to environmental variables. Sampling was conducted in the lotic region of the river in two sites between the dams' reservoirs: Uruguay (main river and Ligeiro (tributary. Sampling included nine consecutive reproductive periods (RP spanning the period from 2001 to 2010 and was conducted at night on the water surface using cylindrical-conical plankton nets (0.5 mm mesh; environmental variables were also recorded. The spawning of the migratory species Salminus brasiliensis, Prochilodus lineatus, and Steindachneridion scriptum was registered: S. brasiliensis and P. lineatus spawned in the tributary river at the end of spring/beginning of summer, during flooding and during periods of high water temperature. Steindachneridion scriptum spawned in the main river at the beginning of spring. The study showed that S. brasiliensis, P. lineatus, and S. scriptum are able to spawn in small lotic river stretches within two reservoirs, but only under very specific and not common environmental conditions.

  5. Application of numerical model simulations for estimation of morphdynamics and vegetation impact on transport of dissolved substances in the Warta river reach

    Directory of Open Access Journals (Sweden)

    Joanna Wicher-Dysarz

    2014-12-01

    Full Text Available The main problem analysed in this paper is the impact of sediment accumulation and vegetation growth on transport of dissolved substances in a river. The system studied is the reach of the Warta River located upstream of the Jeziorsko Reservoir inlet. The three processes, namely sediment deposition, vegetation growth, and pollutant transport, are crucial for the functionality of reservoir. Classical HEC-RAS package is used for the reconstruction of steady flow conditions in the river reach. The transport of admixture is simulated by means of convection – dispersion model with additional elements describing storage of solutes in the floodplains. The results that the degree of maximum concentration decreases as the river bed geometry and vegetation cover are changed.

  6. Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin; project description

    Science.gov (United States)

    Mades, D.M.

    1987-01-01

    In 1986, the U.S. Geological Survey began a National Water-Quality Assessment program to (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation's surface- and ground-water resources; (2) define, where possible, trends in water quality; and (3) identify and describe the relations of both status and trends in water quality to natural factors and the history of land use and land- and waste-management activities. The program is presently in a pilot phase that will test and modify, as necessary, concepts and approaches in preparation for possible full implementation of the program in the future. The upper Illinois River basin is one of four basins selected to test the concepts and approaches of the surface-water-quality element of the national program. The basin drains 10,949 square miles of Illinois, Indiana, and Wisconsin. Three principal tributaries are the Kankakee and Des Plaines Rivers that join to form the Illinois River and the Fox River. Land use is predominantly agricultural; about 75 percent of the basin is cultivated primarily for production of corn and soybeans. About 13 percent of the basin is urban area, most of which is located in the Chicago metropolitan area. The population of the basin is about 7 million. About 6 million people live in the Des Plaines River basin. Many water-quality issues in the upper Illinois River basin are related to sediment, nutrients, potentially toxic inorganic and organic constituents, and to water-management practices. Occurrence of sediment and the chemical constituents in the rivers and lakes within the basin has the potential to adversely affect the water's suitability for aquatic life, recreation, or, through the consumption of fish, human health. The upper Illinois River basin project consists of five major activities. The first activity--analysis of existing information and preparation of a report that describes

  7. Observations of enhanced thinning in the upper reaches of Svalbard glaciers

    Directory of Open Access Journals (Sweden)

    T. D. James

    2012-11-01

    Full Text Available Changes in the volume and extent of land ice of the Svalbard archipelago have been the subject of considerable research since their sensitivity to changes in climate was first noted. However, the measurement of these changes is often necessarily based on point or profile measurements which may not be representative if extrapolated to a whole catchment or region. Combining high-resolution elevation data from contemporary laser-altimetry surveys and archived aerial photography makes it possible to measure historical changes across a glacier's surface without the need for extrapolation. Here we present a high spatial resolution time-series for six Arctic glaciers in the Svalbard archipelago spanning 1961 to 2005. We find high variability in thinning rates between sites with prevalent elevation changes at all sites averaging −0.59 ± 0.04 m a−1 between 1961–2005. Prior to 1990, ice surface elevation was changing at an average rate of −0.52 ± 0.09 m a−1 which decreased to −0.76 ± 0.10 m a−1 after 1990. Setting the elevation changes against the glaciers' altitude distribution reveals that significant increases in thinning rates are occurring most notably in the glaciers' upper reaches. We find that these changes are coincident with a decrease in winter precipitation at the Longyearbyen meteorological station and could reflect a decrease in albedo or dynamic response to lower accumulation. Further work is required to understand fully the causes of this increase in thinning rates in the glaciers' upper reaches. If on-going and occurring elsewhere in the archipelago, these changes will have a significant effect on the region's future mass balance. Our results highlight the importance of understanding the climatological context of geodetic mass balance measurements and demonstrate the difficulty of using index glaciers to represent regional changes in areas of strong climatological gradients.

  8. Streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, 2008-10

    Science.gov (United States)

    Banta, J. Ryan; Lambert, Rebecca B.; Slattery, Richard N.; Ockerman, Darwin J.

    2012-01-01

    The U.S. Geological Survey-in cooperation with the U.S. Army Corps of Engineers, The Nature Conservancy, the Real Edwards Conservation and Reclamation District, and the Texas Parks and Wildlife Department-investigated streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, specifically in the watersheds of the West Nueces, Nueces, Dry Frio, Frio, and Sabinal Rivers upstream from the Edwards aquifer outcrop. Streamflow in these rivers is sustained by groundwater contributions (for example, from springs) and storm runoff from rainfall events. To date (2012), there are few data available that describe streamflow and water-quality conditions of the rivers within the upper Nueces River Basin. This report describes streamflow gain-loss characteristics from three reconnaissance-level synoptic measurement surveys (hereinafter referred to as "surveys") during 2008-10 in the upper Nueces River Basin. To help characterize the hydrology, groundwater-level measurements were made, and water-quality samples were collected from both surface-water and groundwater sites in the study area from two surveys during 2009-10. The hydrologic (streamflow, springflow, and groundwater) measurements were made during three reconnaissance-level synoptic measurement surveys occurring in July 21-23, 2008; August 8-18, 2009; and March 22-24, 2010. These survey periods were selected to represent different hydrologic conditions. Streamflow gains and losses were based on streamflow and springflow measurements made at 74 sites in the study area, although not all sites were measured during each survey. Possible water chemistry relations among sample types (streamflow, springflow, or groundwater), between surveys, and among watersheds were examined using water-quality samples collected from as many as 20 sites in the study area.

  9. Changes in river channel pattern as a result of the construction, operation and decommissioning of watermills – the case of the middle reach of the River Liswarta near Krzepice, Poland

    OpenAIRE

    Fajer Maria

    2018-01-01

    Changes in river channel pattern in the middle reach of the River Liswarta and in the lower reaches of its tributaries near Krzepice were analysed, and were related to the construction, operation and decommissioning of watermills. For this purpose, old maps which covered the period from the beginning of the 18th century until the 20th century were used alongside written historical sources. Maps from the first half of the 19th century provided valuable source material. Traces of old mill water...

  10. Temporal distribution of ichthyoplankton in the Forquilha river, upper Uruguay river – Brazil: Relationship with environmental factors - doi: 10.4025/actascibiolsci.v36i1.17993

    Directory of Open Access Journals (Sweden)

    Carolina Antonieta Lopes

    2013-09-01

    Full Text Available This study aimed to evaluate the temporal distribution of fish eggs and larvae in the Forquilha river (upper Uruguay river/Brazil and its relationship with environmental variables. Ichthyoplankton and abiotic factors were sampled from September 2006 to August 2007. At the laboratory, samples were sorted and larvae were identified to the lowest possible taxonomic level. For data analysis we applied One-way Anova, Tukey’s test, Pearson correlation and PCA. In this study 200 eggs and 308 larvae were collected, showing differences in the temporal distribution and influence of abiotic factors. Larvae were identified in all stages of development, being distributed in three order and eight families. These results point that the lower portion of the Forquilha river is an important drift and nursery area for fish larvae of the upper Uruguay river. The breeding season for most species was greatly marked, between October and January, coinciding with the increase in temperature and decrease of the water flow. The response of reproductive intensity varies according to the environmental variables.

  11. Water temperature profiles for reaches of the Raging River during summer baseflow, King County, western Washington, July 2015

    Science.gov (United States)

    Gendaszek, Andrew S.; Opatz, Chad C.

    2016-03-22

    Re-introducing wood into rivers where it was historically removed is one approach to improving habitat conditions in rivers of the Pacific Northwest. The Raging River drainage basin, which flows into the Snoqualmie River at Fall City, western Washington, was largely logged during the 20th century and wood was removed from its channel. To improve habitat conditions for several species of anadromous salmonids that spawn and rear in the Raging River, King County Department of Transportation placed untethered log jams in a 250-meter reach where wood was historically removed. The U.S. Geological Survey measured longitudinal profiles of near-streambed temperature during summer baseflow along 1,026 meters of channel upstream, downstream, and within the area of wood placements. These measurements were part of an effort by King County to monitor the geomorphic and biological responses to these wood placements. Near-streambed temperatures averaged over about 1-meter intervals were measured with a fiber‑optic distributed temperature sensor every 30 minutes for 7 days between July 7 and 13, 2015. Vertical temperature profiles were measured coincident with the longitudinal temperature profile at four locations at 0 centimeters (cm) (at the streambed), and 35 and 70 cm beneath the streambed to document thermal dynamics of the hyporheic zone and surface water in the study reach.

  12. Pathogen Transport and Fate Modeling in the Upper Salem River Watershed Using SWAT Model

    Science.gov (United States)

    SWAT (Soil and Water Assessment Tool) is a dynamic watershed model that is applied to simulate the impact of land management practices on water quality over a continuous period. The Upper Salem River, located in Salem County New Jersey, is listed by the New Jersey Department of ...

  13. BENTHIC MACROINVERTEBRATE COMMUNITY STRUCTURE IN THE UPPER HYDROGRAPHIC BASIN OF CERNA RIVER IN RELATION TO WATER QUALITY (WEST AND SOUTH-WESTERN ROMANIA

    Directory of Open Access Journals (Sweden)

    CORINA TUDORESCU

    2009-01-01

    Full Text Available The quality of an hydrographic basin may be reflected by the composition of benthic macroinvertebrates communities as they can be influenced by the quality degradations of physical and chemical water parameters. The structure of the benthic community in the upper basin of the Cerna river was characterized by the presence of 13 groups. Abundance and frequency values recorded for benthic communities varied according to the physical-chemical conditions specific to each sample collecting station. Plecoptera, Ephemeroptera, Trichoptera and Amphipoda were influenced by changes in water quality, changes that were reflected in the composition and structure of such communities with low levels of abundance, reaching extinction in some areas of the basin.

  14. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    Science.gov (United States)

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  15. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  16. Water consumption and allocation strategies along the river oases of Tarim River based on large-scale hydrological modelling

    Science.gov (United States)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2016-04-01

    With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. The project aims to contribute to a sustainable land management which explicitly takes into account ecosystem functions and ecosystem services. SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. The modelling of water consumption and allocation strategies is a core block in the SuMaRiO cluster. A large-scale hydrological model (MIKE HYDRO Basin) was established for the purpose of sustainable agricultural water management in the main stem Tarim River. MIKE HYDRO Basin is an integrated, multipurpose, map-based decision support tool for river basin analysis, planning and management. It provides detailed simulation results concerning water resources and land use in the catchment areas of the river. Calibration data and future predictions based on large amount of data was acquired. The results of model calibration indicated a close correlation between simulated and observed values. Scenarios with the change on irrigation strategies and land use distributions were investigated. Irrigation scenarios revealed that the available irrigation water has significant and varying effects on the yields of different crops. Irrigation water saving could reach up to 40% in the water-saving irrigation scenario. Land use scenarios illustrated that an increase of farmland area in the

  17. Land degradation trends in upper catchments and morphological developments of braided rivers in drylands: the case of a marginal graben of the Ethiopian Rift Valley

    Science.gov (United States)

    Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom

  18. [Spatiotemporal variation of Populus euphratica's radial increment at lower reaches of Tarim River after ecological water transfer].

    Science.gov (United States)

    An, Hong-Yan; Xu, Hai-Liang; Ye, Mao; Yu, Pu-Ji; Gong, Jun-Jun

    2011-01-01

    Taking the Populus euphratica at lower reaches of Tarim River as test object, and by the methods of tree dendrohydrology, this paper studied the spatiotemporal variation of P. euphratic' s branch radial increment after ecological water transfer. There was a significant difference in the mean radial increment before and after ecological water transfer. The radial increment after the eco-water transfer was increased by 125%, compared with that before the water transfer. During the period of ecological water transfer, the radial increment was increased with increasing water transfer quantity, and there was a positive correlation between the annual radial increment and the total water transfer quantity (R2 = 0.394), suggesting that the radial increment of P. euphratica could be taken as the performance indicator of ecological water transfer. After the ecological water transfer, the radial increment changed greatly with the distance to the River, i.e. , decreased significantly along with the increasing distance to the River (P = 0.007). The P. euphratic' s branch radial increment also differed with stream segment (P = 0.017 ), i.e. , the closer to the head-water point (Daxihaizi Reservoir), the greater the branch radial increment. It was considered that the limited effect of the current ecological water transfer could scarcely change the continually deteriorating situation of the lower reaches of Tarim River.

  19. Ecological significance of riverine gravel bars in regulated river reaches below dams

    Science.gov (United States)

    Ock, G.; Takemon, Y.; Sumi, T.; Kondolf, G. M.

    2012-12-01

    A gravel bar has been recognized as ecologically significant in that they provide simplified habitat with topographical, hydrological and thermo-chemical diversity, while enhancing material exchanges as interfaces laterally between aquatic and terrestrial habitats, and vertically between surface and subsurface waters. During past several decades, regulated rivers below dams have been loss of a number of the geomorphological features due to sediment starvation by upstream dams, accompanied by a subsequent degradation of their ecological functions. Despite a growing concern for gravel bar management recognizing its importance in recovering riverine ecosystem services, the ecological roles of gravel bars have not been assessed enough from the empirical perspectives of habitat diversity and organic matter interactions. In this study, we investigate the 'natural filtering effects' for reducing lentic plankton and contaminants associated with self-purification, and 'physicochemical habitat complexity' of gravel bars, focusing on reach-scaled gravel bars in rivers located in three different countries; First is the Uji River in central Japan, where there has been a loss of gravel bars in the downstream reaches since an upstream dam was constructed in 1965; second is the Tagliamento River in northeast Italy, which shows morphologically intact braided bar channels by natural flooding events and sediment supply; third is the Trinity River in the United States (located in northern California), the site of ongoing restoration efforts for creating new gravel bars through gravel augmentation and channel rehabilitation activities. We traced the downstream changes in particulate organic matter (POM) trophic sources (composed of allochthonous terrestrial inputs, autochthonous instream production and lentic plankton from dam outflows) in order to evaluate the roles of the geomorphological features in tailwater ecosystem food-resources shifting. We calculated suspended POM

  20. Evolution of a meander in a constricted reach of a dryland alluvial channel: Little Colorado River, Arizona

    Science.gov (United States)

    Block, D.

    2013-12-01

    Lateral migration of river meander systems is complex, particularly in drylands where fluvial processes are discontinuous. Analysis of aerial photography and GPS tracking of cutbank erosion can further empirical knowledge of meander development. Moreover, discharge records link landscape response to hydroclimatic variability. In the semiarid Little Colorado River valley, extreme erosive episodes typically result from snowmelt flow, or lately, rain-on-snow events. The 90-km reach of the Little Colorado River (LCR), from Winslow to Leupp, Arizona, meanders within a 5-km-wide valley. Near Winslow, however, the LCR is disconnected from its floodplain by a 12-km-long levee. The levee restricts the floodplain to only 450 m wide in one location. In this severely constricted river stretch, a flood event in January 2008 relocated a meander bend. Bend development followed a common sequence of migration phases long noted in the literature, but at a very rapid pace. During the flood event one meander limb migrated ~200 m, following the general northwesterly flow direction of the river. Movement vectors of meander inflection points, apex, and apical line characterize changes in bend morphology. Before the 2008 flood event the apical line of the meander bend had azimuth 50°; after the 2008 flood event the apical line of the meander bend had azimuth 345°. Since that event, the meander bend has migrated an additional ~200 m through a combination of translation, extension, and rotation. The data provide information on geomorphic response to bimodal precipitation patterns in a human-perturbed channel reach.

  1. Preliminary assessment of channel stability and bed-material transport in the Rogue River basin, southwestern Oregon

    Science.gov (United States)

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary assessment of bed-material transport, vertical and lateral channel changes, and existing datasets for the Rogue River basin, which encompasses 13,390 square kilometers (km2) along the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that: * The Rogue River in its lowermost 178.5 kilometers (km) alternates between confined and unconfined segments, and is predominately alluvial along its lowermost 44 km. The study area on the mainstem Rogue River can be divided into five reaches based on topography, hydrology, and tidal influence. The largely confined, active channel flows over bedrock and coarse bed material composed chiefly of boulders and cobbles in the Grants Pass (river kilometers [RKM] 178.5-152.8), Merlin (RKM 152.8-132.7), and Galice Reaches (RKM 132.7-43.9). Within these confined reaches, the channel contains few bars and has stable planforms except for locally wider segments such as the Brushy Chutes area in the Merlin Reach. Conversely, the active channel flows over predominately alluvial material and contains nearly continuous gravel bars in the Lobster Creek Reach (RKM 43.9-6.7). The channel in the Tidal Reach (RKM 6.7-0) is also alluvial, but tidally affected and unconfined until RKM 2. The Lobster Creek and Tidal Reaches contain some of the most extensive bar deposits within the Rogue River study area. * For the 56.6-km-long segment of the Applegate River included in this study, the river was divided into two reaches based on topography. In the Upper Applegate River Reach (RKM 56.6-41.6), the confined, active channel flows over alluvium and bedrock and has few bars. In the Lower Applegate River Reach (RKM 41.6-0), the active channel alternates between confined and unconfined segments, flows predominantly over alluvium, shifts laterally in unconfined sections, and contains more numerous and larger bars. * The 6.5-km segment of the lower

  2. Distribution of Fish in the Upper Citarum River: an Adaptive Response to Physico-Chemical Properties

    OpenAIRE

    SUNARDI,; KANIAWATI, KEUKEU; HUSODO, TEGUH; MALINI, DESAK MADE; ASTARI, ANNISA JOVIANI

    2012-01-01

    Distribution of fish in river is controlled by physico-chemical properties of the water which is affected by land-use complexity and intensity of human intervention. A study on fish distribution was carried out in the upper Citarum River to map the effects of physio-chemical properties on habitat use. A survey was conducted to collect fish and to measure the water quality both on dry and rainy season. The result showed that distribution of the fish, in general, represented their adaptive resp...

  3. Allozyme comparison of two populations of Rineloricaria (Siluriformes, Loricariidae from the Ivaí River, upper Paraná River basin, Brazil

    Directory of Open Access Journals (Sweden)

    Daniel M. Limeira

    2009-01-01

    Full Text Available Two allopatric morphotypes of the genus Rinelocaria were compared through the allozyme electrophoresis technique: one morphotype, R. pentamaculata, from the Keller River in the middle stretch of the Ivaí River basin and the other, R. aff. pentamaculata, from the São João River in the upper portion of the Ivaí River basin. The morphotype from the São João River was collected upstream from the São João waterfall, which is about 80 m deep. Twelve enzymatic systems (AAT, ADH, EST, GCDH, G3PDH, GPI, IDH, LDH, MDH, ME, PGM and SOD were analyzed, which allowed to score 22 loci. Only loci Aat-2, Est-3 and Mdh-C showed polymorphism. The two samples differed in allele frequencies at the three polymorphic loci. The average expected heterozygosity for all loci was 0.0806 ± 0.0447 in the Keller River sample. For the São João River morphotype, this value was 0.0489 ± 0.0350. Nei' s genetic identity and distance between the two populations were respectively 0.9789 and 0.0213. Wright's F IS, F IT and F STover all loci were estimated as 0.3121, 0.4021 and 0.1309, respectively. We consider that the two morphotypes represent species in statu nascendi.

  4. Changing climatic conditions in the Upper Thames River Basin

    International Nuclear Information System (INIS)

    Simonovic, S.P.

    2009-01-01

    outcomes of the study are: (a) water resources risk and vulnerability assessment tool/s; (b) assessment of climatic vulnerability of the Upper Thames River Basin; and (c) guidelines for vulnerability reduction and hazard mitigation. The assessment tools developed are applicable to any water resources system. The selected river basin is used to verify and evaluate the benefits of the proposed methodology and demonstrate its use. (author)

  5. Plan form changes of Gumara River channel over 50 years (Upper Blue Nile basin, Ethiopia)

    Science.gov (United States)

    Abate, Mengiste; Nyssen, Jan; Mehari, Michael

    2014-05-01

    Channel plan form changes were investigated along the 65 km long Gumara River in Lake Tana basin (Ethiopia) by overlaying information from aerial photographs and SPOT imagery. Two sets of aerial photographs (1957 and 1980) were scanned, and then orthorectified in ENVI 4.2 environment. Recent channel plan form information was extracted from SPOT images of 2006. ERDAS 2010 and ArcGIS 10.1 tools were used for the data preparation and analysis. The information on river plan form changes spans from 1957 to 2006 (49 years), during which time the Gumara catchment has been subjected to changes in land use/cover and increasing water abstraction, which may have affected its hydrogeomorphology. The results indicated that the lower reach of Gumara at its mouth has undergone major plan form changes. A delta of 1.12 km² was created between 1957 and 1980 and additional 1.00 km² land has been created between 1980 and 2006. The sinuosity of the plan form changed only slightly through the study period: 1.78 in 1957, 1.76 in 1980, and 1.81 in 2006. Comparison of cross sections at the hydrological gauging station showed that the river bed aggraded in the order of 1.5 m to 2.5 m for the period 1963-2009. The trend analysis of stream flow of Gumara River versus rainfall in the catchment also indicated that the bed level of the Gumara river at its gauging station has risen. From field observations, the impact of direct human interventions was identified. The building of artificial levees along the river banks has contributed to huge deposition in the river bed. At locations where intensive irrigation takes place in the floodplain, seepage water through the banks created river bank failure and modifications in plan form. The unstable segments of the river reach were identified and will be further analysed.

  6. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  7. Hydrologic and Water-Quality Conditions During Restoration of the Wood River Wetland, Upper Klamath River Basin, Oregon, 2003-05

    Science.gov (United States)

    Carpenter, Kurt D.; Snyder, Daniel T.; Duff, John H.; Triska, Frank J.; Lee, Karl K.; Avanzino, Ronald J.; Sobieszczyk, Steven

    2009-01-01

    Restoring previously drained wetlands is a strategy currently being used to improve water quality and decrease nutrient loading into Upper Klamath Lake, Oregon. In this 2003-05 study, ground- and surface-water quality and hydrologic conditions were characterized in the Wood River Wetland. Nitrogen and phosphorus levels, primarily as dissolved organic nitrogen and ammonium (NH4) and soluble reactive phosphorus (SRP), were high in surface waters. Dissolved organic carbon concentrations also were elevated in surface water, with median concentrations of 44 and 99 milligrams of carbon per liter (mg-C/L) in the North and South Units of the Wood River Wetland, respectively, reaching a maximum of 270 mg-C/L in the South Unit in late autumn. Artesian well water produced NH4 and SRP concentrations of about 6,000 micrograms per liter (ug/L), and concentrations of 36,500 ug-N/L NH4 and 4,110 ug-P/L SRP in one 26-28 ft deep piezometer well. Despite the high ammonium concentrations, the nitrate levels were moderate to low in wetland surface and ground waters. The surface-water concentrations of NH4 and SRP increased in spring and summer, outpacing those for chloride (a conservative tracer), indicative of evapoconcentration. In-situ chamber experiments conducted in June and August 2005 indicated a positive flux of NH4 and SRP from the wetland sediments. Potential sources of NH4 and SRP include diffusion of nutrients from decomposed peat, decomposing aquatic vegetation, or upwelling ground water. In addition to these inputs, evapoconcentration raised surface-water solute concentrations to exceedingly high values by the end of summer. The increase was most pronounced in the South Unit, where specific conductance reached 2,500 uS/cm and median concentrations of total nitrogen and total phosphorus reached 18,000-36,500 ug-N/L and about 18,000-26,000 ug-P/L, respectively. Water-column SRP and total phosphorus levels decreased during autumn and winter following inputs of irrigation

  8. The Upper Santa Ynez River as Habitat for a Diverse Riparian Flora and Fauna

    Science.gov (United States)

    M. Violet Gray; James M. Greaves; Thomas E. Olson

    1989-01-01

    The upper Santa Ynez River, Santa Barbara County, provides habitats for a relatively large population of least Bell's vireos (Vireo bellii pusillus), as well as diverse riparian flora and fauna. Of particular interest is the richness of the species within particular guilds. Four species of vireos: least Bell's, warbling (Vireo...

  9. Sediment accumulation owing to backwater effect in the lower reach of the Stung Sen River, Cambodia

    Science.gov (United States)

    Nagumo, Naoko; Kubo, Sumiko; Sugai, Toshihiko; Egashira, Shinji

    2017-11-01

    We examined channel bars at two sites in the lower reach of the Stung Sen River, which flows into Lake Tonle Sap, Cambodia, to identify sediment transport and accumulation processes during monsoon-related flood events and to investigate how sediment transport capacity changes as a result of enhanced backwater effect of the lake. Channel bars in the lower reach of the Stung Sen River that emerge in the dry season were classified into type A (lateral bars), type B (point bars), type C (concave-bank benches) and type D (diagonal and island bars, or fluvial dunes) based on Nagumo et al.'s previous study. Type B, type C, and type D channel bars were at our study sites of SEN-01 and SEN-02, about 83 and 77 km from the river mouth respectively. Computation of water surface profiles showed that sediment transport capacity of the Stung Sen River decreased abruptly after the peak flow stage because of the backwater effect from Lake Tonle Sap during the decreasing flow stage. Our observations suggest that alternating layers of sand and silt to clay layers accumulate to form type C channel bars, corresponding to changes in sediment transport capacity controlled by backwater effects from Lake Tonle Sap and by changes in flow depths and associated slackwater systems. The accumulation of alternating silt and sand layers of type B channel bars results from lateral sediment transportation that is accelerated with an increase of secondary flow, whereas development of type D channel bars is related to bedload mobility.

  10. C, N, P export regimes from headwater catchments to downstream reaches

    Science.gov (United States)

    Dupas, R.; Musolff, A.; Jawitz, J. W.; Rao, P. S.; Jaeger, C. G.; Fleckenstein, J. H.; Rode, M.; Borchardt, D.

    2017-12-01

    Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke river continuum from headwaters draining 1 - 3 km² catchments to downstream reaches representing spatially integrated signals from 184 - 456 km² catchments (part of TERENO - Terrestrial Environmental Observatories, in Germany). Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal, which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.

