Hubbard-U band-structure methods
DEFF Research Database (Denmark)
Albers, R.C.; Christensen, Niels Egede; Svane, Axel
2009-01-01
The last decade has seen a large increase in the number of electronic-structure calculations that involve adding a Hubbard term to the local-density approximation band-structure Hamiltonian. The Hubbard term is then determined either at the mean-field level or with sophisticated many......-body techniques such as using dynamical mean-field theory. We review the physics underlying these approaches and discuss their strengths and weaknesses in terms of the larger issues of electronic structure that they involve. In particular, we argue that the common assumptions made to justify such calculations...
Quasiparticle band structure for the Hubbard systems: Application to α-CeAl2
International Nuclear Information System (INIS)
Costa-Quintana, J.; Lopez-Aguilar, F.; Balle, S.; Salvador, R.
1990-01-01
A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy U. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of α-CeAl 2 because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method
Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Ploetz, Patrick; Wimberger, Sandro [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 19, 69120 Heidelberg (Germany); Madronero, Javier, E-mail: ploetz@thphys.uni-heidelberg.d [Physik Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany)
2010-04-28
We study the effect of a many-body interaction on inter-band oscillations in a two-band Bose-Hubbard model with an external Stark force. Weak and strong inter-band oscillations are observed, where the latter arise from a resonant coupling of the bands. These oscillations collapse and revive due to a weak two-body interaction between the atoms. Effective models for oscillations in and out of resonance are introduced that provide predictions for the system's behaviour, particularly for the time scales for the collapse and revival of the resonant inter-band oscillations. (fast track communication)
SINGLE-BAND, TRIPLE-BAND, OR MULTIPLE-BAND HUBBARD MODELS
ESKES, H; SAWATZKY, GA
1991-01-01
The relevance of different models, such as the one-band t-J model and the three-band Emery model, as a realistic description of the electronic structure of high-T(c) materials is discussed. Starting from a multiband approach using cluster calculations and an impurity approach, the following
Madelung and Hubbard interactions in polaron band model of doped organic semiconductors
Png, Rui-Qi; Ang, Mervin C.Y.; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K.H.
2016-01-01
The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π–π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine–fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355
Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential
Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2018-05-01
We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.
Stability of the split-band solution and energy gap in the narrow-band region of the Hubbard model
International Nuclear Information System (INIS)
Arai, T.; Cohen, M.H.
1980-01-01
By inserting quasielectron energies ω calculated from the fully renormalized Green's function of the Hubbard model obtained in the preceding paper into the exact expression of Galitskii and Migdal, the ground-state energy, the chemical potential, and the dynamic- and thermodynamic-stability conditions are calculated in the narrow-band region. The results show that as long as the interaction energy I is finite, electrons in the narrow-band region do not obey the Landau theory of Fermi liquids, and a gap appears between the lowest quasielectron energy ω and the chemical potential μ for any occupation n, regardless of whether the lower band is exactly filled or not. This unusual behavior is possible because, when an electron is added to the system of N electrons, the whole system relaxes due to the strong interaction, introducing a relaxation energy difference between the two quantities. We also show that all previous solutions which exhibit the split-band structure, including Hubbard's work, yield the same conclusion that electrons do not behave like Landau quasiparticles. However, the energy gap is calculated to be negative at least for some occupations n, demonstrating the dynamic instability of those solutions. They also exhibit thermodynamic instability for certain occupations, while the fully renormalized solution, having sufficient electron correlations built in, satisfies the dynamic and thermodynamic stability conditions for all occupations. When the lower band is nearly filled, the nature of the solution is shown to change, making the coherent motion of electrons with fixed k values more difficult. In the pathological limit where I=infinity, however, the gap vanishes, yielding a metallic state
Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model
Cosme, Jayson G.
2018-04-01
We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.
Quantum critical behavior in three-dimensional one-band Hubbard model at half-filling
International Nuclear Information System (INIS)
Karchev, Naoum
2013-01-01
A one-band Hubbard model with hopping parameter t and Coulomb repulsion U is considered at half-filling. By means of the Schwinger bosons and slave fermions representation of the electron operators and integrating out the spin–singlet Fermi fields an effective Heisenberg model with antiferromagnetic exchange constant is obtained for vectors which identifies the local orientation of the spin of the itinerant electrons. The amplitude of the spin vectors is an effective spin of the itinerant electrons accounting for the fact that some sites, in the ground state, are doubly occupied or empty. Accounting adequately for the magnon–magnon interaction the Néel temperature is calculated. When the ratio t/U is small enough (t/U ≤0.09) the effective model describes a system of localized electrons. Increasing the ratio increases the density of doubly occupied states which in turn decreases the effective spin and Néel temperature. The phase diagram in the plane of temperature (T N )/U and parameter t/U is presented. The quantum critical point (T N =0) is reached at t/U =0.9. The magnons in the paramagnetic phase are studied and the contribution of the magnons’ fluctuations to the heat capacity is calculated. At the Néel temperature the heat capacity has a peak which is suppressed when the system approaches a quantum critical point. It is important to stress that, at half-filling, the ground state, determined by fermions, is antiferromagnetic. The magnon fluctuations drive the system to quantum criticality and when the effective spin is critically small these fluctuations suppress the magnetic order. -- Highlights: •Technique of calculation is introduced which permits us to study the magnons’ fluctuations. •Quantum critical point is obtained in the one-band 3D Hubbard model at half-filling. •The present analytical results supplement the numerical ones (see Fig. 7)
Single-particle spectral density of the Hubbard model
Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.
1995-01-01
We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,
SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL
MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ
1995-01-01
We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,
Dalla Piazza, B.; Mourigal, M.; Guarise, M.; Berger, H.; Schmitt, T.; Zhou, K. J.; Grioni, M.; Rønnow, H. M.
2012-03-01
Using low-energy projection of the one-band t-t'-t'' Hubbard model we derive an effective spin Hamiltonian and its spin-wave expansion to order 1/S. We fit the spin-wave dispersion of several parent compounds to the high-temperature superconducting cuprates La2CuO4, Sr2CuO2Cl2, and Bi2Sr2YCu2O8. Our accurate quantitative determination of the one-band Hubbard model parameters allows prediction and comparison to experimental results. Among those we discuss the two-magnon Raman peak line shape, the K-edge resonant inelastic x-ray scattering 500-meV peak, and the high-energy kink in the angle-resolved photoemission spectroscopy quasiparticle dispersion, also known as the waterfall feature.
International Nuclear Information System (INIS)
Adam, G.; Adam, S.
2007-01-01
The Green function (GF) equation of motion technique for solving the effective two-band Hubbard model of high-T c superconductivity in cuprates rests on the Hubbard operator (HO) algebra. We show that, if we take into account the invariance to translations and spin reversal, the HO algebra results in invariance properties of several specific correlation functions. The use of these properties allows rigorous derivation and simplification of the expressions of the frequency matrix (FM) and of the generalized mean-field approximation (GMFA) Green functions (GFs) of the model. For the normal singlet hopping and anomalous exchange pairing correlation functions which enter the FM and GMFA-GFs, the use of spectral representations allows the identification and elimination of exponentially small quantities. This procedure secures the reduction of the correlation order to the GMFA-GF expressions
Fidelity study of the superconducting phase diagram in the two-dimensional single-band Hubbard model
Jia, C. J.; Moritz, B.; Chen, C.-C.; Shastry, B. Sriram; Devereaux, T. P.
2011-09-01
Extensive numerical studies have demonstrated that the two-dimensional single-band Hubbard model contains much of the key physics in cuprate high-temperature superconductors. However, there is no definitive proof that the Hubbard model truly possesses a superconducting ground state or, if it does, of how it depends on model parameters. To answer these longstanding questions, we study an extension of the Hubbard model including an infinite-range d-wave pair field term, which precipitates a superconducting state in the d-wave channel. Using exact diagonalization on 16-site square clusters, we study the evolution of the ground state as a function of the strength of the pairing term. This is achieved by monitoring the fidelity metric of the ground state, as well as determining the ratio between the two largest eigenvalues of the d-wave pair/spin/charge-density matrices. The calculations show a d-wave superconducting ground state in doped clusters bracketed by a strong antiferromagnetic state at half filling controlled by the Coulomb repulsion U and a weak short-range checkerboard charge ordered state at larger hole doping controlled by the next-nearest-neighbor hopping t'. We also demonstrate that negative t' plays an important role in facilitating d-wave superconductivity.
International Nuclear Information System (INIS)
Haddad, S.; Bennaceur, R.
1999-01-01
By means of perturbative renormalization approach we study the effect of relevant umklapp process on dimensional crossover caused by interladder one particle hopping t bot in weakly coupled two-leg Hubbard ladders with a half filled-band. We found that a crossover takes place at a finite value t botc which increases as the amplitude of umklapp process increases. For t bot botc the system undergoes a phase transition to the spin density wave phase (SDW) via the two particle hopping process, while for t bot >t botc the system undergoes a crossover to the two dimensional Fermi liquid phase via one particle hopping process. (orig.)
Phase diagram of the Hubbard model with arbitrary band filling: renormalization group approach
International Nuclear Information System (INIS)
Cannas, Sergio A.; Cordoba Univ. Nacional; Tsallis, Constantino.
1991-01-01
The finite temperature phase diagram of the Hubbard model in d = 2 and d = 3 is calculated for arbitrary values of the parameter U/t and chemical potential μ using a quantum real space renormalization group. Evidence for a ferromagnetic phase at low temperatures is presented. (author). 15 refs., 5 figs
Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.
Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu
2015-11-11
The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.
Superconducting correlations in the one- and two-band Hubbard models
International Nuclear Information System (INIS)
Jain, K.P.; Ramakumar, R.; Chancey, C.C.
1989-01-01
An approximate expression is derived for the generalized energy gap function Δ kμ for a system of interacting electrons in a narrow s-band. This function has the virtue that it interpolates between the weak interaction limit (BCS) and the intermediate coupling regime. Starting from the Cooper pairing state, the authors investigate the build-up of pairing correlations and study the properties of the generalized gap in these two regimes as a function of the band filling. The coupled equations for the gap and the band filling define the self-consistency conditions. A recent extension of this analysis to the two-band model is also discussed
International Nuclear Information System (INIS)
Jain, K.P.; Ramakumar, R.; Chancey, C.C.
1990-01-01
In this paper, we analyze a simple extended Hubbard model with an intermediate on-site interaction (both repulsive and attractive) and a weak intersite attractive interaction. Following Hubbard decoupling approximations and introducing Hubbard subband operators, we obtain a generalized gap function for singlet s-wave pairing that explicitly depends on the Hubbard subband energies. For the on-site repulsive-interaction case, we find that the superconductivity is not destroyed in the intermediate-interaction regime, contrary to the prediction of a Hartree-Fock mean-field treatment. The essential consequence of the on-site repulsion is the formation of the Hubbard subbands separated by the Mott-Hubbard gap, and it is within these subbands that pairing induced by the intersite interaction occurs. For the attractive on-site interaction case, the on-site pairing amplitude is found to be proportional to the bandwidth, and the gap function has contributions from both on-site and intersite pairing. The relevance of the model to high-temperature superconductivity is discussed
Mean-field results of the multiple-band extended Hubbard model for the square-planar CuO2 lattice
International Nuclear Information System (INIS)
Nimkar, S.; Sarma, D.D.; Krishnamurthy, H.R.; Ramasesha, S.
1993-01-01
We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO 2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J eff , the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T c materials arising from photoemission and neutron-scattering experiments
Hubbard physics in the PAW GW approximation
Energy Technology Data Exchange (ETDEWEB)
Booth, J. M., E-mail: jamie.booth@rmit.edu.au; Smith, J. S.; Russo, S. P. [Theoretical Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, VIC (Australia); Drumm, D. W. [Theoretical Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC (Australia); Casey, P. S. [CSIRO Manufacturing, Clayton, VIC (Australia)
2016-06-28
It is demonstrated that the signatures of the Hubbard Model in the strongly interacting regime can be simulated by modifying the screening in the limit of zero wavevector in Projector-Augmented Wave GW calculations for systems without significant nesting. This modification, when applied to the Mott insulator CuO, results in the opening of the Mott gap by the splitting of states at the Fermi level into upper and lower Hubbard bands, and exhibits a giant transfer of spectral weight upon electron doping. The method is also employed to clearly illustrate that the M{sub 1} and M{sub 2} forms of vanadium dioxide are fundamentally different types of insulator. Standard GW calculations are sufficient to open a gap in M{sub 1} VO{sub 2}, which arise from the Peierls pairing filling the valence band, creating homopolar bonds. The valence band wavefunctions are stabilized with respect to the conduction band, reducing polarizability and pushing the conduction band eigenvalues to higher energy. The M{sub 2} structure, however, opens a gap from strong on-site interactions; it is a Mott insulator.
Whistler Triggered Upper Band Chorus Observed in Alaska
Hosseini, P.; Golkowski, M.
2017-12-01
VLF radiation from lightning discharges is one of several sources of energy injection into the inner magnetosphere from the Earth. Lightning discharges initially produce a broadband impulse or `sferic' but after propagation in the dispersive magnetosphere this waveform soon becomes quasi narrow band with the characteristic spectrographic form of the whistler. Most of the lightning induced VLF wave energy injected into the magnetosphere will be unducted with a k-vector which becomes increasingly oblique. Although unducted radiation is ubiquitous throughout the inner magnetosphere, it is generally of a low amplitude due to Landau damping and is not expected to produce strong nonlinear phenomena such as triggered emissions and chorus waves. However, VLF wave energy ducted or trapped in field-aligned plasma density enhancements can have relatively large amplitudes due to focusing and also linear cyclotron resonance growth. Therefore high amplitude ducted whistler waves can trigger a number of complex nonlinear phenomena. These include the triggering of VLF emissions and triggering of VLF hiss or chorus. Such phenomena are generally considered to result from nonlinear electron cyclotron phase trapping. Observation of such VLF emissions triggered by natural whistlers have been reported since the 1970s in Antarctica. We present observations of whistlers triggered upper band chorus emission from Alaska. Dispersion analyze of whistlers determine the L-shell range to be 4.5 clear frequency band gap between upper and lower band of the observed chorus emissions. The observations point to ducted chorus generation in the vicinity of the plasmapause boundary.
Alternating chain with Hubbard-type interactions: renormalization group analysis
International Nuclear Information System (INIS)
Buzatu, F. D.; Jackeli, G.
1998-01-01
A large amount of work has been devoted to the study of alternating chains for a better understanding of the high-T c superconductivity mechanism. The same phenomenon renewed the interest in the Hubbard model and in its one-dimensional extensions. In this work we investigate, using the Renormalization Group (RG) method, the effect of the Hubbard-type interactions on the ground-state properties of a chain with alternating on-site atomic energies. The one-particle Hamiltonian in the tight binding approximation corresponding to an alternating chain with two nonequivalent sites per unit cell can be diagonalized by a canonical transformation; one gets a two band model. The Hubbard-type interactions give rise to both intra- and inter-band couplings; however, if the gap between the two bands is sufficiently large and the system is more than half-filled, as for the CuO 3 chain occurring in high-T c superconductors, the last ones can be neglected in describing the low energy physics. We restrict our considerations to the Hubbard-type interactions (upper band) in the particular case of alternating on-site energies and equal hopping amplitudes. The standard RG analysis (second order) is done in terms of the g-constants describing the elementary processes of forward, backward and Umklapp scatterings: their expressions are obtained by evaluating the Hubbard-type interactions (upper band) at the Fermi points. Using the scaling to the exact soluble models Tomonaga-Luttinger and Luther-Emery, we can predict the low energy physics of our system. The ground-state phase diagrams in terms of the model parameters and at arbitrary band filling are determined, where four types of instabilities have been considered: Charge Density Waves (CDW), Spin Density Waves (SDW), Singlet Superconductivity (SS) and Triplet Superconductivity (TS). The 3/4-filled case in terms of some renormalized Hubbard constants is presented. The relevance of our analysis to the case of the undistorted 3/4-filled Cu
Elastic Band Causing Exfoliation of the Upper Permanent Central Incisors
Directory of Open Access Journals (Sweden)
Monica Ghislaine Oliveira Alves
2015-01-01
Full Text Available Objective. This study reports a case in which elastic band use culminated in the loss of the incisors. Case Report. An 11-year-old white girl was seen complaining of pain, with purulent discharge and severe tooth mobility. The bone destruction detected radiographically in the region, despite its single location and absence in posterior quadrants of the maxilla and/or mandible, was similar to that observed in Langerhans cell disease. To our surprise, an elastic band involving the midportion of the roots of the two upper central incisors was found during biopsy. The debris was removed and a metal wire was placed in permanent maxillary right and left incisors. The patient was followed up, but no improvement in tooth mobility was observed. Bone loss increased, and internal resorption and root exposure occurred, which culminated in the extraction of permanent maxillary right and left incisors. Conclusion. The present case highlights the fact that professionals sometimes are confronted by anamnestic reports never seen before.
International Nuclear Information System (INIS)
Miura, Oki; Fujiwara, Takeo
2006-01-01
We apply the dynamical mean field theory (DMFT) combined with the iterative perturbation theory (IPT) to the doubly degenerate e g and the triply degenerate f 2g bands on a simple cubic lattice and a body-centered cubic lattice and calculate the spectrum and optical conductivity in arbitrary electron occupation. The spectrum simultaneously shows the effects of multiplet structure together with the electron ionization and affinity levels of different electron occupations, coherent peaks at the Fermi energy in the metallic phase and an energy gap at an integer filling of electrons for sufficiently large Coulomb U. We also discuss the critical value of the Coulomb U for degenerate orbitals on a simple cubic lattice and a body-centered cubic lattice. (author)
Generalized Hubbard Hamiltonian: renormalization group approach
International Nuclear Information System (INIS)
Cannas, S.A.; Tamarit, F.A.; Tsallis, C.
1991-01-01
We study a generalized Hubbard Hamiltonian which is closed within the framework of a Quantum Real Space Renormalization Group, which replaces the d-dimensional hypercubic lattice by a diamond-like lattice. The phase diagram of the generalized Hubbard Hamiltonian is analyzed for the half-filled band case in d = 2 and d = 3. Some evidence for superconductivity is presented. (author). 44 refs., 12 figs., 2 tabs
Moment approach for the attractive Hubbard model in two dimensions: superconductivity
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Nunez, J.J.; Cordeiro, C.; Delfino, A. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica
1997-12-31
Full text. Using the moment of Nolting (Z. Phys. 225, 25 (1972) for the attractive Hubbard model in the superconducting phase, we have derived a set of three non-linear equations, the electron density, the superconducting order parameter, and the narrowing factor. Our starting point is the Ansatz that the diagonal spectral density is composed of three peaks while the off-diagonal spectral functional is composed of two. The third band, or upper Hubbard band, strongly renormalizes the other two, making the energy gap K dependent while the order parameter is pure s-wave. Our approach recuperates the BCS limit, weak coupling (U/t <<1) in a natural way. We solve these non-linear equations in a self-consistent way for intermediate coupling for U/t {approx} -4.0. Here we report the order parameter as function of temperature and compare it with the BCS result. (author)
DEFF Research Database (Denmark)
Shen, Ming; Ren, Jian; Mikkelsen, Jan Hvolgaard
2016-01-01
structures into the ring resonator. This is different from conventional designs using cascaded bandstop/low-pass filters for stop-band response suppression, which usually leads to big circuit sizes. And hence the proposed approach can reduce the circuit size significantly. A prototype filter with a compact...... size (13.6 mm×6.75 mm) has been implemented for experimental validation. The measured results show a −3 dB frequency band from 3.4 GHz to 11.7 GHz and > 20 dB upper stop-band suppression from 12.5 GHz to 20GHz....
International Nuclear Information System (INIS)
Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)
2001-01-01
A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By
Geochemistry of marine and lacustrine bands in the Upper Carboniferous of the Netherlands
Kombrink, H.; Os, B.J.H. van; Zwan, C.J. van der; Wong, Th.E.
2008-01-01
Geochemical studies on Upper Carboniferous marine bands showed that marked enrichment in redox-sensitive trace elements (uranium (U), vanadium (V), molybdenum (Mo)) mostly occur if they contain Goniatites. Goniatites indicate deposition in relatively distal and deep marine environments. In contrast,
Singendonk, M.; Kritas, S.; Omari, T.; Feinle-Bisset, C.; Page, A. J.; Frisby, C. L.; Kentish, S. J.; Ferris, L.; McCall, L.; Kow, L.; Chisholm, J.; Khurana, S.
2017-01-01
The effects of laparoscopic adjustable gastric band (LAGB) placement on upper gastrointestinal tract function in obese adolescents are unknown. Therefore, our aim was to determine the short-term effects of LAGB on esophageal motility, gastroesophageal reflux, gastric emptying, appetite-regulatory
An introduction to the Hubbard model
International Nuclear Information System (INIS)
Ercolessi, E.; Morandi, G.; Pieri, P.
1997-01-01
In these notes we review some of the basic features of the 2D Hubbard model, thought of as the appropriate model for the description of the Cu - O planes in the cuprate superconductors. We discuss breifly the weak-coupling regime of the model and, in the opposite limit, the mapping of the one band Hubbard model onto an AFM Heisenberg model at half filling and onto the t - J model below half filling. We discuss next Emery's three band model and its mapping onto the so-called ''spin-fermion'' model. Its continuum limit is discussed by making use of an adiabatic followed by a gradient expansion. We review briefly how the model maps onto a nonlinear sigma model and some of the features of the latter. (orig.)
Optical conductivity of the Hubbard model
International Nuclear Information System (INIS)
Vicente Alvarez, J.J.; Balseiro, C.A.; Ceccatto, H.A.
1996-07-01
We study the response to a static electric field (charge stiffness) and the frequency-dependent conductivity of the Hubbard model in a resonant-valence-bond-type paramagnetic phase. This phase is described by means of a charge and spin rotational-invariant approach, based on a mixed fermion-boson representation of the original strongly correlated electrons. We found that the Mott transition at half filling is well described by the charge stiffness behaviour, and that the values for this quantity off half filling agree reasonably well with numerical results. Furthermore, for the frequency-dependent conductivity we trace back the origin of the band which appears inside the Hubbard gap to magnetic pair breaking. This points to a magnetic origin of midinfrared band in high-T c compounds, with no relation to superconductivity. (author). 12 refs, 2 tabs
Mott transition in the Hubbard model
International Nuclear Information System (INIS)
Shastry, B.S.
1992-01-01
In this article, the author discuss W. Kohn's criterion for a metal insulator transition, within the framework of a one-band Hubbard model. This and related ideas are applied to 1-dimensional Hubbard systems, and some interesting miscellaneous results discussed. The Jordan-Wigner transformation converting the two species of fermions to two species of hardcore bosons is performed in detail, and the extra phases arising from odd-even effects are explicitly derived. Bosons are shown to prefer zero flux (i.e., diamagnetism) and the corresponding happy fluxes: for the fermions identified. A curios result following from the interplay between orbital diamagnetism and spin polarization is highlighted. A spin-statistics like theorem, showing that the anticommutation relations between fermions of opposite spin are crucial to obtain the SU(2) invariance is pointed out
Damping at positive frequencies in the limit J⊥-->0 in the strongly correlated Hubbard model
Mohan, Minette M.
1992-08-01
I show damping in the two-dimensional strongly correlated Hubbard model within the retraceable-path approximation, using an expansion around dominant poles for the self-energy. The damping half-width ~J2/3z occurs only at positive frequencies ω>5/2Jz, the excitation energy of a pure ``string'' state of length one, where Jz is the Ising part of the superexchange interaction, and occurs even in the absence of spin-flip terms ~J⊥ in contrast to other theoretical treatments. The dispersion relation for both damped and undamped peaks near the upper band edge is found and is shown to have lost the simple J2/3z dependence characteristic of the peaks near the lower band edge. The position of the first three peaks near the upper band edge agrees well with numerical simulations on the t-J model. The weight of the undamped peaks near the upper band edge is ~J4/3z, contrasting with Jz for the weight near the lower band edge.
International Nuclear Information System (INIS)
Nowicki, Grzegorz; Maliborski, Artur; Żukowski, Paweł; Bogusławska, Romana
2010-01-01
Metabolic syndrome is a result of multiple risk factors of atherosclerosis and diabetes. Obesity is an especially well recognized etiological factor. A rapidly increasing number of obese people constitutes a major social health problem in the developed, as well as developing countries. Bariatric surgeries are among methods of obesity treatment that gain on popularity. They include adjustable silicone gastric banding (ASGB), and adjustable laparoscopic gastric banding (ALGB). The aim of our study was to analyze and present the most typical radiological images obtained during 130 upper gastrointestinal tract examinations in patients after ASGB or ALGB in the last three years. ASGB and ALGB are effective and safe. However, they are connected with some postoperative complications. Application of these surgical procedures requires periodic, long-term radiological evaluations and cooperation between surgeons and radiologists. The radiologist must be familiar with bariatric surgical techniques, their complications and typical radiological presentations
Mass-imbalanced ionic Hubbard chain
Sekania, Michael; Baeriswyl, Dionys; Jibuti, Luka; Japaridze, George I.
2017-07-01
A repulsive Hubbard model with both spin-asymmetric hopping (t↑≠t↓ ) and a staggered potential (of strength Δ ) is studied in one dimension. The model is a compound of the mass-imbalanced (t↑≠t↓ ,Δ =0 ) and ionic (t↑=t↓ ,Δ >0 ) Hubbard models, and may be realized by cold atoms in engineered optical lattices. We use mostly mean-field theory to determine the phases and phase transitions in the ground state for a half-filled band (one particle per site). We find that a period-two modulation of the particle (or charge) density and an alternating spin density coexist for arbitrary Hubbard interaction strength, U ≥0 . The amplitude of the charge modulation is largest at U =0 , decreases with increasing U and tends to zero for U →∞ . The amplitude for spin alternation increases with U and tends to saturation for U →∞ . Charge order dominates below a value Uc, whereas magnetic order dominates above. The mean-field Hamiltonian has two gap parameters, Δ↑ and Δ↓, which have to be determined self-consistently. For U Uc they have different signs, and for U =Uc one gap parameter jumps from a positive to a negative value. The weakly first-order phase transition at Uc can be interpreted in terms of an avoided criticality (or metallicity). The system is reluctant to restore a symmetry that has been broken explicitly.
Collective Kondo effect in the Anderson-Hubbard lattice
Fazekas, P.; Itai, K.
1997-02-01
The periodic Anderson model is extended by switching on a Hubbard U for the conduction electrons. We use the Gutzwiller variational method to study the nearly integral valent limit. The lattice Kondo energy contains the U-dependent chemical potential of the Hubbard subsystem in the exponent, and the correlation-induced band narrowing in the prefactor. Both effects tend to suppress the Kondo scale, which can be understood to result from the blocking of hybridization. At half-filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator.
Mosier, S. R.
1975-01-01
Noise bands associated with the upper-hybrid resonance were used to provide direct evidence for the existence of regions of enhanced density in the equatorial magnetosphere near L = 2. Density enhancements ranging from several percent to as high as 45 percent are observed with radial dimensions of several hundred kilometers. The enhancement characteristics strongly suggest their identification as magnetospheric whistler ducts.
Nonperturbative approach to the attractive Hubbard model
International Nuclear Information System (INIS)
Allen, S.; Tremblay, A.-M. S.
2001-01-01
A nonperturbative approach to the single-band attractive Hubbard model is presented in the general context of functional-derivative approaches to many-body theories. As in previous work on the repulsive model, the first step is based on a local-field-type ansatz, on enforcement of the Pauli principle and a number of crucial sumrules. The Mermin-Wagner theorem in two dimensions is automatically satisfied. At this level, two-particle self-consistency has been achieved. In the second step of the approximation, an improved expression for the self-energy is obtained by using the results of the first step in an exact expression for the self-energy, where the high- and low-frequency behaviors appear separately. The result is a cooperon-like formula. The required vertex corrections are included in this self-energy expression, as required by the absence of a Migdal theorem for this problem. Other approaches to the attractive Hubbard model are critically compared. Physical consequences of the present approach and agreement with Monte Carlo simulations are demonstrated in the accompanying paper (following this one)
Mapping Upper Amazon Palm Swamps with Spaceborne L-band Synthetic Aperture Radar
Pinto, N.; McDonald, K. C.; Podest, E.; Schroeder, R.; Zimmermann, R.; Horna, V.
2010-12-01
Palm swamp ecosystems are widespread in the Amazon basin, forming where seasonal flooding is moderate and surface inundation persists. Recent studies suggest that palm swamps have a disproportional role on tropical biogeochemistry: the combination of persistently saturated soils, warm temperatures, and low oxygen soils can support significant land-atmosphere methane flux. Potential impacts of climate change on these ecosystems include changes in temperature and precipitation regimes that influence primary productivity and flood extent significantly, potentially reversing net land-atmosphere carbon exchanges regionally. Data acquired from Earth-orbiting satellites provides the opportunity to characterize vegetation structure and monitor surface inundation independently of cloud cover. Building on efforts under our NASA MEaSUREs project for assembly of a global-scale Earth System Data Record (ESDR) of inundated wetlands, we develop and evaluate a systematic approach to map the distribution and composition of palm swamps in the upper Amazon using data sets from JAXA’s Advanced Land Observing Satellite (ALOS) Phased Array L-Band SAR (PALSAR). Our input dataset consists of HH backscatter images acquired in 2007 and 2009. Ground measurements for training were obtained from a study site near Loreto, Peru (4.43S 75.34W) containing the palm species Mauritia flexuosa. The ALOS PALSAR images are first averaged temporally and spatially. We then develop ancillary data layers of flood extent, distance from open water, and SAR image texture. The PALSAR data and derived ancillary layers are combined with MODIS Vegetation Indices and SRTM elevation and input in a classification framework. Since palm swamps are found in persistently flooded areas, we evaluate the potential of identifying and mapping these ecosystems using multi-temporal SAR-based flood extent maps. We conclude by comparing the performance between a decision-tree supervised vs. unsupervised approach and by
Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence
Directory of Open Access Journals (Sweden)
G. Baskaran
2006-01-01
Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.
Interaction effect in the Kondo energy of the periodic Anderson-Hubbard model
Itai, K.; Fazekas, P.
1996-07-01
We extend the periodic Anderson model by switching on a Hubbard U for the conduction band. The nearly integral valent limit of the Anderson-Hubbard model is studied with the Gutzwiller variational method. The lattice Kondo energy shows U dependence both in the prefactor and the exponent. Switching on U reduces the Kondo scale, which can be understood to result from the blocking of hybridization. At half filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator. Our findings should be relevant for a number of correlated two-band models of recent interest.
Fisher, Karen M.; Zaaimi, Boubker; Williams, Timothy L.; Baker, Stuart N.
2012-01-01
In motor neuron disease, the focus of therapy is to prevent or slow neuronal degeneration with neuroprotective pharmacological agents; early diagnosis and treatment are thus essential. Incorporation of needle electromyographic evidence of lower motor neuron degeneration into diagnostic criteria has undoubtedly advanced diagnosis, but even earlier diagnosis might be possible by including tests of subclinical upper motor neuron disease. We hypothesized that beta-band (15–30 Hz) intermuscular coherence could be used as an electrophysiological marker of upper motor neuron integrity in such patients. We measured intermuscular coherence in eight patients who conformed to established diagnostic criteria for primary lateral sclerosis and six patients with progressive muscular atrophy, together with 16 age-matched controls. In the primary lateral sclerosis variant of motor neuron disease, there is selective destruction of motor cortical layer V pyramidal neurons and degeneration of the corticospinal tract, without involvement of anterior horn cells. In progressive muscular atrophy, there is selective degeneration of anterior horn cells but a normal corticospinal tract. All patients with primary lateral sclerosis had abnormal motor-evoked potentials as assessed using transcranial magnetic stimulation, whereas these were similar to controls in progressive muscular atrophy. Upper and lower limb intermuscular coherence was measured during a precision grip and an ankle dorsiflexion task, respectively. Significant beta-band coherence was observed in all control subjects and all patients with progressive muscular atrophy tested, but not in the patients with primary lateral sclerosis. We conclude that intermuscular coherence in the 15–30 Hz range is dependent on an intact corticospinal tract but persists in the face of selective anterior horn cell destruction. Based on the distributions of coherence values measured from patients with primary lateral sclerosis and control
Branner-Hubbard Motions and attracting dynamics
DEFF Research Database (Denmark)
Petersen, Carsten Lunde; Tan, Lei
2006-01-01
We introduce a new notion of attracting dynamics, which is related to polynomial-like mappings. Also we review the Branner-Hubbard Motion and study its action on attracting dynamics.......We introduce a new notion of attracting dynamics, which is related to polynomial-like mappings. Also we review the Branner-Hubbard Motion and study its action on attracting dynamics....
Branner-Hubbard motions and attracting dynamics
DEFF Research Database (Denmark)
Petersen, Carsten Lunde; Tan, Lei
We introduce the new notion an aatracting dynamics, which is related to polynomial-likke mappings. Also we review the Branner-Hubbard motion and study its action on attracting dynamics.......We introduce the new notion an aatracting dynamics, which is related to polynomial-likke mappings. Also we review the Branner-Hubbard motion and study its action on attracting dynamics....
Ferromagnetism in the Hubbard model: a modified perturbation theory
International Nuclear Information System (INIS)
Gangadhar Reddy, G.; Ramakanth, A.; Nolting, W.
2005-01-01
We study the possibility of ferromagnetism in the Hubbard model using the modified perturbation theory. In this approach an Ansatz is made for the self-energy of the electron which contains the second order contribution developed around the Hartree-Fock solution and two parameters. The parameters are fixed by using a moment method. This self energy satisfies several known exact limiting cases. Using this self energy, the Curie temperature T c as a function of band filling n is investigated. It is found that T c falls off abruptly as n approaches half filling. The results are in qualitative agreement with earlier calculations using other approximation schemes. (author)
Directory of Open Access Journals (Sweden)
Guilherme P. T. Areas
2013-12-01
Full Text Available BACKGROUND: Elastic resistance bands (ERB combined with proprioceptive neuromuscular facilitation (PNF are often used in resistance muscle training programs, which have potential effects on peripheral muscle strength. However, the effects of the combination of ERB and PNF on respiratory muscle strength warrant further investigation. OBJECTIVES: The assessment of the effects of PNF combined with ERB on respiratory muscle strength. METHOD: Twenty healthy, right-handed females were included. Subjects were randomized to either the resistance training program group (TG, n=10 or the control group (CG, n=10. Maximal expiratory pressure (MEP and inspiratory pressure (MIP were measured before and after four weeks of an upper extremity resistance training program. The training protocol consisted of upper extremity PNF combined with ERB, with resistance selected from 1 repetition maximum protocol. RESULTS: PNF combined with ERB showed significant increases in MIP and MEP (p<0.05. In addition, there were significant differences between the TG and CG regarding ∆MIP (p=0.01 and ∆MEP (p=0.04. CONCLUSIONS: PNF combined with ERB can have a positive impact on respiratory muscle strength. These results may be useful with respect to cardiopulmonary chronic diseases that are associated with reduced respiratory muscle strength.
Energy Technology Data Exchange (ETDEWEB)
Rombough, P J; Garside, E T
1977-10-01
Banded killifish, Fundulus diaphanus (LeSueur), acclimated to 25/sup 0/C were subjected to upper lethal temperatures using a 10,000 min bioassay procedure. The incipient upper lethal temperature (LT/sub 50/) was about 34.5/sup 0/C. Histologic examination of heat-treated fish revealed no obvious injury to the heart, spleen, trunk musculature, eye, naris, integument, or digestive tract. Thermal stress induced progressive injury to the gills characterized by subepithelial edema, congestion of lamellar capillaries, and delamination of the respiratory epithelium from the pillar cell system. Areas of necrosis were observed in the lobus inferior of the hypothalamus and in the medulla oblongata. The pseudobranch epithelium was necrotic. Fatty change occurred in the liver. Acinar cells of the pancreas appeared autolytic and adjacent blood vessels damaged. Degenerative tubular changes and contracted glomerular tufts were noted in the kidney. The ovary was extremely temperature sensitive and displayed severe injury to oocytes and follicular cells after relatively short exposure to temperatures near the LT/sub 50/. It is proposed that primary thermally induced injury is to the gills. This results in abnormal gas exchange and osmoregulation and leads to pathologic changes in other tissues. Hypoxia of the central nervous system appears to be the ultimate cause of death.
Spectral properties near the Mott transition in the two-dimensional Hubbard model
Kohno, Masanori
2013-03-01
Single-particle excitations near the Mott transition in the two-dimensional (2D) Hubbard model are investigated by using cluster perturbation theory. The Mott transition is characterized by the loss of the spectral weight from the dispersing mode that leads continuously to the spin-wave excitation of the Mott insulator. The origins of the dominant modes of the 2D Hubbard model near the Mott transition can be traced back to those of the one-dimensional Hubbard model. Various anomalous spectral features observed in cuprate high-temperature superconductors, such as the pseudogap, Fermi arc, flat band, doping-induced states, hole pockets, and spinon-like and holon-like branches, as well as giant kink and waterfall in the dispersion relation, are explained in a unified manner as properties near the Mott transition in a 2D system.
Superconducting, magnetic, and charge correlations in the doped two-chain Hubbard model
International Nuclear Information System (INIS)
Asai, Y.
1995-01-01
We have studied the superconducting, magnetic, and charge correlation functions and the spin excitation spectrum in the doped two-chain Hubbard model by projector Monte Carlo and Lanczos diagonalization methods. The exponent of the interchain singlet superconducting correlation function, γ, is found to be close to 2.0 as long as two distinct noninteracting bands cross the Fermi level. Magnetic and charge correlation functions decay more rapidly than or as fast as the interchain singlet superconducting correlation function along the chains. The superconducting correlation in the doped two-chain Hubbard model is the most long-range correlation studied here. Implications of the results for the possible universality class of the doped two-chain Hubbard model are discussed
Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.
2016-09-01
Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.
International Nuclear Information System (INIS)
Lopez-Aguilar, F.; Costa-Quintana, J.
1992-01-01
In this paper, the authors give a method for obtaining the renormalized electronic structure of the Hubbard systems. The first step is the determination of the self-energy beyond the Hartree-Fock approximation. This self-energy is constructed from several dielectric response functions. The second step is the determination of the quasiparticle band structure calculation which is performed from an appropriate modification of the augmented plane wave method. The third step consists in the determination of the renormalized density of states deduced from the spectral functions. The analysis of the renormalized density of states of the strongly correlated systems leads to the conclusion that there exist three types of resonances in their electronic structures, the lower energy resonances (LER), the middle energy resonances (MER) and the upper energy resonances (UER). In addition, the authors analyze the conditions for which the Luttinger theorem is satisfied. All of these questions are determined in a characteristic example which allows to test the theoretical method
Finite-temperature dynamics of the Mott insulating Hubbard chain
Nocera, Alberto; Essler, Fabian H. L.; Feiguin, Adrian E.
2018-01-01
We study the dynamical response of the half-filled one-dimensional Hubbard model for a range of interaction strengths U and temperatures T by a combination of numerical and analytical techniques. Using time-dependent density matrix renormalization group computations we find that the single-particle spectral function undergoes a crossover to a spin-incoherent Luttinger liquid regime at temperatures T ˜J =4 t2/U for sufficiently large U >4 t . At smaller values of U and elevated temperatures the spectral function is found to exhibit two thermally broadened bands of excitations, reminiscent of what is found in the Hubbard-I approximation. The dynamical density-density response function is shown to exhibit a finite-temperature resonance at low frequencies inside the Mott gap, with a physical origin similar to the Villain mode in gapped quantum spin chains. We complement our numerical computations by developing an analytic strong-coupling approach to the low-temperature dynamics in the spin-incoherent regime.
Super-Hubbard models and applications
International Nuclear Information System (INIS)
Drummond, James M.; Feverati, Giovanni; Frappat, Luc; Ragoucy, Eric
2007-01-01
We construct XX- and Hubbard-like models based on unitary superalgebras gl(N/M) generalising Shastry's and Maassarani's approach of the algebraic case. We introduce the R-matrix of the gl(N/M) XX model and that of the Hubbard model defined by coupling two independent XX models. In both cases, we show that the R-matrices satisfy the Yang-Baxter equation, we derive the corresponding local Hamiltonian in the transfer matrix formalism and we determine the symmetry of the Hamiltonian. Explicit examples are worked out. In the cases of the gl(1/2) and gl(2/2) Hubbard models, a perturbative calculation at two loops a la Klein and Seitz is performed
Superconducting properties of the η-pairing state in the Penson-Kolb-Hubbard model
International Nuclear Information System (INIS)
Czart, W.R.; Robaszkiewicz, S.
2004-01-01
The Penson-Kolb-Hubbard model, i.e. the Hubbard model with the pair-hopping interaction J is studied. We focus on the properties of the superconducting state with the Cooper-pair center-of mass momentum q Q(η-phase). The transition into the η-phase, which is favorized by the repulsive J (J c |, dependent on band filling, on-site interaction U and band structure, and the system never exhibits standard BCS-like features. This is in obvious contrast with the properties of the isotropic s-wave state, stabilized by the attractive J and attractive U, which exhibit at T = 0 a smooth crossover from the BCS-like limit to that of tightly bound pairs with increasing pairing strength. (author)
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K
2017-08-02
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array
Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.
2017-08-01
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
International Nuclear Information System (INIS)
Wrobel, P.; Jacak, L.
1988-01-01
It is shown theoretically that the superconducting transition in the framework of RVB mean field treatment in nearly half-filled band Hubbard model is substantially influenced by spin density wave instability. The reasonable SDW and SC ordering phase diagram for doped La 2 CuO 4 compounds is found
Competition between spin, charge, and bond waves in a Peierls-Hubbard model
International Nuclear Information System (INIS)
Venegas, P.A.; Henriquez, C.; Roessler, J.
1996-01-01
We study a one-dimensional extended Peierls-Hubbard model coupled to intracell and intercell phonons for a half-filled band. The calculations are made using the Hartree-Fock and adiabatic approximations for arbitrary temperature. In addition to static spin, charge, and bond density waves, we predict intermediate phases that lack inversion symmetry, and phase transitions that reduce symmetry on increasing temperature. copyright 1996 The American Physical Society
Penson-Kolb-Hubbard model: a renormalisation group study
International Nuclear Information System (INIS)
Bhattacharyya, Bibhas; Roy, G.K.
1995-01-01
The Penson-Kolb-Hubbard (PKH) model in one dimension (1d) by means of real space renormalisation group (RG) method for the half-filled band has been studied. Different phases are identified by studying the RG-flow pattern, the energy gap and different correlation functions. The phase diagram consists of four phases: a spin density wave (SDW), a strong coupling superconducting phase (SSC), a weak coupling superconducting phase (WSC) and a nearly metallic phase. For the negative value of the pair hopping amplitude introduced in this model it was found that the pair-pair correlation indicates a superconducting phase for which the centre-of-mass of the pairs move with a momentum π. (author). 7 refs., 4 figs
The symmetry of the Hubbard model
International Nuclear Information System (INIS)
Grosse, H.
1988-01-01
The spectrum of the Hubbard model shows permanent degeneracy of levels with different symmetry, if one considers only symmetry operators independent of the coupling constant. This suggests the existence of symmetry operators which depend on the coupling constant. We find these highly nontrivial operators and show that they explain the degeneracies in the energy spectrum. 5 refs. (Author)
International Nuclear Information System (INIS)
Masago, Akira; Suzuki, Naoshi
2001-01-01
By a group theoretical procedure we derive the possible spontaneously broken-symmetry states for the two-fold degenerate Hubbard model on a two-dimensional triangular lattice. For ordering wave vectors corresponding to the points Γ and K in the first BZ we find 22 states which include 16 collinear and six non-collinear states. The collinear states include the usual SDW and CDW states which appear also in the single-band Hubbard model. The non-collinear states include exotic ordering states of orbitals and spins as well as the triangular arrangement of spins
Attractive Hubbard model: Homogeneous Ginzburg–Landau expansion and disorder
International Nuclear Information System (INIS)
Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.