  11. [Dynamic coupling and spatial disparity of economic development and water environmental quality in Songhua River Basin of Jilin Province, Northeast China].

    Science.gov (United States)

    Yang, Li-Hua; Tong, Lian-Jun

    2013-02-01

    By using coupling model, this paper analyzed the relationships between the economic development and water environment quality in Songhua River Basin of Jilin Province from 1991 to 2010. During the study period, both the economic development index and the water environment index in the Basin showed an uptrend, basically in a coordination state. From the perspective of coupling coordination degree, the economic development and the water environment system were in interactive coupling, with the features of complexity, nonlinearity, and time-variation. As a whole, the coupling experienced three stages, i.e., low level stage, antagonistic stage, and breaking-in stage. As for the coupling degree, the coupling of the economic development and the water environment system was in the first quadrant, i.e., at a development stage of basic coordination. From the perspective of spatial disparity, the coupling degree of the economic development and the water environment system was higher in the upper reaches of the Songhua River Basin, including Changchun and Jilin, than in the lower reaches, including Songyuan and Baicheng. The coupling degree was not only significantly positively correlated with regional economic development, but also affected by the links between the regions as well as the industrial structure within the regions. The economic development of the cities in the upper reaches of the Songhua River Basin was obviously higher than that in the lower reaches, and, due to the adopting of more strict and effective measures for environmental protection and pollution emissions reduction, the water environment quality in the upper reaches of the Songhua River Basin was better.

  12. Variation in flow and suspended sediment transport in a montane river affected by hydropeaking and instream mining

    Science.gov (United States)

    Béjar, M.; Vericat, D.; Batalla, R. J.; Gibbins, C. N.

    2018-06-01

    The temporal and spatial variability of water and sediment loads of rivers is controlled by a suite of factors whose individual effects are often difficult to disentangle. While land use changes and localised human activities such as instream mining and hydropeaking alter water and sediment transfer, tributaries naturally contribute to discharge and sediment load of mainstem rivers, and so may help compensate upstream anthropogenic factors. The work presented here aimed to assess water and the sediment transfer in a river reach affected by gravel extraction and hydropeaking, set against a backdrop of changes to the supply of water and sediment from tributaries. Discharge and suspended sediment transport were monitored during two average hydrological years at three cross-sections along a 10-km reach of the upper River Cinca, in the Southern Pyrenees. Water and sediment loads differed substantially between the reaches. The upper reach showed a largely torrential discharge regime, controlled mainly by floods, and had high but variable water and sediment loads. The middle reach was influenced markedly by hydropeaking and tributary inflows, which increased its annual water yield four-fold. Suspended sediment load in this reach increased by only 25% compared to upstream, indicating that dilution predominated. In the lowermost section, while discharge remained largely unaltered, sediment load increased appreciably as a result of changes to sediment availability from instream mining and inputs from tributaries. At the reach scale, snowmelt and summer and autumn thunderstorms were responsible for most of the water yield, while flood flows determined the magnitude and transport of the sediment load. The study highlights that a combination of natural and human factors control the spatial and temporal transfer of water and sediment in river channels and that, depending on their geographic location and effect-size, can result in marked variability even over short downstream

  13. Hydrological simulation of flood transformations in the upper Danube River: Case study of large flood events

    Directory of Open Access Journals (Sweden)

    Mitková Veronika Bačová

    2016-12-01

    Full Text Available The problem of understand natural processes as factors that restrict, limit or even jeopardize the interests of human society is currently of great concern. The natural transformation of flood waves is increasingly affected and disturbed by artificial interventions in river basins. The Danube River basin is an area of high economic and water management importance. Channel training can result in changes in the transformation of flood waves and different hydrographic shapes of flood waves compared with the past. The estimation and evolution of the transformation of historical flood waves under recent river conditions is only possible by model simulations. For this purpose a nonlinear reservoir cascade model was constructed. The NLN-Danube nonlinear reservoir river model was used to simulate the transformation of flood waves in four sections of the Danube River from Kienstock (Austria to Štúrovo (Slovakia under relatively recent river reach conditions. The model was individually calibrated for two extreme events in August 2002 and June 2013. Some floods that occurred on the Danube during the period of 1991–2002 were used for the validation of the model. The model was used to identify changes in the transformational properties of the Danube channel in the selected river reach for some historical summer floods (1899, 1954 1965 and 1975. Finally, a simulation of flood wave propagation of the most destructive Danube flood of the last millennium (August 1501 is discussed.

  14. Bank erosion along the dam-regulated lower Roanoke River, North Carolina

    Science.gov (United States)

    Hupp, C.R.; Schenk, E.R.; Richter, J.M.; Peet, Robert K.; Townsend, Phil A.

    2009-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability and erosion. Three high dams (completed between 1953 and 1963) were built along the Piedmont portion of the Roanoke River, North Carolina; just downstream the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, >700 bank-erosion pins were installed along 66 bank transects. Additionally, discrete measurements of channel bathymetry, turbidity, and presence or absence of mass wasting were documented along the entire study reach (153 km). A bank-erosion- floodplain-deposition sediment budget was estimated for the lower river. Bank toe erosion related to consistently high low-flow stages may play a large role in increased mid- and upper-bank erosion. Present bank-erosion rates are relatively high and are greatest along the middle reaches (mean 63 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates, such that erosion-rate maxima have since migrated downstream. Mass wasting and turbidity also peak along the middle reaches; floodplain sedimentation systematically increases downstream in the study reach. The lower Roanoke River isnet depositional (on floodplain) with a surplus of ??2,800,000 m3yr. Results suggest that unmeasured erosion, particularly mass wasting, may partly explain this surplus and should be part of sediment budgets downstream of dams. ?? 2009 The Geological Society of America.

  15. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    International Nuclear Information System (INIS)

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon

  16. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: II. Water Level Models, Floodplain Wetland Inundation, and System Zones

    Energy Technology Data Exchange (ETDEWEB)

    Jay, David A.; Borde, Amy B.; Diefenderfer, Heida L.

    2016-04-26

    Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetland hydrologic regimes at different locations on the river floodplain. A new predictive tool is introduced and validated, the potential SEV (pSEV), which can reduce the need for extensive new data collection in wetland restoration planning. Models of water levels and inundation frequency distinguish four zones encompassing eight reaches. The system zones are the wave- and current-dominated Entrance to river kilometer (rkm) 5; the Estuary (rkm-5 to 87), comprised of a lower reach with salinity, the energy minimum (where the turbidity maximum normally occurs), and an upper estuary reach without salinity; the Tidal River (rkm-87 to 229), with lower, middle, and upper reaches in which river flow becomes increasingly dominant over tides in determining water levels; and the steep and weakly tidal Cascade (rkm-229 to 234) immediately downstream from Bonneville Dam. The same zonation is seen in the water levels of floodplain stations, with considerable modification of tidal properties. The system zones and reaches defined here reflect geological features and their boundaries are congruent with five wetland vegetation zones

  17. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries

    Science.gov (United States)

    Bianchi, Thomas S.; Wysocki, Laura A.; Stewart, Mike; Filley, Timothy R.; McKee, Brent A.

    2007-09-01

    In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries. A lack of correlation between POC and lignin phenol abundances ( Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ 13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C 4 in addition to C 3 source materials. A strong correlation between δ 13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C 3 and C 4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ 13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 10 8 kg y -1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 10 5 kg y -1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 10 9 kg y -1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 10 9 kg y -1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 10 11 kg).

  18. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    Science.gov (United States)

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  19. Lava tubes and aquifer vulnerability in the upper Actopan River basin, Veracruz, México

    Science.gov (United States)

    Espinasa-Pereña, R.; Delgado Granados, H.

    2011-12-01

    Rapid infiltration leads to very dry conditions on the surface of some volcanic terrains, with large allogenic streams sometimes sinking underground upon reaching a lava flow. Aquifers in lava flows tend to be heterogeneous and discontinuous, generally unconfined and fissured, and have high transmissivity. Springs associated with basalts may be very large but are typically restricted to lava-flow margins. Concern has been expressed regarding the potential for lava-tube caves to facilitate groundwater contamination similar to that afflicting some karst aquifers (Kempe et al., 2003; Kiernan et al., 2002; Halliday 2003). The upper Actopan River basin is a series of narrow valleys excavated in Tertiary volcanic brechias. Several extensive Holocene basaltic tube-fed lava flows have partially filled these valleys. The youngest and longest flow originates at El Volcancillo, a 780 ybP monogenetic volcano. It is over 50 km long, and was fed through a major master tube, the remains of which form several lava-tube caves (Gassos and Espinasa-Pereña, 2008). Another tube-fed flow initiates at a vent at the bottom of Barranca Huichila and can be followed for 7 km to where it is covered by the Volcancillo flow. The Huichila River is captured by this system of lava tubes and can be followed through several underground sections. In dry weather the stream disappears at a sump in one of these caves, although during hurricanes it overflows the tube, floods the Tengonapa plain, and finally sinks through a series of skylights into the master tube of the Volcancillo flow. Near villages, the cave entrances are used as trash dumps, which are mobilized during floods. These include household garbage, organic materials associated with agriculture and even medical supplies. This is a relatively recent phenomenon, caused by population growth and the building of houses above the lava flows. The water resurges at El Descabezadero, gushing from fractures in the lava above the underlying brechias

  20. Human impacts on sediment in the Yangtze River: A review and new perspectives

    Science.gov (United States)

    Yang, H. F.; Yang, S. L.; Xu, K. H.; Milliman, J. D.; Wang, H.; Yang, Z.; Chen, Z.; Zhang, C. Y.

    2018-03-01

    Changes in riverine suspended and riverbed sediments have environmental, ecological and social implications. Here, we provide a holistic review of water and sediment transport and examine the human impacts on the flux, concentration and size of sediment in the Yangtze River in recent decades. We find that most of the fluvial sediment has been trapped in reservoirs, except for the finest portion. Furthermore, soil-conservation since the 1990s has reduced sediment yield. From 1956-1968 (pre-dam period) to 2013-2015 (post-dams and soil-conservation), the sediment discharge from the sub-basins decreased by 91%; in the main river, the sediment flux decreased by 99% at Xiangjiaba (upper reach), 97% at Yichang (transition between upper and middle reaches), 83% at Hankou (middle reach), and 77% at Datong (tidal limit). Because the water discharge was minimally impacted, the suspended sediment concentration decreased to the same extent as the sediment flux. Active erosion of the riverbed and coarsening of surficial sediments were observed in the middle and lower reaches. Fining of suspended sediments was identified along the river, which was counteracted by downstream erosion. Along the 700-km-long Three Gorges Reservoir, which retained 80% of the sediment from upstream, the riverbed gravel or rock was buried by mud because of sedimentation after impoundment. Along with these temporal variations, the striking spatial patterns of riverine suspended and riverbed sediments that were previously exhibited in this large basin were destroyed or reversed. Therefore, we conclude that the human impacts on sediment in the Yangtze River are strong and systematic.

  1. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  2. Microbial water quality in the upper Olifants River catchment: implications for health

    CSIR Research Space (South Africa)

    Le Rouw, Wouter J

    2012-09-01

    Full Text Available poor to fair condition. Mining-related disturbances were seen as *Corresponding author. E-mail: wleroux@csir.co.za. Tel: (+27)12 841 2189. the main cause of impairment of river health in the upper parts of the catchment, with the exception... relationship, N50: median infectious dose, r: parameter characterised by dose-response relationship. Microbial monitoring Microbial water quality was monitored over a two year period. During the first year, faecal indicator counts (E. coli) levels...

  3. Alligator Rivers Region

    International Nuclear Information System (INIS)

    1992-01-01

    An introduction to the Alligator Rivers Region is presented. It contains general information regarding the physiography, climate, hydrology and mining of the region. The Alligator Rivers Region is within an ancient basin, the Pine Creek Geosyncline, which has an area of approximately 66000 km 2 . The Geosyncline has a history of mineral exploitation dating back to 1865, during which time 16 metals have been extracted (silver, arsenic, gold, bismuth, cadmium, cobalt, copper, iron, manganese, molybdenum, lead, tin, tantalum, uranium, tungsten, zinc). Uranium exploration in the Pine Creek Geosyncline was stimulated by the discovery in 1949 of secondary uranium mineralisation near Rum June, 70 km south-east of Darwin. This was followed by a decade of intense exploration activity resulting in the discoveries of economic uranium ore bodies at Rum Jungle and in the upper reaches of the South Alligator River Valley. All the known major uranium deposits of the East Alligator River uranium field have been discovered since 1969. The present known resources of the Geosyncline are approximately 360 000 tonnes of contained U 3 O 8 . 2 refs., 2 figs., 1 tab

  4. Modal Investment Comparison : The Impact of Upper Mississippi River Lock and Dam Shutdowns on State Highway Infrastructure.

    Science.gov (United States)

    2017-10-30

    This project reviews southbound agricultural shipments from the Upper Mississippi River originating from the states of Illinois, Iowa, Minnesota, Missouri, and Wisconsin to understand the potential impacts of shifting barge shipments to the parallel ...

  5. Hydraulic alterations resulting from hydropower development in the Bonneville Reach of the Columbia River

    Science.gov (United States)

    Hatten, James R.; Batt, Thomas R.

    2010-01-01

    We used a two-dimensional (2D) hydrodynamic model to simulate and compare the hydraulic characteristics in a 74-km reach of the Columbia River (the Bonneville Reach) before and after construction of Bonneville Dam. For hydrodynamic modeling, we created a bathymetric layer of the Bonneville Reach from single-beam and multi-beam echo-sounder surveys, digital elevation models, and navigation surveys. We calibrated the hydrodynamic model at 100 and 300 kcfs with a user-defined roughness layer, a variable-sized mesh, and a U.S. Army Corps of Engineers backwater curve. We verified the 2D model with acoustic Doppler current profiler (ADCP) data at 14 transects and three flows. The 2D model was 88% accurate for water depths, and 77% accurate for velocities. We verified a pre-dam 2D model run at 126 kcfs using pre-dam aerial photos from September 1935. Hydraulic simulations indicated that mean water depths in the Bonneville Reach increased by 34% following dam construction, while mean velocities decreased by 58%. There are numerous activities that would benefit from data output from the 2D model, including biological sampling, bioenergetics, and spatially explicit habitat modeling.

  6. Modeling Regional Soil Water Balance in Farmland of the Middle Reaches of Heihe River Basin

    Directory of Open Access Journals (Sweden)

    Jiang Li

    2017-11-01

    Full Text Available Quantifying components of soil water balance in farmland of the middle reaches of Heihe River Basin is essential for efficiently scheduling and allocating limited water resources for irrigation in this arid region. A soil water balance model based on empirical assumptions in the vadose zone of farmland was developed and simulation results were compared/validated with results by the numerical model HYDRUS-1D. Results showed a good coherence between the simulated results of the water balance models and the HYDRUS-1D model in soil water storage, evapotranspiration, deep percolation and groundwater recharge, which indicated that the water balance model was suitable for simulating soil water movement in the study area. Considering the spatial distribution of cropping patterns, groundwater depth and agricultural management, ArcGIS was applied for the pre-/post-processing of the water balance model to quantify the spatial distribution of components of soil water balance in the major cropland in middle reaches of Heihe River Basin. Then, distributions of components of soil water balance in the major cropland under different water-saving irrigation practices during the growing season were predicted and discussed. Simulation results demonstrated that evapotranspiration of the main crops would be more prominently influenced by irrigation quota under deep groundwater depth than that under shallow groundwater depth. Groundwater recharge would increase with the increase of irrigation quota and decrease with the increase of groundwater depth. In general, when groundwater depth reached 3 m, groundwater recharge from root zone was negligible for spring wheat. While when it reached 6 m, groundwater recharge was negligible for maize. Water-saving irrigation practices would help to reduce groundwater recharge with a slight decrease of crop water consumption.

  7. UAV based hydromorphological mapping of a river reach to improve hydrodynamic numerical models

    Science.gov (United States)

    Lükő, Gabriella; Baranya, Sándor; Rüther, Nils

    2017-04-01

    Unmanned Aerial Vehicles (UAVs) are increasingly used in the field of engineering surveys. In river engineering, or in general, water resources engineering, UAV based measurements have a huge potential. For instance, indirect measurements of the flow discharge using e.g. large-scale particle image velocimetry (LSPIV), particle tracking velocimetry (PTV), space-time image velocimetry (STIV) or radars became a real alternative for direct flow measurements. Besides flow detection, topographic surveys are also essential for river flow studies as the channel and floodplain geometry is the primary steering feature of the flow. UAVs can play an important role in this field, too. The widely used laser based topographic survey method (LIDAR) can be deployed on UAVs, moreover, the application of the Structure from Motion (SfM) method, which is based on images taken by UAVs, might be an even more cost-efficient alternative to reveal the geometry of distinct objects in the river or on the floodplain. The goal of this study is to demonstrate the utilization of photogrammetry and videogrammetry from airborne footage to provide geometry and flow data for a hydrodynamic numerical simulation of a 2 km long river reach in Albania. First, the geometry of the river is revealed from photogrammetry using the SfM method. Second, a more detailed view of the channel bed at low water level is taken. Using the fine resolution images, a Matlab based code, BASEGrain, developed by the ETH in Zürich, will be applied to determine the grain size characteristics of the river bed. This information will be essential to define the hydraulic roughness in the numerical model. Third, flow mapping is performed using UAV measurements and LSPIV method to quantitatively asses the flow field at the free surface and to estimate the discharge in the river. All data collection and analysis will be carried out using a simple, low-cost UAV, moreover, for all the data processing, open source, freely available

  8. Channel morphology and its impact on flood passage, the Tianjiazhen reach of the middle Yangtze River

    Science.gov (United States)

    Shi, Yafeng; Zhang, Qiang; Chen, Zhongyuan; Jiang, Tong; Wu, Jinglu

    2007-03-01

    The Tianjiazhen reach of the middle Yangtze is about 8 km long, and characterized by a narrow river width of 650 m and local water depth of > 90 m in deep inner troughs, of which about 60 m is below the mean sea level. The troughs in the channel of such a large river are associated with regional tectonics and local lithology. The channel configuration plays a critical role in modifying the height and duration of river floods and erosion of the riverbed. The formation of the troughs in the bed of the Yangtze is considered to be controlled by sets of NW-SE-oriented neotectonic fault zones, in which some segments consist of highly folded thick Triassic limestone crossed by the Yangtze River. Several limestone hills, currently located next to the river channel, serve as nodes that create large vortices in the river, thereby accelerating downcutting on the riverbed composed of limestone highly susceptible to physical corrosion and chemical dissolution. Hydrological records indicate that the nodal hills and channel configuration at Tianjiazhen do not impact on normal flow discharges but discharges > 50,000 m 3s - 1 are slowed down for 2-3 days. Catastrophic floods are held up for even longer periods. These inevitably result in elevated flood stages upstream of prolonged duration, affecting large cities such as Wuhan and a very large number of people.

  9. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  10. Spatial and temporal distribution of ichthyoplankton in the upper Uruguay river, Brazil

    Directory of Open Access Journals (Sweden)

    Samara Hermes-Silva

    2009-08-01

    Full Text Available The distribution and abundance of fish eggs and larvae was analyzed in three sections of the Upper Uruguay river, in a stretch of 290 km. Samples were collected monthly from October, 2001 to March, 2002 during 48-h cycles at 6-h intervals between each sampling. Surface and bottom samples were collected with a 0.5-mm mesh cylindroconical net. Fishes from the Upper Uruguay river were reproductively active mainly from October to January, and this activity was more intense at the Ligeiro and Chapecó tributaries and Chapecó main river. It was observed that the tributaries are important spawning grounds and larval nursery sites, indicating the importance of preserving such environments.Foram analisadas a distribuição e abundância de ovos e larvas de peixes em três seções do Alto rio Uruguai, num trecho de 290 km. As coletas foram realizadas mensalmente no período de outubro de 2001 a março de 2002, durante um ciclo de 48 horas com intervalos de 6 horas entre as amostragens. Foram feitas coletas de superfície e fundo, nas margens e no canal central do rio, utilizando-se redes de plâncton do tipo cônicocilíndricas de malha 0,5mm. As maiores ocorrências foram verificadas entre os meses de outubro a janeiro, sendo que a atividade reprodutiva foi mais intensa nos tributários Ligeiro e Chapecó e no rio Uruguai, na foz do rio Chapecó. Foi observado neste estudo que alguns tributários se destacam como locais de desova e desenvolvimento de larvas de peixe, indicando a importância de se preservar estes ambientes.

  11. QUALITY WATER BALANCE AS A BASE FOR WETLANDS RESTORATION IN THE UPPER BIEBRZA VALLEY

    Directory of Open Access Journals (Sweden)

    Piotr Banaszuk

    2016-06-01

    Full Text Available Main goal of presented research was the assessment of the influence of water damming in existing land reclamation systems on the surface water quality of the Upper Biebrza River catchment. Surface water quality was assessed on the concentration of BOD5, total phosphorus (TP and total nitrogen (TN recorded in 2014 at several monitoring points along Biebrza River and its tributaries. The upper Biebrza R. has a little (at the Sztabin gauging point even an insufficient absorption capacity of organic pollutants and a high capacity for self-purifying and absorbing of TP and TN. The phosphorus binding capacity decreases along the river and in its upper reach it is necessary to reduce the load of P by 20% to maintain the river quality objectives. Water quality monitoring data and information about pollution sources showed high absorption capacities of TN in the monitored tributaries, which can receive an additional flux of this constituent in the amount exceeding the actual load up to several times. The absorption capacity of BOD5 and TP is lower by an order of magnitude. For Kropiwna R., it is required to reduce the load of organic components (measured as BOD5, which exceeds the requirements for the 1st quality class.

  12. [Terrain gradient effect of ecosystem service value in middle reach of Yangtze River, China].

    Science.gov (United States)

    Yang, Suo Hua; Hu, Shou Geng; Qu, Shi Jin

    2018-03-01

    Using land use data in the year 1995, 2005 and 2014, this study estimated the ecosystem service value (ESV) in each county located in the middle reach of Yangtze River and analyzed its spatiotemporal variation features and terrain gradient effects based on "the equivalent value per unit area of ecosystem services in China". The results showed that ESV in the middle reach of Yangtze River was generally higher in mountainous area but lower in plain region, with an obvious terrain gradient effect. Specifically, the relationship of the relief degree of land surface (RDLS) and the ESV showed significant logarithm function at county scale with a high curve fitting degree of 0.53. The ESV increased from 400.35×10 4 yuan·km -2 to 554.57×10 4 yuan·km -2 with the increasing RDLS (grade 1-5) in 2014. During 1995-2004, the ecosystem service value variation changed from decreasing to stable with the increases of the RDLS. With a perspective of ecosystem service values, the value of food production and waste treatment service value decreased with the increase of the RDLS, while the others increased in general, such as the production of raw materials and gas regulation service value, because of the influences of dynamic land use structure in varied topography and distinct dominant ecosystem services from different land types.

  13. Effects of Increased Commercial Navigation Traffic on Freshwater Mussels in the Upper Mississippi River: Ten-Year Evaluation

    National Research Council Canada - National Science Library

    Miller, Andrew

    2002-01-01

    ... traffic at five historically prominent mussel beds in the upper Mississippi River (UMR). The purpose was to assess effects of increased navigation traffic caused by the newly completed Melvin Price Locks and Dam at Alton, IL...

  14. Gain-loss study along two streams in the upper Sabine River basin, Texas; August-September 1981

    Science.gov (United States)

    Myers, Dennis R.

    1983-01-01

    A gain-loss study was made August-September 1981 along the upper Sabine River from Lake Tawakoni to Farm Road 2517 near Carthage and along Lake Fork Creek from Lake Fork Reservoir to its junction (mouth) with the Sabine River. The hydrologic data collected during the gain-loss study indicated that during periods of low flow on the Sabine River, at least as much water as is released from Lake Tawakoni and from Lake Fork Reservoir will be available downstream at Farm Road 14 near Big Sandy and at Farm Road 2517 near Carthage. Gains from bank seepage and small tributary inflows compensate for losses due to evaporation, evapotranspiration, and loss of water into the alluvial aquifer.

  15. Review of the upper Cenozoic stratigraphy overlying the Columbia River Basalt Group in western Idaho

    International Nuclear Information System (INIS)

    Strowd, W.B.

    1980-12-01

    This report is a synthesis of information currently available on the rocks that stratigraphically overlie the Columbia River Basalt Group in Idaho. The primary objective is to furnish a brief but comprehensive review of the literature available on upper Cenozoic rocks in western Idaho and to discuss their general stratigraphic relationships. This study also reviews the derivation of the present stratigraphy and notes weaknesses in our present understanding of the geology and the stratigraphy. This report was prepared in support of a study to evaluate the feasibility of nuclear waste storage in the Columbia River Basalt Group of the Pasco Basin, Washington

  16. Avulsions, channel evolution and floodplain sedimentation rates of the anastomosing upper Columbia River, British Columbia, Canada

    NARCIS (Netherlands)

    Makaske, B.; Smith, D.G.; Berendsen, H.J.A.

    2002-01-01

    Ages of channels of the anastomosing upper Columbia River, south-eastern British Columbia, Canada, were investigated in a cross-valley transect by C-14 dating of subsurface floodplain organic material from beneath levees. The avulsion history within the transect was deduced from these data, and

  17. Spatiotemporal Distribution and Assemblages of Fishes below the Lowermost Dam in Protected Reach in the Yangtze River Main Stream: Implications for River Management

    Science.gov (United States)

    Li, Junyi; Zhang, Hui; Lin, Danqing; Wu, Jinming; Wang, Chengyou; Xie, Xuan

    2016-01-01

    Now more and more ecologists concern about the impacts of dam construction on fish. However, studies of fishes downstream Gezhouba Dam were rarely reported except Chinese sturgeon (Acipenser sinensis Gray). In this study, catch investigations and five hydroacoustic detections were completed from 2015 to 2016 to understand the distribution, size, and categories of fishes and their relationship with the environmental factors below Gezhouba Dam in protected reach in the Yangtze River main stream. Results showed significant differences in fish distribution and TS (target strength) between wet and flood seasons. Mean TS in five hydroacoustic detections were −59.98 dB, −54.70 dB, −56.16 dB, −57.90 dB, and −59.17 dB, respectively, and dominant fish species are Coreius guichenoti (Bleeker), Siniperca chuatsi (Basilewsky), and Pelteobagrus vachelli (Richardson). In the longitudinal direction, fish preferred to stay in some specific sections like reaches 2, 4, 7, 8, 11, and 16. Since hydrology factors change greatly in different seasons, environmental characteristics vary along the reaches, and human activities play an important role in the fish behavior, it is concluded that great cross-season changes in hydrology lead to the differences in TS and fish assemblages and that geography characteristics, especially channel geography, together with human activities influence fish longitudinal distribution. This finding provides basic knowledge of spatiotemporal distribution and assemblages of fishes in the extended reaches downstream Gezhouba Dam. In addition, it offers implications for river management. It could also serve as reference of future research on fish habitat. PMID:27843943

  18. Application of hydrologic tools and monitoring to support managed aquifer recharge decision making in the Upper San Pedro River, Arizona, USA

    Science.gov (United States)

    Lacher, Laurel J.; Turner, Dale S.; Gungle, Bruce W.; Bushman, Brooke M.; Richter, Holly E.

    2014-01-01

    The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr). Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.

  19. Application of Hydrologic Tools and Monitoring to Support Managed Aquifer Recharge Decision Making in the Upper San Pedro River, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Laurel J. Lacher

    2014-11-01

    Full Text Available The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr. Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.

  20. The status of the peripheral blood in fish from radioactively contaminated Techa river

    Energy Technology Data Exchange (ETDEWEB)

    Tryapitsina, G.; Akleyev, A. [Urals Research Center for Radiation Medicine and Chelyabinsk State University (Russian Federation); Shaposhnikova, I.; Andreev, S.; Pryakhin, E. [Urals Research Center for Radiation Medicine (Russian Federation); Rudolfsen, G. [Norwegian Radiation Protection Authority and University of Tromsoe (Norway)

    2014-07-01

    Low-level radioactive had been releasing to the Techa River from 1949 to 1956. During that period over 76 million m{sup 3} of waste water was released into the river with total activity of 1.1*10{sup 17} Bq. In 2012 we examined the erythrocytes in peripheral blood of fish (roach, perch, pike), inhabiting different part of the Techa River. Sampling was conducted twice a year (in May and in August) at three stations with various levels of radioactive contamination. Station RT1 in the upper reach, RT2 in the middle reach and RT3 in the lower reach of the river. An average above-background content of {sup 90}Sr in the body of fish inhabiting the Techa River is given in the table. Fish from the nearby Miass River was used as a control group. Blood was taken from the tail vein of live fish. We examined number of nucleated cells in peripheral blood, relative and absolute number of erythrocytes, leukocytes, and thrombocytes, immature and mature forms of blood cells of the erythroid line, leukocytes of different types. At least 1,000 blood cells were analyzed for each fish. The most expressed effects were registered in the analysis of the status of the peripheral blood erythrokaryocytes. In summer period increased proliferative activity of erythroid cell lineage was observed in fish from the Techa river as compared to fish from Miass river: at station RT2 the amount of dividing erythrokaryocytes in the peripheral blood (the sum of the parameters for 3 species of fish) was statistically significantly 1.4 times higher than that in the control; at station RT1 - it was 4 times higher. In the studied species of fish caught at station RT1 in summer period the number of dividing erythrokaryocytes was statistically significantly higher than that in the control populations: in roach - 4 times, in perch - 8 times, in pike - 2 times higher. Increase in the number of proliferating erythroid cells in blood allows for the maintenance of the number of mature erythrocytes in the blood of

  1. Dissolved organic carbon in the freshwater tidal reaches of the Schelde estuary

    DEFF Research Database (Denmark)

    Muylaert, K.; Dasseville, R.; De Brabandere, Loreto

    2005-01-01

    To unravel the factors that regulate DOC dynamics in the freshwater tidal reaches of the Schelde estuary, DOC concentration and biodegradability were monitored in the upper Schelde estuary and its major tributaries. Although the Schelde estuary possesses a densely populated and industrialized...... catchment, our data suggest that the bulk of DOC in the freshwater tidal reaches is not derived from waste water. This was concluded from the low biodegradability of DOC (on average 9%), DOC concentrations that are close to the mean for European rivers (4.61 mg/l) and the absence of an inverse relationship....../l), these blooms did not appear to produce large quantities of DOC in the freshwater tidal reaches as DOC concentrations were low when phytoplankton biomass was high. The fact that DOC concentrations were high in winter and decreased in summer suggests a predominantly terrestrial source of DOC in the freshwater...

  2. A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics.

    Science.gov (United States)

    Counihan, Timothy D; Waite, Ian R; Nilsen, Elena B; Hardiman, Jill M; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D

    2014-06-15

    While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus-PCP-PAH). We also observed significant differences between strata in the number of detections of Indus-PCP-PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream

  3. A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics

    Science.gov (United States)

    Counihan, Timothy D.; Waite, Ian R.; Nilsen, Elena B.; Hardiman, Jill M.; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D.

    2014-01-01

    While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16 km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus–PCP–PAH). We also observed significant differences between strata in the number of detections of Indus–PCP–PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest

  4. Bed morphology, flow structure, and sediment transport at the outlet of Lake Huron and in the upper St. Clair River

    Science.gov (United States)

    Czuba, J.A.; Best, J.L.; Oberg, K.A.; Parsons, D.R.; Jackson, P.R.; Garcia, M.H.; Ashmore, P.

    2011-01-01

    An integrated multibeam echo sounder and acoustic Doppler current profiler field survey was conducted in July 2008 to investigate the morphodynamics of the St. Clair River at the outlet of Lake Huron. The principal morphological features of the upper St. Clair River included flow-transverse bedforms that appear weakly mobile, erosive bedforms in cohesive muds, thin non-cohesive veneers of weakly mobile sediment that cover an underlying cohesive (till or glacio-lacustrine) surface, and vegetation that covers the bed. The flow was characterized by acceleration as the banks constrict from Lake Huron into the St. Clair River, an approximately 1500-m long region of flow separation downstream from the Blue Water Bridge, and secondary flow connected to: i) channel curvature; ii) forcing of the flow by local bed topography, and iii) flow wakes in the lee side of ship wrecks. Nearshore, sand-sized, sediment from Lake Huron was capable of being transported into, and principally along, the banks of the upper St. Clair River by the measured flow. A comparison of bathymetric surveys conducted in 2007 and 2008 identifies that the gravel bed does undergo slow downstream movement, but that this movement does not appear to be generated by the mean flow, and could possibly be caused by ship-propeller-induced turbulence. The study results suggest that the measured mean flow and dredging within the channel have not produced major scour of the upper St. Clair River and that the recent fall in the level of Lake Huron is unlikely to have been caused by these mechanisms. ?? 2011.

  5. Planning countryside space for recreational purposes: The case of the upper water basin of the River Soča

    Directory of Open Access Journals (Sweden)

    Aleš Golja

    2008-01-01

    Full Text Available Based on the upper Soča River basin, the article deals with the problem of exploitation of valuable natural features for tourist and recreational purposes. The goal was to propose a model of recreational use of a selected section of the Soča River, to put forward a proposal of legal framework for managing the selected area and work out a management plan for recreational purposes; thus the most burdened area of the Soča River during summer months was chosen, i.e. a 9 km reach of the Soča (between Log Čezsoški and Trnovo ob Soči, and accordingly a feasible marketing proposal, control proposal and spatial planning proposal were given in order to reduce the negative effects on the environment. The chosen methodology combines knowledge and practice from different fields, having in mind that this kind of problem solving should be carried out in an interdisciplinary connection of expert knowledge. Our basic theoretical premise has been environmental protection with an objective to preserve space as a value everywhere and in all its forms. The purpose of environmental protection is to encourage and direct such spatial development that provides a long-term basis for human health, well-being and quality of life as well as maintaining biotic diversity. This enables us to connect space with all its parts and features, sport recreation and tourism, thus achieving quality of life of local inhabitants, well-being of guests, protection of the natural environment, economic development, creation of new work places and income.

  6. Phylogeography of Hypostomus strigaticeps (Siluriformes: Loricariidae inferred by mitochondrial DNA reveals its distribution in the upper Paraná River basin

    Directory of Open Access Journals (Sweden)

    Rafael Splendore de Borba

    Full Text Available In this study, phylogenetic and phylogeographic analyses of populations identified as Hypostomus strigaticeps from the upper Paraná River basin were conducted in order to test whether these different populations comprises cryptic species or structured populations and to assess their genetic variability. The sequences of the mitochondrial DNA ATP sintetase (subunits 6/8 of 27 specimens from 10 populations (one from Mogi-Guaçu River, five from Paranapanema River, three from Tietê River and one from Peixe River were analyzed. The phylogeographic analysis showed the existence of eight haplotypes (A-H, and despite the ancestral haplotype includes only individuals from the Tietê River basin, the distribution of H. strigaticeps was not restricted to this basin. Haplotypes A, B and F were the most frequent. Haplotypes D, E, F, G, and H were present in the sub-basin of Paranapanema, two (A and B were present in the sub-basin of the Tietê River, one (C was exclusively distributed in the sub-basin of the Peixe River, and one (B was also present in the sub-basin of the Grande River. The phylogenetic analysis showed that the populations of H. strigaticeps indeed form a monophyletic unit comprising two lineages: TG, with representatives from the Tietê, Mogi-Guaçu and Peixe Rivers; and PP, with specimens from the Paranapanema River. The observed degree of genetic divergence within the TG and PP lineages was 0.1% and 0.2%, respectively, whereas the genetic divergence between the two lineages themselves was approximately 1%. The results of the phylogenetic analysis do not support the hypothesis of existence of crypt species and the phylogeographic analysis confirm the presence of H. strigaticeps in other sub-basins of the upper Paraná River: Grande, Peixe, and Paranapanema sub-basins.

  7. Variability and Trend Detection in the Sediment Load of the Upper Indus River

    Directory of Open Access Journals (Sweden)

    Sardar Ateeq-Ur-Rehman

    2017-12-01

    Full Text Available Water reservoirs planned or constructed to meet the burgeoning energy and irrigation demands in Pakistan face a significant loss of storage capacity due to heavy sediment load from the upper Indus basin (UIB. Given their importance and the huge investment, assessments of current UIB sediment load and possible future changes are crucial for informed decisions on planning of optimal dams’ operation and ensuring their prolonged lifespan. In this regard, the daily suspended sediment loads (SSLs and their changes are analyzed for the meltwater-dominated zone up to the Partab Bridge and the whole UIB up to Besham Qila, which is additionally influenced by monsoonal rainfall. The gaps between intermittent suspended sediment concentration (SSC samples are filled by wavelet neural networks (WA-ANNs using discharges for each site. The temporal dynamics of SSLs and discharges are analyzed using a suite of three non-parametric trend tests while the slope is identified using Sen’s slope estimator. We found disproportional spatio-temporal trends between SSLs and discharges caused primarily by intra-annual shifts in flows, which can lead to increased trap efficiency in planned reservoirs, especially upstream of Besham Qila. Moreover, a discernible increase in SSLs recorded at Partab Bridge during summer is being deposited downstream in the river channel. This is due to a decrease in river transport capacity in the monsoonal zone. These findings will not only help to identify these morphological problems, but also accurately anticipate the spatio-temporal changes in the sediment budget of the upper Indus River. Our results will help improve reservoir operational rules and sediment management strategies for existing and 30,000-MW planned dams in the UIB.

  8. Water poverty in upper Bagmati River Basin in Nepal

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2017-04-01

    The WPI was calculated for the upper Bagmati river Basin together with High–Medium–Low category scale and interpretations. WPI intensity scale depicts Sundarijal and Lubhu are in a range of very low water poverty, which means the water situation is better in these two areas. Daman region has a medium level, meaning this region is located into poor-accessible water zone. Kathmandu, Sankhu and Thankot have a low to medium low WPI, what characterize them as neutral. WPI can be used as an effective tool in integrated water resources management and water use master plan for meeting sustainable development goals. Based on the observation, the water agencies required to focus over water-poverty interface, water for sanitation, hygiene and health, water for production and employment generation, sustainable environmental management, gender equality, and water rights.

  9. Pyomyositis in the upper Negro river basin, Brazilian Amazonia

    DEFF Research Database (Denmark)

    Borges, Alvaro Humberto Diniz; Faragher, Brian; Lalloo, David G

    2012-01-01

    Pyomyositis remains poorly documented in tropical Latin America. We therefore performed a retrospective review of cases admitted to a hospital in the upper Negro river basin during 2002-2006. Seasonality was assessed by the cosinor model and independent predictors of outcome were identified...... lesions). Staphylococcus aureus was the only identified infecting organism (18 of 20 culture results, 90%). Complications occurred in 17 patients (20.7%) and the case fatality rate was 2.4%. Children were more likely to present with eosinophilia than adults (OR= 4.20, 95% CI 1.08-16.32, p=0.......048), but no other significant differences regarding clinical presentation and outcomes were observed. The time-to-fever resolution was the only independent determinant of poor outcome (OR=1.52, 95% CI 1.22-1.92, p...

  10. Geoprocessing applied to environmental zoning in the Upper Coxim River Basin, MS

    Directory of Open Access Journals (Sweden)

    Vitor Matheus Bacani

    2014-04-01

    Full Text Available The aim of this study was to develop an environmental zoning set in a synthesis map of physical and territorial planning of the Upper Coxim River Basin (UCB, MS. The methodological procedures were based on the structuring of a geographic database implemented in a Geographic Information System. The results showed that areas associated with livestock activity are more sensitive to the occupation under the management of mechanized agriculture. It was possible to establish priority areas for preservation, conservation and sustainable use.

  11. Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data

    NARCIS (Netherlands)

    Jia, L.; Shang, H.L.; Hu, G.; Menenti, M.

    2011-01-01

    Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional

  12. Effects of reintroduced beaver (Castor canadensis) on riparian bird community structure along the upper San Pedro River, southeastern Arizona and northern Sonora, Mexico

    Science.gov (United States)

    Johnson, Glenn E.; van Riper, Charles

    2014-01-01

    Chapter 1.—We measured bird abundance and richness along the upper San Pedro River in 2005 and 2006, in order to document how beavers (Castor canadensis) may act as ecosystem engineers after their reintroduction to a desert riparian area in the Southwestern United States. In areas where beavers colonized, we found higher bird abundance and richness of bird groups, such as all breeding birds, insectivorous birds, and riparian specialists, and higher relative abundance of many individual species—including several avian species of conservation concern. Chapter 2.—We conducted bird surveys in riparian areas along the upper San Pedro River in southeastern Arizona (United States) and northern Sonora (Mexico) in order to describe factors influencing bird community dynamics and the distribution and abundance of species, particularly those of conservation concern. These surveys were also used to document the effects of the ecosystem-altering activities of a recently reintroduced beavers (Castor canadensis). Chapter 3.—We reviewed Southwestern Willow Flycatcher (Empidonax traillii extimus) nest records and investigated the potential for future breeding along the upper San Pedro River in southeastern Arizona, where in July 2005 we encountered the southernmost verifiable nest attempt for the species. Continued conservation and management of the area’s riparian vegetation and surface water has potential to contribute additional breeding sites for this endangered Willow Flycatcher subspecies. Given the nest record along the upper San Pedro River and the presence of high-density breeding sites to the north, the native cottonwood-willow forests of the upper San Pedro River could become increasingly important to E. t. extimus recovery, especially considering the anticipated effect of the tamarisk leaf beetle (Diorhabda carinulata) on riparian habitat north of the region.

  13. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.

    1999-05-01

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from

  14. Relationship of weed shiner and young-of-year bluegill and largemouth bass abundance to submersed aquatic vegetation in Navigation Pools 4, 8, and 13 of the Upper Mississippi River, 1998-2012

    Science.gov (United States)

    DeLain, Steven A.; Popp, Walter A.

    2014-01-01

    Aquatic vegetation provides food resources and shelter for many species of fish. This study found a significant relationship between increases in submersed aquatic vegetation (SAV) in four study reaches of the Upper Mississippi River (UMR) and increases in catch-per-unit-effort (CPUE) of weed shiners (Notropis texanus) and age-0 bluegills (Lepomis macrochirus) and largemouth bass (Micropterus salmoides) when all of the study reaches were treated collectively using Long Term Resource Monitoring Program (LTRMP) vegetation and fish data for 1998–2012. The selected fishes were more abundant in study reaches with higher SAV frequencies (Pool 8 and Lower Pool 4) and less abundant in reaches with lower SAV frequencies (Pool 13 and Upper Pool 4). When each study reach was examined independently, the relationship between SAV frequency and CPUE of the three species was not significant in most cases, the primary exception being weed shiners in Lower Pool 4. Results of this study indicate that the prevalence of SAV does affect relative abundance of these vegetation-associated fish species. However, the poor annual relationship between SAV frequency and age-0 relative abundance in individual study reaches indicates that several other factors also govern age-0 abundance. The data indicate that there may be a SAV frequency threshold in backwaters above which there is not a strong relationship with abundance of these fish species. This is indicated by the high annual CPUE variability of the three selected fishes in backwaters of Pool 8 and Lower Pool 4 when SAV exceeded certain frequencies.

  15. Responses of streamflow and sediment load to climate change and human activity in the Upper Yellow River, China: a case of the Ten Great Gullies Basin.

    Science.gov (United States)

    Liu, Tong; Huang, He Qing; Shao, Mingan; Yao, Wenyi; Gu, Jing; Yu, Guoan

    2015-01-01

    Soil erosion and land desertification are the most serious environmental problems globally. This study investigated the changes in streamflow and sediment load from 1964 to 2012 in the Ten Great Gullies area of the Upper Yellow River. Tests for gradual trends (Mann-Kendall test) and abrupt changes (Pettitt test) identify that significant declines in streamflow and sediment load occurred in 1997-1998 in two typical gullies. A comparison of climatic variability before and after the change points shows no statistically significant trends in annual precipitation and potential evapotranspiration. Human activities have been very active in the region and during 1990-2010, 146.01 and 197.62 km2 of land were converted, respectively, to forests and grassland, with corresponding increases of 87.56 and 77.05%. In addition, a large number of check dams have been built up in the upper reaches of the ten gullies. These measures were likely responsible for the significant decline in the annual streamflow and sediment load over the last 49 years.

  16. Investigating extreme flood response to Holocene palaeoclimate in the Chinese monsoonal zone: A palaeoflood case study from the Hanjiang River

    Science.gov (United States)

    Guo, Yongqiang; Huang, Chun Chang; Pang, Jiangli; Zha, Xiaochun; Zhou, Yali; Wang, Longsheng; Zhang, Yuzhu; Hu, Guiming

    2015-06-01

    Palaeoflood events recorded by slackwater deposits (SWDs) were investigated extensively by sedimentological criteria of palaeohydrology along the upper Hanjiang River valley. Modern flood SWDs were collected for comparison with palaeoflood SWD in the same reaches. Three typical palaeoflood SWDs were observed within Holocene loess-soil blanket on the first river terrace land. The grain size distributions of palaeoflood SWDs are similar to modern flood SWDs, whereas they are different from eolian loess and soil. Palaeoflood SWD lies in three major pedo-stratigraphic boundaries (TS/L0, L0/S0, and S0/Lt) in the Holocene loess-soil profiles. The chronology of three palaeoflood episodes was established by OSL dating and pedo-stratigraphic correlation with the well-dated Holocene loess-soil profiles in the upper Hanjiang River basin. Holocene palaeoflood events were dated to 9500-8500, 3200-2800, and 1800-1700 a B.P., respectively. Palaeoflood discharges were estimated by the palaeoflood model (i.e., slope-area method and step-backwater method). The highest discharges are 51,680-53,950 m3 s- 1 at the 11,500-time scale in the Xunyang reach of the upper Hanjiang River valley. Holocene extraordinary hydroclimatic events in the Hanjiang River often result from abnormal atmospheric circulations from Southwest monsoons in the Chinese monsoonal zone. These results provide a regional expression of extreme flood response to Holocene palaeoclimate to understand the effects of global climatic variations on the river system dynamics.

  17. Nucleotide diversity of Hemigrammus cf. marginatus (Characiformes, Characidae in the upper Paraná river floodplain - doi: 10.4025/actascibiolsci.v34i3.6669

    Directory of Open Access Journals (Sweden)

    Carla Simone Pavanelli

    2012-06-01

    Full Text Available Characidae is the largest and more diversified family from Characiformes and presents several classification problems, with several genera currently allocated as incertae sedis, such as the genus Hemigrammus. The upper Paraná river floodplain is an environment with high fish diversity. There is at least one species of Hemigrammus, however there are divergences among some authors about the number and the identification of the species from this genus. Therefore the goal of this study was to characterize, using a molecular approach, individuals of Hemigrammus from the upper Paraná river floodplain and to compare them with individuals from the type locality of Hemigrammus marginatus, since this is the only species distributed in this floodplain. For this, the DNA was extracted and a partial region from the mitochondrial genes ATPase 6 and ATPase 8 were amplified and sequenced. The results evidenced the existence of two species of Hemigrammus in the floodplain, although impossible to be distinguished only through morphological traits. High nucleotide diversity among individuals from the upper Paraná river in relation to those from the type locality was also observed, indicating that both species of Hemigrammus present in the upper Paraná river floodplain are not Hemigrammus marginatus. 

  18. Characterization of hydrodynamic and sediment conditions in the lower Yampa River at Deerlodge Park, east entrance to Dinosaur National Monument, northwest Colorado, 2011

    Science.gov (United States)

    Williams, Cory A.

    2013-01-01

    The Yampa River in northwestern Colorado is the largest, relatively unregulated river system in the upper Colorado River Basin. Water from the Yampa River Basin continues to be sought for a number of municipal, industrial, and energy uses. It is anticipated that future water development within the Yampa River Basin above the amount of water development identified under the Upper Colorado River Endangered Fish Recovery Implementation Program and the Programmatic Biological Opinion may require additional analysis in order to understand the effects on habitat and river function. Water development in the Yampa River Basin could alter the streamflow regime and, consequently, could lead to changes in the transport and storage of sediment in the Yampa River at Deerlodge Park. These changes could affect the physical form of the reach and may impact aquatic and riparian habitat in and downstream from Deerlodge Park. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2011 to characterize the current hydrodynamic and sediment-transport conditions for a 2-kilometer reach of the Yampa River in Deerlodge Park. Characterization of channel conditions in the Deerlodge Park reach was completed through topographic surveying, grain-size analysis of streambed sediment, and characterization of streamflow properties. This characterization provides (1) a basis for comparisons of current stream functions (channel geometry, sediment transport, and stream hydraulics) to future conditions and (2) a dataset that can be used to assess channel response to streamflow alteration scenarios indicated from computer modeling of streamflow and sediment-transport conditions.

  19. Spatial and temporal variations of aeolian sediment input to the tributaries (the Ten Kongduis) of the upper Yellow River

    Science.gov (United States)

    Yang, Hui; Shi, Changxing

    2018-02-01

    The Ten Kongduis of the upper Yellow River, located in Inner Mongolia, northern China, is an area with active wind-water coupled erosion and hence one of the main sediment sources of the Yellow River. In this study, we analyzed the characteristics of spatial and temporal variations of aeolian sediment input to the river channel. For this purpose, three segments of sand dune-covered banks of the Maobula and the Xiliugou kongduis were investigated three times from November 2014 to November 2015 using a 3-D laser scanner, and the displacement of banks of desert reaches of three kongduis was derived from interpreting remote sensing images taking in the years from 2005 to 2015. The data of the surveyed sand dunes reveal that the middle kongduis were fed by aeolian sand through the sand dunes moving towards the river channels. The amount of aeolian sediment input was estimated to be about 14.94 × 104 t/yr in the Maobula Kongdui and about 5.76 × 104 t/yr in the Xiliugou Kongdui during the period from November 2014 to November 2015. According to the interpretation results of remote sensing images, the amount of aeolian sediment input to the Maobula Kongdui was about 15.74 × 104 t in 2011 and 18.2 × 104 t in 2012. In the Xiliugou Kongdui, it was in the range of 9.52 × 104 - 9.99 × 104 t in 2012 and in the springs of 2013 and 2015. In the Hantaichuan Kongdui, it was 7.04 × 104 t in 2012, 7.53 × 104 t in the spring of 2013, and 8.52 × 104 t in the spring of 2015. Owing to the changes in wind and rainfall, both interseasonal and interannual sediment storage and release mechanisms exist in the processes of aeolian sand being delivered into the kongduis. However, all of the aeolian sediment input to the Ten Kongduis should be delivered downstream by the river flows during a long term.

  20. Mercury and other Mining-Related Contaminants in Ospreys along the Upper Clark Fork River, MT

    Science.gov (United States)

    Langner, H.; Domenech, R.; Greene, E.; Staats, M. F.

    2010-12-01

    Osprey (Pandion haliaetus) are widely recognized as bio-indicators of the health of aquatic ecosystems. Until the time of fledging, nestlings feed exclusively on fish caught within a few kilometers of the nest. Therefore, tissues of these young birds may reflect the level of contamination of local fish and more generally, the contamination status of the aquatic ecosystem they inhabit. Nests can often be accessed with a boom truck and obtaining small blood samples from the flightless chicks is fairly noninvasive. Ospreys are nesting along the Upper Clark Fork River, Montana, which is heavily contaminated with wastes left from a century of copper and precious metals mining. We have been monitoring the levels of priority pollutants (arsenic, cadmium, lead, copper, zinc, mercury and selenium) in Osprey chicks along a 250 km section of the river for four years. Objectives are to establish current contaminant status, pinpoint pollution hotspots, and assess the success of restoration efforts. Our results suggest that of highest concern may be the bioaccumulation of mercury with blood levels of up to 0.7 mg/L in the growing chicks. These concentrations are expected to increase many fold upon fledging as feather growth stops, which acts as the major sink for mercury. Interestingly, we found mercury levels increased in downstream direction, in contrast to concentrations of other pollutants. Reasons may be the different origin of mercury versus other contaminants and the distribution of wetlands where mercury can be transformed into highly bioavailable methylmercury. Blood levels of selenium are also elevated throughout the Upper Clark Fork River drainage. We discuss the implications for restoration and remediation of the Clark Fork River.

  1. An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America

    Science.gov (United States)

    K. J. Carim; J. C. S. Dysthe; Michael Young; Kevin McKelvey; Michael Schwartz

    2016-01-01

    The upper Missouri River basin in the northwestern US contains disjunct Arctic grayling (Thymallus arcticus) populations of conservation concern. To assist efforts aimed at understanding Artic grayling distribution, we developed a quantitative PCR assay to detect the presence of Arctic grayling DNA in environmental samples. The assay amplified low...

  2. Hydrological response to climate change: The Pearl River, China under different RCP scenarios

    Directory of Open Access Journals (Sweden)

    Dan Yan

    2015-09-01

    New hydrological insights for the region: Previous studies focussed on annual discharge and extreme flood events in the basin. However it is also important to assess variations in low flow across the basin, because it is suffering from water shortage and salt water intrusion in the dry season. Results indicate a reduction in average low flow under the five climate models. The reduction varies across the basin and is between 6 and 48% for RCP4.5. River discharge in the dry season is projected to decrease throughout the basin. In the wet season, river discharge tends to increase in the middle and lower reaches and decrease in the upper reach of the Pearl River basin. The variation of river discharge is likely to aggravate water stress. Especially the reduction of low flow is problematic as already now the basin experiences temporary water shortages in the delta.