2016-01-01
We derive a Ginzburg–Landau (GL) expansion in the disordered attractive Hubbard model within the combined Nozieres–Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the homogeneous expansion, we analyze the disorder dependence of GL expansion coefficients for a wide range of attractive potentials U, from the weak BCS coupling region to the strong-coupling limit, where superconductivity is described by Bose–Einstein condensation (BEC) of preformed Cooper pairs. We show that for the a semielliptic “bare” density of states of the conduction band, the disorder influence on the GL coefficients A and B before quadratic and quartic terms of the order parameter, as well as on the specific heat discontinuity at the superconducting transition, is of a universal nature at any strength of the attractive interaction and is related only to the general widening of the conduction band by disorder. In general, disorder growth increases the values of the coefficients A and B, leading either to a suppression of the specific heat discontinuity (in the weak-coupling limit), or to its significant growth (in the strong-coupling region). However, this behavior actually confirms the validity of the generalized Anderson theorem, because the disorder dependence of the superconducting transition temperature T c , is also controlled only by disorder widening of the conduction band (density of states).
Phase transitions in the Hubbard Hamiltonian
International Nuclear Information System (INIS)
Chaves, C.M.; Lederer, P.; Gomes, A.A.
1977-05-01
Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques is studied, using the epsilon = 4 - d expansion to first order in epsilon. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. This coupling is pure imaginary, which has interesting consequences on the critical properties of this coupled field system. The effect of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed
Exact many-electron ground states on diamond and triangle Hubbard chains
International Nuclear Information System (INIS)
Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter
2009-01-01
We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)
Similarities between the Hubbard and Periodic Anderson Models at Finite Temperatures
International Nuclear Information System (INIS)
Held, K.; Huscroft, C.; Scalettar, R. T.; McMahan, A. K.
2000-01-01
The single band Hubbard and the two band periodic Anderson Hamiltonians have traditionally been applied to rather different physical problems--the Mott transition and itinerant magnetism, and Kondo singlet formation and scattering off localized magnetic states, respectively. In this paper, we compare the magnetic and charge correlations, and spectral functions, of the two systems. We show quantitatively that they exhibit remarkably similar behavior, including a nearly identical topology of the finite temperature phase diagrams at half filling. We address potential implications of this for theories of the rare earth ''volume collapse'' transition. (c) 2000 The American Physical Society
Ferromagnetism in the Hubbard-Hirsch model
International Nuclear Information System (INIS)
Ivanov, V.A.; Zhuravlev, M.E.
1991-01-01
In the Hubbard model U=∞ the energy lowering due to exchange interaction of electrons of opposite spin in states with opposite bonding character is taken into account. In the electron concentration range 0< n<1 nonmonotonous dependence m(n) analogous to Slater-Pauling curves has been obtained. The Curle temperature having nonmonotonous dependence on n, saturated magnetization, the temperature dependences of magnetization have been obtained. (orig.)
Disordered spinor Bose-Hubbard model
International Nuclear Information System (INIS)
LaPcki, Mateusz; Paganelli, Simone; Ahufinger, Veronica; Sanpera, Anna; Zakrzewski, Jakub
2011-01-01
We study the zero-temperature phase diagram of the disordered spin-1 Bose-Hubbard model in a two-dimensional square lattice. To this aim, we use a mean-field Gutzwiller ansatz and a probabilistic mean-field perturbation theory. The spin interaction induces two different regimes, corresponding to a ferromagnetic and antiferromagnetic order. In the ferromagnetic case, the introduction of disorder reproduces analogous features of the disordered scalar Bose-Hubbard model, consisting in the formation of a Bose glass phase between Mott insulator lobes. In the antiferromagnetic regime, the phase diagram differs more from the scalar case. Disorder in the chemical potential can lead to the disappearance of Mott insulator lobes with an odd-integer filling factor and, for sufficiently strong spin coupling, to Bose glass of singlets between even-filling Mott insulator lobes. Disorder in the spinor coupling parameter results in the appearance of a Bose glass phase only between the n and the n+1 lobes for n odd. Disorder in the scalar Hubbard interaction inhibits Mott insulator regions for occupation larger than a critical value.
Attractive Hubbard model with disorder and the generalized Anderson theorem
International Nuclear Information System (INIS)
Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.
2015-01-01
Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flat densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T c for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T c (in the weak-coupling region) or significantly increase T c (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band
Luttinger and Hubbard sum rules: are they compatible?
International Nuclear Information System (INIS)
Matho, K.
1992-01-01
A so-called Hubbard sum rule determines the weight of a satellite in fermionic single-particle excitations with strong local repulsion (U→∞). Together with the Luttinger sum rule, this imposes two different energy scales on the remaining finite excitations. In the Hubbard chain, this has been identified microscopically as being due to a separation of spin and charge. (orig.)
Modelling and validation of a simple and compact wide upper stop band ultra-wideband bandpass filter
Directory of Open Access Journals (Sweden)
Somdotta Roy Choudhury
2014-09-01
Full Text Available A compact ultra-wideband (UWB bandpass filter (BPF is proposed based on end coupled microstrip transmission line, defected ground structure and defected microstrip structure. The experimental filter shows a fractional bandwidth of 110% at a centre frequency, with two observable transmission zeros (attenuation poles at 2.1 and 11.7 GHz. Measured results exhibit an UWB passband from 3.02 to 10.6 GHz with mid-band insertion loss of 1.8 dB and group delay variation <0.45 ns. The BPF achieves a wide stopband with < −18 dB attenuation up to 20 GHz.
Extended Hubbard model for mesoscopic transport in donor arrays in silicon
Le, Nguyen H.; Fisher, Andrew J.; Ginossar, Eran
2017-12-01
Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wave function. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions.
Ground-state and spectral properties of an asymmetric Hubbard ladder
Abdelwahab, Anas; Jeckelmann, Eric; Hohenadler, Martin
2015-04-01
We investigate a ladder system with two inequivalent legs, namely, a Hubbard chain and a one-dimensional electron gas. Analytical approximations, the density-matrix renormalization group method, and continuous-time quantum Monte Carlo simulations are used to determine ground-state properties, gaps, and spectral functions of this system at half-filling. Evidence for the existence of four different phases as a function of the Hubbard interaction and the rung hopping is presented. First, a Luttinger liquid exists at very weak interchain hopping. Second, a Kondo-Mott insulator with spin and charge gaps induced by an effective rung exchange coupling is found at moderate interchain hopping or strong Hubbard interaction. Third, a spin-gapped paramagnetic Mott insulator with incommensurate excitations and pairing of doped charges is observed at intermediate values of the rung hopping and the interaction. Fourth, the usual correlated band insulator is recovered for large rung hopping. We show that the wave numbers of the lowest single-particle excitations are different in each insulating phase. In particular, the three gapped phases exhibit markedly different spectral functions. We discuss the relevance of asymmetric two-leg ladder systems as models for atomic wires deposited on a substrate.
Dynamical Vertex Approximation for the Hubbard Model
Toschi, Alessandro
A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.
Fermi surface of the one-dimensional Hubbard model. Finite-size effects
Energy Technology Data Exchange (ETDEWEB)
Bourbonnais, C.; Nelisse, H.; Reid, A.; Tremblay, A.M.S. (Dept. de Physique and Centre de Recherche en Physique du Solide (C.R.P.S.), Univ. de Sherbrooke, Quebec (Canada))
1989-12-01
The results reported here, using a standard numerical algorithm and a simple low temperature extrapolation, appear consistent with numerical results of Sorella et al. for the one-dimensional Hubbard model in the half-filled and quarter-filled band cases. However, it is argued that the discontinuity at the Fermi level found in the quarter-filled case is likely to come from the zero-temperature finite-size dependence of the quasiparticle weight Z, which is also discussed here. (orig.).
Monte Carlo study of superconductivity in the three-band Emery model
International Nuclear Information System (INIS)
Frick, M.; Pattnaik, P.C.; Morgenstern, I.; Newns, D.M.; von der Linden, W.
1990-01-01
We have examined the three-band Hubbard model for the copper oxide planes in high-temperature superconductors using the projector quantum Monte Carlo method. We find no evidence for s-wave superconductivity
Non local theory of excitations applied to the Hubbard model
International Nuclear Information System (INIS)
Kakehashi, Y; Nakamura, T; Fulde, P
2010-01-01
We propose a nonlocal theory of single-particle excitations. It is based on an off-diagonal effective medium and the projection operator method for treating the retarded Green function. The theory determines the nonlocal effective medium matrix elements by requiring that they are consistent with those of the self-energy of the Green function. This arrows for a description of long-range intersite correlations with high resolution in momentum space. Numerical study for the half-filled Hubbard model on the simple cubic lattice demonstrates that the theory is applicable to the strong correlation regime as well as the intermediate regime of Coulomb interaction strength. Furthermore the results show that nonlocal excitations cause sub-bands in the strong Coulomb interaction regime due to strong antiferromagnetic correlations, decrease the quasi-particle peak on the Fermi level with increasing Coulomb interaction, and shift the critical Coulomb interaction U C2 for the divergence of effective mass towards higher energies at least by a factor of two as compared with that in the single-site approximation.
Hubbard physics in the symmetric half-filled periodic anderson-hubbard model
Hagymási, I.; Itai, K.; Sólyom, J.
2013-05-01
Two very different methods — exact diagonalization on finite chains and a variational method — are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculate the density of doubly occupied d sites ( gn d ) as a function of various parameters. In the absence of on-site Coulomb interaction ( U f ) between f electrons, the two methods yield similar results. The double occupancy of d levels remains always finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives the same result for finite U f , while the Gutzwiller method leads to a Brinkman-Rice transition at a critical value ( U {/d c }), which depends on U f and V.
Directory of Open Access Journals (Sweden)
Mersedeh Jahanseir
2014-11-01
Full Text Available Background: In neurofeedback systems, people are able to reinforce or hinder their basic EEG rhythms according to operant conditioninin recent studies the effect of neurofeedback training on improvement of working memory has been shown on the healthy subjects. Disadvantage of neurofeedback is the high number of training sessions and high cost. In previous studies, alpha band power within (8-12 Hz has been considered for all subjects. Previous research reached the conclusion that by using individual upper alpha in neurofeedback, learning rate will increase, so the training sessions and the cost of training will be reduced. Material and Methods: In this study, all participants were female, 10 adults (10 women, mean age 33.8 years, SD=3.56 years. Randomly assigned to control and test group, five in test group and five in control group. Each subject performed the memory test four times, two times before the start of the first neurofeedback training and two times after the end of the last neurofeedback session. Eight training sessions were held, each session had three trials. Results: Discriminate response to the color of the drawing, as well as reaction time hadsignificant effects for test group (p0.05. Before and after eight training sessions by individual upper alpha power neurofeedback, reaction time of discriminate response to the color of the drawing for test group decreased and had significant effects (p0.05. Conclusion: Increasing relative individual upper alpha power, caused by neurofeedback training during eight sessions, indicated that this method increases the memory of women employees, and improves the ability of discriminative response to the color (red & green of the drawing as well as reducing reaction time.
Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model
Sherman, A.
2018-05-01
The influence of spin and charge fluctuations on spectra of the two-dimensional fermionic Hubbard model is considered using the strong coupling diagram technique. Infinite sequences of diagrams containing ladder inserts, which describe the interaction of electrons with these fluctuations, are summed, and obtained equations are self-consistently solved for the ranges of Hubbard repulsions , temperatures and electron concentrations with t the intersite hopping constant. For all considered U the system exhibits a transition to the long-range antiferromagnetic order at . At the same time no indication of charge ordering is observed. Obtained solutions agree satisfactorily with results of other approaches and obey moments sum rules. In the considered region of the U-T plane, the curve separating metallic solutions passes from at the highest temperatures to U = 2t at for half-filling. If only short-range fluctuations are allowed for the remaining part of this region is occupied by insulating solutions. Taking into account long-range fluctuations leads to strengthening of maxima tails, which transform a part of insulating solutions into bad-metal states. For low T, obtained results allow us to trace the gradual transition from the regime of strong correlations with the pronounced four-band structure and well-defined Mott gap for to the Slater regime of weak correlations with the spectral intensity having a dip along the boundary of the magnetic Brillouin zone due to an antiferromagnetic ordering for . For and doping leads to the occurrence of a pseudogap near the Fermi level, which is a consequence of the splitting out of a narrow band from a Hubbard subband. Obtained spectra feature waterfalls and Fermi arcs, which are similar to those observed in hole-doped cuprates.
L Ron Hubbard's science fiction quest against psychiatry.
Hirshbein, Laura
2016-12-01
Layfayette Ronald Hubbard (1911-1986) was a colourful and prolific American writer of science fiction in the 1930s and 1940s. During the time between his two decades of productivity and his return to science fiction in 1980, Hubbard founded the Church of Scientology. In addition to its controversial status as a religion and its troubling pattern of intimidation and litigation directed towards its foes, Scientology is well known as an organised opponent to psychiatry. This paper looks at Hubbard's science fiction work to help understand the evolution of Scientology's antipsychiatry stance, as well as the alternative to psychiatry offered by Hubbard. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Spin-spin correlations in the tt'-Hubbard model
International Nuclear Information System (INIS)
Husslein, T.; Newns, D.M.; Mattutis, H.G.; Pattnaik, P.C.; Morgenstern, I.; Singer, J.M.; Fettes, W.; Baur, C.
1994-01-01
We present calculations of the tt'-Hubbard model using Quantum Monte Carlo techniques. The parameters are chosen so that the van Hove Singularity in the density of states and the Fermi level coincide. We study the behaviour of the system with increasing Hubbard interaction U. Special emphasis is on the spin-spin correlation (SSC). Unusual behaviour for large U is observed there and in the momentum distribution function (n(q)). (orig.)
Extended Hubbard models for ultracold atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Juergensen, Ole
2015-06-05
In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.
Extended Hubbard models for ultracold atoms in optical lattices
International Nuclear Information System (INIS)
Juergensen, Ole
2015-01-01
In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.
Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials
Directory of Open Access Journals (Sweden)
Xi Zhang
2017-05-01
Full Text Available This work reviews the current progress of tight-binding methods and the recent edge-modified mean-field Hubbard model. Undercoordinated atoms (atoms not fully coordinated exist at a high rate in nanomaterials with their impact overlooked. A quantum theory was proposed to calculate electronic structure of nanomaterials by incorporating bond order-length-strength (BOLS correlation to mean-field Hubbard model, i.e., BOLS-HM. Consistency between the BOLS-HM calculation and density functional theory (DFT calculation on 2D materials verified that (i bond contractions and potential well depression occur at the edge of graphene, phosphorene, and antimonene nanoribbons; (ii the physical origin of the band gap opening of graphene, phosphorene, and antimonene nanoribbons lays in the enhancement of edge potentials and hopping integrals due to the shorter and stronger bonds between undercoordinated atoms; (iii the band gap of 2D material nanoribbons expand as the width decreases due to the increasing under-coordination effects of edges which modulates the conductive behaviors; and (iv non-bond electrons at the edges and atomic vacancies of 2D material accompanied with the broken bond contribute to the Dirac-Fermi polaron (DFP with a local magnetic moment.
Phase diagram and topological phases in the triangular lattice Kitaev-Hubbard model
Li, Kai; Yu, Shun-Li; Gu, Zhao-Long; Li, Jian-Xin
2016-09-01
We study the half-filled Hubbard model on a triangular lattice with spin-dependent Kitaev-like hopping. Using the variational cluster approach, we identify five phases: a metallic phase, a non-coplanar chiral magnetic order, a 120° magnetic order, a nonmagnetic insulator (NMI), and an interacting Chern insulator (CI) with a nonzero Chern number. The transition from CI to NMI is characterized by the change of the charge gap from an indirect band gap to a direct Mott gap. Based on the slave-rotor mean-field theory, the NMI phase is further suggested to be a gapless Mott insulator with a spinon Fermi surface or a fractionalized CI with nontrivial spinon topology, depending on the strength of the Kitaev-like hopping. Our work highlights the rising field in which interesting phases emerge from the interplay between band topology and Mott physics.
Excitonic Order and Superconductivity in the Two-Orbital Hubbard Model: Variational Cluster Approach
Fujiuchi, Ryo; Sugimoto, Koudai; Ohta, Yukinori
2018-06-01
Using the variational cluster approach based on the self-energy functional theory, we study the possible occurrence of excitonic order and superconductivity in the two-orbital Hubbard model with intra- and inter-orbital Coulomb interactions. It is known that an antiferromagnetic Mott insulator state appears in the regime of strong intra-orbital interaction, a band insulator state appears in the regime of strong inter-orbital interaction, and an excitonic insulator state appears between them. In addition to these states, we find that the s±-wave superconducting state appears in the small-correlation regime, and the dx2 - y2-wave superconducting state appears on the boundary of the antiferromagnetic Mott insulator state. We calculate the single-particle spectral function of the model and compare the band gap formation due to the superconducting and excitonic orders.
Emergent low-energy bound states in the two-orbital Hubbard model
Núñez-Fernández, Y.; Kotliar, G.; Hallberg, K.
2018-03-01
A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ =U -U12 in the other band. These excitations are interband holon-doublon bound states. At the symmetric point U =U12 , the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.
Phase transition in the non-degenerate Hubbard Hamiltonian
International Nuclear Information System (INIS)
Chaves, C.M.; Lederer, P.; Gomes, A.A.
1976-01-01
Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques, using the epsilon = 4 - d expansion to first order in epsilon, is studied. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. The possibility of tricritical behavior then emerges. The effects of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed
Recent numerical results on the two dimensional Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Parola, A.; Sorella, S.; Baroni, S.; Car, R.; Parrinello, M.; Tosatti, E. (SISSA, Trieste (Italy))
1989-12-01
A new method for simulating strongly correlated fermionic systems, has been applied to the study of the ground state properties of the 2D Hubbard model at various fillings. Comparison has been made with exact diagonalizations in the 4 x 4 lattices where very good agreement has been verified in all the correlation functions which have been studied: charge, magnetization and momentum distribution. (orig.).
Ground state phase diagram of extended attractive Hubbard model
International Nuclear Information System (INIS)
Robaszkiewicz, S.; Chao, K.A.; Micnas, R.
1980-08-01
The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)
Possible coexistence of antiferromagnetism and superconductivity in the Hubbard model
International Nuclear Information System (INIS)
Su Zhaobin; Dong Jinming; Yu Lu; Shen Juelian
1988-01-01
The Hubbard model in the nearly half-filled case was studied in the mean field approximation using the effective Hamiltonian approach. Both antiferromagnetic order parameter and condensation of singlet pairs were considered. In certain parameter ranges the coexistence of antiferromagnetism and superconductivity is energetically favourable. Relevance to the high temperature superconductivity and other theoretical approaches is also discussed. (author). 10 refs, 3 figs
Recent numerical results on the two dimensional Hubbard model
International Nuclear Information System (INIS)
Parola, A.; Sorella, S.; Baroni, S.; Car, R.; Parrinello, M.; Tosatti, E.
1989-01-01
This paper reports a new method for simulating strongly correlated fermionic systems applied to the study of the ground state properties of the 2D Hubbard model at various fillings. Comparison has been made with exact diagonalizations in the 4 x 4 lattices where very good agreement has been verified in all the correlation functions which have been studied: charge, magnetization and momentum distribution
... eat by making you feel full after eating small amounts of food. After surgery, your doctor can adjust the band ... You will feel full after eating just a small amount of food. The food in the small upper pouch will ...
Exotic superconducting states in the extended attractive Hubbard model.
Nayak, Swagatam; Kumar, Sanjeev
2018-04-04
We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with [Formula: see text] and [Formula: see text] symmetries, and a novel [Formula: see text] state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.
Fidelity study of superconductivity in extended Hubbard models
Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.
2015-07-01
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.
Magnon edge states in the hardcore- Bose-Hubbard model.
Owerre, S A
2016-11-02
Quantum Monte Carlo (QMC) simulation has uncovered nonzero Berry curvature and bosonic edge states in the hardcore-Bose-Hubbard model on the gapped honeycomb lattice. The competition between the chemical potential and staggered onsite potential leads to an interesting quantum phase diagram comprising the superfluid phase, Mott insulator, and charge density wave insulator. In this paper, we present a semiclassical perspective of this system by mapping to a spin-1/2 quantum XY model. We give an explicit analytical origin of the quantum phase diagram, the Berry curvatures, and the edge states using semiclassical approximations. We find very good agreement between the semiclassical analyses and the QMC results. Our results show that the topological properties of the hardcore-Bose-Hubbard model are the same as those of magnon in the corresponding quantum spin system. Our results are applicable to systems of ultracold bosonic atoms trapped in honeycomb optical lattices.
Stripe order from the perspective of the Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Devereaux, Thomas Peter
2018-03-01
A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emergence of stripes in the Hubbard model, a minimal model believed to be relevant to the cuprate superconductors, using determinant quantum Monte Carlo (DQMC) simulations at finite temperatures and density matrix renormalization group (DMRG) ground state calculations. By varying temperature, doping, and model parameters, we characterize the extent of stripes throughout the phase diagram of the Hubbard model. Our results show that including the often neglected next-nearest-neighbor hopping leads to the absence of spin incommensurability upon electron-doping and nearly half-filled stripes upon hole-doping. The similarities of these findings to experimental results on both electron and hole-doped cuprate families support a unified description across a large portion of the cuprate phase diagram.
On Hubbard-Stratonovich transformations over hyperbolic domains
International Nuclear Information System (INIS)
Fyodorov, Yan V
2005-01-01
We discuss and prove the validity of the Hubbard-Stratonovich (HS) identities over hyperbolic domains which are used frequently in studies on disordered systems and random matrices. We also introduce a counterpart of the HS identity arising in disordered systems with 'chiral' symmetry. Apart from this we outline a way of deriving the nonlinear σ-model from the gauge-invariant Wegner k-orbital model avoiding the use of the HS transformations
Analysis of the dynamical cluster approximation for the Hubbard model
Aryanpour, K.; Hettler, M. H.; Jarrell, M.
2002-01-01
We examine a central approximation of the recently introduced Dynamical Cluster Approximation (DCA) by example of the Hubbard model. By both analytical and numerical means we study non-compact and compact contributions to the thermodynamic potential. We show that approximating non-compact diagrams by their cluster analogs results in a larger systematic error as compared to the compact diagrams. Consequently, only the compact contributions should be taken from the cluster, whereas non-compact ...
Recurrent variational approach to the two-leg Hubbard ladder
International Nuclear Information System (INIS)
Kim, E.H.; Sierra, G.; Duffy, D.
1999-01-01
We applied the recurrent variational approach to the two-leg Hubbard ladder. At half filling, our variational ansatz was a generalization of the resonating valence-bond state. At finite doping, hole pairs were allowed to move in the resonating valence-bond background. The results obtained by the recurrent variational approach were compared with results from density matrix renormalization group. copyright 1999 The American Physical Society
Planar N = 4 gauge theory and the Hubbard model
International Nuclear Information System (INIS)
Rej, Adam; Serban, Didina; Staudacher, Matthias
2006-01-01
Recently it was established that a certain integrable long-range spin chain describes the dilatation operator of N = 4 gauge theory in the su(2) sector to at least three-loop order, while exhibiting BMN scaling to all orders in perturbation theory. Here we identify this spin chain as an approximation to an integrable short-ranged model of strongly correlated electrons: The Hubbard model
The Langevin method and Hubbard-like models
International Nuclear Information System (INIS)
Gross, M.; Hamber, H.
1989-01-01
The authors reexamine the difficulties associated with application of the Langevin method to numerical simulation of models with non-positive definite statistical weights, including the Hubbard model. They show how to avoid the violent crossing of the zeroes of the weight and how to move those nodes away from the real axis. However, it still appears necessary to keep track of the sign (or phase) of the weight
Electron correlations in narrow band systems
International Nuclear Information System (INIS)
Kishore, R.
1983-01-01
The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt
Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Friederich, Simon
2010-12-08
Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T{sub c} cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)
Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model
International Nuclear Information System (INIS)
Friederich, Simon
2010-01-01
Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T c cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)
Absence of ballistic charge transport in the half-filled 1D Hubbard model
Carmelo, J. M. P.; Nemati, S.; Prosen, T.
2018-05-01
Whether in the thermodynamic limit of lattice length L → ∞, hole concentration mηz = - 2 Sηz/L = 1 -ne → 0, nonzero temperature T > 0, and U / t > 0 the charge stiffness of the 1D Hubbard model with first neighbor transfer integral t and on-site repulsion U is finite or vanishes and thus whether there is or there is no ballistic charge transport, respectively, remains an unsolved and controversial issue, as different approaches yield contradictory results. (Here Sηz = - (L -Ne) / 2 is the η-spin projection and ne =Ne / L the electronic density.) In this paper we provide an upper bound on the charge stiffness and show that (similarly as at zero temperature), for T > 0 and U / t > 0 it vanishes for mηz → 0 within the canonical ensemble in the thermodynamic limit L → ∞. Moreover, we show that at high temperature T → ∞ the charge stiffness vanishes as well within the grand-canonical ensemble for L → ∞ and chemical potential μ →μu where (μ -μu) ≥ 0 and 2μu is the Mott-Hubbard gap. The lack of charge ballistic transport indicates that charge transport at finite temperatures is dominated by a diffusive contribution. Our scheme uses a suitable exact representation of the electrons in terms of rotated electrons for which the numbers of singly occupied and doubly occupied lattice sites are good quantum numbers for U / t > 0. In contrast to often less controllable numerical studies, the use of such a representation reveals the carriers that couple to the charge probes and provides useful physical information on the microscopic processes behind the exotic charge transport properties of the 1D electronic correlated system under study.
Lopez-Ceron, Maria; van den Broek, Frank J. C.; Mathus-Vliegen, Elisabeth M.; Boparai, Karam S.; van Eeden, Susanne; Fockens, Paul; Dekker, Evelien
2013-01-01
The Spigelman classification stratifies cancer risk in familial adenomatous polyposis (FAP) patients with duodenal adenomatosis. High-resolution endoscopy (HRE) and narrow-band imaging (NBI) may identify lesions at high risk. To compare HRE and NBI for the detection of duodenal and gastric polyps
Farkašovský, Pavol
2018-05-01
The small-cluster exact-diagonalization calculations and the projector quantum Monte Carlo method are used to examine the competing effects of geometrical frustration and interaction on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice. It is shown that the geometrical frustration stabilizes the ferromagnetic state at high electron concentrations ( n ≳ 7/4), where strong correlations between ferromagnetism and the shape of the noninteracting density of states are observed. In particular, it is found that ferromagnetism is stabilized for these values of frustration parameters, which lead to the single-peaked noninterating density of states at the band edge. Once, two or more peaks appear in the noninteracting density of states at the band edge the ferromagnetic state is suppressed. This opens a new route towards the understanding of ferromagnetism in strongly correlated systems.
Enhanced pairing susceptibility in a photodoped two-orbital Hubbard model
Werner, Philipp; Strand, Hugo U. R.; Hoshino, Shintaro; Murakami, Yuta; Eckstein, Martin
2018-04-01
Local spin fluctuations provide the glue for orbital-singlet spin-triplet pairing in the doped Mott insulating regime of multiorbital Hubbard models. At large Hubbard repulsion U , the pairing susceptibility is nevertheless tiny because the pairing interaction cannot overcome the suppression of charge fluctuations. Using nonequilibrium dynamical mean field simulations of the two-orbital Hubbard model, we show that out of equilibrium the pairing susceptibility in this large-U regime can be strongly enhanced by creating a photoinduced population of the relevant charge states. This enhancement is supported by the long lifetime of photodoped charge carriers and a built-in cooling mechanism in multiorbital Hubbard systems.
Functional-derivative study of the Hubbard model. III. Fully renormalized Green's function
International Nuclear Information System (INIS)
Arai, T.; Cohen, M.H.
1980-01-01
The functional-derivative method of calculating the Green's function developed earlier for the Hubbard model is generalized and used to obtain a fully renormalized solution. Higher-order functional derivatives operating on the basic Green's functions, G and GAMMA, are all evaluated explicitly, thus making the solution applicable to the narrow-band region as well as the wide-band region. Correction terms Phi generated from functional derivatives of equal-time Green's functions of the type delta/sup n/ /deltaepsilon/sup n/, etc., with n > or = 2. It is found that the Phi's are, in fact, renormalization factors involved in the self-energy Σ and that the structure of the Phi's resembles that of Σ and contains the same renormalization factors Phi. The renormalization factors Phi are shown to satisfy a set of equations and can be evaluated self-consistently. In the presence of the Phi's, all difficulties found in the previous results (papers I and II) are removed, and the energy spectrum ω can now be evaluated for all occupations n. The Schwinger relation is the only basic relation used in generating this fully self-consistent Green's function, and the Baym-Kadanoff continuity condition is automatically satisfied
Gutzwiller variational wave function for a two-orbital Hubbard model on a square lattice
Energy Technology Data Exchange (ETDEWEB)
Muenster, Kevin Torben zu
2015-07-01
In this work, we formulated and applied the Gutzwiller variational many-body approach to multi-band Hubbard models. In chapter 1, we gave a short introduction to the problem and an outline of the scope of the work. In the chapter 2, we developed a complete, concise diagrammatic formalism for a perturbative evaluation of expectation values for Gutzwiller-correlated wave functions on finite lattices. The derivation of the diagrammatic expansion consists of three steps. In a first step, we introduced a one-to-one mapping between a sequence of fermion operators and their Hartree-Fock counterparts in order to eliminate all local contractions. We explicitly showed the consistency of the mapping. In a second step, we derived and applied the linked-cluster theorem. To this end, we expanded numerator and denominator in the Gutzwiller expectation value of one-site and two-site operators in terms of a perturbation series, and used Wick's theorem to express the coefficients in terms of diagrams. The introduction of the Hartree-Fock operators excludes all local contractions so that lines between identical lattice sites are zero by definition. The normal ordering of the operators and the sum over distinctive lattice sites permitted the introduction of Grassmann variables. For multi-band Gutzwiller wave functions, we had to introduce a formal representation of local operators in terms of an exponential series which led to a re-definition of the values of external and internal vertices. Then, the linked-cluster theorem applied, both for infinite and finite lattices, i.e., the unconnected diagrams in the numerator are canceled by the denominator. In this way, the nth-order in perturbation theory corresponds to summing all connected diagrams with n internal nodes. As a third and last step, we eliminated all internal nodes with two lines by fixing a subset of our variational parameters. We showed that, for our applications, this gauge fixing does not restrict the variational
Desarrollo No Perturbativo para el Modelo de Hubbard Generalizado
Directory of Open Access Journals (Sweden)
Oscar P. Zandron
2010-01-01
Full Text Available Se extienden a un estado superconductor nuestros resultados previamente obtenidos para un estado normal en el marco del formalismo Lagrangiano. Se considera la expansión noperturbativa a N grande aplicada a un modelo generalizado de Hubbard describiendo N bandas degeneradas correlacionadas. Se obtienen la diagramática Feynman del modelo y se calculan y analizan las cantidades físicas renormalizadas. Nuestro propósito es obtener la corrección 1/N de los propagadores bosónico y fermiónico renormalizados cuando se tiene en cuenta un estado de condensación de pares de Cooper.
Exact diagonalization: the Bose-Hubbard model as an example
International Nuclear Information System (INIS)
Zhang, J M; Dong, R X
2010-01-01
We take the Bose-Hubbard model to illustrate exact diagonalization techniques in a pedagogical way. We follow the route of first generating all the basis vectors, then setting up the Hamiltonian matrix with respect to this basis and finally using the Lanczos algorithm to solve low lying eigenstates and eigenvalues. Emphasis is placed on how to enumerate all the basis vectors and how to use the hashing trick to set up the Hamiltonian matrix or matrices corresponding to other quantities. Although our route is not necessarily the most efficient one in practice, the techniques and ideas introduced are quite general and may find use in many other problems.
Thermalization after an interaction quench in the Hubbard model.
Eckstein, Martin; Kollar, Marcus; Werner, Philipp
2009-07-31
We use nonequilibrium dynamical mean-field theory to study the time evolution of the fermionic Hubbard model after an interaction quench. Both in the weak-coupling and in the strong-coupling regime the system is trapped in quasistationary states on intermediate time scales. These two regimes are separated by a sharp crossover at U(c)dyn=0.8 in units of the bandwidth, where fast thermalization occurs. Our results indicate a dynamical phase transition which should be observable in experiments on trapped fermionic atoms.
Intersite electron correlations in a Hubbard model on inhomogeneous lattices
International Nuclear Information System (INIS)
Takemori, Nayuta; Koga, Akihisa; Hafermann, Hartmut
2016-01-01
We study intersite electron correlations in the half-filled Hubbard model on square lattices with periodic and open boundary conditions by means of a real-space dual fermion approach. By calculating renormalization factors, we clarify that nearest-neighbor intersite correlations already significantly reduce the critical interaction. The Mott transition occurs at U/t ∼ 6.4, where U is the interaction strength and t is the hopping integral. This value is consistent with quantum Monte Carlo results. It shows the importance of short-range intersite correlations, which are taken into account in the framework of the real-space dual fermion approach. (paper)
Magnetic properties of three-dimensional Hubbard-sigma model
International Nuclear Information System (INIS)
Yamamoto, Hisashi; Ichinose, Ikuo; Tatara, Gen; Matsui, Tetsuo.
1989-11-01
It is broadly viewed that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling with an 'effective' one determined by the concentration and the one-loop correction of hole fermions. A stationary-phase equation for the one-loop effective potential of S 2 model is analyzed numerically. The behavior of Neel temperature, magnetization (long range Neel order), spin correlation length, etc as functions of anisotropic parameter, temperature, hole concentrations, etc are investigated in detail. A phase diagram is also supported by the renormlization group analysis. The results show that our anisotropic field theory model with certain values of parameters could give a reasonably well description of the magnetic properties indicated by some experiments on pure and doped La 2 CuO 4 . (author)
Magnetic and superconducting competition within the Hubbard dimer. Exact solution
International Nuclear Information System (INIS)
Matlak, M.; Slomska, T.; Grabiec, B.
2005-01-01
We express the Hubbard dimer Hamiltonian H d =Σ 16 α=1 E α vertical stroke E α right angle left angle E α vertical stroke in the second quantization with the use of the Hubbard and spin operators. We consider the case of positive and negative U. We decompose the resulting Hamiltonian into several parts collecting all the terms belonging to the same energy level. Such a decomposition visualizes explicitly all intrinsic interactions competing together and deeply hidden in the original form of the dimer Hamiltonian. Among them are competitive ferromagnetic and antiferromagnetic interactions. There are also hopping terms present which describe Cooper pairs hopping between sites 1 and 2 with positive and negative coupling constants (similar as in Kulik-Pedan, Penson-Kolb models). We show that the competition between intrinsic interactions strongly depends on the model parameters and the averaged occupation number of electrons n element of [0, 4] resulting in different regimes of the model (as e.g. t-J model regime, etc.). (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Symmetry-breaking solutions of the Hubbard model
International Nuclear Information System (INIS)
Kuzemsky, A.L.; )
1998-10-01
The problem of finding the ferromagnetic and antiferromagnetic ''broken symmetry'' solutions of the correlated lattice fermion models beyond the mean-field approximation has been investigated. The calculation of the quasiparticle excitation spectrum with damping for the single- and multi-orbital Hubbard model has been performed in the framework of the equation-of-motion method for two-time temperature Green's Functions within a non-perturbative approach. A unified scheme for the construction of Generalised Mean Fields (elastic scattering corrections) and self-energy (inelastic scattering) in terms of Dyson equation has been generalised in order to include the presence of the ''source fields''. The damping of quasiparticles, which reflects the interaction of the single-particle and collective degrees of freedom has been calculated. The ''broken symmetry'' dynamical solutions of the Hubbard model, which correspond to various types of itinerant antiferromagnetism have been discussed. This approach complements previous studies and clarifies the nature of the concepts of itinerant antiferromagnetism and ''spin-aligning field'' of correlated lattice fermions. (author)
Directory of Open Access Journals (Sweden)
L.Didukh
2005-01-01
Full Text Available The effect of external magnetic field h on a static conductivity of Mott-Hubbard material which is described by the model with correlated hopping of electrons has been investigated. By means of canonical transformation, the effective Hamiltonian is obtained which takes into account strong intra-site Coulomb repulsion and correlated hopping. Using a variant of generalized Hartree-Fock approximation the single-electron Green function and quasiparticle energy spectrum of the model have been calculated. The static conductivity σ has been calculated as a function of h, electron concentration n and temperature T. The correlated hopping is shown to cause the electron-hole asymmetry of transport properties of narrow band materials.
Lu, Yi; Haverkort, Maurits W.
2017-12-01
We present a nonperturbative, divergence-free series expansion of Green's functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel.
Hugdal, Henning G.; Sudbø, Asle
2018-01-01
We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.
The classical trigonometric r-matrix for the quantum-deformed Hubbard chain
Energy Technology Data Exchange (ETDEWEB)
Beisert, Niklas, E-mail: nbeisert@aei.mpg.de [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)
2011-07-01
The one-dimensional Hubbard model is an exceptional integrable spin chain which is apparently based on a deformation of the Yangian for the superalgebra gl(2|2). Here we investigate the quantum deformation of the Hubbard model in the classical limit. This leads to a novel classical r-matrix of trigonometric kind. We derive the corresponding one-parameter family of Lie bialgebras as a deformation of the affine gl(2|2) Kac-Moody superalgebra. In particular, we discuss the affine extension as well as discrete symmetries, and we scan for simpler limiting cases, such as the rational r-matrix for the undeformed Hubbard model.
Progress towards localization in the attractive Hubbard model
Morong, W.; Xu, W.; Demarco, B.
2017-04-01
The interplay between fermionic superfluidity and disorder is a topic of long-standing interest that has recently come within reach of ultracold gas experiments. Outstanding questions include the fate of Cooper pairs in a localized superfluid and the effect of disorder on the superfluid transition temperature. We report progress on tackling this problem using a realization of the Hubbard model with attractive interactions. Our system consists of two spin states of fermionic potassium-40 trapped in a cubic optical lattice. Disorder is introduced using an optical speckle potential, and interactions are controlled via a Feshbach resonance. We study the binding and unbinding of Cooper pairs in this system using rf spectroscopy, changes in Tc by measuring the condensate fraction, and transport properties by observing the response to an applied impulse. We will discuss progress towards these measurements.
Coulomb matrix elements in multi-orbital Hubbard models.
Bünemann, Jörg; Gebhard, Florian
2017-04-26
Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.
Antiferromagnetic order in the Hubbard model on the Penrose lattice
Koga, Akihisa; Tsunetsugu, Hirokazu
2017-12-01
We study an antiferromagnetic order in the ground state of the half-filled Hubbard model on the Penrose lattice and investigate the effects of quasiperiodic lattice structure. In the limit of infinitesimal Coulomb repulsion U →+0 , the staggered magnetizations persist to be finite, and their values are determined by confined states, which are strictly localized with thermodynamics degeneracy. The magnetizations exhibit an exotic spatial pattern, and have the same sign in each of cluster regions, the size of which ranges from 31 sites to infinity. With increasing U , they continuously evolve to those of the corresponding spin model in the U =∞ limit. In both limits of U , local magnetizations exhibit a fairly intricate spatial pattern that reflects the quasiperiodic structure, but the pattern differs between the two limits. We have analyzed this pattern change by a mode analysis by the singular value decomposition method for the fractal-like magnetization pattern projected into the perpendicular space.
Variational cluster perturbation theory for Bose-Hubbard models
International Nuclear Information System (INIS)
Koller, W; Dupuis, N
2006-01-01
We discuss the application of the variational cluster perturbation theory (VCPT) to the Mott-insulator-to-superfluid transition in the Bose-Hubbard model. We show how the VCPT can be formulated in such a way that it gives a translation invariant excitation spectrum-free of spurious gaps-despite the fact that it formally breaks translation invariance. The phase diagram and the single-particle Green function in the insulating phase are obtained for one-dimensional systems. When the chemical potential of the cluster is taken as a variational parameter, the VCPT reproduces the dimensional dependence of the phase diagram even for one-site clusters. We find a good quantitative agreement with the results of the density-matrix renormalization group when the number of sites in the cluster becomes of order 10. The extension of the method to the superfluid phase is discussed
DMFT+Σ approach to disordered Hubbard model
International Nuclear Information System (INIS)
Kuchinskii, E. Z.; Sadovskii, M. V.
2016-01-01
We briefly review the generalized dynamic mean-field theory DMFT+Σ applied to both repulsive and attractive disordered Hubbard models. We examine the general problem of metal–insulator transition and the phase diagram in the repulsive case, as well as the BCS–BEC crossover region of the attractive model, demonstrating a certain universality of single-electron properties under disordering in both models. We also discuss and compare the results for the density of states and dynamic conductivity in the repulsive and attractive cases and the generalized Anderson theorem behavior of the superconducting critical temperature in the disordered attractive case. A brief discussion of the behavior of Ginzburg–Landau coefficients under disordering in the BCS–BEC crossover region is also presented.
Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain.
Fürst, Martin L R; Mendl, Christian B; Spohn, Herbert
2013-07-01
The standard Fermi-Hubbard chain becomes nonintegrable by adding to the nearest neighbor hopping additional longer range hopping amplitudes. We assume that the quartic interaction is weak and investigate numerically the dynamics of the chain on the level of the Boltzmann type kinetic equation. Only the spatially homogeneous case is considered. We observe that the huge degeneracy of stationary states in the case of nearest neighbor hopping is lost and the convergence to the thermal Fermi-Dirac distribution is restored. The convergence to equilibrium is exponentially fast. However for small next-nearest neighbor hopping amplitudes one has a rapid relaxation towards the manifold of quasistationary states and slow relaxation to the final equilibrium state.
Tunneling of self-trapped states and formation of a band
International Nuclear Information System (INIS)
Yonemitsu, K.
1993-12-01
Tunneling of a self-trapped kink and formation of a band are studied semi classically in the one-dimensional extended Peierls-Hubbard model near half filling, considering up to Gaussian fluctuations around imaginary-time-dependent periodic motion of electrons and phonons on the stationary phase of the action derived using Slater determinants. In the strong-coupling limit of both the Holstein and attractive Hubbard models, it reproduces analytically-known effective hopping of a single bipolaron because the tunneling involves only one in this limit. The method gives new results in other general cases and is easily applied to excited or more complex systems. 13 refs, 4 figs
Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.
Farajollahpour, T; Jafari, S A
2018-01-10
We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.
Semiconductor of spinons: from Ising band insulator to orthogonal band insulator
Farajollahpour, T.; Jafari, S. A.
2018-01-01
We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.
Cold Attractive Spin Polarized Fermi Lattice Gases and the Doped Positive U Hubbard Model
International Nuclear Information System (INIS)
Moreo, Adriana; Scalapino, D. J.
2007-01-01
Experiments on polarized fermion gases performed by trapping ultracold atoms in optical lattices allow the study of an attractive Hubbard model for which the strength of the on-site interaction is tuned by means of a Feshbach resonance. Using a well-known particle-hole transformation we discuss how results obtained for this system can be reinterpreted in the context of a doped repulsive Hubbard model. In particular, we show that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state corresponds to the striped state of the two-dimensional doped positive U Hubbard model. We then use the results of numerical studies of the striped state to relate the periodicity of the FFLO state to the spin polarization. We also comment on the relationship of the d x 2 -y 2 superconducting phase of the doped 2D repulsive Hubbard model to a d-wave spin density wave state for the attractive case
Periodic Ground State Configurations in a One-Dimensional Hubbard Model of Statistical Mechanics
International Nuclear Information System (INIS)
Kipnis, M. M.