  3. Statistical Characteristics of Mesoscale Convective Systems over the Middle Reaches area of the Yellow River During 2005-2014

    Science.gov (United States)

    Zhao, Guixiang

    2017-04-01

    Based on the hourly TBB and cloud images of FY-2E, meteorological observation data, and NCEP reanalysis data with 1°×1° spatial resolution from May to October during 2005-2014, the climatic characteristics of mesoscale convective systems (MCS) over the middle reaches area of the Yellow River were analyzed, including mesoscale convective complex (MCC), persistent elongated convective systems (PECS), meso-βscale MCC (MβCCS) and Meso-βscale PECS (MβECS). The results are as follows: (1) MCS tended to occur over the middle and south of Gansu, the middle and south of Shanxi, the middle and north of Shaanxi, and the border of Shanxi, Shaanxi and Inner Mongolia. MCS over the middle reaches area of the Yellow River formed in May to October, and was easy to develop the mature in summer. MCC and MβECS were main MCS causing precipitation in summer. (2) The daily variation of MCS was obvious, and usually formed and matured in the afternoon and the evening to early morning of the next day. Most MCS generated fast and dissipated slowly, and were mainly move to the easterly and southeasterly, but the moving of round shape MCS was less than the elongated shape's. (3) The average TBB for the round shape MCS was lower than the elongated shape MCS. The development of MCC was most vigorous and strong, and it was the strongest in August, while that of MβECS wasn't obviously influenced by the seasonal change. The average eccentricity of the mature MCC and PECS over the middle reaches area of the Yellow River was greater than that in USA, and the former was greater than in the lower reaches area of the Yellow River, while the latter was smaller. (4) The characteristics of rainfall caused by MCS were complex over the middle reaches area of the Yellow River, and there were obvious regional difference. There was wider, stronger and longer precipitation when the multiple MCS merged. The rainfall in the center of cloud area was obviously greater than in other region of cloud area. The

  4. Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia

    International Nuclear Information System (INIS)

    Plummer, L.N.; Busenberg, E.; McConnell, J.B.; Drenkard, S.; Schlosser, P.; Michel, R.L.

    1998-01-01

    The quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl - , 3 H, tritiogenic helium-3 ( 3 He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O 2 (DO), H 2 S, CH 4 , δ 18 O, δD, and 14 C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl - , δ 18 O, δD, CFC-12, and the quantity ( 3 H+ 3 He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H 2 S, CH 4 , 14 C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl - and δ 18 O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water (δ 18 O=-2.5±0.3per thousand, Cl - =12.2±2 mg/l), (2) regional infiltration water (δ 18 O=-4.2±0.1per thousand, Cl - =2.3±0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer (δ 18 O=-3.4±0.1per thousand, Cl - =2.6±0.1 mg/l) (uncertainties are ±1σ). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to the N and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining beds overlying the Upper Floridan aquifer. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Drenkard, S.; Schlosser, P. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)

    1998-11-01

    he quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl{sup -}, {sup 3}H, tritiogenic helium-3 ({sup 3}He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O{sub 2} (DO), H{sub 2}S, CH{sub 4}, {delta}{sup 18}O, {delta}D, and {sup 14}C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl{sup -}, {delta}{sup 18}O, {delta}D, CFC-12, and the quantity ({sup 3}H+{sup 3}He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H{sub 2}S, CH{sub 4}, {sup 14}C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl{sup -} and {delta}{sup 18}O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water ({delta}{sup 18}O=-2.5{+-}0.3per thousand, Cl{sup -}=12.2{+-}2 mg/l), (2) regional infiltration water ({delta}{sup 18}O=-4.2{+-}0.1per thousand, Cl{sup -}=2.3{+-}0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer ({delta}{sup 18}O=-3.4{+-}0.1per thousand, Cl{sup -}=2.6{+-}0.1 mg/l) (uncertainties are {+-}1{sigma}). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to theN and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining

  6. Hydrochemistry and land cover in the upper Naryn river basin, Kyrgyzstan

    Science.gov (United States)

    Schneider, K.; Dernedde, Y.; Breuer, L.; Frede, H. G.

    2009-04-01

    Economic and social changes at the end of the 20th century affected land use decisions and land management in the Central Asian republics of the former Soviet Union. Amongst others, land tenure changed from mainly collectivized to private land, and in consequence, land management (e.g. soil treatment and fertilization practices) altered. Apart from agricultural pollutants and the impact of irrigation management, water resources are threatened by waste dumps remaining from mining activities. However, recent studies on the effect of land use changes on ecohydrology in Central Asia remain scarce. In a preliminary study, current land use and hydrochemistry in the upper Naryn Valley (Kyrgyzstan) was analyzed in 2008. Climate is semi-arid, and annual precipitation is approximately 300 mm. Precipitation peak occurs in early summer, while the rest of the year is rather dry. Crop and hay production prevail in the valley bottom. Environmental conditions in the mountains support pastoralism with a shift between summer and winter pastures. Agriculture depends on irrigation to a great deal as precipitation is seasonal and the vegetation period usually is the dry period. Today, production is mainly for subsistence purposes or local markets. The Naryn river is the headwater of the of the Syrdarya river which is one of the major sources of irrigation water in the Aral Sea basin. Hence, the ecohydrological condition of the contributing rivers is of major importance for the irrigation management downstream. Nevertheless, information on current ecohydrological conditions and land use which may affect the distribution and chemical composition of the rivers is lacking. In the presented study, basic hydrochemical measurements in the Naryn river and its tributaries were made. In situ measurements comprised electrical conductivity, ammonia and nitrate measurements, among others. While electrical conductivity varies greatly between the Naryn river and its tributaries, ammonia and nitrate

  7. [Effects of grazing disturbance on soil active organic carbon in mountain forest-arid valley ecotone in the upper reaches of Minjiang River].

    Science.gov (United States)

    Liu, Shan-Shan; Zhang, Xing-Hua; Gong, Yuan-Bo; Li, Yuan; Wang, Yan; Yin, Yan-Jie; Ma, Jin-Song; Guo, Ting

    2014-02-01

    Effects of grazing disturbance on the soil carbon contents and active components in the four vegetations, i.e., artificial Robinia pseudoacacia plantation, artificial poplar plantation, Berberis aggregate shrubland and grassland, were studied in the mountain forest-arid valley ecotone in the upper Minjiang River. Soil organic carbon and active component contents in 0-10 cm soil layer were greater than in 10-20 cm soil layer at each level of grazing disturbance. With increasing the grazing intensity, the total organic carbon (TOC), light fraction organic carbon (LFOC), particulate organic carbon (POC) and easily oxidized carbon (LOC) contents in 0-10 cm soil layer decreased gradually in the artificial R. pseudoacacia plantation. The LFOC content decreased, the POC content increased, and the TOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the artificial poplar plantation. The POC content decreased, and the TOC, LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the B. aggregate shrubland. The POC and TOC contents decreased, and the LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the grassland. The decreasing ranges of LOC, LFOC and POC contents were 0.1-7.9 times more than that of TOC content. There were significant positive relationships between TOC and LOC, LFOC and POC, suggesting that the active organic carbon components could reflect the change of soil total carbon content.

  8. Sedimentation in Lake Onalaska, Navigation Pool 7, upper Mississippi River, since impoundment

    Science.gov (United States)

    Korschgen, C.E.; Jackson, G.A.; Muessig, L.F.; Southworth, D.C.

    1987-01-01

    Sediment accumulation was evaluated in Lake Onalaska, a 2800-ha backwater impoundment on the Upper Mississippi River. Computer programs were used to process fathometric charts and generate an extensive data set on water depth for the lake. Comparison of 1983 survey data with pre-impoundment (before 1937) data showed that Lake Onalaska had lost less than 10 percent of its original mean depth in the 46 years since impoundment. Previous estimates of sedimentation rates based on Cesium-137 sediment core analysis appear to have been too high. (DBO)

  9. Simulating bank erosion over an extended natural sinuous river reach using a universal slope stability algorithm coupled with a morphodynamic model

    Science.gov (United States)

    Rousseau, Yannick Y.; Van de Wiel, Marco J.; Biron, Pascale M.

    2017-10-01

    Meandering river channels are often associated with cohesive banks. Yet only a few river modelling packages include geotechnical and plant effects. Existing packages are solely compatible with single-threaded channels, require a specific mesh structure, derive lateral migration rates from hydraulic properties, determine stability based on friction angle, rely on nonphysical assumptions to describe cutoffs, or exclude floodplain processes and vegetation. In this paper, we evaluate the accuracy of a new geotechnical module that was developed and coupled with Telemac-Mascaret to address these limitations. Innovatively, the newly developed module relies on a fully configurable, universal genetic algorithm with tournament selection that permits it (1) to assess geotechnical stability along potentially unstable slope profiles intersecting liquid-solid boundaries, and (2) to predict the shape and extent of slump blocks while considering mechanical plant effects, bank hydrology, and the hydrostatic pressure caused by flow. The profiles of unstable banks are altered while ensuring mass conservation. Importantly, the new stability module is independent of mesh structure and can operate efficiently along multithreaded channels, cutoffs, and islands. Data collected along a 1.5-km-long reach of the semialluvial Medway Creek, Canada, over a period of 3.5 years are used to evaluate the capacity of the coupled model to accurately predict bank retreat in meandering river channels and to evaluate the extent to which the new model can be applied to a natural river reach located in a complex environment. Our results indicate that key geotechnical parameters can indeed be adjusted to fit observations, even with a minimal calibration effort, and that the model correctly identifies the location of the most severely eroded bank regions. The combined use of genetic and spatial analysis algorithms, in particular for the evaluation of geotechnical stability independently of the hydrodynamic

  10. Revisiting restored river reaches - Assessing change of aquatic and riparian communities after five years.

    Science.gov (United States)

    Lorenz, Armin W; Haase, Peter; Januschke, Kathrin; Sundermann, Andrea; Hering, Daniel

    2018-02-01

    Hydromorphological restructuring of river sections, i.e. river restoration measures, often has little effects on aquatic biota, even in case of strong habitat alterations. It is often supposed that the biotic response is simply delayed as species require additional time to recolonize the newly generated habitats and to establish populations. To identify and specify the supposed lag time between restoration and biotic response, we investigated 19 restored river reaches twice in a five-year interval. The sites were restored one to ten years prior to the first sampling. We sampled three aquatic (fish, benthic invertebrates, macrophytes) and two riparian organism groups (ground beetles and riparian vegetation) and analyzed changes in assemblage composition and biotic metrics. With the exception of ground beetle assemblages, we observed no significant changes in richness and abundance metrics or metrics used for biological assessment. However, indicator taxa for near-natural habitat conditions in the riparian zone (indicators for regular inundation in plants and river bank specialists in beetles) improved significantly in the five-year interval. Contrary to general expectations in river restoration planning, we neither observed a distinct succession of aquatic communities nor a general trend towards "good ecological status" over time. Furthermore, multiple linear regression models revealed that neither the time since restoration nor the morphological status had a significant effect on the biological metrics and the assessment results. Thus, the stability of aquatic assemblages is strong, slowing down restoration effects in the aquatic zone, while riparian assemblages improve more rapidly. When defining restoration targets, the different timelines for ecological recovery after restoration should be taken into account. Furthermore, restoration measures should not solely focus on local habitat conditions but also target stressors acting on larger spatial scales and take

  11. Investigation of geology and hydrology of the upper and middle Verde River watershed of central Arizona: a project of the Arizona Rural Watershed Initiative

    Science.gov (United States)

    Woodhouse, Betsy; Flynn, Marilyn E.; Parker, John T.C.; Hoffmann, John P.

    2002-01-01

    The upper and middle Verde River watershed in west-central Arizona is an area rich in natural beauty and cultural history and is an increasingly popular destination for tourists, recreationists, and permanent residents seeking its temperate climate. The diverse terrain of the region includes broad desert valleys, upland plains, forested mountain ranges, narrow canyons, and riparian areas along perennial stream reaches. The area is predominantly in Yavapai County, which in 1999 was the fastest-growing rural county in the United States (Woods and Poole Economics, Inc., 1999); by 2050, the population is projected to more than double. Such growth will increase demands on water resources. The domestic, industrial, and recreational interests of the population will need to be balanced against protection of riparian, woodland, and other natural areas and their associated wildlife and aquatic habitats. Sound management decisions will be required that are based on an understanding of the interactions between local and regional aquifers, surface-water bodies, and recharge and discharge areas. This understanding must include the influence of climate, geology, topography, and cultural development on those components of the hydrologic system. In 1999, the U.S. Geological Survey (USGS), in cooperation with the Arizona Department of Water Resources (ADWR), initiated a regional investigation of the hydrogeology of the upper and middle Verde River watershed. The project is part of the Rural Watershed Initiative (RWI), a program established by the State of Arizona and managed by the ADWR that addresses water supply issues in rural areas while encouraging participation from stakeholder groups in affected communities. The USGS is performing similar RWI investigations on the Colorado Plateau to the north and in the Mogollon Highlands to the east of the Verde River study area (Parker and Flynn, 2000). The objectives of the RWI investigations are to develop: (1) a single database

  12. Occurrence of the Kessler’s gudgeon Romanogobio kesslerii (Dybowski, 1862) (Cyprinidae) in the Upper Vistula River (Poland)

    Czech Academy of Sciences Publication Activity Database

    Nowak, M.; Klaczak, A.; Szczerbik, P.; Mendel, Jan; Popek, W.

    2014-01-01

    Roč. 30, č. 5 (2014), s. 1062-1064 ISSN 0175-8659 R&D Projects: GA ČR GP206/09/P608 Institutional support: RVO:68081766 Keywords : Kessler's gudgeon * Upper Vistula River Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.867, year: 2014

  13. Tracing the contribution of debris flow-dominated channels to gravel-bed torrential river channel: implementing pit-tags in the upper Guil River (French Alps)

    Science.gov (United States)

    Arnaud-Fassetta, Gilles; Lissak, Candide; Fort, Monique; Bétard, François; Carlier, Benoit; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier

    2014-05-01

    In the upper, wider reaches of Alpine valleys, shaping of active channels is usually subject to rapid change. It mostly depends upon hydro-climatic variability, runoff concentration and sediment supply, and may result in alternating sequences of fluvial and debris-flow pulses, as recorded in alluvial fans and terraces. Our study, carried in the frame of SAMCO (ANR) project, focuses on the upper Guil River Valley (Queyras, Southern French Alps) cut into the slaty shale "schistes lustrés". Steep, lower order drains carry a contrasted solid discharge, including predominantly sandy-loam particles mixed with gravels and boulders (sandstone schists, ophiolites). Abundant sediment supply by frost shattering, snow avalanche and landslides is then reworked during snowmelt or summer storm runoff events, and may result in catastrophic, very destructive floods along the main channel, as shown by historical records. Following the RI-30 year 2000 flood, our investigations included sediment budgets, i.e. balance of erosion and deposition, and the mapping of the source, transport and storage of various sediments (talus, colluvium, torrential fans, terraces). To better assess sediment fluxes and sediment delivery into the main channel network, we implemented tracers (pit-tags) in selected sub-catchments, significantly contributing to the sediment yield of the valley bottoms during the floods and/or avalanches: Maloqueste, Combe Morel, Bouchouse and Peyronnelle catchments. The first three are direct tributaries of the Guil River whereas the Peyronnelle is a left bank tributary of the Peynin River, which joins the Guil River via an alluvial cone with high human and material stakes. The Maloqueste and the Combe Morel are two tributaries facing each other in the Guil valley, representing a double lateral constraint for the road during flood events of the Guil River. After pit-tag initialisation in laboratory, we set them up along the four tributaries: Maloqueste (20 pit-tags), Combe

  14. Satellite-derived temperature data for monitoring water status in a floodplain forest of the Upper Sabine River, Texas

    Science.gov (United States)

    Lemon, Mary Grace T.; Allen, Scott T.; Edwards, Brandon L.; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Decreased water availability due to hydrologic modifications, groundwater withdrawal, and climate change threaten bottomland hardwood (BLH) forest communities. We used satellite-derived (MODIS) land-surface temperature (LST) data to investigate spatial heterogeneity of canopy temperature (an indicator of plant-water status) in a floodplain forest of the upper Sabine River for 2008–2014. High LST pixels were generally further from the river and at higher topographic locations, indicating lower water-availability. Increasing rainfall-derived soil moisture corresponded with decreased heterogeneity of LST between pixels but there was weaker association between Sabine River stage and heterogeneity. Stronger dependence of LST convergence on rainfall rather than river flow suggests that some regions are less hydrologically connected to the river, and vegetation may rely on local precipitation and other contributions to the riparian aquifer to replenish soil moisture. Observed LST variations associated with hydrology encourage further investigation of the utility of this approach for monitoring forest stress, especially with considerations of climate change and continued river management.

  15. Locating Ground-Water Discharge in the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

    1997-01-01

    A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity ''hotspots'' yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom

  16. Effects of Cryospheric Change on Alpine Hydrology: Combining a Model With Observations in the Upper Reaches of the Hei River, China

    Science.gov (United States)

    Chen, R.; Wang, G.; Yang, Y.; Liu, J.; Han, C.; Song, Y.; Liu, Z.; Kang, E.

    2018-04-01

    Cryospheric changes have great effects on alpine hydrology, but these effects are still unclear owing to rare observations and suitable models in the western cold regions of China. Based on long-term field observations in the western cold regions of China, a cryospheric basin hydrological model was proposed to evaluate the cryospheric effects on streamflow in the upper Hei River basin (UHR), and the relationship between the cryosphere and streamflow was further discussed with measured data. The Norwegian Earth System Model outputs were chosen to project future streamflow under scenarios Representative Concentration Pathways (RCP)2.6, RCP4.5, and RCP8.5. The cryospheric basin hydrological model results were well validated by the measured precipitation, streamflow, evapotranspiration, soil temperature, glacier and snow cover area, and the water balance of land cover in the UHR. The moraine-talus region contributed most of the runoff (60%), even though it made up only about 20% of the area. On average, glacier and snow cover, respectively, contributed 3.5% and 25.4% of the fresh water to the streamflow in the UHR between 1960 and 2013. Because of the increased air temperature (2.9°C/54a) and precipitation (69.2 mm/54a) over the past 54 years, glacial and snowmelt runoff increased by 9.8% and 12.1%, respectively. The increase in air temperature brought forward the snowmelt flood peak and increased the winter flow due to permafrost degradation. Glaciers may disappear in the near future because of their small size, but snowmelt would increase due to increases in snowfall in the higher mountainous areas, and the basin runoff would increase slightly in the future.

  17. Sixty Years of Geomorphic Change and Restoration Challenges on Two Unchannelized Reaches of the Missouri River

    Science.gov (United States)

    Elliott, C. M.; Jacobson, R. B.; Bulliner, E. A., IV

    2016-12-01

    The Missouri National Recreational River is a National Park Service unit that includes two Missouri River segments that despite considerable alterations to hydrology, retain some aspects of channel complexity similar to conditions present in the pre-dam Missouri River. Complexity has been lost through the construction of five large reservoirs in the Missouri River system and the channelization of the lower 1,200 kilometers of river downstream from the reservoirs. These two river segments on the Nebraska and South Dakota border consist of a 63-km long inter-reservoir segment below Fort Randall Dam and a 95-km segment below Gavins Point Dam, the downstream-most dam in the Missouri River system. We present an analysis from U.S. Army Corps of Engineers cross-section data spanning 60 years. Our analysis quantifies geomorphic adjustment and resultant changes in habitat diversity since 1955, two years prior to the closure of Gavins Point Dam. In the inter-reservoir segment, sedimentation at the confluence of the Niobrara River has created a transition zone from free-flowing river, to delta, to reservoir; this transition is moving upstream as sedimentation progresses. The delta ecosystem provides wetland habitat and recreational areas for fishing and hunting, yet sedimentation threatens infrastructure and reservoir storage. In both reaches, relatively high-elevation bare sandbars are used for nesting by the endangered least tern (Sternula antillarum) and the threatened piping plover (Charadrius melodus). Two large flood events, in 1997 and 2011, created the bulk of new sandbar nesting habitat on these river segments. Sandbars erode and vegetate between flood events, and in recent decades vegetation removal and costly mechanical sandbar construction have been used to maintain bare nesting sandbar habitat. Management decisions in the segment downstream from Gavins Point Dam include evaluating tradeoffs between maintaining sandbar habitat for nesting and allowing some

  18. INFLUENCE OF SNOWFALL ON BLOOD LEAD LEVELS OF FREE-FLYING BALD EAGLES (HALIAEETUS LEUCOCEPHALUS) IN THE UPPER MISSISSIPPI RIVER VALLEY.

    Science.gov (United States)

    Lindblom, Ronald A; Reichart, Letitia M; Mandernack, Brett A; Solensky, Matthew; Schoenebeck, Casey W; Redig, Patrick T

    2017-10-01

    Lead poisoning of scavenging raptors occurs primarily via consumption of game animal carcasses containing lead, which peaks during fall firearm hunting seasons. We hypothesized that snowfall would mitigate exposure by concealing carcasses. We categorized blood lead level (BLL) for a subsample of Bald Eagles (Haliaeetus leucocephalus) from the Upper Mississippi River Valley and described BLL with respect to age, sex, and snowfall. We captured Bald Eagles overwintering in the Upper Mississippi River Valley (n=55) between December 1999 and January 2002. Individual BLL ranged from nondetectable to 335 μg/dL, with 73% of the samples testing positive for acute exposure to lead. Eagle BLL did not significantly differ between age or sex, but levels were higher immediately following the hunting season, and they were lower when the previous month's snowfall was greater than 11 cm. This study suggests a window of time between the white-tailed deer (Odocoileus virginianus) hunting season and the onset of snow when the population experienced peak exposure to lead. Combining these findings with existing research, we offer a narrative of the annual lead exposure cycle of Upper Mississippi River Valley Bald Eagles. These temporal associations are necessary considerations for accurate collection and interpretation of BLL.

  19. Integration of multi-sensor data to assess grassland dynamics in a Yellow River sub-watershed

    NARCIS (Netherlands)

    Ouyang, W.; Hao, F.; Skidmore, A.K.; Groen, T.A.; Toxopeus, A.G.; Wang, T.

    2012-01-01

    Grasslands form the dominant land cover in the upper reaches of the Yellow River and provide a reliable indicator by being strongly correlated with regional terrestrial ecological status. Remote sensing can provide information useful for vegetation quality assessments, but no single sensor can meet

  20. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  1. Assessment of the Species Composition, Densities, and Distribution of Native Freshwater Mussels along the Benton County Shoreline of the Hanford Reach, Columbia River, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Robert P.; Tiller, Brett L.; Bleich, Matthew D.; Turner, Gerald; Welch, Ian D.

    2011-01-31

    The Hanford Reach of the Columbia River is the last unimpounded section of the river and contains substrate characteristics (cobble, gravel, sand/silt) suitable for many of the native freshwater mussels known to exist in the Pacific Northwest. Information concerning the native mussel species composition, densities, and distributions in the mainstem of the Columbia River is limited. Under funding from the U.S. Department of Energy Richland Operations Office (DOE-RL), Pacific Northwest National Laboratory conducted an assessment of the near-shore habitat on the Hanford Reach. Surveys conducted in 2004 as part of the Ecological Monitoring and Compliance project documented several species of native mussels inhabiting the near-shore habitat of the Hanford Reach. Findings reported here may be useful to resource biologists, ecologists, and DOE-RL to determine possible negative impacts to native mussels from ongoing near-shore remediation activities associated with Hanford Site cleanup. The objective of this study was to provide an initial assessment of the species composition, densities, and distribution of the freshwater mussels (Margaritiferidae and Unionidae families) that exist in the Hanford Reach. Researchers observed and measured 201 live native mussel specimens. Mussel density estimated from these surveys is summarized in this report with respect to near-shore habitat characteristics including substrate size, substrate embeddedness, relative abundance of aquatic vegetation, and large-scale geomorphic/hydrologic characteristics of the Hanford Reach.

  2. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China

    International Nuclear Information System (INIS)

    Ying Liu; Ling Chen; Zhao Jianfu; Huang Qinghui; Zhu Zhiliang; Gao Hongwen

    2008-01-01

    Concentrations, spatial distribution and sources of 17 polycyclic aromatic hydrocarbons (PAHs) and methylnaphthalene were investigated in surface sediments of rivers and an estuary in Shanghai, China. Total PAH concentrations, excluding perylene, ranged from 107 to 1707 ng/g-dw. Sedimentary PAH concentrations of the Huangpu River were higher than those of the Yangtze Estuary. The concentration of the Suzhou River was close to the average concentration of the Huangpu River. PAHs source analysis suggested that, in the Yangtze Estuary, PAHs at locations far away from cities were mainly from petrogenic sources. At other locations, both petrogenic and pyrogenic inputs were significant. In the Huangpu and Suzhou Rivers, pyrogenic input outweighed other sources. The pyrogenic PAHs in the upper reaches of the Huangpu River were mainly from the incomplete combustion of grass, wood and coal, and those in the middle and lower reaches were from vehicle and vessel exhaust. - Surface sediments of two rivers and an estuary in Shanghai were contaminated by PAHs

  3. The upper reaches of the largest river in Southern China as an “evolutionary front” of tropical plants: Evidences from Asia-endemic genus Hiptage (Malpighiaceae

    Directory of Open Access Journals (Sweden)

    Ren, M. X.

    2015-12-01

    Full Text Available The biodiversity hotspot at the Guizhou–Yunnan–Guangxi borders is a distribution centre of tropical plants in China. It spans the whole upper reaches of Zhujiang River, the largest river in Southern China. In this paper, I aimed to explore the roles of the river in the spread and diversification of tropical plants in this area, using the Asia-endemic genus Hiptage Gaertn. (Malpighiaceae as an example. Two diversity and endemism centres of Hiptage are recognized: Indo-China Peninsula and upper reaches of Zhujiang River (UZJ. The area-adjusted endemism index further indicates UZJ as the most important distribution region of endemic species since UZJ has a very small area (~210,000 km2 but six out of the total seven species are narrow endemics. UZJ is located at the northern edge of distribution ranges of Hiptage, which resulted mainly from the north-west–south-east river systems of UZJ promoting northward spreads of this tropical genus. The highly-fragmented limestone landscapes in this region may promote habitat isolation and tends to be the main driving factor for origins of these endemic species. Hiptage is also distinctive for its highly-specialized pollination system, mirror-image flowers, which probably facilitates species diversification via floral and pollination isolation. Other studies also found UZJ as a major diversification centre of the tropical plant families Gesneriaceae and Begoniaceae. Thereafter, it is concluded that UZJ is an “evolutionary front” of tropical plants in China, which contributes significantly to the origin and maintenance of the unique biodiversity in the area.El hotspot de biodiversidad en las fronteras de las provincias Guizhou-Yunnan- Guangxi es un centro de distribución de plantas tropicales en China. Se extiende por toda la cuenca alta del río Zhujiang, el mayor río del sur de China. En este artículo, se explora el papel del río en la propagación y la diversificación de las plantas tropicales

  4. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Science.gov (United States)

    Peng, Yan; Yang, Wanqin; Li, Jun; Wang, Bin; Zhang, Chuan; Yue, Kai; Wu, Fuzhong

    2015-01-01

    Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm) was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana) and oak (Quercus baronii) in ecotone; cypress (Cupressus chengiana) and clovershrub (Campylotropis macrocarpa) in dry valley; and fir (Abies faxoniana) and birch (Betula albosinensis) in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8%) was observed in the ecotone, and the lowest contribution (0.4%-25.8%) was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter decomposition and

  5. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Directory of Open Access Journals (Sweden)

    Yan Peng

    Full Text Available Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana and oak (Quercus baronii in ecotone; cypress (Cupressus chengiana and clovershrub (Campylotropis macrocarpa in dry valley; and fir (Abies faxoniana and birch (Betula albosinensis in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8% was observed in the ecotone, and the lowest contribution (0.4%-25.8% was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter

  6. Spatial and temporal trends of poly- and perfluoroalkyl substances in fish fillets and water collected from pool 2 of the Upper Mississippi River.