2000-01-01
This paper considers an averaging procedure for the description of a particles arrangement in a Hubbard model with antiferromagnetic interactions. The arrangements are described by the devil's staircase. Completeness of the staircase is proved
Quantum Simulation of the Hubbard Model Using Ultra-Cold Atoms
2008-11-01
Hubbard model. The SU(3) Hubbard model has been proposed as a model system for studying different phases of matter expected to occur in quantum...chromodynamics (QCD): the color superconducting phase and the formation of baryons . Our initial investigations have focused on understanding three-body...density quark matter described by quantum chromodynamics . We have been investigating the stability of the 3-state Fermi gas with respect to decay due
Phase diagram of the disordered Bose-Hubbard model
International Nuclear Information System (INIS)
Gurarie, V.; Pollet, L.; Prokof'ev, N. V.; Svistunov, B. V.; Troyer, M.
2009-01-01
We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling which has been controversial for many years. The theorem of inclusions, proven by Pollet et al. [Phys. Rev. Lett. 103, 140402 (2009)] states that the Bose-glass phase always intervenes between the Mott insulating and superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions between gapped (Mott insulator) and gapless phases (Bose glass). The apparent paradox is resolved through a unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a regular gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate the point. A highly nontrivial overall shape of the phase diagram is revealed with the worm algorithm. The phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in random potentials nearly 50 (!) times larger than the particle half-bandwidth. Finally, we comment on the feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite temperature.
Antiferromagnetism and d-wave superconductivity in the Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Krahl, H.C.
2007-07-25
The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)
Ising tricriticality in the extended Hubbard model with bond dimerization
Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.
We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).
Hubbard interaction in the arbitrary Chern number insulator: A mean-field study
Energy Technology Data Exchange (ETDEWEB)
Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Cao, Jie [College of Science, Hohai University, Nanjing 210098 (China)
2017-05-10
The low-dimensional electron gas owing topological property has attracted many interests recently. In this work, we study the influence of the electron-electron interaction on the arbitrary Chern number insulator. Using the mean-field method, we approximately solve the Hubbard model in the half-filling case and obtain the phase diagrams in different parametric spaces. We further verify the results by calculating the entanglement spectrum, which contains C chiral modes and corresponds to a real space partitioning. - Highlights: • In this work, we made a mean-field study of the Hubbard interaction in the arbitrary Chern number insulator. • We point out that how the Zeeman splitting, the local magnetization and the Hubbard interaction are intimately related. • The mean-field phase diagrams are obtained in different parametric spaces. • The Chern number phase is demonstrated by calculating the entanglement spectrum.
Classical mapping for Hubbard operators: Application to the double-Anderson model
Energy Technology Data Exchange (ETDEWEB)
Li, Bin; Miller, William H. [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Levy, Tal J.; Rabani, Eran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)
2014-05-28
A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to be accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.
Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder
Sousa, H. S.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.
2018-05-01
The degree of fermionic entanglement is examined in an exactly solvable Ising-Hubbard ladder, which involves interacting electrons on the ladder's rungs described by Hubbard dimers at half-filling on each rung, accounting for intrarung hopping and Coulomb terms. The coupling between neighboring Hubbard dimers is assumed to have an Ising-like nature. The ground-state phase diagram consists of four distinct regions corresponding to the saturated paramagnetic, the classical antiferromagnetic, the quantum antiferromagnetic, and the mixed classical-quantum phase. We have exactly computed the fermionic concurrence, which measures the degree of quantum entanglement between the pair of electrons on the ladder rungs. The effects of the hopping amplitude, the Coulomb term, temperature, and magnetic fields on the fermionic entanglement are explored in detail. It is shown that the fermionic concurrence displays a re-entrant behavior when quantum entanglement is being generated at moderate temperatures above the classical saturated paramagnetic ground state.
International Nuclear Information System (INIS)
Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.
2008-01-01
The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + Σ approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamic conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition
One-dimensional extended Bose-Hubbard model with a confining potential: a DMRG analysis
Energy Technology Data Exchange (ETDEWEB)
Urba, Laura; Lundh, Emil; Rosengren, Anders [Condensed Matter Theory, Department of Theoretical Physics, KTH, AlbaNova University Center, SE-106 91 Stockholm (Sweden)
2006-12-28
The extended Bose-Hubbard model in a quadratic trap potential is studied using a finite-size density-matrix renormalization group method (DMRG). We compute the boson density profiles, the local compressibility and the hopping correlation functions. We observe the phase separation induced by the trap in all the quantities studied and conclude that the local density approximation is valid in the extended Bose-Hubbard model. From the plateaus obtained in the local compressibility it was possible to obtain the phase diagram of the homogeneous system which is in agreement with previous results.
Physical properties of the half-filled Hubbard model in infinite dimensions
International Nuclear Information System (INIS)
Georges, A.; Krauth, W.
1993-01-01
A detailed quantitative study of the physical properties of the infinite-dimensional Hubbard model at half filling is presented. The method makes use of an exact mapping onto a single-impurity model supplemented by a self-consistency condition. This coupled problem is solved numerically. Results for thermodynamic quantities (specific heat, entropy, . . .), one-particle spectral properties, and magnetic properties (response to a uniform magnetic field) are presented and discussed. The nature of the Mott-Hubbard metal-insulator transition found in this model is investigated. A numerical solution of the mean-field equations inside the antiferromagnetic phase is also reported
Energy Technology Data Exchange (ETDEWEB)
Afchain, St
2005-02-15
The Hubbard model is the simplest model to describe the behaviour of fermions on a network, it takes into account only fermion scattering and only interactions with other fermions located on the same site. Half-filling means that the total number of fermions is equal to half the number of sites. In the first chapter we show how we can pass trough successive approximations from a very general Hamiltonian to the Hubbard Hamiltonian. The second chapter is dedicated to the passage from the Hamiltonian formalism to the Grassmanian functional formalism. The main idea is to show that the correlation functions of the Hamiltonian approach can be described through fermionic functional integrals which implies the possibility of speaking of the model in terms of field theory. The chapter 3 deals with the main constructive techniques that allow the strict and consistent construction of models inside the frame of field theory. We show by proving the violation of a condition concerning self-energy, that the two-dimensional Hubbard model at half-filling has not the behaviour of a Fermi liquid in the Landau's interpretation. (A.C.)
Angle-resolved photoemission spectroscopy of band tails in lightly doped cuprates
Alexandrov, A. S.; Reynolds, K.
2007-01-01
We amend ab initio strongly-correlated band structures by taking into account the band-tailing phenomenon in doped charge-transfer Mott-Hubbard insulators. We show that the photoemission from band tails accounts for sharp "quasi-particle" peaks, rapid loss of their intensities in some directions of the Brillouin zone ("Fermi-arcs") and high-energy "waterfall" anomalies as a consequence of matrix-element effects of disorder-localised states in the charge-transfer gap of doped cuprates.
Nisikawa, Y
2002-01-01
We discuss the possibility of spin-triplet superconductivity in a two-dimensional Hubbard model on a triangular lattice within the third-order perturbation theory. When we vary the symmetry in the dispersion of the bare energy band from D sub 2 to D sub 6 , spin-singlet superconductivity in the D sub 2 -symmetric system is suppressed and we obtain spin-triplet superconductivity in near the D sub 6 -symmetric system. In this case, it is found that the vertex terms, which are not included in the interaction mediated by the spin fluctuation, are essential for realizing the spin-triplet pairing. We point out the possibility that obtained results correspond to the difference between the superconductivity of UNi sub 2 Al sub 3 and that of UPd sub 2 Al sub 3. (author)
Directory of Open Access Journals (Sweden)
Daigo Ohki
2018-03-01
Full Text Available The optical conductivity in the charge order phase is calculated in the two-dimensional extended Hubbard model describing an organic Dirac electron system α -(BEDT-TTF 2 I 3 using the mean field theory and the Nakano-Kubo formula. Because the interband excitation is characteristic in a two-dimensional Dirac electron system, a peak structure is found above the charge order gap. It is shown that the peak structure originates from the Van Hove singularities of the conduction and valence bands, where those singularities are located at a saddle point between two Dirac cones in momentum space. The frequency of the peak structure exhibits drastic change in the vicinity of the charge order transition.
Chemical and morphological distinctions between vertical and lateral podzolization at Hubbard Brook
Rebecca R. Bourgault; Donald S. Ross; Scott W. Bailey
2015-01-01
Classical podzolization studies assumed vertical percolation and pedon-scale horizon development. However, hillslope-scale lateral podzolization also occurs where lateral subsurface water flux predominates. In this hydropedologic study, 99 podzols were observed in Watershed 3, Hubbard Brook Experimental Forest, New Hampshire. Soil horizon samples were extracted with...
Mott metal-insulator transition in the doped Hubbard-Holstein model
Kurdestany, Jamshid Moradi; Satpathy, S.
2017-08-01
Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.
Rakesh Minocha; Stephanie Long; Palaniswamy Thangavel; Subhash C. Minocha; Christopher Eagar; Charles T. Driscoll
2010-01-01
Acidic deposition has caused a depletion of calcium (Ca) in the northeastern forest soils. Wollastonite (Ca silicate) was added to watershed 1 (WS1) at the Hubbard Brook Experimental Forest (HBEF) in 1999 to evaluate its effects on various functions of the HBEF ecosystem. The effects of Ca addition on foliar soluble (extractable in 5% HClO4) ions...
Catapodium marinum (L.) Hubbard, Scirpus planifolius Grimm en Trifolium micranthum Viv. op Goeree
Westhoff, V.; Leeuwen, van C.G.
1962-01-01
The mediterranean-atlantic species Catapodium marinum (L.) Hubbard reaches its northern limit on the continent in the Netherlands. Up to 1959 only 2 localities on the Dutch coast were known. In 1961 the species was discovered in large quantities on the brackish estuary shore of the island of Goeree,
Relative and center-of-mass motion in the attractive Bose-Hubbard model
DEFF Research Database (Denmark)
Sørensen, Ole Søe; Gammelmark, Søren; Mølmer, Klaus
2012-01-01
We present first-principles numerical calculations for few-particle solutions of the attractive Bose-Hubbard model with periodic boundary conditions. We show that the low-energy many-body states found by numerical diagonalization can be written as translational superposition states of compact...
Hydrogen ion input to the Hubbard Brook Experimental Forest, New Hampshire, during the last decade
Gene E. Likens; F. Herbert Bormann; John S. Eaton; Robert S. Pierce; Noye M. Johnson
1976-01-01
Being downwind of eastern and midwestern industrial centers, the Hubbard Brook Experimental Forest offers a prime location to monitor long-term trends in atmospheric chemistry. Continuous measurements of precipitation chemistry during the last 10 years provide a measure of recent changes in precipitation inputs of hydrogen ion. The weighted average pH of precipitation...
The role of local repulsion in superconductivity in the Hubbard-Holstein model
Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo
2017-01-01
We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.
Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest
John L. Campbell; Charles T. Driscoll; Christopher Eagar; Gene E. Likens; Thomas G. Siccama; Chris E. Johnson; Timothy J. Fahey; Steven P. Hamburg; Richard T. Holmes; Amey S. Bailey; Donald C. Buso
2007-01-01
Summarizes 52 years of collaborative, long-term research conducted at the Hubbard Brook (NH) Experimental Forest on ecosystem response to disturbances such as air pollution, climate change, forest disturbance, and forest management practices. Also provides explanations of some of the trends and lists references from scientific literature for further reading.
Surface correlation effects in two-band strongly correlated slabs.
Esfahani, D Nasr; Covaci, L; Peeters, F M
2014-02-19
Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
Energy Technology Data Exchange (ETDEWEB)
Shneyder, E.I., E-mail: shneyder@iph.krasn.ru [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Reshetnev Siberian State Aerospace University, Krasnoyarsk 660014 (Russian Federation); Spitaler, J. [Materials Center Leoben Forschung GmbH, Rosegger-Straße 18, A-8700 Leoben (Austria); Kokorina, E.E.; Nekrasov, I.A. [Institute of Electrophysics UB RAS, Amundsena Str. 106, 620016 Yekaterinburg (Russian Federation); Gavrichkov, V.A. [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Draxl, C. [Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin (Germany); Ovchinnikov, S.G. [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation)
2015-11-05
We present results for the electron-phonon interaction of the Γ-point phonons in the tetragonal high-temperature phase of La{sub 2} CuO{sub 4} obtained from a hybrid scheme, combining density-functional theory (DFT) with the generalized tight-binding approach. As a starting point, eigenfrequencies and eigenvectors for the Γ-point phonons are determined from DFT within the frozen phonon approach utilizing the augmented plane wave + local orbitals method. The so obtained characteristics of electron-phonon coupling are converted into parameters of the generalized tight-binding method. This approach is a version of cluster perturbation theory and takes the strong on-site electron correlations into account. The obtained parameters describe the interaction of phonons with Hubbard fermions which form quasiparticle bands in strongly correlated electron systems. As a result, it is found that the Γ-point phonons with the strongest electron-phonon interaction are the A{sub 2u} modes (236 cm{sup −1}, 131 cm{sup −1} and 476 cm{sup −1}). Finally it is shown, that the single-electron spectral-weight redistribution between different Hubbard fermion quasiparticles results in a suppression of electron-phonon interaction which is strongest for the triplet Hubbard band with z oriented copper and oxygen electrons. - Highlights: • Electron-phonon interaction in strongly correlated electron systems is analyzed. • Interaction parameters between strongly correlated electrons and phonons are obtained. • The suppression of these parameters by strong electron correlations is demonstrated.
Effect of Inhomogeneity on s-wave Superconductivity in the Attractive Hubbard Model
Energy Technology Data Exchange (ETDEWEB)
Aryanpour, K. A. [University of California, Davis; Dagotto, Elbio R [ORNL; Mayr, Matthias [Max-Planck-Institut fur Feskorperforschung, Stuttgart, Germany; Paiva, T. [Universidade Federal do Rio de Janeiro, Brazil; Pickett, W. E. [University of California, Davis; Scalettar, Richard T [ORNL
2006-01-01
Inhomogeneous s-wave superconductivity is studied in the two-dimensional, square lattice attractive Hubbard Hamiltonian using the Bogoliubov-de Gennes BdG mean field approximation. We find that at weak coupling, and for densities mainly below half-filling, an inhomogeneous interaction in which the on-site interaction Ui takes on two values, Ui=0, 2U results in a larger zero temperature pairing amplitude, and that the superconducting Tc can also be significantly increased, relative to a uniform system with Ui=U on all sites. These effects are observed for stripe, checkerboard, and even random patterns of the attractive centers, suggesting that the pattern of inhomogeneity is unimportant. Monte Carlo calculations which reintroduce some of the fluctuations neglected within the BdG approach see the same effect, both for the attractive Hubbard model and a Hamiltonian with d-wave pairing symmetry.
Breakdown of quasiparticle picture in the low-density limit of the 1D Hubbard model
International Nuclear Information System (INIS)
Qin Shaojin; Qian Tiezheng; Su Zhaobin
1995-03-01
Using the finite-size scaling of results obtained by exact diagonalization, we study the low-density limit of the one-dimensional Hubbard model. Calculating the quasiparticle weight, we demonstrate that for a given particle number N and system size L, there always exists a crossover point U c separating the Fermi-liquid (U c ) and non-Fermi-liquid (U > U c ) regimes (U is the Hubbard repulsion). We find that for a fixed N, U c is inversely proportional to L, keeping U c L/t constant (with t as the hopping integral), as L is large enough. It follows that in the low-density (in fact vanishing density) limit L → ∞, U c → 0, so the system is always in non-Fermi-liquid regime as long as U > 0. We show that our numerical results are consistent with the Bethe ansatz solution. (author). 11 refs, 3 figs
A Riemann-Hilbert formulation for the finite temperature Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Cornagliotto, Martina [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Mattelliano, Massimo; Tateo, Roberto [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy)
2015-06-03
Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.
Hubbard-Stratonovich-like Transformations for Few-Body Inter-actions
Directory of Open Access Journals (Sweden)
Körber Christopher
2018-01-01
Full Text Available Through the development of many-body methodology and algorithms, it has become possible to describe quantum systems composed of a large number of particles with great accuracy. Essential to all these methods is the application of auxiliary fields via the Hubbard-Stratonovich transformation. This transformation effectively reduces two-body interactions to interactions of one particle with the auxiliary field, thereby improving the computational scaling of the respective algorithms. The relevance of collective phenomena and interactions grows with the number of particles. For many theories, e.g. Chiral Perturbation Theory, the inclusion of three-body forces has become essential in order to further increase the accuracy on the many-body level. In this proceeding, the an-alytical framework for establishing a Hubbard-Stratonovich-like transformation, which allows for the systematic and controlled inclusion of contact three-and more-body inter-actions, is presented.
Single-particle properties of the Hubbard model in a novel three-pole approximation
Di Ciolo, Andrea; Avella, Adolfo
2018-05-01
We study the 2D Hubbard model using the Composite Operator Method within a novel three-pole approximation. Motivated by the long-standing experimental puzzle of the single-particle properties of the underdoped cuprates, we include in the operatorial basis, together with the usual Hubbard operators, a field describing the electronic transitions dressed by the nearest-neighbor spin fluctuations, which play a crucial role in the unconventional behavior of the Fermi surface and of the electronic dispersion. Then, we adopt this approximation to study the single-particle properties in the strong coupling regime and find an unexpected behavior of the van Hove singularity that can be seen as a precursor of a pseudogap regime.
Bose-Hubbard lattice as a controllable environment for open quantum systems
Cosco, Francesco; Borrelli, Massimo; Mendoza-Arenas, Juan José; Plastina, Francesco; Jaksch, Dieter; Maniscalco, Sabrina
2018-04-01
We investigate the open dynamics of an atomic impurity embedded in a one-dimensional Bose-Hubbard lattice. We derive the reduced evolution equation for the impurity and show that the Bose-Hubbard lattice behaves as a tunable engineered environment allowing one to simulate both Markovian and non-Markovian dynamics in a controlled and experimentally realizable way. We demonstrate that the presence or absence of memory effects is a signature of the nature of the excitations induced by the impurity, being delocalized or localized in the two limiting cases of a superfluid and Mott insulator, respectively. Furthermore, our findings show how the excitations supported in the two phases can be characterized as information carriers.
Spectral properties of an extended Hubbard ladder with long range anti-ferromagnetic order
Yang, Chun; Feiguin, Adrian
We study the spectral properties of a Hubbard ladder with anti-ferromagnetic long range order by introducing a staggered Heisenberg interaction that decays algebraically. Unlike an alternating field or the t -Jz model, our problem preserves both SU (2) and translational invariance. We solve the problem with the time-dependent density matrix renormalization group and analyze the binding between holons and spinons and the structure of the elementary excitations. We discuss the implications in the context of the 2D Hubbard model at, and away from half-filling by using cluster perturbation theory (CPT). AF acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences, for support under Grant DE-SC0014407.
On the SU(2)× SU(2) symmetry in the Hubbard model
Jakubczyk, Dorota; Jakubczyk, Paweł
2012-08-01
We discuss the one-dimensional Hubbard model, on finite sites spin chain, in context of the action of the direct product of two unitary groups SU(2)× SU(2). The symmetry revealed by this group is applicable in the procedure of exact diagonalization of the Hubbard Hamiltonian. This result combined with the translational symmetry, given as the basis of wavelets of the appropriate Fourier transforms, provides, besides the energy, additional conserved quantities, which are presented in the case of a half-filled, four sites spin chain. Since we are dealing with four elementary excitations, two quasiparticles called "spinons", which carry spin, and two other called "holon" and "antyholon", which carry charge, the usual spin- SU(2) algebra for spinons and the so called pseudospin-SU(2) algebra for holons and antiholons, provide four additional quantum numbers.
Effective electron-electron and electron-phonon interactions in the Hubbard-Holstein model
International Nuclear Information System (INIS)
Aprea, G.; Di Castro, C.; Grilli, M. . E-mail marco.grilli@roma1.infn.it; Lorenzana, J.
2006-01-01
We investigate the interplay between the electron-electron and the electron-phonon interaction in the Hubbard-Holstein model. We implement the flow-equation method to investigate within this model the effect of correlation on the electron-phonon effective coupling and, conversely, the effect of phonons in the effective electron-electron interaction. Using this technique we obtain analytical momentum-dependent expressions for the effective couplings and we study their behavior for different physical regimes. In agreement with other works on this subject, we find that the electron-electron attraction mediated by phonons in the presence of Hubbard repulsion is peaked at low transferred momenta. The role of the characteristic energies involved is also analyzed
Correlation mediated superconductivity in a Spin Peierls Phase of the Hubbard Model
International Nuclear Information System (INIS)
Long, M.W.
1987-08-01
The author explores the consequences of a mapping of the Hubbard Hamiltonian with a view to finding possible superconducting phases. The transformation pairs up all the sites and is therefore a much more natural starting point for describing a 'Spin Peierls' transition, generating enhanced singlet correlations for this pairing, than it is for describing the 'Resonating Valence Bond' state. It is shown that in the less than half filling case, an effective non-linear hopping Hamiltonian is quite useful in describing half of the electrons. This effective Hamiltonian can show a form of superconducting instability when nearest neighbour hopping is introduced to stabilise it. This superconducting phase seems to be a very unlikely possibility for the standard Hubbard model. (author)
Two-site Hubbard molecule with a spinless electron-positron pair
Cossu, Fabrizio
2012-12-19
We determine the eigenvalues of the two-site Hubbard molecule with one electron and one positron to describe the characteristics of electron-positron interactions in solids. While the effect of hopping is, in general, opposite to the effect of on-site interaction, we find a complex scenario for the electron-positron pair with a non-vanishing potential drop. We give analytical solutions and discuss the combined effects of the model parameters.
Methodes d'amas quantiques a temperature finie appliquees au modele de Hubbard
Plouffe, Dany
Depuis leur decouverte dans les annees 80, les supraconducteurs a haute temperature critique ont suscite beaucoup d'interet en physique du solide. Comprendre l'origine des phases observees dans ces materiaux, telle la supraconductivite, est l'un des grands defis de la physique theorique du solide des 25 dernieres annees. L'un des mecanismes pressentis pour expliquer ces phenomenes est la forte interaction electron-electron. Le modele de Hubbard est l'un des modeles les plus simples pour tenir compte de ces interactions. Malgre la simplicite apparente de ce modele, certaines de ses caracteristiques, dont son diagramme de phase, ne sont toujours pas bien etablies, et ce malgre plusieurs avancements theoriques dans les dernieres annees. Cette etude se consacre a faire une analyse de methodes numeriques permettant de calculer diverses proprietes du modele de Hubbard en fonction de la temperature. Nous decrivons des methodes (la VCA et la CPT) qui permettent de calculer approximativement la fonction de Green a temperature finie sur un systeme infini a partir de la fonction de Green calculee sur un amas de taille finie. Pour calculer ces fonctions de Green, nous allons utiliser des methodes permettant de reduire considerablement les efforts numeriques necessaires pour les calculs des moyennes thermodynamiques, en reduisant considerablement l'espace des etats a considerer dans ces moyennes. Bien que cette etude vise d'abord a developper des methodes d'amas pour resoudre le modele de Hubbard a temperature finie de facon generale ainsi qu'a etudier les proprietes de base de ce modele, nous allons l'appliquer a des conditions qui s'approchent de supraconducteurs a haute temperature critique. Les methodes presentees dans cette etude permettent de tracer un diagramme de phase pour l'antiferromagnetisme et la supraconductivite qui presentent plusieurs similarites avec celui des supraconducteurs a haute temperature. Mots-cles : modele de Hubbard, thermodynamique
Two-site Hubbard molecule with a spinless electron-positron pair
Cossu, Fabrizio; Schuster, Cosima; Schwingenschlö gl, Udo
2012-01-01
We determine the eigenvalues of the two-site Hubbard molecule with one electron and one positron to describe the characteristics of electron-positron interactions in solids. While the effect of hopping is, in general, opposite to the effect of on-site interaction, we find a complex scenario for the electron-positron pair with a non-vanishing potential drop. We give analytical solutions and discuss the combined effects of the model parameters.
Coexistence of incommensurate magnetism and superconductivity in the two-dimensional Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Yamase, Hiroyuki [Max Planck Institute for Solid State Research, Stuttgart (Germany); National Institute for Materials Science, Tsukuba (Japan); Eberlein, Andreas [Max Planck Institute for Solid State Research, Stuttgart (Germany); Department of Physics, Harvard University, Cambridge (United States); Metzner, Walter [Max Planck Institute for Solid State Research, Stuttgart (Germany)
2016-07-01
We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Neel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.
Phase diagram of 2D Hubbard model by simulated annealing mean field approximation
International Nuclear Information System (INIS)
Kato, Masaru; Kitagaki, Takashi
1991-01-01
In order to investigate the stable magnetic structure of the Hubbard model on a square lattice, we utilize the dynamical simulated annealing method which proposed by R. Car and M. Parrinello. Results of simulations on a 10 x 10 lattice system with 80 electrons under assumption of collinear magnetic structure that the most stable state is incommensurate spin density wave state with periodic domain wall. (orig.)
Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-02-15
The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.
Emulating the 1-dimensional Fermi-Hubbard model with superconducting qubits
Energy Technology Data Exchange (ETDEWEB)
Reiner, Jan-Michael; Marthaler, Michael; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)
2016-07-01
A chain of qubits with both ZZ and XX couplings is described by a Hamiltonian which coincides with the Fermi-Hubbard model in one dimension. The qubit system can thus be used to study the quantum properties of this model. We investigate the specific implementation of such an analog quantum simulator by a chain of tunable Transmon qubits, where the ZZ interaction arises due to an inductive coupling and the XX interaction due to a capacitive coupling.
Breaking of SU(4) symmetry and interplay between strongly-correlated phases in the Hubbard model
Czech Academy of Sciences Publication Activity Database
Golubeva, A.; Sotnikov, A.; Cichy, A.; Kuneš, Jan; Hofstetter, W.
2017-01-01
Roč. 95, č. 12 (2017), s. 1-7, č. článku 125108. ISSN 2469-9950 EU Projects: European Commission(XE) 646807 - EXMAG Institutional support: RVO:68378271 Keywords : Hubbard model * SU(4) Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.836, year: 2016
Study of the two-dimensional Hubbard model at half-filling through constructive methods
International Nuclear Information System (INIS)
Afchain, St.
2005-02-01
The Hubbard model is the simplest model to describe the behaviour of fermions on a network, it takes into account only fermion scattering and only interactions with other fermions located on the same site. Half-filling means that the total number of fermions is equal to half the number of sites. In the first chapter we show how we can pass trough successive approximations from a very general Hamiltonian to the Hubbard Hamiltonian. The second chapter is dedicated to the passage from the Hamiltonian formalism to the Grassmanian functional formalism. The main idea is to show that the correlation functions of the Hamiltonian approach can be described through fermionic functional integrals which implies the possibility of speaking of the model in terms of field theory. The chapter 3 deals with the main constructive techniques that allow the strict and consistent construction of models inside the frame of field theory. We show by proving the violation of a condition concerning self-energy, that the two-dimensional Hubbard model at half-filling has not the behaviour of a Fermi liquid in the Landau's interpretation. (A.C.)
International Nuclear Information System (INIS)
Mishra, A.K.; Kishore, R.
2009-01-01
The exact nested Bethe ansatz solution for the one dimensional (1-D) U infinity Hubbard model show that the state vectors are a product of spin-less fermion and spin wavefunctions, or an appropriate superposition of such factorized wavefunctions. The spin-less fermion component of the wavefunctions ensures no double occupancy at any site. It had been demonstrated that the nested Bethe ansatz wavefunctions in the U infinity limit obey orthofermi statistics. Gutzwiller projection operator formalism is the another well known technique employed to handle U infinity Hubbard model. In general, this approach does not lead to spin-less fermion wavefunctions. Therefore, the nested Bethe ansatz and Gutzwiller projection operator approach give rise to different kinds of the wavefunctions for the U infinity limit of 1-D Hubbard Hamiltonian. To compare the consequences of this dissimilarity in the wavefunctions, we have obtained the ground state energy of a finite system consisting of three particles on a four site closed chain. It is shown that in the nested Bethe ansatz implemented through orthofermion algebra, all the permissible 2 3 spin configurations are degenerate in the ground state. This eight fold degeneracy of the ground state is absent in the Gutzwiller projection operator approach. This finding becomes relevant in the context of known exact U infinity results, which require that all the energy levels are 2 N -fold degenerate for an N particle system.
First-principles Hubbard U approach for small molecule binding in metal-organic frameworks
Energy Technology Data Exchange (ETDEWEB)
Mann, Gregory W., E-mail: gmann@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Mesosphere, Inc., San Francisco, California 94105 (United States); Lee, Kyuho, E-mail: kyuholee@lbl.gov [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Synopsys, Inc., Mountain View, California 94043 (United States); Cococcioni, Matteo, E-mail: matteo.cococcioni@epfl.ch [Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Smit, Berend, E-mail: Berend-Smit@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion (Switzerland); Neaton, Jeffrey B., E-mail: jbneaton@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)
2016-05-07
We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO{sub 2}-MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO{sub 2} binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.
Phase competition in a one-dimensional three-orbital Hubbard-Holstein model
Li, Shaozhi; Tang, Yanfei; Maier, Thomas A.; Johnston, Steven
2018-05-01
We study the interplay between the electron-phonon (e -ph) and on-site electron-electron (e-e) interactions in a three-orbital Hubbard-Holstein model on an extended one-dimensional lattice using determinant quantum Monte Carlo. For weak e-e and e -ph interactions, we observe a competition between an orbital-selective Mott phase (OSMP) and a (multicomponent) charge-density-wave (CDW) insulating phase, with an intermediate metallic phase located between them. For large e-e and e -ph couplings, the OSMP and CDW phases persist, while the metallic phase develops short-range orbital correlations and becomes insulating when both the e-e and e -ph interactions are large but comparable. Many of our conclusions are in line with those drawn from a prior dynamical mean-field theory study of the two-orbital Hubbard-Holstein model [Phys. Rev. B 95, 121112(R) (2017), 10.1103/PhysRevB.95.121112] in infinite dimension, suggesting that the competition between the e -ph and e-e interactions in multiorbital Hubbard-Holstein models leads to rich physics, regardless of the dimension of the system.
First-principles Hubbard U approach for small molecule binding in metal-organic frameworks
International Nuclear Information System (INIS)
Mann, Gregory W.; Lee, Kyuho; Cococcioni, Matteo; Smit, Berend; Neaton, Jeffrey B.
2016-01-01
We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO 2 -MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO 2 binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.
International Nuclear Information System (INIS)
Palacios, P.; Sanchez, K.; Conesa, J.C.; Fernandez, J.J.; Wahnon, P.
2007-01-01
Electronic structure calculations are carried out for CuGaS 2 partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics
Energy Technology Data Exchange (ETDEWEB)
Palacios, P [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Sanchez, K [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Conesa, J C [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain); Fernandez, J J [Dpt. de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, 28080, Madrid (Spain); Wahnon, P [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)
2007-05-31
Electronic structure calculations are carried out for CuGaS{sub 2} partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics.
Kumar, Manoranjan; Soos, Zoltán G.
2010-10-01
The bond-order wave (BOW) phase of the extended Hubbard model (EHM) in one dimension (1D) is characterized at intermediate correlation U=4t by exact treatment of N -site systems. Linear coupling to lattice (Peierls) phonons and molecular (Holstein) vibrations are treated in the adiabatic approximation. The molar magnetic susceptibility χM(T) is obtained directly up to N=10 . The goal is to find the consequences of a doubly degenerate ground state (gs) and finite magnetic gap Em in a regular array. Degenerate gs with broken inversion symmetry are constructed for finite N for a range of V near the charge-density-wave boundary at V≈2.18t where Em≈0.5t is large. The electronic amplitude B(V) of the BOW in the regular array is shown to mimic a tight-binding band with small effective dimerization δeff . Electronic spin and charge solitons are elementary excitations of the BOW phase and also resemble topological solitons with small δeff . Strong infrared intensity of coupled molecular vibrations in dimerized 1D systems is shown to extend to the regular BOW phase while its temperature dependence is related to spin solitons. The Peierls instability to dimerization has novel aspects for degenerate gs and substantial Em that suppresses thermal excitations. Finite Em implies exponentially small χM(T) at low temperature followed by an almost linear increase with T . The EHM with U=4t is representative of intermediate correlations in quasi-1D systems such as conjugated polymers or organic ion-radical and charge-transfer salts. The vibronic and thermal properties of correlated models with BOW phases are needed to identify possible physical realizations.
Stark, J.R.; Busch, J.P.; Deters, M.H.
1991-01-01
Unconfined and the upper confined aquifers in glacial drift are the primary sources of water in a 1,600 square-mile area including parts of Beltrami, Cass, Clearwater, and Hubbard Counties, Minnesota. The unconfineddrift aquifer consists of coarse sand and gravel in the center of the study area. The total area underlain by the unconfined-drift aquifer is approximately 550 square miles. The unconfined aquifer ranges in thickness from 0 to 130 feet, and is greater than 20 feet thick over an area of 280 square miles. On the basis of scant data, the transmissivity of the unconfined aquifer ranges from less than 70 feet squared per day in the south and west to greater than 8,900 feet squared per day in an area west of Bemidji. Well yields from 10 to 300 gallons per minute are possible in some areas. The unconfined and upper confined-drift aquifers are separated by a fine-grained confining unit of till or lake deposits.
Filling-driven Mott transition in SU(N ) Hubbard models
Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas
2018-04-01
We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.
Critical slowing down in driven-dissipative Bose-Hubbard lattices
Vicentini, Filippo; Minganti, Fabrizio; Rota, Riccardo; Orso, Giuliano; Ciuti, Cristiano
2018-01-01
We explore theoretically the dynamical properties of a first-order dissipative phase transition in coherently driven Bose-Hubbard systems, describing, e.g., lattices of coupled nonlinear optical cavities. Via stochastic trajectory calculations based on the truncated Wigner approximation, we investigate the dynamical behavior as a function of system size for one-dimensional (1D) and 2D square lattices in the regime where mean-field theory predicts nonlinear bistability. We show that a critical slowing down emerges for increasing number of sites in 2D square lattices, while it is absent in 1D arrays. We characterize the peculiar properties of the collective phases in the critical region.
Algebra of orthofermions and equivalence of their thermodynamics to the infinite U Hubbard model
International Nuclear Information System (INIS)
Kishore, R.; Mishra, A.K.
2006-01-01
The equivalence of thermodynamics of independent orthofermions to the infinite U Hubbard model, shown earlier for the one-dimensional infinite lattice, has been extended to a finite system of two lattice sites. Regarding the algebra of orthofermions, the algebraic expressions for the number operator for a given spin and the spin raising (lowering) operators in the form of infinite series are rearranged in such a way that the ith term, having the form of an infinite series, of the number (spin raising (lowering)) operator represents the number (spin raising (lowering)) operator at the ith lattice site
Critical behavior near the Mott transition in the half-filled asymmetric Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Hoang, Anh-Tuan, E-mail: hatuan@iop.vast.ac.vn [Institute of Physics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Le, Duc-Anh [Faculty of Physics, Hanoi National University of Education, Xuan Thuy 136, Cau Giay, Hanoi 10000 (Viet Nam)
2016-03-15
We study the half-filled asymmetric Hubbard model within the two-site dynamical mean field theory. At zero temperature, explicit expressions of the critical interaction U{sub c} for the Mott transition and the local self-energy are analytically derived. Critical behavior of the quasiparticle weights and the double occupancy are obtained analytically as functions of the on-site interaction U and the hopping asymmetry r. Our results are in good agreement with the ones obtained by much more sophisticated theory.
International Nuclear Information System (INIS)
Sanders, Sören; Holthaus, Martin
2017-01-01
We study the connection between the exponent of the order parameter of the Mott insulator-to-superfluid transition occurring in the two-dimensional Bose–Hubbard model, and the divergence exponents of its one- and two-particle correlation functions. We find that at the multicritical points all divergence exponents are related to each other, allowing us to express the critical exponent in terms of one single divergence exponent. This approach correctly reproduces the critical exponent of the three-dimensional XY universality class. Because divergence exponents can be computed in an efficient manner by hypergeometric analytic continuation, our strategy is applicable to a wide class of systems. (paper)
Sanders, Sören; Holthaus, Martin
2017-10-01
We study the connection between the exponent of the order parameter of the Mott insulator-to-superfluid transition occurring in the two-dimensional Bose-Hubbard model, and the divergence exponents of its one- and two-particle correlation functions. We find that at the multicritical points all divergence exponents are related to each other, allowing us to express the critical exponent in terms of one single divergence exponent. This approach correctly reproduces the critical exponent of the three-dimensional XY universality class. Because divergence exponents can be computed in an efficient manner by hypergeometric analytic continuation, our strategy is applicable to a wide class of systems.
Heisenberg magnetic chain with single-ion easy-plane anisotropy: Hubbard operators approach
International Nuclear Information System (INIS)
Spirin, D.V.; Fridman, Y.A.
2003-01-01
We investigate the gap in excitation spectrum of one-dimensional S=1 ferro- and antiferromagnets with easy-plane single-ion anisotropy. The self-consistent modification of Hubbard operators approach which enables to account single-site term exactly is used. For antiferromagnetic model we found Haldane phase that exists up to point D=4J (where D is anisotropy parameter, J is exchange coupling), while quadrupolar phase realizes at larger values of anisotropy. Our results specify those of Golinelli et al. (Phys. Rev. B. 45 (1992) 9798), where similar model was studied. Besides the method gives gap value closer to numerical estimations than usual spin-wave theories
Energy Technology Data Exchange (ETDEWEB)
Honerkamp, Carsten [Institute for Theoretical Solid State Physics, RWTH Aachen University (Germany); JARA - Fundamentals of Future Information Technology, Aachen (Germany)
2017-11-15
We investigate the impact of electron self-energy corrections on potential antiferromagnetic ordering instabilities in mono- and bilayer graphene, modeled by a Hubbard-type lattice model with onsite interactions among the electrons, using a self-consistent random phase approximation (RPA). In qualitative agreement with earlier studies we find that the electronic interactions cause non-Fermi liquid behavior at low energies. In self-consistent RPA, the transition scales for antiferromagnetic ordering are renormalized significantly by these self-energy effects, both for interaction-driven and temperature-driven cases. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Correlation effects of third-order perturbation in the extended Hubbard model
International Nuclear Information System (INIS)
Wei, G.Z.; Nie, H.Q.; Li, L.; Zhang, K.Y.
1989-01-01
Using the local approach, a third-order perturbation calculation has been performed to investigate the effects of intra-atomic electron correlation and electron and spin correlation between nearest neighbour sites in the extended Hubbard model. It was found that significant correction of the third order over the second order results and, in comparison with the results of the third-order perturbation where only the intra-atomic electron correlation is included, the influence of the electron and spin correlation between nearest neighbour sites on the correlation energy is non-negligible. 17 refs., 3 figs
Simultaneous diagonal and off-diagonal order in the Bose-Hubbard Hamiltonian
International Nuclear Information System (INIS)
Scalettar, R.T.; Batrouni, G.G.; Kampf, A.P.; Zimanyi, G.T.
1995-01-01
The Bose-Hubbard model exhibits a rich phase diagram consisting both of insulating regimes where diagonal long-range (solid) order dominates as well as conducting regimes where off-diagonal long-range order (superfluidity) is present. In this paper we describe the results of quantum Monte Carlo calculations of the phase diagram, both for the hard- and soft-core cases, with a particular focus on the possibility of simultaneous superfluid and solid order. We also discuss the appearance of phase separation in the model. The simulations are compared with analytic calculations of the phase diagram and spin-wave dispersion
Energy Technology Data Exchange (ETDEWEB)
Lu, Deyu, E-mail: dlu@bnl.gov, E-mail: pingliu3@bnl.gov; Liu, Ping, E-mail: dlu@bnl.gov, E-mail: pingliu3@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)
2014-02-28
The density functional theory (DFT)+U method has been widely employed in theoretical studies on various ceria systems to correct the delocalization bias in local and semi-local DFT functionals with moderate computational cost. We present a systematic and quantitative study, aiming to gain better understanding of the dependence of Hubbard U on the local atomic arrangement. To rationalize the Hubbard U of Ce 4f, we employed the first principles linear response method to compute Hubbard U for Ce in ceria clusters, bulks, and surfaces. We found that the Hubbard U varies in a wide range from 4.3 eV to 6.7 eV, and exhibits a strong correlation with the Ce coordination number and Ce–O bond lengths, rather than the Ce 4f valence state. The variation of the Hubbard U can be explained by the changes in the strength of local screening due to O → Ce intersite transitions.
International Nuclear Information System (INIS)
Lu, Deyu; Liu, Ping
2014-01-01
The density functional theory (DFT)+U method has been widely employed in theoretical studies on various ceria systems to correct the delocalization bias in local and semi-local DFT functionals with moderate computational cost. We present a systematic and quantitative study, aiming to gain better understanding of the dependence of Hubbard U on the local atomic arrangement. To rationalize the Hubbard U of Ce 4f, we employed the first principles linear response method to compute Hubbard U for Ce in ceria clusters, bulks, and surfaces. We found that the Hubbard U varies in a wide range from 4.3 eV to 6.7 eV, and exhibits a strong correlation with the Ce coordination number and Ce–O bond lengths, rather than the Ce 4f valence state. The variation of the Hubbard U can be explained by the changes in the strength of local screening due to O → Ce intersite transitions
International Nuclear Information System (INIS)
Aubry, S.
1993-01-01
Principles and notations of the Holstein-Hubbard model in a magnetic field are first reviewed. Effects of the dimensionality, the lattice discreteness and the magnetic field on single polarons, are examined and the existence of many polarons and bipolarons structures at large electron-phonon coupling is discussed. Properties of bipolaronic and polaronic structures are examined together with the magnetic field effects on these structures. High Tc superconductivity resulting from the competition between the electron-phonon and Hubbard couplings is discussed. 7 figs., 18 refs
International Nuclear Information System (INIS)
Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.
2006-01-01
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters
Ab inito calculations of Hubbard parameters for NiO and Gd crystals
Directory of Open Access Journals (Sweden)
A. R Faghihi and S Jalali Asadabadi
2008-07-01
Full Text Available In this research the Hubbard parameters have been calculated for NiO and Gd crystals, as two strongly correlated systems with partially full 3d and 4f levels, respectively. The calculations were performed within the density functional theory (DFT using the augmented plane waves plus the local orbitat (APW+lo method. We constructed a suitable supercell and found that the Hubbard parameters for the NiO and Gd compounds are equal to 5.9 eV and 5.7 eV, respectively. Our results are in good agreement with experimental data and results of other computational methods. Then we used the obtained parameters to study the structural properties of NiO and Gd by means of LDA+U approximation. Our results calculated by the LDA+U method which are in better agreement with the experiment show a significant improvement compared to the GGA approximation. The result shows that our method for calculating U parameter can be considered as a satisfactory method to study a strongly correlated system.
Pairing tendencies in a two-orbital Hubbard model in one dimension
Energy Technology Data Exchange (ETDEWEB)
Patel, Niravkumar D. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nocera, Adriana [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alvarez, Gonzalo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moreo, A. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dagotto, Elbio R. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-07-31
The recent discovery of superconductivity under high pressure in the ladder compound BaFe2S3 has opened a new field of research in iron-based superconductors with focus on quasi-one-dimensional geometries. In this publication, using the density matrix renormalization group technique, we study a two-orbital Hubbard model defined in one-dimensional chains. Our main result is the presence of hole binding tendencies at intermediate Hubbard U repulsion and robust Hund coupling J_{H} / U = 0.25. Binding does not occur either in weak coupling or at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as the charge and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor sites, and employ different orbitals for each hole. As a result, the Hund coupling strength, presence of robust magnetic moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.
Unsupervised machine learning account of magnetic transitions in the Hubbard model
Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan
2018-01-01
We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.
Hubbard U calculations for gap states in dilute magnetic semiconductors.