    Science.gov (United States)

    Newsted, John L; Holem, Ryan; Hohenstein, Gary; Lange, Cleston; Ellefson, Mark; Reagen, William; Wolf, Susan

    2017-11-01

    In 2011, poly- and perfluoroalkyl substances (PFASs) were analyzed in surface water and fish fillet samples taken from Pool 2 of the Upper Mississippi River, a 33-mile stretch inclusive of the Minneapolis/St. Paul, Minnesota (USA) metropolitan area. Approximately 100 each of bluegill, freshwater drum, smallmouth bass, and white bass were sampled within the study area. Surface water samples were also collected from each of the 10 sampling reaches established for the study. Water and fillet samples were analyzed for perfluorinated carboxylic acids (C4-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide. Perfluorooctane sulfonate (PFOS) was observed with the greatest frequency in fish fillets and ranged from 3.0 to 760 ng/g wet weight. Mean (geometric) PFOS concentrations in bluegill, freshwater drum, smallmouth bass, and white bass were 20, 28, 29, and 58 ng/g wet weight, respectively. When compared with fish data collected in 2009, a significant reduction (p fish PFOS concentrations are consistent with ongoing efforts to effectively control sources of PFASs to the Mississippi River. Environ Toxicol Chem 2017;36:3138-3147. © 2017 SETAC. © 2017 SETAC.

  7. Potentiometric surface of the Upper Floridan aquifer in the St. Johns River water management district and vicinity, Florida, September 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2005. Potentiometric contours are based on water-level measurements collected at 643 wells during the period September 12-28, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  8. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2008

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  9. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2009

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  10. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  11. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, September, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.

    2005-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in September 2004. Potentiometric contours are based on water-level measurements collected at 608 wells during the period September 14-October 1, near the end of the wet season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  12. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    INTRODUCTION This map depicts the potentiometric surface of the upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2005. Potentiometric contours are based on water level measurements collected at 598 wens during the period May 5 - 31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate upper Floridan aquifer responds mainly to rainfall, and more locally, to ground water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground water withdrawals locally have lowered the potentiometric surface. Ground water in the upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  13. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.; Knowles, Leel

    2004-01-01

    INTRODUCTION This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in May 2001. Potentiometric contours are based on water-level measurements collected at 684 wells during the period May 2 - 30, near the end of the dry season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  14. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2006

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2006. Potentiometric contours are based on water-level measurements collected at 571 wells during the period September 11-29, near the end of the wet season. Some contours are inferred from previouspotentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  15. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2006

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2006. Potentiometric contours are based on water-level measurements collected at 599 wells during the period May 14-31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  16. Uranium favorability of tertiary sedimentary rocks of the western Okanogan highlands and of the upper Columbia River valley, Washington

    International Nuclear Information System (INIS)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the northern portions of the western Okanogan highlands and in the upper Columbia River valley were investigated during a regional study to determine the favorability for potential uranium resources of the Tertiary sedimentary rocks of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples. No portion of the project area of this report is rated of high or of medium favorability for potential uranium resources. Low favorability ratings are given to Oroville, Tonasket, and Pine Creek areas of the Okanogan River valley; to the Republic graben; and to the William Lakes, Colville, and Sheep Creek areas of the upper Columbia River valley. All these areas contain some fluvial, poorly sorted feldspathic or arkosic sandstones and conglomerates. These rocks are characterized by very low permeability and a consistently high siliceous matrix suggesting very low initial permeability. There are no known uranium deposits in any of these areas, and low level uranium anomalies are rare

  17. The analysis of precipitation conducted on the upper watershed of the West Morava river

    Directory of Open Access Journals (Sweden)

    Nikolić Jugoslav

    2005-01-01

    Full Text Available Precipitation is one of the basic elements of the water balance and its analysis is of the crucial importance for many scientific areas. The analysis of precipitation, conducted on the upper part watershed of the West Morava River, was done in the complex way, with the use of the appropriate numerical model. In this way, among other things, orographic and dynamic effects on the explored terrain are taken into consideration.

  18. Long-term decrease in satellite vegetation indices in response to environmental variables in an iconic desert riparian ecosystem: the Upper San Pedro, Arizona, United States

    Science.gov (United States)

    Nguyen, Uyen; Glenn, Edward P.; Nagler, Pamela L.; Scott, Russell L.

    2015-01-01

    The Upper San Pedro River is one of the few remaining undammed rivers that maintain a vibrant riparian ecosystem in the southwest United States. However, its riparian forest is threatened by diminishing groundwater and surface water inputs, due to either changes in watershed characteristics such as changes in riparian and upland vegetation, or human activities such as regional groundwater pumping. We used satellite vegetation indices to quantify the green leaf density of the groundwater-dependent riparian forest from 1984 to 2012. The river was divided into a southern, upstream (mainly perennial flow) reach and a northern, downstream (mainly intermittent and ephemeral flow) reach. Pre-monsoon (June) Landsat normalized difference vegetation index (NDVI) values showed a 20% drop for the northern reach (P  0·05). NDVI and enhanced vegetation index values were positively correlated (P deterioration of the riparian forest in the northern reach.

  19. Down, but not out: Recent decline of Berg–Breede River whitefish (Barbus andrewi in the upper Hex River, South Africa

    Directory of Open Access Journals (Sweden)

    Jeremy M. Shelton

    2017-03-01

    Full Text Available The Berg–Breede River whitefish, Barbus andrewi, an endangered Cape Floristic Region endemic, was once widespread in both the Berg and Breede River catchments. However, its distribution has been strongly reduced, apparently by human-related activities, over the last century, and the Hex River now contains one of the last recruiting populations within its native range. This population was last surveyed by Christie who found that the species occurred in six pools over a 9-km stretch of the upper Hex River. We re-surveyed fish populations at Christie’s sites in 2015 to evaluate differences in the fish community between 2002 and 2015. Our data indicated that the distribution of B. andrewi in the Hex River has declined from six to four pools and that its density in the study area in 2015 (0.57 fish per 100 m2 ± 0.31 fish per 100 m2 was more than fivefold lower than that recorded in 2002 (3.39 fish per 100 m2 ± 1.40 fish per 100 m2 . Moreover, small size classes of B. andrewi (< 10 cm were largely absent in 2015, indicating recruitment failure in recent years. Habitat degradation, exacerbated by a severe flood in 2008, and recent invasions by predatory non-native fishes (smallmouth bass, Micropterus dolomieu and sharptooth catfish, Clarias gariepinus are identified as likely causes of this decline. Cape kurper, Sandelia capensis, another native species, was relatively common in 2002 but not recorded in 2015, whereas the density of native Breede River redfin, Pseudobarbus burchelli, was higher in 2015 than in 2002. Urgent conservation actions including managing non-native fish invasions and mitigating agricultural impacts on aquatic habitat are required to prevent further decline, and possible extirpation, of the Hex River population of B. andrewi. Conservation implications: Urgent conservation actions including preventing further increases in the abundance and distribution of non-native fishes, and improving habitat and water quality through

  20. [Correlationships between the coverage of vegetation and the quality of groundwater in the lower reaches of the Tarim River].

    Science.gov (United States)

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen

    2010-03-01

    The variations vegetation coverage is the result of conjunct effects of inner and outer energy of the earth, however, the human activity always makes the coverage of vegetation change a lot. Based on the monitoring data of chemistry of groundwater and the coverage of vegetation from 2002 to 2007 in the lower reaches of Tarim River, relations between vegetation coverage and groundwater chemistry were studied. It is found that vegetation coverage at Sector A was more than 80%, and decreased from sector to sector, the coverage of Sector I was less than 10%. At the same sector, samples near to water source owned high coverage index, and samples far away from the river had low coverage index. The variations of pH in groundwater expressed similar regulation to vegetation coverage, that is, Sectors near the water source had higher pH index comparing than those far away. Regression between groundwater quality and vegetation coverage disclosed that the coverage of Populus euphratica climbed up along with increase of pH in groundwater, change of Tamarix ramosissima coverage expressed an opposite trend to the Populus euphratica with the same environmental factors. This phenomenon can interpret spatial distribution of Populus euphratica and Tamarix ramosissima in lower reaches of the Tarim River.

  1. [Distribution and origin of polycyclic aromatic hydrocarbons in sediments of the reaches of Huaihe River (Huainan to Bengbu)].

    Science.gov (United States)

    Peng, Huan; Yang, Yi; Liu, Min; Li, Yong; Zhang, Qian-dong; Yang, Gang

    2010-05-01

    Using GC-MS 18 PAHs have been quantified in sediments from water source areas, tributaries and sewage outfalls at the reaches of Huaihe River (Huainan to Bengbu). The results show that the concentrations of total PAHs ranged from 308.12-1090.37 ng/g in sediments from water source areas and tributaries, and 1308.36-8793.16 ng/g in sediments from sewage outfalls. 3-4 rings were the dominant compounds compared to the 5-6 ring PAHs. Black carbon showed better correlation to PAHs than that of TOC. The composition characterization, principal component analysis and particular ratios of PAHs demonstrated that incomplete combustion of fossil fuels was the main source of PAHs in sediments at reaches of Huaihe River (Huainan to Bengbu), as well as a few anthropogenic releases of oil products. Ecological risk assessment indicated that, most of PAHs compounds in sediments have exceeded ER-L and ISQV-L values, among which part PAHs compounds at Yaojiawan even exceeded ER-H and ISQV-H values, showing the significant potential risk of PAHs to the ecosystem in the study area.

  2. Penelitian Pendahuluan Angkutan Sedimen Melayang Sub-Das Citarik Hulu = (Suspended Sediment Transport in the Upper Citarik Sub-River Basin: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Soewarno .

    2014-10-01

    Full Text Available Apart from its function as a soil cover, forest also plays a positive role in preserving water and sediment in a river basin. Rain water which is abundant in the rainy season is caught and stored underground, so that the erosion and flood hazard can be eliminated. In the dry season groundwater becomes reservation to minimize and even eliminate the risk of water shortage. This preliminary study is to monitor suspended sediment transport with respect to the forest area of upper Citarum River Basin at upper Citarih Sub - River Basin. On the basis of the preliminary study results, it can be said that for a river basin where percentage of the forest area is smaller (i the suspended sediment concentration is higher and (ii the total sediment per area unit is greater. These indications were found during the study period, from September 1987 to February 1988. The preliminary study was conducted in a sub-river basin where the soil type is a mixture of andosol and brown regosol, and the terrain is undulating, hilly to mountainous with slope more than 15 percent.

  3. Investigation of exposure rates and radionuclide and trace metal distributions along the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Cooper, A.T.; Woodruff, R.K.

    1993-09-01

    Studies have been conducted to investigate exposure rates, and radionuclide and trace metal distributions along the Columbia River where it borders the Hanford Site. The last major field study was conducted in 1979. With recently renewed interest in various land use and resource protection alternatives, it is important to have data that represent current conditions. Radionuclides and trace metals were surveyed in Columbia River shoreline soils along the Hanford Site (Hanford Reach). The work was conducted as part of the Surface Environmental Surveillance Project, Pacific Northwest Laboratory. The survey consisted of taking exposure rate measurements and soil samples primarily at locations known or expected to have elevated exposure rates

  4. Coastal changes along the coast of Tadri River, Karnataka West coast of India and its implication

    Digital Repository Service at National Institute of Oceanography (India)

    Tirodkar, G.M.; Pathak, K.C; Vaz, S.C

    embankments results in breaching and due to this flood are occurring in the adjacent area, and an accretion is noticed at the mouth result in narrowing the shape, due to sediments brought from upper reaches of Tadri river The present studies give a scenario...

  5. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013).

    Science.gov (United States)

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950-2013 and annual sediment load measured in 1956--2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003-2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities.

  6. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013)

    Science.gov (United States)

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950–2013 and annual sediment load measured in 1956–-2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003–2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities. PMID:27479591

  7. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available On the basis of monthly runoff series obtained in 1950-2013 and annual sediment load measured in 1956--2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1 The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2 Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3 The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003-2013. The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities.

  8. Land Use/Cover Change in the Middle Reaches of the Heihe River Basin over 2000-2011 and Its Implications for Sustainable Water Resource Management

    Science.gov (United States)

    Hu, Xiaoli; Lu, Ling; Li, Xin; Wang, Jianhua; Guo, Ming

    2015-01-01

    The Heihe River Basin (HRB) is a typical arid inland river basin in northwestern China. From the 1960s to the 1990s, the downstream flow in the HRB declined as a result of large, artificial changes in the distribution of water and land and a lack of effective water resource management. Consequently, the ecosystems of the lower reaches of the basin substantially deteriorated. To restore these degraded ecosystems, the Ecological Water Diversion Project (EWDP) was initiated by the Chinese government in 2000. The project led to agricultural and ecological changes in the middle reaches of the basin. In this study, we present three datasets of land use/cover in the middle reaches of the HRB derived from Landsat TM/ETM+ images in 2000, 2007 and 2011. We used these data to investigate changes in land use/cover between 2000 and 2011 and the implications for sustainable water resource management. The results show that the most significant land use/cover change in the middle reaches of the HRB was the continuous expansion of farmland for economic interests. From 2000 to 2011, the farmland area increased by 12.01%. The farmland expansion increased the water resource stress; thus, groundwater was over-extracted and the ecosystem was degraded in particular areas. Both consequences are negative and potentially threaten the sustainability of the middle reaches of the HRB and the entire river basin. Local governments should therefore improve the management of water resources, particularly groundwater management, and should strictly control farmland reclamation. Then, water resources could be ecologically and socioeconomically sustained, and the balance between upstream and downstream water demands could be ensured. The results of this study can also serve as a reference for the sustainable management of water resources in other arid inland river basins. PMID:26115484

  9. Are the streams of the Sinos River basin of good water quality? Aquatic macroinvertebrates may answer the question

    Directory of Open Access Journals (Sweden)

    L. Bieger

    Full Text Available Macroinvertebrate communities are one of the most used groups in assessments of water quality, since they respond directly to the level of contamination of aquatic ecosystems. The main objective of this study was the assessment of the water quality of the Sinos River basin (Rio Grande do Sul state, Brazil through biotic indices based on the macroinvertebrate community ("Family Biotic Index - FBI", and "Biological Monitoring Working Party Score System - BMWP". Three lower order streams (2nd order were selected in each one of three main regions of the basin. In each stream, the samplings were performed in three reaches (upper, middle, and lower, totalling 27 reaches. Two samplings were carried in each reach over one year (winter and summer. A total of 6,847 macroinvertebrates distributed among 54 families were sampled. The streams from the upper region were of better water quality than the lower region. The water quality did not change between the upper, middle and lower reaches of the streams. However, the upper reaches of the streams were of better water quality in all the regions of the basin. The water quality of the streams did not vary between the summer and the winter. This result demonstrated that water quality may be analysed in both studied seasons (summer and winter using biotic indices. The analysis of the results allows us to conclude that the biotic indices used reflected the changes related to the water quality along the longitudinal gradient of the basin. Thus, aquatic macroinvertebrates were important bioindicators of the water and environmental quality of the streams of the Sinos River basin.

  10. Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)

    International Nuclear Information System (INIS)

    RH Visser

    2000-01-01

    The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., the Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities

  11. Multiple Changes in the Hydrologic Regime of the Yangtze River and the Possible Impact of Reservoirs

    Directory of Open Access Journals (Sweden)

    Feng Huang

    2016-09-01

    Full Text Available This paper investigates hydrologic changes in the Yangtze River using long-term daily stream flow records (1955–2013 collected from four flow gauging stations located from the upper to the lower reaches of the river. The hydrologic regime is quantified using the Indicators of Hydrologic Alteration, which statistically characterize hydrologic variation within each year. Scanning t-test is applied to analyze multiple changes in the hydrologic regime at different time scales. Then, coherency analysis is applied to identify common changes among different hydrologic indicators and across different reaches of the Yangtze River. The results point to various change patterns in the five components of hydrologic regime, including the magnitude of monthly water conditions, magnitude and duration of annual extreme water conditions, timing of annual extreme water conditions, frequency and duration of high and low pulses, and rate and frequency of water condition changes. The 32 hydrologic indicators feature multiple temporal-scale changes. Spatial variations can be observed in the hydrologic changes of the upper, middle, and lower reaches of the river. Common changes in different reaches consist of hydrologic indicators including the monthly flow in October and the low-flow indicators. The monthly flow in October is dominated by decreasing trends, while the monthly flows between January and March, the annual minimum 1/3/7/30/90-day flows, and the base flow index are characterized by increasing trends. Low pulse duration and total days of low pulses feature downward trends. The coherency analysis reveals significant relationships between the monthly flow in October and the low-flow indicators, indicating that reservoir regulation is an important factor behind the hydrologic changes.

  12. FLUVIAL PROCESSES IN ATTACHMENT BARS IN THE UPPER PARANÁ RIVER, BRAZIL

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina Dos Santos

    2017-08-01

    Full Text Available Bars are semi-submerged fluvial forms associated with the availability of sediments and a temporal dynamic, whose dimensions are controlled by the flow and depth of the channel.  Attachment bars are very common in large anabranching river systems and play an important role in island formation and ecology. The Upper Paraná River exhibits an anabranching pattern characterized by channels of different sizes, separated by islands and bars. The objective of this work is to present the processes involved in the formation and development of attachment bars in Santa Rosa Island, situated in Porto Rico, State of Parana, Southern Brazil. Acquisition campaigns were performed to obtain data on channel hydraulics (ADCP equipment, morphometry (Echo-sound profiles and textural parameters (grain-size analyses at high and medium water levels. Santa Rosa Island divides the flow into two channels of distinct hydraulic and sedimentary dynamics. Flow diversion produces a decrease in flow velocity and consequent sediment deposition near the upstream end of Santa Rosa Island. The formation and maintenance of attachment bars in Santa Rosa Island is related to flow competence reduction and the occurrence of divergent currents. Vegetation cover and flow regime control its permanence. 

  13. Impacts of Vegetation Growth on Reach-scale Flood Hydraulics in a Sand-bed River and the Implications for Vegetation-morphology Coevolution

    Science.gov (United States)

    Box, S.; Wilcox, A. C.

    2017-12-01

    Vegetation alters flood hydraulics and geomorphic response, yet quantifying and predicting such responses across spatial and temporal scales remains challenging. Plant- and patch-scale studies consistently show that vegetation increases local hydraulic variability, yet reach-scale hydrodynamic models often assume vegetation has a spatially homogeneous effect on hydraulics. Using Nays2DH in iRIC (International River Interface Cooperative), we model the effect of spatially heterogeneous vegetation on a series of floods with varying antecedent vegetation conditions in a sand-bed river in western Arizona, taking advantage of over a decade of data on a system that experienced substantial geomorphic, hydrologic, and ecosystem changes. We show that pioneer woody seedlings (Tamarix, Populus, Salix) and cattail (Typha) increase local hydraulic variability, including velocity and bed shear stress, along individual cross sections, predominantly by decreasing velocity in zones of vegetation establishment and growth and increasing velocity in unvegetated areas, with analogous effects on shear stress. This was especially prominent in a study reach where vegetation growth contributed to thalweg incision relative to a vegetated bar. Evaluation of these results in the context of observed geomorphic response to floods elucidates mechanisms by which vegetation and channel morphology coevolve at a reach scale. By quantifying the influence of spatially heterogeneous vegetation on reach-scale hydraulics, we demonstrate that plant- and patch-scale research on vegetation hydraulics is applicable to ecogeomorphology at the reach scale.

  14. Centurial Changes in the Depth Conditions of a Regulated River: Case Study of the Lower Tisza River, Hungary

    Directory of Open Access Journals (Sweden)

    Amissah Gabriel Jonathan

    2017-04-01

    Full Text Available The Tisza River is the largest tributary of the Danube in Central Europe, and has been subjected to various human interventions including cutoffs to increase the slope, construction of levees to restrict the floodplain, and construction of groynes and revetments to stabilize the channel. These interventions have altered the natural morphological evolution of the river. The aim of the study is to assess the impacts of these engineering works, employing hydrological surveys of 36 cross sections (VO of the Lower Tisza River for the years of 1891, 1931, 1961, 1976 and 1999. The changes in mean depth and thalweg depth were studied in detail comparing three reaches of the studied section. In general, the thalweg incised during the studied period (1891-1931: 3 cm/y; 1931-1961: 1.3 cm/y and 1976-1999: 2.3 cm/y, except from 1961-1976 which was characterized by aggradation (2 cm/y. The mean depth increased, referring to an overall deepening of the river during the whole period (1891-1931: 1.4 cm/y; 1931-1961: 1.2 cm/y; 1961-1976: 0.6 cm/y and 1976-1999: 1.6 cm/y. The thalweg shifted more in the upper reach showing less stabile channel, while the middle and lower reaches had more stable thalweg. Although the cross-sections subjected to various human interventions experienced considerable incision in the short-term, the cross-sections free from direct human impact experienced the largest incision from 1891-1999, especially along the meandering sections.

  15. Radiological survey of shoreline vegetation from the Hanford Reach of the Columbia River, 1990--1992

    International Nuclear Information System (INIS)

    Antonio, E.J.; Poston, T.M.; Rickard, W.H. Jr.

    1993-09-01

    A great deal of interest exists concerning the seepage of radiologically contaminated groundwater into the Columbia River where it borders the US Department of Energy's Hanford Site (Hanford Reach). Areas of particular interest include the 100-N Area, the Old Hanford Townsite, and the 300 Area springs. While the radiological character of the seeps and springs along the Hanford Site shoreline has been studied, less attention has been given to characterizing the radionuclides that may be present in shoreline vegetation. The objective of this study was to characterize radionuclide concentrations in shoreline plants along the Hanford Reach of the Columbia River that were usable by humans for food or other purposes. Vegetation in two areas was found to have elevated levels of radionuclides. Those areas were the 100-N Area and the Old Hanford Townsite. There was also some indication of uranium accumulation in milfoil and onions collected from the 300 Area. Tritium was elevated above background in all areas; 60 Co and 9O Sr were found in highest concentrations in vegetation from the 100-N Area. Technetium-99 was found in 2 of 12 plants collected from the Old Hanford Townsite and 1 of 10 samples collected upstream from the Vernita Bridge. The concentrations of 137 Cs, 238 Pu, 239,240 Pu, and isotopes of uranium were just above background in all three areas (100-N Area, Old Hanford Townsite, and 300 Area)

  16. Radiological survey of shoreline vegetation from the Hanford Reach of the Columbia River, 1990--1992

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.; Poston, T.M.; Rickard, W.H. Jr.

    1993-09-01

    A great deal of interest exists concerning the seepage of radiologically contaminated groundwater into the Columbia River where it borders the US Department of Energy`s Hanford Site (Hanford Reach). Areas of particular interest include the 100-N Area, the Old Hanford Townsite, and the 300 Area springs. While the radiological character of the seeps and springs along the Hanford Site shoreline has been studied, less attention has been given to characterizing the radionuclides that may be present in shoreline vegetation. The objective of this study was to characterize radionuclide concentrations in shoreline plants along the Hanford Reach of the Columbia River that were usable by humans for food or other purposes. Vegetation in two areas was found to have elevated levels of radionuclides. Those areas were the 100-N Area and the Old Hanford Townsite. There was also some indication of uranium accumulation in milfoil and onions collected from the 300 Area. Tritium was elevated above background in all areas; {sup 60}Co and {sup 9O}Sr were found in highest concentrations in vegetation from the 100-N Area. Technetium-99 was found in 2 of 12 plants collected from the Old Hanford Townsite and 1 of 10 samples collected upstream from the Vernita Bridge. The concentrations of {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, and isotopes of uranium were just above background in all three areas (100-N Area, Old Hanford Townsite, and 300 Area).

  17. Upper Limb Rehabilitation Robot Powered by PAMs Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings

    Science.gov (United States)

    Su, Chen; Jiang, Xiaobo

    2017-01-01

    The reach-to-grasp activities play an important role in our daily lives. The developed RUPERT for stroke patients with high stiffness in arm flexor muscles is a low-cost lightweight portable exoskeleton rehabilitation robot whose joints are unidirectionally actuated by pneumatic artificial muscles (PAMs). In order to expand the useful range of RUPERT especially for patients with flaccid paralysis, functional electrical stimulation (FES) is taken to activate paralyzed arm muscles. As both the exoskeleton robot driven by PAMs and the neuromuscular skeletal system under FES possess the highly nonlinear and time-varying characteristics, iterative learning control (ILC) is studied and is taken to control this newly designed hybrid rehabilitation system for reaching trainings. Hand function rehabilitation refers to grasping. Because of tiny finger muscles, grasping and releasing are realized by FES array electrodes and matrix scan method. By using the surface electromyography (EMG) technique, the subject's active intent is identified. The upper limb rehabilitation robot powered by PAMs cooperates with FES arrays to realize active reach-to-grasp trainings, which was verified through experiments. PMID:29065566

  18. Upper Limb Rehabilitation Robot Powered by PAMs Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings

    Directory of Open Access Journals (Sweden)

    Xikai Tu

    2017-01-01

    Full Text Available The reach-to-grasp activities play an important role in our daily lives. The developed RUPERT for stroke patients with high stiffness in arm flexor muscles is a low-cost lightweight portable exoskeleton rehabilitation robot whose joints are unidirectionally actuated by pneumatic artificial muscles (PAMs. In order to expand the useful range of RUPERT especially for patients with flaccid paralysis, functional electrical stimulation (FES is taken to activate paralyzed arm muscles. As both the exoskeleton robot driven by PAMs and the neuromuscular skeletal system under FES possess the highly nonlinear and time-varying characteristics, iterative learning control (ILC is studied and is taken to control this newly designed hybrid rehabilitation system for reaching trainings. Hand function rehabilitation refers to grasping. Because of tiny finger muscles, grasping and releasing are realized by FES array electrodes and matrix scan method. By using the surface electromyography (EMG technique, the subject’s active intent is identified. The upper limb rehabilitation robot powered by PAMs cooperates with FES arrays to realize active reach-to-grasp trainings, which was verified through experiments.