Fukushima, T; Katayama-Yoshida, H; Sato, K; Bihlmayer, G; Mavropoulos, P; Bauer, D S G; Zeller, R; Dederichs, P H
2014-07-09
On the basis of constrained density functional theory, we present ab initio calculations for the Hubbard U parameter of transition metal impurities in dilute magnetic semiconductors, choosing Mn in GaN as an example. The calculations are performed by two methods: (i) the Korringa-Kohn-Rostoker (KKR) Green function method for a single Mn impurity in GaN and (ii) the full-potential linearized augmented plane-wave (FLAPW) method for a large supercell of GaN with a single Mn impurity in each cell. By changing the occupancy of the majority t2 gap state of Mn, we determine the U parameter either from the total energy differences E(N + 1) and E(N - 1) of the (N ± 1)-electron excited states with respect to the ground state energy E(N), or by using the single-particle energies for n(0) ± 1/2 occupancies around the charge-neutral occupancy n0 (Janak's transition state model). The two methods give nearly identical results. Moreover the values calculated by the supercell method agree quite well with the Green function values. We point out an important difference between the 'global' U parameter calculated using Janak's theorem and the 'local' U of the Hubbard model.
Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model
Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi
2017-10-01
We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al., link ext-link-type="uri" xlink:href="https://doi.org/10.1103/PhysRevLett.103.177402" xlink:type="simple">Phys. Rev. Lett. 103, 177402 (2009)link>]. As Δ increases, the spectral intensity of the 1D ionic extended Hubbard model rapidly deviates from that of the 1D AF Heisenberg model and it is clarified that this deviation is due to the neutral-ionic domain wall, an elementary excitation near the neutral-ionic transition point.
Superconductivity, Mott-Hubbard states, and molecular orbital order in intercalated fullerides
Iwasa, Y
2003-01-01
This article reviews the current status of chemically doped fullerene superconductors and related compounds, with particular focus on Mott-Hubbard states and the role of molecular orbital degeneracy. Alkaline-earth metal fullerides produce superconductors of several kinds, all of which have states with higher valence than (C sub 6 sub 0) sup 6 sup - , where the second lowest unoccupied molecular orbital (the LUMO + 1 state) is filled. Alkali-metal-doped fullerides, on the other hand, afford superconductors only at the stoichiometry A sub 3 C sub 6 sub 0 (A denotes alkali metal) and in basically fcc structures. The metallicity and superconductivity of A sub 3 C sub 6 sub 0 compounds are destroyed either by reduction of the crystal symmetry or by change in the valence of C sub 6 sub 0. This difference is attributed to the narrower bandwidth in the A sub 3 C sub 6 sub 0 system, causing electronic instability in Jahn-Teller insulators and Mott-Hubbard insulators. The latter metal-insulator transition is driven by...
Universal quantum computation by scattering in the Fermi–Hubbard model
International Nuclear Information System (INIS)
Bao, Ning; Hayden, Patrick; Salton, Grant; Thomas, Nathaniel
2015-01-01
The Hubbard model may be the simplest model of particles interacting on a lattice, but simulation of its dynamics remains beyond the reach of current numerical methods. In this article, we show that general quantum computations can be encoded into the physics of wave packets propagating through a planar graph, with scattering interactions governed by the fermionic Hubbard model. Therefore, simulating the model on planar graphs is as hard as simulating quantum computation. We give two different arguments, demonstrating that the simulation is difficult both for wave packets prepared as excitations of the fermionic vacuum, and for hole wave packets at filling fraction one-half in the limit of strong coupling. In the latter case, which is described by the t-J model, there is only reflection and no transmission in the scattering events, as would be the case for classical hard spheres. In that sense, the construction provides a quantum mechanical analog of the Fredkin–Toffoli billiard ball computer. (paper)
Congenital Constriction Band Syndrome
Rajesh Gupta, Fareed Malik, Rishabh Gupta, M.A.Basit, Dara Singh
2008-01-01
Congenital constriction bands are anomalous bands that encircle a digit or an extremity. Congenitalconstriction band syndrome is rare condition and is mostly associated with other musculoskeletaldisorders.We report such a rare experience.
Czech Academy of Sciences Publication Activity Database
Panas, J.; Kauch, Anna; Kuneš, Jan; Vollhardt, D.; Byczuk, K.
2015-01-01
Roč. 92, č. 4 (2015), "045102-1"-"045102-9" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : Bose-Hubbard model * Bose-Einstein condensation * superfluidity Subject RIV: BE - Theoretical Physics Impact factor: 3.736, year: 2014
Kishine, Jun-ichiro; Yonemitsu, Kenji
1997-01-01
Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to.
John L. Campbell; Scott V. Ollinger; Gerald N. Flerchinger; Haley Wicklein; Katharine Hayhoe; Amey S. Bailey
2010-01-01
Long-term data from the Hubbard Brook Experimental Forest in New Hampshire show that air temperature has increased by about 1 °C over the last half century. The warmer climate has caused significant declines in snow depth, snow water equivalent and snow cover duration. Paradoxically, it has been suggested that warmer air temperatures may result in colder soils...
Becker, M. W.; Bursik, M. I.; Schuetz, J. W.
2001-05-01
The Hubbard Brook Experimental Forest (HBEF) of Central New Hampshire has been a focal point for collaborative hydrologic research for over 40 years. A tremendous amount of data from this area is available through the internet and other sources, but is not organized in a manner that facilitates teaching of hydrologic concepts. The Mirror Lake Watershed Interactive Teaching Database is making hydrologic data from the HBEF and associated interactive problem sets available to upper-level and post-graduate university students through a web-based resource. Hydrologic data are offered via a three-dimensional VRML (Virtual Reality Modeling Language) interface, that facilitates viewing and retrieval in a spatially meaningful manner. Available data are mapped onto a topographic base, and hot spots representing data collection points (e.g. weirs) lead to time-series displays (e.g. hydrographs) that provide a temporal link to the spatially organized data. Associated instructional exercises are designed to increase understanding of both hydrologic data and hydrologic methods. A pedagogical module concerning numerical ground-water modeling will be presented as an example. Numerical modeling of ground-water flow involves choosing the combination of hydrogeologic parameters (e.g. hydraulic conductivity, recharge) that cause model-predicted heads to best match measured heads in the aquifer. Choosing the right combination of parameters requires careful judgment based upon knowledge of the hydrogeologic system and the physics of ground-water flow. Unfortunately, students often get caught up in the technical aspects and lose sight of the fundamentals when working with real ground-water software. This module provides exercises in which a student chooses model parameters and immediately sees the predicted results as a 3-D VRML object. VRML objects are based upon actual Modflow model results corresponding to the range of model input parameters available to the student. This way, the
Robust band gap and half-metallicity in graphene with triangular perforations
DEFF Research Database (Denmark)
Gregersen, Søren Schou; Power, Stephen; Jauho, Antti-Pekka
2016-01-01
. The inclusion of spin polarization within a mean-field Hubbard approach gives rise to a large overall magnetic moment at each antidot due to the sublattice imbalance imposed by the triangular geometry. Half-metallic behavior arises from the formation of spin-split dispersive states near the Fermi energy...... disorders. Here we study a rectangular array of triangular antidots with zigzag edge geometries and show that their band gap behavior qualitatively differs from the standard behavior which is exhibited, e.g., by rectangular arrays of armchair-edged triangles. In the spin unpolarized case, zigzag......, and furthermore, of exploiting the strong spin dependence of the system for spintronic applications....
Conductivite dans le modele de Hubbard bi-dimensionnel a faible couplage
Bergeron, Dominic
Le modele de Hubbard bi-dimensionnel (2D) est souvent considere comme le modele minimal pour les supraconducteurs a haute temperature critique a base d'oxyde de cuivre (SCHT). Sur un reseau carre, ce modele possede les phases qui sont communes a tous les SCHT, la phase antiferromagnetique, la phase supraconductrice et la phase dite du pseudogap. Il n'a pas de solution exacte, toutefois, plusieurs methodes approximatives permettent d'etudier ses proprietes de facon numerique. Les proprietes optiques et de transport sont bien connues dans les SCHT et sont donc de bonne candidates pour valider un modele theorique et aider a comprendre mieux la physique de ces materiaux. La presente these porte sur le calcul de ces proprietes pour le modele de Hubbard 2D a couplage faible ou intermediaire. La methode de calcul utilisee est l'approche auto-coherente a deux particules (ACDP), qui est non-perturbative et inclue l'effet des fluctuations de spin et de charge a toutes les longueurs d'onde. La derivation complete de l'expression de la conductivite dans l'approche ACDP est presentee. Cette expression contient ce qu'on appelle les corrections de vertex, qui tiennent compte des correlations entre quasi-particules. Pour rendre possible le calcul numerique de ces corrections, des algorithmes utilisant, entre autres, des transformees de Fourier rapides et des splines cubiques sont developpes. Les calculs sont faits pour le reseau carre avec sauts aux plus proches voisins autour du point critique antiferromagnetique. Aux dopages plus faibles que le point critique, la conductivite optique presente une bosse dans l'infrarouge moyen a basse temperature, tel qu'observe dans plusieurs SCHT. Dans la resistivite en fonction de la temperature, on trouve un comportement isolant dans le pseudogap lorsque les corrections de vertex sont negligees et metallique lorsqu'elles sont prises en compte. Pres du point critique, la resistivite est lineaire en T a basse temperature et devient
International Nuclear Information System (INIS)
Duffy, D.; Haas, S.; Kim, E.
1998-01-01
The Hubbard Hamiltonian on a two-leg ladder is studied numerically using quantum Monte Carlo and exact diagonalization techniques. A rung interaction, V, is turned on such that the resulting model has an exact SO(5) symmetry when V=-U. The evolution of the low-energy excitation spectrum is presented from the pure Hubbard ladder to the SO(5) ladder. It is shown that the low-energy excitations in the pure Hubbard ladder have an approximate SO(5) symmetry. copyright 1998 The American Physical Society
International Nuclear Information System (INIS)
Qin Shaojin; Yu Lu.
1996-03-01
The critical exponent of the momentum distribution near k F , 3k F and 5k F are studied numerically for one-dimensional U → ∞ Hubbard model, using finite size systems and extrapolating them to the thermodynamic limit. Results at k F agree with earlier calculations, while at 3k F exponents less than 1 are obtained for finite size systems with extrapolation to 1 (regular behaviour) in the thermodynamic limit, in contrast to earlier analytic prediction 9/8. The distribution is regular at 5k F even for finite systems. The singularity near 3k F is interpreted as due to low energy excitations near 3k F in finite systems. (author). 18 refs, 4 figs, 1 tab
Quantum behaviour of open pumped and damped Bose-Hubbard trimers
Chianca, C. V.; Olsen, M. K.
2018-01-01
We propose and analyse analogs of optical cavities for atoms using three-well inline Bose-Hubbard models with pumping and losses. With one well pumped and one damped, we find that both the mean-field dynamics and the quantum statistics show a qualitative dependence on the choice of damped well. The systems we analyse remain far from equilibrium, although most do enter a steady-state regime. We find quadrature squeezing, bipartite and tripartite inseparability and entanglement, and states exhibiting the EPR paradox, depending on the parameter regimes. We also discover situations where the mean-field solutions of our models are noticeably different from the quantum solutions for the mean fields. Due to recent experimental advances, it should be possible to demonstrate the effects we predict and investigate in this article.
Phase separation of superconducting phases in the Penson–Kolb–Hubbard model
International Nuclear Information System (INIS)
Kapcia, Konrad Jerzy; Czart, Wojciech Robert; Ptok, Andrzej
2016-01-01
In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson–Kolb–Hubbard model for two dimensional square lattice within Hartree–Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed. (author)
Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model
Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej
2016-04-01
In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.
Studies on entanglement entropy for Hubbard model with hole-doping and external magnetic field
International Nuclear Information System (INIS)
Yao, K.L.; Li, Y.C.; Sun, X.Z.; Liu, Q.M.; Qin, Y.; Fu, H.H.; Gao, G.Y.
2005-01-01
By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge-charge and spin-spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge-charge and the spin-spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute
Emergent Chiral Spin State in the Mott Phase of a Bosonic Kane-Mele-Hubbard Model
Plekhanov, Kirill; Vasić, Ivana; Petrescu, Alexandru; Nirwan, Rajbir; Roux, Guillaume; Hofstetter, Walter; Le Hur, Karyn
2018-04-01
Recently, the frustrated X Y model for spins 1 /2 on the honeycomb lattice has attracted a lot of attention in relation with the possibility to realize a chiral spin liquid state. This model is relevant to the physics of some quantum magnets. Using the flexibility of ultracold atom setups, we propose an alternative way to realize this model through the Mott regime of the bosonic Kane-Mele-Hubbard model. The phase diagram of this model is derived using bosonic dynamical mean-field theory. Focusing on the Mott phase, we investigate its magnetic properties as a function of frustration. We do find an emergent chiral spin state in the intermediate frustration regime. Using exact diagonalization we study more closely the physics of the effective frustrated X Y model and the properties of the chiral spin state. This gapped phase displays a chiral order, breaking time-reversal and parity symmetry, but is not topologically ordered (the Chern number is zero).
Dias, R. G.; Gouveia, J. D.
2015-11-01
We present a method of construction of exact localized many-body eigenstates of the Hubbard model in decorated lattices, both for U = 0 and U → ∞. These states are localized in what concerns both hole and particle movement. The starting point of the method is the construction of a plaquette or a set of plaquettes with a higher symmetry than that of the whole lattice. Using a simple set of rules, the tight-binding localized state in such a plaquette can be divided, folded and unfolded to new plaquette geometries. This set of rules is also valid for the construction of a localized state for one hole in the U → ∞ limit of the same plaquette, assuming a spin configuration which is a uniform linear combination of all possible permutations of the set of spins in the plaquette.
High-accuracy energy formulas for the attractive two-site Bose-Hubbard model
Ermakov, Igor; Byrnes, Tim; Bogoliubov, Nikolay
2018-02-01
The attractive two-site Bose-Hubbard model is studied within the framework of the analytical solution obtained by the application of the quantum inverse scattering method. The structure of the ground and excited states is analyzed in terms of solutions of Bethe equations, and an approximate solution for the Bethe roots is given. This yields approximate formulas for the ground-state energy and for the first excited-state energy. The obtained formulas work with remarkable precision for a wide range of parameters of the model, and are confirmed numerically. An expansion of the Bethe state vectors into a Fock space is also provided for evaluation of expectation values, although this does not have accuracy similar to that of the energies.
Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.
Meinert, F; Mark, M J; Lauber, K; Daley, A J; Nägerl, H-C
2016-05-20
We report on the experimental implementation of tunable occupation-dependent tunneling in a Bose-Hubbard system of ultracold atoms via time-periodic modulation of the on-site interaction energy. The tunneling rate is inferred from a time-resolved measurement of the lattice site occupation after a quantum quench. We demonstrate coherent control of the tunneling dynamics in the correlated many-body system, including full suppression of tunneling as predicted within the framework of Floquet theory. We find that the tunneling rate explicitly depends on the atom number difference in neighboring lattice sites. Our results may open up ways to realize artificial gauge fields that feature density dependence with ultracold atoms.
Quantum phase transition of light in the Rabi–Hubbard model
International Nuclear Information System (INIS)
Schiró, M; Bordyuh, M; Öztop, B; Türeci, H E
2013-01-01
We discuss the physics of the Rabi–Hubbard model describing large arrays of coupled cavities interacting with two level atoms via a Rabi nonlinearity. We show that the inclusion of counter-rotating terms in the light–matter interaction, often neglected in theoretical descriptions based on Jaynes–Cumming models, is crucial to stabilize finite-density quantum phases of correlated photons with no need for an artificially engineered chemical potential. We show that the physical properties of these phases and the quantum phase transition occurring between them is remarkably different from those of interacting bosonic massive quantum particles. The competition between photon delocalization and Rabi nonlinearity drives the system across a novel Z 2 parity symmetry-breaking quantum phase transition between two gapped phases, a Rabi insulator and a delocalized super-radiant phase. (paper)
Stable-unstable transition for a Bose-Hubbard chain coupled to an environment
Guo, Chu; de Vega, Ines; Schollwöck, Ulrich; Poletti, Dario
2018-05-01
Interactions in quantum systems may induce transitions to exotic correlated phases of matter which can be vulnerable to coupling to an environment. Here, we study the stability of a Bose-Hubbard chain coupled to a bosonic bath at zero and nonzero temperature. We show that only above a critical interaction the chain loses bosons and its properties are significantly affected. The transition is of a different nature than the superfluid-Mott-insulator transition and occurs at a different critical interaction. We explain such a stable-unstable transition by the opening of a global charge gap. The comparison of accurate matrix product state simulations to approximative approaches that miss this transition reveals its many-body origin.
About long range pairing correlations in the Hubbard U-t-t' models
International Nuclear Information System (INIS)
Moreo, A.
1991-01-01
Using a quantum Monte Carlo method the authors measured pair correlation functions with different symmetries as a function of the filling, U/t and t'/t for the Hubbard and U-t-t' models. For the first time the Monte Carlo results are presented for U/t larger than the bandwidth 8t, away from half-filling. D-wave and extended S-wave pairing correlations are enhanced. D-wave pairing is stronger at half-filling but this behavior is reversed when the filling decreases. However, none of the eight pairing correlations that were studied increases as a function of lattice size, which makes the existence of long range superconducting order unlikely. (author). 10 refs.; 5 figs
Algebraic approach to q-deformed supersymmetric variants of the Hubbard model with pair hoppings
International Nuclear Information System (INIS)
Arnaudon, D.
1997-01-01
Two quantum spin chains Hamiltonians with quantum sl(2/1) invariance are constructed. These spin chains define variants of the Hubbard model and describe electron models with pair hoppings. A cubic algebra that admits the Birman-Wenzl-Murakami algebra as a quotient allows exact solvability of the periodic chain. The two Hamiltonians, respectively built using the distinguished and the fermionic bases of U q (sl(2/1)) differ only in the boundary terms. They are actually equivalent, but the equivalence is non local. Reflection equations are solved to get exact solvability on open chains with non trivial boundary conditions. Two families of diagonal solutions are found. The centre and the s-Casimir of the quantum enveloping algebra of sl(2/1) appear as tools for the construction of exactly solvable Hamiltonians. (author)
Dry deposition of sulfur: a 23-year record for the Hubbard Brook Forest ecosystem
Energy Technology Data Exchange (ETDEWEB)
Likens, G E; Eaton, J S [Inst. of Ecosystem Studies, The New York Botanical Garden, NY (US); Bormann, F H [School of Forestry and Environmental Studies Yale Univ., New Haven, CT (US); Hedin, L O [Dept. of Biology, Yale Univ., New Haven, CT (US); Driscoll, C T [Dept. of Civil and Environmental Engineering, Syracuse, NY (US)
1990-01-01
Dry deposition of S was estimated for watershed-ecosystems of the Hubbard Brook Experimental Forest from 1964-65 through 1986-87. Two approaches, a regression analysis of bulk precipitation inputs and stream outputs and a mass-balance method, gave similar average values for Watershed 6 430 and 410 eq SO{sub 4}{sup =}/ha-yr, respectively, for this 23-year period. Dry deposition contributed about 37% of total S deposition, varying from 12% in 1964-65 to 61% in 1983-84. Long-term data from 'replicated' watershed-ecosystems showed that temporal variability in estimates of dry deposition was considerably greater than spatial (between watersheds) variability.
Implementation of the Lanczos algorithm for the Hubbard model on the Connection Machine system
International Nuclear Information System (INIS)
Leung, P.W.; Oppenheimer, P.E.
1992-01-01
An implementation of the Lanczos algorithm for the exact diagonalization of the two dimensional Hubbard model on a 4x4 square lattice on the Connection Machine CM-2 system is described. The CM-2 is a massively parallel machine with distributed memory. The program is written in C/PARIS. This implementation minimizes memory usage by generating the matrix elements as needed instead of storing them. The Lanczos vectors are stored across the local memory of the processors. Using translational symmetry only, the dimension of the Hilbert space at half filling is more than 10 million. A speed of about 2.4 min per iteration is achieved on a 64K CM-2. This implementation is scalable. Running it on a bigger machine with more processors speeds up the process. The performance analysis of this implementation is shown and discuss its advantages and disadvantages are discussed
Off-site interaction effect in the Extended Hubbard Model with the SCRPA method
International Nuclear Information System (INIS)
Harir, S; Bennai, M; Boughaleb, Y
2007-01-01
The self consistent random phase approximation (SCRPA) and a direct analytical (DA) method are proposed to solve the Extended Hubbard Model (EHM) in one dimension (1D). We have considered an EHM including on-site and off-site interactions for closed chains in 1D with periodic boundary conditions. The comparison of the SCRPA results with the ones obtained by a DA approach shows that the SCRPA treats the problem of these closed chains in a rigorous manner. The analysis of the nearest-neighbour repulsion effect on the dynamics of our closed chains shows that this repulsive interaction between the electrons of the neighbouring atoms induces supplementary conductivity, since, the SCRPA energygap vanishes when these closed chains are governed by a strong repulsive on-site interaction and intermediate nearest-neighbour repulsion
Can disorder act as a chemical pressure? An optical study of the Hubbard model
Barman, H.; Laad, M. S.; Hassan, S. R.
2018-05-01
The optical properties have been studied using the dynamical mean-field theory on a disordered Hubbard model. Despite the fact that disorder turns a metal to an insulator in high dimensional correlated materials, we notice that it can enhance certain metallic behavior as if a chemical pressure is applied to the system resulting in an increase of the effective lattice bandwidth (BW). We study optical properties in such a scenario and compare results with experiments where the BW is changed through isovalent chemical substitution (keeping electron filling unaltered) and obtain remarkable similarities vindicating our claim. We also make the point that these similarities differ from some other forms of BW tuned optical effects.
Two-magnon Raman scattering in a Mott-Hubbard antiferromagnet
International Nuclear Information System (INIS)
Basu, S.; Singh, A.
1996-01-01
A perturbation-theoretic diagrammatic scheme is developed for systematically studying the two-magnon Raman scattering in a Mott-Hubbard antiferromagnet. The fermionic structure of the magnon interaction vertex is obtained at order-1/N level in an inverse-degeneracy expansion, and the relevant two-magnon propagator is obtained by incorporating magnon interactions at a ladder-sum level. Evaluation of the magnon interaction vertex in the large-U limit yields a nearest-neighbor instantaneous interaction with interaction energy -J. Application of this approach to the intermediate-U regime, which is of relevance for cuprate antiferromagnets, is also discussed. Incorporating the zero-temperature magnon damping, which is estimated in terms of quantum spin fluctuations, the two-magnon Raman scattering intensity is evaluated and compared with experiments on La 2 CuO 4 . copyright 1996 The American Physical Society
Symmetry-projected variational approach to the one-dimensional Hubbard model
International Nuclear Information System (INIS)
Schmid, K.W.; Dahm, T.; Margueron, J.; Muether, H.
2005-01-01
We apply a variational method devised for the nuclear many-body problem to the one-dimensional Hubbard model with nearest neighbor hopping and periodic boundary conditions. The test wave function consist for each state out of a single Hartree-Fock determinant mixing all the sites (or momenta) as well as the spin projections of the electrons. Total spin and linear momentum are restored by projection methods before the variation. It is demonstrated that this approach reproduces the results of exact diagonalizations for half-filled N=12 and N=14 lattices not only for the energies and occupation numbers of the ground but also of the lowest excited states rather well. Furthermore, a system of ten electrons in an N=12 lattice is investigated and, finally, an N=30 lattice is studied. In addition to energies and occupation numbers we present the spectral functions computed with the help of the symmetry-projected wave functions as well
Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models
Elben, A.; Vermersch, B.; Dalmonte, M.; Cirac, J. I.; Zoller, P.
2018-02-01
We present a scheme for measuring Rényi entropies in generic atomic Hubbard and spin models using single copies of a quantum state and for partitions in arbitrary spatial dimensions. Our approach is based on the generation of random unitaries from random quenches, implemented using engineered time-dependent disorder potentials, and standard projective measurements, as realized by quantum gas microscopes. By analyzing the properties of the generated unitaries and the role of statistical errors, with respect to the size of the partition, we show that the protocol can be realized in existing quantum simulators and used to measure, for instance, area law scaling of entanglement in two-dimensional spin models or the entanglement growth in many-body localized systems.
Diagram analysis of the Hubbard model: Stationarity property of the thermodynamic potential
International Nuclear Information System (INIS)
Moskalenko, V. A.; Dohotaru, L. A.; Cebotari, I. D.
2010-01-01
The diagram approach proposed many years ago for the strongly correlated Hubbard model is developed with the aim to analyze the thermodynamic potential properties. A new exact relation between renormalized quantities such as the thermodynamic potential, the one-particle propagator, and the correlation function is established. This relation contains an additional integration of the one-particle propagator with respect to an auxiliary constant. The vacuum skeleton diagrams constructed from the irreducible Green's functions and tunneling propagator lines are determined and a special functional is introduced. The properties of this functional are investigated and its relation to the thermodynamic potential is established. The stationarity property of this functional with respect to first-order variations of the correlation function is demonstrated; as a consequence, the stationarity property of the thermodynamic potential is proved.
Fermi hyper-netted chain theory on a lattice: The Hubbard model
International Nuclear Information System (INIS)
Wang, X.Q.; Wang, X.Q.G.; Fantoni, S.; Tosatti, E.; Yu Lu.
1990-02-01
We review a new lattice version of Fermi Hyper-Netted Chain method for the study of strongly interacting electrons. The ordinary paramagnetic and the spin density wave functions have been correlated with Jastrow-type and e-d correlations, and the corresponding FHNC equations for the pair distribution function, the one body density matrix and the staggered magnetization are discussed. Results for the 1D chain and 2D square lattice models are presented and compared with the available results obtained within Quantum Monte Carlo, variational Monte Carlo and exact diagonalization of a 4x4 Hubbard cluster. Particularly interesting are the strong effects of e-d correlations on E/Nt and on the momentum distribution as well as antiferromagnetic behavior away from half filling found in our FHNC calculations in agreement with other studies. (author). 35 refs, 8 figs, 2 tabs
Hubbard pair cluster in the external fields. Studies of the magnetic properties
Balcerzak, T.; Szałowski, K.
2018-06-01
The magnetic properties of the two-site Hubbard cluster (dimer or pair), embedded in the external electric and magnetic fields and treated as the open system, are studied by means of the exact diagonalization of the Hamiltonian. The formalism of the grand canonical ensemble is adopted. The phase diagrams, on-site magnetizations, spin-spin correlations, mean occupation numbers and hopping energy are investigated and illustrated in figures. An influence of temperature, mean electron concentration, Coulomb U parameter and external fields on the quantities of interest is presented and discussed. In particular, the anomalous behaviour of the magnetization and correlation function vs. temperature near the critical magnetic field is found. Also, the effect of magnetization switching by the external fields is demonstrated.
Allen, Steve
2000-10-01
Dans cette these nous presentons une nouvelle methode non perturbative pour le calcul des proprietes d'un systeme de fermions. Notre methode generalise l'approximation auto-coherente a deux particules proposee par Vilk et Tremblay pour le modele de Hubbard repulsif. Notre methode peut s'appliquer a l'etude du comportement pre-critique lorsque la symetrie du parametre d'ordre est suffisamment elevee. Nous appliquons la methode au probleme du pseudogap dans le modele de Hubbard attractif. Nos resultats montrent un excellent accord avec les donnees Monte Carlo pour de petits systemes. Nous observons que le regime ou apparait le pseudogap dans le poids spectral a une particule est un regime classique renormalise caracterise par une frequence caracteristique des fluctuations supraconductrices inferieure a la temperature. Une autre caracteristique est la faible densite de superfluide de cette phase demontrant que nous ne sommes pas en presence de paires preformees. Les resultats obtenus semblent montrer que la haute symetrie du parametre d'ordre et la bidimensionalite du systeme etudie elargissent le domaine de temperature pour lequel le regime pseudogap est observe. Nous argumentons que ce resultat est transposable aux supraconducteurs a haute temperature critique ou le pseudogap apparait a des' temperatures beaucoup plus grandes que la temperature critique. La forte symetrie dans ces systemes pourraient etre reliee a la theorie SO(5) de Zhang. En annexe, nous demontrons un resultat tout recent qui permettrait d'assurer l'auto-coherence entre les proprietes a une et a deux particules par l'ajout d'une dynamique au vertex irreductible. Cet ajout laisse entrevoir la possibilite d'etendre la methode au cas d'une forte interaction.
Magnetic properties of Hubbard-sigma model with three-dimensionality
International Nuclear Information System (INIS)
Yamamoto, Hisashi; Tatara, Gen; Ichinose, Ikuo; Matsui, Tetsuo.
1990-05-01
It has been broadly accepted that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling and the spin-wave velocity with 'effective' ones determined by the concentration and the one-loop correction of hole fermions. Stationary-phase equations for the one-loop effective potential of S 2 model are analyzed. Based on them, various magnetic properties of the system, such as the behavior of Neel temperature, spin correlation length, staggered magnetization, specific heat and susceptibility as functions of anisotropic parameter, temperature, etc. are investigated in detail. The results show that our anisotropic field theory model with certain values of parameters gives a good description of the magnetic properties in both the ordered and the disordered phases indicated by experiments on La 2 CuO 4 . The part of the above results is supported by the renormalization-group analysis. In the doped case it is observed that the existence of holes destroys the long-range order and their hopping effect is large. (author)
Band structure of semiconductors
Tsidilkovski, I M
2013-01-01
Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio
International Nuclear Information System (INIS)
Kapitonov, V.S.
1991-01-01
This paper offers a formulation of mean-field theory for the Hubbard model that is different from the one developed in the work of Anderson. The modified slave-boson method is used. The advantage of the method is that it is not necessary to exclude doubly occupied sites by using the approximately canonical transformation. In the proposed theory, Cooper pairs and the energy gap are a result of the condensation of the slave Bose field that describes doubly occupied sites. Here, the modified slave-boson method is used to describe the metal-insulator and metal-superconductor phase transitions in the Hubbard model. Expressions are derived for the energy gap and phase-transition temperature
International Nuclear Information System (INIS)
Hsu, T.C.T.
1989-01-01
This thesis describes work on a large-U Hubbard model theory for high temperature superconductors. After an introduction to recent developments in the field, the author reviews experimental results. At the same time he introduces the holon-spinon model and comment on its successes and shortcomings. Using this heuristic model he then describes a holon pairing theory of superconductivity and list some experimental evidence for this interlayer coupling theory. The latter part of the thesis is devoted to projected fermion mean field theories. They are introduced by applying this theory and some recently developed computational techniques to anisotropic antiferromagnets. This scheme is shown to give quantitatively good results for the two dimensional square lattice Heisenberg AFM. The results have definite implications for a spinon theory of quantum antiferromagnets. Finally he studies flux phases and other variational prescriptions for obtaining low lying states of the Hubbard model
Nocera, A.; Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.; Alvarez, G.
2016-11-01
We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small as U /t ˜2 -3 , although ratios of peak intensities at different momenta continue evolving with increasing U /t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U /t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.
Two-band superconductor magnesium diboride
International Nuclear Information System (INIS)
Xi, X X
2008-01-01
This review focuses on the most important features of the 40 K superconductor MgB 2 -the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps (the σ and π gaps). Even though the pairing mechanism of superconductor MgB 2 is the conventional electron-phonon coupling, the prominent influence of the two bands and two gaps on its properties sets it apart from other superconductors. It leads to markedly different behaviors in upper critical field, vortex structure, magnetoresistance and many other superconducting and normal-state properties in MgB 2 from single-band superconductors. Further, it gives rise to new physics that does not exist in single-band superconductors, such as the internal Josephson effects between the two order parameters. These unique phenomena depend sensitively on scattering inside and between the two bands, and the intraband and interband scattering can be modified by chemical substitution and irradiation. MgB 2 has brought unprecedented attention to two-band superconductivity, which has been found to exist in other old and new superconductors. The legacy of MgB 2 will be long lasting because of this, as well as the lessons it teaches in terms of the search for new phonon-mediated higher T c superconductors
Absorption band Q model for the earth
International Nuclear Information System (INIS)
Anderson, D.L.; Given, J.W.
1982-01-01
Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. With a simple absorption band model it is possible to satisfy the shear sensitive data over a broad frequency range. The quality factor Q/sub s/(ω) is proportional to ω/sup α/ in the band and to ω and ω -1 at higher and lower frequencies, respectively, as appropriate for a relaxation mechanism with a spectrum of relaxation time. The parameters of the band are Q(min) = 80, α = 0.15, and width, 5 decades. The center of the band varies from 10 1 seconds in the upper mantle, to 1.6 x 10 3 seconds in the lower mantle. The shift of the band with depth is consistent with the expected effects of temperature, pressure and stress. High Q, regions of the mantle are attributed to a shift of the absorption band to longer periods. To satisfy the gravest fundamental spheroidal modes and the ScS data, the absorption band must shift back into the short-period seismic band at the base of the mantle. This may be due to a high temperature gradient or high shear stresses. A preliminary attempt is also made to specify bulk dissipation in the mantle and core. Specific features of the absorption band model are low Q in the body wave band at both the top and the base of the mantle, low Q for long-period body waves in the outer core, an inner core Q 2 that increases with period, and low Q/sub p//Q/sub s/ at short periods in the middle mantel. The short-period Q/sub s/ increases rapidly at 400 km and is relatively constant from this depth to 2400 km. The deformational Q of the earth at a period of 14 months is predicted to be 463
Des proprietes de l'etat normal du modele de Hubbard bidimensionnel
Lemay, Francois
Depuis leur decouverte, les etudes experimentales ont demontre que les supra-conducteurs a haute temperature ont une phase normale tres etrange. Les proprietes de ces materiaux ne sont pas bien decrites par la theorie du liquide de Fermi. Le modele de Hubbard bidimensionnel, bien qu'il ne soit pas encore resolu, est toujours considere comme un candidat pour expliquer la physique de ces composes. Dans cet ouvrage, nous mettons en evidence plusieurs proprietes electroniques du modele qui sont incompatibles avec l'existence de quasi-particules. Nous montrons notamment que la susceptibilite des electrons libres sur reseau contient des singularites logarithmiques qui influencent de facon determinante les proprietes de la self-energie a basse frequence. Ces singularites sont responsables de la destruction des quasi-particules. En l'absence de fluctuations antiferromagnetiques, elles sont aussi responsables de l'existence d'un petit pseudogap dans le poids spectral au niveau de Fermi. Les proprietes du modele sont egalement etudiees pour une surface de Fermi similaire a celle des supraconducteurs a haute temperature. Un parallele est etabli entre certaines caracteristiques du modele et celles de ces materiaux.
Fermionic Hubbard model with Rashba or Dresselhaus spin-orbit coupling
Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming
2017-06-01
In this work, we investigate the possible dramatic effects of Rashba or Dresselhaus spin-orbit coupling (SOC) on the fermionic Hubbard model in a two-dimensional square lattice. In the strong coupling limit, it leads to the rotated antiferromagnetic Heisenberg model which is a new class of quantum spin model. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground (Y-y) state subject to strong quantum fluctuations at T = 0. We evaluate the quantum fluctuations by the spin wave expansion up to order 1/{S}2. In some SOC parameter regimes, the Y-y state supports a massive relativistic incommensurate magnon (C-IC) with its two gap minima positions continuously tuned by the SOC parameters. The C-IC magnons dominate all the low temperature thermodynamic quantities and also lead to the separation of the peak positions between the longitudinal and the transverse spin structure factors. In the weak coupling limit, any weak repulsive interaction also leads to a weak Y-y state. There is only a crossover from the weak to the strong coupling. High temperature expansions of the specific heats in both weak and strong coupling are presented. The dramatic roles to be played by these C-IC magnons at generic SOC parameters or under various external probes are hinted at. Experimental applications to both layered noncentrosymmetric materials and cold atoms are discussed.
THE EFFECT OF TWO - ELEMNETED PROBIOTIC PREPARATE ON BASIC FATTENING PARAMETERS OF HYBRID HUBBARD JV
Directory of Open Access Journals (Sweden)
J. WEIS
2007-05-01
Full Text Available Growth stimulators on basic of probiotics are preparations biological character with correctly defined strains live micro organisms. Most important signification their used consisted in positive stimulation natural micro flora of digestive tract therefore fortified mechanisms of autoimmunity system of organism, what very narrowly relate with achieved utility animal parameters. Healthy and vital individuals marking better nutrient utilisation, equally growth intensity consistent higher slaughter yield. Propoul is two - elemental probiotic preparate designated for poultry, which include special selected strain of genus Lactobacillus. Results their affect is improve of immunity, metabolism and also favourable effect on utility.In 42- days experiment we tested effect of probiotic preparate Propoul on basic fattening parameters of hybrid Hubbard JV. We divided broiler chickens into three groups - control (C without probiotic, experimental 1(E1 with decreased probiotic amount during fattening period and experimental 2 (E2 with constant concentration of testing preparate. Propoul in fluid form we was applicating in drinking water. Effect of probiotic positive manifested in all observed parameters. With exception organic growth and growth index, where we founded favourable effect his application especially in first two weeks in all other both experimentals by expressive rate dominated in achieved values in compared with control. Mostly, from aspect average live weight, where we recorded from 2. week to end of fattening period statistically high significant (P<0.01 and statistically very high significant difference (P<0.001 in benefit of E1 and E2 groups.
Fractional statistics and quantum scaling properties of the integrable Penson-Kolb-Hubbard chain
Vitoriano, Carlindo; Coutinho-Filho, M. D.
2010-09-01
We investigate the ground-state and low-temperature properties of the integrable version of the Penson-Kolb-Hubbard chain. The model obeys fractional statistical properties, which give rise to fractional elementary excitations and manifest differently in the four regions of the phase diagram U/t versus n , where U is the Coulomb coupling, t is the correlated hopping amplitude, and n is the particle density. In fact, we can find local pair formation, fractionalization of the average occupation number per orbital k , or U - and n -dependent average electric charge per orbital k . We also study the scaling behavior near the U -driven quantum phase transitions and characterize their universality classes. Finally, it is shown that in the regime of parameters where local pair formation is energetically more favorable, the ground state exhibits power-law superconductivity; we also stress that above half filling the pair-hopping term stabilizes local Cooper pairs in the repulsive- U regime for U
Adequacy of Si:P chains as Fermi-Hubbard simulators
Dusko, Amintor; Delgado, Alain; Saraiva, André; Koiller, Belita
2018-01-01
The challenge of simulating many-body models with analogue physical systems requires both experimental precision and very low operational temperatures. Atomically precise placement of dopants in Si permits the construction of nanowires by design. We investigate the suitability of these interacting electron systems as simulators of a fermionic extended Hubbard model on demand. We describe the single-particle wavefunctions as a linear combination of dopant orbitals (LCDO). The electronic states are calculated within configuration interaction (CI). Due to the peculiar oscillatory behavior of each basis orbital, properties of these chains are strongly affected by the interdonor distance R0, in a non-monotonic way. Ground state (T = 0 K) properties such as charge and spin correlations are shown to remain robust under temperatures up to 4 K for specific values of R0. The robustness of the model against disorder is also tested, allowing some fluctuation of the placement site around the target position. We suggest that finite donor chains in Si may serve as an analog simulator for strongly correlated model Hamiltonians. This simulator is, in many ways, complementary to those based on cold atoms in optical lattices—the trade-off between the tunability achievable in the latter and the survival of correlation at higher operation temperatures for the former suggests that both technologies are applicable for different regimes.
Interaction quantum quenches in the one-dimensional Fermi-Hubbard model
Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano
2016-05-01
We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.
Current reversals and metastable states in the infinite Bose-Hubbard chain with local particle loss
Kiefer-Emmanouilidis, M.; Sirker, J.
2017-12-01
We present an algorithm which combines the quantum trajectory approach to open quantum systems with a density-matrix renormalization-group scheme for infinite one-dimensional lattice systems. We apply this method to investigate the long-time dynamics in the Bose-Hubbard model with local particle loss starting from a Mott-insulating initial state with one boson per site. While the short-time dynamics can be described even quantitatively by an equation of motion (EOM) approach at the mean-field level, many-body interactions lead to unexpected effects at intermediate and long times: local particle currents far away from the dissipative site start to reverse direction ultimately leading to a metastable state with a total particle current pointing away from the lossy site. An alternative EOM approach based on an effective fermion model shows that the reversal of currents can be understood qualitatively by the creation of holon-doublon pairs at the edge of the region of reduced particle density. The doublons are then able to escape while the holes move towards the dissipative site, a process reminiscent—in a loose sense—of Hawking radiation.
Long-wavelength spin-effective actions for the infinite U Hubbard model
Braghin, Fábio L.
2013-04-01
The derivation of spin-effective actions is envisaged for the Hubbard model with infinite Coulomb repulsion for a very low concentration of holes with a slave fermion representation for electronic operators. For that, spinless charge variables (vacancies or holes) are integrated out and the resulting effective action at finite temperature is expanded up to the fourth order in the hopping term as proposed in reference [F.L. Braghin, A. Ferraz, E.A. Kochetov, Phys. Rev. B 78, 115109 (2008)] and, in a square lattice, the fourth order term is shown to have the structure of an extended gauge invariant J-Q model for localized spins. Two cases for which the resulting model is non trivial are analysed and they correspond basically to (1) holes hopping between two sub-lattices and (2) a time-dependent solution for the spinon variables in the square lattice. Whereas the first of these cases yields, at the leading order, an effective antiferromagnetic Heisenberg coupling for localized spins and the second one may lead either to ferromagnetic or antiferromagnetic effective coupling. In the second case, the ordering should appear rather in finite size domains and, although charge variables were integrated out, a subtle imbalance between charge degrees of freedom and spins should be at work.
Valence-bond theory of linear Hubbard and Pariser-Parr-Pople models
Soos, Z. G.; Ramasesha, S.
1984-05-01
The ground and low-lying states of finite quantum-cell models with one state per site are obtained exactly through a real-space basis of valence-bond (VB) diagrams that explicitly conserve the total spin. Regular and alternating Hubbard and Pariser-Parr-Pople (PPP) chains and rings with Ne electrons on N(PPP models, but differ from mean-field results. Molecular PPP parameters describe well the excitations of finite polyenes, odd polyene ions, linear cyanine dyes, and slightly overestimate the absorption peaks in polyacetylene (CH)x. Molecular correlations contrast sharply with uncorrelated descriptions of topological solitons, which are modeled by regular polyene radicals and their ions for both wide and narrow alternation crossovers. Neutral solitons have no midgap absorption and negative spin densities, while the intensity of the in-gap excitation of charged solitons is not enhanced. The properties of correlated states in quantum-cell models with one valence state per site are discussed in the adiabatic limit for excited-state geometries and instabilities to dimerization.
TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model
Vučičević, J.; Ayral, T.; Parcollet, O.
2017-09-01
We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.
Realization of a scenario with two relaxation rates in the Hubbard Falicov-Kimball model
Barman, H.; Laad, M. S.; Hassan, S. R.
2018-02-01
A single transport relaxation rate governs the decay of both longitudinal and Hall currents in Landau Fermi liquids (FL). Breakdown of this fundamental feature, first observed in two-dimensional cuprates and subsequently in other three-dimensional correlated systems close to the Mott metal-insulator transition, played a pivotal role in emergence of a non-FL (NFL) paradigm in higher dimensions D (>1 ) . Motivated hereby, we explore the emergence of this "two relaxation rates" scenario in the Hubbard Falicov-Kimball model (HFKM) using the dynamical mean-field theory (DMFT). Specializing to D =3 , we find, beyond a critical Falicov-Kimball (FK) interaction, that two distinct relaxation rates governing distinct temperature (T ) dependence of the longitudinal and Hall currents naturally emerges in the NFL metal. Our results show good accord with the experiment in V2 -yO3 near the metal-to-insulator transition (MIT). We rationalize this surprising finding by an analytical analysis of the structure of charge and spin Hamiltonians in the underlying impurity problem, specifically through a bosonization method applied to the Wolff model and connecting it to the x-ray edge problem.
Quantum phase transitions of light in a dissipative Dicke-Bose-Hubbard model
Wu, Ren-Cun; Tan, Lei; Zhang, Wen-Xuan; Liu, Wu-Ming
2017-09-01
The impact that the environment has on the quantum phase transition of light in the Dicke-Bose-Hubbard model is investigated. Based on the quasibosonic approach, mean-field theory, and perturbation theory, the formulation of the Hamiltonian, the eigenenergies, and the superfluid order parameter are obtained analytically. Compared with the ideal cases, the order parameter of the system evolves with time as the photons naturally decay in their environment. When the system starts with the superfluid state, the dissipation makes the photons more likely to localize, and a greater hopping energy of photons is required to restore the long-range phase coherence of the localized state of the system. Furthermore, the Mott lobes depend crucially on the numbers of atoms and photons (which disappear) of each site, and the system tends to be classical with the number of atoms increasing; however, the atomic number is far lower than that expected under ideal circumstances. As there is an inevitable interaction between the coupled-cavity array and its surrounding environment in the actual experiments, the system is intrinsically dissipative. The results obtained here provide a more realistic image for characterizing the dissipative nature of quantum phase transitions in lossy platforms, which will offer valuable insight into quantum simulation of a dissipative system and which are helpful in guiding experimentalists in open quantum systems.
Entanglement of Exact Excited Eigenstates of the Hubbard Model in Arbitrary Dimension
Directory of Open Access Journals (Sweden)
Oskar Vafek, Nicolas Regnault, B. Andrei Bernevig
2017-12-01
Full Text Available We compute exactly the von Neumann entanglement entropy of the eta-pairing states - a large set of exact excited eigenstates of the Hubbard Hamiltonian. For the singlet eta-pairing states the entropy scales with the logarithm of the spatial dimension of the (smaller partition. For the eta-pairing states with finite spin magnetization density, the leading term can scale as the volume or as the area-times-log, depending on the momentum space occupation of the Fermions with flipped spins. We also compute the corrections to the leading scaling. In order to study the eigenstate thermalization hypothesis (ETH, we also compute the entanglement Renyi entropies of such states and compare them with the corresponding entropies of thermal density matrix in various ensembles. Such states, which we find violate strong ETH, may provide a useful platform for a detailed study of the time-dependence of the onset of thermalization due to perturbations which violate the total pseudospin conservation.
On the particle-hole symmetry of the fermionic spinless Hubbard model in D=1
Directory of Open Access Journals (Sweden)
M.T. Thomaz
2014-06-01
Full Text Available We revisit the particle-hole symmetry of the one-dimensional (D=1 fermionic spinless Hubbard model, associating that symmetry to the invariance of the Helmholtz free energy of the one-dimensional spin-1/2 XXZ Heisenberg model, under reversal of the longitudinal magnetic field and at any finite temperature. Upon comparing two regimes of that chain model so that the number of particles in one regime equals the number of holes in the other, one finds that, in general, their thermodynamics is similar, but not identical: both models share the specific heat and entropy functions, but not the internal energy per site, the first-neighbor correlation functions, and the number of particles per site. Due to that symmetry, the difference between the first-neighbor correlation functions is proportional to the z-component of magnetization of the XXZ Heisenberg model. The results presented in this paper are valid for any value of the interaction strength parameter V, which describes the attractive/null/repulsive interaction of neighboring fermions.
Charge-spin-orbital dynamics of one-dimensional two-orbital Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Onishi, Hiroaki [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)
2010-01-15
We study the real-time evolution of a charge-excited state in a one-dimensional e{sub g}-orbital degenerate Hubbard model, by a time-dependent density-matrix renormalization group method. Considering a chain along the z direction, electrons hop between adjacent 3z{sup 2}-r{sup 2} orbitals, while x{sup 2}-y{sup 2} orbitals are localized. For the charge-excited state, a holon-doublon pair is introduced into the ground state at quarter filling. At initial time, there is no electron in a holon site, while a pair of electrons occupies 3z{sup 2}-r{sup 2} orbital in a doublon site. As the time evolves, the holon motion is governed by the nearest-neighbor hopping, but the electron pair can transfer between 3z{sup 2}-r{sup 2} orbital and x{sup 2}-y{sup 2} orbital through the pair hopping in addition to the nearest-neighbor hopping. Thus holon and doublon propagate at different speed due to the pair hopping that is characteristic of multi-orbital systems.
An exact solution to the extended Hubbard model in 2D for finite size system
Harir, S.; Bennai, M.; Boughaleb, Y.
2008-08-01
An exact analytical diagonalization is used to solve the two-dimensional extended Hubbard model (EHM) for a system with finite size. We have considered an EHM including on-site and off-site interactions with interaction energies U and V, respectively, for a square lattice containing 4×4 sites at one-eighth filling with periodic boundary conditions, recently treated by Kovacs and Gulacsi (2006 Phil. Mag. 86 2073). Taking into account the symmetric properties of this square lattice and using a translation linear operator, we have constructed a r-space basis only with 85 state-vectors which describe all possible distributions for four electrons in the 4×4 square lattice. The diagonalization of the 85×85 matrix energy allows us to study the local properties of the above system as a function of the on-site and off-site interactions energies, where we have shown that the off-site interaction encourages the existence of the double occupancies at the first excited state and induces a supplementary conductivity of the system.
Pseudogap and Fermi-Surface Topology in the Two-Dimensional Hubbard Model
Wu, Wei; Scheurer, Mathias S.; Chatterjee, Shubhayu; Sachdev, Subir; Georges, Antoine; Ferrero, Michel
2018-04-01
One of the distinctive features of hole-doped cuprate superconductors is the onset of a "pseudogap" below a temperature T* . Recent experiments suggest that there may be a connection between the existence of the pseudogap and the topology of the Fermi surface. Here, we address this issue by studying the two-dimensional Hubbard model with two distinct numerical methods. We find that the pseudogap only exists when the Fermi surface is holelike and that, for a broad range of parameters, its opening is concomitant with a Fermi-surface topology change from electronlike to holelike. We identify a common link between these observations: The polelike feature of the electronic self-energy associated with the formation of the pseudogap is found to also control the degree of particle-hole asymmetry, and hence the Fermi-surface topology transition. We interpret our results in the framework of an SU(2) gauge theory of fluctuating antiferromagnetism. We show that a mean-field treatment of this theory in a metallic state with U(1) topological order provides an explanation of this polelike feature and a good description of our numerical results. We discuss the relevance of our results to experiments on cuprates.
Pairing and superconductivity from weak to strong coupling in the attractive Hubbard model
International Nuclear Information System (INIS)
Toschi, A; Barone, P; Capone, M; Castellani, C
2005-01-01
The finite-temperature phase diagram of the attractive Hubbard model is studied by means of the dynamical mean-field theory. We first consider the normal phase of the model by explicitly frustrating the superconducting ordering. In this case, we obtain a first-order pairing transition between a metallic phase and a paired phase formed by strongly coupled incoherent pairs. The transition line ends in a finite temperature critical point, but a crossover between two qualitatively different solutions still occurs at higher temperature. Comparing the superconducting- and the normal-phase solutions, we find that the superconducting instability always occurs before the pairing transition in the normal phase, i.e. T c > T pairing . Nevertheless, the high-temperature phase diagram at T > T c is still characterized by a crossover from a metallic phase to a preformed pair phase. We characterize this crossover by computing different observables that can be used to identify the pseudogap region, like the spin susceptibility, the specific heat and the single-particle spectral function
Comparative DMFT study of the eg-orbital Hubbard model in thin films
Rüegg, Andreas; Hung, Hsiang-Hsuan; Gull, Emanuel; Fiete, Gregory A.
2014-02-01
Heterostructures of transition-metal oxides have emerged as a new route to engineer electronic systems with desired functionalities. Motivated by these developments, we study a two-orbital Hubbard model in a thin-film geometry confined along the cubic [001] direction using the dynamical mean-field theory. We contrast the results of two approximate impurity solvers (exact diagonalization and one-crossing approximation) to the results of the numerically exact continuous-time quantum Monte Carlo solver. Consistent with earlier studies, we find that the one-crossing approximation performs well in the insulating regime, while the advantage of the exact-diagonalization-based solver is more pronounced in the metallic regime. We then investigate various aspects of strongly correlated eg-orbital systems in thin-film geometries. In particular, we show how the interfacial orbital polarization dies off quickly a few layers from the interface and how the film thickness affects the location of the interaction-driven Mott transition. In addition, we explore the changes in the electronic structure with varying carrier concentration and identify large variations of the orbital polarization in the strongly correlated regime.
Superfluid drag in the two-component Bose-Hubbard model
Sellin, Karl; Babaev, Egor
2018-03-01
In multicomponent superfluids and superconductors, co- and counterflows of components have, in general, different properties. A. F. Andreev and E. P. Bashkin [Sov. Phys. JETP 42, 164 (1975)] discussed, in the context of He3/He4 superfluid mixtures, that interparticle interactions produce a dissipationless drag. The drag can be understood as a superflow of one component induced by phase gradients of the other component. Importantly, the drag can be both positive (entrainment) and negative (counterflow). The effect is known to have crucial importance for many properties of diverse physical systems ranging from the dynamics of neutron stars and rotational responses of Bose mixtures of ultracold atoms to magnetic responses of multicomponent superconductors. Although substantial literature exists that includes the drag interaction phenomenologically, only a few regimes are covered by quantitative studies of the microscopic origin of the drag and its dependence on microscopic parameters. Here we study the microscopic origin and strength of the drag interaction in a quantum system of two-component bosons on a lattice with short-range interaction. By performing quantum Monte Carlo simulations of a two-component Bose-Hubbard model we obtain dependencies of the drag strength on the boson-boson interactions and properties of the optical lattice. Of particular interest are the strongly correlated regimes where the ratio of coflow and counterflow superfluid stiffnesses can diverge, corresponding to the case of saturated drag.
A pure Hubbard model with demonstrable pairing adjacent to the Mott-insulating phase
International Nuclear Information System (INIS)
Champion, J D; Long, M W
2003-01-01
We introduce a Hubbard model on a particular class of geometries, and consider the effect of doping the highly spin-degenerate Mott-insulating state with a microscopic number of holes in the extreme strong-coupling limit. The geometry is quite general, with pairs of atomic sites at each superlattice vertex, and a highly frustrated inter-atomic connectivity: the one-dimensional realization is a chain of edge-sharing tetrahedra. The sole model parameter is the ratio of intra-pair to inter-pair hopping matrix elements. If the intra-pair hopping is negligible then introducing a microscopic number of holes results in a ferromagnetic Nagaoka groundstate. Conversely, if the intra-pair hopping is comparable with the inter-pair hopping then the groundstate is low spin with short-ranged spin correlations. We exactly solve the correlated motion of a pair of holes in such a state and find that, in 1d and 2d, they form a bound pair on a length scale that increases with diminishing binding energy. This result is pertinent to the long-standing problem of hole motion in the CuO 2 planes of the high-temperature superconductors: we have rigorously shown that, on our frustrated geometry, the holes pair up and a short-ranged low-spin state is generated by hole motion alone
Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model
Kujawa-Cichy, A.; Micnas, R.
2011-08-01
We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.
Wide Band to ''Double Band'' upgrade
International Nuclear Information System (INIS)
Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.
1988-06-01
The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs
Dynamics of fermionic Hubbard models after interaction quenches in one and two dimensions
International Nuclear Information System (INIS)
Hamerla, Simone Anke
2013-10-01
In the last years the impressive progress on the experimental side led to a variety of new experiments allowing to address systems out of equilibrium. In this way the behavior of such systems far from equilibrium is no longer a purely theoretical issue but indeed observable. New experimental techniques, like particles trapped in optical lattices, render a realization of quantum systems with nearly arbitrary system parameters possible and provide a possibility to study their time evolution. Systems out of equilibrium are characterized by the fact, that these systems are in highly excited states giving rise to totally new fascinating properties. In the present thesis one- and two-dimensional fermionic Hubbard models out of equilibrium are discussed. The system is taken out of equilibrium by a so-called interaction quench. At the beginning the system is prepared in the groundstate of the non-interacting Hamiltonian. At a time t the interaction between the fermions is suddenly turned on so that the time evolution is governed by the whole, interacting Hamiltonian. Hence the system is prepared in the groundstate of one Hamiltonian but evolves according to a different Hamiltonian. Consequently the system ends up in a highly excited state. To describe such a system a method based on an expansion of the Heisenberg equations of motion to highest order possible is developed in this thesis. This method provides an exact description of the time evolution on short and intermediate time scales after the quench. As the method reveal exact results and does not rely on any perturbative assumption, a study of arbitrarily large interaction strengths is possible. Besides, the method is one of the few methods capable of two-dimensional systems. In the following the method used in this thesis is explained and advantages and disadvantages of the approach are thematized. For this purpose the results of the developed iterated equation of motion approach are compared to results obtained in
Dynamics of fermionic Hubbard models after interaction quenches in one and two dimensions
Energy Technology Data Exchange (ETDEWEB)
Hamerla, Simone Anke
2013-10-15
In the last years the impressive progress on the experimental side led to a variety of new experiments allowing to address systems out of equilibrium. In this way the behavior of such systems far from equilibrium is no longer a purely theoretical issue but indeed observable. New experimental techniques, like particles trapped in optical lattices, render a realization of quantum systems with nearly arbitrary system parameters possible and provide a possibility to study their time evolution. Systems out of equilibrium are characterized by the fact, that these systems are in highly excited states giving rise to totally new fascinating properties. In the present thesis one- and two-dimensional fermionic Hubbard models out of equilibrium are discussed. The system is taken out of equilibrium by a so-called interaction quench. At the beginning the system is prepared in the groundstate of the non-interacting Hamiltonian. At a time t the interaction between the fermions is suddenly turned on so that the time evolution is governed by the whole, interacting Hamiltonian. Hence the system is prepared in the groundstate of one Hamiltonian but evolves according to a different Hamiltonian. Consequently the system ends up in a highly excited state. To describe such a system a method based on an expansion of the Heisenberg equations of motion to highest order possible is developed in this thesis. This method provides an exact description of the time evolution on short and intermediate time scales after the quench. As the method reveal exact results and does not rely on any perturbative assumption, a study of arbitrarily large interaction strengths is possible. Besides, the method is one of the few methods capable of two-dimensional systems. In the following the method used in this thesis is explained and advantages and disadvantages of the approach are thematized. For this purpose the results of the developed iterated equation of motion approach are compared to results obtained in
Unconventional and intertwined orders of the low-dimensional Hubbard model
International Nuclear Information System (INIS)
Leprevost, Alexandre
2015-01-01
The understanding of superconductivity exhibited at high critical temperature by certain transition metal oxides remains a central issue in theoretical condensed matter physics. In this context, and since the historical proposal by P. W. Anderson, the repulsive Hubbard model in two dimensions became a paradigm in an attempt to capture the essential properties of non-conventional superconducting materials. However, the determination of the exact ground state encounters the exponential complexity of the quantum many-body problem. The main purpose of this thesis is to develop a variational scheme free of any hypothesis concerning magnetic, charge or superconducting orders likely to emerge from the Hamiltonian at low energy. The originality of the approach is found in the introduction of correlations by restoring, before variation, symmetries deliberately broken in a trial state given by a superposition of versatile wavefunctions of Hartree-Fock and Bogoliubov-de Gennes types. For small clusters of two and four sites, we show analytically that this symmetry entangled mean field method allows to find the exact ground state regardless of the strength of the on-site interaction. For larger hole-doped clusters and in the strongly correlated regime, we highlight an arrangement of magnetic moments in a spiral or in a spin density wave that is then accompanied by inhomogeneities in the form of regularly distributed stripes. Moreover, such orders are intertwined with long range d-wave pairing correlations, which, in the thermodynamic limit, sign superconductivity. These results are obtained through systematic simulations in a four-leg tube geometry that can be realized experimentally using cold atoms trapped in optical lattices. (author) [fr
Orbital currents and charge density waves in a generalized Hubbard ladder
International Nuclear Information System (INIS)
Fjaerestad, J.O.; Marston, J.B.; Schollwoeck, U.
2006-01-01
We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping δ away from half-filling, finite-system density-matrix renormalization-group (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/δ and 1/δ, respectively, corresponding to ordering wavevectors 2k F and 4k F for the currents and densities, where 2k F = π (1 - δ). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/δ, the DMRG results are consistent with a true long-range order scenario for the currents and densities
... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Amniotic band sequence URL of this page: //medlineplus.gov/ency/ ... birth. The baby should be delivered in a medical center that has specialists experienced in caring for babies ... or partial loss of function of a body part. Congenital bands affecting large parts of the body cause the ...
Investigation of a four-body coupling in the one-dimensional extended Penson-Kolb-Hubbard model
Ding, Hanqin; Ma, Xiaojuan; Zhang, Jun
2017-09-01
The experimental advances in cold fermion gases motivates the investigation of a one-dimensional (1D) correlated electronic system by incorporating a four-body coupling. Using the low-energy field theory scheme and focusing on the weak-coupling regime, we extend the 1D Penson-Kolb-Hubbard (PKH) model at half filling. It is found that the additional four-body interaction may significantly modify the quantum phase diagram, favoring the presence of the superconducting phase even in the case of two-body repulsions.
Aryanpour, K.; Pickett, W. E.; Scalettar, R. T.
2006-01-01
We employ dynamical mean field theory (DMFT) with a Quantum Monte Carlo (QMC) atomic solver to investigate the finite temperature Mott transition in the Hubbard model with the nearest neighbor hopping on a triangular lattice at half-filling. We estimate the value of the critical interaction to be $U_c=12.0 \\pm 0.5$ in units of the hopping amplitude $t$ through the evolution of the magnetic moment, spectral function, internal energy and specific heat as the interaction $U$ and temperature $T$ ...
Two-particle correlations in the one-dimensional Hubbard model: a ground-state analytical solution
Vallejo, E; Espinosa, J E
2003-01-01
A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a real-space mapping method and the Green function technique. This Hamiltonian considers the on-site (U) and the nearest-neighbor (V) interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreement with the numerical solution obtained previously [1], and with those obtained in the reciprocal space [2]. (Author)
Upper Gastrointestinal (GI) Series
... standard barium upper GI series, which uses only barium a double-contrast upper GI series, which uses both air and ... evenly coat your upper GI tract with the barium. If you are having a double-contrast study, you will swallow gas-forming crystals that ...
Energy Technology Data Exchange (ETDEWEB)
Proville, L
1998-03-30
This thesis brings its contribution to the bipolaronic theory which might explain the origin of superconductivity at high temperature. A polaron is a quasiparticle made up of a localized electron and a deformation in the crystal structure. 2 electrons in singlet states localized on the same site form a bipolaron. Whenever the Coulomb repulsion between the 2 electrons is too strong bipolaron turns into 2 no bound polarons. We study the existence and the mobility of bipolarons. We describe the electron-phonon interaction by the Holstein term and the Coulomb repulsion by the Hubbard term. 2 assumptions are made: - the local electron-phonon interaction is strong and opposes the Coulomb repulsion between Hubbard type electrons - the system is close to the adiabatic limit. The system is reduced to 2 electrons in order to allow an exact treatment and the investigation of some bipolaronic bound states. At 2-dimensions the existence of bipolarons requires a very strong coupling which forbids any classical mobility. In some cases an important tunneling effect appears and we show that mobile bipolarons exist in a particular parameter range. Near the adiabatic limit we prove that polaronic and bipolaronic structures exist for a great number of electrons. (A.C.) 33 refs.
Two-band model with off-diagonal occupation dependent hopping rate
International Nuclear Information System (INIS)
Zawadowski, A.
1989-01-01
In this paper two-band hopping model is treated on a two-dimensional square lattice. The atoms are located at the corners and the middles of the edges of the squares. In addition to the strongly overlapping orbitals of the atoms, there are extra orbitals at the corners, which are weakly hybridized. The assumption is made that the Fermi level is inside the broad band and is every near to the narrow band formed by the extra orbitals. The hamiltonian is Hubbard type, but the off-diagonal part of the two-site interaction t is kept also where one creation or annihilation operator acts on the extra orbital and the others on one of its neighbors. The weak coupling t is enhanced by the on-site Coulomb repulsion at the corners, which enhancement is a power function of the ratio of the broad band width and the narrow bank position measured from the Fermi level. That enhancement is obtained by summation of logarithmic Kondo-type corrections of orbital origin, which reflects the formation of a ground state of new type with strong orbital and spin correlations. Interaction between the particles of the broad band is generated by processes with one heavy and one light particle in the intermediate state
Robust band gap and half-metallicity in graphene with triangular perforations
Gregersen, Søren Schou; Power, Stephen R.; Jauho, Antti-Pekka
2016-06-01
Ideal graphene antidot lattices are predicted to show promising band gap behavior (i.e., EG≃500 meV) under carefully specified conditions. However, for the structures studied so far this behavior is critically dependent on superlattice geometry and is not robust against experimentally realistic disorders. Here we study a rectangular array of triangular antidots with zigzag edge geometries and show that their band gap behavior qualitatively differs from the standard behavior which is exhibited, e.g., by rectangular arrays of armchair-edged triangles. In the spin unpolarized case, zigzag-edged antidots give rise to large band gaps compared to armchair-edged antidots, irrespective of the rules which govern the existence of gaps in armchair-edged antidot lattices. In addition the zigzag-edged antidots appear more robust than armchair-edged antidots in the presence of geometrical disorder. The inclusion of spin polarization within a mean-field Hubbard approach gives rise to a large overall magnetic moment at each antidot due to the sublattice imbalance imposed by the triangular geometry. Half-metallic behavior arises from the formation of spin-split dispersive states near the Fermi energy, reducing the band gaps compared to the unpolarized case. This behavior is also found to be robust in the presence of disorder. Our results highlight the possibilities of using triangular perforations in graphene to open electronic band gaps in systems with experimentally realistic levels of disorder, and furthermore, of exploiting the strong spin dependence of the system for spintronic applications.
Band parameters of phosphorene
International Nuclear Information System (INIS)
Lew Yan Voon, L C; Wang, J; Zhang, Y; Willatzen, M
2015-01-01
Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene. (paper)
Infrared diffuse interstellar bands
Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.
2017-05-01
We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.
Band parameters of phosphorene
DEFF Research Database (Denmark)
Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.
2015-01-01
Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....
Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko
2018-01-01
We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.
International Nuclear Information System (INIS)
Proville, L.
1998-01-01
This thesis brings its contribution to the bipolaronic theory which might explain the origin of superconductivity at high temperature. A polaron is a quasiparticle made up of a localized electron and a deformation in the crystal structure. 2 electrons in singlet states localized on the same site form a bipolaron. Whenever the Coulomb repulsion between the 2 electrons is too strong bipolaron turns into 2 no bound polarons. We study the existence and the mobility of bipolarons. We describe the electron-phonon interaction by the Holstein term and the Coulomb repulsion by the Hubbard term. 2 assumptions are made: - the local electron-phonon interaction is strong and opposes the Coulomb repulsion between Hubbard type electrons - the system is close to the adiabatic limit. The system is reduced to 2 electrons in order to allow an exact treatment and the investigation of some bipolaronic bound states. At 2-dimensions the existence of bipolarons requires a very strong coupling which forbids any classical mobility. In some cases an important tunneling effect appears and we show that mobile bipolarons exist in a particular parameter range. Near the adiabatic limit we prove that polaronic and bipolaronic structures exist for a great number of electrons. (A.C.)
Dynamics of a quantum phase transition in the Bose-Hubbard model: Kibble-Zurek mechanism and beyond
Shimizu, Keita; Kuno, Yoshihito; Hirano, Takahiro; Ichinose, Ikuo
2018-03-01
In this paper, we study the dynamics of the Bose-Hubbard model by using time-dependent Gutzwiller methods. In particular, we vary the parameters in the Hamiltonian as a function of time, and investigate the temporal behavior of the system from the Mott insulator to the superfluid (SF) crossing a second-order phase transition. We first solve a time-dependent Schrödinger equation for the experimental setup recently done by Braun et al. [Proc. Natl. Acad. Sci. USA 112, 3641 (2015)] and show that the numerical and experimental results are in fairly good agreement. However, these results disagree with the Kibble-Zurek scaling. From our numerical study, we reveal a possible source of the discrepancy. Next, we calculate the critical exponents of the correlation length and vortex density in addition to the SF order parameter for a Kibble-Zurek protocol. We show that beside the "freeze" time t ̂, there exists another important time, teq, at which an oscillating behavior of the SF amplitude starts. From calculations of the exponents of the correlation length and vortex density with respect to a quench time τQ, we obtain a physical picture of a coarsening process. Finally, we study how the system evolves after the quench. We give a global picture of dynamics of the Bose-Hubbard model.
Le modele de Hubbard bidimensionnel a faible couplage: Thermodynamique et phenomenes critiques
Roy, Sebastien
Une etude systematique du modele de Hubbard en deux dimensions a faible couplage a l'aide de la theorie Auto-Coherente a Deux Particules (ACDP) dans le diagramme temperature-dopage-interaction-sauts permet de mettre en evidence l'influence des fluctuations magnetiques sur les proprietes thermodynamiques du systeme electronique sur reseau. Le regime classique renormalise a temperature finie pres du dopage nul est marque par la grandeur de la longueur de correlation de spin comparee a la longueur thermique de de Broglie et est caracterisee par un accroissement drastique de la longueur de correlation de spin. Cette croissance exponentielle a dopage nul marque la presence d'un pic de chaleur specifique en fonction de la temperature a basse temperature. Une temperature de crossover est alors associee a la temperature a laquelle la longueur de correlation de spin est egale a la longueur thermique de de Broglie. C'est a cette temperature caracteristique, ou est observee l'ouverture du pseudogap dans le poids spectral, que se situe le maximum du pic de chaleur specifique. La presence de ce pic a des consequences sur l'evolution du potentiel chimique avec le dopage lorsque l'uniformite thermodynamique est respectee. Les contraintes imposees par les lois de la thermodynamique font en sorte que l'evolution du potentiel chimique avec le dopage est non triviale. On demontre entre autres que le potentiel chimique est proportionnel a la double occupation qui est reliee au moment local. Par ailleurs, une derivation de la fonction de mise a l'echelle de la susceptibilite de spin a frequence nulle au voisinage d'un point critique marque sans equivoque la presence d'un point critique quantique en dopage pour une valeur donnee de l'interaction. Ce point critique, associe a une transition de phase magnetique en fonction du dopage a temperature nulle, induit un comportement non trivial sur les proprietes physiques du systeme a temperature finie. L'approche quantitative ACDP permet de
CSF oligoclonal banding - slideshow
... this page: //medlineplus.gov/ency/presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy To use the ... 5 out of 5 Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous ...
International Nuclear Information System (INIS)
Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.
1995-01-01
One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs
Ganapathi Sridevi; Rakesh Minocha; Swathi A. Turlapati; Katherine C. Goldfarb; Eoin L. Brodie; Louis S. Tisa; Subhash C. Minocha
2012-01-01
Soil Ca depletion because of acidic deposition-related soil chemistry changes has led to the decline of forest productivity and carbon sequestration in the northeastern USA. In 1999, acidic watershed (WS) 1 at the Hubbard Brook Experimental Forest (HBEF), NH, USA was amended with Ca silicate to restore soil Ca pools. In 2006, soil samples were collected from the Ca-...
Brett A. Huggett; Paul G. Schaberg; Gary J. Hawley; Christopher Eager
2007-01-01
We surveyed and wounded forest-grown sugar maple (Acer saccharum Marsh.) trees in a long-term, replicated Ca manipulation study at the Hubbard Brook Experimental Forest in New Hampshire, USA. Plots received applications of Ca (to boost Ca availability above depleted ambient levels) or A1 (to compete with Ca uptake and further reduce Ca availability...
Traa, M.R.M.J.; Traa, M.R.M.J.; Caspers, W.J.; Caspers, W.J.; Banning, E.J.; Banning, E.J.
1994-01-01
In this paper the Hubbard-Anderson model on a square lattice with two holes is studied. The ground state (GS) is approximated by a variational RVB-type wave function. The holes interact by exchange of a localized spin excitation (SE), which is created or absorbed if a hole moves to a
Ab-initio valence band spectra of Al, In doped ZnO
International Nuclear Information System (INIS)
Palacios, P.; Sanchez, K.; Wahnon, P.
2009-01-01
We present the structural and electronic characterization of n-doped (Aluminium or Indium) ZnO and the effect of the doping on the calculated photoelectron spectroscopy (PES) spectra. The fully-relaxed calculations have been made using the density functional theory, including a Hubbard correlation term that increases the Zn-3d states binding energy, and which matches the experimental values. The effect of Oxygen vacancies is also included in our study. Our results show that the new Al or In-donor levels appearing in the conduction band hybridize with the Oxygen-2p states and help decrease the resistivity of these doped systems as was found experimentally. The calculated PES spectra show a small enhancement in the intensity close to the chemical potential as a result of these new Al or In levels
Situk River Hydrology Following Closure of Russell Fiord by Hubbard Glacier
2011-03-01
approximately 137.2 ft. A HEC - RAS one-dimensional flow model estimated the levels and flows of the Si- tuk River system, including the Old Situk, Upper...23 Development of HEC - RAS geometry for Situk River ................................................................. 26 Boundary conditions...28 Figure 20. Situk River geometry model in HEC - RAS
Cintolo, Jessica A; Levine, Marc S; Huang, Stephanie; Dumon, Kristoffel
2012-01-01
Intraluminal erosion of a laparoscopic gastric band into the stomach has been reported as a complication of laparoscopic adjustable gastric banding. To our knowledge, however, intraluminal erosion of the band tubing into the duodenum has not been described. We report a 46-year-old man in whom a laparoscopic adjustable gastric band tubing eroded into the duodenal lumen, causing recurrent port-site infections. This complication was diagnosed on upper endoscopy and also, in retrospect, on an upper gastrointestinal barium study and computed tomography. The patient underwent surgical removal of the band and tubing, with a primary duodenal repair, and made a complete recovery without complications. Erosion of laparoscopic band tubing into the duodenum should be included in the differential diagnosis for recurrent port-site infections after laparoscopic adjustable gastric banding. Radiographic or endoscopic visualization of the intraluminal portion of the tubing may be required for confirmation. Definitive treatment of this complication entails surgical removal of the tubing from the duodenum.
Strongly reduced band gap in NiMn2O4 due to cation exchange
International Nuclear Information System (INIS)
Huang, Jhih-Rong; Hsu, Han; Cheng, Ching
2014-01-01
NiMn 2 O 4 is extensively used as a basis material for temperature sensors due to its negative temperature coefficient of resistance (NTCR), which is commonly attributed to the hopping mechanism involving coexisting octahedral-site Mn 4+ and Mn 3+ . Using density-functional theory + Hubbard U calculations, we identify a ferrimagnetic inverse spinel phase as the collinear ground state of NiMn 2 O 4 . By a 12.5% cation exchange, a mixed phase with slightly higher energy can be constructed, accompanied by the formation of an impurity-like band in the original 1 eV band gap. This impurity-like band reduces the gap to 0.35 eV, suggesting a possible source of NTCR. - Highlights: • Density functional based calculations were used to study collinear phase of NiMn 2 O 4 . • The ground-state structure is a ferrimagnetic inverse spinel phase. • The tetrahedral and octahedral Mn cations have ferromagnetic interactions. • A 12.5% cation exchange introduces an impurity-like band in the original 1 eV gap. • The 0.35 eV gap suggests a source of negative temperature coefficient of resistance
International Nuclear Information System (INIS)
Scheinine, A.L.
1992-01-01
The frustrated XY model was studied on a lattice, primarily to test Fourier transform acceleration technique for a phase transition having more field structure than just spinwaves and vortices. Also, the spinless Hubbard model without hopping was simulated using continuous variables for the auxiliary field that mediates coupling between fermions. Finally, spin one-half Hubbard model was studied with a technique that sampled the fermion occupation configurations. The frustrated two-dimensional XY model was simulated using the Langevin equation with Fourier transform acceleration. Speedup due to Fourier acceleration was measured for frustration one-half at the transition temperature. The unfrustrated XY model was also studied. For the frustrated case, only long-distance spin correlation and the autocorrelation of the spin showed significant speedup. The frustrated case has Ising-like domains. It was found that Fourier acceleration speeds the evolution of spinwaves but has negligible effect on the Ising-like domains. In the Hubbard model, fermion determinant weight factor in the partition function changes sign, causing large statistical fluctuations of observables. A technique was found for sampling configuration space using continuous auxiliary fields, despite energy barriers where the fermion determinant changes sign. For two-dimensional spinless Hubbard model with no hopping, an exact solution was found for a 4 x 4 lattice; which could be compared to numerical simulations. The sign problem remained, and was found to be related to the sign problem encountered when a discrete variable is used for the auxiliary field. For spin one-half Hubbard model, a Monte Carlo simulation was done in which the fermion occupation configurations were varied. Rather than integrate-out the fermions and make a numerical estimate of the sum over the auxiliary field, the auxiliary field was integrated-out and a numerical estimate was made of the sum over fermion configurations
A Quantum Mermin-Wagner Theorem for a Generalized Hubbard Model
Directory of Open Access Journals (Sweden)
Mark Kelbert
2013-01-01
Full Text Available This paper is the second in a series of papers considering symmetry properties of bosonic quantum systems over 2D graphs, with continuous spins, in the spirit of the Mermin-Wagner theorem. In the model considered here the phase space of a single spin is ℋ1=L2(M, where M is a d-dimensional unit torus M=ℝd/ℤd with a flat metric. The phase space of k spins is ℋk=L2sym(Mk, the subspace of L2(Mk formed by functions symmetric under the permutations of the arguments. The Fock space H=⊕k=0,1,…ℋk yields the phase space of a system of a varying (but finite number of particles. We associate a space H≃H(i with each vertex i∈Γ of a graph (Γ,ℰ satisfying a special bidimensionality property. (Physically, vertex i represents a heavy “atom” or “ion” that does not move but attracts a number of “light” particles. The kinetic energy part of the Hamiltonian includes (i -Δ/2, the minus a half of the Laplace operator on M, responsible for the motion of a particle while “trapped” by a given atom, and (ii an integral term describing possible “jumps” where a particle may join another atom. The potential part is an operator of multiplication by a function (the potential energy of a classical configuration which is a sum of (a one-body potentials U(1(x, x∈M, describing a field generated by a heavy atom, (b two-body potentials U(2(x,y, x,y∈M, showing the interaction between pairs of particles belonging to the same atom, and (c two-body potentials V(x,y, x,y∈M, scaled along the graph distance d(i,j between vertices i,j∈Γ, which gives the interaction between particles belonging to different atoms. The system under consideration can be considered as a generalized (bosonic Hubbard model. We assume that a connected Lie group G acts on M, represented by a Euclidean space or torus of dimension d'≤d, preserving the metric and the volume in M. Furthermore, we suppose that the potentials U(1, U(2, and V are G-invariant. The result
International Nuclear Information System (INIS)
Ward, W.E.; Hersom, C.H.; Tai, C.C.; Gault, W.A.; Shepherd, G.G.; Solheim, B.H.
1994-01-01
Among the emissions viewed by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0-0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide-angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique will be outlined and the on-orbit behavior since launch summarized
Begaud, Xavier
2013-01-01
Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog
Nonvariceal upper gastrointestinal bleeding
International Nuclear Information System (INIS)
Burke, Stephen J.; Weldon, Derik; Sun, Shiliang; Golzarian, Jafar
2007-01-01
Nonvariceal upper gastrointestinal bleeding (NUGB) remains a major medical problem even after advances in medical therapy with gastric acid suppression and cyclooxygenase (COX-2) inhibitors. Although the incidence of upper gastrointestinal bleeding presenting to the emergency room has slightly decreased, similar decreases in overall mortality and rebleeding rate have not been experienced over the last few decades. Many causes of upper gastrointestinal bleeding have been identified and will be reviewed. Endoscopic, radiographic and angiographic modalities continue to form the basis of the diagnosis of upper gastrointestinal bleeding with new research in the field of CT angiography to diagnose gastrointestinal bleeding. Endoscopic and angiographic treatment modalities will be highlighted, emphasizing a multi-modality treatment plan for upper gastrointestinal bleeding. (orig.)
Nonvariceal upper gastrointestinal bleeding
Energy Technology Data Exchange (ETDEWEB)
Burke, Stephen J.; Weldon, Derik; Sun, Shiliang [University of Iowa, Department of Radiology, Iowa, IA (United States); Golzarian, Jafar [University of Iowa, Department of Radiology, Iowa, IA (United States); University of Iowa, Department of Radiology, Carver College of Medicine, Iowa, IA (United States)
2007-07-15
Nonvariceal upper gastrointestinal bleeding (NUGB) remains a major medical problem even after advances in medical therapy with gastric acid suppression and cyclooxygenase (COX-2) inhibitors. Although the incidence of upper gastrointestinal bleeding presenting to the emergency room has slightly decreased, similar decreases in overall mortality and rebleeding rate have not been experienced over the last few decades. Many causes of upper gastrointestinal bleeding have been identified and will be reviewed. Endoscopic, radiographic and angiographic modalities continue to form the basis of the diagnosis of upper gastrointestinal bleeding with new research in the field of CT angiography to diagnose gastrointestinal bleeding. Endoscopic and angiographic treatment modalities will be highlighted, emphasizing a multi-modality treatment plan for upper gastrointestinal bleeding. (orig.)
A Rare Cause of Upper Airway Obstruction in a Child
Ahmed, H.; Ndiaye, C.; Barry, M. W.; Thiongane, Aliou; Mbaye, A.; Zemene, Y.; Ndiaye, I. C.
2017-01-01
Ventricular band cyst is a rare condition in children but can result in severe upper airway obstruction with laryngeal dyspnea or death. The diagnosis should be considered in any stridor in children with previous history of intubation or respiratory infections. We report a case of a 4-year-old girl, received in an array of severe respiratory distress, emergency endoscopy was done, and a large ventricular tape band cyst obstructing the air way was found. Complete excision was made, and postope...
Upper limb position control in fibromyalgia
Directory of Open Access Journals (Sweden)
Bardal Ellen
2012-09-01
Full Text Available Abstract Background Motor problems are reported by patients with fibromyalgia (FM. However, the mechanisms leading to alterations in motor performance are not well understood. In this study, upper limb position control during sustained isometric contractions was investigated in patients with FM and in healthy controls (HCs. Methods Fifteen female FM patients and 13 HCs were asked to keep a constant upper limb position during sustained elbow flexion and shoulder abduction, respectively. Subjects received real-time visual feedback on limb position and both tasks were performed unloaded and while supporting loads (1, 2, and 3 kg. Accelerations of the dominant upper limb were recorded, with variance (SD of mean position and power spectrum analysis used to characterize limb position control. Normalized power of the acceleration signal was extracted for three frequency bands: 1–3 Hz, 4–7 Hz, and 8–12 Hz. Results Variance increased with load in both tasks (P 0.001 but did not differ significantly between patients and HCs (P > 0.17. Power spectrum analysis showed that the FM patients had a higher proportion of normalized power in the 1–3 Hz band, and a lower proportion of normalized power in the 8–12 Hz band compared to HCs (P 0.05. The results were consistent for all load conditions and for both elbow flexion and shoulder abduction. Conclusion FM patients exhibit an altered neuromuscular strategy for upper limb position control compared to HCs. The predominance of low-frequency limb oscillations among FM patients may indicate a sensory deficit.
DEFF Research Database (Denmark)
Patrick, Christopher; Thygesen, Kristian Sommer
2016-01-01
In non-self-consistent calculations of the total energy within the random-phase approximation (RPA) for electronic correlation, it is necessary to choose a single-particle Hamiltonian whose solutions are used to construct the electronic density and noninteracting response function. Here we...... investigate the effect of including a Hubbard-U term in this single-particle Hamiltonian, to better describe the on-site correlation of 3d electrons in the transitionmetal compounds ZnS, TiO2, and NiO.We find that the RPA lattice constants are essentially independent of U, despite large changes...... in the underlying electronic structure. We further demonstrate that the non-selfconsistent RPA total energies of these materials have minima at nonzero U. Our RPA calculations find the rutile phase of TiO2 to be more stable than anatase independent of U, a result which is consistent with experiments...
Yao, K. L.; Li, Y. C.; Sun, X. Z.; Liu, Q. M.; Qin, Y.; Fu, H. H.; Gao, G. Y.
2005-10-01
By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge charge and spin spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge charge and the spin spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute.
International Nuclear Information System (INIS)
Krutitsky, Konstantin V.; Navez, Patrick; Schuetzhold, Ralf; Queisser, Friedemann
2014-01-01
We study a quantum quench in the Bose-Hubbard model where the tunneling rate J is suddenly switched from zero to a finite value in the Mott regime. In order to solve the many-body quantum dynamics far from equilibrium, we consider the reduced density matrices for a finite number of lattice sites and split them up into on-site density operators, i.e., the mean field, plus two-point and three-point correlations etc. Neglecting three-point and higher correlations, we are able to numerically simulate the time-evolution of the on-site density matrices and the two-point quantum correlations (e.g., their effective light-cone structure) for a comparably large number of lattice sites. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Patel, Niravkumar D. [The Univ. of Tennessee, Knoxville, TN (United States); Mukherjee, Anamitra [National Institute of Science Education and Research, Jatni (India); Kaushal, Nitin [The Univ. of Tennessee, Knoxville, TN (United States); Moreo, Adriana [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dagotto, Elbio R. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-08-24
Here, we employ a recently developed computational many-body technique to study for the first time the half-filled Anderson-Hubbard model at finite temperature and arbitrary correlation U and disorder V strengths. Interestingly, the narrow zero temperature metallic range induced by disorder from the Mott insulator expands with increasing temperature in a manner resembling a quantum critical point. Our study of the resistivity temperature scaling T^{α} for this metal reveals non-Fermi liquid characteristics. Moreover, a continuous dependence of α on U and V from linear to nearly quadratic is observed. We argue that these exotic results arise from a systematic change with U and V of the “effective” disorder, a combination of quenched disorder and intrinsic localized spins.
The MFA ground states for the extended Bose-Hubbard model with a three-body constraint
Panov, Yu. D.; Moskvin, A. S.; Vasinovich, E. V.; Konev, V. V.
2018-05-01
We address the intensively studied extended bosonic Hubbard model (EBHM) with truncation of the on-site Hilbert space to the three lowest occupation states n = 0 , 1 , 2 in frames of the S = 1 pseudospin formalism. Similar model was recently proposed to describe the charge degree of freedom in a model high-T c cuprate with the on-site Hilbert space reduced to the three effective valence centers, nominally Cu1+;2+;3+. With small corrections the model becomes equivalent to a strongly anisotropic S = 1 quantum magnet in an external magnetic field. We have applied a generalized mean-field approach and quantum Monte-Carlo technique for the model 2D S = 1 system with a two-particle transport to find the ground state phase with its evolution under deviation from half-filling.
International Nuclear Information System (INIS)
Calegari, E J; Lausmann, A C; Magalhaes, S G; Chaves, C M; Troper, A
2015-01-01
In this work the specific heat of a two-dimensional Hubbard model, suitable to discuss high-T c superconductors (HTSC), is studied taking into account hopping to first (t) and second (t 2 ) nearest neighbors. Experimental results for the specific heat of HTSC's, for instance, the YBCO and LSCO, indicate a close relation between the pseudogap and the specific heat. In the present work, we investigate the specific heat by the Green's function method within a n-pole approximation. The specific heat is calculated on the pseudogap and on the superconducting regions. In the present scenario, the pseudogap emerges when the antiferromagnetic (AF) fluctuations become sufficiently strong. The specific heat jump coefficient Δγ decreases when the total occupation per site (n T ) reaches a given value. Such behavior of Δγ indicates the presence of a pseudogap in the regime of high occupation
Calegari, E. J.; Lausmann, A. C.; Magalhaes, S. G.; Chaves, C. M.; Troper, A.
2015-03-01
In this work the specific heat of a two-dimensional Hubbard model, suitable to discuss high-Tc superconductors (HTSC), is studied taking into account hopping to first (t) and second (t2) nearest neighbors. Experimental results for the specific heat of HTSC's, for instance, the YBCO and LSCO, indicate a close relation between the pseudogap and the specific heat. In the present work, we investigate the specific heat by the Green's function method within a n-pole approximation. The specific heat is calculated on the pseudogap and on the superconducting regions. In the present scenario, the pseudogap emerges when the antiferromagnetic (AF) fluctuations become sufficiently strong. The specific heat jump coefficient Δγ decreases when the total occupation per site (nT) reaches a given value. Such behavior of Δγ indicates the presence of a pseudogap in the regime of high occupation.