  19. Distribution of Fish in the Upper Citarum River: an Adaptive Response to Physico-Chemical Properties

    Directory of Open Access Journals (Sweden)

    SUNARDI

    2012-12-01

    Full Text Available Distribution of fish in river is controlled by physico-chemical properties of the water which is affected by land-use complexity and intensity of human intervention. A study on fish distribution was carried out in the upper Citarum River to map the effects of physio-chemical properties on habitat use. A survey was conducted to collect fish and to measure the water quality both on dry and rainy season. The result showed that distribution of the fish, in general, represented their adaptive response to physico-chemical properties. The river environment could be grouped into two categories: (i clean and relatively unpolluted sites, which associated with high DO and water current, and (ii polluted sites characterized by low DO, high COD, BOD, water temperature, NO3, PO4, H2S, NH3, and surfactant. Fish inhabiting the first sites were Xiphophorus helleri, Punctius binotatus, Xiphophorus maculatus, and Oreochromis mossambicus. Meanwhile, the latter sites were inhabited by Liposarcus pardalis, Trichogaster trichopterus, and Poecilia reticulata. Knowledge about fish distribution in association with the pysico-chemical properties of water is crucial especially for the river management.

  20. PATHOGEN TRANSPORT AND FATE MODELING IN THE UPPER SALEM RIVER WATERSHED USING SWAT MODEL - PEER-REVIEWED JOURNAL ARTICLE

    Science.gov (United States)

    Simulation of the fate and transport of pathogen contamination was conducted with SWAT for the Upper Salem River Watershed, located in Salem County, New Jersey. This watershed is 37 km2 and land uses are predominantly agricultural. The watershed drains to a 32 km str...

  1. Development of an Index to Bird Predation of Juvenile Salmonids within the Yakima River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Grassley, James M.; Grue, Christian E.; Major, III, Walter (University of Washington, School of Aquatic and Fishery Science, Seattle, WA)

    2002-01-01

    abundance within river reaches was evaluated. The only change in survey methods in 2000 was the shortening (in river miles) of surveys on the North Fork of the Teanaway River and the shifting of start and stop dates for river drifts and hotspot surveys. Primary avian predators in 2000 were ''gulls'' (California and Ring-billed) at hotspots and Common Mergansers within upper river reaches. Estimated consumption by gulls at both hotspots combined (10 April-30 June) was 163,475 fish. Assuming a worst case scenario (all fish taken were smolts) this represented 6.0% of all smolts estimated passing or being released from the Chandler Dam area during the 2000 smolt migration season. Total estimated take by Common Mergansers across all strata surveyed was 7,654 kg between 10 Apr and 30 Aug, 2000. Seventy-three percent of that consumption was within the upper river reaches (Stratum 1) where there is a known breeding population of mergansers.

  2. Characterization of streamflow, water quality, and instantaneous dissolved solids, selenium, and uranium loads in selected reaches of the Arkansas River, southeastern Colorado, 2009-2010

    Science.gov (United States)

    Ivahnenko, Tamara; Ortiz, Roderick F.; Stogner, Sr., Robert W.

    2013-01-01

    As a result of continued water-quality concerns in the Arkansas River, including metal contamination from historical mining practices, potential effects associated with storage and movement of water, point- and nonpoint-source contamination, population growth, storm-water flows, and future changes in land and water use, the Arkansas River Basin Regional Resource Planning Group (RRPG) developed a strategy to address these issues. As such, a cooperative strategic approach to address the multiple water-quality concerns within selected reaches of the Arkansas River was developed to (1) identify stream reaches where stream-aquifer interactions have a pronounced effect on water quality and (or) where reactive transport, and physical and (or) chemical alteration of flow during conveyance, is occurring, (2) quantify loading from point sources, and (3) determine source areas and mass loading for selected constituents. (To see the complete abstract, open Report PDF.)

  3. Mechanisms of Cottonwood Establishment in Gravel-Bed Rivers, across Scales from the Bar to the Reach

    Science.gov (United States)

    Meier, C. I.

    2017-12-01

    Riparian cottonwoods are pioneer trees adapted to colonizing fluvial corridors, with strong effects on ecosystem structure and function. As their populations are being affected by flow alterations and invasive species, their recruitment mechanisms need to be understood, to support scientifically-based restoration efforts. I propose new concepts for cottonwood establishment in gravelly streams, from the local to the reach scale. These notions complement the currently-accepted ideas, which apply only to the landscape scale, and whose basic assumptions (existence of an alluvial water table, which is planar, almost horizontal, and linked to the river stage, with a parallel, spatially-uniform capillary fringe) seem to be based on a physical template that is only valid in the case of sand-bed streams. At the local, within-the-bar scale, two concepts drive establishment success. First, a finer matrix material helps retain more capillary water after the yearly snowmelt flood or a precipitation event. Second, the coarse surface layer of clean gravel and cobble acts as rock mulch, strongly decreasing evaporative losses. At the reach scale, we find that the commonly reported arcuate bands of cottonwoods do not depend on groundwater, but are caused by water dispersal (hydrochory). Wind-dispersed seeds fall into the river, are entrained into the drift, and start germinating as they travel under water. Some of the seeds and germinants find their way into the shallow, high relative roughness flow along the cobble shoreline. They are able to deposit in this environment, where they start growing, also under water. As waters recede, during the period of seed availability in the drift, the river seeds its banks and bars. Thus, the boundaries of observed bands and patches with successful seedling recruitment correspond to the location of flow profiles at different dates during the flood recession.

  4. Development of an Index to Bird Predation of Juvenile Salmonids within the Yakima River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Major, III, Walter; Grue, Christian E.; Ryding, Kristen E. (University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA)

    2002-08-01

    ;'gulls'' (California and Ring-billed) at hotspots and Common Mergansers within upper river reaches. Consumption on the lower reaches was distributed among a number of species, with slightly more then half of all fish consumption being attributed to American White Pelicans. Estimated consumption by gulls at both hotspots combined (8 Apr-30 Jun) was 169,883 fish. Assuming a worst case scenario (all fish taken were smolts) this represented approximately 4.9% of all smolts estimated passing or being released from the Prosser Dam area during the 2001 smolt migration season. Total gull abundances and estimates of consumption between the two hotspot sites were opposite that seen in 2000. Foraging gulls at Horn Rapids Dam were regressed against flow for the 3 years and found to be significant (alpha = 0.1, P=0.081, r{sup 2} = .2589). A similar 3-year regression vs fish passage through the Chandler Juvenile Fish Facility, however, did not show a significant relationship (alpha = 0.1, P = 0.396, r{sup 2} = .3708). Total estimated take by Common Mergansers across all strata surveyed was 14,777 kg between 8 Apr and 31 Aug, 2001. Approximately 66 percent of that consumption was within the upper river reaches (Stratum 1) where there is a known breeding population of mergansers. Graphical comparisons of merganser abundances over the three years (1999-2001) in the upper reaches of the Yakima River suggest an increase in 2001 from the previous 2 years in both the spring and summer survey periods, but overlapping confidence intervals prevent assumptions regarding upward or downward trends in abundance.

  5. Factors favorable to frequent extreme precipitation in the upper Yangtze River Valley

    Science.gov (United States)

    Tian, Baoqiang; Fan, Ke

    2013-08-01

    Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land-sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.

  6. Clarifying regional hydrologic controls of the Marañón River, Peru through rapid assessment to inform system-wide basin planning approaches

    Directory of Open Access Journals (Sweden)

    Alice F. Hill

    2018-04-01

    Full Text Available We use remote sensing to enhance the interpretation of the first baseline dataset of hydrologic, isotopic and hydrochemical variables spanning 620 km of the upper Marañón River, in Andean Peru, from the steep alpine canyons to the lower lying jungle. Remote, data-scarce river systems are under increased hydropower development pressure to meet rising energy demands. The upstream-downstream river continuum, which serves as a conduit for resource exchange across ecosystems, is at risk, potentially endangering the people, environments, and economies that rely on river resources. The Marañón River, one of the final free-flowing headwater connections between the Andes and the Amazon, is the subject of myriad large-scale hydropower proposals. Due to challenging access, environmental data are scarce in the upper Marañón, limiting our ability to do system-wide river basin planning. We capture key processes and transitions in the context of hydropower development. Two hydrologic regimes control the Marañón dry-season flow: in the higher-elevation upper reaches, a substantial baseflow is fed by groundwater recharged from wet season rains, in contrast to the lower reaches where the mainstem discharge is controlled by rain-fed tributaries that receive rain from lowland Amazon moisture systems. Sustainability of the upper corridor’s dry-season baseflow appears to be more highly connected to the massive natural storage capacity of extensive wetlands in the puna (alpine grasslands than with cryospheric water inputs. The extent and conservation of puna ecosystems and glacier reservoirs may be interdependent, bringing to bear important conservation questions in the context of changing climate and land use in the region. More generally, this case study demonstrates an efficient combined remote sensing and field observation approach to address data scarcity across regional scales in mountain basins facing imminent rapid change.

  7. Present and potential contamination of the river system at Mayak PA

    International Nuclear Information System (INIS)

    Amundsen, I.; Strand, P.; Malyshev, S.V.

    1999-01-01

    Studies of mobility of radionuclides in environmental samples at Mayak show that strontium-90 is the most mobile of the relevant radionuclides and hence can be transported by river water. Cesium-137, although less mobile, can also be transported over large distances. The main source of river contamination today is the remobilization of strontium-90 from the boggy area at the upper reaches of Techa River (Asanov Swamp). Regular Russian monitoring programmes show that levels of strontium-90 leaving the swamp are three times higher than levels entering the swamp. The net outflow from the Swamp is now estimated to 2-3% of the 37 TBq of strontium-90 located in the swamp, 1992 levels

  8. Rainfall characteristics and their implications for rain-fed agriculture : a case study in the Upper Zambezi River Basin

    NARCIS (Netherlands)

    Beyer, M.; Wallner, M.; Bahlmann, L.; Thiemig, V.; Dietrich, J.; Billib, M.

    2016-01-01

    This study investigates rainfall characteristics in the Upper Zambezi River Basin and implications for rain-fed agriculture. Seventeen indices describing the character of each rainy season were calculated using a bias-corrected version of TRMM-B42 v6 rainfall estimate for 1998–2010. These were

  9. River Network Reorganization along the Upper Yangzte, Eastern Tibet: Insights from Thermochronology and Sedimentology.

    Science.gov (United States)

    Gourbet, L.; Yang, R.; Fellin, M. G.; Maden, C.; Gong, J.; Jean-Louis, P.

    2017-12-01

    The high relief and high elevation of the southeastern margin of the Tibetan Plateau are related to tectonic uplift and the fluvial incision of the Salween, Mekong, and Yangtze rivers. The upper Yangtze is the subject of numerous debates on the evolution of its drainage area, particularly in regards to the timing and geodynamic processes, and therefore has an impact on models of the Tibetan plateau evolution. Today, portions of the course of the Yangtze are controlled by active strike-slip faults. In order to study the evolution of the Cenozoic paleoriver network, we use low-temperature thermochronometry to estimate fluvial incision and palaeoenvironmental information derived from the detrital record. The Jianchuan basin, between the Yangtze and the Red River, contains late Eocene fluvial sediments that may correspond to an ancient connection between these rivers. Sediments located further north (DongWang formation, Yunnan-Sichuan boundary) consist of unsorted conglomerates and sandstones. They are exposed on the flanks of deep valleys. These sediments do not correspond to a large riverbed such as the Yangtze but rather indicate an episode of intense sedimentation with a significant contribution from talus, followed by a >1.2 km incision by a tributary of the upper Yangtze. In the same area, we performed apatite and zircon (U-Th)/He dating on a granitic pluton that is offset by an active sinistral strike-slip fault. Mean ZHe cooling ages range from 50 to 70 Ma. Samples located above 3870 m yield mean apatite (U-Th)/He ages ranging from 30 to 40 Ma. AHe ages for samples at lower elevation range from 8 to 15 Ma. Given the crystallization age of the pluton (83 Ma, U/Pb, zircon), cooling ages reflect exhumation, not post-intrusion cooling. Further research will use thermal modeling to infer incision rates and compare results with published data.

  10. Far-reaching transport of Pearl River plume water by upwelling jet in the northeastern South China Sea

    Science.gov (United States)

    Chen, Zhaoyun; Pan, Jiayi; Jiang, Yuwu; Lin, Hui

    2017-09-01

    Satellite images from the Moderate Resolution Imaging Spectroradiometer (MODIS) show that there was a belt of turbid water appearing along an upwelling front near the Chinese coast of Guangdong, and indicate that the turbid water of the Pearl River plume water could be transported to a far-reaching area east of the Taiwan Bank. Numerical modeling results are consistent with the satellite observations, and reveal that a strong jet exists at the upwelling front with a speed as high as 0.8 m s- 1, which acts as a pathway for transporting the high-turbidity plume water. The dynamical analysis suggests that geostrophic equilibrium dominates in the upwelling front and plume areas, and the baroclinicity of the upwelling front resulting from the horizontal density gradient is responsible for the generation of the strong jet, which enhances the far-reaching transport of the terrigenous nutrient-rich water of the Pearl River plume. Model sensitivity analyses also confirm that this jet persists as long as the upwelling front exists, even when the wind subsides and becomes insignificant. Further idealized numerical model experiments indicate that the formation and persistence of the upwelling front jet depend on the forcing strength of the upwelling-favorable wind. The formation time of the jet varies from 15 to 158 h as the stress of the upwelling-favorable wind changes from 0.2 to 0.01 N m- 2. With the persistent transport of the nutrient-rich plume water, biophysical activities can be promoted significantly in the far-reaching destination area of the oligotrophic water.

  11. Discharge prediction in the Upper Senegal River using remote sensing data

    Science.gov (United States)

    Ceccarini, Iacopo; Raso, Luciano; Steele-Dunne, Susan; Hrachowitz, Markus; Nijzink, Remko; Bodian, Ansoumana; Claps, Pierluigi

    2017-04-01

    The Upper Senegal River, West Africa, is a poorly gauged basin. Nevertheless, discharge predictions are required in this river for the optimal operation of the downstream Manantali reservoir, flood forecasting, development plans for the entire basin and studies for adaptation to climate change. Despite the need for reliable discharge predictions, currently available rainfall-runoff models for this basin provide only poor performances, particularly during extreme regimes, both low-flow and high-flow. In this research we develop a rainfall-runoff model that combines remote-sensing input data and a-priori knowledge on catchment physical characteristics. This semi-distributed model, is based on conceptual numerical descriptions of hydrological processes at the catchment scale. Because of the lack of reliable input data from ground observations, we use the Tropical Rainfall Measuring Mission (TRMM) remote-sensing data for precipitation and the Global Land Evaporation Amsterdam Model (GLEAM) for the terrestrial potential evaporation. The model parameters are selected by a combination of calibration, by match of observed output and considering a large set of hydrological signatures, as well as a-priori knowledge on the catchment. The Generalized Likelihood Uncertainty Estimation (GLUE) method was used to choose the most likely range in which the parameter sets belong. Analysis of different experiments enhances our understanding on the added value of distributed remote-sensing data and a-priori information in rainfall-runoff modelling. Results of this research will be used for decision making at different scales, contributing to a rational use of water resources in this river.

  12. MODELLING THE IMPACTS OF WILDFIRE ON SURFACE RUNOFF IN THE UPPER UBERABINHA RIVER WATERSHED USING HEC-HMS

    Directory of Open Access Journals (Sweden)

    Jean Maikon Santos Oliveira

    2017-01-01

    Full Text Available Fire significantly affects hydrological processes in the waters hed because it changes land cover and it creates a double layer of hydrophobic soil co vered with ash, increasing the surface runoff and the production of debris flow in the basin. Assessing the impacts of fire on overland flow requires the use of modeli ng softwares capable of simulating post-fire discharge. Because a total of 760 wildfire s were detected in the Upper Uberabinha River subbasin in the last nine years, it is o f dire importance to understand the consequential impacts of fire on hydrological pr ocesses in this basin. In this study, the HEC-HMS model was used to evaluate post-fire di scharge in the Upper Uberabinha River watershed. Model was previously calibrated and validated using two representative storms observed in the wet season. After calibra tion, the 5-, 10-, 25-, 50-, 100-, and 200-year storms were simulated in scenarios with incr easing burn severity. The calibrated model performed well in the prediction of discha rge values at a daily basis (0% difference in peak tim ing; 0% difference in peak flow ; 31.8% BIAS . Peak flow and discharge volume increased and peak timing shifted to the left as severity of burn increased. The highest increment in peak discharge was 74. 7% for the 10-year storm, whereas overall discharge volume raised in up to 31.9% f or the 50-year storm, both after simulation in the mos t fire-impacted scenario. The results reveal that fire highly affects hydrological characteristics, e.g. peak timing a nd flow and discharge volume, in the Upper Uberabinha River watershed. The authors su ggest further investigations concerning the impacts of wildfire on other proc esses, such as the production of debris flow in the basin.

  13. Assessing the relationship between water quality parameters and changes in landuse patterns in the Upper Manyame River, Zimbabwe

    Science.gov (United States)

    Kibena, J.; Nhapi, I.; Gumindoga, W.

    For the past 30 years, the increases in population pressure and external influences, such as economic growth, have accelerated the demand for land within the Upper Manyame River catchment in Zimbabwe which has caused substantial changes in landuse. The general objective of this research was to assess the impacts of landuse activities on the water quality of the Upper Manyame River which drains the rural and urbanised part of the catchment up to flow gauging station C21. Landcover data for the month of April in years of 1984, 1995, 2003 and 2011 were acquired from available Landsat TM and ETM images and were classified through the maximum likelihood digital image classification using the supervised classification approach. The status of water quality of the Upper Manyame River was also assessed through analyses of historical concentrations and pollution loads for TP, DO, COD, NH3-N, SS, Pb, NO3, BOD5, EC, PO4-P and TN at the Environmental Management Agency (EMA) gauging station CR21 sampling point for 1996, 2000/1 and 2008/9. Water quality of 15 monitoring sites comprising 25 water quality parameters were monitored monthly from January to June 2012. These locations were selected to reflect a wide array of landuse for both the dry and wet seasons. The results indicated that there was an increase in pollution load from 1995 to 2012; for TP from 130 kg/day to 376 kg/d, and for TN from 290 kg/day to 494 kg/d. This indicates high pollution levels which have severe impacts on downstream users and also severe sewage contamination. Significant deviations occurred in DO (0.1-6.8) mg/L, COD (11-569) mg/L, BOD5 (5-341) mg/L, PO4-P (0.01-4.45) mg/L, NH3-N (0.001-6.800) mg/L and EC (38-642) μS/cm. Hydrologic Response Unit and buffer analysis were used to determine the dominant landuse which contributes to a certain water quality. Results of digital image classification indicate that woodland/forest, grassland and bareland decreased between years 1984 to 2011 by 24.0%, 22.6% and

  14. Flow of river water into a karstic limestone aquifer - 2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    Science.gov (United States)

    Plummer, Niel; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 (3H/3He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3H/3He age is independent of the extent of dilution with older (3H-free and 3He(trit)-free) water. The groundwater mixtures are designated as Type-I for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl- and ??18O data for water from the Upper Floridan aquifer at Valdosta, Georgia The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most allaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-I water. CFC-12 persists in both SO4-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg-1) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-I mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water sam pies obtained from the Upper Floridan aquifer have CFC-12-based ages of the young traction that are consistent with the 3H concentration of the groundwater. Because of uncertainties associated with very low 3H and 3He content in dilute mixtures, 3H/3He dating is limited to the river

  15. Automated lidar-derived canopy height estimates for the Upper Mississippi River System

    Science.gov (United States)

    Hlavacek, Enrika

    2015-01-01

    Land cover/land use (LCU) classifications serve as important decision support products for researchers and land managers. The LCU classifications produced by the U.S. Geological Survey’s Upper Midwest Environmental Sciences Center (UMESC) include canopy height estimates that are assigned through manual aerial photography interpretation techniques. In an effort to improve upon these techniques, this project investigated the use of high-density lidar data for the Upper Mississippi River System to determine canopy height. An ArcGIS tool was developed to automatically derive height modifier information based on the extent of land cover features for forest classes. The measurement of canopy height included a calculation of the average height from lidar point cloud data as well as the inclusion of a local maximum filter to identify individual tree canopies. Results were compared to original manually interpreted height modifiers and to field survey data from U.S. Forest Service Forest Inventory and Analysis plots. This project demonstrated the effectiveness of utilizing lidar data to more efficiently assign height modifier attributes to LCU classifications produced by the UMESC.

  16. Suspended sediment, turbidity, and stream water temperature in the Sauk River Basin, western Washington, water years 2012-16

    Science.gov (United States)

    Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.

    2017-11-01

    The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.

  17. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    Science.gov (United States)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  18. Development of an Index to Bird Predation of Juvenile Salmonids within the Yakima River, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gassley, James M.; Grue, Christian E. (University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA)

    2001-10-01

    equation was used to interpolate gull and Common Merganser abundance on days when surveys were not conducted. Seasonal patterns of avian piscivore abundance were identified, diurnal patterns of gull abundance at hotspots were identified, predation indices were calculated for hotspots and summer river reaches, and the efficacy of aerial surveys for estimating bird abundance within river reaches was evaluated. Primary avian predators were California and Ring-billed Gulls at hotspots and Common Mergansers within upper river reaches. Estimated take (presumed to be salmonids) by gulls at hotspots (22 April-30 May) was 4,084 fish at the Chandler Bypass Outfall and 12,636 fish at Horn Rapids Dam. Combined take was 2.65% of the salmonids passing over Chandler Dam or 0.89 % of all smolts estimated passing or being released from the Chandler Dam area during the 1999 smolt migration season. Estimated take by Common Mergansers within upper river reaches in summer was 4,092 kg between 7 May and 18 August 1999.

  19. Loading and dilution: arsenic, sodium and nutrients in a section of the River Tisza, Hungary

    Science.gov (United States)

    Türk, Gábor; Prokisch, József; Simon, Edina; Szabó, Szilárd

    2015-11-01

    We aimed to reveal the risk of arsenic in a Hungarian river (the Tisza) at the mouth of a polluted canal. Four sampling sites were involved in this work and samples were collected on a weekly basis for arsenic and sodium, and on a monthly basis for nutrients. Significant differences were found concerning each studied component between the sampling locations of the River Tisza. Statistical analysis also revealed that the values of the upper and lower river tracts did not differ significantly. Thus, water carried by the canal is being diluted before it reaches the farthest sampling location.

  20. Hyporheic invertebrate assemblages at reach scale in a Neotropical stream in Brazil.

    Science.gov (United States)

    Mugnai, R; Messana, G; Di Lorenzo, T

    2015-11-01

    In the Neotropical Region, information concerning hyporheic communities is virtually non-existent. We carried out a sampling survey in the hyporheic zone of the Tijuca River, in the Tijuca National Park, located in the urban area of the city of Rio de Janeiro. Biological samples from the hyporheic zone were collected in three different stream reaches, in June 2012. The main objectives were: 1) to describe the structure of invertebrate assemblages in the hyporheic zone of a neotropical stream; 2) to apply a reach-scale approach in order to investigate spatial patterns of the hyporheic assemblages in relation to hydrology, depth and microhabitat typology. A total of 1460 individuals were collected and identified in 31 taxa belonging to Nematoda, Annelida, Crustacea, Hydrachnidia and Insecta. The class Insecta dominated the upper layer of the hyporheic zone. Copepods were the most abundant taxon among crustaceans and occurred mostly in the upwelling areas of the reaches. The results of this study represent one of the few contributions so far about hyporheic invertebrate assemblages of the Neotropical Region.

  1. Fish assemblage structure and habitat associations in a large western river system

    Science.gov (United States)

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  2. Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Yobbi, D.K.; McBride, W.S.

    2009-01-01

    flow in the aquifer did not vary greatly from season to season during the study. Potentiometric contours indicate groundwater discharge to the river in the vicinity of Dade City and Lake Panasoffkee. During dry periods, groundwater from the underlying Upper Floridan aquifer contributed to the flow in the river. During wet periods, streamflow had additional contributions from runoff and input from tributaries. Groundwater has a greater effect on streamflow downstream from the Dade City station than upstream from the Dade City station because confinement between surficial deposits and the Upper Floridan aquifer is greater in the Green Swamp area than in downstream areas. Estimates of streamflow gains and losses were made along the Withlacoochee River during base-flow conditions in May 2004, April 2005, and April 2006. Base flow was higher in April 2005 than in May 2004 and April 2006. Consistent net seepage gains were identified in 16 of 20 subreaches analyzed during all seepage runs. The direction of exchange was variable in the remaining four subreaches. Low specific conductance, pH, and calcium concentrations in water from the Withlacoochee River near the headwater area indicated a surface-water system not directly connected to the Upper Floridan aquifer. Downstream from the Dade City station, higher specific conductance, pH, and calcium concentrations in the river water indicated an increasing influence of groundwater, and were similar to groundwater during low-flow conditions. Strontium isotope ratios indicate groundwater originates from shallow parts of the Upper Floridan aquifer in the upper reaches of the river, and from increasingly deeper parts of the aquifer in the downstream direction. Mean annual base-flow estimates also indicate increasing groundwater discharge to the river in the downstream direction. Mean annual base flow estimated using standard hydrograph separation method assumptions ranged from about 4.7 to 5.1 inches per year

  3. Velocity mapping in the Lower Congo River: a first look at the unique bathymetry and hydrodynamics of Bulu Reach

    Science.gov (United States)

    Jackson, P. Ryan; Oberg, Kevin A.; Gardiner, Ned; Shelton, John

    2009-01-01

    The lower Congo River is one of the deepest, most powerful, and most biologically diverse stretches of river on Earth. The river’s 270 m decent from Malebo Pool though the gorges of the Crystal Mountains to the Atlantic Ocean (498 km downstream) is riddled with rapids, cataracts, and deep pools. Much of the lower Congo is a mystery from a hydraulics perspective. However, this stretch of the river is a hotbed for biologists who are documenting evolution in action within the diverse, but isolated, fish populations. Biologists theorize that isolation of fish populations within the lower Congo is due to barriers presented by flow structure and bathymetry. To investigate this theory, scientists from the U.S. Geological Survey and American Museum of Natural History teamed up with an expedition crew from National Geographic in 2008 to map flow velocity and bathymetry within target reaches in the lower Congo River using acoustic Doppler current profilers (ADCPs) and echo sounders. Simultaneous biological and water quality sampling was also completed. This paper presents some preliminary results from this expedition, specifically with regard to the velocity structure andbathymetry. Results show that the flow in the bedrock controlled Bulu reach of the lower Congo is highly energetic. Turbulent and secondary flow structures can span the full depth of flow (up to 165 m), while coherent bank-to-bank cross-channel flow structures are absent. Regions of flow separation near the banks are isolated from one another and from the opposite bank by high shear, high velocity zones with depth-averaged flow velocities that can exceed 4 m/s.