International Nuclear Information System (INIS)
Yonemitsu, K.; Bishop, A.R.
1992-01-01
As a convenient qualitative approach to strongly correlated electronic systems, an inhomogeneous Hartree-Fock plus random-phase approximation is applied to response functions for the two-dimensional multiband Hubbard model for cuprate superconductors. A comparison of the results with those obtained by exact diagonalization by Wagner, Hanke, and Scalapino [Phys. Rev. B 43, 10 517 (1991)] shows that overall structures in optical and magnetic particle-hole excitation spectra are well reproduced by this method. This approach is computationally simple, retains conceptual clarity, and can be calibrated by comparison with exact results on small systems. Most importantly, it is easily extended to larger systems and straightforward to incorporate additional terms in the Hamiltonian, such as electron-phonon interactions, which may play a crucial role in high-temperature superconductivity
Design for maximum band-gaps in beam structures
DEFF Research Database (Denmark)
Olhoff, Niels; Niu, Bin; Cheng, Gengdong
2012-01-01
This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lower...
Girolamo, Paolo Di; Scoccione, Andrea; Cacciani, Marco; Summa, Donato; Schween, Jan H.
2018-04-01
This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of HOPE, revealing the presence of a clear-air dark band phenomenon (i.e. the appearance of a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 1064 nm. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site.
Aizawa, H.; Kuroki, K.; Yasuzuka, S.; Yamada, J.
2012-11-01
We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ-B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of Tc is qualitatively consistent with the experimental observation.
International Nuclear Information System (INIS)
Aizawa, H; Kuroki, K; Yasuzuka, S; Yamada, J
2012-01-01
We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP) 2 MF 6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ–B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of T c is qualitatively consistent with the experimental observation. (paper)
Jeon, Jae; Chang, John
2018-03-13
A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.
Upper respiratory tract (image)
The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...
U.S. Department of Health & Human Services — Affordable Care Act Federal Upper Limits (FUL) based on the weighted average of the most recently reported monthly average manufacturer price (AMP) for...
Upper gastrointestinal bleeding.
Feinman, Marcie; Haut, Elliott R
2014-02-01
Upper gastrointestinal (GI) bleeding remains a commonly encountered diagnosis for acute care surgeons. Initial stabilization and resuscitation of patients is imperative. Stable patients can have initiation of medical therapy and localization of the bleeding, whereas persistently unstable patients require emergent endoscopic or operative intervention. Minimally invasive techniques have surpassed surgery as the treatment of choice for most upper GI bleeding. Copyright © 2014 Elsevier Inc. All rights reserved.
Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T
2004-01-01
To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel
Upper GI Bleeding in Children What is upper GI Bleeding? Irritation and ulcers of the lining of the esophagus, stomach or duodenum can result in upper GI bleeding. When this occurs the child may vomit blood ...
Band gaps from the Tran-Blaha modified Becke-Johnson approach: A systematic investigation
Jiang, Hong
2013-04-01
The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha (TB-mBJ) have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators. In this work, we have investigated the performance of the TB-mBJ potential for the description of electronic band structures in a comprehensive set of semiconductors and insulators. We point out that a perturbative use of the TB-mBJ potential can give overall better results. By investigating a set of IIB-VI and III-V semiconductors, we point out that although the TB-mBJ approach can describe the band gap of these materials quite well, the binding energies of semi-core d-states in these materials deviate strongly from experiment. The difficulty of the TB-mBJ potential to describe the localized states is likely the cause for the fact that the electronic band structures of Cu2O and La2O3 are still poorly described. Based on these observations, we propose to combine the TB-mBJ approach with the Hubbard U correction for localized d/f states, which is able to provide overall good descriptions for both the band gaps and semi-core states binding energies. We further apply the approach to calculate the band gaps of a set of Ti(IV)-oxides, many of which have complicated structures so that the more advanced methods like GW are expensive to treat directly. An overall good agreement with experiment is obtained, which is remarkable considering its little computational efforts compared to GW.
Digital Repository Service at National Institute of Oceanography (India)
Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Sammarco, P.; Muneyama, K.; Sato, T.; AjoyKumar, A.; Frouin, R.
gradient in the upper ocean. This strengthens the geostrophically balanced westward currents in both side of the equatorial wave-guide (within 5 degree bands). Once these currents reach the western Pacific coast, they feed the Equatorial undercurrent (EUC...
A class of non-symmetric band determinants with the Gaussian q ...
African Journals Online (AJOL)
A class of symmetric band matrices of bandwidth 2r+1 with the binomial coefficients entries was studied earlier. We consider a class of non-symmetric band matrices with the Gaussian q-binomial coefficients whose upper bandwith is s and lower bandwith is r. We give explicit formulæ for the determinant, the inverse (along ...
Upper petal lip colour polymorphism in Collinsia heterophylla
Indian Academy of Sciences (India)
Understanding the genetics of a polymorphic trait is important to predict its likely evolution. In Collinsia heterophylla, the upper petal lip colour can be either be white or white with a purple band, while the lower petal lip colour is invariably purple. Because the corolla is only partly polymorphic, the polymorphism can not have ...
Evidence of lacustrine sedimentation in the Upper Permian Bijori
Indian Academy of Sciences (India)
The Upper Permian Bijori Formation of the Satpura Gondwana basin comprising fine- to coarsegrained sandstone, carbonaceous shale/mudstone and thin coal bands was previously interpreted as the deposits of meandering rivers. The present study documents abundance of wave ripples, hummocky and swaley ...
Philip Kaminsky; Jayashankar M. Swaminathan
2004-01-01
In this paper we extend forecast band evolution and capacitated production modelling to the multiperiod demand case. In this model, forecasts of discrete demand for any period are modelled as bands and defined by lower and upper bounds on demand, such that future forecasts lie within the current band. We develop heuristics that utilize knowledge of demand forecast evolution to make production decisions in capacitated production planning environments. In our computational study we explore the ...
Trabant, Dennis C.; March, Rod S.; Thomas, Donald S.
2003-01-01
Hubbard Glacier, the largest calving glacier on the North American Continent (25 percent larger than Rhode Island), advanced across the entrance to 35-mile-long Russell Fiord during June 2002, temporarily turning it into a lake. Hubbard Glacier has been advancing for more than 100 years and has twice closed the entrance to Russell Fiord during the last 16 years by squeezing and pushing submarine glacial sediments across the mouth of the fiord. Water flowing into the cutoff fiord from mountain streams and glacier melt causes the level of Russell Lake to rise. However, both the 1986 and 2002 dams failed before the lake altitude rose enough for water to spill over a low pass at the far end of the fiord and enter the Situk River drainage, a world-class sport and commercial fishery near Yakutat, Alaska.
Hole-hole correlations in the U=∞ limit of the Hubbard model and the stability of the Nagaoka state
International Nuclear Information System (INIS)
Long, M.W.; Zotos, X.
1993-01-01
We use exact diagonalization in order to study the infinite-U limit of the two-dimensional Hubbard model. As well as looking at single-particle correlations, such as n kσ =left-angle c kσ † c kσ right-angle, we also study N-particle correlation functions, which compare the relative positions of all the particles in different models. In particular we study 16- and 18-site clusters and compare the charge correlations in the Hubbard model with those of spinless fermions and hard-core bosons. We find that although low densities of holes favor a ''locally ferromagnetic'' fermionic description, the correlations at larger densities resemble those of pure hard-core bosons surprisingly well
Noise exposure in marching bands
Keefe, Joseph
2005-09-01
Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.
International Nuclear Information System (INIS)
Bajdich, M.; Hlubina, R.
2001-01-01
Making use of variational wave functions of the Basile-Elser type we study the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t#prime# Hubbard model for t#prime#/t∼0.5. In the low-density limit the variational estimate of the stability region of the Nagaoka state is in qualitative agreement with the predictions of the T-matrix approximation
International Nuclear Information System (INIS)
Brehm, Sascha
2009-01-01
Two-particle excitations, such as spin and charge excitations, play a key role in high-T c cuprate superconductors (HTSC). Due to the antiferromagnetism of the parent compound the magnetic excitations are supposed to be directly related to the mechanism of superconductivity. In particular, the so-called resonance mode is a promising candidate for the pairing glue, a bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant electrons may be responsible for some of the observed properties of HTSC. Hence, getting to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate materials. To analyze the corresponding two-particle correlation functions we develop in the present thesis a new, non-perturbative and parameter-free technique for T=0 which is based on the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from an isolated cluster and use a fully renormalized bubble susceptibility χ 0 including the VCA one-particle propagators. Within our new approach, the magnetic excitations of HTSC are shown to be reproduced for the Hubbard model within the relevant strong-coupling regime. Exceptionally, the famous resonance mode occurring in the underdoped regime within the superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity and hourglass dispersion are in good overall agreement with experiments. Furthermore, characteristic features such as the position in energy of the resonance mode and the difference of the imaginary part of the susceptibility in the superconducting and the normal states are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a strongly-correlated parameter-free calculation revealed these salient magnetic properties supporting the S=1 magnetic exciton scenario for the resonance mode. Besides
Semiconductors bonds and bands
Ferry, David K
2013-01-01
As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.
International Nuclear Information System (INIS)
Ralls, P.W.; Colletti, P.M.; Boswell, W.D. Jr.; Halls, J.M.
1984-01-01
Historically, assessment of acute right upper quadrant abdominal pain has been a considerable clinical challenge. While clinical findings and laboratory data frequently narrow the differential diagnosis, symptom overlap generally precludes definitive diagnosis among the various diseases causing acute right upper quadrant pain. Fortunately, the advent of newer diagnostic imaging modalities has greatly improved the rapidity and reliability of diagnosis in these patients. An additional challenge to the physician, with increased awareness of the importance of cost effectiveness in medicine, is to select appropriate diagnostic schema that rapidly establish accurate diagnoses in the most economical fashion possible. The dual goals of this discussion are to assess not only the accuracy of techniques used to evaluate patients with acute right upper quadrant pain, but also to seek out cost-effective, coordinated imaging techniques to achieve this goal
Hc2 of anisotropy two-band superconductors by Ginzburg-Landau approach
International Nuclear Information System (INIS)
Udomsamuthirun, P.; Changjan, A.; Kumvongsa, C.; Yoksan, S.
2006-01-01
The purpose of this research is to study the upper critical field H c2 of two-band superconductors by two-band Ginzburg-Landau approach. The analytical formula of H c2 included anisotropy of order parameter and anisotropy of effective-mass are found. The parameters of the upper critical field in ab-plane (H c2 - bar ab ) and c-axis (H c2 - bar c ) can be found by fitting to the experimental data. Finally, we can find the ratio of upper critical field that temperature dependent in the range of experimental result
Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo
2018-05-01
We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.
Superconductivity in narrow-band systems with local nonretarded attractive interactions
International Nuclear Information System (INIS)
Micnas, R.; Ranninger, J.; Robaszkiewicz, S.
1990-01-01
In narrow-band systems electrons can interact with each other via a short-range nonretarded attractive potential. The origin of such an effective local attraction can be polaronic or it can be due to a coupling between electrons and excitons or plasmons. It can also result from purely chemical (electronic) mechanisms, especially in compounds with elements favoring disproportionation of valent states. These mechanisms are discussed and an exhaustive list of materials in which such local electron pairing occurs is given. The authors review the thermodynamic and electromagnetic properties of such systems in several limiting scenarios: (i) Systems with on-site pairing which can be described by the extended negative-U Hubbard model. The strong-attraction limit of this model, at which it reduces to a system of tightly bound electron pairs (bipolarons) on a lattice, is extensively discussed. These electron pairs behaving as hard-core charged bosons can exhibit a superconducting state analogous to that of superfluid 4 He II. The changeover from weak-attraction BCS-like superconductivity to the superfluidity of charged hard-core bosons is examined. (ii) Systems with intersite pairing described by an extended Hubbard model with U>0 and nearest-neighbor attraction and/or nearest-neighbor spin exchange as well as correlated hopping. (iii) A mixture of local pairs and itinerant electrons interacting via a charge-exchange mechanism giving rise to a mutually induced superconductivity in both subsystems. The authors discuss to what extent the picture of local pairing, and in particular superfluidity of hard-core charged bosons on a lattice, can be an explanation for the superconducting and normal-state properties of the high-T c oxides: doped BaBiO 3 and the cuprates
Anomalous electromagnetically induced transparency in photonic-band-gap materials
International Nuclear Information System (INIS)
Singh, Mahi R.
2004-01-01
The phenomenon of electromagnetically induced transparency has been studied when a four-level atom is located in a photonic band gap material. Quantum interference is introduced by driving the two upper levels of the atom with a strong pump laser field. The top level and one of the ground levels are coupled by a weak probe laser field and absorption takes place between these two states. The susceptibility due to the absorption for this transition has been calculated by using the master equation method in linear response theory. Numerical simulations are performed for the real and imaginary parts of the susceptibility for a photonic band gap material whose gap-midgap ratio is 21%. It is found that when resonance frequencies lie within the band, the medium becomes transparent under the action of the strong pump laser field. More interesting results are found when one of the resonance frequencies lies at the band edge and within the band gap. When the resonance frequency lies at the band edge, the medium becomes nontransparent even under a strong pump laser field. On the other hand, when the resonance frequency lies within the band gap, the medium becomes transparent even under a weak pump laser field. In summary, we found that the medium can be transformed from the transparent state to the nontransparent state just by changing the location of the resonance frequency. We call these two effects anomalous electromagnetically induced transparency
International Nuclear Information System (INIS)
Hoffman, E.A.; Gefter, W.B.; Schnall, M.; Nordberg, J.; Listerud, J.; Lenkinski, R.E.
1988-01-01
The authors are evaluating upper-airway sleep disorders with magnetic resonance (MR) imaging and x-ray cine computed tomography (CT). Fixed structural anatomy is visualized with multisection spin-echo MR imaging, the dynamic component with cine CT. Unique aspects of the study are described in this paper
Bünemann, Jörg; Seibold, Götz
2017-12-01
Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.
Kutepov, A L
2015-08-12
Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.
Directory of Open Access Journals (Sweden)
2015-12-01
Full Text Available Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
Hole motion in the t-J and Hubbard models: Effect of a next-nearest-neighbor hopping
International Nuclear Information System (INIS)
Gagliano, E.; Bacci, S.; Dagotto, E.
1990-01-01
Using exact diagonalization techniques, we study one dynamical hole in the two-dimensional t-J and Hubbard models on a square lattice including a next-nearest-neighbor hopping t'. We present the phase diagram in the parameter space (J/t,t'/t), discussing the ground-state properties of the hole. At J=0, a crossing of levels exists at some value of t' separating a ferromagnetic from an antiferromagnetic ground state. For nonzero J, at least four different regions appear where the system behaves like an antiferromagnet or a (not fully saturated) ferromagnet. We study the quasiparticle behavior of the hole, showing that for small values of |t'| the previously presented string picture is still valid. We also find that, for a realistic set of parameters derived from the Cu-O Hamiltonian, the hole has momentum (π/2,π/2), suggesting an enhancement of the p-wave superconducting mode due to the second-neighbor interactions in the spin-bag picture. Results for the t-t'-U model are also discussed with conclusions similar to those of the t-t'-J model. In general we found that t'=0 is not a singular point of these models
International Nuclear Information System (INIS)
Apusheva, B.K.; Nurumbetova, R.M.; Tuleubaev, B.A.
1998-01-01
The detoxification is one of the most acute problems of the population rehabilitation program of Semipalatinsk region suffered from the nuclear tests in 1949 - 1989. It is known that a Humanitarian Detoxification Service is success-fully functioning in Russia and facilitates the creation of improving centers for the removal of toxic chemical deposits, radiation decay products, and drugs out of the human organism. A method, which permits the successful removal of chemical deposits from the organism, consists of a number of procedures including the intake of a balanced amount of vitamins and minerals, physical exercises and sauna. It is based on the developments of an American scientist L. Ron Hubbard and analytical results of different biologists, physicians and pharmacologists. The effectiveness of the method was confirmed with the numerous clinical tests and examination of over 20,000 patients. The positive results were also obtained during the application of method to the people suffered from the Chernobyl accident. It is proposed to establish such detoxification centre in Kurchatov in order to perform similar investigations among the population of Semipalatinsk region affected by the nuclear testing. It will be created under the auspices of the Kazakh Detoxification Centre and the Pavlodar Centre of the Dianetika International Public Movement. The stable and successive functioning of the Centre is entirely dependent on the financing from the different funds and contract works. This paper proposes the ways of practical solution of man detoxification problem and the introduction of the method into the existing system of population rehabilitation
International Nuclear Information System (INIS)
Takahashi, M.; Bracken, P.; Cizek, J.; Paldus, J.
1995-01-01
The perturbation expansion coefficients for the ground-state energy of the half-filled one-dimensional Hubbard model with N = 4 ν + 2, (ν = 1,2,...) sites and satisfying cyclic boundary conditions were calculated in the Hueckel limit (U/β → 0), where β designates the one-electron hopping or resonance integral, and U, the two-electron on-site Coulomb integral. This was achieved by solving-order by order-the Lieb-Wu equations, a system of transcendental equations that determines the set of quasi-momenta (k i ) and spin variable τ α for this model. The exact values for these quantities were found for the N = 6 member ring up to the 20th order in terms of the coupling constant B = U/2β, as well as numerically for 10 ≤ N ≤ 50, and the N = 6 Lieb-Wu system was reduced to a system of sextic algebraic equations. These results are compared with those of the infinite system derived analytically by Misurkin and Ovchinnikov. It is further shown how the results of this article can be used for the interpolation by the root of a polynomial. It is demonstrated that a polynomial of relatively small degree provides a very good approximation for the energy in the intermediate coupling region. 20 refs., 3 tabs
International Nuclear Information System (INIS)
Kishine, Jun-Ichiro; Yonemitsu, Kenji
1998-01-01
Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group (PRG) approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to. In the present work, we discuss the nature of the dimensional crossovers in the weakly coupled chains and ladders, with emphasis on the difference between the two cases within the framework of the PRG approach. The difference of the universality class of the isolated chain and ladder profoundly affects the relevance or irrelevance of the inter-chain/ladder one-particle hopping. The strong coupling phase of the isolated ladder makes the one-particle process irrelevant so that the d-wave superconducting transition can be induced via the two-particle crossover in the weakly coupled ladders. The weak coupling phase of the isolated chain makes the one-particle process relevant so that the two-particle crossover can hardly be realized in the coupled chains. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
International Nuclear Information System (INIS)
Mendonca Filho, C.
1973-01-01
The construction of an ENDOR spectrometer operating from 0,5 to 75 MHz within a single band, with ore Klystron and homodine detection, and no fundamental changes on the electron spin resonance spectrometer was described. The ENDOR signal can be detected both by amplitude modulation of the frequency field, or direct detection of the ESR output, which is taken to a signal analyser. The signal-to-noise ratio is raised by averaging rather than filtering avoiding the use of long time constants, providing natural line widths. The experimental apparatus and the spectra obtained are described. A discussion, relating the ENDOR line amplitudes with the experimental conditions is done and ENDOR mechanism, in which there is a relevant presence of cross relaxation is proposed
International Nuclear Information System (INIS)
Grosso, G.
1986-01-01
The aim of this chapter is to present, in detail, some theoretical methods used to calculate electronic band structures in crystals. The basic strategies employed to attack the problem of electronic-structure calculations are presented. Successive sections present the basic formulations of the tight-binding, orthogonalized-plane-wave, Green'sfunction, and pseudopotential methods with a discussion of their application to perfect solids. Exemplifications in the case of a few selected problems provide further insight by the author into the physical aspects of the different methods and are a guide to the use of their mathematical techniques. A discussion is offered of completely a priori Hartree-Fock calculations and attempts to extend them. Special aspects of the different methods are also discussed in light of recently published related work
Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Vandenbosch, Guy A. E.; Narbudowicz, Adam
2017-01-01
A miniaturized dual-band antenna array using a negative index metamaterial is presented for WiMAX, LTE, and WLAN applications. This left-handed metamaterial plane is located behind the antenna array, and its unit cell is a combination of split-ring resonator, square electric ring resonator, and rectangular electrical coupled resonator. This enables the achievement of a metamaterial structure exhibiting both negative permittivity and permeability, which results in antenna size miniaturization, efficiency, and gain enhancement. Moreover, the proposed metamaterial antenna has realized dual-band operating frequencies compared to a single frequency for normal antenna. The measured reflection coefficient (S11) shows a 50.25% bandwidth in the lower band (from 2.119 to 3.058 GHz) and 4.27% in the upper band (from 5.058 to 5.276 GHz). Radiation efficiency obtained in the lower and upper band are >95 and 80%, respectively.
DEFF Research Database (Denmark)
Gandrup, Karen L; Nordling, Jørgen; Balslev, Ingegerd
2014-01-01
BACKGROUND: Computed tomography urography (CTU) is used widely in the work-up of patients with symptoms of urinary tract lesions. Preoperative knowledge of whether a tumor is invasive or non-invasive is important for the choice of surgery. So far there are no studies about the distinction...... of invasive and non-invasive tumors in ureter and renal pelvis based on the enhancement measured with Hounsfield Units. PURPOSE: To examine the value of CTU using split-bolus technique to distinguish non-invasive from invasive urothelial carcinomas in the upper urinary tract. MATERIAL AND METHODS: Patients...... obtained at CTU could distinguish between invasive and non-invasive lesions. No patients had a CTU within the last year before the examination that resulted in surgery. CONCLUSION: A split-bolus CTU cannot distinguish between invasive and non-invasive urothelial tumors in the upper urinary tract...
International Nuclear Information System (INIS)
Hui, A.; Doniach, S.
1993-01-01
In this paper, we present a study of the ground-state phase diagram of a one-dimensional quantum chain, the Penson-Kolb-Hubbard model, H=-summation i ,η=±1,σ (tc i+ησ † c iσ +Vc i+η↑ † c i+η↓ † c i↓ ci↑)+ summation i Un i↑ ni↓ at half filling. We have examined the system using exact diagonalization for samples of up to 12 sites and employed two techniques, eigenprojection decomposition and twisted-boundary conditions, in analyzing the data. These techniques allow us to characterize the ground state in a manner insensitive to changes in sample size and provide us with a clean way to visualize the physics. When used with the ''correct'' order parameter, qualitative features emerge even for sample sizes as small as six sites. We find that the second-order charge-density-wave--spin-density-wave transition in the weak-coupling limit (t much-gt U∼2V) turns into a first-order superconducting--antiferromagnetic transition in the strong-coupling regime [t much-lt U∼(4/π)V]. We also observe evidence of a charge-density-wave--superconducting transition in the parameter range (t∼V much-gt U). These three transition lines meet together at a tricritical point at (t:U:V)∼(0.04:0.54:0.42). A naive renormalization-group analysis in the intermediate-coupling regime produces results consistent with this conclusion
International Nuclear Information System (INIS)
Freericks, J. K.; Krishnamurthy, H. R.; Kato, Yasuyuki; Kawashima, Naoki; Trivedi, Nandini
2009-01-01
A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator-to-superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.
Directory of Open Access Journals (Sweden)
A. A. Gangat
2013-08-01
Full Text Available Multipartite entanglement of large numbers of physically distinct linear resonators is of both fundamental and applied interest, but there have been no feasible proposals to date for achieving it. At the same time, the Bose-Hubbard model with attractive interactions (ABH is theoretically known to have a phase transition from the superfluid phase to a highly entangled nonlocal superposition, but observation of this phase transition has remained out of experimental reach. In this theoretical work, we jointly address these two problems by (1 proposing an experimentally accessible quantum simulation of the ABH phase transition in an array of tunably coupled superconducting circuit microwave resonators and (2 incorporating the simulation into a highly scalable protocol that takes as input any microwave-resonator state with negligible occupation of number states |0⟩ and |1⟩ and nonlocally superposes it across the whole array of resonators. The large-scale multipartite entanglement produced by the protocol is of the W type, which is well known for its robustness. The protocol utilizes the ABH phase transition to generate the multipartite entanglement of all of the resonators in parallel, and is therefore deterministic and permits an increase in resonator number without any increase in protocol complexity; the number of resonators is limited instead by system characteristics such as resonator-frequency disorder and inter-resonator coupling strength. Only one local and two global controls are required for the protocol. We numerically demonstrate the protocol with realistic system parameters and estimate that current experimental capabilities can realize the protocol with high fidelity for greater than 40 resonators. Because superconducting-circuit microwave resonators are capable of interfacing with other devices and platforms such as mechanical resonators and (potentially optical fields, this proposal provides a route toward large-scale W
A Rare Cause of Upper Airway Obstruction in a Child
Directory of Open Access Journals (Sweden)
H. Ahmed
2017-01-01
Full Text Available Ventricular band cyst is a rare condition in children but can result in severe upper airway obstruction with laryngeal dyspnea or death. The diagnosis should be considered in any stridor in children with previous history of intubation or respiratory infections. We report a case of a 4-year-old girl, received in an array of severe respiratory distress, emergency endoscopy was done, and a large ventricular tape band cyst obstructing the air way was found. Complete excision was made, and postoperative prophylaxis tracheotomy was done. The postoperative course was uneventful with improvement of clinical and endoscopic signs.
Photo field emission spectroscopy of the tantalum band structure
International Nuclear Information System (INIS)
Kleint, Ch.; Radon, T.
1978-01-01
Photo field emission (PFE) currents of clean and barium covered tantalum tips have been measured with single lines of the mercury arc spectrum and phase-sensitive detection. Field strength and work function were determined from Fowler-Nordheim plots of the FE currents. Shoulders in the PFE current-voltage characteristics could be correlated to transitions in the band structure of tantalum according to a recently proposed two-step PFE model. A comparison with the relativistic calculations of Mattheiss and the nonrelativistic bands of Petroff and Viswanathan shows that Mattheiss' bands are more appropriate. Beside direct transitions several nondirect transitions from the different features composing the upper two density of states maxima below the Fermi edge of tantalum have been found. (Auth.)
Pair Formation of Hard Core Bosons in Flat Band Systems
Mielke, Andreas
2018-05-01
Hard core bosons in a large class of one or two dimensional flat band systems have an upper critical density, below which the ground states can be described completely. At the critical density, the ground states are Wigner crystals. If one adds a particle to the system at the critical density, the ground state and the low lying multi particle states of the system can be described as a Wigner crystal with an additional pair of particles. The energy band for the pair is separated from the rest of the multi-particle spectrum. The proofs use a Gerschgorin type of argument for block diagonally dominant matrices. In certain one-dimensional or tree-like structures one can show that the pair is localised, for example in the chequerboard chain. For this one-dimensional system with periodic boundary condition the energy band for the pair is flat, the pair is localised.
Fractal Based Triple Band High Gain Monopole Antenna
Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.
2017-10-01
A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.
in upper gastrointestinal endoscopy
Directory of Open Access Journals (Sweden)
Sinan Uzman
2016-07-01
Full Text Available Introduction : There is increasing interest in sedation for upper gastrointestinal endoscopy (UGE. Prospective randomized studies comparing sedation properties and complications of propofol and midazolam/meperidine in upper gastrointestinal endoscopy (UGE are few. Aim: To compare propofol and midazolam/meperidine sedation for UGE in terms of cardiopulmonary side effects, patient and endoscopist satisfaction and procedure-related times. Material and methods: This was a prospective, randomized, double-blind study of propofol versus midazolam and meperidine in 100 patients scheduled for diagnostic upper gastrointestinal endoscopy. The patients were divided into propofol and midazolam/meperidine groups. Randomization was generated by a computer. Cardiopulmonary side effects (hypotension, bradycardia, hypoxemia, procedure-related times (endoscopy time, awake time, time to hospital discharge, and patient and endoscopist satisfaction were compared between groups. Results: There was no significant difference between the groups with respect to the cost, endoscopy time, or demographic and clinical characteristics of the patients. Awake time and time to hospital discharge were significantly shorter in the propofol group (6.58 ±4.72 vs. 9.32 ±4.26 min, p = 0.030 and 27.60 ±7.88 vs. 32.00 ±10.54 min, p = 0.019. Hypotension incidence was significantly higher in the propofol group (12% vs. 0%, p = 0.027. The patient and endoscopist satisfaction was better with propofol. Conclusions : Propofol may be preferred to midazolam/meperidine sedation, with a shorter awake and hospital discharge time and better patient and endoscopist satisfaction. However, hypotension risk should be considered with propofol, and careful evaluation is needed, particularly in cardiopulmonary disorders.
Tautin, J.
1995-01-01
Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.
Study of intruder band in 112Sn
International Nuclear Information System (INIS)
Ganguly, S.; Banerjee, P.; Ray, I.; Kshetri, R.; Raut, R.; Bhattacharya, S.; Saha-Sarkar, M.; Goswami, A.; Mukhopadhyay, S.; Mukherjee, A.; Mukherjee, G.; Basu, S.K.
2007-01-01
Excited states of the positive-parity intruder band in 112 Sn, populated in the 100 Mo( 20 Ne,α4n) reaction at a beam energy of 136 MeV, have been studied. The band has been observed up to 11570.0 keV with spin (24 + ). Mean lifetimes have been measured for six states up to the 22 + , 10335.1 keV level and an upper limit of the lifetime has been estimated for the 11570.0 keV (24 + ) state. The B(E2) values, derived from the present lifetime results, correspond to a moderate quadrupole deformation of β 2 ∼0.18 for states with spin J π >=12 + , and the decrease in B(E2) for the 14 + ->12 + transition is consistent with a ν(h 11/2 ) 2 alignment at ω∼0.35 MeV, predicted by a cranked shell-model calculation. Total Routhian surface calculations predict a triaxial shape following the alignment
Upper extremity golf injuries.
Cohn, Michael A; Lee, Steven K; Strauss, Eric J
2013-01-01
Golf is a global sport enjoyed by an estimated 60 million people around the world. Despite the common misconception that the risk of injury during the play of golf is minimal, golfers are subject to a myriad of potential pathologies. While the majority of injuries in golf are attributable to overuse, acute traumatic injuries can also occur. As the body's direct link to the golf club, the upper extremities are especially prone to injury. A thorough appreciation of the risk factors and patterns of injury will afford accurate diagnosis, treatment, and prevention of further injury.
Vogel, H.; Schlemmer, H.
2005-10-01
Every year, numerous accidents happen on European roads due to bad visibility (fog, night, heavy rain). Similarly, the dramatic aviation accidents of year 2001 in Milan and Zurich have reminded us that aviation safety is equally affected by reduced visibility. A dual-band thermal imager was developed in order to raise human situation awareness under conditions of reduced visibility especially in the automotive and aeronautical context but also for all transportation or surveillance tasks. The chosen wavelength bands are the Short Wave Infrared SWIR and the Long Wave Infrared LWIR band which are less obscured by reduced visibility conditions than the visible band. Furthermore, our field tests clearly show that the two different spectral bands very often contain complementary information. Pyramidal fusion is used to integrate complementary and redundant features of the multi-spectral images into a fused image which can be displayed on a monitor to provide more and better information for the driver or pilot.
Energy Technology Data Exchange (ETDEWEB)
Stasyuk, I.V.; Krasnov, V.O., E-mail: krasnoff@icmp.lviv.ua
2017-04-15
Phase transitions at non-zero temperatures in ultracold Bose- and Fermi-particles mixture in optical lattices using the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations are investigated. The case of infinitely small fermion transfer and the repulsive on-site boson-fermion interaction is considered. The possibility of change of order (from the 2nd to the 1st one) of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams determining the conditions at which such a change takes place, are built.
Kohno, Masanori
2018-04-01
A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.
International Nuclear Information System (INIS)
Dasgupta, I.; Mookerjee, A.
1993-07-01
Based on the Augmented Space formalism proposed by one of us and a generalization of the alloy analogy, including the effect of the dynamics of the exchange bath, we show that a half-filled Hubbard model shows Fermi-liquid behaviour at low values of the interaction parameter U. This gives way to non-Fermi liquid behaviour at a critical U, where the system is still metallic. We also show that quenched disorder tends to lower this critical value of U. (author). 19 refs, 2 figs
Oriental upper blepharoplasty.
Weng, Chau-Jin
2009-02-01
Aesthetic surgery of the upper eyelids is a very common procedure performed in cosmetic practices around the world. The word blepharoplasty, however, has a different meaning in Asia than it does elsewhere. Orientals have different periorbital anatomic characteristics, their motivations for seeking eyelid treatment are different, and operative techniques have been adapted consequently. There are also many eyelid shapes among Orientals, mostly with regard to the presence and location of the supratarsal fold and/or presence of an epicanthal fold. The surgeon must therefore master a range of surgical procedures to treat these variations adequately. It is critical to know the indications for each blepharoplasty technique as well as their complications to select the right surgery and avoid unfavorable results. Epicanthoplasty performed on the right patient can greatly improve aesthetic results while retaining ethnic characteristics. This article will discuss Oriental eyelid characteristics, preoperative patient assessment, commonly used corrective techniques for the "double-eyelid" creation, and complications and how to avoid them.
Energy Technology Data Exchange (ETDEWEB)
Sakmann, Kaspar
2010-07-21
In this thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving the many-body Schroedinger equation. Particular emphasis is put on coherence, fragmentation and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction is investigated by solving the time-dependent many-body Schroedinger equation numerically exactly. These are the first exact results in literature in this context. It is shown that the standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model fail at weak interaction strength and within their range of expected validity. For stronger interactions the dynamics becomes strongly correlated and a new equilibration phenomenon is discovered. By comparison with exact results it is shown that a symmetry of the Bose- Hubbard model between attractive and repulsive interactions must be considered an artefact of the model. A conceptual innovation of this thesis are time-dependent Wannier functions. Equations of motion for time-dependent Wannier functions are derived from the variational principle. By comparison with exact results it is shown that lattice models can be greatly improved at little computational cost by letting the Wannier functions of a lattice model become time-dependent. (orig.)
Thermodynamics of many-band superconductors
International Nuclear Information System (INIS)
Waelte, A.
2006-01-01
In the present thesis the microscopical properties of the superconducting state of MgCNi 3 , MgB 2 , and some rare earth-transition metal borocarbides are studied by means of measurements of the specific heat. Furthermore the frequency spectrum of the lattice vibrations is estimated. The energy gap of the superconducting state can be determined from the specific heat of the superconducting state, which yields as like as the upper critical mafnetic field H c2 (0) hints on the electron-phonon coupling. From the analysis of these results and the comparison with results from transport measurements as well as the tunnel and point-contact spectroscopy can be concluded, how far the BCS model of superconductivity must be modified in order to be able to describe the superconducting state of the studied compounds. Studies on MgCNi 3 , which lies near a magnetic instability, show that occurring magnetic fluctuations have a bisection of the superconducting transition temperature T C as consequence. The under this aspect relatively high value of T C =7 K is a consequence of strong electron-phonon coupling, which is essentailly carried by nickel vibrations stabilized by carbon. A for the first time observed distinct anomaly in the specific heat of the classical many-band superconductor MgB 2 (here with pure 10 B) at about T c /4=10 K can be understood by means of a two-band model for the case of especially weak coupling between both bands. The analysis of the specific heat of the superconducting phase of the non-magnetic rare earth-nickel borocarbide YNi 2 B 2 C and LuNi 2 B 2 C leads to the conclusion thet visible effects of the many-band electron system are dependent on the mass on the position both of the rare earth and the transition metal. The signal of the superconducting phase transformation visible in the specific heat of the antiferromagnetic HoNi 2 B 2 C is smaller than expected
International Nuclear Information System (INIS)
Greenberg, J.M.; Bult, C.E.P.M. van de
1984-01-01
Ever since it was proposed that H 2 O could be a dominant constituent of interstellar grains, its detection, or lack thereof, has played a large role in theories of grains and their evolution. It now appears possible to provide a basic theoretical structure for the evolution of grains in molecular clouds based on current observational evidence and laboratory experiments on the ice band. Both band strengths and shapes can be reasonably predicted by grain models. (U.K.)
International Nuclear Information System (INIS)
Paul, E.S.; Semple, A.T.; Boston, A.J.; Joss, D.T.; Nolan, P.J.; Shepherd, S.L.
1997-01-01
Four superdeformed bands have been assigned to 130 Ce following a high-statistics γ-ray study using the EUROGAM II spectrometer. The strongest band exhibits two distinct backbends which, in one scenario, may be interpreted as crossings between high-j N = 6 neutron orbitals (νi 13/2 ) and low-j N = 4 orbitals (νd 3/2 ) in an unpaired system. (author)
International Nuclear Information System (INIS)
Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.
2011-01-01
High spin states in 196 Hg have been populated in the 198 Pt(α,6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.
Abrikosov flux-lines in two-band superconductors with mixed dimensionality
International Nuclear Information System (INIS)
Tanaka, K; Eschrig, M
2009-01-01
We study vortex structure in a two-band superconductor, in which one band is ballistic and quasi-two-dimensional (2D), and the other is diffusive and three-dimensional (3D). A circular cell approximation of the vortex lattice within the quasiclassical theory of superconductivity is applied to a recently developed model appropriate for such a two-band system (Tanaka et al 2006 Phys. Rev. B 73 220501(R); Tanaka et al 2007 Phys. Rev. B 75 214512). We assume that superconductivity in the 3D diffusive band is 'weak', i.e. mostly induced, as is the case in MgB 2 . Hybridization with the 'weak' 3D diffusive band has significant and intriguing influence on the electronic structure of the 'strong' 2D ballistic band. In particular, the Coulomb repulsion and the diffusivity in the 'weak' band enhance suppression of the order parameter and enlargement of the vortex core by magnetic field in the 'strong' band, resulting in reduced critical temperature and field. Moreover, increased diffusivity in the 'weak' band can result in an upward curvature of the upper critical field near the transition temperature. A particularly interesting feature found in our model is the appearance of additional bound states at the gap edge in the 'strong' ballistic band, which are absent in the single-band case. Furthermore, coupling with the 'weak' diffusive band leads to reduced bandgaps and van Hove singularities of energy bands of the vortex lattice in the 'strong' ballistic band. We find these intriguing features for parameter values appropriate for MgB 2 .
Upper airway resistance syndrome.
Montserrat, J M; Badia, J R
1999-03-01
This article reviews the clinical picture, diagnosis and management of the upper airway resistance syndrome (UARS). Presently, there is not enough data on key points like the frequency of UARS and the morbidity associated with this condition. Furthermore, the existence of LIARS as an independent sleep disorder and its relation with snoring and obstructive events is in debate. The diagnosis of UARS is still a controversial issue. The technical limitations of the classic approach to monitor airflow with thermistors and inductance plethysmography, as well as the lack of a precise definition of hypopnea, may have led to a misinterpretation of UARS as an independent diagnosis from the sleep apnea/hypopnea syndrome. The diagnosis of this syndrome can be missed using a conventional polysomnographic setting unless appropriate techniques are applied. The use of an esophageal balloon to monitor inspiratory effort is currently the gold standard. However, other sensitive methods such as the use of a pneumotachograph and, more recently, nasal cannula/pressure transducer systems or on-line monitoring of respiratory impedance with the forced oscillation technique may provide other interesting possibilities. Recognition and characterization of this subgroup of patients within sleep breathing disorders is important because they are symptomatic and may benefit from treatment. Management options to treat UARS comprise all those currently available for sleep apnea/hypopnea syndrome (SAHS). However, the subset of patients classically identified as LIARS that exhibit skeletal craneo-facial abnormalities might possibly obtain further benefit from maxillofacial surgery.
Friedel, Michael J.
1998-01-01
During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.
Single-Band and Dual-Band Infrared Detectors
Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)
2017-01-01
Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.
Adhesives for fixed orthodontic bands.
Millett, Declan T; Glenny, Anne-Marie; Mattick, Rye Cr; Hickman, Joy; Mandall, Nicky A
2016-10-25
Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. It has been shown that the quality of treatment result obtained with fixed appliances is much better than with removable appliances. Fixed appliances are, therefore, favoured by most orthodontists for treatment. The success of a fixed orthodontic appliance depends on the metal attachments (brackets and bands) being attached securely to the teeth so that they do not become loose during treatment. Brackets are usually attached to the front and side teeth, whereas bands (metal rings that go round the teeth) are more commonly used on the back teeth (molars). A number of adhesives are available to attach bands to teeth and it is important to understand which group of adhesives bond most reliably, as well as reducing or preventing dental decay during the treatment period. To evaluate the effectiveness of the adhesives used to attach bands to teeth during fixed appliance treatment, in terms of:(1) how often the bands come off during treatment; and(2) whether they protect the banded teeth against decay during fixed appliance treatment. The following electronic databases were searched: Cochrane Oral Health's Trials Register (searched 2 June 2016), Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 5) in the Cochrane Library (searched 2 June 2016), MEDLINE Ovid (1946 to 2 June 2016) and EMBASE Ovid (1980 to 2 June 2016). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Randomised and controlled clinical trials (RCTs and CCTs) (including split-mouth studies) of adhesives used to attach orthodontic bands to molar teeth were selected. Patients with full arch fixed orthodontic appliance(s) who had bands attached to molars were included. All review authors
Outcome of band ligation in oesophageal varices
International Nuclear Information System (INIS)
Abbasi, A.; Bhutto, A.R.; Bhatti, K.I.; Mahmood, K.; Lal, K.
2013-01-01
Objective: To find out the outcome og band ligation of oesophageal varices in decompensated chronic liver disease patients. Methods: The quasi experimental study was conducted at the Jinnah Postgraduate Medical Centre, Karachi, and Civil Hospital, Karachi, unit from September 2007 to August 2011. Subjects were eligible if they had a diagnosis of cirrhosis based on history, physical examination, biochemical parameters and liver biopsy in some cases. Patients with advanced cirrhosis (Child-Pugh class C), antibodies against human immunodeficiency virus, hepatocellular carcinoma, portal vein thrombosis evident on ultrasonography, parenteral drug addiction, current alcohol abuse, previous or current treatment with β-blockers were excluded from the study. All patients were asked about alcohol intake and tested to determine the cause of liver cirrhosis. Tests for other causes of cirrhosis were carried out only if there was a suggestive clue. All patients under-went upper gastrointestinal endoscopy after consent. SPSS 15 was used for statistical analysis. Results: The age of the 173 patients who met the inclusion criteria ranged from 15 to 85 years, with a mean of 48.39+-13.38 years. There were 112 (64.7%) males. High-grade varices were seen in 130 (75.1%) patients, while low-grade varices were observed in 43 (24.9%) on first endoscopy. At initial endoscopy, 111 (64.2%) patients had portal hypertensive gastropathy. The patients were followed up for a mean period of 5.20+-2.67 months. Variceal obliteration was achieved in 138 (79.8%), while 33 (19.1%) cases developed re-bleeding. Mean number of endoscopy sessions for these patients were 2.28+-.918 with a maximum of 4. Conclusion: Band ligation eradicated oesophageal varices with less complications and a lower re-bleeding rate, but at the same time eradication was associated with more frequent development of portal hypertensive gastropathy. (author)
The Effects of Individual Upper Alpha Neurofeedback in ADHD: An Open-Label Pilot Study
Escolano , Carlos; Navarro-Gil , Mayte; Garcia-Campayo , Javier; Congedo , Marco; Minguez , Javier
2014-01-01
International audience; Standardized neurofeedback (NF) protocols have been extensively evaluated in attention-deficit/hyperactivity disorder (ADHD). However, such protocols do not account for the large EEG heterogeneity in ADHD. Thus, individualized approaches have been suggested to improve the clinical outcome. In this direction, an open-label pilot study was designed to evaluate a NF protocol of relative upper alpha power enhancement in fronto-central sites. Upper alpha band was individual...
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Band plan. 90.531 Section 90.531...-805 MHz Bands § 90.531 Band plan. This section sets forth the band plan for the 763-775 MHz and 793... and portables subject to Commission-approved regional planning committee regional plans. Transmitter...
Band alignment in visible-light photo-active CoO/SrTiO{sub 3} (001) heterostructures
Energy Technology Data Exchange (ETDEWEB)
Seo, Hosung; Demkov, Alexander A., E-mail: demkov@physics.utexas.edu [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)
2014-12-28
Epitaxial oxide heterostructures are of fundamental interest in a number of problems ranging from oxide electronics to model catalysts. The epitaxial CoO/SrTiO{sub 3} (001) heterostructure on Si(001) has been recently studied as a model oxide catalyst for water splitting under visible light irradiation (Ngo et al., J. Appl. Phys. 114, 084901 (2013)). We use density functional theory to investigate the valence band offset at the CoO/SrTiO{sub 3} (001) interface. We examine the mechanism of charge transfer and dielectric screening at the interface and demonstrate that charge transfer is mediated by the metal-induced gap states in SrTiO{sub 3}, while the dielectric screening at the interface is largely governed by the ionic polarization of under-coordinated oxygen. Based on this finding, we argue that strain relaxation in CoO plays a critical role in determining the band offset. We find that the offsets of 1.36–1.10 eV, calculated in the Schottky-limit are in excellent agreement with the experimental value of 1.20 eV. In addition, we investigate the effect of the Hubbard correction, applied on the Co 3d states, on the dipole layer and potential shift at the interface.
Chen Chang Feng
1998-01-01
We have constructed an effective model Hamiltonian in the Hubbard formalism for the Cs/GaAs(110) surface at quarter-monolayer coverage with all of the parameters extracted from constrained local-density-approximation (LDA) pseudopotential calculations. The single-particle excitation spectrum of the model has been calculated using an exact-diagonalization technique to help determine the relevant interaction terms. It is shown that the intersite interaction between the nearest-neighbour Ga sites plays the key role in determining the insulating nature of the system and must be included in the model, in contrast to suggestions of some previous work. Our results show that a reliable mapping of LDA results onto an effective model Hamiltonian can be achieved by combining constrained LDA calculations for the Hamiltonian parameters and many-body calculations of the single-particle excitation spectrum for identifying relevant interaction terms. (author)
Olsen, M. K.
2017-02-01
We propose and analyze a pumped and damped Bose-Hubbard dimer as a source of continuous-variable Einstein-Podolsky-Rosen (EPR) steering with non-Gaussian statistics. We use and compare the results of the approximate truncated Wigner and the exact positive-P representation to calculate and compare the predictions for intensities, second-order quantum correlations, and third- and fourth-order cumulants. We find agreement for intensities and the products of inferred quadrature variances, which indicate that states demonstrating the EPR paradox are present. We find clear signals of non-Gaussianity in the quantum states of the modes from both the approximate and exact techniques, with quantitative differences in their predictions. Our proposed experimental configuration is extrapolated from current experimental techniques and adds another apparatus to the current toolbox of quantum atom optics.
International Nuclear Information System (INIS)
Weck, Philippe F.; Kim, Eunja
2016-01-01
The structure–property relationships of bulk CeO_2 and Ce_2O_3 have been investigated using AM05 and PBEsol exchange–correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+U) and density functional perturbation theory (DFPT+U). Compared with conventional PBE+U, RPBE+U, PW91+U and LDA+U functionals, AM05+U and PBEsol+U describe experimental crystalline parameters and properties of CeO_2 and Ce_2O_3 with superior accuracy, especially when +U is chosen close to its value derived by the linear-response approach. Lastly, the present findings call for a reexamination of some of the problematic oxide materials featuring strong f- and d-electron correlation using AM05+U and PBEsol+U.
Metaphyseal bands in osteogenesis imperfecta
Directory of Open Access Journals (Sweden)
Suresh S
2010-01-01
Full Text Available An increasing number of patients with osteogenesis imperfecta are undergoing pamidronate therapy to prevent the incidence of fragility fractures. The authors herein report a child aged 3 years who received five cycles of pamidronate, resulting in metaphyseal bands, known as "zebra lines."
Metaphyseal bands in osteogenesis imperfecta
International Nuclear Information System (INIS)
Suresh, SS; Thomas, John K
2010-01-01
An increasing number of patients with osteogenesis imperfecta are undergoing pamidronate therapy to prevent the incidence of fragility fractures. The authors herein report a child aged 3 years who received five cycles of pamidronate, resulting in metaphyseal bands, known as “zebra lines.”
Ultrasonographic findings of Kimura's disease presenting in the upper extremities.
Shin, Gi Won; Lee, Sun Joo; Choo, Hye Jung; Park, Young Mi; Jeong, Hae Woong; Lee, Sung-Moon; Suh, Jin-Suck; Jung, Soo-Jin
2014-12-01
To describe ultrasound findings of Kimura's disease arising in the upper extremities. Five patients with Kimura's disease confirmed by surgical resection were retrospectively reviewed by two musculoskeletal radiologists and a pathologist. All six lesions involved the epitrochlear area and appeared as partially (n = 5) or poorly (n = 1) marginated subcutaneous masses with the presence of curvilinear hyperechoic bands intermingled within the hypoechoic components by US. Moderate (n = 4) to severe (n = 2) vascular signals were observed in some proportion of the hyperechoic bands by color Doppler US. The associated findings were the increased echogenicity of surrounding subcutaneous fat (n = 6) and adjacent lymphadenopathy (n = 4). Microscopic examination showed proliferation of lymphoid follicles with prominent germinal centers and intervening fibrosis. In this study, Kimura's disease arising in the upper extremities showed a partially defined hypoechoic subcutaneous mass with internal hyperechoic bands and moderate-to-severe vascularities, increased echogenicity of the surrounding subcutaneous fat and adjacent lymphadenopathy on US. Thus, when these US features are observed in the typical epitrochlear region of an Asian individual, especially if accompanied by peripheral eosinophilia, Kimura's disease should be considered as a possible diagnosis.
Extensive upper respiratory tract sarcoidosis
Soares, Mafalda Trindade; Sousa, Carolina; Garanito, Luísa; Freire, Filipe
2016-01-01
Sarcoidosis is a chronic granulomatous disease of unknown aetiology. It can affect any part of the organism, although the lung is the most frequently affected organ. Upper airway involvement is rare, particularly if isolated. Sarcoidosis is a diagnosis of exclusion, established by histological evidence of non-caseating granulomas and the absence of other granulomatous diseases. The authors report a case of a man with sarcoidosis manifesting as a chronic inflammatory stenotic condition of the upper respiratory tract and trachea. PMID:27090537
International Nuclear Information System (INIS)
Ding Chunling; Li Jiahua; Yang Xiaoxue
2011-01-01
The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-band-gap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by the upper and lower bands in such a PBG material, thus leading to some curious phenomena. Numerical simulations are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RF-induced quantum interference and the density of states (DOS) of the PBG reservoir. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Identical and shifted identical bands
International Nuclear Information System (INIS)
Dodder, R.S; Jones, E.F.; Hamilton, J.H.
1997-01-01
Spontaneous fission of 252 Cm was studied with 72 large Compton suppressed Ge detectors in Gamma sphere. New isotopes 160 Sm and 162 Gd were identified. Through X-ray-γ and γ-γ-γ) coincidence measurements, level energies were established to spins 14 + to 20 + in 152 , 154 156 60 Nd 92 94 96 , 156 , 158 , 160 62 Sm 94 , 96 , 98 , and 160 , 162 64 Gd 96 , 98 . These nuclei exhibit a remarkable variety of identical bands and bands where the energies and moments of inertia are shifted by the same constant amount for every spin state from 2 + to 12 + for various combinations of nuclei differing by 2n, 4n, 2p, 4p, and α
HTS microstrip disk resonator with an upper dielectric layer for 4GHz
International Nuclear Information System (INIS)
Yamanaka, Kazunori; Kai, Manabu; Akasegawa, Akihiko; Nakanishi, Teru
2006-01-01
We propose HTS microstrip disk resonator with an upper dielectric layer as a candidate resonator structure of HTS compact power filter for 4GHz band. The electromagnetic simulations on the upper dielectric layer examined the current distributions of the HTS resonators that had TM 11 mode resonance of about 4 GHz. By the simulations, it is evaluated that of the maximum current density near the end portion of the disk-shape pattern of the resonator with the thick upper-layered structure decreases by roughly 30-50 percent, as compared with that of the resonator without it. Then, we designed and fabricated the resonator samples with and without the upper dielectrics. The RF power measurement results indicated that the upper dielectric layer leads to an increase in handling power
Analysis of Resonance Response Performance of C-Band Antenna Using Parasitic Element
Islam, M. T.; Misran, N.; Mandeep, J. S.
2014-01-01
Analysis of the resonance response improvement of a planar C-band (4–8 GHz) antenna is proposed using parasitic element method. This parasitic element based method is validated for change in the active and parasitic antenna elements. A novel dual-band antenna for C-band application covering 5.7 GHz and 7.6 GHz is designed and fabricated. The antenna is composed of circular parasitic element with unequal microstrip lines at both sides and a rectangular partial ground plane. A fractional bandwidth of 13.5% has been achieved from 5.5 GHz to 6.3 GHz (WLAN band) for the lower band. The upper band covers from 7.1 GHz to 8 GHz with a fractional bandwidth of 12%. A gain of 6.4 dBi is achieved at the lower frequency and 4 dBi is achieved at the upper frequency. The VSWR of the antenna is less than 2 at the resonance frequency. PMID:24895643
NCenter wide band neutrino beam
International Nuclear Information System (INIS)
Stutte, L.G.
1985-01-01
This memo describes the physical properties of the currently operating N-Center wide band neutrino beam---commonly called the triplet train, following a past tradition of a triplet lens configuration. In reality, in order to gain a larger momentum acceptance and to minimize the angular divergence of the beam, a quadruplet beam (4 lenses) employing point-to-parallel optics at a central momentum of 300 GeV was built. 6 refs., 13 figs., 1 tab
[Gastric band erosion: Alternative management].
Echaverry-Navarrete, Denis José; Maldonado-Vázquez, Angélica; Cortes-Romano, Pablo; Cabrera-Jardines, Ricardo; Mondragón-Pinzón, Erwin Eduardo; Castillo-González, Federico Armando
2015-01-01
Obesity is a public health problem, for which the prevalence has increased worldwide at an alarming rate, affecting 1.7 billion people in the world. To describe the technique employed in incomplete penetration of gastric band where endoscopic management and/or primary closure is not feasible. Laparoscopic removal of gastric band was performed in five patients with incomplete penetrance using Foley catheterization in the perforation site that could lead to the development of a gastro-cutaneous fistula. The cases presented include a leak that required surgical lavage with satisfactory outcome, and one patient developed stenosis 3 years after surgical management, which was resolved endoscopically. In all cases, the penetration site closed spontaneously. Gastric band erosion has been reported in 3.4% of cases. The reason for inserting a catheter is to create a controlled gastro-cutaneous fistula, allowing spontaneous closure. Various techniques have been described: the totally endoscopic, hybrid techniques (endoscopic/laparoscopic) and completely laparoscopic. A technique is described here that is useful and successful in cases where the above-described treatments are not viable. Copyright © 2015. Published by Masson Doyma México S.A.
Coloured leg bands affect male mate-guarding behaviour in the bluethroat
Johnsen; Lifjeld; Rohde
1997-07-01
Artificial traits such as coloured leg bands may affect an individual's mating success, as shown for some birds. One explanation is that colour-matching with a sexual ornament affects the individual's sexual attractiveness. This study reports a colour-band experiment with free-living bluethroats, Luscinia s. svecicaa species where males have a distinct blue and chestnut throat and upper breast. There was no apparent difference in pairing success between males with ornament-matching colour bands (blue and orange) and males with non-ornamental colour bands. However, males with ornamental bands guarded their mates less intensely and spent more time singing, performing song flights and intruding into neighbours' territories than males with non-ornamental bands. We conclude that colour bands affect the trade-off between mate guarding and advertisement behaviour in a way that is consistent with the hypothesis that bands with ornamental colours improve a male's attractiveness. The results are in concordance with a previous study of the same population, showing that males with experimentally reduced attractiveness guarded their mates more closely and advertised less for additional mates, than non-manipulated males.
Oncoplastic Surgery for Upper/Upper Inner Quadrant Breast Cancer.
Lin, Joseph; Chen, Dar-Ren; Wang, Yu-Fen; Lai, Hung-Wen
2016-01-01
Tumors located in the upper/upper inner quadrant of the breast warrant more attention. A small lesion relative to the size of breast in this location may be resolved by performing a level I oncoplastic technique. However, a wide excision may significantly reduce the overall quality of the breast shape by distorting the visible breast line. From June 2012 to April 2015, 36 patients with breast cancer located in the upper/upper inner quadrant underwent breast-conservation surgery with matrix rotation mammoplasty. According to the size and location of the tumor relative to the nipple-areola complex, 11 patients underwent matrix rotation with periareolar de-epithelialization (donut group) and the other 25 underwent matrix rotation only (non-donut group). The cosmetic results were self-assessed by questionnaires. The average weights of the excised breast lumps in the donut and non-donut groups were 104.1 and 84.5 g, respectively. During the 3-year follow-up period, local recurrence was observed in one case and was managed with nipple-sparing mastectomy followed by breast reconstruction with prosthetic implants. In total, 31 patients (88.6%) ranked their postoperative result as either acceptable or satisfactory. The treated breasts were also self-evaluated by 27 patients (77.1%) to be nearly identical to or just slightly different from the untreated side. Matrix rotation is an easy breast-preserving technique for treating breast cancer located in the upper/upper inner quadrant of the breast that requires a relatively wide excision. With this technique, a larger breast tumor could be removed without compromising the breast appearance.
Oncoplastic Surgery for Upper/Upper Inner Quadrant Breast Cancer.
Directory of Open Access Journals (Sweden)
Joseph Lin
Full Text Available Tumors located in the upper/upper inner quadrant of the breast warrant more attention. A small lesion relative to the size of breast in this location may be resolved by performing a level I oncoplastic technique. However, a wide excision may significantly reduce the overall quality of the breast shape by distorting the visible breast line. From June 2012 to April 2015, 36 patients with breast cancer located in the upper/upper inner quadrant underwent breast-conservation surgery with matrix rotation mammoplasty. According to the size and location of the tumor relative to the nipple-areola complex, 11 patients underwent matrix rotation with periareolar de-epithelialization (donut group and the other 25 underwent matrix rotation only (non-donut group. The cosmetic results were self-assessed by questionnaires. The average weights of the excised breast lumps in the donut and non-donut groups were 104.1 and 84.5 g, respectively. During the 3-year follow-up period, local recurrence was observed in one case and was managed with nipple-sparing mastectomy followed by breast reconstruction with prosthetic implants. In total, 31 patients (88.6% ranked their postoperative result as either acceptable or satisfactory. The treated breasts were also self-evaluated by 27 patients (77.1% to be nearly identical to or just slightly different from the untreated side. Matrix rotation is an easy breast-preserving technique for treating breast cancer located in the upper/upper inner quadrant of the breast that requires a relatively wide excision. With this technique, a larger breast tumor could be removed without compromising the breast appearance.
Upper atmospheric gravity wave details revealed in nightglow satellite imagery
Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.
2015-01-01
Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004
More on Estimation of Banded and Banded Toeplitz Covariance Matrices
Berntsson, Fredrik; Ohlson, Martin
2017-01-01
In this paper we consider two different linear covariance structures, e.g., banded and bended Toeplitz, and how to estimate them using different methods, e.g., by minimizing different norms. One way to estimate the parameters in a linear covariance structure is to use tapering, which has been shown to be the solution to a universal least squares problem. We know that tapering not always guarantee the positive definite constraints on the estimated covariance matrix and may not be a suitable me...
Non-LTE models of Titan's upper atmosphere
Yelle, Roger V.
1991-01-01
Models for the thermal structure of Titan's upper atmosphere, between 0.1 mbar and 0.01 nbar are presented. The calculations include non-LTE heating/cooling in the rotation-vibration bands of CH4, C2H2, and C2H6, absorption of solar IR radiation in the near-IR bands of CH4 and subsequent cascading to the nu-4 band of CH4, absorption of solar EUV and UV radiation, thermal conduction and cooling by HCN rotational lines. Unlike earlier models, the calculated exospheric temperature agrees well with observations, because of the importance of HCN cooling. The calculations predict a well-developed mesopause with a temperature of 135-140 K at an altitude of approximately 600 km and pressure of about 0.1 microbar. The mesopause is at a higher pressure than predicted by earlier calculations because non-LTE radiative transfer in the rotation-vibration bands of CH4, C2H2, and C2H6 is treated in an accurate manner. The accuracy of the LTE approximation for source functions and heating rates is discussed.
The microwave limb sounder for the Upper Atmosphere Research Satellite
Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.
1988-01-01
The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.
High macro rubber band ligature
Directory of Open Access Journals (Sweden)
José A. Reis Neto
2013-07-01
Full Text Available Purpose: The goal of a rubber band ligature is to promote fibrosis of the submucosa with subsequent fixation of the anal epithelium to the underlying sphincter. Following this principle, a new technique of ligature was developed based on two aspects: 1. macro banding: to have a better fibrosis and fixation by banding a bigger volume of mucosa and 2. higher ligature: to have this fixation at the origin of the hemorrhoidal cushion displacement. Methods: 1634 patients with internal hemorrhoidal disease grade II or III were treated by the technique called high macro rubber band. There was no distinction as to age, gender or race. To perform this technique a new hemorrhoidal device was specially designed with a larger diameter and a bigger capacity for mucosal volume aspiration. It is recommended to utilize a longer and wider anoscope to obtain a better view of the anal canal, which will facilitate the injection of submucosa higher in the anal canal and the insertion of the rubber band device. The hemorrhoidal cushion must be banded higher in the anal canal (4 cm above the pectinate line. It is preferable to treat all the hemorrhoids in one single session (maximum of three areas banded. Results: The analysis was retrospective without any comparison with conventional banding. The period of evaluation extended from one to twelve years. The analysis of the results showed perianal edema in 1.6% of the patients, immediate tenesmus in 0.8%, intense pain (need for parenteral analgesia in 1.6%, urinary retention in 0.1% of the patients and a symptomatic recurrence rate of 4.2%. All patients with symptomatic recurrence were treated with a new session of macro rubber banding. None of the patients developed anal or rectal sepsis. Small post-ligature bleeding was observed only in 0.8% of the patients. Conclusions: The high macro rubber banding technique represents an alternative method for the treatment of hemorrhoidal disease grades II or III, with good
Upper atmosphere research at INPE
International Nuclear Information System (INIS)
Clemesha, B.R.
1984-01-01
Upper atmosphere research at INPE is mainly concerned with the chemistry and dynamics of the stratosphere, upper mesosphere and lower thermosphere, and the middle thermosphere. Experimental work includes lidar observations of the stratospheric aerosol, measurements of stratospheric ozone by Dobson spectrophotometers and by balloon and rocket-borne sondes, lidar measurements of atmospheric sodium, and photometric observations of O, O 2 , OH and Na emissions, including interferrometric measurements of the OI6300 emission for the purpose of determing thermospheric winds and temperature. The airglow observations also include measurements of a number of emissions produced by the precipitation of energetic neutral particles generated by charge exchange in the ring current. Some recent results of INPE's upper atmosphere program are presented. (Author) [pt
Band Subset Selection for Hyperspectral Image Classification
Directory of Open Access Journals (Sweden)
Chunyan Yu
2018-01-01
Full Text Available This paper develops a new approach to band subset selection (BSS for hyperspectral image classification (HSIC which selects multiple bands simultaneously as a band subset, referred to as simultaneous multiple band selection (SMMBS, rather than one band at a time sequentially, referred to as sequential multiple band selection (SQMBS, as most traditional band selection methods do. In doing so, a criterion is particularly developed for BSS that can be used for HSIC. It is a linearly constrained minimum variance (LCMV derived from adaptive beamforming in array signal processing which can be used to model misclassification errors as the minimum variance. To avoid an exhaustive search for all possible band subsets, two numerical algorithms, referred to as sequential (SQ and successive (SC algorithms are also developed for LCMV-based SMMBS, called SQ LCMV-BSS and SC LCMV-BSS. Experimental results demonstrate that LCMV-based BSS has advantages over SQMBS.
Rowan, D. R.
1989-01-01
The development and implementation of a C-band exciter for use with the Block IV Receiver-Exciter Subsystem at Deep Space Station 14 (DSS-14) has been completed. The exciter supplements the standard capabilities of the Block IV system by providing a drive signal for the C-band transmitter while generating coherent translation frequencies for C-band (5-GHz) to S-band (2.2- to 2.3-GHz) Doppler extraction, C-band to L-band (1.6-GHz) zero delay measurements, and a level calibrated L-band test signal. Exciter functions are described, and a general explanation and description of the C-band uplink controller is presented.
A Double Inverted F-Shape Patch Antenna for Dual-Band Operation
Directory of Open Access Journals (Sweden)
M. M. Islam
2014-01-01
Full Text Available A double inverted F-shape patch antenna is presented for dual-band operation. The proposed antenna is comprised of circular and rectangular slots on a printed circuit board of 40 mm × 40 mm × 1.6 mm with a 50 Ω microstrip transmission line. Commercially available high frequency structural simulator (HFSS based on the finite element method (FEM has been adopted in this investigation. It has a measured impedance bandwidths (2 : 1 VSWR of 18.53% on the lower band and 7.8% on the upper band, respectively. It has achieved stable radiation efficiencies of 79.76% and 80.36% with average gains of 7.82 dBi and 5.66 dBi in the operating frequency bands. Moreover, numerical simulations have been indicated as an important uniformity with measured results.
Study of rotational band in 111Sn
International Nuclear Information System (INIS)
Ganguly, S.; Banerjee, P.; Ray, I.; Kshetri, R.; Raut, R.; Goswami, A.; Saha Sarkar, M.; Bhattacharya, S.; Mukherjee, A.; Mukherjee, G.; Basu, S.K.; Mukhopadhyay, S.
2006-01-01
The motivation of the present work is to study the negative-parity rotational band in 111 Sn. Study of the lifetimes of the states of the rotational band is expected to provide information on their structures as well as the band termination phenomenon
Prenatal diagnosis of amniotic band syndrome
Directory of Open Access Journals (Sweden)
Laxmi Devi Padmanabhan
2016-01-01
Full Text Available Amniotic band can cause a broad spectrum of anomalies ranging from simple band constrictions to major craniofacial and visceral defects. It can cause significant neonatal morbidity. Accurate diagnosis will help in the management of the present pregnancy and in counseling with regard to future pregnancies. Here we report three cases of amniotic band syndrome detected in the prenatal period.
Complex band structure and electronic transmission eigenchannels
DEFF Research Database (Denmark)
Jensen, Anders; Strange, Mikkel; Smidstrup, Soren
2017-01-01
and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two...
High-energy band structure of gold
DEFF Research Database (Denmark)
Christensen, N. Egede
1976-01-01
The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...
Multi-band Modelling of Appearance
DEFF Research Database (Denmark)
Stegmann, Mikkel Bille; Larsen, Rasmus
2003-01-01
the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...
Multi-band Modelling of Appearance
DEFF Research Database (Denmark)
Stegmann, Mikkel Bille; Larsen, Rasmus
2002-01-01
the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...
Quad Band Handset Antenna for LTE MIMO and WLAN Application
Directory of Open Access Journals (Sweden)
H. S. Wong
2014-01-01
Full Text Available A compact quad band antenna for long-term evolution (LTE MIMO and WLAN application in the handset is presented in this paper. The proposed antenna comprises two symmetrical quarter wavelength radiating strips and a slotted ground plane. On the ground plane, a T-shaped slot is cut from the bottom. Two symmetrical P-shaped slots are etched at both sides of the ground plane. The radiating strips and slots generate a lower resonant at 780 MHz and an upper resonant at 2.350 GHz to cover LTE 700 Band 14, LTE 2300, 2.4 GHz WLAN, and LTE 2500. A novel isolation technique by placing a rectangular patch between the radiating strips is presented. The rectangular patch creates a dedicated current path for each radiating strip. The proposed antenna has high isolation of less than −18 dBi at LTE 2300, 2.4 GHz WLAN, and LTE 2500 band.
L-band brightness temperature disaggregation for use with S-band and C-band radiometer data for WCOM
Yao, P.; Shi, J.; Zhao, T.; Cosh, M. H.; Bindlish, R.
2017-12-01
There are two passive microwave sensors onboard the Water Cycle Observation Mission (WCOM), which includes a synthetic aperture radiometer operating at L-S-C bands and a scanning microwave radiometer operating from C- to W-bands. It provides a unique opportunity to disaggregate L-band brightness temperature (soil moisture) with S-band C-bands radiometer data. In this study, passive-only downscaling methodologies are developed and evaluated. Based on the radiative transfer modeling, it was found that the TBs (brightness temperature) between the L-band and S-band exhibit a linear relationship, and there is an exponential relationship between L-band and C-band. We carried out the downscaling results by two methods: (1) downscaling with L-S-C band passive measurements with the same incidence angle from payload IMI; (2) downscaling with L-C band passive measurements with different incidence angle from payloads IMI and PMI. The downscaling method with L-S bands with the same incident angle was first evaluated using SMEX02 data. The RMSE are 2.69 K and 1.52 K for H and V polarization respectively. The downscaling method with L-C bands is developed with different incident angles using SMEX03 data. The RMSE are 2.97 K and 2.68 K for H and V polarization respectively. These results showed that high-resolution L-band brightness temperature and soil moisture products could be generated from the future WCOM passive-only observations.
Angiography of the upper extremity
International Nuclear Information System (INIS)
Janevski, B.K.
1982-01-01
This thesis provides a description of the technical and medical aspects of arteriography of the upper extremity and an extensive analysis of the angiographic anatomy and pathology of 750 selective studies performed in more than 500 patients. A short historical review is provided of angiography as a whole and of arteriography of the hand in particular. The method of percutaneous transfemoral catheterization of the arteries of the upper extremity and particularly the arteries of the hand is considered, discussing the problems the angiographer encounters frequently, describing the angiographic complications which may occur and emphasizing the measures to keep them to a minimum. The use of vasodilators in hand angiography is discussed. A short description of the embryological patterns persisting in the arteries of the arm is included in order to understand the congenital variations of the arteries of the upper extremity. The angiographic patterns and clinical aspects of the most common pathological processes involving the arteries of the upper extremities are presented. Special attention is paid to the correlation between angiography and pathology. (Auth.)
Approach to upper gastrointestinal bleeding
African Journals Online (AJOL)
Upper gastrointestinal haemorrhage has a variety of causes (Table 1) and is the commonest complication of peptic ulceration and portal hypertension. Peptic ulceration in the duo- denum or stomach and oesophageal varices are the conditions most often responsible for patients who have the potential to present.
Horizontal Diplopia Following Upper Blepharoplasty
Directory of Open Access Journals (Sweden)
Tomás Ortiz-Basso
2014-09-01
Full Text Available Diplopia is an infrequent complication after blepharoplasty. Most of the cases are in its vertical form due to trauma of the extraocular muscles. In this article, we present a case of horizontal diplopia following cosmetic upper blepharoplasty; we review the literature on this unexpected complication and offer some recommendations to avoid it.
Microscopic Fermi liquid approach to disordered narrow band systems
International Nuclear Information System (INIS)
Kolley, E.; Kolley, W.
1977-01-01
A Fermi liquid approach to tightly bound electrons in disordered systems is proposed to evaluate two-particle correlation functions L at T=0 deg K. Starting with a random Hubbard model and using a local ladder approximation in the particle-particle channel the irreducible particle-hole vertex is derived, being the kernel of the Bethe-Salpeter equation for L. CPA vertex corrections to the electrical conductivity and, for the ordered case, the correlation-enhanced paramagnetic susceptibility are calculated
Thematic mapper studies band correlation analysis
Ungar, S. G.; Kiang, R.
1976-01-01
Spectral data representative of thematic mapper candidate bands 1 and 3 to 7 were obtained by selecting appropriate combinations of bands from the JSC 24 channel multispectral scanner. Of all the bands assigned, only candidate bands 4 (.74 mu to .80 mu) and 5 (.80 mu to .91 mu) showed consistently high intercorrelation from region to region and time to time. This extremely high correlation persisted when looking at the composite data set in a multitemporal, multilocation domain. The GISS investigations lend positive confirmation to the hypothesis, that TM bands 4 and 5 are redundant.
Dust bands in the asteroid belt
International Nuclear Information System (INIS)
Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.
1989-01-01
This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs
Hamed, Osama H; Simpson, Lashondria; Lomenzo, Emanuele; Kligman, Mark D
2013-11-01
Laparoscopic adjustable gastric banding (LAGB) is a commonly performed bariatric procedure. Device-related morbidity is typically associated with the subcutaneous port or the band itself. Complications related to band tubing are unusual. Small bowel obstruction (SBO) after LAGB is a unique and serious complication; there is the potential of delayed diagnosis and the risk of closed-loop bowel obstruction. SBO secondary to internal hernia caused by band tubing is very rare, with only five cases reported in the literature. In this article, we describe our experience and provide an illustrative video of a case of SBO related to band tubing. We also provide a detailed review of the few previously published case reports. Based on the common features of our case and other published case reports, we hypothesize some risk factors that might lead to this unique morbidity of adjustable gastric band tubing and provide potential solutions to prevent this problem. Tubing-related SBO is a serious complication with the risk of closed-loop bowel obstruction. Urgent operative exploration is required to avoid bowel strangulation. To prevent recurrence we advise functionally shortening the tubing by tucking it to the right upper quadrant above the liver and also provide some omental coverage between the bowel and band tubing if possible.
Table of members of quasi-bands
International Nuclear Information System (INIS)
Sakai, Mitsuo.
1984-04-01
The probable members of the quasi-bands in even-even nuclei for Z between 6 and 100 are listed in this table. The terms quasi-bands have been introduced in the so-called spherical regions as the counter parts of the collective bands in the deformed regions. In the present compilation, the data for deformed nuclei are classified for convenience under the same titles, Quasi-Ground Band, Quasi-Beta Band and Quasi-Gamma Band, as are used for other nuclear regions. The present edition covers the literature through September, 1983. Fifteen newly discovered nuclides are included. The classification of energy level into quasi-bands is made on the basis of the systematic trend in the data over large groups of nuclei. (Kato, T.)
Wintucky, Edwin G.; Simons, Rainee N.
2015-01-01
This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).
Dual-band frequency selective surface with large band separation and stable performance
Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo
2012-05-01
A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.
Exact nonparametric confidence bands for the survivor function.
Matthews, David
2013-10-12
A method to produce exact simultaneous confidence bands for the empirical cumulative distribution function that was first described by Owen, and subsequently corrected by Jager and Wellner, is the starting point for deriving exact nonparametric confidence bands for the survivor function of any positive random variable. We invert a nonparametric likelihood test of uniformity, constructed from the Kaplan-Meier estimator of the survivor function, to obtain simultaneous lower and upper bands for the function of interest with specified global confidence level. The method involves calculating a null distribution and associated critical value for each observed sample configuration. However, Noe recursions and the Van Wijngaarden-Decker-Brent root-finding algorithm provide the necessary tools for efficient computation of these exact bounds. Various aspects of the effect of right censoring on these exact bands are investigated, using as illustrations two observational studies of survival experience among non-Hodgkin's lymphoma patients and a much larger group of subjects with advanced lung cancer enrolled in trials within the North Central Cancer Treatment Group. Monte Carlo simulations confirm the merits of the proposed method of deriving simultaneous interval estimates of the survivor function across the entire range of the observed sample. This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. It was begun while the author was visiting the Department of Statistics, University of Auckland, and completed during a subsequent sojourn at the Medical Research Council Biostatistics Unit in Cambridge. The support of both institutions, in addition to that of NSERC and the University of Waterloo, is greatly appreciated.
NARROW-K-BAND OBSERVATIONS OF THE GJ 1214 SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Colón, Knicole D.; Gaidos, Eric, E-mail: colonk@hawaii.edu [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)
2013-10-10
GJ 1214 is a nearby M dwarf star that hosts a transiting super-Earth-size planet, making this system an excellent target for atmospheric studies. Most studies find that the transmission spectrum of GJ 1214b is flat, which favors either a high mean molecular weight or cloudy/hazy hydrogen (H) rich atmosphere model. Photometry at short wavelengths (<0.7 μm) and in the K band can discriminate the most between these different atmosphere models for GJ 1214b, but current observations do not have sufficiently high precision. We present photometry of seven transits of GJ 1214b through a narrow K-band (2.141 μm) filter with the Wide Field Camera on the 3.8 m United Kingdom Infrared Telescope. Our photometric precision is typically 1.7 × 10{sup –3} (for a single transit), comparable with other ground-based observations of GJ 1214b. We measure a planet-star radius ratio of 0.1158 ± 0.0013, which, along with other studies, also supports a flat transmission spectrum for GJ 1214b. Since this does not exclude a scenario where GJ 1214b has an H-rich envelope with heavy elements that are sequestered below a cloud/haze layer, we compare K-band observations with models of H{sub 2} collision-induced absorption in an atmosphere for a range of temperatures. While we find no evidence for deviation from a flat spectrum (slope s = 0.0016 ± 0.0038), an H{sub 2}-dominated upper atmosphere (<60 mbar) cannot be excluded. More precise observations at <0.7 μm and in the K band, as well as a uniform analysis of all published data, would be useful for establishing more robust limits on atmosphere models for GJ 1214b.
High Selectivity Dual-Band Bandpass Filter with Tunable Lower Passband
Directory of Open Access Journals (Sweden)
Wei-Qiang Pan
2015-01-01
Full Text Available This paper presents a novel method to design dual-band bandpass filters with tunable lower passband and fixed upper passband. It utilizes a trimode resonator with three controllable resonant modes. Discriminating coupling is used to suppress the unwanted mode to avoid the interference. Varactors are utilized to realize tunable responses. The bandwidth of the two bands can be controlled individually. Transmission zeros are generated near the passband edges, resulting in high selectivity. For demonstration, a tunable bandpass filter is implemented. Good agreement between the prediction and measurement validates the proposed method.
Photolysis mechanism of aqueous tyrosine upon excitation of the second absorption band
International Nuclear Information System (INIS)
Shimizu, O.
1984-01-01
The formation mechanism of tyrosinyl radical was studied for aqueous solutions of tyrosine under irradiation at 235 nm which falls into the second absorption band. The work is based upon the analysis of the rate of bityrosine production for steady-state excitation at low intensity. The results indicate that monophotonic O-H bond cleavage of tyrosine, presumably involving the upper excited triplet state, is the initial photoprocess leading to the tyrosinyl radical when tyrosine is excited into the second absorption band. (author)
Photonic band gap structure simulator
Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.
2006-10-03
A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.
Amniotic Constriction Bands: Secondary Deformities and Their Treatments.
Drury, Benjamin T; Rayan, Ghazi M
2018-01-01
The purpose of this study was to report the surgical treatment experience of patients with amniotic constriction bands (ACB) over a 35-year interval and detail consequential limb deformities with emphasis on hands and upper extremities, along with the nature and frequency of their surgical treatment methods. Fifty-one patients were identified; 26 were males and 25 females. The total number of deformities was listed. The total number of operations, individual procedures, and operations plus procedures that were done for each patient and their frequency were recorded. The total number of operations was 117, and total number of procedures was 341. More procedures were performed on the upper extremity (85%) than the lower extremity (15%). Including the primary deformity ACB, 16 different hand deformities secondary to ACB were encountered. Sixteen different surgical methods for the upper extremity were utilized; a primary procedure for ACB and secondary reconstructions for all secondary deformities. Average age at the time of the first procedure was 9.3 months. The most common procedures performed, in order of frequency, were excision of ACB plus Z-plasty, release of partial syndactyly, release of fenestrated syndactyly, full-thickness skin grafts, resection of digital bony overgrowth from amputation stumps, and deepening of first and other digital web spaces. Many hand and upper extremity deformities secondary to ACB are encountered. Children with ACB may require more than one operation including multiple procedures. Numerous surgical methods of reconstruction for these children's secondary deformities are necessary in addition to the customary primary procedure of excision of ACB and Z-plasty.
International Nuclear Information System (INIS)
Kim, J.; Shvydko, Y.
2011-01-01
Momentum-resolved resonant inelastic x-ray scattering (RIXS) spectroscopy has been carried out successfully at the Fe K-edge for the first time. The RIXS spectra of a FeBO 3 single crystal reveal a wealth of information on ∼ 1-10 eV electronic excitations. The IXS signal resonates when the incident photon energy approaches the pre-edge (1s - -3d) and the main-edge (1s - -4p) of the Fe K-edge absorption spectrum. The RIXS spectra measured at the pre-edge and the main-edge show quantitatively different dependences on the incident photon energy, momentum transfer, photon polarization, and temperature. We present a multielectron analysis of the Mott-Hubbard (MH) and charge transfer (CT) excitations, and calculate their energies. Electronic excitations observed in the pre-edge and main-edge RIXS spectra are interpreted as MH and CT excitations, respectively. We propose the electronic structure around the chemical potential in FeBO 3 based on the experimental data.
Dirr, H W; Schabort, J C; Weitz, C
1986-02-01
Cucurbitacin delta 23-reductase from Cucurbita maxima var. Green Hubbard fruit displays an apparent Mr of 32,000, a Stokes radius of 263 nm and a diffusion coefficient of 8.93 X 10(-7) cm2 X s-1. The enzyme appears to possess a homogeneous dimeric quaternary structure with a subunit Mr of 15,000. Two tryptophan and fourteen tyrosine residues per dimer were found. Emission spectral properties of the enzyme and fluorescence quenching by iodide indicate the tryptophan residues to be buried within the protein molecule. In the pH range 5-7, where no conformational changes were detected, protonation of a sterically related ionizable group with a pK of approx. 6.0 markedly influenced the fluorescence of the tryptophan residues. Protein fluorescence quenching was employed to determine the dissociation constants for binding of NADPH (Kd 17 microM), NADP+ (Kd 30 microM) and elaterinide (Kd 227 microM). Fluorescence energy transfer between the tryptophan residues and enzyme-bound NADPH was observed.
International Nuclear Information System (INIS)
Bissbort, Ulf; Hofstetter, Walter; Thomale, Ronny
2010-01-01
We discuss the stochastic mean-field theory (SMFT) method, which is a new approach for describing disordered Bose systems in the thermodynamic limit including localization and dimensional effects. We explicate the method in detail and apply it to the disordered Bose-Hubbard model at finite temperature, with on-site box disorder, as well as experimentally relevant unbounded speckle disorder. We find that disorder-induced condensation and re-entrant behavior at constant filling are only possible at low temperatures, beyond the reach of current experiments [M. Pasienski, D. McKay, M. White, and B. DeMarco, e-print arXiv:0908.1182]. Including off-diagonal hopping disorder as well, we investigate its effect on the phase diagram in addition to pure on-site disorder. To make connection to present experiments on a quantitative level, we also combine SMFT with an LDA approach and obtain the condensate fraction in the presence of an external trapping potential.
Schüler, M.; van Loon, E. G. C. P.; Katsnelson, M. I.; Wehling, T. O.
2018-04-01
While the Hubbard model is the standard model to study Mott metal-insulator transitions, it is still unclear to what extent it can describe metal-insulator transitions in real solids, where nonlocal Coulomb interactions are always present. By using a variational principle, we clarify this issue for short- and long-range nonlocal Coulomb interactions for half-filled systems on bipartite lattices. We find that repulsive nonlocal interactions generally stabilize the Fermi-liquid regime. The metal-insulator phase boundary is shifted to larger interaction strengths to leading order linearly with nonlocal interactions. Importantly, nonlocal interactions can raise the order of the metal-insulator transition. We present a detailed analysis of how the dimension and geometry of the lattice as well as the temperature determine the critical nonlocal interaction leading to a first-order transition: for systems in more than two dimensions with nonzero density of states at the Fermi energy the critical nonlocal interaction is arbitrarily small; otherwise, it is finite.
International Nuclear Information System (INIS)
Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.
1986-01-01
This patent describes a broad-band beam buncher. This beam buncher consists of: a housing adapted to be eacuated, an electron gun in the housing for producing a beam of electrons, buncher means in the housing forming a buncher cavity which has an entrance opening for receiving the electron beam and an exit opening through which the electron beam passes out of the buncher cavity, a drift tube electrode in the buncher cavity and disposed between the entrance opening and the exit opening with first and second gaps between the drift tube electrode and the entrance and exit openings, the drift tube electrode which has a first drift space through which the electron beam passes in traveling between the entrance and exit openings, modulating means for supplying an ultrahigh frequeny modulating signal to the drift tube electrode for producing velocity modulation of the electrons in the electron beam as the electrons pass through the buncher cavity and the drift tube electrode between the entrance opening and the exit opening, drift space means in the housing forming a second drift space for receiving the velocity modulated electron beam from the exit opening, the velocity modulated electron beam being bunched as it passes along the second drift space, the drift space means has a discharge opening through which the electron beam is discharged from the second drift space after being bunched therein, the modulating means containing a signal source for producing an ultrahigh frequency signal, a transmission line connected between the signal source and the drift tube electrode, and terminating means connected to the drift tube electrode for terminating the transmission line in approximately its characteristic impedance to afford a broad response band with minimum 6 variations therein
Banabic, D.; Vos, M.; Paraianu, L.; Jurco, P.
2007-05-01
The experimental research on the formability of metal sheets has shown that there is a significant dispersion of the limit strains in an area delimited by two curves: a lower curve (LFLC) and an upper one (UFLC). The region between the two curves defines the so-called Forming Limit Band (FLB). So far, this forming band has only been determined experimentally. In this paper the authors suggested a method to predict the Forming Limit Band. The proposed method is illustrated on the AA6111-T43 aluminium alloy.
International Nuclear Information System (INIS)
Banabic, D.; Paraianu, L.; Vos, M.; Jurco, P.
2007-01-01
The experimental research on the formability of metal sheets has shown that there is a significant dispersion of the limit strains in an area delimited by two curves: a lower curve (LFLC) and an upper one (UFLC). The region between the two curves defines the so-called Forming Limit Band (FLB). So far, this forming band has only been determined experimentally. In this paper the authors suggested a method to predict the Forming Limit Band. The proposed method is illustrated on the AA6111-T43 aluminium alloy
Band 3 in aging and neurological disease.
Kay, M M
1991-01-01
Senescent cell antigen appears on old cells and marks them for death by initiating the binding of IgG autoantibody and subsequent removal by phagocytes in mammals and other vertebrates. We have created a synthetic aging antigen that blocks binding of IgG to senescent cells in vitro. Synthetic senescent cell antigen might be effective in preventing cellular destruction in vivo in certain diseases, and can be used to manipulate cellular life span in situ. Senescent cell antigen is generated by the modification of an important structural and transport membrane molecule, protein band 3. Band 3 is present in cellular, nuclear, Golgi, and mitochondrial membranes as well as in cell membranes. Band 3 proteins in nucleated cells participate in cell surface patching and capping. Band 3 maintains acid-base balance by mediating the exchange of anions (e.g., chloride, bicarbonate), and is the binding site for glycolytic enzymes. It is responsible for CO2 exchange in all tissues and organs. Thus, it is the most heavily used anion transport system in the body. Band 3 is a major transmembrane structural protein which attaches the plasma membrane to the internal cell cytoskeleton by binding to band 2.1 (ankyrin). Oxidation generates senescent cell antigen in situ. Band 3 is present in the central nervous system, and differences have been described in band 3 between young and aging brain tissue. One autosomal recessive neurological disease, choreoacanthocytosis, is associated with band 3 abnormalities. The 150 residues of the carboxyl terminus segment of band 3 appear to be altered. In brains from Alzheimer's disease patients, antibodies to aged band 3 label the amyloid core of classical plaques and the microglial cells located in the middle of the plaque in tissue sections, and an abnormal band 3 in immunoblots. Band 3 protein(s) in mammalian brain performs the same functions as that of erythroid band 3. These functions is anion transport, ankyrin binding, and generation of
Giarola, Diana; Capuani, Domenico; Bigoni, Davide
2018-03-01
A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.