  4. 30-year changes in the nitrogen inputs to the Yangtze River Basin

    International Nuclear Information System (INIS)

    Wang, Qinxue; Koshikawa, Hiroshi; Liu, Chen; Otsubo, Kuninori

    2014-01-01

    To understand both spatial and temporal changes in nitrogen inputs to the Yangtze River Basin (YRB), we collected decadal statistical data for 1980, 1990, 2000 and 2010 at the county level and the annual statistical data for the period 1980–2010 at the provincial level of China. Based on these datasets, we estimated the nitrogen inputs, including the atmospheric deposition, synthetic N fertilizer, biological N fixation and recycling reactive N inputs, such as N from human waste and animal excrement, crop residue recycled as manure, and N emission from burning crop residue. The results showed that, geographically, the variation of the total amount of N input during the last 30 years (δN = N 2010  – N 1980 ) has increased about 0–50 kg ha −1 over most of the area of the YRB. Moreover, it has increased dramatically by about 50–300 kg ha −1 in the Sichuan Basin, the Han River Basin, the Poyang and Dongting lake basins, and the Yangtze Delta as well. Temporally, the total amount of N inputs to the whole YRB was approximately 16.4 Tg N in 2010, which was a 2.0-fold increase over 1980. It increased dramatically in the 1990s and then stabilized at a high level in the 2000s. The major N inputs were human and animal wastes as well as synthetic fertilizers, but they varied regionally. Animal waste was the major input to the water source regions, and its contribution percentage gradually decreased from upper to lower reaches. In contrast, the contribution of N fertilizer increased from upper to lower reaches, and became the major input to the middle and lower reaches. The total N inputs changed slightly in the upper reaches, but increased largely in the middle reaches in the last 30 years. However, in the lower reaches, it had increased remarkably before 2000, and then tended to decrease in the last decade. Finally, the atmospheric N deposition over the basin increased continuously in the last 30 years. (paper)

  5. Quantifying Hyporheic Exchanges in a Large Scale River Reach Using Coupled 3-D Surface and Subsurface Computational Fluid Dynamics Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Bao, J; Huang, M; Hou, Z; Perkins, W; Harding, S; Titzler, S; Ren, H; Thorne, P; Suffield, S; Murray, C; Zachara, J

    2017-03-01

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheic exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y+ wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results

  6. Propagation and composition of the flood wave on the upper Mississippi River, 1993

    Science.gov (United States)

    Moody, John A.

    1995-01-01

    During spring and summer 1993, record flooding inundated much of the upper Mississippi River Basin. The magnitude of the damages-in terms of property, disrupted business, and personal trauma was unmatched by any other flood disaster in United States history. Property damage alone is expected to exceed $10 billion. Damaged highways and submerged roads disrupted overland transportation throughout the flooded region. The Mississippi and the Missouri Rivers were closed to navigation before, during, and after the flooding. Millions of acres of productive farmland remained under water for weeks during the growing season. Rills and gullies in many tilled fields are the result of the severe erosion that occurred throughout the Midwestern United States farmbelt. The hydrologic effects of extended rainfall throughout the upper Midwestern United States were severe and widespread. The banks and channels of many rivers were severely eroded, and sediment was deposited over large areas of the basin's flood plain. Record flows submerged many areas that had not been affected by previous floods. Industrial and agricultural areas were inundated, which caused concern about the transport and fate of industrial chemicals, sewage effluent, and agricultural chemicals in the floodwaters. The extent and duration of the flooding caused numerous levees to fail. One failed levee on the Raccoon River in Des Moines, Iowa, led to flooding of the city's water treatment plant. As a result, the city was without drinking water for 19 days.As the Nation's principal water-science agency, the U.S. Geological Survey (USGS) is in a unique position to provide an immediate assessment of some of the hydrological effects of the 1993 flood. The USGS maintains a hydrologic data network and conducts extensive water-resources investigations nationwide. Long-term data from this network and information on local and regional hydrology provide the basis for identifying and documenting the effects of the flooding

  7. Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting—Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul

    2012-01-01

    Efforts are underway to identify actions that would improve water quality in the Link River to Keno Dam reach of the Upper Klamath River in south-central Oregon. To provide further insight into water-quality improvement options, three scenarios were developed, run, and analyzed using previously calibrated CE-QUAL-W2 hydrodynamic and water-quality models. Additional scenarios are under development as part of this ongoing study. Most of these scenarios evaluate changes relative to a "current conditions" model, but in some cases a "natural conditions" model was used that simulated the reach without the effect of point and nonpoint sources and set Upper Klamath Lake at its Total Maximum Daily Load (TMDL) targets. These scenarios were simulated using a model developed by the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc. for the years 2006–09, referred to here as the "USGS model." Another model of the reach was developed by Tetra Tech, Inc. for years 2000 and 2002 to support the Klamath River TMDL process; that model is referred to here as the "TMDL model." The three scenarios described in this report included (1) an analysis of whether this reach of the Upper Klamath River would be in compliance with dissolved oxygen standards if sources met TMDL allocations, (2) an application of more recent datasets to the TMDL model with comparison to results from the USGS model, and (3) an examination of the effect on dissolved oxygen in the Klamath River if particulate material were stopped from entering Klamath Project diversion canals. Updates and modifications to the USGS model are in progress, so in the future these scenarios will be reanalyzed with the updated model and the interim results presented here will be superseded. Significant findings from this phase of the investigation include: * The TMDL analysis used depth-averaged dissolved oxygen concentrations from model output for comparison with dissolved oxygen standards. The Oregon dissolved oxygen

  8. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  9. Where Does the River Run? Lessons from a Semi-Arid River

    Science.gov (United States)

    Meixner, T.; Soto, C. D.; Richter, H.; Uhlman, K.

    2009-12-01

    Spatial data sets to assess the nature of stream groundwater interactions and the resulting power law/fractal structure of travel time distributions are rare. Spatial data sets can be collected using high technology or by use of a large number of field assistants. The labor intensive way is expensive unless the public can be enlisted as citizen scientists to gather large, robust, spatial data sets robustly and cheaply. Such an effort requires public interest and the ability of a few to organize such an effort at a basin if not regional scale. The San Pedro basin offers such an opportunity for citizen science due to the water resource restrictions of the basins semi-arid climate. Since 1999 The Nature Conservancy, in cooperation with the Upper San Pedro Partnership, the public at large and various university and federal science agency participants, has been mapping where the San Pedro River has water present versus where it is dry. This mapping has used an army of volunteers armed with GPS units, clipboards and their eyes to make the determination if a given 10m reach of the river is wet or dry. These wet/dry mapping data now exist for 11 different annual surveys. These data are unique and enable an investigation of the hydrologic connectedness of flowing waters within this system. Analysis of these data reveals several important findings. The total river area that is wet is strongly correlated with stream flow as observed at three USGS gauges. The correlation is strongest however for 90 day and 1 year average flows rather than more local in time observations such as the daily, 7 day or monthly mean flow at the gauges. This result indicates that where the river is flowing depends on long term hydrologic conditions. The length of river reach that is mapped as wet or dry is indicative of the travel distance and thus time that water travels in the surface (wet) and subsurface (dry) of the river system. The reach length that is mapped as wet follows a power law function

  10. A new species of Hyphessobrycon (Characiformes, Characidae from the upper Guaviare River, Orinoco River Basin, Colombia

    Directory of Open Access Journals (Sweden)

    Carlos A. García-Alzate

    2017-04-01

    Full Text Available Hyphessobrycon klausanni sp. n. is described from small drainages of the upper Guaviare River (Orinoco River Basin in Colombia. It differs from all congeners by having a wide, conspicuous, dark lateral stripe extending from the anterior margin of the eye across the body and continued through the middle caudal-fin rays, and that covers (vertically three or four horizontal scale rows. It also differs by having an orange-yellow stripe extending from the anterosuperior margin of the eye to the caudal peduncle above the lateral line in life. It differs from all other species of Hyphessobrycon that have a similar dark lateral stripe: H. cyanotaenia, H. loretoensis, H. melanostichos, H. nigricinctus, H. herbertaxelrodi, H. eschwartzae, H. montogoi, H. psittacus, H. metae, H. margitae, H. vanzolinii, and H. peruvianus in having only three or four pored scales in the lateral line, 21 to 24 lateral scales and six teeth in the inner premaxillary row. Hyphessobrycon klausanni differs from H. loretoensis in having seven to eight maxillary teeth (vs. three to four and in having a longer caudal peduncle (12.4–17.0% SL vs. 4.6–8.0% SL. Additionally Hyphessobrycon klausanni can be distinguished from the other species of Hyphessobrycon with a dark lateral stripe from the Orinoco River Basin (H. metae and H. acaciae in having two teeth in the outer premaxillary row (vs. three to four and 10 branched pectoral–fin rays (vs. 11 to 12. It further differs from H. metae by the length of the snout (17.6–22.8% HL vs. 9.9–15.2% HL and by the length of the caudal peduncle (12.4–17.0% SL vs. 7.3–11.8% SL.

  11. Analysis of land use and climate change impacts by comparing river flow records for headwaters and lowland reaches

    Science.gov (United States)

    Fazel, Nasim; Torabi Haghighi, Ali; Kløve, Bjørn

    2017-11-01

    The natural flow regime of rivers has been strongly altered world-wide, resulting in ecosystem degradation and lakes drying up, especially in arid and semi-arid regions. Determining whether this is due mainly to climate change or to water withdrawal for direct human use (e.g. irrigation) is difficult, particularly for saline lake basins where hydrology data are scarce. In this study, we developed an approach for assessing climate and land use change impacts based on river flow records for headwater and lowland reaches of rivers, using the case of Lake Urmia basin, in north-westen Iran. Flow regimes at upstream and downstream stations were studied before and after major dam construction and irrigation projects. Data from 57 stations were used to establish five different time intervals representing 10 different land use development periods (scenarios) for upstream (not impacted) and downstream (impacted) systems. An existing river impact (RI) index was used to assess changes in three main characteristics of flow (magnitude, timing and, intra-annual variability). The results showed that irrigation was by far the main driving force for river flow regime changes in the lake basin. All stations close to the lake and on adjacent plains showed significantly higher impacts of land use change than headwaters. As headwaters are relatively unaffected by agriculture, the non-significant changes observed in headwater flow regimes indicate a minor effect of climate change on river flows in the region. The benefit of the method developed is clear interpretation of results based on river flow records, which is useful in communicating land use and climate change information to decision makers and lake restoration planners.

  12. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    Science.gov (United States)

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  13. Impacts of Rainfall and Land Use on Sediment Regime in a Semi-Arid Region: Case Study of the Wuqi Catchment in the Upper Beiluo River Basin, China

    NARCIS (Netherlands)

    Zhu, J.; Gao, P.; Geissen, V.; Maroulis, J.; Ritsema, C.J.; Mu, X.; Zhao, G.

    2015-01-01

    The middle reaches of the Yellow River Basin transport the vast majority of sediment (>85% of the basin's total available sediment load), which has had profound effects on the characteristics of the middle and lower reaches of the Yellow River. With recent land use and land cover change, the

  14. Sedimentation under variable shear stress at lower reach of the Rupnarayan River, West Bengal, India

    Directory of Open Access Journals (Sweden)

    Swapan Kumar Maity

    2017-04-01

    Full Text Available The lower reach of the Rupnarayan River has been deteriorated and incapacitated due to continuous sedimentation (26.57 million m3 shoaling in last 25 years. Attempts have been made to explain the causes and mechanisms of sedimentation in connection to the seasonal fluctuation of shear stress. River depth and water velocity was measured by echo-sounder and current meter respectively. Textural analysis of grains was done by sieving technique. Available and critical shear stress (N/m2 have been calculated following Du Boys (1879, Shield (1936 and Van Ledden (2003 formula. The lack of available energy to transport a particular grain size during low tide (in dry season is the main reason behind the rapid sedimentation in this area. Most of the places (>75% having negative deviation of shear stress (available shear stress lesser than critical shear stress, during low tide are characterized by deposition of sediments. The presence of mud (silt and clay above the critical limit (15% in some of the sediment samples generates the cohesive property, restricts sediments entrainment and invites sedimentation.

  15. Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016

    Science.gov (United States)

    Li, Chunxiang; Tian, Qinhua; Yu, Rong; Zhou, Baiquan; Xia, Jiangjiang; Burke, Claire; Dong, Buwen; Tett, Simon F. B.; Freychet, Nicolas; Lott, Fraser; Ciavarella, Andrew

    2018-01-01

    May 2016 was the third wettest May on record since 1961 over central eastern China based on station observations, with total monthly rainfall 40% more than the climatological mean for 1961-2013. Accompanying disasters such as waterlogging, landslides and debris flow struck part of the lower reaches of the Yangtze River. Causal influence of anthropogenic forcings on this event is investigated using the newly updated Met Office Hadley Centre system for attribution of extreme weather and climate events. Results indicate that there is a significant increase in May 2016 rainfall in model simulations relative to the climatological period, but this increase is largely attributable to natural variability. El Niño years have been found to be correlated with extreme rainfall in the Yangtze River region in previous studies—the strong El Niño of 2015-2016 may account for the extreme precipitation event in 2016. However, on smaller spatial scales we find that anthropogenic forcing has likely played a role in increasing the risk of extreme rainfall to the north of the Yangtze and decreasing it to the south.

  16. Obtaining natural-like flow releases in diverted river reaches from simple riparian benefit economic models.

    Science.gov (United States)

    Perona, Paolo; Dürrenmatt, David J; Characklis, Gregory W

    2013-03-30

    We propose a theoretical river modeling framework for generating variable flow patterns in diverted-streams (i.e., no reservoir). Using a simple economic model and the principle of equal marginal utility in an inverse fashion we first quantify the benefit of the water that goes to the environment in relation to that of the anthropic activity. Then, we obtain exact expressions for optimal water allocation rules between the two competing uses, as well as the related statistical distributions. These rules are applied using both synthetic and observed streamflow data, to demonstrate that this approach may be useful in 1) generating more natural flow patterns in the river reach downstream of the diversion, thus reducing the ecodeficit; 2) obtaining a more enlightened economic interpretation of Minimum Flow Release (MFR) strategies, and; 3) comparing the long-term costs and benefits of variable versus MFR policies and showing the greater ecological sustainability of this new approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Alien freshwater polychaetes Hypania invalida (Grube 1860 and Laonome calida Capa 2007 in the Upper Odra River (Baltic Sea catchment area

    Directory of Open Access Journals (Sweden)

    Pabis Krzysztof

    2017-01-01

    Full Text Available Two polychaete species, Hypania invalida and Laonome calida, were found in the Upper Odra River in 2016. Both species were recorded close to a natural river bank down to 1 m depths. They inhabited sandy-gravelly and sandy-muddy sediments. H. invalida is an alien invasive Ponto-Caspian species, previously known in Poland from the Odra River estuary only. Our results may indicate a further rapid dispersal of H. invalida upstream the Odra River or an accidental introduction. This study is the first record of L. calida in the Baltic Sea catchment. This Australian species has been recently introduced into Europe. Prior to this study, it had been reported from Dutch rivers only. The present data suggest accidental introduction of the species to European rivers; however, our findings show an urgent need for a close monitoring of the polychaete in Europe.

  18. Increasing influence of air temperature on upper Colorado River streamflow

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  19. Distributed modeling of landsurface water and energy budgets in the inland Heihe river basin of China

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2009-10-01

    Full Text Available A distributed model for simulating the land surface hydrological processes in the Heihe river basin was developed and validated on the basis of considering the physical mechanism of hydrological cycle and the artificial system of water utilization in the basin. Modeling approach of every component process was introduced from 2 aspects, i.e., water cycle and energy cycle. The hydrological processes include evapotranspiration, infiltration, runoff, groundwater flow, interaction between groundwater and river water, overland flow, river flow and artificial cycle processes of water utilization. A simulation of 21 years from 1982 to 2002 was carried out after obtaining various input data and model parameters. The model was validated for both the simulation of monthly discharge process and that of daily discharge process. Water budgets and spatial and temporal variations of hydrological cycle components as well as energy cycle components in the upper and middle reach Heihe basin (36 728 km2 were studied by using the distributed hydrological model. In addition, the model was further used to predict the water budgets under the future land surface change scenarios in the basin. The modeling results show: (1 in the upper reach watershed, the annual average evapotranspiration and runoff account for 63% and 37% of the annual precipitation, respectively, the snow melting runoff accounts for 19% of the total runoff and 41% of the direct runoff, and the groundwater storage has no obvious change; (2 in the middle reach basin, the annual average evapotranspiration is 52 mm more than the local annual precipitation, and the groundwater storage is of an obvious declining trend because of irrigation water consumption; (3 for the scenario of conservation forest construction in the upper reach basin, although the evapotranspiration from interception may increase, the soil evaporation may reduce at the same time, therefore the total evapotranspiration may not

  20. Structural analysis of the Upper Internals Structure for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Houtman, J.L.

    1979-01-01

    The Upper Internals Structure (UIS) of the Clinch River Breeder Reactor Plant (CRBRP) provides control of core outlet flow to prevent severe thermal transients from occuring at the reactor vessel and primary heat transport outlet piping, provides instrumentation to monitor core performance, provides support for the control rod drivelines, and provides secondary holddown of the core. All of the structural analysis aspects of assuring the UIS is structurally adequate are presented including simplified and rigorous inelastic analysis methods, elevated temperature criteria, environmental effects on material properties, design techniques, and manufacturing constraints

  1. Long Valley Caldera Lake and reincision of Owens River Gorge

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2016-12-16

    Owens River Gorge, today rimmed exclusively in 767-ka Bishop Tuff, was first cut during the Neogene through a ridge of Triassic granodiorite to a depth as great as its present-day floor and was then filled to its rim by a small basaltic shield at 3.3 Ma. The gorge-filling basalt, 200 m thick, blocked a 5-km-long reach of the upper gorge, diverting the Owens River southward around the shield into Rock Creek where another 200-m-deep gorge was cut through the same basement ridge. Much later, during Marine Isotope Stage (MIS) 22 (~900–866 ka), a piedmont glacier buried the diversion and deposited a thick sheet of Sherwin Till atop the basalt on both sides of the original gorge, showing that the basalt-filled reach had not, by then, been reexcavated. At 767 ka, eruption of the Bishop Tuff blanketed the landscape with welded ignimbrite, deeply covering the till, basalt, and granodiorite and completely filling all additional reaches of both Rock Creek canyon and Owens River Gorge. The ignimbrite rests directly on the basalt and till along the walls of Owens Gorge, but nowhere was it inset against either, showing that the basalt-blocked reach had still not been reexcavated. Subsidence of Long Valley Caldera at 767 ka produced a steep-walled depression at least 700 m deeper than the precaldera floor of Owens Gorge, which was beheaded at the caldera’s southeast rim. Caldera collapse reoriented proximal drainages that had formerly joined east-flowing Owens River, abruptly reversing flow westward into the caldera. It took 600,000 years of sedimentation in the 26-km-long, usually shallow, caldera lake to fill the deep basin and raise lake level to its threshold for overflow. Not until then did reestablishment of Owens River Gorge begin, by incision of the gorge-filling ignimbrite.

  2. Application of Biota Dose Assessment Committee Methodology to Assess Radiological Risk to Salmonids in the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Poston, Ted M.; Antonio, Ernest J.; Peterson, Robert E.

    2002-01-01

    Protective guidance for biota in the U.S. Department of Energy's Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota is based on population level protection guides of 10 or 1 mGy.d-1, respectively. Several 'ecologically significant units' of Pacific salmon are listed under the Endangered Species Act. The Middle Columbia Steelhead unit is endangered and the adult steelhead spawn in the reach. The reach also supports one of the largest spawning populations of fall chinook salmon in the Northwest. The existence of the major spawning areas in the Hanford Reach has focused considerable attention on their ecological health by the U.S. Department of Energy, other federal and state regulatory agencies, and special interest groups. Dose assessments for developing salmonid embryos were performed for the hypothetical exposure to tritium, strontium-90, technetium-99, iodine-129, and uranium isotopes at specific sites on the Hanford Reach. These early life stages are potentially exposed in some areas of the Hanford Reach to radiological contaminants that enter the river via shoreline seeps and upwelling through the river substrate. At the screening level, one site approached the dose guideline of 10 mGy.d-1 established with the RAD-BCG methodology and exceeded a precautionary benchmark of 2.5 mGy.d-1. Special status of listed species affords these populations more consideration when assessing potential impacts of exposure to radionuclides and other contaminants associated with the Hanford Site operations. The evolution of dose benchmarks for aquatic organisms and consideration of precautionary principal and cumulative impacts are discussed in this paper.

  3. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2007. Potentiometric contours are based on water-level measurements collected at 566 wells during the period May 4-June 11 near the end of the dry season, however most of the water level data for this map were collected by the U.S. Geological Survey during the period May 21-25, 2007. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  4. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    Science.gov (United States)

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water

  5. Hydrological Impacts of Flood Storage and Management on Irrigation Water Abstraction in Upper Ewaso Ng’iro River Basin, Kenya

    NARCIS (Netherlands)

    Ngigi, S.N.; Savenije, H.H.G.; Gichuki, F.N.

    2008-01-01

    The upper Ewaso Ng’iro basin, which starts from the central highlands of Kenya and stretches northwards transcending different climatic zones, has experienced decreasing river flows for the last two decades. The Naro Moru sub-basin is used to demonstrate the looming water crisis in this water scarce

  6. Characteristics of dissolved organic matter in the Upper Klamath River, Lost River, and Klamath Straits Drain, Oregon and California

    Science.gov (United States)

    Goldman, Jami H.; Sullivan, Annett B.

    2017-12-11

    Concentrations of particulate organic carbon (POC) and dissolved organic carbon (DOC), which together comprise total organic carbon, were measured in this reconnaissance study at sampling sites in the Upper Klamath River, Lost River, and Klamath Straits Drain in 2013–16. Optical absorbance and fluorescence properties of dissolved organic matter (DOM), which contains DOC, also were analyzed. Parallel factor analysis was used to decompose the optical fluorescence data into five key components for all samples. Principal component analysis (PCA) was used to investigate differences in DOM source and processing among sites.At all sites in this study, average DOC concentrations were higher than average POC concentrations. The highest DOC concentrations were at sites in the Klamath Straits Drain and at Pump Plant D. Evaluation of optical properties indicated that Klamath Straits Drain DOM had a refractory, terrestrial source, likely extracted from the interaction of this water with wetland peats and irrigated soils. Pump Plant D DOM exhibited more labile characteristics, which could, for instance, indicate contributions from algal or microbial exudates. The samples from Klamath River also had more microbial or algal derived material, as indicated by PCA analysis of the optical properties. Most sites, except Pump Plant D, showed a linear relation between fluorescent dissolved organic matter (fDOM) and DOC concentration, indicating these measurements are highly correlated (R2=0.84), and thus a continuous fDOM probe could be used to estimate DOC loads from these sites.

  7. The origins and behaviour of carbon in a major semi-arid river, the Murray River, Australia, as constrained by carbon isotopes and hydrochemistry

    International Nuclear Information System (INIS)

    Cartwright, Ian

    2010-01-01

    Research highlights: → δ 13 C and concentrations of DIC in Murray River controlled by mineralisation of organic carbon and evasion. → Murray River is source of atmospheric CO 2 . → In-river processing of carbon results in difficulties in determining carbon sources. - Abstract: δ 13 C values of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate organic C (POC) together with δ 18 O and δ 2 H values of water, δ 34 S values of dissolved SO 4 , and major ion concentrations were measured in the Murray River and its tributaries between November 2005 and April 2007 to constrain the origins and behaviour of riverine C. δ 13 C DIC values in the Murray River vary between -9.5 and -4.7 per mille with a range of 13 C DIC values of the tributaries are -11.0 per mille to -5.1 per mille. DIC concentrations of the Murray River increase from ∼25 mg/L in the middle and upper reaches of the river to 45-55 mg/L in the lower reaches. However, the mass ratio of DIC as a proportion of the total dissolved solids (TDS) decreases from ∼0.6-0.7 in the headwaters to ∼0.2-0.3 in the lower reaches of the river, with similar downstream changes in DIC/Cl ratios. This precludes simple evaporative concentration of DIC and is interpreted as the river evading CO 2 ; this interpretation is consistent with pCO 2 values that are in the range 550-11,200 ppm volume (ppmv), which are far higher than those in equilibrium with the atmosphere (∼360 ppmv). The δ 13 C DIC values are similar to those that would be produced by the weathering of marine limestone (δ 13 C ∼ 0 per mille). However, the lack of marine limestones cropping out in the Murray-Darling Basin and the relatively uniform δ 13 C DIC values of the Murray River (even in upland reaches where the dominant rock types are metamorphosed silicates and granites) make this unlikely. Rather the high pCO 2 values and δ 13 C DIC values are best explained by a combination of mineralisation of low δ 13 C organic C

  8. Prevalence of Anguillicoloides crassus and growth variation in migrant yellow-phase American eels of the upper Potomac River drainage

    Science.gov (United States)

    Zimmerman, Jennifer L.; Welsh, Stuart A.

    2012-01-01

    Prevalence of the non-native swim bladder nematode Anguillicoloides crassus has recently increased in American eels from estuaries of the North American Atlantic coast, but little is known about parasite prevalence or conditions of previous infection in upstream migrant eels within upper watersheds. This study is the first to confirm presence of A. crassus in the upper Potomac River watershed. We estimated A. crassus prevalence during 3 time periods: September to October 2006 (5/143 eels, 3.5%), August to October 2007 (0/49 eels), and June 2008 (0/50 eels). All eels were sampled from the Millville Dam eel ladder on the lower Shenandoah River, a Potomac River tributary located approximately 285 km upstream of Chesapeake Bay, USA. Of the 5 infected eels, parasite intensity was 1 for each eel, and mean intensity was also 1.0. A swim bladder degenerative index (SDI) was calculated for the 50 eels from the final sampling period, and 38% of those eels (19 of 50) showed signs of previous infection by A. crassus. We also aged 42 of the 50 eels (mean ± SE = 6.7 ± 0.29 yr, range 4 to 11 yr) from the final sampling period. Based on the range of possible SDI scores (0 to 6), severity of previously infected swim bladders was moderate (SDI = 1 or 2). Previously infected eels, however, had a lower length-at-age than that of uninfected eels. Female yellow-phase eels in upper watersheds develop into large highly fecund silver-phase adults; hence, a parasite-induced effect on growth of yellow-phase eels could ultimately reduce reproductive potential.

  9. Biological and associated water-quality data for lower Olmos Creek and upper San Antonio River, San Antonio, Texas, March-October 1990

    Science.gov (United States)

    Taylor, R. Lynn

    1995-01-01

    Biological and associated water-quality data were collected from lower Olmos Creek and upper San Antonio River in San Antonio, Texas, during March-October 1990, the second year of a multiyear data-collection program. The data will be used to document water-quality conditions prior to implementation of a proposal to reuse treated wastewater to irrigate city properties in Olmos Basin and Brackenridge Parks and to augment flows in the Olmos Creek/San Antonio River system.

  10. Spatial and temporal variability of nitrate sinks and sources in riparian soils of a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg; Huber, Benjamin; Shrestha, Juna; Samaritani, Emanuela; Niklaus, Pascal A.

    2010-05-01

    In order to assess the effects of river restoration on water quality, the biogeochemical functions of restored river reaches have to be quantified. Of particular interest is the ability of riparian functional processing zones (FPZ) to remove nitrate from infiltrating river water or agricultural runoff. Processes involved are removal of nitrate by denitrification and immobilisation of nitrogen in plant or microbial biomass. On the other hand, mineralisation followed by nitrification can lead to an increase in leachable nitrate. The latter process is fueled by the frequent input of fresh dissolved or particle bound organic matter, characteristic for temporarily flooded riparian zones. The objective of this study was to characterize the spatial and temporal variability of nitrate concentrations in the soil solution of a restored reach of the Alpine river Thur in northeastern Switzerland. The study was part of the interdisciplinary project cluster RECORD, which was initiated to advance the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The studied river reach comprised the following three FPZ representing a lateral successional gradient with decreasing hydrological connectivity (i.e. decreasing flooding frequency and duration). (i) The grass zone developed naturally on a gravel bar after restoration of the channelized river section (mainly colonized by canary reed grass Phalaris arundinacae). The soil is composed of up to 80 cm thick fresh sediments trapped and stabilized by the grass roots. (ii) The bush zone is composed of young willow trees (Salix viminalis) planted during restoration to stabilize older overbank deposits. (iii) The mixed forest is a mature riparian hardwood forest developed on older overbank sediments with ash and maple as dominant trees. The study period was between summer 2008 and winter 2009/2010 including three flood events in August 2008, June 2009 and July 2009. The second flood inundated the

  11. Modeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006-09

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Asbill, Jessica R.; Wellman, Roy E.; Stewart, Marc A.; Johnston, Matthew W.; Sogutlugil, I. Ertugrul

    2011-01-01

    A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link-Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006-09, but also to test several load-reduction scenarios that have implications for future water-resources management in the river basin. The model construction and calibration process provided results concerning water quality and transport in the Link-Keno reach of the Klamath River, ranging from interesting circulation patterns in the Lake Ewauna area to the nature and importance of organic matter and algae. These insights and results include: * Modeled segment-average water velocities ranged from near 0.0 to 3.0 ft/s in 2006 through 2009. Travel time through the model reach was about 4 days at 2,000 ft3/s and 12 days at 700 ft3/s flow. Flow direction was aligned with the upstream-downstream channel axis for most of the Link-Keno reach, except for Lake Ewauna. Wind effects were pronounced at Lake Ewauna during low-flow conditions, often with circulation in the form of a gyre that rotated in a clockwise direction when winds were towards the southeast and in a counterclockwise direction when winds were towards the northwest

  12. Flow of river water into a karstic limestone aquifer-2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)

    1998-11-01

    Tritium/helium-3 ({sup 3}H/{sup 3}He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The {sup 3}H/{sup 3}He age is independent of the extent of dilution with older ({sup 3}H-free and {sup 3}He{sub trit}-free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl{sup -} and {delta}{sup 18}O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO{sub 4}-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg{sup -1}) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the {sup 3}H concentration of the groundwater. Because of uncertainties associated with very low {sup 3}H

  13. Flow of river water into a karstic limestone aquifer-2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    International Nuclear Information System (INIS)

    Plummer, L.N.; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 ( 3 H/ 3 He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3 H/ 3 He age is independent of the extent of dilution with older ( 3 H-free and 3 He trit -free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl - and δ 18 O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO 4 -reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg -1 ) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the 3 H concentration of the groundwater. Because of uncertainties associated with very low 3 H and 3 He content in dilute mixtures, 3 H/ 3 He dating is

  14. New Data on Conodonts of the Upper Devonian of the Polar Urals (Ostantsovy Section, Malaya Usa River

    Directory of Open Access Journals (Sweden)

    M.A. Soboleva

    2016-09-01

    Full Text Available The main features of the Upper Devonian sediments on the right side of the Ostantsovy Creek (the left tributary of the Malaya Usa River in the eastern part of the Bielsko-Eletskaya structural formational belt on the western slope of the Polar Urals have been considered. The late Frasnian age of these sediments has been determined on the basis of conodonts (the linguiformis zone of the standard conodont scale. The transition from clastic and organic limestones with massive stromatoporoid forms to limestones with fused (reservoir stromatoporoid forms and Palmatolepis biofacies is indicative of the transgressive shift of the linguiformis phase. This transgressive level is an indirect expression of the Upper Kellwasser global event.

  15. SUSTAINABLE MANAGEMENT OF RIVER OASES ALONG THE TARIM RIVER (P.R. CHINA AND THE ECOSYSTEM SERVICES APPROACH

    Directory of Open Access Journals (Sweden)

    Bernd Cyffka

    2013-01-01

    Full Text Available In north-western China, the endorheic Tarim River is running along the northern rim of the Taklamakan desert. It is the solely water source for the oases in the region as precipitation is low. The river is mainly fed from water of snow and glacier melt, causing floods in the summer months. Due to global climate change the annual water discharge is increasing. However, not sufficient water flows downstream, as the region is the main production area of cotton in China, and much water is needed for irrigation. A conflict arises between water users of the upper reaches and water users of the lower reaches of the Tarim River as well as with the natural vegetation. The central question of the Sino-German SuMaRiO project (Sustainable Management of River Oases is how to manage land use, i.e. irrigation agriculture and utilization of the natural ecosystems, and water use in a very water-scarce region, with changing water availability due to climate change, such that ecosystem services and economic benefits are maintained in the best balance for a sustainable development. The overall goal of the project is to support oasis management along the Tarim River under conditions of climatic and societal changes by: i developing methods for analyzing ecosystem functions/ecosystem services, and integrating them into land and water management of oases and riparian forests; ii Involving stakeholders in the research process to integrate their knowledge and problem perceptions into the scientific process; iii Developing tools (Decision support system with Chinese decision makers that demonstrate the ecological and socio-economic consequences of their decisions in a changing world.

  16. Influence of fluvial environments on sediment archiving processes and temporal pollutant dynamics (Upper Loire River, France).

    Science.gov (United States)

    Dhivert, E; Grosbois, C; Rodrigues, S; Desmet, M

    2015-02-01

    Floodplains are often cored to build long-term pollutant trends at the basin scale. To highlight the influences of depositional environments on archiving processes, aggradation rates, archived trace element signals and vertical redistribution processes, two floodplain cores were sampled near in two different environments of the Upper Loire River (France): (i) a river bank ridge and (ii) a paleochannel connected by its downstream end. The base of the river bank core is composed of sandy sediments from the end of the Little Ice Age (late 18th century). This composition corresponds to a proximal floodplain aggradation (sediments that settled in the distal floodplain. In this distal floodplain environment, the aggradation rate depends on the topography and connection degree to the river channel. The temporal dynamics of anthropogenic trace element enrichments recorded in the distal floodplain are initially synchronous and present similar levels. Although the river bank core shows general temporal trends, the paleochannel core has a better resolution for short-time variations of trace element signals. After local water depth regulation began in the early 1930s, differences of connection degree were enhanced between the two cores. Therefore, large trace element signal divergences are recorded across the floodplain. The paleochannel core shows important temporal variations of enrichment levels from the 1930s to the coring date. However, the river bank core has no significant temporal variations of trace element enrichments and lower contamination levels because of a lower deposition of contaminated sediments and a pedogenetic trace elements redistribution. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke.

    Science.gov (United States)

    Duff, Margaret; Chen, Yinpeng; Cheng, Long; Liu, Sheng-Min; Blake, Paul; Wolf, Steven L; Rikakis, Thanassis

    2013-05-01

    Adaptive mixed reality rehabilitation (AMRR) is a novel integration of motion capture technology and high-level media computing that provides precise kinematic measurements and engaging multimodal feedback for self-assessment during a therapeutic task. We describe the first proof-of-concept study to compare outcomes of AMRR and traditional upper-extremity physical therapy. Two groups of participants with chronic stroke received either a month of AMRR therapy (n = 11) or matched dosing of traditional repetitive task therapy (n = 10). Participants were right handed, between 35 and 85 years old, and could independently reach to and at least partially grasp an object in front of them. Upper-extremity clinical scale scores and kinematic performances were measured before and after treatment. Both groups showed increased function after therapy, demonstrated by statistically significant improvements in Wolf Motor Function Test and upper-extremity Fugl-Meyer Assessment (FMA) scores, with the traditional therapy group improving significantly more on the FMA. However, only participants who received AMRR therapy showed a consistent improvement in kinematic measurements, both for the trained task of reaching to grasp a cone and the untrained task of reaching to push a lighted button. AMRR may be useful in improving both functionality and the kinematics of reaching. Further study is needed to determine if AMRR therapy induces long-term changes in movement quality that foster better functional recovery.

  18. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; McMichael, Geoffrey A. [Pacific Northwest National Laboratory

    2009-08-21

    In 2007, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. Monthly releases of radio-tagged fish ({approx}95/month) were made from May through October and releases of 122-149/month acoustic-tagged fish per month were made from August through October. We compared the size at release of our tagged fish to that which could have been obtained at the same time from in-river, beach seine collections made by the Nez Perce Tribe. Had we relied on in-river collections to obtain our fish, we would have obtained very few in June from the free-flowing river but by late July and August over 90% of collected fish in the transition zone were large enough for tagging. Detection probabilities of radio-tagged subyearlings were generally high ranging from 0.60 (SE=0.22) to 1.0 (SE=0) in the different study reaches and months. Lower detection probabilities were observed in the confluence and upper reservoir reaches where fewer fish were detected. Detection probabilities of acoustic-tagged subyearlings were also high and ranged from 0.86 (SE=0.09) to 1.0 (SE=0) in the confluence and upper reservoir reaches during August through October. Estimates of the joint probability of migration and survival generally declined in a downstream direction for fish released from June through August. Estimates were lowest in the transition zone (the lower 7 km of the Clearwater River) for the June release and lowest in the confluence area for July and August releases. The joint probability of migration and survival in these reaches was higher for the September and October releases, and were similar to those of fish released in May. Both fish weight and length at tagging were significantly correlated with the joint probability of migrating and surviving for both radio-tagged and acoustic-tagged fish. For both tag types, fish that were heavier at tagging had a

  19. Simulated Effects of Year 2030 Water-Use and Land-Use Changes on Streamflow near the Interstate-495 Corridor, Assabet and Upper Charles River Basins, Eastern Massachusetts

    Science.gov (United States)

    Carlson, Carl S.; Desimone, Leslie A.; Weiskel, Peter K.

    2008-01-01

    Continued population growth and land development for commercial, industrial, and residential uses have created concerns regarding the future supply of potable water and the quantity of ground water discharging to streams in the area of Interstate 495 in eastern Massachusetts. Two ground-water models developed in 2002-2004 for the Assabet and Upper Charles River Basins were used to simulate water supply and land-use scenarios relevant for the entire Interstate-495 corridor. Future population growth, water demands, and commercial and residential growth were projected for year 2030 by the Metropolitan Area Planning Council. To assess the effects of future development on subbasin streamflows, seven scenarios were simulated by using existing computer-based ground-water-flow models with the data projected for year 2030. The scenarios incorporate three categories of projected 2030 water- and land-use data: (1) 2030 water use, (2) 2030 land use, and (3) a combination of 2030 water use and 2030 land use. Hydrologic, land-use, and water-use data from 1997 through 2001 for the Assabet River Basin study and 1989 through 1998 for the Upper Charles River Basin study were used to represent current conditions - referred to as 'basecase' conditions - in each basin to which each 2030 scenario was compared. The effects of projected 2030 land- and water-use change on streamflows in the Assabet River Basin depended upon the time of year, the hydrologic position of the subbasin in the larger basin, and the relative areas of new commercial and residential development projected for a subbasin. Effects of water use and land use on streamflow were evaluated by comparing average monthly nonstorm streamflow (base flow) for March and September simulated by using the models. The greatest decreases in streamflow (up to 76 percent in one subbasin), compared to the basecase, occurred in September, when streamflows are naturally at their lowest level. By contrast, simulated March streamflows

  20. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    Science.gov (United States)

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    . Generally, the upper Peace River is characterized by a shallow, buried irregular top of rock, numerous observed sinkholes, and subsidence depressions. The downward head gradient provides potential for the Peace River to lose water to the ground-water system. Along the middle Peace River area, head gradients alternate between downward and upward, creating both recharging and discharging ground-water conditions. Seismic records show that buried, laterally continuous reflectors in the lower Peace River pinch out in the middle Peace River streambed. Small springs have been observed along the streambed where these units pinch out. This area corresponds to the region where highest ground-water seepage volumes were measured during this study. Further south, along the lower Peace River, upward head gradients provide conditions for ground-water discharge into the Peace River. Generally, confinement between the surficial aquifer and the confined ground-water systems in this area is better than to the north. However, localized avenues for surface-water and ground-water interactions may exist along discontinuities observed in seismic reflectors associated with large-scale flexures or subsidence features. Ground-water seepage gains or losses along the Peace River were quantified by making three seepage runs during periods of: (1) low base flow, (2) high base flow, and (3) high flow. Low and high base-flow seepage runs were performed along a 74-mile length of the Peace River, between Bartow and Nocatee. Maximum losses of 17.3 cubic feet per second (11.2 million gallons per day) were measured along a 3.2-mile reach of the upper Peace River. The high-flow seepage run was conducted to quantify losses in the Peace River channel and floodplain between Bartow and Fort Meade. Seepage losses calculated during high-flow along a 7.2-mile reach of the Peace River, from the Clear Springs Mine bridge to the Mobil Mine bridge, were approximately 10 percent of the river flow, or 118 c

  1. Analysis of the spatial and temporal variability of mountain snowpack and terrestrial water storage in the Upper Snake River, USA

    Science.gov (United States)

    The spatial and temporal relationships of winter snowpack and terrestrial water storage (TWS) in the Upper Snake River were analyzed for water years 2001–2010 at a monthly time step. We coupled a regionally validated snow model with gravimetric measurements of the Earth’s water...

  2. SEAWARD DRIFT OF THE PONTIC SHAD LARVAE (ALOSA PONTICA) AND THE INFLUENCE OF DANUBE RIVER HYDROLOGY ON THEIR TRAVEL PATH THROUGH THE DANUBE DELTA SYSTEM.

    OpenAIRE

    NAVODARU I.

    2001-01-01

    The Pontic shad lives in the northwestern part of the Black Sea. It migrates in the Danube River for spawning. The larvae drift passively towards the sea when they reach the life stage ranging from pre-larvae to post-larvae. During the larval stage the Pontic shad is floating, mainly in the 0-50 cm upper layer of river. Upstream of the Danube Delta, in the straight sector of the river, alosids are distributed mostly towards the middle of the river, where the water velocity is higher. In the c...

  3. Simulation of river plume behaviors in a tropical region: Case study of the Upper Gulf of Thailand

    Science.gov (United States)

    Yu, Xiaojie; Guo, Xinyu; Morimoto, Akihiko; Buranapratheprat, Anukul

    2018-02-01

    River plumes are a general phenomenon in coastal regions. Most previous studies focus on river plumes in middle and high latitudes with few studies examining those in low latitude regions. Here, we apply a numerical model to the Upper Gulf of Thailand (UGoT) to examine a river plume in low latitudes. Consistent with observational data, the modeled plume has seasonal variation dependent on monsoon conditions. During southwesterly monsoons, the plume extends northeastward to the head of the gulf; during northeasterly monsoons, it extends southwestward to the mouth of the gulf. To examine the effects of latitude, wind and river discharge on the river plume, we designed several numerical experiments. Using a middle latitude for the UGoT, the bulge close to the river mouth becomes smaller, the downstream current flows closer to the coast, and the salinity in the northern UGoT becomes lower. The reduction in the size of the bulge is consistent with the relationship between the offshore distance of a bulge and the Coriolis parameter. Momentum balance of the coastal current is maintained by advection, the Coriolis force, pressure gradient and internal stresses in both low and middle latitudes, with the Coriolis force and pressure gradient enlarged in the middle latitude. The larger pressure gradient in the middle latitude is induced by more offshore freshwater flowing with the coastal current, which induces lower salinity. The influence of wind on the river plume not only has the advection effects of changing the surface current direction and increasing the surface current speed, but also decreases the current speed due to enhanced vertical mixing. Changes in river discharge influence stratification in the UGoT but have little effect on the behavior of the river plume.

  4. Effects of urbanization on river morphology of the Talar River, Mazandarn Province, Iran

    NARCIS (Netherlands)

    Yousefi, Saleh; Moradi, Hamid Reza; Keesstra, Saskia; Pourghasemi, Hamid Reza; Navratil, Oldrich; Hooke, Janet

    2017-01-01

    In the present study, we investigate the effects of urbanization growth on river morphology in the downstream part of Talar River, east of Mazandaran Province, Iran. Morphological and morphometric parameters in 10 equal sub-reaches were defined along a 11.5 km reach of the Talar River after land

  5. Distribution, Health, and Development of Larval and Juvenile Lost River and Shortnose Suckers in the Williamson River Delta Restoration Project and Upper Klamath Lake, Oregon: 2008 Annual Data Summary

    Science.gov (United States)

    Burdick, Summer M.; Ottinger, Christopher; Brown, Daniel T.; VanderKooi, Scott P.; Robertson, Laura; Iwanowicz, Deborah

    2009-01-01

    Federally endangered Lost River sucker Deltistes luxatus and shortnose sucker Chasmistes brevirostris were once abundant throughout their range but populations have declined; they have been extirpated from several lakes, and may no longer reproduce in others. Poor recruitment into the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species, and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable rearing habitat. Within Upper Klamath Lake, a lack of marshes also may allow larval suckers to be swept from suitable rearing areas downstream into the seasonally anoxic waters of the Keno Reservoir. The Nature Conservancy (TNC) flooded about 3,600 acres to the north of the Williamson River mouth (Tulana Unit) in October 2007, and about 1,400 acres to the south and east of the Williamson River mouth (Goose Bay Unit) a year later, to retain larval suckers in Upper Klamath Lake, create nursery habitat for suckers, and improve water quality. In collaboration with TNC, the Bureau of Reclamation, and Oregon State University, we began a long-term collaborative research and monitoring program in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. Our approach includes two equally important aspects. One component is to describe habitat use and colonization processes by larval and juvenile suckers and non-sucker fish species. The second is to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report contains a summary of the first year of data collected as a part of this monitoring effort.

  6. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  7. A luminescence dating study of the sediment stratigraphy of the Lajia Ruins in the upper Yellow River valley, China

    Science.gov (United States)

    Zhang, Yuzhu; Huang, Chun Chang; Pang, Jiangli; Zhou, Yali; Zha, Xiaochun; Wang, Longsheng; Zhou, Liang; Guo, Yongqiang; Wang, Leibin

    2014-06-01

    Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20-3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.

  8. Persistent pollution of Warta river catchment with chromium: case study from central Poland

    Science.gov (United States)

    Hermanski, S.; Lukaczynski, I.; Nikiel, G.; Mizera, J.; Dulinski, M.; Kania, J.; Rozanski, K.; Szklarczyk, T.; Wachniew, P.; Witczak, S.; Zurek, A.

    2012-04-01

    Upper reaches of the Warta river, the third largest river in Poland, are located in a densely populated and industrialized area, with presence of heavy industry going back to the second half of the XIX century. Industrial activities include iron smelters in towns of Częstochowa and Zawiercie, large chemical plants (Rudniki and Aniolow) producing predominantly chromium compounds, paper and textile industry, as well as large number of small enterprises specialized in metal coatings (nickel and chromium). Until the 1960s all the industrial and municipal effluents in the region were discharged into the Warta river and its tributaries. Solid wastes were dumped on the surface, mostly without appropriate cover and isolation. This resulted in progressive contamination of surface waters and groundwater with heavy metals, mostly chromium. The upper reaches of the Warta river are located on top of upper Jurassic Major Groundwater Basin (MGWB 326 which is one of four most important groundwater reservoirs in Poland. Almost all potable water demands in the area (ca. 340,000 inhabitants, 800 factories and enterprises) are covered by MGWB 326 (50 deep wells with the average extraction rate of 57,000 m3/d). As the MGWB 326 is mostly phreatic, it has been recognized since long time that persistent pollution of the upper catchment of the Warta river with heavy metals may pose serious thread to quality of this important groundwater resource. In this presentation we summarize the work carried out to date, focused on characterization of the extent and understanding of the mechanisms of pollution of surface water, sediments and groundwater in MGWB 326 with chromium. Historical monitoring data of the levels of chromium in the Warta river and its tributaries are presented, supplemented by the results of measurements of Cr loads in Warta over-bank deposits and Cr levels in groundwater production wells in the area. Three conceptual models of spreading of chromium in the catchment of Warta

  9. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK

    International Nuclear Information System (INIS)

    Shepherd, Thomas J.; Chenery, Simon R.N.; Pashley, Vanessa; Lord, Richard A.; Ander, Louise E.; Breward, Neil; Hobbs, Susan F.; Horstwood, Matthew; Klinck, Benjamin A.; Worrall, Fred

    2009-01-01

    High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.

  10. Return to the river: strategies for salmon restoration in the Columbia River Basin.

    Science.gov (United States)

    Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell

    2006-01-01

    The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remain—for example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia River—the Columbia and Snake River mainstems are dominated...

  11. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  12. Alluvial flash-flood stratigraphy of a large dryland river: the Luni River, Thar Desert, Western India

    Science.gov (United States)

    Carling, Paul; Leclair, Suzanne; Robinson, Ruth

    2017-04-01

    Detailed descriptions of the fluvial architecture of large dryland rivers are few, which hinders the understanding of stratigraphic development in aggradational settings. The aim of this study was to obtain new generic insight of the fluvial dynamics and resultant stratigraphy of such a river. The novelty of this investigation is that an unusually extensive and deep section across a major active dryland river was logged and the dated stratigraphy related to the behaviour of the discharge regimen. The results should help improve understanding of the stratigraphic development in modern dryland rivers and in characterizing oil, gas and groundwater reservoirs in the dryland geological record more generally. The Luni River is the largest river in the Thar desert, India, but yet details of the channel stratigraphy are sparse. Discharges can reach 14,000 m3s-1 but the bed is dry most of the year. GPS positioning and mm-resolution surveys within a 700m long, 5m deep trench enabled logging and photography of the strata associations, dated using optically-stimulated luminescence (OSL). The deposits consist of planar, sandy, upper-stage plane bed lamination and low-angle stratification, sandwiching less-frequent dune trough cross-sets. Mud clasts are abundant at any elevation. Water-ripple cross-sets or silt-clay layers occur rarely, usually near the top of sections. Aeolian dune cross-sets also appear sparsely at higher elevations. Consequently, the majority of preserved strata are due to supercritical flows. Localized deep scour causes massive collapse and soft-sediment deformation. Scour holes are infilled by rapidly-deposited massive sands adjacent to older bedded-deposits. Within bedform phase diagrams, estimated hydraulic parameters indicate a dominance of the upper-stage plane bed state, but the presence of dune cross-sets is also related to the flood hydrograph. Repeated deep scour results in units of deposition of different OSL ages (50 to 500 years BP) found at

  13. Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA

    Science.gov (United States)

    Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.

    2017-12-01

    Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.

  14. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    Science.gov (United States)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  15. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    Science.gov (United States)

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes

  16. [Interrelations between plant communities and environmental factors of wetlands and surrounding lands in mid- and lower reaches of Tarim River].

    Science.gov (United States)

    Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun

    2006-06-01

    A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.

  17. Flood-inundation maps for a 6.5-mile reach of the Kentucky River at Frankfort, Kentucky

    Science.gov (United States)

    Lant, Jeremiah G.

    2013-01-01

    Digital flood-inundation maps for a 6.5-mile reach of Kentucky River at Frankfort, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Frankfort Office of Emergency Management. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage Kentucky River at Lock 4 at Frankfort, Kentucky (station no. 03287500). Current conditions for the USGS streamgage may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=03287500). In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated at USGS streamgages. The forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the Kentucky River reach by using HEC–RAS, a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (2013) stage-discharge relation for the Kentucky River at Lock 4 at Frankfort, Kentucky, in combination with streamgage and high-water-mark measurements collected for a flood event in May 2010. The calibrated model was then used to calculate 26 water-surface profiles for a sequence of flood stages, at 1-foot intervals, referenced to the streamgage datum and ranging from a stage near bankfull to the elevation that breached the levees protecting the City of Frankfort. To delineate the flooded area at

  18. Conservation genetics of the vulnerable Treur River barb, Barbus ...

    African Journals Online (AJOL)

    At present there are only two populations of the vulnerable Treur River barb, Barbus treurensis, in existence; a founder population in the upper Blyde River and a translocated population in the Treur River where the species became extinct. The translocated population was derived from individuals from the upper Blyde River ...

  19. Investigating runoff efficiency in upper Colorado River streamflow over past centuries

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.

    2018-01-01

    With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid to the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods of high and low flow, and its correspondence to a reconstruction of late runoff season UCRB temperature variability. Results indicate that runoff efficiency has played a consistent role in modulating the relationship between precipitation and streamflow over past centuries, and that temperature has likely been the key control. While negative runoff efficiency is most common during dry periods, and positive runoff efficiency during wet years, there are some instances of positive runoff efficiency moderating the impact of precipitation deficits on streamflow. Compared to past centuries, the 20th century has experienced twice as many high flow years with negative runoff efficiency, likely due to warm temperatures. These results suggest warming temperatures will continue to reduce runoff efficiency in wet or dry years, and that future flows will be less than anticipated from precipitation due to warming temperatures.

  20. Thallium isotope composition of the upper continental crust and rivers - An investigation of the continental sources of dissolved marine thallium

    Science.gov (United States)

    Nielsen, S.G.; Rehkamper, M.; Porcelli, D.; Andersson, P.; Halliday, A.N.; Swarzenski, P.W.; Latkoczy, C.; Gunther, D.

    2005-01-01

    The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols. The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ??205Tl = -2.0 ?? 0.3 (??205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ??1.5 ??205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ?? 4 ng/kg and ??205Tl = -2.5 ?? 1.0, respectively. In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. Copyright ?? 2005 Elsevier Ltd.