International Nuclear Information System (INIS)
Dosedla, H.C.
1997-01-01
When in 1980 the Upper Danube Nature Park was founded as one of 65 nature sanctuaries in Germany there was great diversity of opinions concerning its intended character. The protected region consisting of a geologically outstanding landscape within central Europe is covering the first 80 km the upper Danube where the young river shortly after it's source in the Black Forest is breaking through the narrow canyons of the Jurassic rock plateau of the so-called Suebian Alps and also locates the subterranean passage where the stream is submerging from the surface for nearly ten miles. Since the purpose of nature preservation according to German las is closely combined with the rather contradicting aim of offering an attractive recreation area thus facing the immense impacts of modern mass tourism there are numerous problems which in the course of years have resulted in an intricate patterns of subtle management methods coping with the growing awareness of the ecological balance. (author)
Su, Zhan
2017-01-01
This study uses an observationally constrained and dynamically consistent ocean and sea ice state estimate. The author presents a remarkable agreement between the location of the edge of Antarctic maximum sea ice extent, reached in September, and the narrow transition band for the upper ocean (0–100 m depths) stratification, as early as April to June. To the south of this edge, the upper ocean has high stratification, which forbids convective fluxes to cross through; consequently, the ocean h...
International Nuclear Information System (INIS)
Helene, O.A.M.
1982-08-01
The determination of the upper limit of peak area in a multi-channel spectra, with a known significance level is discussed. This problem is specially important when the peak area is masked by the background statistical fluctuations. The problem is exactly solved and, thus, the results are valid in experiments with small number of events. The results are submitted to a Monte Carlo test and applied to the 92 Nb beta decay. (Author) [pt
Roy, Bitan; Foster, Matthew S.
2018-01-01
We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the
Directory of Open Access Journals (Sweden)
Bitan Roy
2018-03-01
Full Text Available We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (E_{k}=±sqrt[v^{2}k_{x}^{2}+b^{2}k_{y}^{2n}] with n=2, which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ(E∼|E|^{1/n}], this anisotropic semimetal (ASM is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model or (ii get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ε=1/n, augmented with a 1/n expansion (parametrically suppressing quantum fluctuations in the higher dimension by perturbing away from the one-dimensional limit, realized by setting ε=0 and n→∞. We identify charge density wave (CDW, antiferromagnet (AFM, and singlet s-wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (∼ε takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2-symmetric quantum critical
Technology improves upper extremity rehabilitation.
Kowalczewski, Jan; Prochazka, Arthur
2011-01-01
Stroke survivors with hemiparesis and spinal cord injury (SCI) survivors with tetraplegia find it difficult or impossible to perform many activities of daily life. There is growing evidence that intensive exercise therapy, especially when supplemented with functional electrical stimulation (FES), can improve upper extremity function, but delivering the treatment can be costly, particularly after recipients leave rehabilitation facilities. Recently, there has been a growing level of interest among researchers and healthcare policymakers to deliver upper extremity treatments to people in their homes using in-home teletherapy (IHT). The few studies that have been carried out so far have encountered a variety of logistical and technical problems, not least the difficulty of conducting properly controlled and blinded protocols that satisfy the requirements of high-level evidence-based research. In most cases, the equipment and communications technology were not designed for individuals with upper extremity disability. It is clear that exercise therapy combined with interventions such as FES, supervised over the Internet, will soon be adopted worldwide in one form or another. Therefore it is timely that researchers, clinicians, and healthcare planners interested in assessing IHT be aware of the pros and cons of the new technology and the factors involved in designing appropriate studies of it. It is crucial to understand the technical barriers, the role of telesupervisors, the motor improvements that participants can reasonably expect and the process of optimizing IHT-exercise therapy protocols to maximize the benefits of the emerging technology. Copyright © 2011 Elsevier B.V. All rights reserved.
Effects of replacing free weights with elastic band resistance in squats on trunk muscle activation.
Saeterbakken, Atle H; Andersen, Vidar; Kolnes, Maria K; Fimland, Marius S
2014-11-01
The purpose of this study was to assess the effects of adding elastic bands to free-weight squats on the neuromuscular activation of core muscles. Twenty-five resistance trained women with 4.6 ± 2.1 years of resistance training experience participated in the study. In randomized order, the participants performed 6 repetition maximum in free-weight squats, with and without elastic bands (i.e., matched relative intensity between exercises). During free-weight squats with elastic bands, some of the free weights were replaced with 2 elastic bands attached to the lowest part of the squat rack. Surface electromyography (EMG) activity was measured from the erector spinae, external oblique, and rectus abdominis, whereas a linear encoder measured the vertical displacement. The EMG activities were compared between the 2 lifting modalities for the whole repetition and separately for the eccentric, concentric, and upper and lower eccentric and concentric phases. In the upper (greatest stretch of the elastic band), middle, and lower positions in squats with elastic bands, the resistance values were approximately 117, 105, and 93% of the free weight-only trial. Similar EMG activities were observed for the 2 lifting modalities for the erector spinae (p = 0.112-0.782), external oblique (p = 0.225-0.977), and rectus abdominis (p = 0.315-0.729) in all analyzed phases. In conclusion, there were no effects on the muscle activity of trunk muscles of substituting some resistance from free weights with elastic bands in the free-weight squat.
Improved Mars Upper Atmosphere Climatology
Bougher, S. W.
2004-01-01
The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the
Intruder bands in Z = 51 nuclei
International Nuclear Information System (INIS)
LaFosse, D.R.
1993-01-01
Recent investigations of h 11/2 proton intruder bands in odd 51 Sb nuclei are reported. In addition to experiments performed at SUNY Stony Brook and Chalk River, data from Early Implementation of GAMMASPHERE (analysis in progress) are presented. In particular, the nuclei 109 Sb and 111 Sb are discussed. Rotational bands based on the πh 11/2 orbital coupled to a 2p2h deformed state of the 50 Sn core have been observed. These bands have been observed to high spin, and in the case of 109 Sb to a rotational frequency of 1.4 MeV, the highest frequency observed in a heavy nucleus. The dynamic moments of inertia in these bands decrease slowly with frequency, suggesting a gradual band termination. The systematics of such bands in 109-119 Sb will be discussed
Evaluating Radiative Closure in the Middle-to-Upper Troposhere
Energy Technology Data Exchange (ETDEWEB)
Tobin, David C. [Univ. of Wisconsin, Madison, WI (United States); Turner, David D. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States), Norman, OK (United States); Knuteson, Robert O. [Univ. of Wisconsin, Madison, WI (United States)
2013-01-02
This project had two general objectives. The first is the characterization and improvement of the radiative transfer parameterization in strongly absorbing water vapor bands, as these strongly absorbing bands dictate the clear sky radiative heating rate. The second is the characterization and improvement of the radiative transfer in cirrus clouds, with emphasis on ensuring that the parameterization of the radiative transfer is consistent and accurate across the spectrum. Both of these objectives are important for understanding the radiative processes in the mid-to-upper troposphere. The research on this project primarily involved analysis of data from the First and Second Radiative Heating in Underexplored Bands Campaigns, RHUBC-I and II. This included a climate model sensitivity study using results from RHUBC-I. The RHUBC experiments are ARM-funded activities that directly address the objectives of this research project. A secondary effort was also conducted that investigated the trends in the long-term (~14 year) dataset collected by the Atmospheric Emitted Radiance Interferometer (AERI) at the ARM Southern Great Plains site. This work, which was primarily done by a post-doc at the University of Wisconsin, Madison under Dr. Turner's direction, uses the only NIST-traceable instrument at the ARM site that has a well-documented calibration and uncertainty performance to investigate long-term trends in the downwelling longwave radiance above this site.
Amniotic band syndrome: A clinical brief
Directory of Open Access Journals (Sweden)
Dasaradha Ramireddy Malireddy
2017-01-01
Full Text Available Amniotic band syndrome (ABS results from bands of amnion entangling fetal parts. They may manifest as constriction rings or complex congenital anomalies resulting in stillbirth. Karyotyping is important for exclusion of inherited disorders and proper counseling. Two case reports one stillbirth and the other with constriction ring of fingers and mild hydronephrosis are presented. The aim of this paper is to make awareness and stress the need for doing thorough work-up in all cases of constriction bands.
Fade Mitigation Techniques at Ka-Band
Dissanayake, Asoka (Editor)
1996-01-01
Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.
Computational Design of Flat-Band Material
Hase, I.; Yanagisawa, T.; Kawashima, K.
2018-02-01
Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.
Experimental study of the πh11/2 band in 113 Sb
Indian Academy of Sciences (India)
States only up to 59/2− were observed in the = 2 band. Mean lifetimes for the ﬁve states (from 4460 to 7998 keV) were measured for the ﬁrst time using Doppler shift attenuation method. An upper limit of the lifetime (0.14 ps) was estimated for the 9061 keV, 47/2− state. The (2) values, derived from the present lifetime ...
Enhanced population of side band of {sup 155}Gd in heavy-ion Coulomb excitation
Energy Technology Data Exchange (ETDEWEB)
Oshima, Masumi; Hayakawa, Takehito; Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others
1998-03-01
In the Coulomb excitation of {sup 155}Gd with heavy projectiles, {sup 32}S, {sup 58}Ni and {sup 90}Zr, unexpectedly large enhancement of a positive-parity side band has been observed. This enhancement could not be reproduced by a Coulomb-excitation calculation taking into account the recommended upper limits of E1 or E3 transitions, which are compiled in the whole mass region, and is proportional to the electric field accomplished in the Coulomb-scattering process. (author)
Reward banding to determine reporting rate of recovered mourning dove bands
Tomlinson, R.E.
1968-01-01
Reward bands placed on the other leg of certain regularly banded immature mourning doves (Zenaidura macroura) were used to develop information on reporting rates of recovered dove bands. Reports from 15 widely separated sections of the United States showed considerable variation in recovery rate of doves both with and without reward bands. The overall percentages of banded doves that were reported as recovered were 9.69% for those with reward bands and 3.83% for controls. The bandreporting rate for states influenced by publicity was 66%; that for states not influenced was 32%.
Dual Band Metamaterial Antenna For LTE/Bluetooth/WiMAX System.
Hasan, Md Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2018-01-19
A compact metamaterial inspired antenna operate at LTE, Bluetooth and WiMAX frequency band is introduced in this paper. For the lower band, the design utilizes an outer square metallic strip forcing the patch to radiate as an equivalent magnetic-current loop. For the upper band, another magnetic current loop is created by adding metamaterial structure near the feed line on the patch. The metamaterial inspired antenna dimension of 42 × 32 mm 2 compatible to wireless devices. Finite integration technique based CST Microwave Studio simulator has been used to design and numerical investigation as well as lumped circuit model of the metamaterial antenna is explained with proper mathematical derivation. The achieved measured dual band operation of the conventional antenna are sequentially, 0.561~0.578 GHz, 2.346~2.906 GHz, and 2.91~3.49 GHz, whereas the metamaterial inspired antenna shows dual-band operation from 0.60~0.64 GHz, 2.67~3.40 GHz and 3.61~3.67 GHz, respectively. Therefore, the metamaterial antenna is applicable for LTE and WiMAX applications. Besides, the measured metamaterial antenna gains of 0.15~3.81 dBi and 3.47~3.75 dBi, respectively for the frequency band of 2.67~3.40 GHz and 3.61~3.67 GHz.
Directory of Open Access Journals (Sweden)
M. Samsuzzaman
2014-01-01
Full Text Available Circularly polarized (CP dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz for lower band and 40 MHz (3.29 GHz to 3.33 GHz for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.
Dual band monopole antenna for WLAN 2.4/5.2/5.8 with truncated ground
Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.
2018-04-01
A dual-band mono-pole antenna is proposed for Wireless LAN applications. The WLAN band is obtained by cutting a rectangular ring and a circular slot in the radiating patch. The overall dimension of antenna is 17×16.5×0.8 mmł. The frequency bands obtained are 2.38-2.9 GHz and 4.7-6.1 GHz with ≤ - 10 dB return loss which covers WLAN 2.4/5.2/5.8 GHz bands. The behavior of the antenna is analyzed in terms of radiation pattern, peak realized gain, radiation efficiency and surface current density. It has dipole like radiation pattern with gain of 2.33 - 4.31 dBi for lower frequency band and 4.29 - 5.16 dBi for upper frequency band with radiation efficiency of 95-98% and 93-96% respectively. The parametric analysis is carried out to understand the consequence of the various shape parameters and to get an optimum design. The simulation and measurement gave the results having close agreement.
Spin-dependent electron-phonon coupling in the valence band of single-layer WS_{2}
DEFF Research Database (Denmark)
Hinsche, Nicki Frank; Ngankeu, Arlette S.; Guilloy, Kevin
2017-01-01
The absence of inversion symmetry leads to a strong spin-orbit splitting of the upper valence band of semiconducting single-layer transition-metal dichalchogenides such as MoS2 or WS2. This permits a direct comparison of the electron-phonon coupling strength in states that only differ by their spin....... Here, the electron-phonon coupling in the valence band maximum of single-layer WS2 is studied by first-principles calculations and angle-resolved photoemission. The coupling strength is found to be drastically different for the two spin-split branches, with calculated values of λK=0.0021 and 0.......40 for the upper and lower spin-split valence band of the freestanding layer, respectively. This difference is somewhat reduced when including scattering processes involving the Au(111) substrate present in the experiment but it remains significant, in good agreement with the experimental results....
Spontaneous emission spectrum from a V-type three-level atom in a double-band photonic crystal
International Nuclear Information System (INIS)
Zhang Han Zhuang; Tang Sing Hai; Dong Po; He Jun
2002-01-01
The spontaneous emission spectrum from a V-type three-level atom embedded in a double-band photonic band gap (PBG) material has been investigated for the first time. Most interestingly it is shown that there is not only a black dark line, but also a narrow spontaneous line near the edges of the double photonic band. The positions of the dark line and narrow spontaneous line are near the transition from an empty upper level to a lower level. The lines stem from destructive and constructive quantum interferences, which induce population transfer between the two upper levels, in the PBG reservoirs. The effects of system parameters on the interference have been discussed in detail
Solid State KA-Band, Solid State W-Band and TWT Amplifiers, Phase I
National Aeronautics and Space Administration — Phase I of the proposal describes plans to develop a state of the art transmitter for the W-Band and KA -Band Cloud Radar system. Our focus will be concentrated in...
Mapping Greenland's Firn Aquifer using L-band Microwave Radiometry
Miller, J.; Bringer, A.; Jezek, K. C.; Johnson, J. T.; Scambos, T. A.; Long, D. G.
2016-12-01
Greenland's recently discovered firn aquifer is one of the most interesting, yet still mysterious, components of the ice sheet system. Many open questions remain regarding timescales of refreezing and/or englacial drainage of liquid meltwater, and the connections of firn aquifers to the subglacial hydrological system. If liquid meltwater production at the surface of the Greenland ice sheet continues to increase, subsequent increases in the volume of mobile liquid meltwater retained within Greenland's firn aquifer may increase the possibility of crevasse-deepening via hydrofracture. Hydrofracture is an important component of supraglacial lake drainage leading to at least temporary accelerated flow velocities and ice sheet mass balance changes. Firn aquifers may also support hydrofracture-induced drainage and thus are potentially capable of significantly influencing ice sheet mass balance and sea level rise. Spaceborne L-band microwave radiometers provide an innovative tool for ice-sheet wide mapping of the spatiotemporal variability of Greenland's firn aquifer. Both refreezing and englacial drainage may be observable given the sensitivity of the microwave response to the upper surface of liquid meltwater retained within snow and firn pore space as well as the ability of L band instruments to probe the ice sheet from the surface to the firn-ice transition at pore close-off depth. Here we combine L-band (1.4 GHz) brightness temperature observations from multiple sources to demonstrate the potential of mapping firn aquifers on ice sheets using L-band microwave radiometry. Data sources include the interferometric MIRAS instrument aboard ESA's Soil Moisture and Ocean Salinity (SMOS) satellite mission and the radiometer aboard NASA's Soil Moisture Active Passive (SMAP) satellite mission. We will also present mulit-frequency L-band brightness temperature data (0.5-2 GHz) that will be collected over several firn aquifer areas on the Greenland ice sheet by the Ohio State
Compact Dual-Band Bandpass Filter Using Stubs Loaded Ring Resonator
Xu, Jin
2016-01-01
This paper presents a novel second-order dual-band bandpass filter (BPF) by using proposed stubs loaded ring resonator. The resonant behavior of proposed stubs loaded ring resonator is analyzed by even-/odd-mode method, which shows its multiple-mode resonant characteristic. Parameters sweep is done so as to give the design guidelines. As an example, a second-order dual-band BPF operating at 1.8/5.2 GHz for GSM and WLAN applications is designed, fabricated and measured. The fabricated filter has a very compact size of 0.05λg×0.15λg. Measured results also show that the proposed dual-band BPF has a better than 20 dB rejection upper stopband from 5.47 GHz to 12.56 GHz. Good agreement is shown between the simulated and measured results.
Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.
Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N
2014-01-01
A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.
Multiple band structure in 156Er
International Nuclear Information System (INIS)
Sunyar, A.W.; Der Mateosian, E.; Kistner, O.C.; Johnson, A.; Lumpkin, A.H.; Thieberger, P.
1976-01-01
The 142 Nd( 18 O,4n) 156 Er reaction at 90-95 MeV was used to study 156 Er high-spin states to spin 24. In addition to the background ground-state band, two well developed off-spin side bands, one of each parity, were observed. (Auth.)
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Band plan. 90.1213 Section 90.1213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND... § 90.1213 Band plan. The following channel center frequencies are permitted to be aggregated for...
Signature effects in 2-qp rotational bands
International Nuclear Information System (INIS)
Jain, A.K.; Goel, A.
1992-01-01
The authors briefly review the progress in understanding the 2-qp rotational bands in odd-odd nuclei. Signature effects and the phenomenon of signature inversion are discussed. The Coriolis coupling appears to have all the ingredients to explain the inversion. Some recent work on signature dependence in 2-qp bands of even-even nuclei is also discussed; interesting features are pointed out
Does the chromatic Mach bands effect exist?
Tsofe, Avital; Spitzer, Hedva; Einav, Shmuel
2009-06-30
The achromatic Mach bands effect is a well-known visual illusion, discovered over a hundred years ago. This effect has been investigated thoroughly, mainly for its brightness aspect. The existence of Chromatic Mach bands, however, has been disputed. In recent years it has been reported that Chromatic Mach bands are not perceived under controlled iso-luminance conditions. However, here we show that a variety of Chromatic Mach bands, consisting of chromatic and achromatic regions, separated by a saturation ramp, can be clearly perceived under iso-luminance and iso-brightness conditions. In this study, observers' eye movements were recorded under iso-brightness conditions. Several observers were tested for their ability to perceive the Chromatic Mach bands effect and its magnitude, across different cardinal and non-cardinal Chromatic Mach bands stimuli. A computational model of color adaptation, which predicted color induction and color constancy, successfully predicts this variation of Chromatic Mach bands. This has been tested by measuring the distance of the data points from the "achromatic point" and by calculating the shift of the data points from predicted complementary lines. The results suggest that the Chromatic Mach bands effect is a specific chromatic induction effect.
Low band gap polymers for organic photovoltaics
DEFF Research Database (Denmark)
Bundgaard, Eva; Krebs, Frederik C
2007-01-01
Low band gap polymer materials and their application in organic photovoltaics (OPV) are reviewed. We detail the synthetic approaches to low band gap polymer materials starting from the early methodologies employing quinoid homopolymer structures to the current state of the art that relies...
Energy Technology Data Exchange (ETDEWEB)
Hasiza, M L; Singh, K; Sahota, H S [Punjabi Univ., Patiala (India). Dept. of Physics
1982-11-01
The intensities of the gamma transitions in /sup 160/Dy have been measured precisely by a 45 cc Ge(Li) detector. Unequal quadrupole moments for the ground and gamma vibrational bands have been proposed in order to remove the inconsistencies in the values of band mixing parameter Z sub(gamma) for this doubly even deformed nucleus of /sup 160/Dy.
Convex Banding of the Covariance Matrix.
Bien, Jacob; Bunea, Florentina; Xiao, Luo
2016-01-01
We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.
Study of intruder band in {sup 112}Sn
Energy Technology Data Exchange (ETDEWEB)
Ganguly, S. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Banerjee, P. [Saha Institute of Nuclear Physics, Kolkata 700064 (India)]. E-mail: polash.banerjee@saha.ac.in; Ray, I. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, R. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Raut, R. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Saha-Sarkar, M. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Goswami, A. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Mukhopadhyay, S. [UGC-DAE-CSR, Kolkata 700098 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Mukherjee, G. [Variable Energy Cyclotron Centre, Kolkata 700064 (India); Basu, S.K. [Variable Energy Cyclotron Centre, Kolkata 700064 (India)
2007-06-01
Excited states of the positive-parity intruder band in {sup 112}Sn, populated in the {sup 100}Mo({sup 20}Ne,{alpha}4n) reaction at a beam energy of 136 MeV, have been studied. The band has been observed up to 11570.0 keV with spin (24{sup +}). Mean lifetimes have been measured for six states up to the 22{sup +}, 10335.1 keV level and an upper limit of the lifetime has been estimated for the 11570.0 keV (24{sup +}) state. The B(E2) values, derived from the present lifetime results, correspond to a moderate quadrupole deformation of {beta}{sub 2}{approx}0.18 for states with spin J{sup {pi}}>=12{sup +}, and the decrease in B(E2) for the 14{sup +}->12{sup +} transition is consistent with a {nu}(h{sub 11/2}){sup 2} alignment at {omega}{approx}0.35 MeV, predicted by a cranked shell-model calculation. Total Routhian surface calculations predict a triaxial shape following the alignment.
Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor
Lan, Yann Wen
2016-09-05
The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.
Coherent control of spontaneous emission near a photonic band edge
International Nuclear Information System (INIS)
Woldeyohannes, Mesfin; John, Sajeev
2003-01-01
We demonstrate the coherent control of spontaneous emission for a three-level atom located within a photonic band gap (PBG) material, with one resonant frequency near the edge of the PBG. Spontaneous emission from the three-level atom can be totally suppressed or strongly enhanced depending on the relative phase between the steady-state control laser coupling the two upper levels and the pump laser pulse used to create an excited state of the atom in the form of a coherent superposition of the two upper levels. Unlike the free-space case, the steady-state inversion of the atomic system is strongly dependent on the externally prescribed initial conditions. This non-zero steady-state population is achieved by virtue of the localization of light in the vicinity of the emitting atom. It is robust to decoherence effects provided that the Rabi frequency of the control laser field exceeds the rate of dephasing interactions. As a result, such a system may be relevant for a single-atom, phase-sensitive optical memory device on the atomic scale. The protected electric dipole within the PBG provides a basis for a qubit to encode information for quantum computations. A detailed literature survey on the nature, fabrication and applications of PBG materials is presented to provide context for this research. (phd tutorial)
Composites for Exploration Upper Stage
Fikes, J. C.; Jackson, J. R.; Richardson, S. W.; Thomas, A. D.; Mann, T. O.; Miller, S. G.
2016-01-01
The Composites for Exploration Upper Stage (CEUS) was a 3-year, level III project within the Technology Demonstration Missions program of the NASA Space Technology Mission Directorate. Studies have shown that composites provide important programmatic enhancements, including reduced weight to increase capability and accelerated expansion of exploration and science mission objectives. The CEUS project was focused on technologies that best advanced innovation, infusion, and broad applications for the inclusion of composites on future large human-rated launch vehicles and spacecraft. The benefits included near- and far-term opportunities for infusion (NASA, industry/commercial, Department of Defense), demonstrated critical technologies and technically implementable evolvable innovations, and sustained Agency experience. The initial scope of the project was to advance technologies for large composite structures applicable to the Space Launch System (SLS) Exploration Upper Stage (EUS) by focusing on the affordability and technical performance of the EUS forward and aft skirts. The project was tasked to develop and demonstrate critical composite technologies with a focus on full-scale materials, design, manufacturing, and test using NASA in-house capabilities. This would have demonstrated a major advancement in confidence and matured the large-scale composite technology to a Technology Readiness Level 6. This project would, therefore, have bridged the gap for providing composite application to SLS upgrades, enabling future exploration missions.
Six upper incisors: what's next?
Berneburg, Mirjam; Meller, Christian
2016-01-01
This case report describes our therapeutic approach taken in a girl with eruption disturbance of the upper anterior teeth. Two supernumerary teeth were involved, which required a combination of orthodontic and surgical treatment. The initial situation in the upper anterior segment was characterized by two supernumerary mesial incisors, ectopic eruption of the distally located lateral incisors, and crowded tooth buds in the canine areas. Key decisions had to be made as to whether any teeth needed to be extracted and, if so, regarding the timing and sites of extraction. Removing teeth too early would have preempted a complete assessment of tooth quality, whereas late extraction would have carried a risk of eruption disturbance. Once the distal lateral incisors had erupted, the supernumerary mesial incisors were extracted and the central incisors (initially located in between) mesialized with a bracket appliance. Following space closure and mesialization of the lateral incisors, a functional appliance was used. Tooth 13 was erupting, while tooth 23 was displaced and subsequently aligned as part of the final bracket treatment. To successfully treat eruption disturbances, a careful diagnostic workup is essential, including informative radiographs, personalized treatment planning, and correct decision-making as to whether teeth need to be extracted and regarding the timing and sites of extraction. Finally, the eruption of the canines should be monitored.
Energy correlations for mixed rotational bands
International Nuclear Information System (INIS)
Doessing, T.
1985-01-01
A schematic model for the mixing of rotational bands above the yrast line in well deformed nuclei is considered. Many-particle configurations of a rotating mean field form basis bands, and these are subsequently mixed due to a two body residual interaction. The energy interval over which a basis band is spread out increases with increasing excitation energy above the yrast line. Conversely, the B(E2) matrix element for rotational decay out of one of the mixed band states is spread over an interval which is predicted to become more narrow with increasing excitation energy. Finally, the implication of band mixing for γ-ray energy correlations is briefly discussed. (orig.)
Fluctuation diamagnetism in two-band superconductors
Adachi, Kyosuke; Ikeda, Ryusuke
2016-04-01
Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.
Design of a side-band-separating heterodyne mixer for band 9 of ALMA
Baryshev, AM; Kooi, J; Mena, FR; Lodewijk, CRJ; Wild, W
2005-01-01
A side-band-separating (SBS) heterodyne mixer has been designed for the Atacama Large Millimeter Array (ALMA) 602-720 GHz band, as it will present a great improvement over the current double-side-band configuration under development at the moment. Here we present design details and the results of
[PELVIS/SACRAL syndrome with livedoid haemangioma and amniotic band].
Bourrat, E; Lemarchand-Venencie, F; Jacquemont, M-L; El Ghoneimi, A; Wassef, M; Leger, J; Morel, P
2008-12-01
PELVIS or SACRAL syndrome denotes the association of local haemangioma and malformation in the pelvic region. In this paper, we report a case noteworthy on account of the initially livedoid appearance of the haemangioma as well as associated amniotic banding of an upper limb. A newborn male infant underwent left colostomy on the day of birth due to anal imperforation and anomalies of the external genital organs with sexual ambiguity. Examination of the skin and appendages revealed poorly delineated hypopigmentation in the sacrolumbar region and a fibrous groove around the right arm characteristic of amniotic band syndrome. Sacrolumbar and pelvic MRI scans revealed deviation towards the left of the last three sacral vertebrae with no medullary anomalies. Retrograde cystography showed a recto-uretral fistula. Progression of the infant's condition was marked by the appearance during the first month of a flat, violaceous, angiomatous, livedoid lesion in the middle of the buttocks and the perineum and a linear lesion on the rear aspect of the right lower limb. The skin biopsy of this lesion revealed a single capillary lobule at the dermal-hypodermal junction of non-specific appearance but with marked Glut1 expression by endothelial cells highly evocative of infantile haemangioma. Segmented haemangiomas are commonly associated with extracutaneous abnormalities. By analogy with PHACE syndrome, defined as association of segmented facial haemangioma with cerebral, ocular and cardio-aortic abnormalities, PELVIS/SACRAL syndrome denotes the association of segmented haemangioma of the loins (sacrolumbar region, buttocks or perineum=napkin haemangioma) with spinal dysraphia affecting the sacrolumbar spine, the terminal medullary cone, the genitourinary organs and the anal region to different degrees. Diagnosis of haemangioma associated with PELVIS/SACRAL syndrome may be delayed or complicated due to the macular, telangiectasic or livedoid appearance commonly seen. To our
Band-type microelectrodes for amperometric immunoassays
Energy Technology Data Exchange (ETDEWEB)
Lee, Ga-Yeon; Chang, Young Wook; Ko, Hyuk [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Kang, Min-Jung [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of); Pyun, Jae-Chul, E-mail: jcpyun@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)
2016-07-20
A band-type microelectrode was made using a parylene-N film as a passivation layer. A circular-type, mm-scale electrode with the same diameter as the band-type microelectrode was also made with an electrode area that was 5000 times larger than the band-type microelectrode. By comparing the amperometric signals of 3,5,3′,5′-tetramethylbenzidine (TMB) samples at different optical density (OD) values, the band-type microelectrode was determined to be 9 times more sensitive than the circular-type electrode. The properties of the circular-type and the band-type electrodes (e.g., the shape of their cyclic voltammograms, the type of diffusion layer used, and the diffusion layer thickness per unit electrode area) were characterized according to their electrode area using the COMSOL Multiphysics software. From these simulations, the band-type electrode was estimated to have the conventional microelectrode properties, even when the electrode area was 100 times larger than a conventional circular-type electrode. These results show that both the geometry and the area of an electrode can influence the properties of the electrode. Finally, amperometric analysis based on a band-type electrode was applied to commercial ELISA kits to analyze human hepatitis B surface antigen (hHBsAg) and human immunodeficiency virus (HIV) antibodies. - Highlights: • A band-type microelectrode was made using a parylene-N film as a passivation layer. • The band-type microelectrode was 14-times more sensitive than circular-type electrode. • The influence of geometry on microelectrode properties was simulated using COMSOL. • The band-type electrode was applied to ELISA kits for hHBsAg and hHIV-antibodies.
CALET UPPER LIMITS ON X-RAY AND GAMMA-RAY COUNTERPARTS OF GW151226
Energy Technology Data Exchange (ETDEWEB)
Adriani, O.; Bongi, M.; Castellini, G. [University of Florence, Via Sansone, 1, I-50019 Sesto, Fiorentino (Italy); Akaike, Y. [Universities Space Research Association, 7178 Columbia Gateway Drive, Columbia, MD 21046 (United States); Asano, K. [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan); Asaoka, Y. [JEM Mission Operations and Integration Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Bagliesi, M. G.; Bigongiari, G.; Bonechi, S.; Brogi, P.; Felice, V. Di [National Institute for Nuclear Physics (INFN), Piazza dei Caprettari, 70, I-00186 Rome (Italy); Binns, W. R.; Buckley, J. H. [Department of Physics, Washington University, One Brookings Drive, St. Louis, MO 63130-4899 (United States); Cannady, N.; Cherry, M. L.; Guzik, T. G. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Checchia, C.; Collazuol, G. [Department of Physics and Astronomy, University of Padova, Via Marzolo, 8, I-35131 Padova (Italy); Ebisawa, K.; Fuke, H., E-mail: nakahira@crab.riken.jp, E-mail: yoichi.asaoka@aoni.waseda.jp, E-mail: tsakamoto@phys.aoyama.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); and others
2016-09-20
We present upper limits in the hard X-ray and gamma-ray bands at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) gravitational-wave event GW151226 derived from the CALorimetric Electron Telescope ( CALET ) observation. The main instrument of CALET , CALorimeter (CAL), observes gamma-rays from ∼1 GeV up to 10 TeV with a field of view of ∼2 sr. The CALET gamma-ray burst monitor (CGBM) views ∼3 sr and ∼2 π sr of the sky in the 7 keV–1 MeV and the 40 keV–20 MeV bands, respectively, by using two different scintillator-based instruments. The CGBM covered 32.5% and 49.1% of the GW151226 sky localization probability in the 7 keV–1 MeV and 40 keV–20 MeV bands respectively. We place a 90% upper limit of 2 × 10{sup −7} erg cm{sup −2} s{sup −1} in the 1–100 GeV band where CAL reaches 15% of the integrated LIGO probability (∼1.1 sr). The CGBM 7 σ upper limits are 1.0 × 10{sup −6} erg cm{sup −2} s{sup −1} (7–500 keV) and 1.8 × 10{sup −6} erg cm{sup −2} s{sup −1} (50–1000 keV) for a 1 s exposure. Those upper limits correspond to the luminosity of 3–5 × 10{sup 49} erg s{sup −1}, which is significantly lower than typical short GRBs.
Updates on upper eyelid blepharoplasty
Directory of Open Access Journals (Sweden)
Kasturi Bhattacharjee
2017-01-01
Full Text Available The human face is composed of small functional and cosmetic units, of which the eyes and periocular region constitute the main point of focus in routine face-to-face interactions. This dynamic region plays a pivotal role in the expression of mood, emotion, and character, thus making it the most relevant component of the facial esthetic and functional unit. Any change in the periocular unit leads to facial imbalance and functional disharmony, leading both the young and the elderly to seek consultation, thus making blepharoplasty the surgical procedure of choice for both cosmetic and functional amelioration. The applied anatomy, indications of upper eyelid blepharoplasty, preoperative workup, surgical procedure, postoperative care, and complications would be discussed in detail in this review article.
Climate of the upper atmosphere
Directory of Open Access Journals (Sweden)
Christoph Jacobi
2009-06-01
Full Text Available
In the frame of the European COST 296 project (Mitigation of Ionospheric Effects on Radio Systems, MIERS
investigations of the climate of the upper atmosphere have been carried out during the last four years to obtain
new information on the upper atmosphere. Mainly its ionospheric part has been analysed as the ionosphere
most essential for the propagation of radio waves. Due to collaboration between different European partners
many new results have been derived in the fields of long-term trends of different ionospheric and related atmospheric
parameters, the investigations of different types of atmospheric waves and their impact on the ionosphere,
the variability of the ionosphere, and the investigation of some space weather effects on the ionosphere.
Dual-band frequency selective surface with large band separation and stable performance
International Nuclear Information System (INIS)
Zhou Hang; Qu Shao-Bo; Lin Bao-Qin; Wang Jia-Fu; Ma Hua; Zhang Jie-Qiu; Peng Wei-Dong; Bai Peng; Wang Xu-Hua; Xu Zhuo
2012-01-01
A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Asymmetric acoustic transmission in multiple frequency bands
Energy Technology Data Exchange (ETDEWEB)
Sun, Hong-xiang, E-mail: jsdxshx@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Zhang, Shu-yi [Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
2015-11-23
We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.
Asymmetric acoustic transmission in multiple frequency bands
International Nuclear Information System (INIS)
Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi
2015-01-01
We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices
Infrared radiation in the energy balance of the upper atmosphere
International Nuclear Information System (INIS)
Gordiets, B.F.; Markov, M.N.
1977-01-01
The contribution of the infrared radiation to the energy balance of the Earth's upper atmosphere is discussed. The theoretical analysis has been carried out of the mechanisms of the transformation of the energy of outgoing particles and the ultraviolet-radiation of the Sun absorbed at the heights of Z >= 90 km into the infrared radiation. It is found out the the infrared radiation within the wave length range of 1.2-20 μ is more intensive that the 63 μ radiation of atomic oxygen and plays an important role in the general energy balance and the thermal regime of the thermosphere. It has been found out too that in the area of Z >= 120 km heights the radiation in the 5.3 μ NO band is the most intensive. This radiation is to be considered for the more accurate description of parameters of the atmosphere (temperature, density) conditioning the nature of the translocation of ionospheric sounds (ISS)
Energy Technology Data Exchange (ETDEWEB)
Burger, K.; Otte, M.U. (Bergbau A.G. Lippe, Gelsenkirchen (Germany, F.R.). Abt. Markscheidewesen); Pfisterer, W. (Bergbau A.G. Lippe, Herne (Germany, F.R.). Hauptlaboratorium)
1979-10-01
Based upon the stratigraphic distribution of the kaoline-black-band flint clay in the carbon strata of the Ruhr, the Nibelung-Kaoline-black-band flint clay found in the upper Westphal C (Dorsten strata) is defined to be the new keyhorizon. The position of the discoveries of the kaoline-black-band flint clay, its stratigraphic positions as well as its macroscopic and microscopic characteristics together with the chemical composition are given. Investigations of the structure and minerals content show that the Nibelung-Kaolin-black-band flint clay is a new keyhorizon and is of great importance for the stratigraphy of the upper Westfal C. Its position within the system is represented by strata sections.
Median and ulnar neuropathies in U.S. Army Medical Command Band members.
Shaffer, Scott W; Koreerat, Nicholas R; Gordon, Lindsay B; Santillo, Douglas R; Moore, Josef H; Greathouse, David G
2013-12-01
Musicians have been reported as having a high prevalence of upper-extremity musculoskeletal disorders, including carpal tunnel syndrome. The purpose of this study was to determine the presence of median and ulnar neuropathies in U.S. Army Medical Command (MEDCOM) Band members at Fort Sam Houston, Texas. Thirty-five MEDCOM Band members (30 males, 5 females) volunteered to participate. There were 33 right-handed musicians, and the mean length of time in the MEDCOM Band was 12.2 yrs (range, 1-30 yrs). Subjects completed a history form, were interviewed, and underwent a physical examination of the cervical spine and bilateral upper extremities. Nerve conduction studies of the bilateral median and ulnar nerves were performed. Electrophysiological variables served as the reference standard for median and ulnar neuropathy and included distal sensory latencies, distal motor latencies, amplitudes, conduction velocities, and comparison study latencies. Ten of the 35 subjects (29%) presented with abnormal electrophysiologic values suggestive of an upper extremity mononeuropathy. Nine of the subjects had abnormal median nerve electrophysiologic values at or distal to the wrist; 2 had bilateral abnormal values. One had an abnormal ulnar nerve electrophysiologic assessment at the elbow. Nine of these 10 subjects had clinical examination findings consistent with the electrophysiological findings. The prevalence of mononeuropathies in this sample of band members is similar to that found in previous research involving civilian musicians (20-36%) and far exceeds that reported in the general population. Prospective research investigating screening, examination items, and injury prevention measures in musicians appears to be warranted.
Li, Yi; Xu, Yanlong
2017-09-01
Considering uncertain geometrical and material parameters, the lower and upper bounds of the band gap of an undulated beam with periodically arched shape are studied by the Monte Carlo Simulation (MCS) and interval analysis based on the Taylor series. Given the random variations of the overall uncertain variables, scatter plots from the MCS are used to analyze the qualitative sensitivities of the band gap respect to these uncertainties. We find that the influence of uncertainty of the geometrical parameter on the band gap of the undulated beam is stronger than that of the material parameter. And this conclusion is also proved by the interval analysis based on the Taylor series. Our methodology can give a strategy to reduce the errors between the design and practical values of the band gaps by improving the accuracy of the specially selected uncertain design variables of the periodical structures.
Diagnosis and treatment of upper limb apraxia
Dovern, A.; Fink, G. R.; Weiss, P. H.
2012-01-01
Upper limb apraxia, a disorder of higher motor cognition, is a common consequence of left-hemispheric stroke. Contrary to common assumption, apraxic deficits not only manifest themselves during clinical testing but also have delirious effects on the patients’ everyday life and rehabilitation. Thus, a reliable diagnosis and efficient treatment of upper limb apraxia is important to improve the patients’ prognosis after stroke. Nevertheless, to date, upper limb apraxia is still an underdiagnosed...
Fuzzy upper bounds and their applications
Energy Technology Data Exchange (ETDEWEB)
Soleimani-damaneh, M. [Department of Mathematics, Faculty of Mathematical Science and Computer Engineering, Teacher Training University, 599 Taleghani Avenue, Tehran 15618 (Iran, Islamic Republic of)], E-mail: soleimani_d@yahoo.com
2008-04-15
This paper considers the concept of fuzzy upper bounds and provides some relevant applications. Considering a fuzzy DEA model, the existence of a fuzzy upper bound for the objective function of the model is shown and an effective approach to solve that model is introduced. Some dual interpretations are provided, which are useful for practical purposes. Applications of the concept of fuzzy upper bounds in two physical problems are pointed out.
Observation of dipole bands in 144Sm
International Nuclear Information System (INIS)
Raut, R.; Ganguly, S.; Kshetri, R.; Banerjee, P.; Bhattacharya, S.; Dasmahapatra, B.; Mukherjee, A.; Sahasarkar, M.; Goswami, A.; Basu, S.K.; Bhattacharjee, T.; Mukherjee, G.; Chakraborty, A.; Ghughre, S.S.; Krishichayan; Mukhopadhyay, S.; Gangopadhyay, G.; Singh, A.K.
2007-01-01
The nucleus 144 Sm (Z=62, N=82), with its proximity to the shell closure and possibilities of particles and holes occupying high j orbitals, following appropriate excitations, is a suitable system for observation of dipole (MR) bands
Silicone rubber band for laparoscopic tubal sterilization.
Ansari, A H; Sealey, R M; Gay, J W; Kang, I
1977-12-01
In 1974, Yoon and associates (Am J Obstet Gynecol 120:132, 1974) described a new approach in which laparoscopic tubal occlusion was accomplished by utilizing the silicone rubber band technique. Recognizing the great advantages of the new technique in eliminating potential thermal injury associated with electrocoagulation, the authors have utilized the Yoon silicone rubber band technique in these institutions over the past 20 months. Thus far the procedure has been performed in 304 patients without any major complications. In the hope of eliminating and/or reducing possible pregnancy-failure rates, in 110 cases. In addition to application of the silicone band, the tube within the band was transected with non-electrical Seigler biopsy forceps. This, we believe, should provide an interesting long-term comparative study.
Microbial processes in banded iron formation deposition
DEFF Research Database (Denmark)
Posth, Nicole; Konhauser, Kurt; Kappler, Andreas
2013-01-01
, remains unresolved. Evidence of an anoxic Earth with only localized oxic areas until the Great Oxidation Event ca 2·45 to 2·32 Ga makes the investigation of O2-independent mechanisms for banded iron formation deposition relevant. Recent studies have explored the long-standing proposition that Archean......Banded iron formations have been studied for decades, particularly regarding their potential as archives of the Precambrian environment. In spite of this effort, the mechanism of their deposition and, specifically, the role that microbes played in the precipitation of banded iron formation minerals...... banded iron formations may have been formed, and diagenetically modified, by anaerobic microbial metabolisms. These efforts encompass a wide array of approaches including isotope, ecophysiological and phylogeny studies, molecular and mineral marker analysis, and sedimentological reconstructions. Herein...
Simulating Precambrian banded iron formation diagenesis
DEFF Research Database (Denmark)
Posth, Nicole R.; K??hler, Inga; D. Swanner, Elizabeth
2013-01-01
Post-depositional diagenetic alteration makes the accurate interpretation of key precipitation processes in ancient sediments, such as Precambrian banded iron formations (BIFs), difficult. While microorganisms are proposed as key contributors to BIF deposition, the diagenetic transformation...
The Novel Microwave Stop-Band Filter
Directory of Open Access Journals (Sweden)
R. E. Chernobrovkin
2008-01-01
Full Text Available The stop-band filter with the new band-rejection element is proposed. The element is a coaxial waveguide with the slot in the centre conductor. In the frame of this research, the numerical and experimental investigations of the amplitude-frequency characteristics of the filter are carried out. It is noted that according to the slot parameters the two typical resonances (half-wave and quarter-wave can be excited. The rejection band of the single element is defined by the width, depth, and dielectric filling of the slot. Fifth-order Chebyshev filter utilizing the aforementioned element is also synthesized, manufactured, and tested. The measured and simulated results are in good agreement. The experimental filter prototype exhibits the rejection band 0.86 GHz at the level −40 dB.
Experimental study on the adiabatic shear bands
International Nuclear Information System (INIS)
Affouard, J.
1984-07-01
Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr