WorldWideScience

Sample records for upper groundwater box

  1. Groundwater levels for selected wells in Upper Kittitas County, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2011-01-01

    Groundwater levels for selected wells in Upper Kittitas County, Washington, are presented on an interactive, web-based map to document the spatial distribution of groundwater levels in the study area measured during spring 2011. Groundwater-level data and well information were collected by the U.S. Geological Survey using standard techniques and are stored in the U.S. Geological Survey National Water Information System, Groundwater Site-Inventory database.

  2. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand

    Science.gov (United States)

    Burnett, William C.; Wattayakorn, Gullaya; Taniguchi, Makoto; Dulaiova, Henrieta; Sojisuporn, Pramot; Rungsupa, Sompop; Ishitobi, Tomotoshi

    2007-01-01

    We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes. Our findings show that disseminated seepage of nutrient-rich mostly saline groundwater into the Upper Gulf of Thailand is significant. Estimated fluxes of dissolved inorganic nitrogen (DIN) supplied via groundwater discharge were 40-50% of that delivered by the Chao Phraya River, inorganic phosphate was 60-70%, and silica was 15-40%. Dissolved organic nitrogen (DON) and phosphorus (DOP) groundwater fluxes were also high at 30-40% and 30-130% of the river inputs, respectively. These observations are especially impressive since the comparison is being made to the river that is the largest source of fresh water into the Gulf of Thailand and flows directly through the megacity of Bangkok with high nutrient loadings from industrial and domestic sources.

  3. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  4. Effects of a sitting boxing program on upper limb function, balance, gait, and quality of life in stroke patients.

    Science.gov (United States)

    Park, Junhyuck; Gong, Jihwan; Yim, Jongeun

    2017-01-01

    Boxing training including traditional stretching, muscular strength training, and duration training would be considered to be effective for improved functional stretching, dynamic balance, walking speed, and quality of life. We aimed to investigate upper limb function, balance, gait, and quality of life in stroke patients before and after a sitting boxing program. Twenty-six participants were randomly allocated to a boxing group (n = 13) and control group (n = 13) after the upper limb function, balance, gait, and quality of Life were recorded. The boxing group underwent a sitting boxing program (3 times/week) as well as conventional physical therapy (3 times/week) for 6 weeks. The control group only underwent conventional physical therapy (3 times/week) for 6 weeks. The Manual Functional Test (MFT), non-affected hand grip, Berg Balance Scale (BBS), velocity moment with eye opened, 10-m Walk Test (10 MWT), and Stroke-Specific Quality of Life questionnaire (SS-QOL) were significantly improved in the boxing group (p boxing group compared to the control group (p boxing program group had positive effects on upper extremity function, balance, gait, and quality of life in stroke patients.

  5. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California

    Science.gov (United States)

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.

    2012-01-01

    The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All

  6. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  7. [Women boxing athletes' EMG of upper limbs and lumbar muscles in the training of air striking of straight punch].

    Science.gov (United States)

    Zhang, Ri-Hui; Kang, Zhi-Xin

    2011-05-01

    To study training effect of upper limbs and lumbar muscles in the proceed of air striking of straight punch by analyzing boxing athletes' changes of electromyogram (EMG). We measured EMG of ten women boxing athletes' upper arm biceps (contractor muscle), upper arm triceps (antagonistic muscle), forearm flexor muscle (contractor muscle), forearm extensor muscle (antagonistic muscle), and lumbar muscles by ME6000 (Mega Electronics Ltd.). The stipulated exercise was to do air striking of straight punch with loads of 2.5 kg of dumbbell in the hand until exhausted. In the proceed of exercise-induce exhausted, the descend magnitude and speed of median frequency (MF) in upper limb antagonistic muscle exceeded to contracting muscle, moreover, the work percentage showed that contractor have done a larger percentage of work than antagonistic muscle. Compared with world champion's EMG, the majority of ordinary athletes' lumbar muscles MF revealed non-drop tendency, and the work percentage showed that lumbar muscles had a very little percentage of work. After comparing the EMG test index in upper limb and lumbar muscle of average boxing athletes with that of the world champion, we find the testees lack of the training of upper limb antagonistic muscle and lumbar muscle, and more trainings aimed at these muscles need to be taken.

  8. Geochemistry and environmental isotope of groundwater from the upper Cretaceous aquifer of Orontes basin (Syria)

    International Nuclear Information System (INIS)

    Al-Charideh, A.

    2010-03-01

    Chemical and environmental isotopes have been used for studying the Upper Cretaceous aquifer systems in the Middle Orontes basin. The results indicate that the salinity of groundwater (0.2 to 2 g/l) reveals the dissolution of evaporate rocks is the main factor of high salinity especially in the Homes depression. The degree of salinity and its spaces distribution are basically related to the pattern of groundwater movement in the Upper cretaceous aquifer. The stable isotopes composition of groundwater in the Homes depression are more depleted by -2.5% and -17.0% for δ 18 O and δ 2 H respectively, than the groundwater from Hama elevation, suggested different origin and recharge time between this two groundwater groups. Estimates of their mean subsurface residence times have been constrained on the basis of 14 C D IC. The corrected ages of groundwater are recent and less to 10 thousand years in Hama uplift. However, the corrected age of groundwater in the Homs depression range between 10 to 25 thousand years indicate late Pleistocene recharge period. (author)

  9. Mass mortality of eastern box turtles with upper respiratory disease following atypical cold weather.

    Science.gov (United States)

    Agha, Mickey; Price, Steven J; Nowakowski, A Justin; Augustine, Ben; Todd, Brian D

    2017-04-20

    Emerging infectious diseases cause population declines in many ectotherms, with outbreaks frequently punctuated by periods of mass mortality. It remains unclear, however, whether thermoregulation by ectotherms and variation in environmental temperature is associated with mortality risk and disease progression, especially in wild populations. Here, we examined environmental and body temperatures of free-ranging eastern box turtles Terrapene carolina during a mass die-off coincident with upper respiratory disease. We recorded deaths of 17 turtles that showed clinical signs of upper respiratory disease among 76 adult turtles encountered in Berea, Kentucky (USA), in 2014. Of the 17 mortalities, 11 occurred approximately 14 d after mean environmental temperature dropped 2.5 SD below the 3 mo mean. Partial genomic sequencing of the major capsid protein from 1 sick turtle identified a ranavirus isolate similar to frog virus 3. Turtles that lacked clinical signs of disease had significantly higher body temperatures (23°C) than sick turtles (21°C) during the mass mortality, but sick turtles that survived and recovered eventually warmed (measured by temperature loggers). Finally, there was a significant negative effect of daily environmental temperature deviation from the 3 mo mean on survival, suggesting that rapid decreases in environmental temperature were correlated with mortality. Our results point to a potential role for environmental temperature variation and body temperature in disease progression and mortality risk of eastern box turtles affected by upper respiratory disease. Given our findings, it is possible that colder or more variable environmental temperatures and an inability to effectively thermoregulate are associated with poorer disease outcomes in eastern box turtles.

  10. Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013

    Science.gov (United States)

    Wellman, Tristan P.; Rupert, Michael G.

    2016-03-03

    The Upper Black Squirrel Creek Basin is located about 25 kilometers east of Colorado Springs, Colorado. The primary aquifer is a productive section of unconsolidated deposits that overlies bedrock units of the Denver Basin and is a critical resource for local water needs, including irrigation, domestic, and commercial use. The primary aquifer also serves an important regional role by the export of water to nearby communities in the Colorado Springs area. Changes in land use and development over the last decade, which includes substantial growth of subdivisions in the Upper Black Squirrel Creek Basin, have led to uncertainty regarding the potential effects to water quality throughout the basin. In response, the U.S. Geological Survey, in cooperation with Cherokee Metropolitan District, El Paso County, Meridian Service Metropolitan District, Mountain View Electric Association, Upper Black Squirrel Creek Groundwater Management District, Woodmen Hills Metropolitan District, Colorado State Land Board, and Colorado Water Conservation Board, and the stakeholders represented in the Groundwater Quality Study Committee of El Paso County conducted an assessment of groundwater quality and groundwater age with an emphasis on characterizing nitrate in the groundwater.

  11. Application of groundwater sustainability indicators to the Upper Pliocene aquifer in Ho Chi Minh city, Viet Nam

    Science.gov (United States)

    Ngo, T. M.; Lee, J.; Lee, H.; Woo, N. C.

    2013-12-01

    Groundwater plays an importance role for domestic, industrial, and agricultural uses in Ho Chi Minh city, Viet Nam. This study is objected to evaluate the sustainability of groundwater by using groundwater sustainability indicators (GWSIs) defined by UNESCO/IAEA/IAH Working Group on Groundwater Indicators at aquifer scale (the Upper Pliocene aquifer). There are four main indicators selected and one new indicator designed for the particular characteristic of Ho Chi Minh city which is under influence of by saline-water intrusion. The results indicated groundwater of the Upper Pliocene aquifer, the main groundwater supply source, is generally in the unsustainable state. The abstraction of groundwater, which was much greater than its capability, is probably causing the serious state of annual groundwater depletion and saline-water intrusion. The GWSIs, which expressed in such a simple way but scientifically-based and policy-relevant, proved its usefulness in evaluating the sustainability of groundwater at the aquifer scale in Ho Chi Minh city, and subsequently should be incorporated in water resource management practices.

  12. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.

    2017-10-20

    This report describes a hydrologic model for the upper Deschutes Basin in central Oregon developed using the U.S. Geological Survey (USGS) integrated Groundwater and Surface-Water Flow model (GSFLOW). The upper Deschutes Basin, which drains much of the eastern side of the Cascade Range in Oregon, is underlain by large areas of permeable volcanic rock. That permeability, in combination with the large annual precipitation at high elevations, results in a substantial regional aquifer system and a stream system that is heavily groundwater dominated.The upper Deschutes Basin is also an area of expanding population and increasing water demand for public supply and agriculture. Surface water was largely developed for agricultural use by the mid-20th century, and is closed to additional appropriations. Consequently, water users look to groundwater to satisfy the growing demand. The well‑documented connection between groundwater and the stream system, and the institutional and legal restrictions on streamflow depletion by wells, resulted in the Oregon Water Resources Department (OWRD) instituting a process whereby additional groundwater pumping can be permitted only if the effects to streams are mitigated, for example, by reducing permitted surface-water diversions. Implementing such a program requires understanding of the spatial and temporal distribution of effects to streams from groundwater pumping. A groundwater model developed in the early 2000s by the USGS and OWRD has been used to provide insights into the distribution of streamflow depletion by wells, but lacks spatial resolution in sensitive headwaters and spring areas.The integrated model developed for this project, based largely on the earlier model, has a much finer grid spacing allowing resolution of sensitive headwater streams and important spring areas, and simulates a more complete set of surface processes as well as runoff and groundwater flow. In addition, the integrated model includes improved

  13. Prospecting for Groundwater in the Bawku West District of the Upper ...

    African Journals Online (AJOL)

    An integrated approach involving the Electromagnetic (EM) and Vertical electrical sounding (VES) survey methods, has been used to locate potential drilling sites to find groundwater for twenty (20) rural communities in the Bawku West District of the Upper East Region of Ghana. The EM method involved the use of the ...

  14. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  15. Fuel assembly and fuel channel box

    International Nuclear Information System (INIS)

    Sakuma, Toraki; Hirakawa, Hiromasa; Ishizaki, Hideaki; Nakajima, Junjiro; Aizawa, Yasuhiro.

    1992-01-01

    A fuel channel box has a square cylindrical shape and, in the transversal cross sectional shape, the wall thickness of a corner portion is greater than that of a central portion of the side wall except for an upper portion thereof. The upper portion of the channel box includes a region to be in contact with an upper lattice plate and a region to attach a channel spacer. Then, the wall thickness of these regions is uniform in the transversal cross section and they have the same wall thickness with that of the corner portion which has the increased wall thickness. With such a constitution, the upper portion of the channel box receives a counter force applied from the upper lattice plate upon occurrence of earthquakes and moderate it to reduce local stresses and deformation. Further, a similar region with increased wall thickness is disposed also to the lower portion of the channel box, thereby enabling to suppress the amount of coolants leaked from a portion between the lower portion and a lower tie plate, and improve the mechanical integrity of the channel box. (I.N.)

  16. Actinide solubility in deep groundwaters - estimates for upper limits based on chemical equilibrium calculations

    International Nuclear Information System (INIS)

    Schweingruber, M.

    1983-12-01

    A chemical equilibrium model is used to estimate maximum upper concentration limits for some actinides (Th, U, Np, Pu, Am) in groundwaters. Eh/pH diagrams for solubility isopleths, dominant dissolved species and limiting solids are constructed for fixed parameter sets including temperature, thermodynamic database, ionic strength and total concentrations of most important inorganic ligands (carbonate, fluoride, phosphate, sulphate, chloride). In order to assess conservative conditions, a reference water is defined with high ligand content and ionic strength, but without competing cations. In addition, actinide oxides and hydroxides are the only solid phases considered. Recommendations for 'safe' upper actinide solubility limits for deep groundwaters are derived from such diagrams, based on the predicted Eh/pH domain. The model results are validated as far as the scarce experimental data permit. (Auth.)

  17. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  18. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.

    Science.gov (United States)

    Narula, Kapil K; Gosain, A K

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11,600 km(2) with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO3) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash-Sutcliffe and R(2) correlations greater than +0.7). Nitrate loading obtained after nitrification, denitrification, and NO3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates under

  19. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  20. Hydrogeologic framework and groundwater/surface-water interactions of the upper Yakima River Basin, Kittitas County, central Washington

    Science.gov (United States)

    Gendaszek, Andrew S.; Ely, D. Matthew; Hinkle, Stephen R.; Kahle, Sue C.; Welch, Wendy B.

    2014-01-01

    The hydrogeology, hydrology, and geochemistry of groundwater and surface water in the upper (western) 860 square miles of the Yakima River Basin in Kittitas County, Washington, were studied to evaluate the groundwater-flow system, occurrence and availability of groundwater, and the extent of groundwater/surface-water interactions. The study area ranged in altitude from 7,960 feet in its headwaters in the Cascade Range to 1,730 feet at the confluence of the Yakima River with Swauk Creek. A west-to-east precipitation gradient exists in the basin with the western, high-altitude headwaters of the basin receiving more than 100 inches of precipitation per year and the eastern, low-altitude part of the basin receiving about 20 inches of precipitation per year. From the early 20th century onward, reservoirs in the upper part of the basin (for example, Keechelus, Kachess, and Cle Elum Lakes) have been managed to store snowmelt for irrigation in the greater Yakima River Basin. Canals transport water from these reservoirs for irrigation in the study area; additional water use is met through groundwater withdrawals from wells and surface-water withdrawals from streams and rivers. Estimated groundwater use for domestic, commercial, and irrigation purposes is reported for the study area. A complex assemblage of sedimentary, metamorphic, and igneous bedrock underlies the study area. In a structural basin in the southeastern part of the study area, the bedrock is overlain by unconsolidated sediments of glacial and alluvial origin. Rocks and sediments were grouped into six hydrogeologic units based on their lithologic and hydraulic characteristics. A map of their extent was developed from previous geologic mapping and lithostratigraphic information from drillers’ logs. Water flows through interstitial space in unconsolidated sediments, but largely flows through fractures and other sources of secondary porosity in bedrock. Generalized groundwater-flow directions within the

  1. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin

    International Nuclear Information System (INIS)

    Narula, Kapil K.; Gosain, A.K.

    2013-01-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11 600 km 2 with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO 3 ) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO 3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash–Sutcliffe and R 2 correlations greater than + 0.7). Nitrate loading obtained after nitrification, denitrification, and NO 3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO 3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates

  2. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Kapil K., E-mail: kkn2104@columbia.edu [Columbia Water Center (India Office), Columbia University, New Delhi 110 016 (India); Gosain, A.K. [Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016 (India)

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11 600 km{sup 2} with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO{sub 3}) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO{sub 3} transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash–Sutcliffe and R{sup 2} correlations greater than + 0.7). Nitrate loading obtained after nitrification, denitrification, and NO{sub 3} removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO{sub 3} concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the

  3. Channel box dimension measuring method

    International Nuclear Information System (INIS)

    Oshima, Hirotake; Jo, Hiroto.

    1994-01-01

    The present invention provides a method for measuring the entire length of a channel box of a fuel assembly of a BWR type reactor. Namely, four sensors are used as one set that generate ultrasonic waves from oblique upper portion, oblique lower portion, upper portion and lower portion of the channel box respectively. The distances between the four sensors and each of the portions of the channel box are measured respectively for both of a reference member and a member to be measured. The entire length of the channel box is measured by calculating the measured values and the angles of the obliquely disposed sensors according to a predetermined formula. According to the method of the present invention, the inclination of the channel box to be measured can be corrected. In addition, accuracy of the measurement is improved and the measuring time is saved as well as the measuring device and operation can be simplified. (I.S.)

  4. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    International Nuclear Information System (INIS)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region dominated by dairy farming. No data from this area were used for calibrating the regression models. The model was validated by additional probability sampling. This sample was used to estimate errors in 1) the predicted areal fractions where the EU standard of 50 mg l -1 is exceeded for farms with low N surpluses (ALT) and farms with higher N surpluses (REF); 2) predicted cumulative frequency distributions of nitrate concentration for both groups of farms. Both the errors in the predicted areal fractions as well as the errors in the predicted cumulative frequency distributions indicate that the regression models are invalid for the sandy soils of this study area. - This study indicates that linear regression models that predict nitrate concentrations in the upper groundwater using residual soil N contents should be applied with care.

  5. How do low/high height and weight variation affect upper limb movements during manual material handling of industrial boxes?

    Directory of Open Access Journals (Sweden)

    Ana B. Oliveira

    Full Text Available OBJECTIVES: To evaluate the effect of surface height and load weight on upper limb movements and electromyographic (EMG recordings during manual handling performed by both experienced and inexperienced lifter subjects. METHODS: Sixteen experienced and sixteen inexperienced lifters handled a box (both 7 and 15 kg from an intermediate height (waist level to either a high or low surface. Electromyography and video images were recorded during the tasks. The 10th, 50th and 90th percentiles were calculated for the deltoid and biceps muscles, shoulder flexion, shoulder abduction, and elbow flexion movements. Groups, right/left sides, weights and heights were compared. There were no differences between either groups or sides. RESULTS: Weight and height variations affected EMG and posture, although weight had more impact on EMG. Shoulder abduction and flexion movements higher than 60º occurred, particularly for the higher surface. Shoulder flexion was also higher when the box was moved to the low height. This study provides new evidence as shoulder postures during boxes handling on low surfaces had not previously been evaluated. CONCLUSIONS: The high demand of upper limb in manual material handling tasks is clear, particularly for the shoulder. This knowledge can be used by physical therapists to plan better rehabilitation programs for manual material handling-related disorders, particularly focusing on return to work.

  6. Structural testing of the technology integration box beam

    Science.gov (United States)

    Griffin, C. F.

    1992-01-01

    A full-scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite/epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 percent of design limit load during the combined upbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  7. Some statistical aspects of background based groundwater standards at an arid hazardous waste site

    International Nuclear Information System (INIS)

    Chou, C.J.; Hodges, F.N.; Johnson, V.G.

    1994-07-01

    Statistical goodness-of-fit tests and open-quotes Box and Whiskerclose quotes plots of hydrochemical data from selected contaminant-free downgradient wells, and wells located upgradient in a non-contaminated or background area show that spatially distinct sample populations do not exhibit significant differences in groundwater chemical composition within the upper unconfined aquifer. Well location dominates natural constituent variability at this arid site. Spatial coverage should be emphasized in such cases rather than sampling frequency. 5 refs., 3 figs., 1 tab

  8. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors

  9. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of the groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTs) associated with the US Department of Energy Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surfacewater quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites and USTs located in the UEFPCHR. An overview of the hydrogeologic system in the UEFPCHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data, and detailed descriptions of groundwater quality are presented in Section 4.0. Findings of the 1991 monitoring program are summarized in Section 5.0. Proposed modifications to the groundwater quality monitoring program in the UEFPCHR are presented

  10. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  11. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Directory of Open Access Journals (Sweden)

    J. Crusius

    2005-01-01

    Full Text Available Submarine groundwater discharge was quantified by a variety of methods for a 4-day period during the early summer of 2004, in Salt Pond, adjacent to Nauset Marsh, on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. The data suggest that less than one quarter of the discharge in the vicinity of Salt Pond happened within the pond itself, while three quarters or more of the discharge occurred immediately seaward of the pond, either in the channel or in adjacent regions of Nauset Marsh. Much of this discharge, which maintains high radon activities and low salinity, is carried into the pond during each incoming tide. A box model was used as an aid to understand both the rates and the locations of discharge in the vicinity of Salt Pond. The model achieves a reasonable fit to both the salinity and radon data assuming submarine groundwater discharge is fresh and that most of it occurs either in the channel or in adjacent regions of Nauset Marsh. Salinity and radon data, together with seepage meter results, do not rule out discharge of saline groundwater, but suggest either that the saline discharge is at most comparable in volume to the fresh discharge or that it is depleted in radon. The estimated rate of fresh groundwater discharge in the vicinity of Salt Pond is 3000-7000 m3 d-1. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004, although the model predicts this rate of discharge to the pond whereas our data suggest most of the groundwater bypasses the pond prior to discharge. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to

  12. Groundwater and surface-water interaction within the upper Smith River Watershed, Montana 2006-2010

    Science.gov (United States)

    Caldwell, Rodney R.; Eddy-Miller, Cheryl A.

    2013-01-01

    The 125-mile long Smith River, a tributary of the Missouri River, is highly valued as an agricultural resource and for its many recreational uses. During a drought starting in about 1999, streamflow was insufficient to meet all of the irrigation demands, much less maintain streamflow needed for boating and viable fish habitat. In 2006, the U.S. Geological Survey, in cooperation with the Meagher County Conservation District, initiated a multi-year hydrologic investigation of the Smith River watershed. This investigation was designed to increase understanding of the water resources of the upper Smith River watershed and develop a detailed description of groundwater and surface-water interactions. A combination of methods, including miscellaneous and continuous groundwater-level, stream-stage, water-temperature, and streamflow monitoring was used to assess the hydrologic system and the spatial and temporal variability of groundwater and surface-water interactions. Collectively, data are in agreement and show: (1) the hydraulic connectedness of groundwater and surface water, (2) the presence of both losing and gaining stream reaches, (3) dynamic changes in direction and magnitude of water flow between the stream and groundwater with time, (4) the effects of local flood irrigation on groundwater levels and gradients in the watershed, and (5) evidence and timing of irrigation return flows to area streams. Groundwater flow within the alluvium and older (Tertiary) basin-fill sediments generally followed land-surface topography from the uplands to the axis of alluvial valleys of the Smith River and its tributaries. Groundwater levels were typically highest in the monitoring wells located within and adjacent to streams in late spring or early summer, likely affected by recharge from snowmelt and local precipitation, leakage from losing streams and canals, and recharge from local flood irrigation. The effects of flood irrigation resulted in increased hydraulic gradients

  13. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.

    Science.gov (United States)

    Tillman, Fred D; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-07-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  15. Anaerobic upper and lower body power measurements and perception of fatigue during a kick boxing match.

    Science.gov (United States)

    Ouergui, I; Hammouda, O; Chtourou, H; Zarrouk, N; Rebai, H; Chaouachi, A

    2013-10-01

    Objective of the study was to determine the effects of a kick-boxing match on muscle power of the upper and lower body as well as the associated perceived exertion in young men. Eighteen well trained kick-boxers volunteered to participate in a competitive sparring bout preceded and followed by three anaerobic tests as follow: squat jump (SJ) and counter movement jump (CMJ) for legs and 30-s Wingate test for arms. The sparring bout consisted of three 2 min rounds with 1 min recovery period in-between. Blood lactate (BL), heart rate (HR) and rating of perceived exertion (RPE) were analyzed before and after each round. The results showed that vertical jump distance in SJ and CMJ were significantly lower after the kick-boxing match (27.92±3.84 vs. 25.28±4.39 cm; 29.8±5.33 vs 28.48±4.64 cm, for SJ and CMJ respectively). Likewise, peak and mean power in the Wingate test decreased significantly after the sparring bout (5.89±0. 69 vs. 5.26±0.66 W•kg-1 and 4.51±0.53 vs. 4.12±0.51 W•kg-1 for PP and MP respectively; Pboxing match (Pboxing match is of sufficient intensity to stress the anaerobic metabolism. Thus, training protocols should include exercises that train the anaerobic energetic pathways for upper and lower body.

  16. Streamflow, groundwater hydrology, and water quality in the upper Coleto Creek watershed in southeast Texas, 2009–10

    Science.gov (United States)

    Braun, Christopher L.; Lambert, Rebecca B.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Goliad County Groundwater Conservation District, Victoria County Groundwater Conservation District, Pecan Valley Groundwater Conservation District, Guadalupe-Blanco River Authority, and San Antonio River Authority, did a study to examine the hydrology and stream-aquifer interactions in the upper Coleto Creek watershed. Findings of the study will enhance the scientific understanding of the study-area hydrology and be used to support water-management decisions to help ensure protection of the Evangeline aquifer and surface-water resources in the study area. This report describes the results of streamflow measurements, groundwater-level measurements, and water quality (from both surface-water and groundwater sites) collected from three sampling events (July–August 2009, January 2010, and June 2010) designed to characterize groundwater (from the Evangeline aquifer) and surface water, and the interaction between them, in the upper Coleto Creek watershed upstream from Coleto Creek Reservoir in southeast Texas. This report also provides a baseline level of water quality for the upper Coleto Creek watershed. Three surface-water gain-loss surveys—July 29–30, 2009, January 11–13, 2010, and June 21–22, 2010—were done under differing hydrologic conditions to determine the locations and amounts of streamflow recharging or discharging from the Evangeline aquifer. During periods when flow in the reaches of the upper Coleto Creek watershed was common (such as June 2010, when 12 of 25 reaches were flowing) or probable (such as January 2010, when 22 of 25 reaches were flowing), most of the reaches appeared to be gaining (86 percent in January 2010 and 92 percent in June 2010); however, during drought conditions (July 2009), streamflow was negligible in the entire upper Coleto Creek watershed; streamflow was observed in only two reaches during this period, one that receives inflow directly from Audilet Spring and

  17. Concentrations and speciation of arsenic along a groundwater flow-path in the Upper Floridan aquifer, Florida, USA

    Science.gov (United States)

    Haque, S. E.; Johannesson, K. H.

    2006-05-01

    Arsenic (As) concentrations and speciation were determined in groundwaters along a flow-path in the Upper Floridan aquifer (UFA) to investigate the biogeochemical “evolution“ of As in this relatively pristine aquifer. Dissolved inorganic As species were separated in the field using anion-exchange chromatography and subsequently analyzed by inductively coupled plasma mass spectrometry. Total As concentrations are higher in the recharge area groundwaters compared to down-gradient portions of UFA. Redox conditions vary from relatively oxic to anoxic along the flow-path. Mobilization of As species in UFA groundwaters is influenced by ferric iron reduction and subsequent dissolution, sulfate reduction, and probable pyrite precipitation that are inferred from the data to occur along distinct regions of the flow-path. In general, the distribution of As species are consistent with equilibrium thermodynamics, such that arsenate dominates in more oxidizing waters near the recharge area, and arsenite predominates in the progressively reducing groundwaters beyond the recharge area.

  18. Hydrological conditions and evaluation of sustainable groundwater use in the Sierra Vista Subwatershed, Upper San Pedro Basin, southeastern Arizona

    Science.gov (United States)

    Gungle, Bruce; Callegary, James B.; Paretti, Nicholas V.; Kennedy, Jeffrey R.; Eastoe, Christopher J.; Turner, Dale S.; Dickinson, Jesse; Levick, Lainie R.; Sugg, Zachary P.

    2016-08-18

    This study assessed progress toward achieving sustainable groundwater use in the Sierra Vista Subwatershed of the Upper San Pedro Basin, Arizona, through evaluation of 14 indicators of sustainable use. Sustainable use of groundwater in the Sierra Vista Subwatershed requires, at a minimum, a stable rate of groundwater discharge to, and thus base flow in, the San Pedro River. Many of the 14 indicators are therefore related to long-term or short-term effects on base flow and provide us with a means to evaluate groundwater discharge to and base flow in the San Pedro River. The indicators were based primarily on 10 to 20 years of data monitoring in the subwatershed, ending in 2012, and included subwatershedwide indicators, riparian-system indicators, San Pedro River indicators, and springs indicators.

  19. Groundwater quality in the Upper Hudson River Basin, New York, 2012

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.

    2014-01-01

    Water samples were collected from 20 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, New York) in New York in August 2012 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Eleven of the wells sampled in the Upper Hudson River Basin are completed in sand and gravel deposits, and nine are completed in bedrock. Groundwater in the Upper Hudson River Basin was typically neutral or slightly basic; the water typically was moderately hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 7 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Two pesticides, an herbicide degradate and an insecticide degredate, were detected in two samples at trace levels; seven VOCs, including chloroform, four solvents, and the gasoline additive methyl tert-butyl ether (MTBE) were detected in four samples. The greatest radon-222 activity, 2,900 picocuries per liter, was measured in a sample from a bedrock well; the median radon activity was higher in samples from bedrock wells than in samples from sand and gravel wells. Coliform bacteria were

  20. Using isotope techniques to assess groundwater resources in the upper Jezireh region

    International Nuclear Information System (INIS)

    Kattan, Z.; Abou Zakhem, B.; Al-Charideh, A.; Kadkoy, N

    2008-07-01

    This work discuses in details the hydrochemical and environmental isotopes ( 2 H, 3 H, 13 C, 14 C, 18 O and 34 S) characteristics of groundwaters resources in the Palaeogene aquifer in the Upper Syrian Jezireh Region in order to evaluate these resources in terms of recharge zones and water ages in such an aquifer system that undergone during the last decades to intensive exploitation as a consequence of sever pumping in both Syria and Turkey. The results show that the main recharge zones for the Palaeogene aquifer exists in Turkey within lands of more than 700 m.a.s.l, and effectively coincide well with the exposure of the Karstified Nummulitic limestone in Mardin uplift. The chemical and isotopic behaviors of groundwaters, together with the radiometric 14 C ages reflect the existence of three different groundwater groups: (1) the fresh and cold water, percolating in short and shallow flow paths, such as the case of the major cold springs in Ras Al-Ain and Ain El-Arous areas and most wells located in the vicinity of the Syrian-Turkish borders, for which the main replenishment processes were occurred after the palaeoclimatic humid conditions of the Holocene period, placed between 4.5-6 ka BP; (2) the brackish and thermal waters containing certain amounts of H 2 S gas, that percolate in longer and deeper flow paths, for which the main replenishment processes were occurred during the palaeoclimatic humid conditions of the Pleistocene time, placed at 9-18 ka BP; (3) the brackish and admixed thermal groundwaters with intermediate 14 C ages, which seem to be formed as a result of mixing between the previous two groups. (Authors)

  1. Bentonite as a colloid source in groundwaters at Olkiluoto

    International Nuclear Information System (INIS)

    Vuorinen, U.; Hirvonen, H.

    2005-02-01

    In this work bentonite was studied as a potential source of colloids in Olkiluoto groundwaters. Samples were collected at two groundwater stations, PVA1 at 37.5 m dept and PVA3 at 95.6 m depth, in the VLJ-tunnel. The deeper groundwater at PVA3 was more saline (2.6g/L of Cl-) than the shallow at PVA1 (0.8g/L of Cl-). A bentonite source had been assembled at each groundwater station so that two sample lines were available for water samples; one for collecting a sample before and the other for collecting a sample after interaction with bentonite. Before starting the actual colloid sampling groundwaters from both sample lines at both stations were analysed. Only minor alterations, mostly within the uncertainty limits of the analysis methods, were brought about in the water chemistries after interaction with the bentonite sources. The only clear changes were seen in the concentration of iron which decreased after interaction with bentonite in the groundwaters at both stations. After groundwater sampling the actual colloid sampling was performed. The water samples were collected and treated inside a movable nitrogen filled glove-box. The samples could be collected from each sampling line directly in the glove-box via two quick-couplings that had been assembled on the front face of the box. The sample lines had been assembled with 0.45 μm filters before entering the glove-box, because only colloids smaller than 0.45 μm were of interest, as they are not prone to sedimentation in slow groundwater flows and therefore could act as potential radionuclide carriers. Colloid samples were collected and treated similarly from both sampling lines at both groundwater stations. For estimating the colloid content the groundwater samples were filtered with centrifugal ultrafiltration tubes of different cut-off values (0.3 μm, 300kD and 10kD). The ultrafiltrations produced the colloid-containing concentrate fractions and the soluble substances-containing filtrate fractions. In

  2. An assessment of groundwater potential and vulnerability in the Upper Manyame Sub-Catchment of Zimbabwe

    Science.gov (United States)

    Misi, Alfred; Gumindoga, Webster; Hoko, Zvikomborero

    2018-06-01

    Severe depletion and pollution of groundwater resources are of rising concern in the Upper Manyame Sub-Catchment (UMSC); Zimbabwe's most urbanised sub-catchment. Despite groundwater playing a pivotal role in the provision of potable water in the sub-catchment, it is under serious threat from anthropogenic stressors which include sewage effluents and leachates from landfills, among others. Inadequate scientific knowledge pertaining to the spatio-temporal variability of groundwater storage and vulnerability in the UMSC is further compromising its sustainability. Therefore, comprehensive assessments of UMSC's Groundwater Potential (GP) and vulnerability are crucial for its effective management. This study assessed GP and vulnerability in the UMSC using Geographic Information Systems and Remote Sensing techniques. Groundwater conditioning factors: geology, slope, land-use, drainage density, topographic index, altitude, recharge and rainfall were used to develop GP zones. Validation of the GP map was done by correlating estimated GP with historical borehole yields. An assessment of groundwater vulnerability was done at micro-catchment level (Marimba) using the GOD model; a three parameter Index Overlay Model. Marimba is the most urbanised and has the second highest borehole density. It also exhibits similar landuse characteristics as the UMSC. Furthermore, groundwater quality in Marimba was assessed from 15 sampling sites. Fifteen drinking water parameters were analysed based on the standard methods for Water and Wastewater Examination. The potability of groundwater was then assessed by comparing the measured water quality parameters with the Standards Association of Zimbabwe (SAZ) drinking water standards and/or WHO guidelines for drinking water. Repeated Measures ANOVA and Principal Component Analysis (PCA) were used to assess the spatio-temporal variations in groundwater quality and to identify key parameters, respectively. About 72% (2725.9 km2) of the UMSC was

  3. Analog model study of the ground-water basin of the Upper Coachella Valley, California

    Science.gov (United States)

    Tyley, Stephen J.

    1974-01-01

    An analog model of the ground-water basin of the upper Coachella Valley was constructed to determine the effects of imported water on ground-water levels. The model was considered verified when the ground-water levels generated by the model approximated the historical change in water levels of the ground-water basin caused by man's activities for the period 1986-67. The ground-water basin was almost unaffected by man's activities until about 1945 when ground-water development caused the water levels to begin to decline. The Palm Springs area has had the largest water-level decline, 75 feet since 1986, because of large pumpage, reduced natural inflow from the San Gorgonio Pass area, and diversions of natural inflows at Snow and Falls Creeks and Chino Canyon starting in 1945. The San Gorgonio Pass inflow had been reduced from about 18,000 acre-feet in 1986 to about 9,000 acre-feet by 1967 because of increased ground-water pumpage in the San Gorgonio Pass area, dewatering of the San Gorgonio Pass area that took place when the tunnel for the Metropolitan Water District of Southern California was drilled, and diversions of surface inflow at Snow and Falls Creeks. In addition, 1944-64 was a period of below-normal precipitation which, in part, contributed to the declines in water levels in the Coachella Valley. The Desert Hot Springs, Garnet Hill, and Mission Creek subbasins have had relatively little development; consequently, the water-level declines have been small, ranging from 5 to 15 feet since 1986. In the Point Happy area a decline of about 2 feet per year continued until 1949 when delivery of Colorado River water to the lower valley through the Coachella Canal was initiated. Since 1949 the water levels in the Point Happy area have been rising and by 1967 were above their 1986 levels. The Whitewater River subbasin includes the largest aquifer in the basin, having sustained ground-water pumpage of about 740,000 acre-feet from 1986 to 1967, and will probably

  4. Amateur boxing: physical and physiological attributes.

    Science.gov (United States)

    Chaabène, Helmi; Tabben, Montassar; Mkaouer, Bessem; Franchini, Emerson; Negra, Yassine; Hammami, Mehrez; Amara, Samiha; Chaabène, Raja Bouguezzi; Hachana, Younés

    2015-03-01

    Boxing is one of the oldest combat sports. The aim of the current review is to critically analyze the amateur boxer's physical and physiological characteristics and to provide practical recommendations for training as well as new areas of scientific research. High-level male and female boxers show a propensity for low body fat levels. Although studies on boxer somatotypes are limited, the available information shows that elite-level male boxers are characterized by a higher proportion of mesomorphy with a well-developed muscle mass and a low body fat level. To help support the overall metabolic demands of a boxing match and to accelerate the recovery process between rounds, athletes of both sexes require a high level of cardiorespiratory fitness. International boxers show a high peak and mean anaerobic power output. Muscle strength in both the upper and lower limbs is paramount for a fighter's victory and is one of the keys to success in boxing. As boxing punches are brief actions and very dynamic, high-level boxing performance requires well-developed muscle power in both the upper and lower limbs. Albeit limited, the available studies reveal that isometric strength is linked to high-level boxing performance. Future investigations into the physical and physiological attributes of boxers are required to enrich the current data set and to help create a suitable training program.

  5. Sampling and treatment of rock cores and groundwater under reducing environments of deep underground

    International Nuclear Information System (INIS)

    Ebashi, Katsuhiro; Yamaguchi, Tetsuji; Tanaka, Tadao

    2005-01-01

    A method of sampling and treatment of undisturbed rock cores and groundwater under maintained reducing environments of deep underground was developed and demonstrated in a Neogene's sandy mudstone layer at depth of GL-100 to -200 m. Undisturbed rock cores and groundwater were sampled and transferred into an Ar gas atmospheric glove box with minimized exposure to the atmosphere. The reducing conditions of the sampled groundwater and rock cores were examined in the Ar atmospheric glove box by measuring pH and Eh of the sampled groundwater and sampled groundwater contacting with disk type rock samples, respectively. (author)

  6. Groundwater quality monitoring well installation for Upper Waste Areas Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of seven groundwater quality monitoring (GQM) wells on the perimeter of Upper Waste Area Grouping (WAG) 2. Upper WAG 2 is composed of portions of White Oak Creek (WOC), Melton Branch, two of Melton Branch's tributaries, and the floodplains surrounding these water bodies. The WOC section of the subject site begins at the confluence of WOC and Melton Branch and extends 0.62 mile upstream to the 7,500 bridge. The Melton Branch portion of the site also begins at the confluence of WOC and Melton Branch and extends eastward 0.88 mile upstream. The wells at Upper WAG 2 were drilled and developed between December 1989 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The purpose of the well installation program was to install GQM wells for groundwater characterization at Upper WAG-2. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  7. Calendar year 1994 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-10-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several waste-management facilities and a petroleum fuel underground storage tank (UST) site at the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites lie within the boundaries of the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to ensure protection of local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy

  8. Analysis of 1997–2008 groundwater level changes in the upper Deschutes Basin, Central Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.

    2013-01-01

    Groundwater-level monitoring in the upper Deschutes Basin of central Oregon from 1997 to 2008 shows water-level declines in some places that are larger than might be expected from climate variations alone, raising questions regarding the influence of groundwater pumping, canal lining (which decreases recharge), and other human influences. Between the mid-1990s and mid-2000s, water levels in the central part of the basin near Redmond steadily declined as much as 14 feet. Water levels in the Cascade Range, in contrast, rose more than 20 feet from the mid-1990s to about 2000, and then declined into the mid-2000s, with little or no net change. An existing U.S. Geological Survey regional groundwater-flow model was used to gain insights into groundwater-level changes from 1997 to 2008, and to determine the relative influence of climate, groundwater pumping, and irrigation canal lining on observed water-level trends. To utilize the model, input datasets had to be extended to include post-1997 changes in groundwater pumping, changes in recharge from precipitation, irrigation canal leakage, and deep percolation of applied irrigation water (also known as on-farm loss). Mean annual groundwater recharge from precipitation during the 1999–2008 period was 25 percent less than during the 1979–88 period because of drying climate conditions. This decrease in groundwater recharge is consistent with measured decreases in streamflow and discharge to springs. For example, the mean annual discharge of Fall River, which is a spring-fed stream, decreased 12 percent between the 1979–88 and 1999–2008 periods. Between the mid-1990s and late 2000s, groundwater pumping for public-supply and irrigation uses increased from about 32,500 to 52,000 acre-feet per year, partially because of population growth. Between 1997 and 2008, the rate of recharge from leaking irrigation canals decreased by about 58,000 acre-feet per year as a result of lining and piping of canals. Decreases in recharge

  9. Using radon-222 for tracing groundwater discharge into an open-pit lignite mining lake--a case study.

    Science.gov (United States)

    Schmidt, Axel; Schubert, Michael

    2007-12-01

    Groundwater discharge into an open pit lignite mining lake was investigated using radon-222 as a naturally occurring environmental tracer. The chosen study site was a meromictic lake, i.e., a water body that is divided horizontally into two separate layers--the upper mixolimnion (with seasonal mixing) and the lower monimolimnion (without seasonal mixing). For the estimation of groundwater discharge rates into the lake, a simple box model including all radon sinks and sources related to each layer was applied. Two field investigations were performed. During the October campaign, the total groundwater discharge into the lake was found to be 18.9 and 0.7 m(3) d(-1) for the mixolimnion and monimolimnion, respectively. During the December campaign, the groundwater discharge into the mixolimnion was 15.0 m(3) d(-1), whereas no discharge at all was observed into the monimolimnion. Based on the given water volumes, the residence time of lake water was 5.3 years for the monimolimnion and varies between 0.9 and 1.1 years for the mixolimnion. The investigation confirmed radon to be a useful environmental tracer for groundwater and surface water interactions in meromictic lake environments.

  10. Study on partial overheat of the isolated phase busbar outlet box in Qinshan NPP phase Ⅱ

    International Nuclear Information System (INIS)

    Tang Fangxuan; Zhang Jian; Zeng Limin; Bao Yanxing; Zhang Lie; Yang Yuemin

    2013-01-01

    This paper recommended the structure of the isolated phase busbar outlet box installed in Qinshan II. The study on partial overheat of the outlet box shows that the ultimate causes are the loss of concentrated eddy current and short of cooling. So the improvement principles of 'distributing eddy current, cutting off inductive circle current and strengthening of ventilation' were determined. A new structure test outlet box was designed and manufactured, and the temperature rising experiment was carried out. Some alterations were made in the new structure outlet box, e.g. isolating materials were added between side plates of the upper outlet box, and also between the upper and lower outlet box. Two cooling blowers were added to the upper outlet box. After putting into operation, the hot-spot temperature of the new outlet box was greatly lowered down. Thus the operation environment was improved, and the operation safety ensured. It can be useful references for analyzing and dealing with similar problems. (authors)

  11. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  12. Ground-water flow and water quality in the Upper Floridan aquifer, southwestern Albany area, Georgia, 1998-2001

    Science.gov (United States)

    Warner, Debbie; Lawrence, Stephen J.

    2005-01-01

    During 1997, the Dougherty County Health Department sampled more than 700 wells completed in the Upper Floridan aquifer in Dougherty County, Georgia, and determined that nitrate as nitrogen (hereinafter called nitrate) concentrations were above 10 milligrams per liter (mg/L) in 12 percent of the wells. Ten mg/L is the Georgia primary drinking-water standard. The ground-water flow system is complex and poorly understood in this predominantly agricultural area. Therefore, the U.S. Geological Survey (USGS) - in cooperation with Albany Water, Gas and Light Commission - conducted a study to better define ground-water flow and water quality in the Upper Florida aquifer in the southwestern Albany area, Georgia. Ground-water levels were measured in the southwestern Albany area, Georgia, during May 1998 and March 1999 (spring), and October 1998 and September 1999 (fall). Groundwater levels measured in 75 wells open only to the Upper Floridan aquifer were used to construct potentiometric-surface maps for those four time periods. These maps show that ground water generally flows from northwest to southeast at gradients ranging from about 2 to greater than 10 feet per mile. During spring and fall 1998, ground-water levels were high and mounding of the potentiometric surface occurred in the central part of the study area, indicating a local recharge area. Water levels declined from December through February, and by March 1999 the mound in the potentiometric surface had dissipated. Of the 75 wells in the potentiometric network, 24 were selected for a water-quality network. These 24 wells and 1 spring were sampled during fall 1998 and spring 1999. Samples were analyzed for major chemical constituents, selected minor constituents, selected nutrients, and chlorofluorocarbons (CFC). Water-quality field measurements - such as water temperature, pH, specific conductance (SC), and dissolved oxygen (DO) - were taken at each well. During August 2000, a ground-water sample was collected

  13. Geologic framework of the regional ground-water flow system in the Upper Deschutes Basin, Oregon

    Science.gov (United States)

    Lite, Kenneth E.; Gannett, Marshall W.

    2002-12-10

    Ground water is increasingly relied upon to satisfy the needs of a growing population in the upper Deschutes Basin, Oregon. Hydrogeologic studies are being undertaken to aid in management of the ground-water resource. An understanding of the geologic factors influencing ground-water flow is basic to those investigations. The geology of the area has a direct effect on the occurrence and movement of ground water. The permeability and storage properties of rock material are influenced by the proportion, size, and degree of interconnection of open spaces the rocks contain. These properties are the result of primary geologic processes such as volcanism and sedimentation, as well as subsequent processes such as faulting, weathering, or hydrothermal alteration. The geologic landscape in the study area evolved during about 30 million years of volcanic activity related to a north-south trending volcanic arc, the current manifestation of which are today’s Cascade Range volcanoes.

  14. Identification and level of organochlorine insecticide contamination in groundwater and iridology analysis for people in Upper Citarum cascade

    Science.gov (United States)

    Oginawati, K.; Pratama, M. A.

    2016-03-01

    Organochlorines are the main pollutants in the class of persistent organic pollutants which are types of pollutants that are being questioned worldwide due to chronic persistence, toxicity and bioaccumulation. Human around the Citarum River are still using groundwater as a drinking source. It is very risky for people health that consume groundwater because in 2009 the application of organochlorine still found in the Upper Citarum watershed rice field and had potential to contaminate groundwater. Groundwater was analyzed with nine species belonging to the organochlorine pollutants Organic Peristent types. 7 types of organochlorinesAldrin was detected with an average concentration of 0.09 ppb, dieldrin with an average concentration of 24 ppb, heptaklor with an average concentration of 0.51 ppb, with concentrations of endosulfan on average 0.73 ppb, DDT with average concentration of 0.13 ppb, Lindan with an average concentration of 1.2 ppb, endrin with an average concentration of 0.03 ppb. Types with the highest concentration of organochlorine a lindan and endosulfan. Residues of aldrin, dieldrin and heptaklor in groundwater already exceeds the quality standards for drinking water Permenkes 492/2010. Based on the iridology analysis obtained several systems are expected to nervous, immune and reproductive system disorders and toxin deposits under the skin.

  15. Identification and level of organochlorine insecticide contamination in groundwater and iridology analysis for people in Upper Citarum cascade

    International Nuclear Information System (INIS)

    Oginawati, K; Pratama, M A

    2016-01-01

    Organochlorines are the main pollutants in the class of persistent organic pollutants which are types of pollutants that are being questioned worldwide due to chronic persistence, toxicity and bioaccumulation. Human around the Citarum River are still using groundwater as a drinking source. It is very risky for people health that consume groundwater because in 2009 the application of organochlorine still found in the Upper Citarum watershed rice field and had potential to contaminate groundwater. Groundwater was analyzed with nine species belonging to the organochlorine pollutants Organic Peristent types. 7 types of organochlorinesAldrin was detected with an average concentration of 0.09 ppb, dieldrin with an average concentration of 24 ppb, heptaklor with an average concentration of 0.51 ppb, with concentrations of endosulfan on average 0.73 ppb, DDT with average concentration of 0.13 ppb, Lindan with an average concentration of 1.2 ppb, endrin with an average concentration of 0.03 ppb. Types with the highest concentration of organochlorine a lindan and endosulfan. Residues of aldrin, dieldrin and heptaklor in groundwater already exceeds the quality standards for drinking water Permenkes 492/2010. Based on the iridology analysis obtained several systems are expected to nervous, immune and reproductive system disorders and toxin deposits under the skin. (paper)

  16. Simulated effects of impoundment of lake seminole on ground-water flow in the upper Floridan Aquifer in southwestern Georgia and adjacent parts of Alabama and Florida

    Science.gov (United States)

    Jones, L. Elliott; Torak, Lynn J.

    2004-01-01

    Hydrologic implications of the impoundment of Lake Seminole in southwest Georgia and its effect on components of the surface- and ground-water flow systems of the lower Apalachicola?Chattahoochee?Flint (ACF) River Basin were investigated using a ground-water model. Comparison of simulation results of postimpoundment drought conditions (October 1986) with results of hypothetical preimpoundment conditions (a similar drought prior to 1955) provides a qualitative measure of the changes in hydraulic head and ground-water flow to and from streams and Lake Seminole, and across State lines caused by the impoundment. Based on the simulation results, the impoundment of Lake Seminole changed ground-water flow directions within about 20?30 miles of the lake, reducing the amount of ground water flowing from Florida to Georgia southeast of the lake. Ground-water storage was increased by the impoundment, as indicated by a simulated increase of as much as 26 feet in the water level in the Upper Floridan aquifer. The impoundment of Lake Seminole caused changes to simulated components of the ground-water budget, including reduced discharge from the Upper Floridan aquifer to streams (315 million gallons per day); reduced recharge from or increased discharge to regional ground-water flow at external model boundaries (totaling 183 million gallons per day); and reduced recharge from or increased discharge to the undifferentiated overburden (totaling 129 million gallons per day).

  17. Flow of river water into a karstic limestone aquifer - 2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    Science.gov (United States)

    Plummer, Niel; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 (3H/3He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3H/3He age is independent of the extent of dilution with older (3H-free and 3He(trit)-free) water. The groundwater mixtures are designated as Type-I for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl- and ??18O data for water from the Upper Floridan aquifer at Valdosta, Georgia The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most allaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-I water. CFC-12 persists in both SO4-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg-1) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-I mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water sam pies obtained from the Upper Floridan aquifer have CFC-12-based ages of the young traction that are consistent with the 3H concentration of the groundwater. Because of uncertainties associated with very low 3H and 3He content in dilute mixtures, 3H/3He dating is limited to the river

  18. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    Science.gov (United States)

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand

  19. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    Science.gov (United States)

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total

  20. Calendar year 1995 groundwater quality report for the upper east Fork Poplar Creek Hydrogeologic regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1995 calendar year (CY) at several waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN3 89 009 0001. The sites addressed by this document are located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The East Fork Regime, which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant, encompasses the Y-12 Plant

  1. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year.

  2. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1994-10-01

    This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year

  3. Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia

    International Nuclear Information System (INIS)

    Plummer, L.N.; Busenberg, E.; McConnell, J.B.; Drenkard, S.; Schlosser, P.; Michel, R.L.

    1998-01-01

    The quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl - , 3 H, tritiogenic helium-3 ( 3 He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O 2 (DO), H 2 S, CH 4 , δ 18 O, δD, and 14 C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl - , δ 18 O, δD, CFC-12, and the quantity ( 3 H+ 3 He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H 2 S, CH 4 , 14 C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl - and δ 18 O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water (δ 18 O=-2.5±0.3per thousand, Cl - =12.2±2 mg/l), (2) regional infiltration water (δ 18 O=-4.2±0.1per thousand, Cl - =2.3±0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer (δ 18 O=-3.4±0.1per thousand, Cl - =2.6±0.1 mg/l) (uncertainties are ±1σ). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to the N and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining beds overlying the Upper Floridan aquifer. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Drenkard, S.; Schlosser, P. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)

    1998-11-01

    he quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl{sup -}, {sup 3}H, tritiogenic helium-3 ({sup 3}He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O{sub 2} (DO), H{sub 2}S, CH{sub 4}, {delta}{sup 18}O, {delta}D, and {sup 14}C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl{sup -}, {delta}{sup 18}O, {delta}D, CFC-12, and the quantity ({sup 3}H+{sup 3}He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H{sub 2}S, CH{sub 4}, {sup 14}C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl{sup -} and {delta}{sup 18}O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water ({delta}{sup 18}O=-2.5{+-}0.3per thousand, Cl{sup -}=12.2{+-}2 mg/l), (2) regional infiltration water ({delta}{sup 18}O=-4.2{+-}0.1per thousand, Cl{sup -}=2.3{+-}0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer ({delta}{sup 18}O=-3.4{+-}0.1per thousand, Cl{sup -}=2.6{+-}0.1 mg/l) (uncertainties are {+-}1{sigma}). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to theN and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining

  5. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1996. The East Fork Regime encompasses several confirmed and suspected sources of groundwater contamination within industrialized areas of the US Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) southeast of Oak Ridge, Tennessee. The CY 1996 groundwater and surface water monitoring data are presented in Calendar Year 1996 Annual Groundwater Monitoring Report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee, along with the required data evaluations specified in the Resource Conservation and Recovery Act (RCRA) post-closure permit for the East Fork Regime. This report provides additional evaluation of the CY 1996 groundwater and surface water monitoring data with an emphasis on regime-wide groundwater contamination and long-term concentration trends for regulated and non-regulated monitoring parameters

  6. High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock - Influence of groundwater origin and secondary minerals

    Science.gov (United States)

    Mathurin, Frédéric A.; Drake, Henrik; Tullborg, Eva-Lena; Berger, Tobias; Peltola, Pasi; Kalinowski, Birgitta E.; Åström, Mats E.

    2014-05-01

    Dissolved and solid phase cesium (Cs) was studied in the upper 1.2 km of a coastal granitoid fracture network on the Baltic Shield (Äspö Hard Rock Laboratory and Laxemar area, SE Sweden). There unusually high Cs concentrations (up to 5-6 μg L-1) occur in the low-temperature (single and primary control of dissolved Cs in these systems. The high Cs concentrations in the saline groundwater is ascribed to long-term weathering of minerals, primarily Cs-enriched fracture coatings dominated by illite and mixed-layer clays and possibly wall rock micaceous minerals. The high Cs concentrations in the groundwater of marine origin are, in contrast, explained by relatively fast cation exchange reactions. As indicated by the field data and predicted by 1D solute transport modeling, alkali cations with low-energy hydration carried by intruding marine water are capable of (NH4+ in particular and K+ to some extent) replacing Cs+ on frayed edge (FES) sites on illite in the fracture coatings. The result is a rapid and persistent (at least in the order of decades) buildup of dissolved Cs concentrations in fractures where marine water flows downward. The identification of high Cs concentrations in young groundwater of marine origin and the predicted capacity of NH4+ to displace Cs from fracture solids are of particular relevance in the disposal of radioactive nuclear waste deep underground in crystalline rock.

  7. Base of the upper layer of the phase-three Elkhorn-Loup groundwater-flow model, north-central Nebraska

    Science.gov (United States)

    Stanton, Jennifer S.

    2013-01-01

    The Elkhorn and Loup Rivers in Nebraska provide water for irrigation, recreation, hydropower produc­tion, aquatic life, and municipal water systems for the Omaha and Lincoln metropolitan areas. Groundwater is another important resource in the region and is extracted primarily for agricultural irrigation. Water managers of the area are interested in balancing and sustaining the long-term uses of these essential surface-water and groundwater resources. Thus, a cooperative study was established in 2006 to compile reliable data describing hydrogeologic properties and water-budget components and to improve the understanding of stream-aquifer interactions in the Elkhorn and Loup River Basins. A groundwater-flow model was constructed as part of the first two phases of that study as a tool for under­standing the effect of groundwater pumpage on stream base flow and the effects of management strategies on hydrologically connected groundwater and surface-water supplies. The third phase of the study was implemented to gain additional geologic knowledge and update the ELM with enhanced water-budget information and refined discretization of the model grid and stress periods. As part of that effort, the ELM is being reconstructed to include two vertical model layers, whereas phase-one and phase-two simulations represented the aquifer system using one vertical model layer. This report presents a map of and methods for developing the elevation of the base of the upper model layer for the phase-three ELM. Digital geospatial data of elevation contours and geologic log sites used to esti­mate elevation contours are available as part of this report.

  8. Flow of river water into a karstic limestone aquifer-2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)

    1998-11-01

    Tritium/helium-3 ({sup 3}H/{sup 3}He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The {sup 3}H/{sup 3}He age is independent of the extent of dilution with older ({sup 3}H-free and {sup 3}He{sub trit}-free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl{sup -} and {delta}{sup 18}O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO{sub 4}-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg{sup -1}) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the {sup 3}H concentration of the groundwater. Because of uncertainties associated with very low {sup 3}H

  9. Flow of river water into a karstic limestone aquifer-2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    International Nuclear Information System (INIS)

    Plummer, L.N.; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 ( 3 H/ 3 He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3 H/ 3 He age is independent of the extent of dilution with older ( 3 H-free and 3 He trit -free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl - and δ 18 O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO 4 -reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg -1 ) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the 3 H concentration of the groundwater. Because of uncertainties associated with very low 3 H and 3 He content in dilute mixtures, 3 H/ 3 He dating is

  10. Calendar year 1995 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime Y-12 Plant, Oak Ridge Tennessee. 1995 Groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1996-08-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1995 calendar year (CY) at several waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites lie within the boundaries of the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to ensure protection of local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part I consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with reporting requirements of Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring, the Part I GWQR is submitted to the Tennessee Department of Environment and Conservation (TDEC) by the RCRA reporting deadline (March 1 of the following CY); Energy Systems submitted the 1995 Part I GWQR for the East Fork Regime to the TDEC in February 1996. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality

  11. Hydrochemistry and hydrogeologic conditions within the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Webber, W.D.

    1995-09-01

    As part of the Hanford Site Ground-Water Surveillance Project, Flow System Characterization Task. Pacific Northwest Laboratory examines the potential for offsite migration of contamination within the upper basalt confined aquifer system for the US Department of Energy (DOE). As part of this activity, groundwater samples were collected over the past 2 years from selected wells completed in the upper Saddle Mountains Basalt. The hydrochemical and isotopic information obtained from these groundwater samples provides hydrologic information concerning the aquifer-flow system. Ideally, when combined with other hydrologic property information, hydrochemical and isotopic data can be used to evaluate the origin and source of groundwater, areal groundwater-flow patterns, residence and groundwater travel time, rock/groundwater reactions, and aquifer intercommunication for the upper basalt confined aquifer system. This report presents the first comprehensive Hanford Site-wide summary of hydrochemical properties for the upper basalt confined aquifer system. This report provides the hydrogeologic characteristics (Section 2.0) and hydrochemical properties (Section 3.0) for groundwater within this system. A detailed description of the range of the identified hydrochemical parameter subgroups for groundwater in the upper basalt confined aquifer system is also presented in Section 3.0. Evidence that is indicative of aquifer contamination/aquifer intercommunication and an assessment of the potential for offsite migration of contaminants in groundwater within the upper basalt aquifer is provided in Section 4.0. The references cited throughout the report are given in Section 5.0. Tables that summarize groundwater sample analysis results for individual test interval/well sites are included in the Appendix

  12. Study of the influence of hydrogeological conditions in the upper aquifer on radionuclide migration from a geological repository using a 2D groundwater flow model

    Energy Technology Data Exchange (ETDEWEB)

    Shestopalov, Vyacheslav; Bohuslavskyy, Alexander; Shybetskyi, Iurii [National Academy of Science of Ukaraine, Kyiv (Ukraine). Radioenvironmental Centre

    2015-07-01

    Results are presented of a case groundwater flow-transport modeling to predict the radionuclide migration from a deep geological repository (DGR) of radioactive waste. The influence of hydrogeological conditions in the upper aquifers of a storey water exchange system on the rate of contaminant migration from the DGR to its natural far-field groundwater discharges (a shallow well and a river) as a general DGR safety condition is considered.

  13. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    Science.gov (United States)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  14. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    None

    1999-01-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1998. The East Fork Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality at the Y-12 Plant. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively

  15. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1998. The East Fork Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality at the Y-12 Plant. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  16. Trend-outflow method for understanding interactions of surface water with groundwater and atmospheric water for eight reaches of the Upper Rio Grande

    Science.gov (United States)

    Liu, Yi; Sheng, Zhuping

    2011-11-01

    SummaryAtmospheric water, surface water, and groundwater interact very actively through hydrologic processes such as precipitation, infiltration, seepage, irrigation, drainage, evaporation, and evapotranspiration in the Upper Rio Grande Basin. A trend-outflow method has been developed in this paper to gain a better understanding of the interactions based on cumulated inflow and outflow data for any river reaches of interest. A general trend-outflow equation was derived by associating the net interaction of surface water with atmospheric water as a polynomial of inflow and the net interaction of surface water with groundwater as a constant based on surface water budget. Linear and quadratic relations are probably two common trend-outflow types in the real world. It was found that trend-outflows of the Upper Rio Grande reaches, Española, Albuquerque, Socorro-Engle, Palomas, and Rincon are linear with inflow, while those of reaches, Belen, Mesilla and Hueco are quadratic. Reaches Belen, Mesilla and Hueco are found as water deficit reaches mainly for irrigated agriculture in extreme drought years.

  17. Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling

    Science.gov (United States)

    Sutton, James E.; Screaton, Elizabeth J.; Martin, Jonathan B.

    2015-03-01

    Surface-water/groundwater exchange impacts water quality and budgets. In karst aquifers, these exchanges also play an important role in dissolution. Five years of river discharge data were analyzed and a transient groundwater flow model was developed to evaluate large-scale temporal and spatial variations of exchange between an 80-km stretch of the Suwannee River in north-central Florida (USA) and the karstic upper Floridan aquifer. The one-layer transient groundwater flow model was calibrated using groundwater levels from 59 monitoring wells, and fluxes were compared to the exchange calculated from discharge data. Both the numerical modeling and the discharge analysis suggest that the Suwannee River loses water under both low- and high-stage conditions. River losses appear greatest at the inside of a large meander, and the former river water may continue across the meander within the aquifer rather than return to the river. In addition, the numerical model calibration reveals that aquifer transmissivity is elevated within this large meander, which is consistent with enhanced dissolution due to river losses. The results show the importance of temporal and spatial variations in head gradients to exchange between streams and karst aquifers and dissolution of the aquifers.

  18. Heart Rate and Liking During "Kinect Boxing" Versus "Wii Boxing": The Potential for Enjoyable Vigorous Physical Activity Videogames.

    Science.gov (United States)

    Sanders, Gabriel J; Peacock, Corey A; Barkley, Jacob E; Gish, Brian; Brock, Scott; Volpenhein, Josh

    2015-08-01

    Nintendo(®) (Kyoto, Japan) "Wii™ Sports Boxing" ("Wii Boxing") and Xbox(®) (Microsoft, Redmond, WA) "Kinect(®) Sports Boxing" ("Kinect Boxing") are both boxing simulation videogames that are available for two different active videogame (AVG) systems. Although these AVGs are similar, the style of gameplay required is different (i.e., upper body only versus total body movements) and may alter physical activity intensity and one's preference for playing one game over the other. AVGs that elicit the greatest physiologic challenge and are preferred by users should be identified in an effort to enhance the efficacy of physical activity interventions and programs that include AVGs. The mean heart rate (HRmean) and peak heart rate (HRpeak) for 27 adults (22.7±4.2 years old) were recorded during four 10-minute conditions: seated rest, treadmill walking at 3 miles/hour, "Wii Boxing," and "Kinect Boxing." Upon completion of all four conditions, participants indicated which condition they preferred, and HRmean and HRpeak were calculated as a percentage of age-predicted maximum heart rate to classify physical activity intensity for the three activity conditions (treadmill, "Wii Boxing," and "Kinect Boxing"). "Kinect Boxing" significantly (P<0.001) increased percentage HRmean (64.1±1.6 percent of age-predicted maximum) and percentage HRpeak (76.5±1.9 percent) above all other conditions: Wii HRmean, 53.0±1.2 percent; Wii HRpeak, 61.8±1.5 percent; treadmill HRmean, 52.4±1.2 percent; treadmill HRpeak, 55.2±2.2 percent. Percentage HRpeak for "Kinect Boxing" was great enough to be considered a vigorous-intensity physical activity. There was no difference (P=0.55) in percentage HRmean between "Wii Boxing" and treadmill walking. Participants also preferred "Kinect Boxing" (P<0.001; n=26) to all other conditions ("Wii Boxing," n=1; treadmill n=0). "Kinect Boxing" was the most preferred and the only condition that was physiologically challenging enough to be classified as a

  19. Visual pigments of the box jellyfish species Chiropsella bronzie

    DEFF Research Database (Denmark)

    O*Connor, Megan; Garm, Anders Lydik; Marshall, Justin

    2010-01-01

    Box jellyfish (Cubomedusae) possess a unique visual system comprising 24 eyes of four morphological types. Moreover, box jellyfish display several visually guided behaviours, including obstacle avoidance and light-shaft attractance. It is largely unknown what kind of visual information box...... results strongly indicate that only one type of visual pigment is present in the upper and lower lens eyes with a peak absorbance of approximately 510 nm. Additionally, the visual pigment appears to undergo bleaching, similar to that of vertebrate visual pigments....

  20. Upper respiratory tract (image)

    Science.gov (United States)

    The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...

  1. Use of '15N/14N ratio to evaluate the anthropogenic source of nitrates in surface and groundwaters in the upper Orontes Basin (central Syria)

    International Nuclear Information System (INIS)

    Kattan, Z.

    2002-01-01

    The 15 N/ 14 N ratio of dissolved nitrogen species has long been used for the identification of the different sources of nitrate contamination of water systems. This study, which aims at providing a practical example of the utility of the 15 N stable isotope in identifying the natural and anthropogenic sources of nitrate in surface and groundwaters in the upper Orontes Basin, was implemented within the framework of the IAEA Regional technical project entitled 'Isotope Hydrology Techniques in Water Resources Management (RAW/8/002)'. The selected area for this work is located in the upper part of the Orontes River Basin, which occupies the central zone of the Syrian territories. This heavily populated region is characterized by intensive agricultural and industrial developments. Hence, the influence of the growing domestic activities is reflected by rapidly deteriorating of the surface and groundwaters qualities in this area

  2. Rule base system in developing groundwater pollution expert system: predicting model

    International Nuclear Information System (INIS)

    Mongkon Ta-oun; Mohamed Daud; Mohd Zohadie Bardaie; Shamshuddin Jusop

    2000-01-01

    New techniques are now available for use in the protection of the environment. One of these techniques is the use of expert system for prediction groundwater pollution potential. Groundwater Pollution Expert system (GWPES) rules are a collection of principles and procedures used to know the comprehension of groundwater pollution prediction. The rules of groundwater pollution expert system in the form of questions, choice, radio-box, slide rule, button or frame are translated in to IF-THEN rule. The rules including of variables, types, domains and descriptions were used by the function of wxCLIPS (C Language Integrate Production System) expert system shell. (author)

  3. Assessing the cost of groundwater pollution: the case of diffuse agricultural pollution in the Upper Rhine valley aquifer.

    Science.gov (United States)

    Rinaudo, J-D; Arnal, C; Blanchin, R; Elsass, P; Meilhac, A; Loubier, S

    2005-01-01

    This paper presents an assessment of the costs of diffuse groundwater pollution by nitrates and pesticides for the industrial and the drinking water sectors in the Upper Rhine valley, France. Pollution costs which occurred between 1988 and 2002 are described and assessed using the avoidance cost method. Geo-statistical methods (kriging) are then used to construct three scenarios of nitrate concentration evolution. The economic consequences of each scenario are then assessed. The estimates obtained are compared with the results of a contingent valuation study carried out in the same study area ten years earlier.

  4. Behavior of Reinforced Concrete Hybrid Trapezoidal Box Girders Using Ordinary and Highly Strength Concrete

    Directory of Open Access Journals (Sweden)

    Nameer A. Alawsh

    2018-03-01

    Full Text Available In this paper, the general behavior of reinforced concrete hybrid box girders is studied by experimental and numerical investigation. Experimental work is included casting monolithically five specimens of box girders with trapezoidal cross section and testing it as simply supported under two point loading. Two specimens were cast as homogenous box girders (full normal strength concrete (NSC (about 35 MPa and full high strength concrete (HSC (about 55 MPa and three specimens were cast as hybrid box girders (HSC in upper flange only, HSC in upper flange and half depth of webs, and HSC in bottom flange and total depth of webs. Experimental results showed significant effects of concrete hybridization on the structural behavior of box girders specimens such as: cracking loads, cracking patterns, ultimate strengths, and failure modes. The ultimate strength of Hybrid box girders increased by 23% as average when compared with the homogenous box girder (full NSC and decreased by 9% as average when compared with homogenous box girder (full HSC. In numerical investigation, the tested specimens were modeled and analyzed using three dimensional non-linear finite element analysis. The analysis was carried out by using a computer program (ANSYS V16.1. The numerical results showed an acceptable agreement with the experimental work with difference about (3.12% and 9.588% as average for ultimate load and deflection, respectively.

  5. A generalised groundwater flow equation using the concept of non ...

    African Journals Online (AJOL)

    2006-01-01

    Jan 1, 2006 ... 2 Institute for Groundwater Studies, University of the Free State, PO Box 339, Bloemfontein, South Africa. Abstract ... Keywords: porous media, Darcy Law, integro-differential equations .... f(x) satisfies the boundary conditions.

  6. Seismic stability of a standalone glove box structure

    Energy Technology Data Exchange (ETDEWEB)

    Saraswat, A., E-mail: anupams@barc.gov.in [Bhabha Atomic Research Centre, Mumbai (India); Reddy, G.R. [Bhabha Atomic Research Centre, Mumbai (India); Ghosh, S. [Indian Institute of Technology Bombay, Mumbai (India); Ghosh, A.K.; Kumar, Arun [Bhabha Atomic Research Centre, Mumbai (India)

    2014-09-15

    Highlights: • Glove box is a leak tight, safety related structure used for handling radiotoxic materials. • To study the seismic performance of a freestanding glove box, extensive shake table testing has been carried out. • Glove box maintained structural integrity and leak tightness up to design basis earthquake loading. • Detailed three-dimensional finite element model of the structure is developed and analyzed by using direct time integration methods. • Simplified numerical method is proposed and successfully applied, to quickly estimate sliding displacement and determine upper bounds for it. - Abstract: In a nuclear fuel cycle facility, radiotoxic materials are being handled in freestanding leak tight enclosures called glove boxes (GBs). These glove boxes act as a primary confinement for the radiotoxic materials. Glove boxes are designed as per codal requirements for class I component. They are designed to withstand extreme level of earthquake loading with a return period of 10,000 years. To evaluate seismic performance of the glove box, there is a need to check the stability (sliding and overturning), structural integrity (stresses and strains) and leak tightness under earthquake loading. Extensive shake table experiments were conducted on a single standalone glove box. Actual laboratory conditions were simulated during testing to check the response. After extensive shake table testing, glove box structure was also analyzed using finite element (FE) software. Detailed three-dimensional model of glove box structure was developed and analyzed using nonlinear time history method. It was observed that finite element methods could be utilized to accurately predict dynamic response of glove box structure. This paper discusses the details and results of shake table testing and methodology used for modelling and analysing freestanding glove box structure under seismic loading. In addition, simplified numerical procedure, developed using energy conservation

  7. Seismic stability of a standalone glove box structure

    International Nuclear Information System (INIS)

    Saraswat, A.; Reddy, G.R.; Ghosh, S.; Ghosh, A.K.; Kumar, Arun

    2014-01-01

    Highlights: • Glove box is a leak tight, safety related structure used for handling radiotoxic materials. • To study the seismic performance of a freestanding glove box, extensive shake table testing has been carried out. • Glove box maintained structural integrity and leak tightness up to design basis earthquake loading. • Detailed three-dimensional finite element model of the structure is developed and analyzed by using direct time integration methods. • Simplified numerical method is proposed and successfully applied, to quickly estimate sliding displacement and determine upper bounds for it. - Abstract: In a nuclear fuel cycle facility, radiotoxic materials are being handled in freestanding leak tight enclosures called glove boxes (GBs). These glove boxes act as a primary confinement for the radiotoxic materials. Glove boxes are designed as per codal requirements for class I component. They are designed to withstand extreme level of earthquake loading with a return period of 10,000 years. To evaluate seismic performance of the glove box, there is a need to check the stability (sliding and overturning), structural integrity (stresses and strains) and leak tightness under earthquake loading. Extensive shake table experiments were conducted on a single standalone glove box. Actual laboratory conditions were simulated during testing to check the response. After extensive shake table testing, glove box structure was also analyzed using finite element (FE) software. Detailed three-dimensional model of glove box structure was developed and analyzed using nonlinear time history method. It was observed that finite element methods could be utilized to accurately predict dynamic response of glove box structure. This paper discusses the details and results of shake table testing and methodology used for modelling and analysing freestanding glove box structure under seismic loading. In addition, simplified numerical procedure, developed using energy conservation

  8. Measurement of Radon concentration in groundwater by technique of nuclear track detector

    International Nuclear Information System (INIS)

    Trinh Van Giap; Nguyen Manh Hung; Dang Duc Nhan

    2000-01-01

    A method for measuring radon concentration in groundwater using nuclear track detector LR-115 stripping is reported. The radon-monitoring device in groundwater is a small box with two pieces of nuclear track detector and all these materials is placed in a plastic bag made by polyethylene. It is very suitable to measure radon concentration in groundwater well in long term. Alpha tracks produced by radon and it daughter on nuclear track detector is counted automatically by spark counting method. The paper also presents some results of radon concentration in some groundwater well and mineral water sources. (author)

  9. Groundwater Discharge to Upper Barataria Basin Driven by Mississippi River Stage

    Science.gov (United States)

    Cable, J. E.; Kim, J.; Johannesson, K. H.; Kolker, A.; Telfeyan, K.; Breaux, A.

    2017-12-01

    Groundwater flow into deltaic wetlands occurs despite the heterogeneous and anisotropic depositional environment of deltas. Along the Mississippi River this groundwater flow is augmented by the vast alluvial aquifer and the levees which confine the river to a zone much more narrow than the historical floodplain. The effect of the levees has been to force the river stage to as much as 10 m above the adjacent back-levee wetlands. Consequently, the head difference created by higher river stages can drive groundwater flow into these wetlands, especially during flood seasons. We measured Rn-222 in the surface waters of a bayou draining a bottomland hardwood swamp in the lower Mississippi River valley over a 14-month period. With a half-life of 3.83 days and its conservative geochemical behavior, Rn-222 is a well-known tracer for groundwater inputs in both fresh and marine environments. Transects from the mouth to the headwaters of the bayou were monitored for Rn-222 in real-time using Rad-7s on a semi-monthly basis. We found that Rn-222 decreased exponentially from the swamp at the headwaters to the mouth of the bayou. Using a mass balance approach, we calculated groundwater inputs to the bayou headwaters and compared these discharge estimates to variations in Mississippi River stage. Groundwater inputs to the Barataria Basin, Louisiana, represent a significant fraction of the freshwater budget of the basin. The flow appears to occur through the sandy Point Bar Aquifer that lies adjacent to the river and underlies many of the freshwater swamps of the Basin. Tracer measurements throughout the Basin in these swamp areas appear to confirm our hypothesis about the outlet for groundwater in this deltaic environment.

  10. Estimation of groundwater resources in the upper Guadiana basin together with some observations concerning the definitions of renewable and available resources; Cuantificacion de recursos hidricos subterraneos en la cuenca alta del Guadiana. Consideraciones respecto a las definiciones de recursos renovables y disponibles

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Cortina, L.; Mejias Moreno, M.; Diaz Munoz, J. A.; Morales Garcia, R.; Ruiz Hernandez, J. M.

    2011-07-01

    The European Union Water Framework Directive requires the quantification of groundwater resources according to the new hydrogeological classification into groundwater bodies (GWBs). This evaluation is to be made taking into account the established criteria deriving from the directive, which requires an estimation of the so-called available groundwater resources for each GWB. The quantification of detailed water balances for each GWB of the upper Guadiana basin has been undertaken bearing in mind different historical and current conditions. This study further examines the definitions made by the official documents concerning hydrological planning with regard to renewable and available groundwater resources, and attempts to apply them to the upper Guadiana basin. In the light of new problems arising with regard to the hydrogeological criteria applied to these definitions, a revision of the defined concepts is suggested. This paper also analyses the possibilities of future evolution of the hydrological system in the upper Guadiana basin, and provides some recommendations for groundwater exploitation with the aim of achieving the environmental recovery of the system. (Author) 19 refs.

  11. Surface-water and groundwater interactions in an extensively mined watershed, upper Schuylkill River, Pennsylvania, USA

    Science.gov (United States)

    Cravotta,, Charles A.; Goode, Daniel J.; Bartles, Michael D.; Risser, Dennis W.; Galeone, Daniel G.

    2014-01-01

    Streams crossing underground coal mines may lose flow, while abandoned mine drainage (AMD) restores flow downstream. During 2005-12, discharge from the Pine Knot Mine Tunnel, the largest AMD source in the upper Schuylkill River Basin, had near-neutral pH and elevated concentrations of iron, manganese, and sulfate. Discharge from the tunnel responded rapidly to recharge but exhibited a prolonged recession compared to nearby streams, consistent with rapid infiltration and slow release of groundwater from the mine. Downstream of the AMD, dissolved iron was attenuated by oxidation and precipitation while dissolved CO2 degassed and pH increased. During high-flow conditions, the AMD and downstream waters exhibited decreased pH, iron, and sulfate with increased acidity that were modeled by mixing net-alkaline AMD with recharge or runoff having low ionic strength and low pH. Attenuation of dissolved iron within the river was least effective during high-flow conditions because of decreased transport time coupled with inhibitory effects of low pH on oxidation kinetics. A numerical model of groundwater flow was calibrated using groundwater levels in the Pine Knot Mine and discharge data for the Pine Knot Mine Tunnel and the West Branch Schuylkill River during a snowmelt event in January 2012. Although the calibrated model indicated substantial recharge to the mine complex took place away from streams, simulation of rapid changes in mine pool level and tunnel discharge during a high flow event in May 2012 required a source of direct recharge to the Pine Knot Mine. Such recharge produced small changes in mine pool level and rapid changes in tunnel flow rate because of extensive unsaturated storage capacity and high transmissivity within the mine complex. Thus, elimination of stream leakage could have a small effect on the annual discharge from the tunnel, but a large effect on peak discharge and associated water quality in streams.

  12. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant: Data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1991-06-01

    This report is a detailed assessment of groundwater quality at several hazardous waste-management facilities associated with the Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. The sites are located in an area defined as the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three hydrogeologic regimes that have been established at the Y-12 Plant in an effort to unify and coordinate site-specific monitoring activities for planning and reporting purposes. Section 2.0 contains background information and a discussion of the 1990 program objectives. An overview of the complex hydrogeologic system in the UEFPCHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1990 assessment data, a review of groundwater geochemistry and background water quality, detailed descriptions of groundwater contaminant plumes, and a discussion regarding the quality of groundwater exiting the UEFPCHR are presented in Section 4.0. Findings of the 1990 assessment program are summarized in Section 5.0. Modifications to the assessment monitoring program proposed for 1991 are presented in Section 6.0, and a list of references (Section 7.0) concludes the report. 20 refs., 23 figs., 10 tabs

  13. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: A tool for assessing groundwater discharge vulnerability

    Science.gov (United States)

    Solder, John; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.

    2016-01-01

    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2−10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  14. Hydrogeology and groundwater quality of Highlands County, Florida

    Science.gov (United States)

    Spechler, Rick M.

    2010-01-01

    Groundwater is the main source of water supply in Highlands County, Florida. As the demand for water in the county increases, additional information about local groundwater resources is needed to manage and develop the water supply effectively. To address the need for additional data, a study was conducted to evaluate the hydrogeology and groundwater quality of Highlands County. Total groundwater use in Highlands County has increased steadily since 1965. Total groundwater withdrawals increased from about 37 million gallons per day in 1965 to about 107 million gallons per day in 2005. Much of this increase in water use is related to agricultural activities, especially citrus cultivation, which increased more than 300 percent from 1965 to 2005. Highlands County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer, which is underlain by the intermediate aquifer system/intermediate confining unit. The lowermost hydrogeologic unit is the Floridan aquifer system, which consists of the Upper Floridan aquifer, as many as three middle confining units, and the Lower Floridan aquifer. The surficial aquifer consists primarily of fine-to-medium grained quartz sand with varying amounts of clay and silt. The aquifer system is unconfined and underlies the entire county. The thickness of the surficial aquifer is highly variable, ranging from less than 50 to more than 300 feet. Groundwater in the surficial aquifer is recharged primarily by precipitation, but also by septic tanks, irrigation from wells, seepage from lakes and streams, and the lateral groundwater inflow from adjacent areas. The intermediate aquifer system/intermediate confining unit acts as a confining layer (except where breached by sinkholes) that restricts the vertical movement of water between the surficial aquifer and the underlying Upper Floridan aquifer. The sediments have varying degrees of permeability and consist of permeable limestone, dolostone, or

  15. Study of the hydrodynamic of groundwater karst system of Laraos and Alis, upper basin of the Canete river using environmental isotopes

    International Nuclear Information System (INIS)

    Valencia, Jacinto; Mamani, Enoc; Magina, Jose

    2014-01-01

    In this study, seven water samples have been characterized, collected from the upper Canete river micro-basins Laraos and Alis. They were analyzed by Oxygen-18 (δ18O), deuterium (δ2H) and radioactive tritium (3H) using the technique of laser spectrometry and characterized in order to establish the recharge-discharge relationship karst system under study, formed by the dissolution of limestone from the Cretaceous age formation Jumasha, and forming watertight groundwater that by connection and hydraulic gradient of fractures discharge into springs. The interpretation of the isotopic analysis performed according to the diagram δ18O/δ2H indicates that the springs are originated from infiltrating rainwater into the karst system due to the structural design and make the connection between micro-basins. Groundwater has a different dynamic, and to a lesser extent, receives contributions from waters lagoons, this fact makes them vulnerable to contamination. In the karst hydrogeological system, groundwater from micro-basins has a dynamic part of water with a long residence time with 1.8 units of tritium (RC-7) and another water dynamic of short residence time of 3 and 3.2 tritium units (RC-4, RC-5, RC-6). (authors).

  16. Groundwater Quality Assessment in the Upper East Region of Ghana

    Science.gov (United States)

    Apambire, W. B.

    2001-05-01

    In Ghana, West Africa, fluoride occurs as a natural pollutant in some groundwaters, while the presence of isolated high levels of nitrate and arsenic in groundwater is due to human activities such as poor sanitation, garbage disposal and mining practices. The challenge for Ghana is to ensure that groundwater quality and environmental adversities such as water level decline are not compromised by attempts to increase water quantity. Concentrations of groundwater fluoride in the study area range from 0.11 to 4.60 mg/L, with the highest concentrations found in the fluorine-enriched Bongo granitoids. Eighty-five out of 400 wells sampled have fluoride concentrations above the World Health Organization maximum guideline value of 1.5 mg/L and thus causes dental fluorosis in children drinking from the wells. The distribution of fluoride in groundwater is highly related to the distribution of dental fluorosis in the UER. Nitrate concentrations ranged from 0.03 to 211.00 mg/L and the mean value was 16.11 mg/L. Twenty-one samples had concentrations in excess of the guideline value of 45 mg/L. Consumption of water in excess of the guideline value, by infants, may cause an infantile disease known as methaemoglobinaemia. It is inferred that groundwaters with exceptionally high NO3 values have been contaminated principally through human activities such as farming and waste disposal. This is because wells with high nitrate concentrations are all located in and around towns and sizable villages. Also, there is good correlation between Cl and NO3 (r = +0.74), suggesting that both elements come from the same sources of pollution. Only two well waters had concentrations of iron in excess of the guideline value of 0.3 mg/L. These samples come from shallow hand-dug wells. The maximum concentration of iron in groundwaters is 3.5 mg/L. The recommended guideline limit for Al in drinking water is 0.2 mg/L; two wells had Al concentrations of 12.0 and 4.0 mg/L, respectively. Other high

  17. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Voytek, Emily B.; Lane, John W.

    2016-01-01

    The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers), thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling), and geophysical (electromagnetic-induction) methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared) may be useful in locating and protecting other currently unknown mussel populations.

  18. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon in the upper reaches of the Delaware River, northeastern USA

    Directory of Open Access Journals (Sweden)

    D. O. Rosenberry

    2016-10-01

    Full Text Available The remaining populations of the endangered dwarf wedgemussel (DWM (Alasmidonta heterodon in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers, thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling, and geophysical (electromagnetic-induction methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared may be useful in locating and protecting other currently unknown mussel populations.

  19. Hydrogeologic investigation and simulation of ground-water flow in the Upper Floridan Aquifer of north-central Florida and southwestern Georgia and delineation of contributing areas for selected city of Tallahassee, Florida, water-supply wells

    Science.gov (United States)

    Davis, J. Hal

    1996-01-01

    A 4-year investigation of the Upper Floridan aquifer and ground-water flow system in Leon County, Florida, and surrounding counties of north-central Florida and southwestern Georgia began in 1990. The purpose of the investigation was to describe the ground-water flow system and to delineate the contributing areas to selected City of Tallahassee, Florida, water-supply wells. The investigation was prompted by the detection of low levels of tetrachloroethylene in ground-water samples collected from several of the city's water-supply wells. Hydrologic data and previous studies indicate that; ground-water flow within the Upper Floridan aquifer can be considered steady-state; the Upper Floridan aquifer is a single water-bearing unit; recharge is from precipitation; and that discharge occurs as spring flow, leakage to rivers, leakage to the Gulf of Mexico, and pumpage. Measured transmissivities of the aquifer ranged from 1,300 ft2/d (feet squared per day) to 1,300,000 ft2/d. Steady-state ground-water flow in the Upper Floridan aquifer was simulated using a three-dimensional ground- water flow model. Transmissivities ranging from less than 5,000 ft2/d to greater than 11,000,000 ft2/d were required to calibrate to observed conditions. Recharge rates used in the model ranged from 18.0 inches per year in areas where the aquifer was unconfined to less than 2 inches per year in broad areas where the aquifer was confined. Contributing areas to five Tallahassee water-supply wells were simulated by particle- tracking techniques. Particles were seeded in model cells containing pumping wells then tracked backwards in time toward recharge areas. The contributing area for each well was simulated twice, once assuming a porosity of 25 percent and once assuming a porosity of 5 percent. A porosity of 25 percent is considered a reasonable average value for the Upper Floridan aquifer; the 5 percent porosity simulated the movement of ground-water through only solution-enhanced bedding plains

  20. Microbial community response reveals underlying mechanism of industrial-scale manganese sand biofilters used for the simultaneous removal of iron, manganese and ammonia from groundwater.

    Science.gov (United States)

    Zhang, Yu; Sun, Rui; Zhou, Aijuan; Zhang, Jiaguang; Luan, Yunbo; Jia, Jianna; Yue, Xiuping; Zhang, Jie

    2018-01-08

    Most studies have employed aeration-biofiltration process for the simultaneous removal of iron, manganese and ammonia in groundwater. However, what's inside the "black box", i.e., the potential contribution of functional microorganisms behavior and interactions have seldom been investigated. Moreover, little attention has been paid to the correlations between environmental variables and functional microorganisms. In this study, the performance of industrial-scale biofilters for the contaminated groundwater treatment was studied. The effluent were all far below the permitted concentration level in the current drinking water standard. Pyrosequencing illustrated that shifts in microbial community structure were observed in the microbial samples from different depths of filter. Microbial networks showed that the microbial community structure in the middle- and deep-layer samples was similar, in which a wide range of manganese-oxidizing bacteria was identified. By contrast, canonical correlation analysis showed that the bacteria capable of ammonia-oxidizing and nitrification was enriched in the upper-layer, i.e., Propionibacterium, Nitrosomonas, Nitrosomonas and Candidatus Nitrotoga. The stable biofilm on the biofilter media, created by certain microorganisms from the groundwater microflora, played a crucial role in the simultaneous removal of the three pollutants.

  1. Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Y., E-mail: yann.lucas@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Schmitt, A.D., E-mail: anne-desiree.schmitt@univ-fcomte.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)] [Universite de Franche-Comte et CNRS-UMR 6249, Chrono-Environnement, 16, Route de Gray, 25030 Besancon Cedex (France); Chabaux, F., E-mail: francois.chabaux@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Clement, A.; Fritz, B. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Elsass, Ph. [BRGM, GEODERIS, 1, rue Claude Chappe, 57070 Metz (France); Durand, S. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)

    2010-11-15

    Research highlights: {yields} Major and trace elements along with strontium and uranium isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect a conservative mixing. {yields} A coupled hydrogeochemical model demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process. {yields} The model requires only a small amount of montmorillonite. {yields} It is necessary to consider the pollution history to explain the important chloride, sodium and calcium concentration modifications. {yields} The model shows that the rapidity of the cationic exchange reactions insures a reversibility of the cation fixation on clays in the aquifer. - Abstract: In the southern Upper Rhine Valley, groundwater has undergone intensive saline pollution caused by the infiltration of mining brines, a consequence of potash extraction carried out during the 20th century. Major and trace elements along with Sr and U isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect conservative mixing between saline waters resulting from the dissolution of waste heaps and one or more unpolluted end-members. The results imply the occurrence of interactions between host rocks and polluted waters, and they suggest that cationic exchange mechanisms are the primary controlling process. A coupled hydrogeochemical model has been developed with the numerical code KIRMAT, which demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process controlling the geochemical evolution of the groundwater. The model requires only a small amount of montmorillonite (between 0.75% and 2.25%), which is in agreement with the observed mineralogical composition of the aquifer. The model also proves

  2. REE and Y in groundwater in the upper 1.2 km of Proterozoic granitoids (Eastern Sweden) - Assessing the role of composition and origin of groundwaters, geochemistry of fractures, and organic/inorganic aqueous complexation

    Science.gov (United States)

    Mathurin, Frédéric A.; Åström, Mats E.; Drake, Henrik; Maskenskaya, Olga M.; Kalinowski, Birgitta E.

    2014-11-01

    Yttrium and rare earth elements (YREEs) are studied in groundwater in the shallow regolith aquifer and the fracture networks of the upper 1.2 km of Paleoproterozoic granitoids in boreal Europe (Laxemar and Forsmark areas, Sweden). The study includes groundwater sampled via a total of 34 shallow boreholes reaching the bottom of the regolith aquifer, and 72 deep boreholes with equipment designed for retrieval of representative groundwater at controlled depths in the fractured bedrock. The groundwater composition differs substantially between regolith and fracture groundwater and between areas, which affects the dissolved YREE features, including concentrations and NASC normalized patterns. In the fresh groundwater in the regolith aquifers, highest YREE concentrations occur (10th and 90th percentile; Laxemar: 4.4-82 μg L-1; Forsmark: 1.9-19 μg L-1), especially in the slightly acidic groundwater (pH: 6.3-7.2 - Laxemar), where the normalized YREE patterns are slightly enriched in light REEs (LaNASC/YNASC: 1.1-2.4). In the recharge areas, where redox potentials of the regolith groundwater is more moderate, negative Ce anomaly (Laxemar: 0.37-0.45; Forsmark: 0.15-0.92) and positive Y anomaly (mainly in Forsmark: 1.0-1.7) are systematically more pronounced than in discharge areas. The significant correlations between the YREE features and dissolved organic carbon, minor elements, and somewhat pH suggest a strong control of humic substances (HSs) together with Al rich colloids and redox sensitive Fe-Mn hydrous precipitates on the dissolved YREE pools. In the bedrock fractures, the groundwater is circumneutral to slightly basic and displays YREE concentrations that are at least one order of magnitude lower than the regolith groundwater, and commonly below detection limit in the deep brackish and saline groundwater, with some exceptions such as La and Y. At intermediate depth (>50 m), where groundwater of meteoric origin percolates, the LaNASC/YNASC values moderately to

  3. Use of environmental tritium in groundwater dating in the upper Jequitibá River Basin, Municipality of Sete Lagoas, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rafael C.; Moreira, Rubens M.; Rocha, Zildete; Linhares, Giovanna M.G.; Duarte, Mayara Pinheiro, E-mail: rcp@cdtn.br, E-mail: rubens@cdtn.br, E-mail: rochaz@cdtn.br, E-mail: gmgl@cdtn.br, E-mail: mpd@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Viana, João Herbert M., E-mail: joao.herbert@embrapa.br [EMBRAPA Milho e Sorgo, Sete Lagoas, MG (Brazil)

    2017-07-01

    Tritium is a natural radioactive isotope that can be used in dating modern groundwater. Due to the increase of this radionuclide content in the atmosphere during the nuclear tests in the 1960s, it became possible to determine the age of recent groundwater. Such a measurement is important inasmuch as it sheds light upon groundwater circulation and the renewability of aquifers. The area where this research was carried out is located at the upper section of the Jequitibá river basin, geologically dominated by limestone rocks of the Bambui Group. At his region the karstic aquifers are responsible for the water supply of the cities of Sete Lagoas and Prudente de Moraes. The tritium activity was determined in samples from wells and the analytic results allowed the calculation of the ages of the water using the Exponential Flow Model, which considers that there was a mixture of more recent waters along the travelled path in the subsoil. The obtained results showed that the water of the deep aquifer is older, between 200 and 60 years, while waters of the free shallow aquifer are less than 37 years old. These results indicate the renewal time in the aquifers and can contribute to the better management of the water resources in regions with water availability problems. (author)

  4. Adaptation of the HBV model for the study of drought propagation in European catchments

    Science.gov (United States)

    van Loon, A. F.; van Lanen, H. A. J.; Seibert, J.; Torfs, P. J. J. F.

    2009-04-01

    Drought propagation is the conversion of a meteorological drought signal into a hydrological drought (e.g. groundwater and streamflow) as it moves through the subsurface part of the hydrological cycle. The lag, attenuation and possibly pooling of parts of the signal are dependent on climate and catchment characteristics. The understanding of processes underlying drought propagation is still very limited. Our aim is to study these processes in small catchments across Europe with different climate conditions and physical structures (e.g. hard rock, porous rock, flat areas, steep slopes, snow, lakes). As measurements of soil moisture and groundwater storage are normally scarce, simulation of these variables using a lumped hydrological model is needed. However, although a simple model is preferable, many conceptual rainfall-runoff models are not suitable for this purpose because of their focus on fast reactions and therefore unrealistic black box approach of the soil moisture and groundwater system. We studied the applicability of the well-known semi-distributed rainfall-runoff model HBV for drought propagation research. The results show that HBV reproduces observed discharges fairly well. However, in simulating groundwater storage in dry periods, HBV has some conceptual weaknesses: 1) surface runoff is approximated by a quick flow component through the upper groundwater box; 2) the storage in the upper groundwater box has no upper limit; 3) lakes are simulated as part of the lower groundwater box; 4) the percolation from the upper to the lower groundwater box is not continuous, but either zero or constant. So, adaptation of the HBV model structure was needed to be able to simulate realistic groundwater storage in dry periods. The HBV Light model (Seibert et al., 2000) was used as basis for this work. As the snow and soil routines of this model have proven their value in previous (drought) studies, these routines are left unchanged. The lower part of HBV Light, the

  5. Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Yobbi, D.K.; McBride, W.S.

    2009-01-01

    A study of the Withlacoochee River watershed in west-central Florida was conducted from October 2003 to March 2007 to gain a better understanding of the hydrology and surface-water and groundwater interactions along the river. The Withlacoochee River originates in the Green Swamp area in north-central Polk County and flows northerly through seven counties, emptying into the Gulf of Mexico. This study includes only the part of the watershed located between the headwaters in the Green Swamp and the U.S. Geological Survey gaging station near Holder, Florida. The Withlacoochee River within the study area is about 108 miles long and drains about 1,820 square miles. The Withlacoochee River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the degree of confinement between the Upper Florida aquifer and the surficial aquifer is highly variable throughout the watershed. The potential for movement of water from the surface or shallow deposits to deeper deposits, or from deeper deposits to the shallow deposits, exists throughout the Withlacoochee River watershed. Water levels were higher in deeper Upper Floridan aquifer wells than in shallow Upper Floridan aquifer wells or surficial aquifer wells at 11 of 19 paired or nested well sites, indicating potential for discharge to the surface-water system. Water levels were higher in shallow Upper Floridan aquifer or surficial aquifer wells than in deeper Upper Floridan aquifer wells at five other sites, indicating potential for recharge to the deeper Upper Floridan aquifer. Water levels in the surficial aquifer and Upper Floridan aquifer wells at the remaining three sites were virtually the same, indicating little or no confinement at the sites. Potentiometric-surface maps of the Upper Floridan aquifer indicate the pattern of groundwater

  6. The energetics of semicontact 3 x 2-min amateur boxing.

    Science.gov (United States)

    Davis, Philip; Leithäuser, Renate M; Beneke, Ralph

    2014-03-01

    The energy expenditure of amateur boxing is unknown. Total metabolic cost (Wtot) as an aggregate of aerobic (Waer), anaerobic lactic (W[lactate]), and anaerobic alactic (WPCr) energy of a 3 × 2-min semicontact amateur boxing bout was analyzed. Ten boxers (mean ± SD [lower/upper 95% confidence intervals]) age 23.7 ± 4.1 (20.8/26.6) y, height 180.2 ± 7.0 (175.2/185.2) cm, body mass 70.6 ± 5.7 (66.5/74.7) kg performed a semicontact bout against handheld pads created from previously analyzed video footage of competitive bouts. Net metabolic energy was calculated using respiratory gases and blood [lactate]. Waer, 526.0 ± 57.1 (485.1/566.9) kJ, was higher (P boxing is predominantly aerobic. They also highlight the importance of a highly developed aerobic capacity as a prerequisite of a high activity rate during rounds and recovery of the high-energy phosphate system during breaks as interrelated requirements of successful boxing.

  7. Y-12 Groundwater Protection Program Calendar Year 2000 Groundwater Monitoring Data Evaluation Report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee; FINAL

    International Nuclear Information System (INIS)

    None

    2001-01-01

    This report presents an evaluation of the groundwater and surface water monitoring data obtained during calendar year (CY) 2000 in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The East Fork Regime encompasses many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee. Prepared under the auspices of the Y-12 Groundwater Protection Program (GWPP), this report addresses applicable provisions of DOE Order 5400.1 (General Environmental Protection Program) that require: (1) an evaluation of the quantity and quality of groundwater and surface water in areas that are, or could be, affected by Y-12 operations, (2) an evaluation of groundwater and surface water quality in areas where contaminants from Y-12 operations are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) an evaluation of long-term trends in groundwater quality at Y-12. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1 (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). Illustrations (maps and trend graphs) are presented in Appendix A. Brief data summary tables referenced in each section are contained within the text; supplemental information and extensive data tables are provided in Appendix B

  8. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  9. Application of helium isotopes in shallow groundwaters for geothermal energy exploration in the Upper Rhine Graben

    International Nuclear Information System (INIS)

    Freundt, Florian

    2017-01-01

    The helium isotope system is an established tool in hydrology for identifying mantle fluids in deep aquifers. This study applies the helium tracer system for the first time in shallow, unconfined aquifers of the Upper Rhine Graben. The Graben is a part of the Cenozoic Rift system of Western and Central Europe, a continental rift zone with unusually high geothermal gradients, making it an ideal region of Germany for geothermal energy development. The aim of this study is to develop a suite of natural groundwater tracers able to achieve a cost and effort reduction in geothermal prospection. The 3 He/ 4 He-ratio is therefore applied, as part of a multi-tracer approach including 3 H, δ 18 O, δ 2 H, δ 13 C, 14 C and 222 Rn, to identify and locate fault zones with suitable permeabilities for power plant operation. Three target areas along the graben were studied, each located on one of the main fault lines. A mantle-derived helium signature could be identified and separated from tritiogenic helium in a shallow aquifer in the north-west of the Graben. The mixing component of mantle-derived fluid in the shallow groundwater is calculated to reach up to 5%, based on the analysis of the 3 He/ 4 He isotope system. The employed method proves that the local permeability of the fault zone is high. The origin of the locally occurring upwelling of salinated water can be redetermined by the data.

  10. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in three different land-use areas, 1996-98

    Science.gov (United States)

    Fong, Alison L.

    2000-01-01

    The surficial sand and gravel aquifer is susceptible to effects from land-use in the Upper Mississippi River Basin study unit of the National Water-Quality Assessment (NAWQA) Program. The purpose of this report is to describe the ground-water quality and the assessment of how different land-uses affect the shallow ground-water quality in the surficial sand and gravel aquifer. Ground-water quality was compared in three different land-use areas; an urban residential/commercial area on the edge of the Anoka Sand Plain in a portion of the Twin Cities metropolitan area (urban study), an intensive agricultural area in the Anoka Sand Plain (agricultural study), and a forested area in the Bemidji-Bagley Sand Plain (forested study). Ground water was sampled and analyzed for about 200 constituents, including physical parameters, major ions, selected trace elements, nutrients, dissolved organic carbon, selected pesticides, selected volatile organic compounds (VOCs), and tritium. The urban study wells were sampled during June and July 1996. The agricultural study wells were sampled during May and September 1998. The forested study wells were sampled during June 1998.

  11. Shallow groundwater investigations at Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1991-06-01

    The Missouri Department of Natural Resources, Division of Geology and Land Survey (MDNR-DGLS) conducted investigations of the upper aquifer in the vicinity of the abandoned Weldon Spring Chemical Plant in southwest St. Charles County, Missouri. The objective of the investigation was to better define the relationships between precipitation, surface runoff, groundwater recharge and shallow groundwater discharge within the study area, thereby assisting the Department of Energy in designing an appropriate groundwater monitoring plan for the Weldon Spring Site Remedial Action Project. The results of the investigations indicate that the upper aquifer has been affected by karst development but that well developed karst does not exist on or around the site. Dye traces conducted during the study have shown that surface water which leaves the site enters the subsurface in losing streams around the site and travels rapidly to one or more local springs. Upper aquifer recharge areas, constructed from dye trace and potentiometric data, generally follow surface water drainage patterns on the south side of the site, but cross surface-water drainage divides north of the site. Nine springs may receive recharge from site runoff, depending upon the amount of runoff. In addition to these springs, one perennial spring and two intermittent springs to the southwest of the site may receive recharge from site infiltration. 25 refs., 13 figs

  12. Gamma-ray boxes from axion-mediated dark matter

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Gehler, Sergio López; Pato, Miguel; Lee, Hyun Min; Park, Wan-Il

    2013-01-01

    We compute the gamma-ray output of axion-mediated dark matter and derive the corresponding constraints set by recent data. In such scenarios the dark matter candidate is a Dirac fermion that pair-annihilates into axions and/or scalars. Provided that the axion decays (at least partly) into photons, these models naturally give rise to a box-shaped gamma-ray spectrum that may present two distinct phenomenological behaviours: a narrow box, resembling a line at half the dark matter mass, or a wide box, spanning an extensive energy range up to the dark matter mass. Remarkably, we find that in both cases a sizable gamma-ray flux is predicted for a thermal relic without fine-tuning the model parameters nor invoking boost factors. This large output is in line with recent Fermi-LAT observations towards the galactic centre region and is on the verge of being excluded. We then make use of the Fermi-LAT and H.E.S.S. data to derive robust, model-independent upper limits on the dark matter annihilation cross section for the narrow and wide box scenarios. H.E.S.S. constraints, in particular, turn out to match the ones from Fermi-LAT at hundreds of GeV and extend to multi-TeV masses. Future Čerenkov telescopes will likely probe gamma-ray boxes from thermal dark matter relics in the whole multi-TeV range, a region hardly accessible to direct detection, collider searches and other indirect detection strategies

  13. Effects of Sea Level Rise on Groundwater Flow Paths in a Coastal Aquifer System

    Science.gov (United States)

    Morrissey, S. K.; Clark, J. F.; Bennett, M. W.; Richardson, E.; Stute, M.

    2008-05-01

    Changes in groundwater flow in the Floridan aquifer system, South Florida, from the rise in sea level at the end of the last glacial period may be indicative of changes coastal aquifers will experience with continued sea level rise. As sea level rises, the hydraulic head near the coast increases. Coastal aquifers can therefore experience decreased groundwater gradients (increased residence times) and seawater intrusion. Stable isotopes of water, dissolved noble gas temperatures, radiocarbon and He concentrations were analyzed in water collected from 68 wells in the Floridan aquifer system throughout South Florida. Near the recharge area, geochemical data along groundwater flow paths in the Upper Floridan aquifer show a transition from recently recharged groundwater to glacial-aged water. Down gradient from this transition, little variation is apparent in the stable isotopes and noble gas recharge temperatures, indicating that most of the Upper Floridan aquifer contains groundwater recharged during the last glacial period. The rapid 120-meter rise in sea level marking the end of the last glacial period increased the hydraulic head in the Floridan aquifer system near the coast, slowing the flow of groundwater from the recharge area to the ocean and trapping glacial-aged groundwater. The raised sea level also flooded half of the Florida platform and caused seawater to intrude into the Lower Floridan. This circulation of seawater in the Lower Floridan continues today as our data indicate that the groundwater is similar to modern seawater with a freshwater component entering vertically from the recharge area to the Upper Floridan.

  14. Surface and groundwater drought evaluation with respect to aquatic habitat quality in the upper Nitra River Basin in Slovakia

    Science.gov (United States)

    Fendekova, M.; Fendek, M.; Macura, V.; Kralova, J.

    2012-04-01

    Hydrological drought is being broadly studied within last decades in many countries. It is because of increasing frequency of drought periods occurrence also in mild climate conditions, leading to unexpected and undesired consequences for environment and various spheres of the state economy. Drought affects water availability for plants, animals and human society. Natural conditions of drought occurrence are often combined with human activities strengthening drought consequences. Lack of water in the nature, connected to meteorological and hydrological drought occurrence, increases at the same time needs for surface and groundwater in many types of human activities (agriculture, industrial production, electric power generation…). Drought can be identified within the low flow phase of the flow regime. Flow regime is considered for one of the most important conditions influencing quality of the river ecosystems. Occurrence of meteorological, surface and groundwater droughts was analyzed for the upper part of the Nitra River catchment in Slovakia. Drought occurrence was studied in two gauging profiles on the Nitra River - in Klacno and Nedozery, both representing the headwater profiles. The threshold level method was used for groundwater drought analysis. Base flow values were separated from the discharge hydrograms using the HydroOffice 2010 statistical program package. The influence of surface water drought on groundwater level was analyzed. Habitat suitability curves derived according to IFIM methodology were constructed for different fish species at Nedozery profile. The influence of different low flow values from 600 to 150 L/s on fish amount, size and species variability was studied. In the end, the minimum flow, bellow which unfavourable life conditions occur, was estimated. The results showed the necessity of taking into account the ecological parameters when estimating the ecological status of surface water bodies. Such an approach is fully compatible with

  15. Application of helium isotopes in shallow groundwaters for geothermal energy exploration in the Upper Rhine Graben

    Energy Technology Data Exchange (ETDEWEB)

    Freundt, Florian

    2017-07-12

    The helium isotope system is an established tool in hydrology for identifying mantle fluids in deep aquifers. This study applies the helium tracer system for the first time in shallow, unconfined aquifers of the Upper Rhine Graben. The Graben is a part of the Cenozoic Rift system of Western and Central Europe, a continental rift zone with unusually high geothermal gradients, making it an ideal region of Germany for geothermal energy development. The aim of this study is to develop a suite of natural groundwater tracers able to achieve a cost and effort reduction in geothermal prospection. The {sup 3}He/{sup 4}He-ratio is therefore applied, as part of a multi-tracer approach including {sup 3}H, δ{sup 18}O, δ{sup 2}H, δ{sup 13}C, {sup 14}C and {sup 222}Rn, to identify and locate fault zones with suitable permeabilities for power plant operation. Three target areas along the graben were studied, each located on one of the main fault lines. A mantle-derived helium signature could be identified and separated from tritiogenic helium in a shallow aquifer in the north-west of the Graben. The mixing component of mantle-derived fluid in the shallow groundwater is calculated to reach up to 5%, based on the analysis of the {sup 3}He/{sup 4}He isotope system. The employed method proves that the local permeability of the fault zone is high. The origin of the locally occurring upwelling of salinated water can be redetermined by the data.

  16. Sources of groundwater and characteristics of surface-water recharge at Bell, White, and Suwannee Springs, Florida, 2012–13

    Science.gov (United States)

    Stamm, John F.; McBride, W. Scott

    2016-12-21

    Discharge from springs in Florida is sourced from aquifers, such as the Upper Floridan aquifer, which is overlain by an upper confining unit that locally can have properties of an aquifer. Water levels in aquifers are affected by several factors, such as precipitation, recharge, and groundwater withdrawals, which in turn can affect discharge from springs. Therefore, identifying groundwater sources and recharge characteristics can be important in assessing how these factors might affect flows and water levels in springs and can be informative in broader applications such as groundwater modeling. Recharge characteristics include the residence time of water at the surface, apparent age of recharge, and recharge water temperature.The groundwater sources and recharge characteristics of three springs that discharge from the banks of the Suwannee River in northern Florida were assessed for this study: Bell Springs, White Springs, and Suwannee Springs. Sources of groundwater were also assessed for a 150-foot-deep well finished within the Upper Floridan aquifer, hereafter referred to as the UFA well. Water samples were collected for geochemical analyses in November 2012 and October 2013 from the three springs and the UFA well. Samples were analyzed for a suite of major ions, dissolved gases, and isotopes of sulfur, strontium, oxygen, and hydrogen. Daily means of water level and specific conductance at White Springs were continuously recorded from October 2012 through December 2013 by the Suwannee River Water Management District. Suwannee River stage at White Springs was computed on the basis of stage at a U.S. Geological Survey streamgage about 2.4 miles upstream. Water levels in two wells, located about 2.5 miles northwest and 13 miles southeast of White Springs, were also used in the analyses.Major ion concentrations were used to differentiate water from the springs and Upper Floridan aquifer into three groups: Bell Springs, UFA well, and White and Suwannee Springs. When

  17. Calendar Year 1997 Annual Groundwater Monitoring Report For The Upper East Fork Poplar Creek Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation Wd Recovery Act (RCRA) post-closure permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) at the U.S. Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. Issued by the Tennessee Department of Environment and Conservation (TDEC), the PCP defines the RCRA post-closure corrective action monitoring requirements for the portion of the groundwater contaminant plume that has migrated into the East Fork Regime ftom the S-3 Ponds, a closed RCW-regulated former surface impoundment located in Bear Creek Valley near the west end of the Y-12 Plant. In addition to the RCIL4 post-closure corrective action monitoring results, this report contains the groundwater and surface water monitoring data obtained during CY 1997 to fulfill requirements of DOE Order 5400.1.

  18. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China.

    Science.gov (United States)

    Liu, Shan; Qi, Shihua; Luo, Zhaohui; Liu, Fangzhi; Ding, Yang; Huang, Huanfang; Chen, Zhihua; Cheng, Shenggao

    2018-02-01

    Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water-rock-hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water-rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T 2 g 3 ) and upper of Yongningzhen formation (T 1 yn 4 ). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.

  19. Development and application of a groundwater/surface-water flow model using MODFLOW-NWT for the Upper Fox River Basin, southeastern Wisconsin

    Science.gov (United States)

    Feinstein, D.T.; Fienen, M.N.; Kennedy, J.L.; Buchwald, C.A.; Greenwood, M.M.

    2012-01-01

    The Fox River is a 199-mile-long tributary to the Illinois River within the Mississippi River Basin in the states of Wisconsin and Illinois. For the purposes of this study the Upper Fox River Basin is defined as the topographic basin that extends from the upstream boundary of the Fox River Basin to a large wetland complex in south-central Waukesha County called the Vernon Marsh. The objectives for the study are to (1) develop a baseline study of groundwater conditions and groundwater/surface-water interactions in the shallow aquifer system of the Upper Fox River Basin, (2) develop a tool for evaluating possible alternative water-supply options for communities in Waukesha County, and (3) contribute to the methodology of groundwater-flow modeling by applying the recently published U.S. Geological Survey MODFLOW-NWT computer code, (a Newton formulation of MODFLOW-2005 intended for solving difficulties involving drying and rewetting nonlinearities of the unconfined groundwater-flow equation) to overcome computational problems connected with fine-scaled simulation of shallow aquifer systems by means of thin model layers. To simulate groundwater conditions, a MODFLOW grid is constructed with thin layers and small cell dimensions (125 feet per side). This nonlinear unconfined problem incorporates the streamflow/lake (SFR/LAK) packages to represent groundwater/surface-water interactions, which yields an unstable solution sensitive to initial conditions when solved using the Picard-based preconditioned-gradient (PCG2) solver. A particular problem is the presence of many isolated wet water-table cells over dry cells, causing the simulated water table to assume unrealistically high values. Attempts to work around the problem by converting to confined conditions or converting active to inactive cells introduce unacceptable bias. Application of MODFLOW-NWT overcomes numerical problem by smoothing the transition from wet to dry cells and keeps all cells active. The simulation is

  20. Technologies for Teaching and Learning about Box Plots and Statistical Analysis

    Science.gov (United States)

    Forster, Patricia A.

    2007-01-01

    This paper analyses technology-based instruction on data-analysis with box plots. Examples of instruction taken from the research literature inform a study of two classes of 17 year-old students (upper secondary) in which the mathematical relationships that their teachers targeted are distinguished as being, or not being, relevant to statistical…

  1. Climate proxy data as groundwater tracers in regional flow systems

    Science.gov (United States)

    Clark, J. F.; Morrissey, S. K.; Stute, M.

    2008-05-01

    The isotopic and chemical signatures of groundwater reflect local climate conditions. By systematically analyzing groundwater and determining their hydrologic setting, records of past climates can be constructed. Because of their chemistries and relatively uncomplicated source functions, dissolved noble gases have yielded reliable records of continental temperatures for the last 30,000 to 50,000 years. Variations in the stable isotope compositions of groundwater due to long term climate changes have also been documented over these time scales. Because glacial - interglacial climate changes are relatively well known, these climate proxies can be used as "stratigraphic" markers within flow systems and used to distinguish groundwaters that have recharged during the Holocene from those recharged during the last glacial period, important time scales for distinguishing regional and local flow systems in many aquifers. In southern Georgia, the climate proxy tracers were able to identify leakage from surface aquifers into the Upper Floridan aquifer in areas previously thought to be confined. In south Florida, the transition between Holocene and glacial signatures in the Upper Floridan aquifer occurs mid-way between the recharge area and Lake Okeechobee. Down gradient of the lake, the proxies are uniform, indicating recharge during the last glacial period. Furthermore, there is no evidence for leakage from the shallow aquifers into the Upper Floridan. In the Lower Floridan, the climate proxies indicate that the saline water entered the aquifer after sea level rose to its present level.

  2. Risk assessment using ICP-MS of heavy metals in groundwater in Upper Egypt

    Directory of Open Access Journals (Sweden)

    Ghada Bassioni

    2015-09-01

    Full Text Available It is of great importance to assess the pollution of groundwater as it makes up about twenty percent of the world’s freshwater supply. Environmental laws in Egypt are correlated with protecting water resources from contamination and generally set the maximum limits for the concentration of different hazardous components in wastewater before it is discharged to sea water, rivers, groundwater and the public sewer system. Groundwater from Samalout, Al Minya governorate, Egypt, is studied by analysing its heavy metal content using Inductively Coupled Plasma Mass Spectrometry (ICP-MS. Furthermore, the obtained heavy metal concentrations are compared with permissible limits set by environmental organizations such as the World Health Organization (WHO and the United States Environmental Protection Agency (US-EPA. Comparing the heavy metal concentrations with the groundwater in question clearly demonstrated that the water in this resource should not be directly used for drinking and requires some degree of treatment before usage. For example, concentrations of chromium and lead are far above the maximum permissible limit. The consequent health risks due to the usage of contaminated water are identified in this study as well.

  3. Warm-up Practices in Elite Boxing Athletes: Impact on Power Output.

    Science.gov (United States)

    Cunniffe, Brian; Ellison, Mark; Loosemore, Mike; Cardinale, Marco

    2017-01-01

    Cunniffe, B, Ellison, M, Loosemore, M, and Cardinale, M. Warm-up practices in elite boxing athletes: Iimpact on power output. J Strength Cond Res 31(1): 95-105, 2017-This study evaluated the performance impact of routine warm-up strategies in elite Olympic amateur boxing athletes and physiological implications of the time gap (GAP) between warm-up and boxing activity. Six male boxers were assessed while performing standardized prefight warm-up routines. Core and skin temperature measurements (Tcore and Tskin), heart rate, and upper- and lower-body power output (PO) were assessed before and after warm-up, during a 25-minutes GAP and after 3 × 2 minutes rounds of sparring. Reflected temperature (Tc) was also determined using high-resolution thermal images at fixed time-points to explore avenues for heat loss. Despite individual differences in warm-up duration (range 7.4-18.5 minutes), increases in Tcore and Tskin occurred (p ≤ 0.05). Corresponding increases (4.8%; p ≤ 0.05) in countermovement jump (CMJ) height and upward-rightward shifts in upper-body force-velocity and power-velocity curves were observed. Athletes remained inactive during the 25-minutes GAP with a gradual and significant increase in Tc occurring by the end of GAP suggesting the likelihood of heat loss. Decreases in CMJ height and upper-body PO were observed after 15 minutes and 25 minutes GAP (p ≤ 0.05). By the end of GAP period, all performance variables had returned to pre-warm-up values. Results suggest routine warm-ups undertaken by elite boxers have acute effects on power-generating capacity. Gradual decreases in performance variables are evident with inactivity and seem related to alterations in body temperature. Considering the constraints of major competitions and time spent in air conditioned holding areas before fights, practitioners should be aware of the potential of nullifying the warm-up effects.

  4. 3D Groundwater flow model at the Upper Rhine Graben scale to delineate preferential target areas for geothermal projects

    Science.gov (United States)

    Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier

    2017-04-01

    Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network

  5. Dissolution rate of alpha-doped UO2 in natural groundwater

    International Nuclear Information System (INIS)

    Ollila, Kaija; Myllykylä, Emmi; Tanhua-Tyrkkö, Merja; Lavonen, Tiina

    2013-01-01

    The objective of this work is to determine whether the presence of trace elements in natural groundwaters affects the dissolution rate of uranium dioxide in the presence of alpha radiation that causes radiolysis of water. The study is a part of the project Reducing Uncertainty in Performance Prediction (REDUPP) under the Seventh Framework Programme of the European Atomic Energy Community (EURATOM). The project aims to reduce uncertainties related to the extrapolation of the results of laboratory experiments to the conditions expected under geologic disposal. Thus far, synthetic groundwater has been normally used in the experiments. The synthetic groundwaters used do not contain all of the chemical elements that occur in natural groundwaters. Three natural groundwaters were chosen for the dissolution experiments with 0%, 5%, and 10% 233 U-doped UO 2 samples. These include a brackish groundwater, a saline groundwater and a low ionic strength groundwater. At the time of writing this paper, the dissolution experiments have been finished in the first groundwater, which was a moderately saline, brackish groundwater. The groundwater samples for the experiments were taken from a borehole in the Olkiluoto site in Finland. The measurements for dissolution rates were conducted under reducing conditions established using metallic iron in solution and an argon atmosphere in the glove box. The isotope dilution method was used to decrease uncertainties due to precipitation and sorption effects. The resulting dissolution rates in OL-KR6 natural groundwater were generally somewhat higher than the rates measured previously in synthetic groundwaters under similar redox conditions. No clear effect of alpha radiolysis could be seen for tests with lower SA/V, while those for higher SA/V indicated that the dissolution rate was higher for the 10% 233 U-doped UO 2 , suggesting the effect of alpha radiolysis under these conditions

  6. Hydrogeology, water quality, and potential for contamination of the Upper Floridan aquifer in the Silver Springs ground-water basin, central Marion County, Florida

    Science.gov (United States)

    Phelps, G.G.

    1994-01-01

    The Upper Floridan aquifer, composed of a thick sequence of very porous limestone and dolomite, is the principal source of water supply in the Silver Springs ground-water basin of central Marion County, Florida. The karstic nature of the local geology makes the aquifer susceptible to contaminants from the land surface. Contaminants can enter the aquifer by seepage through surficial deposits and through sinkholes and drainage wells. Potential contaminants include agricultural chemicals, landfill leachates and petroleum products from leaking storage tanks and accidental spills. More than 560 sites of potential contamination sources were identified in the basin in 1990. Detailed investigation of four sites were used to define hydrologic conditions at representative sites. Ground-water flow velocities determined from dye trace studies ranged from about 1 foot per hour under natural flow conditions to about 10 feet per hour under pumping conditions, which is considerably higher than velocities estimated using Darcy's equation for steady-state flow in a porous medium. Water entering the aquifer through drainage wells contained bacteria, elevated concentrations of nutrients, manganese and zinc, and in places, low concentrations of organic compounds. On the basis of results from the sampling of 34 wells in 1989 and 1990, and from the sampling of water entering the Upper Floridan aquifer through drainage wells, there has been no widespread degradation of water quality in the study area. In an area of karst, particularly one in which fracture flow is significant, evaluating the effects from contaminants is difficult and special care is required when interpolating hydrogeologic data from regional studies to a specific. (USGS)

  7. Virtual Box

    DEFF Research Database (Denmark)

    Davis, Hilary; Skov, Mikael B.; Stougaard, Malthe

    2007-01-01

    . This paper reports on the design, implementation and initial evaluation of Virtual Box. Virtual Box attempts to create a physical and engaging context in order to support reciprocal interactions with expressive content. An implemented version of Virtual Box is evaluated in a location-aware environment...

  8. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  9. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    International Nuclear Information System (INIS)

    Zabala, M.E.; Manzano, M.; Vives, L.

    2015-01-01

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO 3 -Ca type, in the middle basin it is HCO 3 -Na, and in the lower basin it is ClSO 4 –NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO 2 , calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The work studies the

  10. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Zabala, M.E., E-mail: mzabala@faa.unicen.edu.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires (Argentina); Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina); Manzano, M., E-mail: marisol.manzano@upct.es [Escuela de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas, Universidad Politécnica de Cartagena, P° de Alfonso XIII 52, E-30203 Cartagena (Spain); Vives, L., E-mail: lvives@faa.unicen.edu.ar [Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina)

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO{sub 3}-Ca type, in the middle basin it is HCO{sub 3}-Na, and in the lower basin it is ClSO{sub 4}–NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO{sub 2}, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The

  11. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    Science.gov (United States)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  12. The distribution and origins of extremely acidic saline groundwaters in the south of Western Australia - Groundwater and digital mapping datasets provide new insights

    Science.gov (United States)

    Lillicrap, Adam M.; Biermann, Vera; George, Richard J.; Gray, David J.; Oldham, Carolyn E.

    2018-01-01

    Some of the largest extents of naturally occurring acidic waters are found across southern Australia. The origins of these systems remain poorly understood with many hypotheses for their genesis. Australian government agency groundwater datasets and mapping data (vegetation, geology, regolith and soils) for south-western Australia, unavailable to previous researchers, were statistically analysed to better understand the origins of acidic groundwater and guide additional fieldwork to study the origins of acidic saline groundwater. The groundwater data showed a distinct bimodal distribution in pH; the 'acid' population had a median pH of 3.5 and the larger 'non-acid' population had a median pH of 6.6. Acidic groundwater became progressively more common further from the coast towards the drier internally drained regions. Acidic groundwater was mostly confined to the lower slopes and valley floors with localised controls on distribution. Paradoxically, subsoil alkalinity within the internally drained inland regions had the strongest correlation with acidic groundwater (r2 = 0.85). Vegetation was also a strong predictor of acidic groundwater. Acidic groundwater had the highest occurrence under Eucalyptus woodlands and shrublands that grew on alkaline calcareous soils. Pre-clearing soil data in areas with acidic saline groundwater showed that the upper 1 m of the unsaturated zone had a pH around 8 while the pH at depths greater than 5 m decreased to calcium is sourced from the deeper profile where the root biota exchanges calcium for hydrogen ions to maintain charge balance. Iron is mobilised from the upper soil profile and concentrates lower in the profile at depths >1.5 m. There, the iron is reduced around roots and the alkalinity generated by microbial iron reduction is removed by biogenic calcification processes. The iron moves in solution further down the profile following roots where it comes in contact with the oxygenated unsaturated zone matrix and is oxidised

  13. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant.

  14. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1999-01-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant

  15. Hydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida

    Science.gov (United States)

    Metz, P.A.; Lewelling, B.R.

    2009-01-01

    The upper Peace River from Bartow to Fort Meade, Florida, is described as a groundwater recharge area, reflecting a reversal from historical groundwater discharge patterns that existed prior to the 1950s. The upper Peace River channel and floodplain are characterized by extensive karst development, with numerous fractures, crevasses, and sinks that have been eroded in the near-surface and underlying carbonate bedrock. With the reversal in groundwater head gradients, river water is lost to the underlying groundwater system through these karst features. An investigation was conducted to evaluate the hydrologic conditions that influence streamflow losses in the karst region of the upper Peace River. The upper Peace River is located in a basin that has been altered substantially by phosphate mining and increases in groundwater use. These alterations have changed groundwater flow patterns and caused streamflow declines through time. Hydrologic factors that have had the greatest influence on streamflow declines in the upper Peace River include the lowering of the potentiometric surfaces of the intermediate aquifer system and Upper Floridan aquifer beneath the riverbed elevation due to below-average rainfall (droughts), increases in groundwater use, and the presence of numerous karst features in the low-water channel and floodplain that enhance the loss of streamflow. Seepage runs conducted along the upper Peace River, from Bartow to Fort Meade, indicate that the greatest streamflow losses occurred along an approximate 2-mile section of the river beginning about 1 mile south of the Peace River at Bartow gaging station. Along the low-water and floodplain channel of this 2-mile section, there are about 10 prominent karst features that influence streamflow losses. Losses from the individual karst features ranged from 0.22 to 16 cubic feet per second based on measurements made between 2002 and 2007. The largest measured flow loss for all the karst features was about 50 cubic

  16. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina.

    Science.gov (United States)

    Zabala, M E; Manzano, M; Vives, L

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the "Dr. Eduardo J. Usunoff" Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO3-Ca type, in the middle basin it is HCO3-Na, and in the lower basin it is ClSO4-NaCa and Cl-Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO2, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Groundwater conditions and studies in Georgia, 2008-2009

    Science.gov (United States)

    Peck, Michael F.; Leeth, David C.; Painter, Jaime A.

    2011-01-01

    The U.S. Geological Survey collects groundwater data and conducts studies to monitor hydrologic conditions, better define groundwater resources, and address problems related to water supply, water use, and water quality. In Georgia, water levels were monitored continuously at 179 wells during 2008 and 181 wells during 2009. Because of missing data or short periods of record (less than 3 years) for several of these wells, a total of 161 wells are discussed in this report. These wells include 17 in the surficial aquifer system, 19 in the Brunswick aquifer and equivalent sediments, 66 in the Upper Floridan aquifer, 16 in the Lower Floridan aquifer and underlying units, 10 in the Claiborne aquifer, 1 in the Gordon aquifer, 11 in the Clayton aquifer, 12 in the Cretaceous aquifer system, 2 in Paleozoic-rock aquifers, and 7 in crystalline-rock aquifers. Data from the well network indicate that water levels generally rose during the 2008-2009 period, with water levels rising in 135 wells and declining in 26. In contrast, water levels declined over the period of record at 100 wells, increased at 56 wells, and remained relatively constant at 5 wells. In addition to continuous water-level data, periodic water-level measurements were collected and used to construct potentiometric-surface maps for the Upper Floridan aquifer in Camden, Charlton, and Ware Counties, Georgia, and adjacent counties in Florida during September 2008 and May 2009; in the Brunswick, Georgia area during July 2008 and July-August 2009; and in the City of Albany-Dougherty County, Georgia area during November 2008 and November 2009. In general, water levels in these areas were higher during 2009 than during 2008; however, the configuration of the potentiometric surfaces in each of the areas showed little change. Groundwater quality in the Floridan aquifer system is monitored in the Albany, Savannah, Brunswick, and Camden County areas of Georgia. In the Albany area, nitrate as nitrogen concentrations in the

  18. An innovative funnel and gate approach to groundwater remediation

    International Nuclear Information System (INIS)

    Johnson, D.O.; Wilkey, M.L.; Willis, J.M.

    1996-01-01

    The US Department of Energy, office of Science and Technology (EM-50) sponsored a demonstration project of the Barrier Member Containment Corporation's patented EnviroWall trademark system at the Savannah River site. With this system, contaminated groundwater can be funneled into a treatment system without pumping the contaminated water to the surface. The EnviroWall trademark barrier and pass-through system, an innovative product of sic years of research and development, provides a means to enhance groundwater flow on the upgradient side of an impermeable wall and direct it to an in situ treatment system. The EnviroWall trademark system is adaptable to most site conditions. Remedial applications range form plume containment to more robust designs that incorporate groundwater manipulation coupled with in situ treatment. Several key innovations of the EnviroWall trademark system include the following: a method for guide box installation; a means for using interlocking seals at vertical seams; a down-hole video camera for inspecting seams and panels, installation of horizontal- and vertical-collection systems; installation of vertical monitoring wells and instrumentation on each side of the barrier; site-specific backfill design; and a pass-through system for funneling groundwater into a treatment system

  19. Groundwater uranium and cancer incidence in South Carolina

    Science.gov (United States)

    Wagner, Sara E.; Burch, James B.; Bottai, Matteo; Puett, Robin; Porter, Dwayne; Bolick-Aldrich, Susan; Temples, Tom; Wilkerson, Rebecca C.; Vena, John E.; Hébert, James R.

    2012-01-01

    Objective This ecologic study tested the hypothesis that census tracts with elevated groundwater uranium and more frequent groundwater use have increased cancer incidence. Methods Data sources included: incident total, leukemia, prostate, breast, colorectal, lung, kidney, and bladder cancers (1996–2005, SC Central Cancer Registry); demographic and groundwater use (1990 US Census); and groundwater uranium concentrations (n = 4,600, from existing federal and state databases). Kriging was used to predict average uranium concentrations within tracts. The relationship between uranium and standardized cancer incidence ratios was modeled among tracts with substantial groundwater use via linear or semiparametric regression, with and without stratification by the proportion of African Americans in each area. Results A total of 134,685 cancer cases were evaluated. Tracts with ≥50% groundwater use and uranium concentrations in the upper quartile had increased risks for colorectal, breast, kidney, prostate, and total cancer compared to referent tracts. Some of these relationships were more likely to be observed among tracts populated primarily by African Americans. Conclusion SC regions with elevated groundwater uranium and more groundwater use may have an increased incidence of certain cancers, although additional research is needed since the design precluded adjustment for race or other predictive factors at the individual level. PMID:21080052

  20. Groundwater flow modelling in the upper Anga'a river watershed ...

    African Journals Online (AJOL)

    ISHIOMA

    The Anga'a River watershed is located within the Yaounde IV district, South-east of Yaounde City,. Cameroon. ... B: A nga'a drainage basin in the City of Yaoundé ... show the potential danger of groundwater pollution by ... The city of Yaounde is located about 250 km from the Atlantic coast .... forest zone of south Cameroon.

  1. A high-resolution global-scale groundwater model

    Science.gov (United States)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2015-02-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying basic needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global-scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics, a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolutions. In this study we present a global-scale groundwater model (run at 6' resolution) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The used aquifer schematization and properties are based on available global data sets of lithology and transmissivities combined with the estimated thickness of an upper, unconfined aquifer. This model is forced with outputs from the land-surface PCRaster Global Water Balance (PCR-GLOBWB) model, specifically net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed that variation in saturated conductivity has the largest impact on the groundwater levels simulated. Validation with observed groundwater heads showed that groundwater heads are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional-scale groundwater patterns and flow paths demonstrate the relevance of lateral groundwater flow in GHMs. Inter-basin groundwater flows can be a significant part of a basin's water budget and help to sustain river baseflows, especially during droughts. Also, water availability of larger aquifer systems can be positively affected by additional recharge from inter-basin groundwater flows.

  2. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  3. The Hausdorff and box-counting dimensions of a class of recurrent sets

    Energy Technology Data Exchange (ETDEWEB)

    Dai Meifeng [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)], E-mail: daimf@ujs.edu.cn; Liu Xi [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)], E-mail: liuxi2001@etang.com

    2008-05-15

    It is well known that a lot of familiar fractal sets can be generated using recurrent method. Conclusions under similitude linear map are straightforward. In this paper, we study the upper and low bounds for the Hausdorff dimension and boxing-counting dimension of recurrent sets. Especially, we focus our attention on the case of the non-similitude.

  4. Use of 15N/14N Ratio to Evaluate the Sources of Nitrate Pollution in Surface and Groundwaters in the Upper Orontes Basin (Central Syria)

    International Nuclear Information System (INIS)

    Kattan, Z.

    2004-01-01

    This work represents the results of using of 15 N technique in the evaluation and interpretation of nitrate pollution sources of surface and groundwaters in the Upper Orontes Basin (Central Syria). Based on this method, it was possible to distinguish between two groups of water bodies: 1) the group of fresh and non polluted water, which effectively reflects natural mineralization in nitrogen, such as the waters in the Upper Orontes River, the Qattineh Lake in its western and southern parts, as well as the Al-Qoussier well; 2) the group of polluted water, such as the waters in the other sampling sites. The chemical and isotopic 15 N characteristics of this group reflect the impact of different intensities of pollution processes, which could mainly be derived from anthropogenic source. The intensity of this source was maximum in the Al-Domineh well, which was practically close to a sewage sink. (author)

  5. 46 CFR 111.81-1 - Outlet boxes and junction boxes; general.

    Science.gov (United States)

    2010-10-01

    ... fixture, wiring device, or similar item, including each separately installed connection and junction box... used. (d) As appropriate, each outlet-box or junction-box installation must meet the following...

  6. Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Rugel

    2016-03-01

    Full Text Available Study region: Karst watershed in Lower Flint River Basin (LFRB, southwestern Georgia, USA. Study focus: Baseflow discharges in the LFRB have declined for three decades as regional irrigation has increased; yet, the location and nature of connectivity between groundwater and surface water in this karstic region are poorly understood. Because growing water demands will likely be met by further development of regional aquifers, an important management concern is the nature of interactions between groundwater and surface water components under natural and anthropogenic perturbations. We conducted coarse and fine-scale stream sampling on a major tributary of the Lower Flint River (Ichawaynochaway Creek in southwestern Georgia, USA, to identify locations and patterns of enhanced hydrologic connectivity between this stream and the Upper Floridan Aquifer. New hydrological insights for the region: Prior water resource studies in the LFRB were based on regional modeling that neglected local heterogeneities in groundwater/surface water connectivity. Our results demonstrated groundwater inputs were concentrated around five of fifty sampled reaches, evidenced by increases in multiple groundwater indicators at these sites. These five reaches contributed up to 42% of the groundwater detected along the entire 50-km sampling section, with ∼24% entering through one groundwater-dominated tributary, Chickasawhatchee Creek. Intermittent flows occurred in two of these upstream reaches during extreme drought and heavy groundwater pumping, suggesting reach-scale behaviors should be considered in resource management and policy. Keywords: Karst hydrogeology, Hydrologic connectivity, Groundwater/surface water interaction, Upper Floridan Aquifer, Groundwater Irrigation

  7. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    Science.gov (United States)

    Adamski, J.C.; Knowles, Leel

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved

  8. The groundwater regime of the Harwell region

    International Nuclear Information System (INIS)

    Alexander, J.

    1983-12-01

    A regional hydrogeological assessment has been undertaken in the Harwell area utilizing currently available geological information and water level data. Since the dissolution and transport of any disposed waste would be controlled by the rate and direction of groundwater movement through a potential repository, a detailed knowledge of regional and local hydrogeology is essential. This study is based on the tenet that very slow groundwater movement, through a sequence of clay lithologies, is measurable at widely separated points within intervening high permeability systems. The analysis of available data from high permeability units within a regional groundwater flow-system provides a general flow model which takes into account inter-lithology water movement in general and vertical water movement across low permeability formations in particular. Groundwater contour maps have been constructed for the Chalk, Upper Greensand, Corallian and Great Oolite lithologies. These show that in the Cretaceous and Jurassic formations of the Harwell area, groundwater movement is predominantly in the horizontal direction with a smaller proportion of vertical flow taking place between adjacent formations. The potential for vertical movement, both upwards and downwards through intervening low permeability clay lithologies is evident. The results are discussed. (author)

  9. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic

  10. Fluorine geochemistry in bedrock groundwater of South Korea

    International Nuclear Information System (INIS)

    Chae, Gi-Tak; Yun, Seong-Taek; Mayer, Bernhard; Kim, Kyoung-Ho; Kim, Seong-Yong; Kwon, Jang-Soon; Kim, Kangjoo; Koh, Yong-Kwon

    2007-01-01

    High fluoride concentrations (median = 4.4 mg/L) in deep bedrock groundwater of South Korea prevent the usage of it as a drinking water source. The hydrogeochemistry of deep thermal groundwaters (N = 377) in diverse bedrocks has been studied in order to evaluate the geologic and geochemical controls on fluoride concentrations in groundwater. The groundwater samples were clustered geologically, and the average and median concentrations of fluoride were compared by the Mann-Whitney U test. The order of median fluoride concentration with respect to geology is as follows: metamorphic rocks ≥ granitoids ≥ complex rock >> volcanic rocks ≥ sedimentary rocks. This result indicates that the geological source of fluoride in groundwater is related to the mineral composition of metamorphic rocks and granitoids. With respect to groundwater chemistry, the fluoride concentration was highest in Na-HCO 3 type groundwater and lowest in Ca-HCO 3 type groundwater. Ionic relationships also imply that the geochemical behavior of fluoride in groundwater is related to the geochemical process releasing Na and removing Ca ions. The thermodynamic relationship between the activities of Ca and F indicates that fluoride concentration is controlled by the equilibrium of fluorite (CaF 2 ). In other words, the upper limits of fluoride concentration are determined by the Ca ion; i.e., Ca concentrations play a crucial role in fluoride behavior in deep thermal groundwater. The result of this study suggests that the high fluoride in groundwater originates from geological sources and fluoride can be removed by fluorite precipitation when high Ca concentration is maintained. This provides a basis for a proper management plan to develop the deep thermal groundwater and for treatment of high fluoride groundwater frequently found in South Korea

  11. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  12. Surface-water and karst groundwater interactions and streamflow-response simulations of the karst-influenced upper Lost River watershed, Orange County, Indiana

    Science.gov (United States)

    Bayless, E. Randall; Cinotto, Peter J.; Ulery, Randy L.; Taylor, Charles J.; McCombs, Gregory K.; Kim, Moon H.; Nelson, Hugh L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) and the Indiana Office of Community and Rural Affairs (OCRA), conducted a study of the upper Lost River watershed in Orange County, Indiana, from 2012 to 2013. Streamflow and groundwater data were collected at 10 data-collection sites from at least October 2012 until April 2013, and a preliminary Water Availability Tool for Environmental Resources (WATER)-TOPMODEL based hydrologic model was created to increase understanding of the complex, karstic hydraulic and hydrologic system present in the upper Lost River watershed, Orange County, Ind. Statistical assessment of the optimized hydrologic-model results were promising and returned correlation coefficients for simulated and measured stream discharge of 0.58 and 0.60 and Nash-Sutcliffe efficiency values of 0.56 and 0.39 for USGS streamflow-gaging stations 03373530 (Lost River near Leipsic, Ind.), and 03373560 (Lost River near Prospect, Ind.), respectively. Additional information to refine drainage divides is needed before applying the model to the entire karst region of south-central Indiana. Surface-water and groundwater data were used to tentatively quantify the complex hydrologic processes taking place within the watershed and provide increased understanding for future modeling and management applications. The data indicate that during wet-weather periods and after certain intense storms, the hydraulic capacity of swallow holes and subsurface conduits is overwhelmed with excess water that flows onto the surface in dry-bed relic stream channels and karst paleovalleys. Analysis of discharge data collected at USGS streamflow-gaging station 03373550 (Orangeville Rise, at Orangeville, Ind.), and other ancillary data-collection sites in the watershed, indicate that a bounding condition is likely present, and drainage from the underlying karst conduit system is potentially limited to near 200 cubic feet per second. This

  13. Construction and calibration of a groundwater-flow model to assess groundwater availability in the uppermost principal aquifer systems of the Williston Basin, United States and Canada

    Science.gov (United States)

    Davis, Kyle W.; Long, Andrew J.

    2018-05-31

    The U.S. Geological Survey developed a groundwater-flow model for the uppermost principal aquifer systems in the Williston Basin in parts of Montana, North Dakota, and South Dakota in the United States and parts of Manitoba and Saskatchewan in Canada as part of a detailed assessment of the groundwater availability in the area. The assessment was done because of the potential for increased demands and stresses on groundwater associated with large-scale energy development in the area. As part of this assessment, a three-dimensional groundwater-flow model was developed as a tool that can be used to simulate how the groundwater-flow system responds to changes in hydrologic stresses at a regional scale.The three-dimensional groundwater-flow model was developed using the U.S. Geological Survey’s numerical finite-difference groundwater model with the Newton-Rhapson solver, MODFLOW–NWT, to represent the glacial, lower Tertiary, and Upper Cretaceous aquifer systems for steady-state (mean) hydrological conditions for 1981‒2005 and for transient (temporally varying) conditions using a combination of a steady-state period for pre-1960 and transient periods for 1961‒2005. The numerical model framework was constructed based on existing and interpreted hydrogeologic and geospatial data and consisted of eight layers. Two layers were used to represent the glacial aquifer system in the model; layer 1 represented the upper one-half and layer 2 represented the lower one-half of the glacial aquifer system. Three layers were used to represent the lower Tertiary aquifer system in the model; layer 3 represented the upper Fort Union aquifer, layer 4 represented the middle Fort Union hydrogeologic unit, and layer 5 represented the lower Fort Union aquifer. Three layers were used to represent the Upper Cretaceous aquifer system in the model; layer 6 represented the upper Hell Creek hydrogeologic unit, layer 7 represented the lower Hell Creek aquifer, and layer 8 represented the Fox

  14. 30o inclination in handles of plastic boxes can reduce postural and muscular workload during handling

    Directory of Open Access Journals (Sweden)

    Luciana C. C. B. Silva

    2013-06-01

    Full Text Available BACKGROUND: The handling of materials, which occurs in the industrial sector, is associated with lesions on the lumbar spine and in the upper limbs. Inserting handles in industrial boxes is a way to reduce work-related risks. Although the position and angle of the handles are significant factors in comfort and safety during handling, these factors have rarely been studied objectively. OBJECTIVE: To compare the handling of a commercial box and prototypes with handles and to evaluate the effects on upper limb posture, muscle electrical activity, and perceived acceptability using different grips while handling materials from different heights. METHOD: Thirty-seven healthy volunteers evaluated the handles of prototypes that allowed for changes in position (top and bottom and angle (0°, 15°, and 30°. Wrist, elbow, and shoulder movements were evaluated using electrogoniometry and inclinometry. The muscle electrical activity in the wrist extensors, biceps brachii, and the upper portion of the trapezius was measured using a portable electromyographer. The recorded data on muscle movements and electrical activity were synchronized. Subjective evaluations of acceptability were evaluated using a visual analog scale. RESULTS AND CONCLUSIONS: The prototypes with handles at a 30° angle produced the highest acceptability ratings, more neutral wrist positions, lower levels of electromyographic activity for the upper trapezius, and lower elevation angles for the arms. The different measurement methods were complementary in evaluating the upper limbs during handling.

  15. Seasonal variations in the tritium content of groundwaters of the Vienna Basin, Austria

    International Nuclear Information System (INIS)

    Davis, G.H.; Payne, B.R.; Dincer, T.; Florkowski, T.; Gattinger, T.

    1967-01-01

    Monthly analyses of tritium from 22 sources of groundwater of the Vienna Basin have been made since April 1965 with a view to elucidating the complex groundwater surface water relations and ascertaining the movement of groundwaters. The sources are classified broadly into four groups: (1) Non-thermal springs including karst springs of the bordering mountains; (2) thermal springs rising along faults that border the floor of the Vienna Basin; (3) wells on the floor of the Basin; and (4) large groundwater overflows on the floor of the Basin. The following are among significant findings: All groundwaters sampled showed the effect of local recharge by high tritium precipitation in the exceptionally wet summer of 1965; Groundwater overflows thought to represent discharge from the main groundwater reservoir were generally higher in tritium than other groundwaters indicating rapid shallow circulation from nearby streams. Thermal springs believed representative of deep circulation all showed the effect of mixing with shallow waters recharged from current precipitation. All showed appreciable tritium content, even at the minimum levels. The highest tritium contents in well-waters were from the upper part of the Basin where water levels are very deep and streams lose water in crossing the alluvium. Well-waters in the area of shallow water in the lower Basin were generally lower in tritium than those of the upper Basin, but all showed the effect of recharge in the summer of 1965. Samples taken during drilling of a deep exploratory well show a decrease in tritium with depth, but even at 140 m depth the tritium content was 13 T.U. indicating relatively rapid circulation throughout thc principal aquifer. (author)

  16. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    Science.gov (United States)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  17. Groundwater chemistry characterization using multi-criteria approach: The upper Samalá River basin (SW Guatemala)

    Science.gov (United States)

    Bucci, Arianna; Franchino, Elisa; De Luca, Domenico Antonio; Lasagna, Manuela; Malandrino, Mery; Bianco Prevot, Alessandra; Hernández Sac, Humberto Osvaldo; Coyoy, Israel Macario; Sac Escobar, Edwin Osvaldo; Hernández, Ardany

    2017-10-01

    Improving understanding on groundwater chemistry is a key priority for water supply from groundwater resources, especially in developing countries. A hydrochemical study was performed in an area of SW Guatemala (Samalà River basin), where water supply to population is groundwater-based and no systematic studies on its groundwater resources have been performed so far. Traditional hydrochemical analyses on major ions and some trace elements metals coupled with chemometric approach were performed, including principal component analysis and hierarchical clustering analysis. Results evidence that chemical differentiation is linked to the spatial distribution of sampled waters. The most common hydrochemical facies, bicarbonate calcium and magnesium, is linked to infiltration of meteoric waters in recharge areas represented by highlands surrounding Xela caldera, a wide plateau where most of population is concentrated. This trend undergoes chemical evolution in proximity of active volcanic complexes in the southern area, with enrichment in sulphate, chloride and magnesium. Chemical evolution also occurs towards the centre of Xela caldera due to slow circulation in aquifer and consequent sodium enrichment due to ion exchange with the porous medium. Water quality did not reveal severe concerns, even though some sources of contamination could be identified; in particular, agriculture and urban wastewater could be responsible for observed threshold exceedances in nitrate and lead. This integrated multi-approach to hydrochemical data interpretation yielded to the achievement of important information that poses the basis for future groundwater protection in an area where main water features were almost unknown.

  18. Old groundwater in parts of the upper Patapsco aquifer, Atlantic Coastal Plain, Maryland, USA: Evidence from radiocarbon, chlorine-36 and helium-4

    Science.gov (United States)

    Plummer, Niel; Eggleston, John R.; Raffensperger, Jeff P.; Hunt, Andrew G.; Casile, Gerolamo C.; Andreasen, D.C.

    2012-01-01

    Apparent groundwater ages along two flow paths in the upper Patapsco aquifer of the Maryland Atlantic Coastal Plain, USA, were estimated using 14C, 36Cl and 4He data. Most of the ages range from modern to about 500 ka, with one sample at 117 km downgradient from the recharge area dated by radiogenic 4He accumulation at more than one Ma. Last glacial maximum (LGM) water was located about 20 km downgradient on the northern flow path, where the radiocarbon age was 21.5 ka, paleorecharge temperatures were 0.5–1.5  °C (a maximum cooling of about 12 °C relative to the modern mean annual temperature of 13 °C), and Cl–, Cl/Br, and stable isotopes of water were minimum. Low recharge temperatures (typically 5–7 °C) indicate that recharge occurred predominantly during glacial periods when coastal heads were lowest due to low sea-level stand. Flow velocities averaged about 1.0 m a–1 in upgradient parts of the upper Patapsco aquifer and decreased from 0.13 to 0.04 m a–1 at 40 and 80 km further downgradient, respectively. This study demonstrates that most water in the upper Patapsco aquifer is non-renewable on human timescales under natural gradients, thus highlighting the importance of effective water-supply management to prolong the resource.

  19. Ground-Water Quality Data in the Upper Santa Ana Watershed Study Unit, November 2006-March 2007: Results from the California GAMA Program

    Science.gov (United States)

    Kent, Robert; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 1,000-square-mile Upper Santa Ana Watershed study unit (USAW) was investigated from November 2006 through March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Upper Santa Ana Watershed study was designed to provide a spatially unbiased assessment of raw ground-water quality within USAW, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Riverside and San Bernardino Counties. Ninety of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Nine wells were selected to provide additional understanding of specific water-quality issues identified within the basin (understanding wells). The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], 1,4-dioxane, and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water) and dissolved noble gases also were measured to help identify sources and ages of the sampled ground water. Dissolved gases, and isotopes of nitrogen gas and of dissolved nitrate also were measured in order to investigate the sources and occurrence of

  20. Groundwater management under uncertainty using a stochastic multi-cell model

    Science.gov (United States)

    Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.

    2017-08-01

    The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.

  1. Gap sequence, Lipschitz equivalence and box dimension of fractal sets

    International Nuclear Information System (INIS)

    Rao Hui; Yang Yamin; Ruan Huojun

    2008-01-01

    We introduce a notion of gap sequences for compact sets E subset of R d , which is a generalization of the gap sequences of compact sets on the real line. We show that if the gap sequences of two fractal sets are not equivalent, then these two sets cannot be Lipschitz equivalent, where the latter fact is usually very hard to verify. Finally, we show that for some typical fractal sets, the gap sequences characterize the upper box dimension

  2. Groundwater decline and tree change in floodplain landscapes: Identifying non-linear threshold responses in canopy condition

    Directory of Open Access Journals (Sweden)

    J. Kath

    2014-12-01

    Full Text Available Groundwater decline is widespread, yet its implications for natural systems are poorly understood. Previous research has revealed links between groundwater depth and tree condition; however, critical thresholds which might indicate ecological ‘tipping points’ associated with rapid and potentially irreversible change have been difficult to quantify. This study collated data for two dominant floodplain species, Eucalyptus camaldulensis (river red gum and E. populnea (poplar box from 118 sites in eastern Australia where significant groundwater decline has occurred. Boosted regression trees, quantile regression and Threshold Indicator Taxa Analysis were used to investigate the relationship between tree condition and groundwater depth. Distinct non-linear responses were found, with groundwater depth thresholds identified in the range from 12.1 m to 22.6 m for E. camaldulensis and 12.6 m to 26.6 m for E. populnea beyond which canopy condition declined abruptly. Non-linear threshold responses in canopy condition in these species may be linked to rooting depth, with chronic groundwater decline decoupling trees from deep soil moisture resources. The quantification of groundwater depth thresholds is likely to be critical for management aimed at conserving groundwater dependent biodiversity. Identifying thresholds will be important in regions where water extraction and drying climates may contribute to further groundwater decline. Keywords: Canopy condition, Dieback, Drought, Tipping point, Ecological threshold, Groundwater dependent ecosystems

  3. Air tight electrical box

    Energy Technology Data Exchange (ETDEWEB)

    Pringle, C.G.

    1990-08-14

    An air-impervious electrical box to facilitate air sealing a house comprises an integral, rigid box body having a continuous flange, integral with the body, circumscribing and outwardly extending from the sides of the body. This flange is rearwardly positioned behind the front edges of the sides of the body a predetermined distance so that the electrical box may be secured to framing by nailing through the flange. Drywall is then secured to the frame on top of and adjecent to the flange. Such box eliminates the necessity for solid backing and minimizes passage of air through the box and space between the drywall and the box.

  4. Hydrogeologic controls and geochemical indicators of groundwater movement in the Niles Cone and southern East Bay Plain groundwater subbasins, Alameda County, California

    Science.gov (United States)

    Teague, Nicholas F.; Izbicki, John A.; Borchers, Jim; Kulongoski, Justin T.; Jurgens, Bryant C.

    2018-02-01

    Beginning in the 1970s, Alameda County Water District began infiltrating imported water through ponds in repurposed gravel quarries at the Quarry Lakes Regional Park, in the Niles Cone groundwater subbasin, to recharge groundwater and to minimize intrusion of saline, San Francisco Bay water into freshwater aquifers. Hydraulic connection between distinct aquifers underlying Quarry Lakes allows water to recharge the upper aquifer system to depths of 400 feet below land surface, and the Deep aquifer to depths of more than 650 feet. Previous studies of the Niles Cone and southern East Bay Plain groundwater subbasins suggested that these two subbasins may be hydraulically connected. Characterization of storage capacities and hydraulic properties of the complex aquifers and the structural and stratigraphic controls on groundwater movement aids in optimal storage and recovery of recharged water and provides information on the ability of aquifers shared by different water management agencies to fulfill competing storage and extraction demands. The movement of recharge water through the Niles Cone groundwater subbasin from Quarry Lakes and the possible hydraulic connection between the Niles Cone and the southern East Bay Plain groundwater subbasins were investigated using interferometric synthetic aperture radar (InSAR), water-chemistry, and isotopic data, including tritium/helium-3, helium-4, and carbon-14 age-dating techniques.InSAR data collected during refilling of the Quarry Lakes recharge ponds show corresponding ground-surface displacement. Maximum uplift was about 0.8 inches, reasonable for elastic expansion of sedimentary materials experiencing an increase in hydraulic head that resulted from pond refilling. Sodium concentrations increase while calcium and magnesium concentrations in groundwater decrease along groundwater flowpaths from the Niles Cone groundwater subbasin through the Deep aquifer to the northwest toward the southern East Bay Plain groundwater

  5. Combining human and machine intelligence to derive agents' behavioral rules for groundwater irrigation

    Science.gov (United States)

    Hu, Yao; Quinn, Christopher J.; Cai, Ximing; Garfinkle, Noah W.

    2017-11-01

    For agent-based modeling, the major challenges in deriving agents' behavioral rules arise from agents' bounded rationality and data scarcity. This study proposes a "gray box" approach to address the challenge by incorporating expert domain knowledge (i.e., human intelligence) with machine learning techniques (i.e., machine intelligence). Specifically, we propose using directed information graph (DIG), boosted regression trees (BRT), and domain knowledge to infer causal factors and identify behavioral rules from data. A case study is conducted to investigate farmers' pumping behavior in the Midwest, U.S.A. Results show that four factors identified by the DIG algorithm- corn price, underlying groundwater level, monthly mean temperature and precipitation- have main causal influences on agents' decisions on monthly groundwater irrigation depth. The agent-based model is then developed based on the behavioral rules represented by three DIGs and modeled by BRTs, and coupled with a physically-based groundwater model to investigate the impacts of agents' pumping behavior on the underlying groundwater system in the context of coupled human and environmental systems.

  6. Search for rare muon and pion decay modes with the Crystal Box detector

    International Nuclear Information System (INIS)

    Hoffman, C.M.; Bolton, R.D.; Bowman, J.D.

    1986-01-01

    New experimental upper limits for the branching ratios of the lepton-family-number nonconserving decays μ + → e + γ and μ + → e + γγ are presented. A new determination of γ, the ratio of pion axial-vector to vector form factors, from radiative pion decay is also reported. These results are from data taken with the Crystal Box detector at LAMPF

  7. Formation of Box Canyon, Idaho, by megaflood: implications for seepage erosion on Earth and Mars.

    Science.gov (United States)

    Lamb, Michael P; Dietrich, William E; Aciego, Sarah M; Depaolo, Donald J; Manga, Michael

    2008-05-23

    Amphitheater-headed canyons have been used as diagnostic indicators of erosion by groundwater seepage, which has important implications for landscape evolution on Earth and astrobiology on Mars. Of perhaps any canyon studied, Box Canyon, Idaho, most strongly meets the proposed morphologic criteria for groundwater sapping because it is incised into a basaltic plain with no drainage network upstream, and approximately 10 cubic meters per second of seepage emanates from its vertical headwall. However, sediment transport constraints, 4He and 14C dates, plunge pools, and scoured rock indicate that a megaflood (greater than 220 cubic meters per second) carved the canyon about 45,000 years ago. These results add to a growing recognition of Quaternary catastrophic flooding in the American northwest, and may imply that similar features on Mars also formed by floods rather than seepage erosion.

  8. Groundwater contamination and its effect on health in Turkey.

    Science.gov (United States)

    Baba, Alper; Tayfur, Gokmen

    2011-12-01

    The sources of groundwater pollution in Turkey are identified, and pathways of contaminants to groundwater are first described. Then, the effects of groundwater quality on health in Turkey are evaluated. In general, sources of groundwater contamination fall into two main categories: natural and anthropogenic sources. Important sources of natural groundwater pollution in Turkey include geological formations, seawater intrusion, and geothermal fluid(s). The major sources of anthropogenic groundwater contamination are agricultural activities, mining waste, industrial waste, on-site septic tank systems, and pollution from imperfect well constructions. The analysis results revealed that natural contamination due to salt and gypsum are mostly found in Central and Mediterranean regions and arsenic in Aegean region. Geothermal fluids which contain fluoride poses a danger for skeleton, dental, and bone problems, especially in the areas of Denizli, Isparta, and Aydın. Discharges from surface water bodies contaminate groundwater by infiltration. Evidence of such contamination is found in Upper Kızılırmak basin, Gediz basin, and Büyük Melen river basin and some drinking water reservoirs in İstanbul. Additionally, seawater intrusion causes groundwater quality problems in coastal regions, especially in the Aegean coast. Industrial wastes are also polluting surface and groundwater in industrialized regions of Turkey. Deterioration of water quality as a result of fertilizers and pesticides is another major problem especially in the regions of Mediterranean, Aegean, Central Anatolia, and Marmara. Abandoned mercury mines in the western regions of Turkey, especially in Çanakkale, İzmir, Muğla, Kütahya, and Balıkesir, cause serious groundwater quality problems.

  9. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise

    Science.gov (United States)

    Morrissey, Sheila K.; Clark, Jordan F.; Bennett, Michael; Richardson, Emily; Stute, Martin

    2010-10-01

    Sea-level fluctuations, particularly those associated with glacial-interglacial cycles, can have profound impacts on the flow and circulation of coastal groundwater: the water found at present in many coastal aquifers may have been recharged during the last glacial period, when sea level was over 100m lower than present, and thus is not in equilibrium with present recharge conditions. Here we show that the geochemistry of the groundwater found in the Floridan Aquifer System in south Florida is best explained by a reorganization of groundwater flow following the sea-level rise at the end of the Last Glacial Maximum approximately 18,000 years ago. We find that the geochemistry of the fresh water found in the upper aquifers at present is consistent with recharge from meteoric water during the last glacial period. The lower aquifer, however, consists of post-sea-level-rise salt water that is most similar to that of the Straits of Florida, though with some dilution from the residual fresh water from the last glacial period circulation. We therefore suggest that during the last glacial period, the entire Floridan Aquifer System was recharged with meteoric waters. After sea level rose, the increased hydraulic head reduced the velocity of the groundwater flow. This velocity reduction trapped the fresh water in the upper aquifers and initiated saltwater circulation in the lower aquifer.

  10. How Sustainable is Groundwater Abstraction? A Global Assessment.

    Science.gov (United States)

    de Graaf, I.; Van Beek, R.; Gleeson, T. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2017-12-01

    Groundwater is the world's largest accessible freshwater resource and is of critical importance for irrigation, and thus for global food security. For regions with high demands, groundwater abstractions often exceed recharge and persistent groundwater depletion occurs. The direct effects of depletion are falling groundwater levels, increased pumping costs, land subsidence, and reduced baseflows to rivers. Water demands are expected to increase further due to growing population, economic development, and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable economic and environmental limits. In this study we estimated trends over 1960-2100 in groundwater levels, resulting from changes in demand and climate. We explored the limits of groundwater abstraction by predicting where and when groundwater levels drop that deep that groundwater gets unattainable for abstraction (economic limit) or, that groundwater baseflows to rivers drop below environmental requirements (environmental limit). We used a global hydrological model coupled to a groundwater model, meaning lateral groundwater flows, river infiltration and drainage, and infiltration and capillary-rise are simulated dynamically. Historical data and projections are used to prescribe water demands and climate forcing to the model. For the near future we used RCP8.5 and applied globally driest, average, and wettest GCM to test climate sensitivity. Results show that in general environmental limits are reached before economic limits, for example starting as early as the 1970s compared to the 1980s for economic limits in the upper Ganges basin. Economic limits are mostly related to regions with depletion, while environmental limits are reached also in regions were groundwater and surface water withdrawals are significant but depletion is not taking place (yet), for example in Spain and Portugal. In the near future

  11. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination

    Science.gov (United States)

    Jasechko, Scott; Perrone, Debra; Befus, Kevin M.; Bayani Cardenas, M.; Ferguson, Grant; Gleeson, Tom; Luijendijk, Elco; McDonnell, Jeffrey J.; Taylor, Richard G.; Wada, Yoshihide; Kirchner, James W.

    2017-06-01

    The vulnerability of groundwater to contamination is closely related to its age. Groundwaters that infiltrated prior to the Holocene have been documented in many aquifers and are widely assumed to be unaffected by modern contamination. However, the global prevalence of these `fossil' groundwaters and their vulnerability to modern-era pollutants remain unclear. Here we analyse groundwater carbon isotope data (12C, 13C, 14C) from 6,455 wells around the globe. We show that fossil groundwaters comprise a large share (42-85%) of total aquifer storage in the upper 1 km of the crust, and the majority of waters pumped from wells deeper than 250 m. However, half of the wells in our study that are dominated by fossil groundwater also contain detectable levels of tritium, indicating the presence of much younger, decadal-age waters and suggesting that contemporary contaminants may be able to reach deep wells that tap fossil aquifers. We conclude that water quality risk should be considered along with sustainable use when managing fossil groundwater resources.

  12. Isotope Hydrology Investigation of Zonguldak And Province Groundwater

    International Nuclear Information System (INIS)

    Erduran, B.; Toerk, K.; Oektue, G.

    2002-01-01

    The most important coal area of Turkey is situated in Zonguldak and province. The coal series occurred during Westfalien (Carboniferous) are lower-bounded by Visean aged karstic limestones and upper-bounded by Aptian-Barremian aged karstic limestones. The isotope hydrology, which consists one of the studies dealed with karst hydrogeology, was held to determine the groundwater relations between the karstic limestones adjacent to the coal layers located in the Zonguldak coal mine areas. Environmental isotope samples were collected in the basin during 1994 - 1995 period, from the surface and groundwater. Deuterium ( 2 H), Oxygen 18 ( 18 O) and Tritium ( 3 H) analysis were carried out on the samples. Recharge elevation, water origin and transit time of the groundwater system were determined with the evaluation of the analysis results. Waters encountered in the area are of marine origined rainfall, recharging at an elevation of 400-500 meters and consisting of shallow and deep circulation systems. Groundwater that intruding the coal mine galleries, have a short flow period and are recharged from recent precipitations

  13. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  14. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.

    1985-01-01

    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/l Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to 10 -6 mol/l and 8 x 10 -7 mol/l under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 references, 6 figures

  15. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.; Florida State Univ., Tallahassee)

    1984-01-01

    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/L Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to approx. 10 -6 mol/L and 8 x 10 -7 mol/L under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 refs., 6 tabs

  16. Understanding similarity of groundwater systems with empirical copulas

    Science.gov (United States)

    Haaf, Ezra; Kumar, Rohini; Samaniego, Luis; Barthel, Roland

    2016-04-01

    Within the classification framework for groundwater systems that aims for identifying similarity of hydrogeological systems and transferring information from a well-observed to an ungauged system (Haaf and Barthel, 2015; Haaf and Barthel, 2016), we propose a copula-based method for describing groundwater-systems similarity. Copulas are an emerging method in hydrological sciences that make it possible to model the dependence structure of two groundwater level time series, independently of the effects of their marginal distributions. This study is based on Samaniego et al. (2010), which described an approach calculating dissimilarity measures from bivariate empirical copula densities of streamflow time series. Subsequently, streamflow is predicted in ungauged basins by transferring properties from similar catchments. The proposed approach is innovative because copula-based similarity has not yet been applied to groundwater systems. Here we estimate the pairwise dependence structure of 600 wells in Southern Germany using 10 years of weekly groundwater level observations. Based on these empirical copulas, dissimilarity measures are estimated, such as the copula's lower- and upper corner cumulated probability, copula-based Spearman's rank correlation - as proposed by Samaniego et al. (2010). For the characterization of groundwater systems, copula-based metrics are compared with dissimilarities obtained from precipitation signals corresponding to the presumed area of influence of each groundwater well. This promising approach provides a new tool for advancing similarity-based classification of groundwater system dynamics. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria. Haaf, E., Barthel, R., 2016. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs EGU General Assembly

  17. Investigation of Groundwater transport using environmental isotopes along the north-eastern part of sinai peninsula

    International Nuclear Information System (INIS)

    Hamza, M.S.; Awad, M.A.; Nada, A.A.; Abd El-Samie, S.G.; Zaghloul, A.

    1998-01-01

    Fourteen groundwater samples were collected from the north-eastern part of sinai peninsula representing different eater bearing formations from younger to older: The sand and gravel interbeds (quaternary), the fissured and fracture limestone of eocene and upper cretaceous and the fractured sandstone (Lower cretaceous). The chemical and isotopic analysis reflected the changes in the meteoric origin of the groundwater in these aquifers with respect to the recharge sources and the rock types. The groundwater in the quaternary aquifer have the metric water type which are affected by evaporation and sea spray deposits. The majority of the wells tapping in the eocene aquifer have the fresh water character while the other have the marine water originated from two sources; the first is the dissolution of the host rock (mainly limestone) which increase the groundwater salinity without changes in the isotopic content. The second source is mixing with connote water seeped to the aquifer through cracks and causing isotopic enrichment in these samples. Otherwise, the depleted values of the stable isotopes in the groundwater of lower and Upper cretaceous represent mixing with palaeo water in these aquifers. High values of tritium content were detected in wells in the eastern part. Further survey is needed to follow up the tritium content

  18. Search for rare muon and pion decay modes with the crystal box detector

    International Nuclear Information System (INIS)

    Piilonen, L.E.; Bolton, R.D.; Bowman, J.D.

    1986-01-01

    New experiental upper limits for the branching ratios of the lepton-family-number nonconserving decays μ + → e + γ and μ + → e + γγ are presented. A new determination of γ, the ratio of pion axial vector to vector form factors, from radiative pion decay is also reported. These results are from data taken with the Crystal Box detector at LAMPF. 11 refs., 7 figs

  19. A proposal of conceptual model for Pertuso Spring discharge evaluation in the Upper Valley of Aniene River

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa

    2016-10-01

    Full Text Available The Upper Aniene River basin is part of a large karst aquifer, which interacts with the river, and represents the most important water resource in the southeast part of Latium Region, Central Italy, used for drinking, agriculture and hydroelectric supplies. This work provides hydrogeochemical data and their interpretations for 1 spring and 2 cross section of Aniene River, monitored from July 2014 to December 2015, in the Upper Valley of Aniene River, to identify flow paths and hydrogeochemical processes governing groundwater-surface water interactions in this region. These activities deal with the Environmental Monitoring Plan made for the catchment work project of the Pertuso Spring, in the Upper Valley of Aniene River, which is going to be exploited to supply an important drinking water network in the South part of Rome district. Discharge measurements and hydrogeochemical data were analyzed to develop a conceptual model of aquifer-river interaction, with the aim of achieving proper management and protection of this important hydrogeological system. All groundwater samples are characterized as Ca-HCO3 type. Geochemical modeling and saturation index computation of the water samples show that groundwater and surface water chemistry in the study area was evolved through the interaction with carbonate minerals. All groundwater samples were undersaturated with respect to calcite and dolomite, however some of the Aniene River samples were saturated with respect to dolomite. The analysis of Mg2+/Ca2+ ratios indicates that the dissolution of carbonate minerals is important for groundwater and surface water chemistry, depending on the hydrological processes, which control the groundwater residence time and chemical equilibria in the aquifer.

  20. Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: implications for sustainable groundwater management in the Mahanadi delta region, India

    Science.gov (United States)

    Sahoo, Sasmita; Jha, Madan K.

    2017-12-01

    Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997-2006, followed by validation (2007-2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.

  1. Medical and Safety Reforms in Boxing

    Science.gov (United States)

    Jordan, Barry D.

    1988-01-01

    The continued existence of boxing as an accepted sport in civilized society has been long debated. The position of the American Medical Association (AMA) has evolved from promoting increased safety and medical reform to recommending total abolition of both amateur and professional boxing. In response to the AMA opposition to boxing, the boxing community has attempted to increase the safeguards in amateur and professional boxing. The United States of America Amateur Boxing Federation, which is the national regulatory agency for all amateur boxing in the United States, has taken several actions to prevent the occurrence of acute brain injury and is currently conducting epidemiologic studies to assess the long-term neuropsychologic consequences of amateur boxing. In professional boxing, state regulatory agencies such as the New York State Athletic Commission have introduced several medical interventions to prevent and reduce neurologic injury. The lack of a national regulatory agency to govern professional boxing has stimulated the formation of the Association of Boxing Commissions and potential legislation for the federal regulation of professional boxing by a federally chartered organization called the United States Boxing Commission. The AMA's opposition to boxing and the medical and safety reforms implemented by the proponents of boxing are discussed. PMID:3385788

  2. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    International Nuclear Information System (INIS)

    Bostick, Kent; Daniel, Anamary; Tachiev, Georgio; Malek-Mohammadi, Siamak

    2013-01-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  3. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, Kent; Daniel, Anamary [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States); Malek-Mohammadi, Siamak [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)

    2013-07-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  4. Glove box

    International Nuclear Information System (INIS)

    Morita, Atsushi

    1990-01-01

    Wire rope earthquake proof supports having sufficient vibration transmitting and attenuating property are disposed between a fixed floor and the bottom of a glove box in order to improve earthquake proofness of the glove box. The vertical weight of the glove box is supported by support legs slidable on the surface of the fixed floor. The wire rope earthquake-proof supports when undergoing a load, cause stretching and rolling against the external force such as earthquakes, and provide flexible spring support and cause a great damping due to friction with strands. Further, the vertical weight is always supported by the support legs and, when a horizontal weight is applied, the glove box slides on the fixed floor freely with slidable members. In this way, stress concentration generated at joint portions of columns and beams can be moderated greatly and earthquake proofness can be improved. Further, quality control and maintenance for the device is almost unnecessary owing to excellent fatigue-resistant characteristics of the wire rope earthquake proof supports. (N.H.)

  5. SUPPLEMENTAL STOCKING OF EYED BROWN TROUT EGGS (SALMO TRUTTA M. FARIO L., 1758 WITH THE USE OF WHITLOCK–VIBERT BOXES

    Directory of Open Access Journals (Sweden)

    Manuela Turković

    2006-07-01

    Full Text Available The research was carried out in the Upper Kupa valley at three different locations–brooks, Lešnički potok, Lešnički jarak and Grčac. During the research efficiency of stocking with Whitlock Vibert boxes were studied. During the three month research period (January 2005 — April 2005 4000 eyed brown trout eggs from 3 different sources were placed in 14 Whitlock–Vibert boxes. During the research resultes from Grčac brook were excluded from the final analysis of efficiency of Whitlock–Vibert boxes because of technical problems, so resultes for the final analysis were used from 2800 eyed brown trout eggs that were placed in 10 Whitlock–Vibert boxes where 99,53% of the eggs had successfully hatched. The results have shown that the use of Whitlock–Vibert boxes with eyed brown trout eggs is prosperous and that the efficiency of Whitlock–Vibert boxes depends on the quality of eggs and choice of box burial in the stream bed. The research was conducted in the context of the regular management obligations of the fishing right owner on the research area.

  6. Bento Boxes

    Science.gov (United States)

    Hasio, Cindy

    2010-01-01

    Bento boxes are common objects in Japanese culture, designed to hold enough lunch for one person. They have individual compartments and sometimes multiple tiers for rice, vegetables, and other side dishes. They are made of materials ranging from wood, cloth, aluminum, or plastic. In general, the greater the number of foods, the better the box is…

  7. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  8. Using tracer-derived groundwater transit times to assess storage within a high-elevation watershed of the upper Colorado River Basin, USA

    Science.gov (United States)

    Georgek, Jennifer L.; Kip Solomon, D.; Heilweil, Victor M.; Miller, Matthew P.

    2018-03-01

    Previous watershed assessments have relied on annual baseflow to evaluate the groundwater contribution to streams. To quantify the volume of groundwater in storage, additional information such as groundwater mean transit time (MTT) is needed. This study determined the groundwater MTT in the West Fork Duchesne watershed in Utah (USA) with lumped-parameter modeling of environmental tracers (SF6, CFCs, and 3H/3He) from 21 springs. Approximately 30% of the springs exhibited an exponential transit time distribution (TTD); the remaining 70% were best characterized by a piston-flow TTD. The flow-weighted groundwater MTT for the West Fork watershed is about 40 years with approximately 20 years in the unsaturated zone. A cumulative distribution of these ages revealed that most of the groundwater is between 30 and 50 years old, suggesting that declining recharge associated with 5-10-year droughts is less likely to have a profound effect on this watershed compared with systems with shorter MTTs. The estimated annual baseflow of West Fork stream flow based on chemical hydrograph separation is 1.7 × 107 m3/year, a proxy for groundwater discharge. Using both MTT and groundwater discharge, the volume of mobile groundwater stored in the watershed was calculated to be 6.5 × 108 m3, or 20 m thickness of active groundwater storage and recharge of 0.09 m/year (assuming porosity = 15%). Future watershed-scale assessments should evaluate groundwater MTT, in addition to annual baseflow, to quantify groundwater storage and more accurately assess watershed susceptibility to drought, groundwater extraction, and land-use change.

  9. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    Science.gov (United States)

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  10. Prediction of groundwater levels from lake levels and climate data using ANN approach

    OpenAIRE

    Dogan, Ahmet; Demirpence, Husnu; Cobaner, Murat

    2008-01-01

    There are many environmental concerns relating to the quality and quantity of surface and groundwater. It is very important to estimate the quantity of water by using readily available climate data for managing water resources of the natural environment. As a case study an artificial neural network (ANN) methodology is developed for estimating the groundwater levels (upper Floridan aquifer levels) as a function of monthly averaged precipitation, evaporation, and measured levels of Magnolia an...

  11. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories.

    Science.gov (United States)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles

    2017-04-01

    River water derives in part from groundwater—water that has spent some time in the subsurface (e.g. soil, unsaturated zone, saturated zone). However, because groundwater residence times vary from months to millennia, determining the proportion of shallow and deep groundwater contribution can be challenging. Groundwater dating with anthropogenic gases and natural geochemical tracers can decipher the origin of groundwater contribution to rivers, particularly when repeat samplings are carried out in different hydrological conditions. Here, we present two different applications of this approach from three hydrological observatories (H+ hydrogeological network; Aghrys and Armorique observatories) in western France, all these observatories belonging to the OZCAR national network. We carried out a regional investigation of mean groundwater ages in hard rock aquifers in Brittany, using long-term chronicles from hydrological observatories and regional monitoring sites. We determined the mean residence-time (RT) and annual renewal rate (RR) of four compartments of these aquifers: the direct contribution of a very young water component (i.e. RT less than 1-2 yr), the upper variably saturated zone (RR 27-33%), the weathered layer (RR 1.8-2.1%) and the fractured zone (RR 0.1%). From these values and a nitrate chronicle, we were able to determine the respective contributions of each compartment to the largest river in Brittany, the Vilaine, which drains 30% of the region. We found that the deep fractured compartment with very slow renewal times contributed to 25-45% of river water in winter and 30-60% in summer. The very young water which includes direct precipitation and soil fluxes constituted 40-65% of the winter river water (Aquilina et al., 2012). To complement these estimates, we investigated the relationship between dissolved silica and groundwater age in the Armorique hydrological observatory in northern Brittany. We computed the silica concentration expected along the

  12. Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece

    Science.gov (United States)

    Petalas, C. P.; Diamantis, I. B.

    1999-06-01

    This paper describes the origins and distribution of saline groundwaters in the coastal area of Rhodope, Greece. The aquifer system includes two aquifers within coarse-grained alluvial sediments in the coastal part of the study area. Two major water-quality groups occur in the study area, namely Ca2+-rich saline groundwater and Ca2+-poor, almost fresh groundwater. The main process controlling the groundwater chemistry is the exchange of calcium and sodium between the aquifer matrix and intruding seawater. The natural salt water in the study area is probably residual water that infiltrated the aquifer system during repeated marine transgressions in late Pleistocene time. Seawater intrusion into the coastal aquifer system occurs as a result of overpumping in two seawater wedges separated vertically by a low-permeability layer. The rate of intrusion averages 0.8 m/d and is less than expected due to a decline of the aquifer's permeability at the interface with the seawater. The application of several hydrochemical techniques (Piper and Durov diagrams; Na+/Cl-, Ca2+/Cl-, Mg2+/Cl-, and Br-/Cl- molar ratios; Ca2+/Mg2+ weight ratio; and chloride concentrations), combined with field observations, may lead to a better explanation of the origin of the saline groundwater.

  13. Groundwater Sustainability through a Novel Dewatering Technology

    Science.gov (United States)

    Jin, Y.; Holzbecher, E.; Ebneth, S.

    2012-12-01

    Groundwater plays a key role in the hydrologic cycle and ecosystem balances. Over the past decades, groundwater is intensively extracted in order to keep construction or mining sites dry. For the latter purpose the pumped water is usually discharged into a nearby surface water body or injected into an aquifer distant from the abstraction sites. As a result, aquifers are depleted and the local eco-system is disrupted as a consequence of falling groundwater tables. Given ongoing pressure on aquifer from abstraction sites, it is vital to bring up adequate attention on groundwater conservation. We demonstrate a novel technique, Düsensauginfiltration (DSI, translated as 'nozzel-suction-infiltration'), which avoids water conveyance but still lowers the groundwater table locally. The method combines abstraction of groundwater at the upper part of the aquifer with injection in the same borehole, but at a greater depth. Hence no water is withdrawn from the system. The method is already used practically in Germany, Netherlands, and China, however, it is not yet fully scientifically understood and evaluated. Currently, two tests sites in Germany, for single and multi well respectively, are selected, at which the DSI technology is currently examined. The project is cooperated with a leading dewatering company (Hoelscher Wasserbau GmbH) and funded by Deutsche Bundesstiftung Umwelt (DBU). To provide the basic principle of the method, we present numerical models solving the differential equation, which is derived from Darcy's Law and mass conservation, describing groundwater flow. We set up stationary numerical models in 2D (vertical cross section for single well case) and 3D (multi well case and/or when ambient groundwater flow is considered) using COMSOL Multiphysics. Since our model region only involves the saturated part of the unconfined aquifer, the numerical model solves a free boundary problem using hydraulic pressure as unknown variable. Two physical modes are included

  14. Initial site characterisation of a dissolved hydrocarbon groundwater plume discharging to a surface water environment

    International Nuclear Information System (INIS)

    Westbrook, S.J.; Commonwealth Scientific and Industrial Research Organisation Land and Water, Wembley, WA; Davis, G.B.; Rayner, J.L.; Fisher, S.J.; Clement, T.P.

    2000-01-01

    Preliminary characterisation of a dissolved hydrocarbon groundwater plume flowing towards a tidally- and seasonally-forced estuarine system has been completed at a site in Perth, Western Australia. Installation and sampling of multiport boreholes enabled fine scale (0.5-m) vertical definition of hydrocarbon concentrations. Vertical electrical conductivity profiles from multiport and spear probe sampling into the river sediments indicated that two groundwater/river water interfaces or dispersion zones are present: (a) an upper dispersion zone between brackish river water and groundwater, and (b) a lower interface between groundwater and deeper saline water. On-line water level loggers show that near-shore groundwater levels are also strongly influence by tidal oscillation. Results from the initial site characterisation will be used to plan further investigations of contaminated groundwater/surface water interactions and the biodegradation processes occurring at the site

  15. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2009

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  16. Geochemical modelling of groundwater evolution and residence time at the Olkiluoto site

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Luukkonen, A.; Ruotsalainen, P.; Leino-Forsman, H.; Vuorinen, U.

    1999-05-01

    external conditions such as glaciation, palaeo Baltic stages, land uplift and ancient hydrothermal events, have had a significant effect on local palaeohydrogeological conditions. They have caused great variability, which is observable in the chemical data notably in salinity (up to 70 g/l), water type and contents of conservative parameters, such as Cl, Br and stable isotopes of water. However, their influence is also significant on the water-rock interaction that principally controls the pH and redox conditions - varying 7.5 to 8 and -200 to -300 mV, respectively - in the groundwater, although the calculated mass transfer in the reactions is minor compared with conservative mixing at the site. Calcite in fractures is interpreted to principally control pH level in groundwater. Sulphidic redox conditions dominate in the upper 500 m in brackish and slightly saline groundwater. Deeper sulphur species are absent and methanic processes are obtained. The water types can be connected to certain palaeo stages. This enables to estimate mean residence time of groundwaters. Current meteoric recharge stage (< 2500 a) mainly dominates in the upper 150 m. Groundwater from Litorina stage (7500-2500 a ago) forms the bulk at 100 - 250 m. Glacial melt water (about 10 000 a old) is an important component of groundwater between 100 - 500 m. However, any remarks of oxygen intrusion cannot be interpreted neither from mineralogy nor from groundwater. Deeper, subglacial and older saline groundwater predominates. Despite the current locations of different groundwater bodies it seems according to hydrogeochemical interpretation that dynamic flow conditions has been limited to upper 150 - 200 m. (orig.)

  17. Geochemical modelling of groundwater evolution and residence time at the Olkiluoto site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P.; Luukkonen, A. [VTT Communities and Infrastructure, Espoo (Finland); Ruotsalainen, P. [Fintact Oy (Finland); Leino-Forsman, H.; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland)

    1999-05-01

    external conditions such as glaciation, palaeo Baltic stages, land uplift and ancient hydrothermal events, have had a significant effect on local palaeohydrogeological conditions. They have caused great variability, which is observable in the chemical data notably in salinity (up to 70 g/l), water type and contents of conservative parameters, such as Cl, Br and stable isotopes of water. However, their influence is also significant on the water-rock interaction that principally controls the pH and redox conditions - varying 7.5 to 8 and -200 to -300 mV, respectively - in the groundwater, although the calculated mass transfer in the reactions is minor compared with conservative mixing at the site. Calcite in fractures is interpreted to principally control pH level in groundwater. Sulphidic redox conditions dominate in the upper 500 m in brackish and slightly saline groundwater. Deeper sulphur species are absent and methanic processes are obtained. The water types can be connected to certain palaeo stages. This enables to estimate mean residence time of groundwaters. Current meteoric recharge stage (< 2500 a) mainly dominates in the upper 150 m. Groundwater from Litorina stage (7500-2500 a ago) forms the bulk at 100 - 250 m. Glacial melt water (about 10 000 a old) is an important component of groundwater between 100 - 500 m. However, any remarks of oxygen intrusion cannot be interpreted neither from mineralogy nor from groundwater. Deeper, subglacial and older saline groundwater predominates. Despite the current locations of different groundwater bodies it seems according to hydrogeochemical interpretation that dynamic flow conditions has been limited to upper 150 - 200 m. (orig.) 82 refs.

  18. Groundwater quality in the Mojave area, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  19. Conception of dismantling cell for glove box with alpha contamination

    International Nuclear Information System (INIS)

    Mangin, D.

    1987-01-01

    The new dismantling cell of Valduc treats particularly alpha glove boxes. This cell is conceived to reduce the intervention inside for man with ventilated clothes and to reduce the volume of alpha wastes by utilization of manipulators and appropriate tools. The respect of low level norms (0.1 Ci/ton) for storage of alpha wastes conductes us to make a first decontamination, to ameliorate the detection in quantity of plutonium in the wastes and for wastes with a level upper the norm to make studies on decontamination by Freon 113 [fr

  20. Tritium/Helium-3 dating of groundwaters around Chernobyl site

    Energy Technology Data Exchange (ETDEWEB)

    Fourre, E.; Jean-Baptiste, P.; Dapoigny, A.; Baumier, D. [CEA, CNRS, LSCE, UVSQ, IPSL, F-91191 Gif Sur Yvette (France); Aquilina, L.; Labasque, T. [Geosciences Rennes - GR, CNRS UMR 6118, F-35000 Rennes (France); La Salle, C. Le Gal; Lancelot, J. [Nimes Univ, GIS/CEREGE, Nimes (France)

    2010-07-01

    Complete text of publication follows: Estimates of groundwater age allow geo-hydrologists to calculate recharge rates, assess aquifers contamination risks, and calibrate complex flow models. The {sup 3}H/{sup 3}He dating method offers a direct measure for the time since groundwater had its last gas exchange with the atmosphere. The aim of this study is to bring temporal constraints to the radionuclide transport model in the Chernobyl test site. Samples have been collected in the exclusion zone, close to a trench filled with low-level wastes, both in the upper eolian sand layer and deeper in the alluvial deposit. CFCs and SF6 have been measured as well in order to compare dating methods. The {sup 3}H/{sup 3}He results presented in Figure 1 clearly show increasing ages with depth (below groundwater table). This fully supports the groundwater stratification developed in the hydrogeological model of the area. The infiltration recharge rate is a sensitive key parameter of the model, and our data are consistent with a rate about 200 mm/yr (maximum estimate)

  1. Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer.

    Science.gov (United States)

    Pacheco Castro, Roger; Pacheco Ávila, Julia; Ye, Ming; Cabrera Sansores, Armando

    2018-01-01

    This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously. © 2017, National Ground Water Association.

  2. Groundwater hydrology study of the Ames Chemical Disposal Site

    International Nuclear Information System (INIS)

    Stickel, T.

    1996-01-01

    The Ames Laboratory Chemical Disposal Site is located in northwestern Ames, Iowa west of Squaw Creek. From 1957 to 1966, Ames Laboratory conducted research to develop processes to separate uranium and thorium from nuclear power fuel and to separate yttrium from neutron shielding sources. The wastes from these processes, which contained both hazardous and radiological components, were placed into nine burial pits. Metal drums, plywood boxes, and steel pails were used to store the wastes. Uranium was also burned on the ground surface of the site. Monitoring wells were placed around the waste burial pits. Groundwater testing in 1993 revealed elevated levels of Uranium 234, Uranium 238, beta and alpha radiation. The north side of the burial pit had elevated levels of volatile organic compounds. Samples in the East Ravine showed no volatile organics; however, they did contain elevated levels of radionuclides. These analytical results seem to indicate that the groundwater from the burial pit is flowing down hill and causing contamination in the East Ravine. Although there are many avenues for the contamination to spread, the focus of this project is to understand the hydrogeology of the East Ravine and to determine the path of groundwater flow down the East Ravine. The groundwater flow data along with other existing information will be used to assess the threat of chemical migration down the East Ravine and eventually off-site. The primary objectives of the project were as follows: define the geology of the East Ravine; conduct slug tests to determine the hydraulic conductivity of both oxidized and unoxidized till; develop a three-dimensional mathematical model using ModIME and MODFLOW to simulate groundwater flow in the East Ravine

  3. Submarine groundwater discharge in a subsiding coastal lowland: A {sup 226}Ra and {sup 222}Rn investigation in the Southern Venice lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Gattacceca, Julie C., E-mail: jcg54@esc.cam.ac.uk [CEREGE, Aix-Marseille Universite, UMR 6635 CNRS-IRD-CDF, Europole Mediterraneen de l' Arbois, BP80, 13545 Aix en Provence (France); Mayer, Adriano [IDPA-CNR, Via Mario Bianco 9, 20131 Milano (Italy); Cucco, Andrea [Coastal Oceanography, CNR-IAMC, Oristano Unit, Loc. Sa MArdini, 09072 Oristano (Italy); Claude, Christelle; Radakovitch, Olivier; Vallet-Coulomb, Christine; Hamelin, Bruno [CEREGE, Aix-Marseille Universite, UMR 6635 CNRS-IRD-CDF, Europole Mediterraneen de l' Arbois, BP80, 13545 Aix en Provence (France)

    2011-05-15

    Highlights: > Occurence/magnitude of submarine groundwater discharge investigated in Venice lagoon (Italy) using {sup 226}Ra and {sup 222}Rn isotopic tracers. > Single box mass balance compared with multi boxes mass balance coupled with hydrodynamic model. > Groundwater flux accounts for 1% of lagoon hydrological balance (1-3 times surface runoff) and 30-50% of tracers inputs. > Necessary to assess this flux impact on nutrient budget in lagoon. - Abstract: Several recent studies have suggested that submarine groundwater discharge (SGD) occurs in the Venice lagoon with discharge rates on the same order or larger than the surface runoff, as demonstrated previously in several other coastal zones around the world. Here, the first set of {sup 222}Rn data, along with new {sup 226}Ra data are reported, in order to investigate the occurrence and magnitude of SGD specifically in the southern basin of the lagoon. The independent connection with the Adriatic Sea (at the Chioggia inlet), in addition to the relative isolation of the water body from the main lagoon, make this area an interesting case study. There is probably only minimal fresh groundwater flux to the lagoon because the surrounding aquifer is subsiding and mainly has a lower hydraulic head than seawater. The data show that the Ra and Rn activities are in slight excess in the lagoon compared to the open sea, with values on the same order as those observed in the northern and central basins. Taking into account the water exchange rate between the lagoon and adjacent seawater provided by previous hydrodynamic numerical modelling, it is shown that this excess cannot be supported at steady state by only riverine input and by diffusive release from the sediment interstitial water. High activities observed in groundwater samples collected from 16 piezometers tapping into the shallow aquifer over the coastal lowland substantiate that the excess radioactivity in the lagoon may indeed be due to the advection of groundwater

  4. Metallurgical Laboratory (HWMF) Groundwater Monitoring Report, Fourth Quarter 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-03-01

    Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Units were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab Hazardous Waste Management Facility. This project began in July 1994 and is complete; however, analytical data from these wells are not yet available

  5. Changes in position and quality of preferred nest box: effects on nest box use by laying hens

    DEFF Research Database (Denmark)

    Riber, Anja Brinch; Nielsen, Birte L.

    2013-01-01

    Using laying hens, we investigated whether position of a nest box, both within the pen and relative to other nest boxes, influenced the preference for a nest box, and how a sudden and marked change to the preferred box influenced the use of nest boxes by the hens. Groups (n=12) of 15 Isa Warren...... hens were housed in pens, each with five identical nest boxes in different positions: Two single (in a corner or not) and a triplet of nest boxes (one of which in a corner). The use of nest boxes was determined by the number of eggs laid daily in each box. Three experiments, each lasting 10 days, were...... carried out. First, the undisturbed use of each of the nest box types was investigated, and a strong preference (Peggs laid there. Second, each of the hen groups was moved to another pen allocated at random, and where...

  6. [Boxing: traumatology and prevention].

    Science.gov (United States)

    Cabanis, Emmanuel-Alain; Iba-Zizen, Marie-Thérèse; Perez, Georges; Senegas, Xavier; Furgoni, Julien; Pineau, Jean-Claude; Louquet, Jean-Louis; Henrion, Roger

    2010-10-01

    In 1986, a surgeon who, as an amateur boxer himself was concerned with boxers' health, approached a pioneering Parisian neuroimaging unit. Thus began a study in close cooperation with the French Boxing Federation, spanning 25 years. In a first series of 52 volunteer boxers (13 amateurs and 39 professionals), during which MRI gradually replaced computed tomography, ten risk factors were identified, which notably included boxing style: only one of 40 "stylists" with a good boxing technique had cortical atrophy (4.5 %), compared to 15 % of "sloggers". Changes to the French Boxing Federation rules placed the accent on medical prevention. The second series, of 247 boxers (81 amateurs and 266 professionals), showed a clear improvement, as lesions were suspected in 14 individuals, of which only 4 (1.35 %) were probably due to boxing. The third and fourth series were part of a protocol called "Brain-Boxing-Ageing", which included 76 boxers (11 having suffered KOs) and 120 MRI scans, with reproducible CT and MRI acquisitions (9 sequences with 1.5 T then 3 T, and CT). MRI anomalies secondary to boxing were found in 11 % of amateurs and 38 % of professionals (atrophy, high vascular T2 signal areas, 2 cases of post-KO subdural bleeding). CT revealed sinus damage in 13 % of the amateurs and 19 % of the professionals. The risk of acute and chronic facial and brain damage was underline, along with detailed precautionary measures (organization of bouts, role of the referee and ringside doctor, and application of French Boxing Federation rules).

  7. Hydrochemistry, origin and residence time of deep groundwater in the Yuseong area

    International Nuclear Information System (INIS)

    Koh, Yong Kwon; Kim, Geon Young; Bae, Dae Seok; Park, Kyung Woo

    2005-01-01

    As a part of the radioactive waste disposal research program in Korea, the geological, hydrogeological and hydrogeochemical investigations have been carried out in the Yuseong area (KAERI). The temperature or groundwater is measured up to 24 .deg. C and thermal gradient is obtained, to 0.26 .deg. C/100m. pH of groundwater at upper section shows about 7 and the pH of groundwater of 200m below surface reaches almost constant value as 9.9∼10.3. The redox potential of groundwater varied with depth and more negative values were recognized in deep groundwater. The redox potential of deep groundwater, main factor of U solubility, was measured up to -150 mV. These high pH and reduced conditions indicates that the maximum U concentration in groundwater would be limited by the equilibrium solubility of U minerals. The chemistry of shallow groundwater shows Ca-HCO 3 or Ca-Na-HCO 3 type, whereas the deep groundwater belongs to typical Na-HCO 3 type. The chemistry of groundwater below 250m from the surface is constant with depth, indicating that the extent of water-rock reaction is almost unique, which is controlled by the residence time of groundwater. The carbon isotope data (δ 13 C) of groundwater show the contribution of carbon from either that microbial oxidation of organic matter or carbon dioxide from plant respiration. The measurement and interpretation of C-14 indicate that the residence time of borehole deep groundwater ranges from about 2,000 to 6,000 yr BP. The high δ 34 S so4 value of groundwater indicate that the sulfate reduction might be occurred in the deep environment

  8. Microclimate boxes for panel paintings

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1998-01-01

    The use of microclimate boxes to protect vulnerable panel paintings is, therefore, not a new phenomenon of the past two or three decades. Rather, it has been a concern for conservators and curators to protect these objects of art at home and in transit since the end of the nineteenth century....... The increased number of travelling exhibitions in recent years has heightened the need to protect paintings during circulation (Thomson 1961; Mecklenburg 1991). The use and design of microclimate boxes have been evolving since 1892. These boxes may be divided into three broad groups: those using an active...... buffer material to stabilize the internal RH, a more recent box containing no added buffer material, and, in recent times, boxes with an altered gas content. Another concern is the appearance (aesthetics) of the box....

  9. Estimating nitrate concentrations in groundwater at selected wells and springs in the surficial aquifer system and Upper Floridan aquifer, Dougherty Plain and Marianna Lowlands, Georgia, Florida, and Alabama, 2002-50

    Science.gov (United States)

    Crandall, Christy A.; Katz, Brian G.; Berndt, Marian P.

    2013-01-01

    Groundwater from the surficial aquifer system and Upper Floridan aquifer in the Dougherty Plain and Marianna Lowlands in southwestern Georgia, northwestern Florida, and southeastern Alabama is affected by elevated nitrate concentrations as a result of the vulnerability of the aquifer, irrigation water-supply development, and intensive agricultural land use. The region relies primarily on groundwater from the Upper Floridan aquifer for drinking-water and irrigation supply. Elevated nitrate concentrations in drinking water are a concern because infants under 6 months of age who drink water containing nitrate concentrations above the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter as nitrogen can become seriously ill with blue baby syndrome. In response to concerns about water quality in domestic wells and in springs in the lower Apalachicola–Chattahoochee–Flint River Basin, the Florida Department of Environmental Protection funded a study in cooperation with the U.S. Geological Survey to examine water quality in groundwater and springs that provide base flow to the Chipola River. A three-dimensional, steady-state, regional-scale groundwater-flow model and two local-scale models were used in conjunction with particle tracking to identify travel times and areas contributing recharge to six groundwater sites—three long-term monitor wells (CP-18A, CP-21A, and RF-41) and three springs (Jackson Blue Spring, Baltzell Springs Group, and Sandbag Spring) in the lower Apalachicola–Chattahoochee–Flint River Basin. Estimated nitrate input to groundwater at land surface, based on previous studies of nitrogen fertilizer sales and atmospheric nitrate deposition data, were used in the advective transport models for the period 2002 to 2050. Nitrate concentrations in groundwater samples collected from the six sites during 1993 to 2007 and groundwater age tracer data were used to calibrate the transport aspect of the simulations

  10. Boxing-related head injuries.

    Science.gov (United States)

    Jayarao, Mayur; Chin, Lawrence S; Cantu, Robert C

    2010-10-01

    Fatalities in boxing are most often due to traumatic brain injury that occurs in the ring. In the past 30 years, significant improvements in ringside and medical equipment, safety, and regulations have resulted in a dramatic reduction in the fatality rate. Nonetheless, the rate of boxing-related head injuries, particularly concussions, remains unknown, due in large part to its variability in clinical presentation. Furthermore, the significance of repeat concussions sustained when boxing is just now being understood. In this article, we identify the clinical manifestations, pathophysiology, and management of boxing-related head injuries, and discuss preventive strategies to reduce head injuries sustained by boxers.

  11. Radiation level analysis for the port cell of the ITER electron cyclotron-heating upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Weinhorst, Bastian, E-mail: bastian.weinhorst@kit.edu [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Fischer, Ulrich; Lu, Lei [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Strauss, Dirk; Spaeh, Peter; Scherer, Theo [KIT, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Leichtle, Dieter [F4E, Analysis & Codes/Technical Support Services, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2016-11-01

    Highlights: • First detailed neutronic modelling of the ECHUL port cell with ECHUL equipment (including beam lines with diamond windows, the beam lines mounting box, conduit boxes and rails). • Three different bioshield port plug configurations and two different neutron source configurations are investigated. • Radiation Levels are calculated in the port cell, focusing on the position of the diamond window. • The dose rate in the port cell is below the limit for maintenance in the port cell. • The radiation level at the diamond window is very low and should not influence its performance. - Abstract: The electron cyclotron-heating upper launcher (ECHUL) will be installed in four upper ports of the ITER tokamak thermonuclear fusion reactor. Each ECHUL is able to deposit 8 MW power into the plasma for plasma mode stabilization via microwave beam lines. An essential part of these beam lines are the diamond windows. They are located in the upper port cell behind the bioshield to reduce the radiation levels to a minimum. The paper describes the first detailed neutronic modelling of the ECHUL port cell with ECHUL equipment. The bioshield plug is modelled including passageways for the microwave beam lines, piping and cables looms as well as rails and openings for ventilation. The port cell is equipped with the beam lines including the diamond windows, the beam lines mounting box, conduit boxes and rails. The neutrons are transported into the port cell starting from a surface source in front of the bioshield. Neutronic results are obtained for radiation levels in the port cell at different positions, mainly focusing on the diamond windows position. It is shown that the radiation level is below the limit for maintenance in the port cell. The radiation level at the diamond window is very low and should not influence its performance.

  12. Groundwater levels, geochemistry, and water budget of the Tsala Apopka Lake system, west-central Florida, 2004–12

    Science.gov (United States)

    McBride, W. Scott; Metz, Patricia A.; Ryan, Patrick J.; Fulkerson, Mark; Downing, Harry C.

    2017-12-18

    , and the Upper Floridan aquifer; and to estimate an annual water budget for each pool and for the entire lake system for 2004–12. The hydrologic interactions were evaluated using hydraulic head and geochemical data. Geochemical data, including major ion, isotope, and age-tracer data, were used to evaluate sources of water and to distinguish flow paths. Hydrologic connection of the surficial environment (lakes, ponds, wetlands, and the surficial aquifer) was quantified on the basis of a conceptualized annual water-budget model. The model included the change in surface water and groundwater storage, precipitation, evapotranspiration, surface-water inflow and outflow, and net groundwater exchange with the underlying Upper Floridan aquifer. The control volume for each pool extended to the base of the surficial aquifer and covered an area defined to exceed the maximum inundated area for each pool during 2004–12 by 0.5 foot. Net groundwater flow was computed as a lumped value and was either positive or negative, with a negative value indicating downward or lateral leakage from the control volume and a positive value indicating upward leakage to the control volume.The annual water budget for Tsala Apopka Lake was calculated using a combination of field observations and remotely sensed data for each of three pools and for the composite three pool area. A digital elevation model at a 5-foot grid spacing and bathymetric survey data were used to define the land-surface elevation and volume of each pool and to calculate the changes in inundated area with change in lake stage. Continuous lake-stage and groundwater-level data were used to define the change in storage for each pool. The rainfall data used in the water-budget calculations were based on daily radar reflectance data and measured rainfall from weather stations. Evapotranspiration was computed as a function of reference evapotranspiration, adjusted to actual evapotranspiration using a monthly land-cover coefficient

  13. Exergaming boxing versus heavy-bag boxing: are these equipotent for individuals with spinal cord injury?

    Science.gov (United States)

    Mat Rosly, Maziah; Mat Rosly, Hadi; Hasnan, Nazirah; Davis, Glen M; Husain, Ruby

    2017-08-01

    Current strategies for increased physical activity and exercise in individuals with spinal cord injury (SCI) face many challenges with regards to maintaining their continuity of participation. Barriers cited often include problems with accessing facilities, mundane, monotonous or boring exercises and expensive equipment that is often not adapted for wheelchair users. To compare the physiological responses and user preferences between conventional heavy-bag boxing against a novel form of video game boxing, known as exergaming boxing. Cross-sectional study. Exercise laboratory setting in a university medical center. Seventeen participants with SCI were recruited, of which sixteen were male and only one female. Their mean age was 35.6±10.2 years. All of them performed a 15-minute physical exercise session of exergaming and heavy-bag boxing in a sitting position. The study assessed physiological responses in terms of oxygen consumption, metabolic equivalent (MET) and energy expenditure between exergaming and heavy-bag boxing derived from open-circuit spirometry. Participants also rated their perceived exertion using Borg's category-ratio ratings of perceived exertion. Both exergaming (MET: 4.3±1.0) and heavy-bag boxing (MET: 4.4±1.0) achieved moderate exercise intensities in these participants with SCI. Paired t-test revealed no significant differences (P>0.05, Cohen's d: 0.02-0.49) in the physiological or perceived exertional responses between the two modalities of boxing. Post session user survey reported all the participants found exergaming boxing more enjoyable. Exergaming boxing, was able to produce equipotent physiological responses as conventional heavy-bag boxing. The intensity of both exercise modalities achieved recommended intensities for health and fitness benefits. Exergaming boxing have the potential to provide an enjoyable, self-competitive environment for moderate-vigorous exercise even at the comfort of their homes.

  14. Invariant box-parameterization of neutrino oscillations

    International Nuclear Information System (INIS)

    Weiler, Thomas J.; Wagner, DJ

    1998-01-01

    The model-independent 'box' parameterization of neutrino oscillations is examined. The invariant boxes are the classical amplitudes of the individual oscillating terms. Being observables, the boxes are independent of the choice of parameterization of the mixing matrix. Emphasis is placed on the relations among the box parameters due to mixing-matrix unitarity, and on the reduction of the number of boxes to the minimum basis set. Using the box algebra, we show that CP-violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. General analyses of neutrino oscillations among n≥3 flavors can readily determine the boxes, which can then be manipulated to yield magnitudes of mixing matrix elements

  15. First-aid boxes - Reminder

    CERN Multimedia

    GS Department

    2010-01-01

    With a view to ensuring optimum use of the first-aid boxes on the CERN site, we should like to remind you of various changes introduced in March 2009: The TSO of the buildings concerned is responsible for the first-aid boxes, including checking their contents.   First-aid boxes may be restocked ONLY at the CERN stores (SCEM No. 54.99.80). This is no longer possible at the Infirmary. The associated cost is charged to the Departments.   First-aid boxes should be used only for mild injuries. All other cases should be referred to the Medical Service Infirmary (Bldg. 57 – ground-floor, tel. 73802) between 8.00 a.m. and 5.30 p.m. or to the Fire and Rescue Service (tel. 74444). N.B.: This information does not apply to the red emergency first-aid boxes in the underground areas or to the emergency kits for use in the event of being splashed with hydrofluoric acid.

  16. Groundwater residence time and movement in the Maltese islands - A geochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, M.E., E-mail: mest@bgs.ac.uk [British Geological Survey, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Maurice, L. [British Geological Survey, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Heaton, T.H.E. [British Geological Survey, NERC Isotope Geoscience Laboratory, Keyworth, Nottinghamshire NG12 5GG (United Kingdom); Sapiano, M.; Micallef Sultana, M. [Malta Resources Authority, Marsa MRS 9065 (Malta); Gooddy, D.C.; Chilton, P.J. [British Geological Survey, Wallingford, Oxfordshire OX10 8BB (United Kingdom)

    2010-05-15

    The Maltese islands are composed of two limestone aquifers, the Upper and Lower Coralline Limestone separated by an aquitard, the 'Blue Clay'. The Lower Coralline Limestone is overlain in part by the poorly permeable Globigerina Limestone. The upper perched aquifers are discontinuous and have very limited saturated thickness and a short water level response time to rainfall. Frequent detections of coliforms suggest a rapid route to groundwater. However, the unsaturated zone has a considerable thickness in places and the primary porosity of the Upper Coralline Limestone is high, so there is likely to be older recharge by slow matrix flow as well as rapid recharge from fractures. Measurement of SF{sub 6} from a pumping station in a deep part of one of the perched aquifers indicated a mean saturated zone age of about 15 a. The Main Sea Level aquifers (MSL) on both Malta and Gozo have a large unsaturated thickness as water levels are close to sea level. On Malta, parts of the aquifer are capped by the perched aquifers and more extensively by the Globigerina Limestone. The limited detection of coliform bacteria suggests only some rapid recharge from the surface via fractures or karst features. Transmissivity is low and {sup 3}H and CFC/SF{sub 6} data indicate that saturated zone travel times are in the range 15-40 a. On Gozo the aquifer is similar but is more-extensively capped by impermeable Blue Clay. CFC data show the saturated zone travel time is from 25 a to possibly more than 60 a. Groundwater age is clearly related to the extent of low-permeability cover. The {delta}{sup 13}C signature of groundwater is related to the geochemical processes which occur along the flowpath and is consistent with residence time ages in the sequence; perched aquifers < Malta MSL < Gozo MSL. The {sup 18}O and {sup 2}H enriched isotopic signature of post 1983 desalinated water can be seen in more-modern groundwater, particularly the urbanized areas of the perched and Malta MSL

  17. Repackaging SRS Black Box TRU Waste

    International Nuclear Information System (INIS)

    Swale, D. J.; Stone, K.A.; Milner, T. N.

    2006-01-01

    Historically, large items of TRU Waste, which were too large to be packaged in drums for disposal have been packaged in various sizes of custom made plywood boxes at the Savannah River Site (SRS), for many years. These boxes were subsequently packaged into large steel ''Black Boxes'' for storage at SRS, pending availability of Characterization and Certification capability, to facilitate disposal of larger items of TRU Waste. There are approximately 107 Black Boxes in inventory at SRS, each measuring some 18' x 12' x 7', and weighing up to 45,000 lbs. These Black Boxes have been stored since the early 1980s. The project to repackage this waste into Standard Large Boxes (SLBs), Standard Waste Boxes (SWB) and Ten Drum Overpacks (TDOP), for subsequent characterization and WIPP disposal, commenced in FY04. To date, 10 Black Boxes have been repackaged, resulting in 40 SLB-2's, and 37 B25 overpack boxes, these B25's will be overpacked in SLB-2's prior to shipping to WIPP. This paper will describe experience to date from this project

  18. Use of environmental isotopes in studying surface and groundwaters in the Upper Orontes basin: A case study of modeling elements and pollutants transport using the code PHREEQM

    International Nuclear Information System (INIS)

    Kattan, Z.

    2001-06-01

    This report evaluate the chemical and isotopic characteristics of surface and groundwater in the upper Orontes basin, together with a study of the precipitation behavior of Bloudan, Homs and Tartous stations. It presents also the so far obtained results throughout the application of the geochemical code PHREEQM in studying the elements and pollutant as transport in the groundwater of this basin. The results show that the rainfall chemistry was a moderate dissolved content, and, and accompanied with how ph values and high sulfate contents, as a result of domestic and industrial pollution. the altitude effect is shown up by a depletion of heavy stable isotopes of about -0.18 % and -1.39% per 100 m elevation of δ 18 O and δ D, respectively. surface water in the Orontes River, up to Qattineh Lake, was characterized by a low solute content, high ph values (higher than 8), high dissolved oxygen content, depleted concentration in heavy stable isotopes and natural mineralization in 15 N and organic pollutants (N and P). Un the opposite, the water of this river was more saline and more enriched in organic pollutants such as nitrogen and phosphorous, after its getting out of the Qattineh Lake. The river water was also characterized by low ph values and low concentration in dissolved oxygen, as a consequence of organic matter oxidation. The depleted concentration of heavy stable isotopes in the Cenomanian Turonian aquifer system reveals that the altitude of recharge zone is rather higher than 1000 m, which corresponds to an exposure of these rocks in Lebanon, the altitude of recharge zones for the continental and volcanic pliocene aquifers is not lower than 500 m. The mean turnover time (residence time) of groundwater in the Cenomanian-Turonian aquifer was evaluated to be about 40-50 years. On the basis of this evaluation, a value of about 0.8 billion cubic m was obtained for the maximum groundwater reservoir size. The results of geochemical modeling of elements and

  19. Invariant box parameterization of neutrino oscillations

    International Nuclear Information System (INIS)

    Weiler, T.J.; Wagner, D.

    1998-01-01

    The model-independent 'box' parameterization of neutrino oscillations is examined. The invariant boxes are the classical amplitudes of the individual oscillating terms. Being observables, the boxes are independent of the choice of parameterization of the mixing matrix. Emphasis is placed on the relations among the box parameters due to mixing matrix unitarity, and on the reduction of the number of boxes to the minimum basis set. Using the box algebra, we show that CP-violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. General analyses of neutrino oscillations among n≥3 flavors can readily determine the boxes, which can then be manipulated to yield magnitudes of mixing matrix elements. copyright 1998 American Institute of Physics

  20. Box-particle intensity filter

    OpenAIRE

    Schikora, Marek; Gning, Amadou; Mihaylova, Lyudmila; Cremers, Daniel; Koch, Wofgang; Streit, Roy

    2012-01-01

    This paper develops a novel approach for multi-target tracking, called box-particle intensity filter (box-iFilter). The approach is able to cope with unknown clutter, false alarms and estimates the unknown number of targets. Furthermore, it is capable of dealing with three sources of uncertainty: stochastic, set-theoretic and data association uncertainty. The box-iFilter reduces the number of particles significantly, which improves the runtime considerably. The low particle number enables thi...

  1. Building and calibrating a large-extent and high resolution coupled groundwater-land surface model using globally available data-sets

    Science.gov (United States)

    Sutanudjaja, E. H.; Van Beek, L. P.; de Jong, S. M.; van Geer, F.; Bierkens, M. F.

    2012-12-01

    The current generation of large-scale hydrological models generally lacks a groundwater model component simulating lateral groundwater flow. Large-scale groundwater models are rare due to a lack of hydro-geological data required for their parameterization and a lack of groundwater head data required for their calibration. In this study, we propose an approach to develop a large-extent fully-coupled land surface-groundwater model by using globally available datasets and calibrate it using a combination of discharge observations and remotely-sensed soil moisture data. The underlying objective is to devise a collection of methods that enables one to build and parameterize large-scale groundwater models in data-poor regions. The model used, PCR-GLOBWB-MOD, has a spatial resolution of 1 km x 1 km and operates on a daily basis. It consists of a single-layer MODFLOW groundwater model that is dynamically coupled to the PCR-GLOBWB land surface model. This fully-coupled model accommodates two-way interactions between surface water levels and groundwater head dynamics, as well as between upper soil moisture states and groundwater levels, including a capillary rise mechanism to sustain upper soil storage and thus to fulfill high evaporation demands (during dry conditions). As a test bed, we used the Rhine-Meuse basin, where more than 4000 groundwater head time series have been collected for validation purposes. The model was parameterized using globally available data-sets on surface elevation, drainage direction, land-cover, soil and lithology. Next, the model was calibrated using a brute force approach and massive parallel computing, i.e. by running the coupled groundwater-land surface model for more than 3000 different parameter sets. Here, we varied minimal soil moisture storage and saturated conductivities of the soil layers as well as aquifer transmissivities. Using different regularization strategies and calibration criteria we compared three calibration scenarios

  2. Injuries in competitive boxing. A prospective study.

    Science.gov (United States)

    Siewe, J; Rudat, J; Zarghooni, K; Sobottke, R; Eysel, P; Herren, C; Knöll, P; Illgner, U; Michael, J

    2015-03-01

    Boxing remains a subject of controversy and is often classified as dangerous. But the discussion is based mostly on retrospective studies. This survey was conducted as a prospective study. From October 2012 to September 2013, 44 competitive boxers were asked to report their injuries once a month. The questionnaire collected general information (training, competition) and recorded the number of bouts fought, injuries and resulting lost days. A total of 192 injuries were recorded, 133 of which resulted in interruption of training or competition. Each boxer sustained 3 injuries per year on average. The injury rate was 12.8 injuries per 1 000 h of training. Boxers fighting more than 3 bouts per year sustain more injuries (p=0.0075). The injury rate does is not a function of age (age≤19 vs. > 19a, p=0.53). Injuries to the head and the upper limbs occur most frequently. The most common injuries are soft tissue lacerations and contusions. Head injuries with neurological symptoms rarely occur (4.2%). Boxing has a high injury rate that is comparable with other contact sports, but most injuries are minor. Injury frequency is not a function of whether the boxer competes in the junior or adult category. Athletes fighting many bouts per year have a greater risk of injury. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida

    Science.gov (United States)

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.

    2010-01-01

    The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland

  4. Molecular cloning and characterization of an F-box family gene CarF-box1 from chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Jia, Yuying; Gu, Hanyan; Wang, Xiansheng; Chen, Quanjia; Shi, Shubing; Zhang, Jusong; Ma, Lin; Zhang, Hua; Ma, Hao

    2012-03-01

    F-box protein family has been found to play important roles in plant development and abiotic stress responses via the ubiquitin pathway. In this study, an F-box gene CarF-box1 (for Cicer arietinum F-box gene 1, Genbank accession no. GU247510) was isolated based on a cDNA library constructed with chickpea seedling leaves treated by polyethylene glycol. CarF-box1 encoded a putative protein with 345 amino acids and contained no intron within genomic DNA sequence. CarF-box1 is a KFB-type F-box protein, having a conserved F-box domain in the N-terminus and a Kelch repeat domain in the C-terminus. CarF-box1 was localized in the nucleus. CarF-box1 exhibited organ-specific expression and showed different expression patterns during seed development and germination processes, especially strongly expressed in the blooming flowers. In the leaves, CarF-box1 could be significantly induced by drought stress and slightly induced by IAA treatment, while in the roots, CarF-box1 could be strongly induced by drought, salinity and methyl jasmonate stresses. Our results suggest that CarF-box1 encodes an F-box protein and may be involved in various plant developmental processes and abiotic stress responses.

  5. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    Science.gov (United States)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  6. Groundwater Monitoring Plan for the Solid Waste Landfill

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Chou, C.J.

    2000-01-01

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes

  7. Groundwater Monitoring Plan for the Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    JW Lindberg; CJ Chou

    2000-12-14

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes.

  8. The Grand Challenge of Basin-Scale Groundwater Quality Management Modelling

    Science.gov (United States)

    Fogg, G. E.

    2017-12-01

    The last 50+ years of agricultural, urban and industrial land and water use practices have accelerated the degradation of groundwater quality in the upper portions of many major aquifer systems upon which much of the world relies for water supply. In the deepest and most extensive systems (e.g., sedimentary basins) that typically have the largest groundwater production rates and hold fresh groundwaters on decadal to millennial time scales, most of the groundwater is not yet contaminated. Predicting the long-term future groundwater quality in such basins is a grand scientific challenge. Moreover, determining what changes in land and water use practices would avert future, irreversible degradation of these massive freshwater stores is a grand challenge both scientifically and societally. It is naïve to think that the problem can be solved by eliminating or reducing enough of the contaminant sources, for human exploitation of land and water resources will likely always result in some contamination. The key lies in both reducing the contaminant sources and more proactively managing recharge in terms of both quantity and quality, such that the net influx of contaminants is sufficiently moderate and appropriately distributed in space and time to reverse ongoing groundwater quality degradation. Just as sustainable groundwater quantity management is greatly facilitated with groundwater flow management models, sustainable groundwater quality management will require the use of groundwater quality management models. This is a new genre of hydrologic models do not yet exist, partly because of the lack of modeling tools and the supporting research to model non-reactive as well as reactive transport on large space and time scales. It is essential that the contaminant hydrogeology community, which has heretofore focused almost entirely on point-source plume-scale problems, direct it's efforts toward the development of process-based transport modeling tools and analyses capable

  9. A flexible system to capture sample vials in a storage box - the box vial scanner.

    Science.gov (United States)

    Nowakowski, Steven E; Kressin, Kenneth R; Deick, Steven D

    2009-01-01

    Tracking sample vials in a research environment is a critical task and doing so efficiently can have a large impact on productivity, especially in high volume laboratories. There are several challenges to automating the capture process, including the variety of containers used to store samples. We developed a fast and robust system to capture the location of sample vials being placed in storage that allows the laboratories the flexibility to use sample containers of varying dimensions. With a single scan, this device captures the box identifier, the vial identifier and the location of each vial within a freezer storage box. The sample vials are tracked through a barcode label affixed to the cap while the boxes are tracked by a barcode label on the side of the box. Scanning units are placed at the point of use and forward data to a sever application for processing the scanned data. Scanning units consist of an industrial barcode reader mounted in a fixture positioning the box for scanning and providing lighting during the scan. The server application transforms the scan data into a list of storage locations holding vial identifiers. The list is then transferred to the laboratory database. The box vial scanner captures the IDs and location information for an entire box of sample vials into the laboratory database in a single scan. The system accommodates a wide variety of vials sizes by inserting risers under the sample box and a variety of storage box layouts are supported via the processing algorithm on the server.

  10. Dimension measuring method for channel box

    International Nuclear Information System (INIS)

    Jo, Hiroto.

    1995-01-01

    The device of the present invention concerns detection of a channel box for spent fuel assemblies of a BWR type reactor, which measures a cross sectional shape and dimension of the channel box to check deformation amount such as expansion. That is, a customary fuel exchanger and a dimension measuring device are used. The lower end of the channel box is measured by a distance sensor of the dimension measuring device when it is aligned with a position of the distance sensor. The channel box is lowered at the same time while detecting axial position data of the fuel exchanger. The position of the channel box in an axial direction is detected based on axial position data of the fuel exchanger. The lower end of the channel box can accurately be recognized by the detection of both of them. Subsequent deformation measurement for the channel box at accurate axial positions is enabled. In addition, since the axial position data of the fuel exchanger per se are detected, an axial profile of the channel box can be measured even if a lifting speed of the channel box is varied on every region. (I.S.)

  11. Streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, 2008-10

    Science.gov (United States)

    Banta, J. Ryan; Lambert, Rebecca B.; Slattery, Richard N.; Ockerman, Darwin J.

    2012-01-01

    The U.S. Geological Survey-in cooperation with the U.S. Army Corps of Engineers, The Nature Conservancy, the Real Edwards Conservation and Reclamation District, and the Texas Parks and Wildlife Department-investigated streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, specifically in the watersheds of the West Nueces, Nueces, Dry Frio, Frio, and Sabinal Rivers upstream from the Edwards aquifer outcrop. Streamflow in these rivers is sustained by groundwater contributions (for example, from springs) and storm runoff from rainfall events. To date (2012), there are few data available that describe streamflow and water-quality conditions of the rivers within the upper Nueces River Basin. This report describes streamflow gain-loss characteristics from three reconnaissance-level synoptic measurement surveys (hereinafter referred to as "surveys") during 2008-10 in the upper Nueces River Basin. To help characterize the hydrology, groundwater-level measurements were made, and water-quality samples were collected from both surface-water and groundwater sites in the study area from two surveys during 2009-10. The hydrologic (streamflow, springflow, and groundwater) measurements were made during three reconnaissance-level synoptic measurement surveys occurring in July 21-23, 2008; August 8-18, 2009; and March 22-24, 2010. These survey periods were selected to represent different hydrologic conditions. Streamflow gains and losses were based on streamflow and springflow measurements made at 74 sites in the study area, although not all sites were measured during each survey. Possible water chemistry relations among sample types (streamflow, springflow, or groundwater), between surveys, and among watersheds were examined using water-quality samples collected from as many as 20 sites in the study area.

  12. Ecology and living conditions of groundwater fauna

    Energy Technology Data Exchange (ETDEWEB)

    Thulin, Barbara [Geo Innova AB (Sweden); Hahn, Hans Juergen [Arbeitsgruppe Grundwasseroekologie, Univ. of Koblenz-Landau (Germany)

    2008-09-15

    probable because both Harpatocoida (Parastenocaris sp.) and Nematoda have been detected in the hyporheic zone in rivers and at shores of the Baltic. In addition, groundwater fauna has been reported from other formerly glaciated areas e.g. Northern Germany, Finland, Iceland, Ireland, North America and Siberia and Alpine regions. Glaciofluvial porous aquifers, especially eskers, and karstic aquifers as well as the hyporheic zone, have proved to offer the greatest chances of successful surveys of groundwater fauna. In Sweden endemic species are not expected to be found, except in karstic aquifers in Gotland and Oeland and some parts of the Swedish Mountains. The upper layers of aquifers in crystalline bedrock have only been surveyed at very few sites. Based on community structures of groundwater fauna, reliable statements on the strength of the surface water impact and the vulnerability of the aquifer are possible. Contacts between different water bodies are displayed by groundwater fauna because groundwater fauna communities mainly reflect the intensity of surface water intrusion at a certain point when compared to hydrochemical data indicating the origin of the water. The information provided by the groundwater assemblages of an aquifer can be used for an ecologically based assessment of groundwater. Ecologically based assessment has provided initial data showing that groundwater fauna is a good marker of mixing between surface water and groundwater at certain depths. Ecologically based assessment has hitherto been used for extraction wells and quality management in drinking water abstraction (standards are still to be established). Groundwater fauna assessments have also proved to be useful in management of wetlands and regulation under nature protection law

  13. Ecology and living conditions of groundwater fauna

    International Nuclear Information System (INIS)

    Thulin, Barbara; Hahn, Hans Juergen

    2008-09-01

    probable because both Harpatocoida (Parastenocaris sp.) and Nematoda have been detected in the hyporheic zone in rivers and at shores of the Baltic. In addition, groundwater fauna has been reported from other formerly glaciated areas e.g. Northern Germany, Finland, Iceland, Ireland, North America and Siberia and Alpine regions. Glaciofluvial porous aquifers, especially eskers, and karstic aquifers as well as the hyporheic zone, have proved to offer the greatest chances of successful surveys of groundwater fauna. In Sweden endemic species are not expected to be found, except in karstic aquifers in Gotland and Oeland and some parts of the Swedish Mountains. The upper layers of aquifers in crystalline bedrock have only been surveyed at very few sites. Based on community structures of groundwater fauna, reliable statements on the strength of the surface water impact and the vulnerability of the aquifer are possible. Contacts between different water bodies are displayed by groundwater fauna because groundwater fauna communities mainly reflect the intensity of surface water intrusion at a certain point when compared to hydrochemical data indicating the origin of the water. The information provided by the groundwater assemblages of an aquifer can be used for an ecologically based assessment of groundwater. Ecologically based assessment has provided initial data showing that groundwater fauna is a good marker of mixing between surface water and groundwater at certain depths. Ecologically based assessment has hitherto been used for extraction wells and quality management in drinking water abstraction (standards are still to be established). Groundwater fauna assessments have also proved to be useful in management of wetlands and regulation under nature protection law

  14. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    Science.gov (United States)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using

  15. Unsaturated Groundwater Flow Beneath Upper Mortandad Canyon, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dander, David Carl [Univ. of Arizona, Tucson, AZ (United States)

    1998-10-15

    Mortandad Canyon is a discharge site for treated industrial effluents containing radionuclides and other chemicals at Los Alamos National Laboratory, New Mexico. This study was conducted to develop an understanding of the unsaturated hydrologic behavior below the canyon floor. The main goal of this study was to evaluate the hypothetical performance of the vadose zone above the water table. Numerical simulations of unsaturated groundwater flow at the site were conducted using the Finite Element Heat and Mass Transfer (FEHM) code. A two-dimensional cross-section along the canyon's axis was used to model flow between an alluvial groundwater system and the regional aquifer approximately 300 m below. Using recharge estimated from a water budget developed in 1967, the simulations showed waters from the perched water table reaching the regional aquifer in 13.8 years, much faster than previously thought. Additionally, simulations indicate that saturation is occurring in the Guaje pumice bed an d that the Tshirege Unit 1B is near saturation. Lithologic boundaries between the eight materials play an important role in flow and solute transport within the system. Horizontal flow is shown to occur in three thin zones above capillary barriers; however, vertical flow dominates the system. Other simulations were conducted to examine the effects of changing system parameters such as varying recharge inputs, varying the distribution of recharge, and bypassing fast-path fractured basalt of uncertain extent and properties. System sensitivity was also explored by changing model parameters with respect to size and types of grids and domains, and the presence of dipping stratigraphy.

  16. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Savard, C.S.

    1998-01-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches

  17. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  18. Risk assessment of groundwater level variability using variable Kriging methods

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2015-04-01

    Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the

  19. Temporal properties of the lens eyes of the box jellyfish Tripedalia cystophora

    DEFF Research Database (Denmark)

    O'Connor, Megan; Nilsson, Dan-E; Garm, Anders Lydik

    2010-01-01

    Box jellyWsh (Cubomedusae) are visually orientating animals which posses a total of 24 eyes of 4 morphological types; 2 pigment cup eyes (pit eye and slit eye) and 2 lens eyes [upper lens-eye (ule) and lower lens-eye (lle)]. In this study, we use electroretinograms (ERGs) to explore temporal...... properties of the two lens eyes. We Wnd that the ERG of both lens eyes are complex and using sinusoidal Xicker stimuli we Wnd that both lens eyes have slow temporal resolution. The average Xicker fusion frequency (FFF) was found to be approximately 10 Hz for the ule and 8 Hz for the lle. Di......Verences in the FFF and response patterns between the two lens eyes suggest that the ule and lle Wlter information diVerently in the temporal domain and thus are tuned to perform diVerent visual tasks. The data collected in this study support the idea that the visual system of box jellyWsh is a collection of special...

  20. Administrative limits for tritium concentrations found in non-potable groundwater at nuclear power facilities

    International Nuclear Information System (INIS)

    Parker, R.; Hart, D.; WIllert, C.

    2012-01-01

    Currently, there is a regulatory limit available for tritium in drinking water, but no such limit for non-potable groundwater. Voluntary administrative limits for site groundwater may be established at nuclear power facilities to ensure minimal risk to human health and the environment, and provide guidance for investigation or other actions intended to prevent exceedances of future regulatory or guideline limits. This work presents a streamlined approach for nuclear power facilities to develop three tiers of administrative limits for tritium in groundwater so that facilities can identify abnormal/uncontrolled releases of tritium at an early stage, and take appropriate actions to investigate, control, and protect groundwater. Tier 1 represents an upper limit of background, Tier 2 represents a level between background and Tier 3, and Tier 3 represents a risk-based concentration protective of down-gradient receptors. (author)

  1. Geologic and geophysical models for Osage County, Oklahoma, with implications for groundwater resources

    Science.gov (United States)

    Hudson, Mark R.; Smith, David V.; Pantea, Michael P.; Becker, Carol J.

    2016-06-16

    This report summarizes a three-dimensional (3-D) geologic model that was constructed to provide a framework to investigate groundwater resources of the Osage Nation in northeastern Oklahoma. This report also presents an analysis of an airborne electromagnetic (AEM) survey that assessed the spatial variation of electrical resistivity to depths as great as 300 meters in the subsurface. The report and model provide support for a countywide assessment of groundwater resources, emphasizing the Upper Pennsylvanian rock units in the shallow subsurface of central and eastern Osage County having electrical resistivity properties that may indicate aquifers.

  2. Salt composition of groundwater and reclaimed solonetzes in the Baraba Lowland

    Science.gov (United States)

    Semendyaeva, N. V.; Elizarov, N. V.

    2017-10-01

    Solonetzes of experimental trials established in 1981 and 1986 in the Baraba Lowland were examined. It was found that gypsum-based ameliorants improve the soil and lead to a decrease in the content of soluble salts in the soil profile. Exchange processes between cations of the soil adsorption complex and calcium of gypsum were particularly intensive in the first years after gypsum application. This resulted in a sharp rise in the content of soluble salts that migrated down the soil profile to the groundwater. In the following years, the reclaimed solonetzes were desalinized under the conditions of relatively stable groundwater level. On the 30th year after single gypsum application, the groundwater level sharply rose (to 50 cm), and the soil was subjected to the secondary salinization; the contents of bicarbonates, carbonates, and sodium in the soils increased. Spring leaching caused some desalinization, but the content of soluble salts in the upper soil meter increased again in the fall. A close correlation between the salt compositions of the groundwater and the reclaimed solonetzes was revealed.

  3. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental, LLC

    2011-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding

  4. Groundwater Resources Isotope Study of Eastern and Southeastern Areas of Jordan

    International Nuclear Information System (INIS)

    Al-Momani, M. R.

    2004-01-01

    Since Jordan depends on the groundwater resources especially for municipal use so, water resources studies and development takes priority on the national level. For this reason the environmental isotope technique and application contributed and supported the hydrological studies as a research tool confirmed some scientific facts including natural and environmental changes of water resources. The isotope analyses has been implemented for upper and deep aquifer systems in the eastern and southeastern areas of Jordan for Hamad, Sirhan, Azraq and Jafr basins. The analyses included the stable isotopes for 18 O, Deuterium ( 2 H) and 13 C also the radioactive isotopes for Tritium ( 3 H ) and 14 C in nineties of the last century until 2002 and this indicates the following: * The origin and mechanism of the nonrenewable groundwater recharge in the deep aquifer systems of (B2/A7) Campanian and Turonian age for Hamad and Azraq basins has been defined. This refers that the groundwater recharge existed within humid, cold and wet climatologic conditions which is completely different from the present climate where the groundwater age exceeds thirty thousand years. * Also this indicates that the stable isotopic composition of the upper aquifers in Hamad and Sirhan basins in Shallala and Rijam aquifers (B5/B4) of Eocene and Paleocene age lie on the Global Meteoric Water Line (GMWL) where the deuterium excess (d) is 10 %. Actually this water is not tritiated and the 14 C content in the groundwater is close to zero which is a strong indication of humid and wet climate where the age of the groundwater range between 20000 and exceeds 300000 years. In comparison this situation with the same aquifer in Jafr basin located in the southeastern part of Jordan, there are differences in the deuterium excess (d), Tritium and 14 C content which depends on the climatologic conditions existed during the recharge period. Also the isotopic signaure for the middle groundwater system (B2/A7) and the

  5. The three-box paradox revisited

    International Nuclear Information System (INIS)

    Ravon, Tamar; Vaidman, Lev

    2007-01-01

    The classical three-box paradox of Kirkpatrick (2003 J. Phys. A: Math. Gen. 36 4891) is compared to the original quantum three-box paradox of Aharonov and Vaidman (1991 J. Phys. A: Math. Gen. 24 2315). It is argued that the quantum three-box experiment is a 'quantum paradox' in the sense that it is an example of a classical task which cannot be accomplished using classical means, but can be accomplished using quantum devices. It is shown that Kirkpatrick's card game is analogous to a different game with a particle in three boxes which does not contain paradoxical features

  6. IMPROVED, FAVORABLE FOR ENVIRONMENT POLYURETHANE COLD-BOX-PROCESS (COLD BOX «HUTTENES-ALBERTUS» .

    Directory of Open Access Journals (Sweden)

    A. Sergini

    2005-01-01

    Full Text Available The results of the laboratory and industrial investigations, the purpose of which is improvement of the classical Cold-box-process, i.e. the process of the slugs hardening in cold boxes, are presented.

  7. Rationales behind irrationality of decision making in groundwater quality management.

    Science.gov (United States)

    Ronen, Daniel; Sorek, Shaul; Gilron, Jack

    2012-01-01

    This issue paper presents how certain policies regarding management of groundwater quality lead to unexpected and undesirable results, despite being backed by seemingly reasonable assumptions. This happened in part because the so-called reasonable decisions were not based on an integrative and quantitative methodology. The policies surveyed here are: (1) implementation of a program for aquifer restoration to pristine conditions followed, after failure, by leaving it to natural attenuation; (2) the "Forget About The Aquifer" (FATA) approach, while ignoring possible damage that contaminated groundwater can inflict on the other environmental systems; (3) groundwater recharge in municipal areas while neglecting the presence of contaminants in the unsaturated zone and conditions exerted by upper impervious surfaces; (4) the Soil Aquifer Treatment (SAT) practice considering aquifers to be "filters of infinite capacity"; and (5) focusing on well contamination vs. aquifer contamination to conveniently defer grappling with the problem of the aquifer as a whole. Possible reasons for the failure of these seemingly rational policies are: (1) the characteristic times of processes associated with groundwater that are usually orders of magnitude greater than the residence times of decision makers in their managerial position; (2) proliferation of improperly trained "groundwater experts" or policymakers with sectoral agendas alongside legitimate differences of opinion among groundwater scientists; (3) the neglect of the cyclic nature of natural phenomena; and (4) ignoring future long-term costs because of immediate costs. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  8. Identification of nitrate sources in groundwater and potential impact on drinking water reservoir (Goczałkowice reservoir, Poland)

    Science.gov (United States)

    Czekaj, Joanna; Jakóbczyk-Karpierz, Sabina; Rubin, Hanna; Sitek, Sławomir; Witkowski, Andrzej J.

    2016-08-01

    Goczałkowice dammed reservoir (area - 26 km2) is a strategic object for flood control in the Upper Vistula River catchment and one of the most important source of drinking water in the Upper Silesian Industrial Region (Southern Poland). Main aims of the investigation were identification of sources of nitrate and assessment of their significance in potential risk to groundwater quality. In the catchment area monitoring network of 22 piezometers, included 14 nested, have been installed. The significant spatial and seasonal differences in chemical composition between northern and southern part of the catchment were indicated based on the groundwater sampling conducted twice - in autumn 2011 and spring 2012. Maximum observed concentrations of nitrate were identified in northern part of the study area 255 mg/L as a results of inappropriate sewage management and agriculture activity. Results, based on the combines multi-scale hydrogeological and hydrochemical field studies, groundwater flow and transport modelling, dual stable isotope approach and geochemical modelling indicate mainly agriculture and inappropriate sewage water management as a sources of NO3- contamination of groundwater which moreover is affected by geochemical processes. In general, contaminated groundwater does not impact surface water quality. However, due to high concentration of nitrate in northern part a continues measurements of nitrogen compounds should be continued and used for reducing uncertainty of the predictive scenarios of the mass transport modelling in the study area.

  9. Reconciling White-Box and Black-Box Perspectives on Behavioral Self-adaptation

    DEFF Research Database (Denmark)

    Bruni, Roberto; Corradini, Andrea; Gadducci, Fabio

    2015-01-01

    This paper proposes to reconcile two perspectives on behavioral adaptation commonly taken at different stages of the engineering of autonomic computing systems. Requirements engineering activities often take a black-box perspective: A system is considered to be adaptive with respect to an environ......This paper proposes to reconcile two perspectives on behavioral adaptation commonly taken at different stages of the engineering of autonomic computing systems. Requirements engineering activities often take a black-box perspective: A system is considered to be adaptive with respect...... to an environment whenever the system is able to satisfy its goals irrespectively of the environment perturbations. Modeling and programming engineering activities often take a white-box perspective: A system is equipped with suitable adaptation mechanisms and its behavior is classified as adaptive depending...

  10. Upper Illinois River basin

    Science.gov (United States)

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  11. Decommissioning a small glove box

    International Nuclear Information System (INIS)

    Bond, R.D.; McSherry, K.

    1985-11-01

    An account is given of dismantling a fuel fabrication glove box using simple tooling. The fissile content of the box was first measured by several non-destructive techniques. After cleaning, the box was dismantled using hand tools and finally packed for disposal. A record of operator radiation doses, the time taken for each stage of the operation and packing information is given. (author)

  12. The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst

    Science.gov (United States)

    Katz, Brian G.; Bullen, Thomas D.

    1996-12-01

    The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The 87Sr/86Sr ratio along with the stable isotopes, D, 18O, and 13C were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the 87Sr/86Sr ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2+ generally increase with depth, and higher concentrations of Sr2+ in water from the Upper Floridan aquifer (20-35 μg/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [δ13C= -1.6permil(‰)] is also indicated by an enriched δ13CDIC(-8.8 to -11.4 ‰) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (δ13CDICaquifer material become less radiogenic and the Sr2+ concentrations generally increase with depth. However, Sr2+ concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2+ concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2+ from clays. Based on results from mass-balance modeling, it is probable that cation exchange plays the dominant role in controlling the 87Sr/86Sr ratio of groundwater, both upgradient and downgradient from Lake Barco. Even though groundwater from the three

  13. Groundwater biofilm dynamics grown in situ along a nutrient gradient.

    Science.gov (United States)

    Williamson, Wendy M; Close, Murray E; Leonard, Margaret M; Webber, Judith B; Lin, Susan

    2012-01-01

    This paper describes the in situ response of groundwater biofilms in an alluvial gravel aquifer system on the Canterbury Plains, New Zealand. Biofilms were developed on aquifer gravel, encased in fine mesh bags and suspended in protective columns in monitoring wells for at least 20 weeks. Four sites were selected in the same groundwater system where previous analyses indicated a gradient of increasing nitrate down the hydraulic gradient from Sites 1 to 4. Measurements during the current study classified the groundwater as oligotrophic. Biofilm responses to the nutrient gradients were assessed using bioassays, with biomass determined using protein and cellular and nucleic acid staining and biofilm activity using enzyme assays for lipid, carbohydrate, phosphate metabolism, and cell viability. In general, biofilm activity decreased as nitrate levels increased from Sites 1 to 4, with the opposite relationship for carbon and phosphorus concentrations. These results showed that the groundwater system supported biofilm growth and that the upper catchment supported efficient and productive biofilms (high ratio of activity per unit biomass). © 2012, Institute of Environmental Science & Research Ltd (ESR). Ground Water © 2012, National Ground Water Association.

  14. Conceptual Models for Migration of Key Groundwater Contaminants Through the Vadose Zone and Into the Upper Unconfined Aquifer Below the B-Complex

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Keller, Jason M.; Thorne, Paul D.; Lanigan, David C.; Christensen, J. N.; Thomas, Gregory S.

    2010-07-01

    The B-Complex contains 3 major crib and trench disposal sites and 3 SST farms that have released nearly 346 mega-liters of waste liquids containing the following high groundwater risk drivers: ~14,000 kg of CN, 29,000 kg of Cr, 12,000 kg of U and 145 Ci of Tc-99. After a thorough review of available vadose zone sediment and pore water, groundwater plume, field gamma logging, field electrical resistivity studies, we developed conceptual models for which facilities have been the significant sources of the contaminants in the groundwater and estimated the masses of these contaminants remaining in the vadose zone and currently present in the groundwater in comparison to the totals released. This allowed us to make mass balance calculations on how consistent our knowledge is on the current deep vadose zone and groundwater distribution of contaminants. Strengths and weaknesses of the conceptual models are discussed as well as implications on future groundwater and deep vadose zone remediation alternatives. Our hypothesized conceptual models attribute the source of all of the cyanide and most of the Tc-99 currently in the groundwater to the BY cribs. The source of the uranium is the BX-102 tank overfill event and the source of most of the chromium is the B-7-A&B and B-8 cribs. Our mass balance estimates suggest that there are much larger masses of U, CN, and Tc remaining in the deep vadose zone within ~20 ft of the water table than is currently in the groundwater plumes below the B-Complex. This hypothesis needs to be carefully considered before future remediation efforts are chosen. The masses of these groundwater risk drivers in the the groundwater plumes have been increasing over the last decade and the groundwater plumes are migrating to the northwest towards the Gable Gap. The groundwater flow rate appears to flucuate in response to seasonal changes in hydraulic gradient. The flux of contaminants out of the deep vadose zone from the three proposed sources also

  15. Design report for shielded glove box

    International Nuclear Information System (INIS)

    Ku, J. H.; Lee, J. C.; Seo, K. S.; Bang, K. S.; Lee, D. W.; Kim, J. H.; Min, D. K.; Park, S. W.

    1999-05-01

    For the examination of spent fuels and high radioactive specimens using a specially equipped scanning electron microscope, a shielded glove box was designed and constructed at PIE facility of KAERI. This glove box consisted of shielding walls, containment box, lead glasses, manipulators, gloves, ventilation systems, doors, hot-cell specimen cask adapter, etc. It was emphasized that both the easy operation and radiation safety are important factors in the shielded glove box were installed also considered as a important factor to build the basic concept of the assembling. Two sliding doors and one hinge-type door were installed for the easy installation, operation and maintenance of scanning electron microscope. Containment box which confines the radioactive material into the box consisted of reinforced transparent glasses, aluminum frames and stainless steel plate liner. Therefore everything beyond the containment box can be seen through the lead glass which installed at the front shielding wall. All shielding walls and doors were introduced separately into the room and assembled by bolting. (author). 3 refs., 5 tabs., 18 figs

  16. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    Science.gov (United States)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to

  17. Groundwater chemical baseline values to assess the Recovery Plan in the Matanza-Riachuelo River basin, Argentina.

    Science.gov (United States)

    Zabala, M E; Martínez, S; Manzano, M; Vives, L

    2016-01-15

    The two most exploited aquifers in the Matanza-Riachuelo River basin are being monitored in the framework of the Integrated Environmental Sanitation Plan that implements the Basin Authority, Autoridad de Cuenca Matanza Riachuelo. In this context, this work identifies the groundwater chemical types and the natural processes behind them; determines spatial and temporal changes; establishes ranges of variation for chemical components, and proposes concentration values for the upper limit of the natural chemical background. A total of 1007 samples from three aquifer-layers (Upper Aquifer, top and bottom of Puelche Aquifer) have been studied. As concrete guidelines for practical determination of baseline values are not available in the region, the methodology used follows the proposals of European projects which assessed European water directives. The groundwater composition is very stable in terms of both chemical facies and mineralization degree, and the changes observed in the dry and wet periods analysed are subtle in general. Most of the groundwater is Na-HCO3 type, except a few samples that are Ca-HCO3, Na-ClSO4 and Na-Cl types. The Ca-HCO3 waters are the result of calcium carbonate dissolution, Na-HCO3 waters result from cation exchange and carbonate dissolution, while in the Na-ClSO4 and Na-Cl waters, mixing with connate and with encroached old marine water from the underlying and overlying sediments are the most relevant processes. The proposed values for the upper limit of the natural background consider the influence of geology and Holocene marine ingressions in the baseline of coastal groundwater. This study allowed to know the initial chemical conditions of the groundwater system of the Matanza-Riachuelo River basin and to establish the reference from which Basin Authority can start to evaluate trends and monitor the recovery plan. At the same time, it sets a precedent for future studies in the region. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Box-particle probability hypothesis density filtering

    OpenAIRE

    Schikora, M.; Gning, A.; Mihaylova, L.; Cremers, D.; Koch, W.

    2014-01-01

    This paper develops a novel approach for multitarget tracking, called box-particle probability hypothesis density filter (box-PHD filter). The approach is able to track multiple targets and estimates the unknown number of targets. Furthermore, it is capable of dealing with three sources of uncertainty: stochastic, set-theoretic, and data association uncertainty. The box-PHD filter reduces the number of particles significantly, which improves the runtime considerably. The small number of box-p...

  19. Application of hydrogeology and groundwater-age estimates to assess the travel time of groundwater at the site of a landfill to the Mahomet Aquifer, near Clinton, Illinois

    Science.gov (United States)

    Kay, Robert T.; Buszka, Paul M.

    2016-03-02

    The U.S. Geological Survey used interpretations of hydrogeologic conditions and tritium-based groundwater age estimates to assess the travel time of groundwater at a landfill site near Clinton, Illinois (the “Clinton site”) where a chemical waste unit (CWU) was proposed to be within the Clinton landfill unit #3 (CLU#3). Glacial deposits beneath the CWU consist predominantly of low-permeability silt- and clay-rich till interspersed with thin (typically less than 2 feet in thickness) layers of more permeable deposits, including the Upper and Lower Radnor Till Sands and the Organic Soil unit. These glacial deposits are about 170 feet thick and overlie the Mahomet Sand Member of the Banner Formation. The Mahomet aquifer is composed of the Mahomet Sand Member and is used for water supply in much of east-central Illinois.Eight tritium analyses of water from seven wells were used to evaluate the overall age of recharge to aquifers beneath the Clinton site. Groundwater samples were collected from six monitoring wells on or adjacent to the CLU#3 that were open to glacial deposits above the Mahomet aquifer (the upper and lower parts of the Radnor Till Member and the Organic Soil unit) and one proximal production well (approximately 0.5 miles from the CLU#3) that is screened in the Mahomet aquifer. The tritium-based age estimates were computed with a simplifying, piston-flow assumption: that groundwater moves in discrete packets to the sampled interval by advection, without hydrodynamic dispersion or mixing.Tritium concentrations indicate a recharge age of at least 59 years (pre-1953 recharge) for water sampled from deposits below the upper part of the Radnor Till Member at the CLU#3, with older water expected at progressively greater depth in the tills. The largest tritium concentration from a well sampled by this study (well G53S; 0.32 ± 0.10 tritium units) was in groundwater from a sand deposit in the upper part of the Radnor Till Member; the shallowest permeable unit

  20. Selection of the optimal interpolation method for groundwater observations in lahore, pakistan

    International Nuclear Information System (INIS)

    Mahmood, K.; Ali, S.R.; Haider, A.; Tehseen, T.; Kanwal, S.

    2014-01-01

    This study was carried out to find an optimum method of interpolation for the depth values of groundwater in Lahore metropolitan, Pakistan. The methods of interpolation considered in the study were inverse distance weight (IDW), spline, simple Kriging, ordinary Kriging and universal Kriging. Initial analysis of the data suggests that the data was negatively skewed with value of skewness -1.028. The condition of normality was approximated by transforming the data using a box-cox transformation with lambda value of 3.892; the skewness value reduced to -0.00079. The results indicate that simple Kriging method is optimum for interpolation of groundwater observations for the used dataset with lowest bias of 0.00997, highest correlation coefficient with value 0.9434, mean absolute error 1.95 and root mean square error 3.19 m. Smooth and uniform contours with well described central depression zon in the city, as suggested by this studies, also supports the optimised interpolation method. (author)

  1. Helium evidences for mantle degassing in the groundwater of Madeira Island – Portugal

    International Nuclear Information System (INIS)

    Amaral, Helena I.F.; Midões, Carla; Kipfer, Rolf

    2017-01-01

    The Madeira Island is fed by an active hotspot, but there are no evidences of current volcanism and geothermal activity or, of a heat source at depth, which probably justifies why only low temperature and low TDS groundwater is found in Madeira. Nonetheless, Madeira is a relatively young island (≤7 Ma old), and a connection to the upper mantle through geological conduits, is likely to occur. To investigate whether such a connection exists, noble gases and stable isotopes were, so far as we know, for the first time measured in groundwater samples of the main (basal) aquifer of Madeira Is. Groundwater is the main supply of drinking water in Madeira Is., and the hydrogeology of the island has been well characterized in previous studies. In this study, groundwater was generically divided into ‘cold’ waters (<20 °C, near the coast) and ‘warm’ waters (20–25 °C, central part of the island). This division was based on field temperature, water chemistry and stable isotopic composition. Four ‘hot’ waters (23–25 °C) showed partly distinct characteristics. A bubbling spring was also sampled. Very low tritium values indicate groundwater recharged recently and/or mix with free-tritium waters. Groundwater is fed by rain recharged during autumn as indicated by δ"1"8O and δ"2H signatures. During infiltration, the waters dissolved soil CO_2 that according to the back-calculated δ"1"3C-CO_2 compositions corresponds mainly to CO_2 of biogenic origin. Nonetheless, a mantle CO_2 component cannot be excluded from samples from the inner part of the island. The noblegas helium was the sole tracer indicating a deep gas contribution to the groundwater. A strong mantle signal was detected in the ‘hot’ and bubbling waters, as indicated by their He-Ra values of 8 (being Ra the atmospheric "3He/"4He ratio), typical of the MORB. Thus, even if the last volcanic eruption occurred ca. 0,006 Ma, degassing of the upper-mantle was detected in the shallow cold waters of

  2. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  3. Box Tomography: first application to the imaging of upper-mantle shear velocity and radial anisotropy structure beneath the North American continent

    Science.gov (United States)

    Clouzet, P.; Masson, Y.; Romanowicz, B.

    2018-06-01

    The EarthScope Transpotable Array (TA) deployment provides dense array coverage throughout the continental United States and with it, the opportunity for high-resolution 3-D seismic velocity imaging of the stable part of the North American (NA) upper mantle. Building upon our previous long-period waveform tomographic modeling, we present a higher resolution 3-D isotropic and radially anisotropic shear wave velocity model of the NA lithosphere and asthenosphere. The model is constructed using a combination of teleseismic and regional waveforms down to 40 s period and wavefield computations are performed using the spectral element method both for regional and teleseismic data. Our study is the first tomographic application of `Box Tomography', which allows us to include teleseismic events in our inversion, while computing the teleseismic wavefield only once, thus significantly reducing the numerical computational cost of several iterations of the regional inversion. We confirm the presence of high-velocity roots beneath the Archean part of the continent, reaching 200-250 km in some areas, however the thickness of these roots is not everywhere correlated to the crustal age of the corresponding cratonic province. In particular, the lithosphere is thick (˜250 km) in the western part of the Superior craton, while it is much thinner (˜150 km) in its eastern part. This may be related to a thermomechanical erosion of the cratonic root due to the passage of the NA plate over the Great Meteor hotspot during the opening of the Atlantic ocean 200-110 Ma. Below the lithosphere, an upper-mantle low-velocity zone (LVZ) is present everywhere under the NA continent, even under the thickest parts of the craton, although it is less developed there. The depth of the minimum in shear velocity has strong lateral variations, whereas the bottom of the LVZ is everywhere relatively flat around 270-300 km depth, with minor undulations of maximum 30 km that show upwarping under the thickest

  4. Hydrologic conditions, groundwater quality, and analysis of sink hole formation in the Albany area of Dougherty County, Georgia, 2009

    Science.gov (United States)

    Gordon, Debbie W.; Painter, Jaime A.; McCranie, John M.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Albany Water, Gas, and Light Commission has conducted water resources investigations and monitored groundwater conditions and availability in the Albany, Georgia, area since 1977. This report presents an overview of hydrologic conditions, water quality, and groundwater studies in the Albany area of Dougherty County, Georgia, during 2009. Historical data also are presented for comparison with 2009 data. During 2009, groundwater-level data were collected in 29 wells in the Albany area to monitor water-level trends in the surficial, Upper Floridan, Claiborne, Clayton, and Providence aquifers. Groundwater-level data from 21 of the 29 wells indicated an increasing trend during 2008–09. Five wells show no trend due to lack of data and three wells have decreasing trends. Period-of-record water levels (period of record ranged between 1957–2009 and 2003–2009) declined slightly in 10 wells and increased slightly in 4 wells tapping the Upper Floridan aquifer; declined in 1 well and increased in 2 wells tapping the Claiborne aquifer; declined in 4 wells and increased in 2 wells tapping the Clayton aquifer; and increased in 1 well tapping the Providence aquifer. Analyses of groundwater samples collected during 2009 from 12 wells in the Upper Floridan aquifer in the vicinity of a well field located southwest of Albany indicate that overall concentrations of nitrate plus nitrite as nitrogen increased slightly from 2008 in 8 wells. A maximum concentration of 12.9 milligrams per liter was found in a groundwater sample from a well located upgradient from the well field. The distinct difference in chemical constituents of water samples collected from the Flint River and samples collected from wells located in the well-field area southwest of Albany indicates that little water exchange occurs between the Upper Floridan aquifer and Flint River where the river flows adjacent to, but downgradient of, the well field. Water

  5. The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands)

    International Nuclear Information System (INIS)

    Rozemeijer, J.C.; Broers, H.P.

    2007-01-01

    Traditionally, monitoring of soil, groundwater and surface water quality is coordinated by different authorities in the Netherlands. Nowadays, the European Water Framework Directive (EU, 2000) stimulates an integrated approach of the complete soil-groundwater-surface water system. Based on water quality data from several test catchments, we propose a conceptual model stating that stream water quality at different discharges is the result of different mixing ratios of groundwater from different depths. This concept is used for a regional study of the groundwater contribution to surface water contamination in the Dutch province of Noord-Brabant, using the large amount of available data from the regional monitoring networks. The results show that groundwater is a dominant source of surface water contamination. The poor chemical condition of upper and shallow groundwater leads to exceedance of the quality standards in receiving surface waters, especially during quick flow periods. - Water quality monitoring data show the importance of the groundwater contribution to surface water pollution

  6. 76 FR 46721 - Salmon-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project...

    Science.gov (United States)

    2011-08-03

    ...-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project Environmental Impact... improve the health of the ecosystem and reach the desired future condition. DATES: Comments concerning the... Ecosystem Restoration Project EIS, P.O. Box 180, 11 Casey Rd., North Fork, ID 83466. Comments may also be...

  7. Composite use of numerical groundwater flow modeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan.

    Science.gov (United States)

    Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz

    2011-02-01

    The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.

  8. Groundwater balance in the Khor Arbaat basin, Red Sea State, eastern Sudan

    Science.gov (United States)

    Elsheikh, Abdalla E. M.; Zeielabdein, Khalid A. Elsayed; Babikir, Ibrahim A. A.

    2009-12-01

    The Khor Arbaat basin is the main source of potable water supply for the more than 750,000 inhabitants of Port Sudan, eastern Sudan. The variation in hydraulic conductivity and storage capacity is due to the heterogeneity of the sediments, which range from clay and silt to gravely sand and boulders. The water table rises during the summer and winter rainy seasons; it reaches its lowest level in the dry season. The storage capacity of the Khor Arbaat aquifer is estimated to be 21.75 × 106 m3. The annual recharge through the infiltration of flood water is about 1.93 × 106 m3. The groundwater recharge, calculated as underground inflow at the ‘upper gate’, is 1.33 × 105 m3/year. The total annual groundwater recharge is 2.06 × 106 m3. The annual discharge through underground outflow at the ‘lower gate’ (through which groundwater flows onto the coastal plain) is 3.29 × 105 m3/year. Groundwater discharge due to pumping from Khor Arbaat basin is 4.38 × 106 m3/year on average. The total annual groundwater discharge is about 4.7 × 106 m3. A deficit of 2.6 × 106 m3/year is calculated. Although the total annual discharge is twice the estimated annual recharge, additional groundwater flow from the fractured basement probably balances the annual groundwater budget since no decline is observed in the piezometric levels.

  9. Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin

    Science.gov (United States)

    Geldon, Arthur L.

    2003-01-01

    The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer

  10. Opto-Box

    CERN Document Server

    Bertsche, David; The ATLAS collaboration; Welch, Steven; Smith, Dale Shane; Che, Siinn; Gan, K.K.; Boyd, George Russell Jr

    2015-01-01

    The opto-box is a custom mini-crate for housing optical modules, which process and transfer optoelectronic data. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x10x8 cm^3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits (ASICs), were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain.

  11. Innovations in Los Alamos alpha box design

    International Nuclear Information System (INIS)

    Ledbetter, J.M.; Dowler, K.E.; Cook, J.H.

    1985-01-01

    Destructive examinations of irradiated fuel pins containing plutonium fuel must be performed in shielded hot cells with strict provisions for containing the plutonium. Alpha boxes provide containment for the plutonium, toxic fission products, and other hazardous highly radioactive materials. The alpha box contains windows for viewing and a variety of transfer systems specially designed to allow transfers in and out of the alpha box without spread of the hazardous materials that are contained in the box. Alpha boxes have been in use in the Wing 9 hot cells at Los Alamos National Laboratory for more than 20 years. Features of the newly designed alpha boxes are presented

  12. Human enteric viruses in groundwater indicate offshore transport of human sewage to coral reefs of the Upper Florida Keys

    Science.gov (United States)

    Futch, J. Carrie; Griffin, Dale W.; Lipp, Erin K.

    2010-01-01

    To address the issue of human sewage reaching corals along the main reef of the Florida Keys, samples were collected from surface water, groundwater and coral [surface mucopolysaccharide layers (SML)] along a 10 km transect near Key Largo, FL. Samples were collected semi-annually between July 2003 and September 2005 and processed for faecal indicator bacteria (faecal coliform bacteria, enterococci and Clostridium perfringens) and human-specific enteric viruses (enterovirus RNA and adenovirus DNA) by (RT)-nested polymerase chain reaction. Faecal indicator bacteria concentrations were generally higher nearshore and in the coral SML. Enteric viruses were evenly distributed across the transect stations. Adenoviruses were detected in 37 of 75 samples collected (49.3%) whereas enteroviruses were only found in 8 of 75 samples (10.7%). Both viruses were detected twice as frequently in coral compared with surface water or groundwater. Offshore, viruses were most likely to be found in groundwater, especially during the wet summer season. These data suggest that polluted groundwater may be moving to the outer reef environment in the Florida Keys.

  13. Classification Of The Groundwaters Of The Antalya Travertine Plateau By Isotope Techniques

    International Nuclear Information System (INIS)

    Atilla, O.A.

    2002-01-01

    The relation between the springs and wells located in Antalya Travertine Plateau is evaluated and classified by using the isotopic composition ({ 3 H(T), ( 18 O), 2 H(D)})of these water resources. The δ 18 O-δD, δ 18 O-TU, δ 18 O-EC, δ 18 O-Cl relations between the water resources in the area are explained and three groups are determined: (1) groundwater with longer residence time discharging in upper plateau and Varsak-Duedenbasi system, (2) groundwater with shorter residence time discharging in the lower plateau, (3) surface waters. The same results obtained by using cluster and principal factor analysis of the hydrogeochemical and isotopic data

  14. Dissolved Organic Carbon 14C in Southern Nevada Groundwater and Implications for Groundwater Travel Times

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyall [Nevada University, Reno, NV (United States). Desert Research Institute; Thomas, James M [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-08-01

    . Although DOC concentration decreases from recharge-area to downgradient groundwater, the organic compounds are similar, indicating that DOC 14C is unaffected by other processes such as microbial degradation. A small amount of organic carbon was leached from crushed volcanic and carbonate aquifer outcrop rock in rock-leaching experiments. The leached DOC was high in 14C (75 pmc carbonate rocks, 91 pmc volcanic) suggesting that the leached DOC likely came from microbes in the rock samples. The small amount of DOC and high 14C indicates that the amount of old organic carbon in these rocks is low so there should be minimal impact on groundwater DOC 14C ages. Based on the results from this study, DOC 14C ages do not require additional corrections. Several correction models were applied to DIC 14C ages to correct for water-rock reactions along two carbonate and two volcanic flow paths and the corresponding travel times were compare to DOC 14C travel times. The DOC 14C travel times were hundreds to thousands of years shorter than uncorrected and corrected DIC 14C travel times except for the upper section of one carbonate flow path. DOC 14C travel times ranged from 400 to 5,400 years as compared to DIC 14C that ranged from modern to 20,900 years. The DIC 14C ages are greatly influenced by carbonate mineral and gas reactions and other processes such as matrix diffusion, isotope exchange, or adsorption, which are not always adequately accounted for in DIC 14C groundwater age correction models.

  15. Complementarity in the Einstein-Bohr photon box

    NARCIS (Netherlands)

    Dieks, D.G.B.J.; Lam, S

    2008-01-01

    The Bohr-Einstein photon box thought experiment is a forerunner of the EPR experiment: a packet of radiation escapes from a box, and the box-plus-radiation state remains entangled. Hence, a measurement on the box makes a difference for the state of the far-away radiation long after its escape. This

  16. The 2016 groundwater flow model for Dane County, Wisconsin

    Science.gov (United States)

    Parsen, Michael J.; Bradbury, Kenneth R.; Hunt, Randall J.; Feinstein, Daniel T.

    2016-01-01

    A new groundwater flow model for Dane County, Wisconsin, replaces an earlier model developed in the 1990s by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). This modeling study was conducted cooperatively by the WGNHS and the USGS with funding from the Capital Area Regional Planning Commission (CARPC). Although the overall conceptual model of the groundwater system remains largely unchanged, the incorporation of newly acquired high-quality datasets, recent research findings, and improved modeling and calibration techniques have led to the development of a more detailed and sophisticated model representation of the groundwater system. The new model is three-dimensional and transient, and conceptualizes the county’s hydrogeology as a 12-layer system including all major unlithified and bedrock hydrostratigraphic units and two high-conductivity horizontal fracture zones. Beginning from the surface down, the model represents the unlithified deposits as two distinct model layers (1 and 2). A single layer (3) simulates the Ordovician sandstone and dolomite of the Sinnipee, Ancell, and Prairie du Chien Groups. Sandstone of the Jordan Formation (layer 4) and silty dolostone of the St. Lawrence Formation (layer 5) each comprise separate model layers. The underlying glauconitic sandstone of the Tunnel City Group makes up three distinct layers: an upper aquifer (layer 6), a fracture feature (layer 7), and a lower aquifer (layer 8). The fracture layer represents a network of horizontal bedding-plane fractures that serve as a preferential pathway for groundwater flow. The model simulates the sandstone of the Wonewoc Formation as an upper aquifer (layer 9) with a bedding-plane fracture feature (layer 10) at its base. The Eau Claire aquitard (layer 11) includes shale beds within the upper portion of the Eau Claire Formation. This layer, along with overlying bedrock units, is mostly absent in the preglacially eroded valleys along

  17. Dustproof cooling of the electrical box

    Directory of Open Access Journals (Sweden)

    Nemec Patrik

    2018-01-01

    Full Text Available In present are electrical boxes cooled by air through the intake hole on the bottom electrical box to the box space with electrotechnical elements and exhaust through the hole at the top to the surrounding by natural convection. This cooling method is effective but operate with the risk of contamination electrotechnical elements by dust sucking from surrounding air. The goal of this work is solution of the dustproof cooling of the electrical box by natural convection. The work deal with design of the device with the heat transfer by the phase change of the working fluid and experimental measuring its thermal performance at the cooling electrotechnical elements loaded by heat 1 200 W in the dustproof electrical box.

  18. Box graphs and resolutions I

    Directory of Open Access Journals (Sweden)

    Andreas P. Braun

    2016-04-01

    Full Text Available Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of SU(5 by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.

  19. 3D resistivity method to monitor degradation of an organic contaminant in sand boxes

    Science.gov (United States)

    Fernandez, P. M.; Bloem, E.; Philippe, R.; French, H. K.

    2015-12-01

    Degradation of organic chemicals under various saturation conditions is a process highly relevant to protect groundwater. The redox potential drives the degradation of organic compounds. Its variation affects the water chemistry, gas release and responses of the geo-electrical signature. This study explores how non-invasive measurements sensitive to geo-electrical properties provides quantitative information about the in-situ redox situation. During this presentation, the preliminary results of a laboratory experiment to study the degradation of deicing chemicals with 3D resistivity and self-potential techniques, water samples will be shown. The experiment consists of sand boxes (1.0x0.5x0.4 m) to which both sides of each box is contaminated with propylene glycol, an aircraft deicing fluid, commonly used in Norwegian airports. Each source is placed near the water table with static conditions. At one side a conductor is placed, linking the contamination zone at the water table and the unsaturated zone with a low water content, to improve the degradation by facilitating the electron exchange. At the other side, degradation occurs under natural conditions. Each box is equipped with 288 electrodes, distributed on six faces to perform 3D resistivity measurements. In addition to the resistivity, self-potential measurements are taken from the sand surface. Six water wells are installed above and below the water table to provide more information on the degradation processes. Moreover, measurements of carbon dioxide on the surface are performed as higher concentrations are expected where the pollutant is degraded.

  20. Modelling the distribution of tritium in groundwater across South Africa to assess the vulnerability and sustainability of groundwater resources in response to climate change

    Science.gov (United States)

    van Rooyen, Jared; Miller, Jodie; Watson, Andrew; Butler, Mike

    2017-04-01

    Groundwater is critical for sustaining human populations, especially in semi-arid to arid areas, where surface water availability is low. Shallow groundwater is usually abstracted for this purpose because it is the easiest to access and assumed to be renewable and regularly recharged by precipitation. Renewable, regularly recharged groundwater is also called modern groundwater, ie groundwater that has recently been in contact with the atmosphere. Tritium can be used to determine whether or not a groundwater resource is modern because the half-life of tritium is only 12.36 years and tritium is dominantly produced in the upper atmosphere and not in the rock mass. For this reason, groundwater with detectable tritium activities likely has a residence age of less than 50 years. In this study, tritium activities in 277 boreholes distributed across South Africa were used to develop a national model for tritium activity in groundwater in order to establish the extent of modern groundwater across South Africa. The tritium model was combined with modelled depth to water using 3079 measured static water levels obtained from the National Groundwater Archive and validated against a separate set of 40 tritium activities along the west coast of South Africa. The model showed good agreement with the distribution of rainfall which has been previously documented across the globe (Gleeson et al., 2015), although the arid Karoo basin in south west South Africa shows higher than expected tritium levels given the very low regional precipitation levels. To assess the vulnerability of groundwater to degradation in quality and quantity, the tritium model was incorporated into a multi-criteria evaluation (MCE) model which incorporated other indicators of groundwater stress including mean annual precipitation, mean annual surface temperature, electrical conductivity (as a proxy for groundwater salinization), potential evaporation, population density and cultivated land usage. The MCE model

  1. The survey reasarch about groundwater in a mine making use of the sour method to immerse at originl place in Xinjiang province

    International Nuclear Information System (INIS)

    Xu Yiqun; Yang Yihan

    2014-01-01

    Basing on a mine making use of a sour method to immerse at original place in Xiniang province, building up a monitor network of mine and its Surroundings groundwater, by the mispreads experiment at the spot and the Earth physical method to mointer Pollute scope and imitate the flow of groundwater and the movement of dissolve quality. Making use of the method speaking of to investigate groundwater in mineral layer completely. According to the investigating result, Comparing the original date of groundwater in mineral layer and the national Quality standard of groundwater to evaluate the present Pollute condition of groundwater existmg in the A # , B # mine ore aquifer. This studies Proves that Pollution mainly exists in the A # , B # mine ore aquifer and its surrounding limited area, groundwater upper or lower the ore aquifer is not affected by pollution. (authors)

  2. Plate forming and break down pizza box

    Science.gov (United States)

    Pantisano, Frank; Devine, Scott M.

    1992-01-01

    A standard corrugated paper pizza box is provided with slit cuts cut through the top panel of the pizza box in a shape to form four circular serving plates with a beveled raised edge and cross slit cuts through the bottom panel of the pizza box separating the box into four essentially equal portions for easy disposal.

  3. Determination of groundwater characteristics and water budget in the Edremit Plain by means of isotopes

    International Nuclear Information System (INIS)

    Onhon, E.

    1983-08-01

    Detailed field investigations with environmental isotopes (O-18, D, T, C-14 and C-13) have been conducted to study the replenishment process and flow dynamics of groundwater system in Edremit plain, which is an area of 200 m 2 size located in the eastern part of Turkey. Along with conventional hydrogeological and hydrochemical data collected from the study area, results of environmental isotopic analyses performed on water samples systematically collected from the area, enabled to delineate the source and origin of recharge to the shallow groundwater aquifers and as well provided information on various dynamic parameters of groundwater flow. In addition to basic flow dynamic characteristics of the shallow aquifer in the study area, environmental isotopes were used to investigate the hydraulic interconnections between deeper thermal groundwater system and the upper shallow aquifers. Results of all the environmental isotopic analyses and their interpretation are given

  4. Groundwater Modeling as an Alternative Approach to Limited Data in the Northeastern Part of Mt. Hermon (Syria, to Develop a Preliminary Water Budget

    Directory of Open Access Journals (Sweden)

    Nazeer M. Asmael

    2015-07-01

    Full Text Available In developing countries such as Syria, the lack of hydrological data affects groundwater resource assessment. Groundwater models provide the means to fill the gaps in the available data in order to improve the understanding of groundwater systems. The study area can be considered as the main recharge area of the eastern side of Barada and Awaj basin in the eastern part of Mt. Hermon. The withdrawal for agricultural and domestic purposes removes a considerable amount of water. The steady-state three-dimensional (3D groundwater model (FEFLOW which is an advanced finite element groundwater flow and transport modeling tool, was used to quantify groundwater budget components by using all available data of hydrological year 2009–2010. The results obtained may be considered as an essential tool for groundwater management options in the study area. The calibrated model demonstrates a good agreement between the observed and simulated hydraulic head. The result of the sensitivity analysis shows that the model is highly sensitive to hydraulic conductivity changes and sensitive to a lesser extent to water recharge amount. Regarding the upper aquifer horizon, the water budget under steady-state condition indicates that the lateral groundwater inflow from the Jurassic aquifer into this horizon is the most important recharge component. The major discharge component from this aquifer horizon occurs at its eastern boundary toward the outside of the model domain. The model was able to produce a satisfying estimation of the preliminary water budget of the upper aquifer horizon which indicates a positive imbalance of 4.6 Mm3·y−1.

  5. Groundwater conditions in Georgia, 2010–2011

    Science.gov (United States)

    Peck, Michael F.; Gordon, Debbie W.; Painter, Jaime A.

    2013-01-01

    The U.S. Geological Survey collects groundwater data and conducts studies to monitor hydrologic conditions, better define groundwater resources, and address problems related to water supply, water use, and water quality. In Georgia, water levels were monitored continuously at 186 wells during calendar year 2010 and at 181 wells during calendar year 2011. Because of missing data or short periods of record (less than 3 years) for several of these wells, a total of 168 wells are discussed in this report. These wells include 17 in the surficial aquifer system, 19 in the Brunswick aquifer system and equivalent sediments, 70 in the Upper Floridan aquifer, 16 in the Lower Floridan aquifer and underlying units, 10 in the Claiborne aquifer, 1 in the Gordon aquifer, 11 in the Clayton aquifer, 14 in the Cretaceous aquifer system, 2 in Paleozoic-rock aquifers, and 8 in crystalline-rock aquifers. Data from the well network indicate that water levels generally declined during the 2010 through 2011 calendar-year period, with water levels declining in 158 wells and rising in 10. Water levels declined over the period of record at 106 wells, increased at 56 wells, and remained relatively constant at 6 wells. In addition to continuous water-level data, periodic water-level measurements were collected and used to construct potentiometric-surface maps for the Upper Floridan aquifer in Camden, Charlton, and Ware Counties, Georgia, and adjacent counties in Florida during May–June 2010, and in the following areas in Georgia: the Brunswick area during August 2010 and August 2011, in the Albany–Dougherty County area during November 2010 and November 2011, and in the Augusta–Richmond County area during October 2010 and August 2011. In general, water levels in these areas were lower during 2011 than during 2010; however, the configuration of the potentiometric surfaces in each of the areas showed little change. Groundwater quality in the Floridan aquifer system is monitored in the

  6. The Heuristic Interpretation of Box Plots

    Science.gov (United States)

    Lem, Stephanie; Onghena, Patrick; Verschaffel, Lieven; Van Dooren, Wim

    2013-01-01

    Box plots are frequently used, but are often misinterpreted by students. Especially the area of the box in box plots is often misinterpreted as representing number or proportion of observations, while it actually represents their density. In a first study, reaction time evidence was used to test whether heuristic reasoning underlies this…

  7. Injury risk in professional boxing.

    Science.gov (United States)

    Bledsoe, Gregory H; Li, Guohu; Levy, Fred

    2005-10-01

    Although a popular endeavor, boxing has fallen under increased scrutiny because of its association with traumatic brain injury. However, few studies have investigated the overall epidemiology of boxing injuries from representative samples, and no study has ever documented the incidence of injuries in female boxers. This study is a review of professional boxing data from the state of Nevada from September 2001 through March 2003. Medical and outcome data for all professional boxing matches occurring in Nevada between September 2001 and March 2003 (n = 524 matches) were analyzed on the basis of a pair-matched, case-control design. Cases were boxers who received an injury during the boxing matches. Boxers who were not injured served as control subjects. Both conditional and unconditional logistic regression models were used to assess risk factors for injury. The overall incidence rate of injury was 17.1 per 100 boxer-matches, or 3.4 per 100 boxer-rounds. Facial laceration accounted for 51% of all injuries, followed by hand injury (17%), eye injury (14%), and nose injury (5%). Male boxers were significantly more likely than female boxers to receive injuries (3.6 versus 1.2 per 100 boxer-rounds, P = 0.01). Male boxing matches also ended in knockouts and technical knockouts more often than did female matches (P boxing matches is high, particularly among male boxers. Superficial facial lacerations are the most common injury reported. Male boxers have a higher rate of knockout and technical knockouts than female boxers. Further research is necessary to determine the outcomes of injury, particularly the long-term neurologic outcome differences between sexes.

  8. Impacts of Continuous Electron Beam Accelerator Facility operations on groundwater and surface water: Appendix 9

    International Nuclear Information System (INIS)

    Lee, D.W.

    1986-04-01

    The operation of the proposed Continuous Electron Beam Accelerator Facility (CEBAF) at Newport News, Virginia, is expected to result in the activation and subsequent contamination of water resources in the vicinity of the accelerator. Since the proposed site is located in the headwaters of the watershed supplying Big Bethel Reservoir, concern has been expressed about possible contamination of water resources used for consumption. Data characterizing the surface water and groundwater regime in the site area are limited. A preliminary geotechnical investigation of the site has been completed (LAW 1985). This investigation concluded that groundwater flow is generally towards the southeast at an estimated velocity of 2.5 m/y. This conclusion is based on groundwater and soil boring data and is very preliminary in nature. This analysis makes use of the data and conclusions developed during the preliminary geotechnical investigation to provide an upper-bound assessment of radioactive contamination from CEBAF operations. A site water balance was prepared to describe the behavior of the hydrologic environment that is in close agreement with the observed data. The transport of contamination in the groundwater regime is assessed using a one-dimensional model. The groundwater model includes the mechanisms of groundwater flow, groundwater recharge, radioactive decay, and groundwater activation. The model formulation results in a closed-form, exact, analytic solution of the concentration of contamination in the groundwater. The groundwater solution is used to provide a source term for a surface-water analysis. The surface-water and groundwater models are prepared for steady state conditions such that they represent conservative evaluations of CEBAF operations

  9. Comparative Human and Automatic Evaluation of Glass-Box and Black-Box Approaches to Interactive Translation Prediction

    Directory of Open Access Journals (Sweden)

    Torregrosa Daniel

    2017-06-01

    Full Text Available Interactive translation prediction (ITP is a modality of computer-aided translation that assists professional translators by offering context-based computer-generated continuation suggestions as they type. While most state-of-the-art ITP systems follow a glass-box approach, meaning that they are tightly coupled to an adapted machine translation system, a black-box approach which does not need access to the inner workings of the bilingual resources used to generate the suggestions has been recently proposed in the literature: this new approach allows new sources of bilingual information to be included almost seamlessly. In this paper, we compare for the first time the glass-box and the black-box approaches by means of an automatic evaluation of translation tasks between related languages such as English–Spanish and unrelated ones such as Arabic–English and English–Chinese, showing that, with our setup, 20%–50% of keystrokes could be saved using either method and that the black-box approach outperformed the glass-box one in five out of six scenarios operating under similar conditions. We also performed a preliminary human evaluation of English to Spanish translation for both approaches. On average, the evaluators saved 10% keystrokes and were 4% faster with the black-box approach, and saved 15% keystrokes and were 12% slower with the glass-box one; but they could have saved 51% and 69% keystrokes respectively if they had used all the compatible suggestions. Users felt the suggestions helped them to translate faster and easier. All the tools used to perform the evaluation are available as free/open–source software.

  10. Innovative technique for assessment of groundwater quality

    International Nuclear Information System (INIS)

    Ahmad, N.; Ahmad, M.; Sajjad, M.I.

    2001-07-01

    Groundwater quality of a part of Chaj Doab has been assessed with innovative techniques which are not reported in literature. The concept of triangular coordinates is modified by multi-rectangular ones for the classification of major cations and anions analysed in the ground water. A Multi-Rectangular Diagram (MRD) has been developed with the combination of rectangular coordinates by virtue of which milli-equivalent per liter percentages (meq/1%) of major cations and anions could be classified into different categories more efficiently as compared to classical trilinear diagrams. Both Piper diagram and MRD are used for the assessment of 259 data sets analysed from ground water of Chaj Doab area, Pakistan. The differentiated ground water types with MRD in the study area are calcium bicarbonate, magnesium bicarbonate, sodium bicarbonate and sodium sulfate. Sodium bicarbonate type emerges as the most abundant type of ground water in the study area. A map showing spatial variation of groundwater quality has been constructed with the help of MRD. This map shows that, in the vicinity of rivers Chenab and Jhelum, calcium bicarbonate type of waters occur while the central area is mainly covered by sodium bicarbonate dominant waters. Groundwaters near the upper Jhelum canal are dominant in sodium sulfate. An important relation between calcium and sodium is proposed which explains the movement history of groundwater in the aquifer. Hydrogeochemical processes have been evaluated with new methods. Ion exchange between calcium and sodium, precipitation of calcium bicarbonate and dissolution of rock forming minerals are the major delineated hydrogeochemical processes. (author)

  11. Opto-Box

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00377159; The ATLAS collaboration

    2016-01-01

    The opto-box is a custom mini-crate for housing optical modules, which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x10x8 cm$^{3}$. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits (ASICs), were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain.

  12. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  13. Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana

    Science.gov (United States)

    Anku, Y.S.; Banoeng-Yakubo, B.; Asiedu, D.K.; Yidana, S.M.

    2009-01-01

    Hydrochemical data are presented for groundwater samples, collected from fractured aquifers in parts of northern Ghana. The data was collected to assess the groundwater suitability for domestic and agricultural use. Results of the study reveal that the pH of the groundwater in the area is slightly acidic to slightly alkaline. The electrical conductivity values, total dissolved solids (TDS) values and calcium, magnesium and sodium concentrations in the groundwater are generally below the limit set by the WHO for potable water supply. On the basis of activity diagrams, groundwater from the fractured aquifers appears to be stable within the montmorillonite field, suggesting weathering of silicate minerals. An inverse distance weighting interpolator with a power of 2 was applied to the data points to produce prediction maps for nitrate and fluoride. The distribution maps show the presence of high nitrate concentrations (50-194??mg/l) in some of the boreholes in the western part of the study area indicating anthropogenic impact on the groundwater. Elevated fluoride level (1.5-4??mg/l), higher than the WHO allowable fluoride concentration of 1.5, is recorded in the groundwater underlying the northeastern part of the study area, more specifically Bongo and its surrounding communities of the Upper East region. Results of this study suggest that groundwater from the fractured aquifers in the area exhibit low sodicity-low salinity (S1-C1), low sodicity-medium salinity (S1-C2) characteristics [United States Salinity Laboratory (USSL) classification scheme]. All data points from this study plot within the 'Excellent to good' category on a Wilcox diagram. Groundwater in this area thus appears to provide irrigation water of excellent quality. The hydrochemical results indicate that, although nitrate and fluoride concentrations in some boreholes are high, the groundwater in the study area, based on the parameters analyzed, is chemically potable and suitable for domestic and

  14. Math in the Box

    Science.gov (United States)

    DeYoung, Mary J.

    2009-01-01

    This article describes how to make an origami paper box and explores the algebra, geometry, and other mathematics that unfolds. A set of origami steps that transforms the paper into an open box can hold mathematical surprises for both students and teachers. An origami lesson can engage students in an open-ended exploration of the relationship…

  15. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  16. Box-Cox transformation for QTL mapping.

    Science.gov (United States)

    Yang, Runqing; Yi, Nengjun; Xu, Shizhong

    2006-01-01

    The maximum likelihood method of QTL mapping assumes that the phenotypic values of a quantitative trait follow a normal distribution. If the assumption is violated, some forms of transformation should be taken to make the assumption approximately true. The Box-Cox transformation is a general transformation method which can be applied to many different types of data. The flexibility of the Box-Cox transformation is due to a variable, called transformation factor, appearing in the Box-Cox formula. We developed a maximum likelihood method that treats the transformation factor as an unknown parameter, which is estimated from the data simultaneously along with the QTL parameters. The method makes an objective choice of data transformation and thus can be applied to QTL analysis for many different types of data. Simulation studies show that (1) Box-Cox transformation can substantially increase the power of QTL detection; (2) Box-Cox transformation can replace some specialized transformation methods that are commonly used in QTL mapping; and (3) applying the Box-Cox transformation to data already normally distributed does not harm the result.

  17. Study of possibility of increasing the catchment's retention capacity by groundwater accumulation increase

    International Nuclear Information System (INIS)

    Baranovicova, L.

    2004-01-01

    In this presentation author deals with the possibility of increasing the catechumen's retention capacity by groundwater accumulation increase. This presentation solves possibilities of increasing of the retention capacity of ground waters on the dependence of surface water outflow on upper parts of Podluzianka River (Hron River Basin) and Predmieranka River (Kysuce River basin)

  18. Iron Isotope Variations in Reduced Groundwater and in Drinking Water Supplies: A Case Study of Hanoi, Vietnam

    Science.gov (United States)

    Teutsch, N.; Berg, M.; von Gunten, U.; Halliday, A.

    2004-12-01

    In reduced groundwater iron is involved in biotic and abiotic transformation processes, both of which could lead to iron isotope fractionation. The reduced groundwater aquifers in the area of the Vietnamese capital of Hanoi are the main drinking water sources for the city. These groundwaters contain arsenic, which imposes a serious health threat to millions of people. Dissolved arsenic is related to the reducing conditions prevalent in the groundwater, and iron and arsenic contents are correlated in the sediments. We are employing iron isotope composition as a tool to better understand the processes leading to the transformation of iron in the groundwater and its role in various biogeochemical processes in reduced environments. Drinking water is supplied to the city of Hanoi from several water treatment plants (WTP) which pump the raw groundwater from a lower aquifer, while the rural surroundings pump untreated groundwater from an upper aquifer by private tubewells. Surface water from the Red River delta is the main source of recharge to these two aquifers. Due to high content of particulate natural organic matter (NOM) in the sediment leading to extensive microbial activity, the groundwaters are anoxic and rich in dissolved iron(II). The iron(II) removal in the WTPs is carried by a multi-step treatment including aeration, settling, filtration, and chlorination. We have collected natural groundwater samples for isotopic analysis from two aquifers at several locations, a groundwater depth profile and its corresponding sediment phases from the upper aquifer and the underlying aquitard, raw and treated water from several WTPs, as well as the corresponding iron(III) precipitates. The iron concentrations of groundwaters analysed in this study range from 3 to 28 mg/L and δ 57Fe (57/54 deviation from IRMM 014) values vary between -1.2 and +1.5 ‰ . The sediment depth profile has a δ 57Fe around +0.3 ‰ , which implies that the high values obtained in the groundwater

  19. 49 CFR 572.165 - Upper and lower torso assemblies and torso flexion test procedure.

    Science.gov (United States)

    2010-10-01

    ...) ANTHROPOMORPHIC TEST DEVICES Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.165 Upper and lower torso... determine the stiffness effects of the lumbar spine (specified in 49 CFR 572.125(a)), including cable... bushing (specified in 49 CFR 572.125(a)), nut (specified in 49 CFR 572.125(a)), spine box weighting plates...

  20. Hydrogeology, water quality, and simulated effects of ground-water withdrawals from the Floridan aquifer system, Seminole County and vicinity, Florida

    Science.gov (United States)

    Spechler, Rick M.; Halford, Keith J.

    2001-01-01

    The hydrogeology and ground-water quality of Seminole County in east-central Florida was evaluated. A ground-water flow model was developed to simulate the effects of both present day (September 1996 through August 1997) and projected 2020 ground-water withdrawals on the water levels in the surficial aquifer system and the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County and vicinity. The Floridan aquifer system is the major source of ground water in the study area. In 1965, ground-water withdrawals from the Floridan aquifer system in Seminole County were about 11 million gallons per day. In 1995, withdrawals totaled about 69 million gallons per day. Of the total ground water used in 1995, 74 percent was for public supply, 12 percent for domestic self-supplied, 10 percent for agriculture self-supplied, and 4 percent for recreational irrigation. The principal water-bearing units in Seminole County are the surficial aquifer system and the Floridan aquifer system. The two aquifer systems are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Floridan aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which are separated by a less-permeable semiconfining unit. Upper Floridan aquifer water levels and spring flows have been affected by ground-water development. Long-term hydrographs of four wells tapping the Upper Floridan aquifer show a general downward trend from the early 1950's until 1990. The declines in water levels are caused predominantly by increased pumpage and below average annual rainfall. From 1991 to 1998, water levels rose slightly, a trend that can be explained by an increase in average annual rainfall. Long-term declines in the potentiometric surface varied throughout the area, ranging from about 3 to 12 feet. Decreases in spring discharge also have been

  1. Multiple photoreceptor systems control the swim pacemaker activity in box jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Mori, S.

    2009-01-01

    Like all other cnidarian medusae, box jellyfish propel themselves through the water by contracting their bell-shaped body in discrete swim pulses. These pulses are controlled by a swim pacemaker system situated in their sensory structures, the rhopalia. Each medusa has four rhopalia each with a s......Like all other cnidarian medusae, box jellyfish propel themselves through the water by contracting their bell-shaped body in discrete swim pulses. These pulses are controlled by a swim pacemaker system situated in their sensory structures, the rhopalia. Each medusa has four rhopalia each...... with a similar set of six eyes of four morphologically different types. We have examined how each of the four eye types influences the swim pacemaker. Multiple photoreceptor systems, three of the four eye types, plus the rhopalial neuropil, affect the swim pacemaker. The lower lens eye inhibits the pacemaker...... when stimulated and provokes a strong increase in the pacemaker frequency upon light-off. The upper lens eye, the pit eyes and the rhopalial neuropil all have close to the opposite effect. When these responses are compared with all-eye stimulations it is seen that some advanced integration must take...

  2. Characterization of aquifer heterogeneity using Cyclostratigraphy and geophysical methods in the upper part of the Karstic Biscayne Aquifer, Southeastern Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Carlson, Janine L.; Wingard, G. Lynn; Robinson, Edward; Wacker, Michael A.

    2004-01-01

    This report identifies and characterizes candidate ground-water flow zones in the upper part of the shallow, eogenetic karst limestone of the Biscayne aquifer in the Lake Belt area of north-central Miami-Dade County using cyclostratigraphy, ground-penetrating radar (GPR), borehole geophysical logs, and continuously drilled cores. About 60 miles of GPR profiles were used to calculate depths to shallow geologic contacts and hydrogeologic units, image karst features, and produce qualitative views of the porosity distribution. Descriptions of the lithology, rock fabrics, and cyclostratigraphy, and interpretation of depositional environments of 50 test coreholes were linked to the geophysical interpretations to provide an accurate hydrogeologic framework. Molluscan and benthic foraminiferal paleontologic constraints guided interpretation of depositional environments represented by rockfabric facies. Digital borehole images were used to characterize and quantify large-scale vuggy porosity. Preliminary heat-pulse flowmeter data were coupled with the digital borehole image data to identify candidate ground-water flow zones. Combined results show that the porosity and permeability of the karst limestone of the Biscayne aquifer have a highly heterogeneous and anisotropic distribution that is mostly related to secondary porosity overprinting vertical stacking of rock-fabric facies within high-frequency cycles (HFCs). This distribution of porosity produces a dual-porosity system consisting of diffuse-carbonate and conduit flow zones. The nonuniform ground-water flow in the upper part of the Biscayne aquifer is mostly localized through secondary permeability, the result of solution-enlarged carbonate grains, depositional textures, bedding planes, cracks, root molds, and paleokarst surfaces. Many of the resulting pore types are classified as touching vugs. GPR, borehole geophysical logs, and whole-core analyses show that there is an empirical relation between formation porosity

  3. Evaluation of the long-term evolution of the groundwater system in the Mizunami area, Japan

    International Nuclear Information System (INIS)

    Mizuno, Takashi; Milodowski, Antoni E.; Iwatsuki, Teruki

    2011-01-01

    This study aimed to develop a methodology for assessing the evolution of the long-term groundwater system, using fracture-filling calcite. Fracture-filling calcite mineralization in deep (to ca. 1000 m) granitic rocks in Mizunami area, Japan, was studied. Four generations (I to IV) of calcite precipitation can be differentiated based on their paragenetic relationships, morphological and isotopic characteristics. Carbon and oxygen isotopic ratios suggest that the Calcite I is of hydrothermal origin. On the other hand, Calcite II, IV and III were precipitated from freshwater and marine water, respectively. The Mizunami Group strata (Tertiary), which overly the basement Toki granite (Cretaceous), were initially deposited in a lacustrine environment but later became marine. Lacustrine conditions were re-established during the deposition of the upper Seto Group (Quaternary). It is suggested that both of deposition of the marine upper part of the Mizunami Group and the precipitation of Calcite III were possibly related to the same transgression event. This was followed by the precipitation of Calcite IV during subsequent fresh water flushing of the earlier marine groundwater. In summary, integrated morphological, mineralogical, microchemical and isotopic analysis of multilayered calcite fracture mineralization provides valuable information to evaluate the long-term evolution of groundwater system. (author)

  4. Effects of surface-water and groundwater inflows and outflows on the hydrology of the Tsala Apopka Lake Basin in Citrus County, Florida

    Science.gov (United States)

    Sepúlveda, Nicasio; Fulkerson, Mark; Basso, Ron; Ryan, Patrick J.

    2018-05-21

    The U.S. Geological Survey, in cooperation with the Southwest Florida Water Management District, initiated a study to quantify the inflows and outflows in the Floral City, Inverness, and Hernando pools of the Tsala Apopka Lake Basin in Citrus County, Florida. This study assesses hydrologic changes in pool stages, groundwater levels, spring flows, and streamflows caused by the diversion of streamflow from the Withlacoochee River to the Tsala Apopka Lake Basin through water-control structures. A surface-water/groundwater flow model was developed using hydraulic parameters for lakes, streams, the unsaturated zone, and the underlying surficial and Upper Floridan aquifers estimated using an inverse modeling calibration technique. After calibration, the model was used to assess the relation between inflows and outflows in the Tsala Apopka Lake Basin and changes in pool stages.Simulation results using the calibrated surface-water/groundwater flow model showed that leakage rates from the pools to the Upper Floridan aquifer were largest at the deep lake cells and that these leakage rates to the Upper Floridan aquifer were the highest in the model area. Downward leakage to the Upper Floridan aquifer occurred beneath most of the extent of the Floral City, Inverness, and Hernando pools. These leakage rates depended on the lakebed leakance and the difference between lake stages and heads in the Upper Floridan aquifer. Leakage rates were higher for the Floral City pool than for the Inverness pool, and higher for the Inverness pool than for the Hernando pool. Lakebed leakance was higher for the Floral City pool than for the Hernando pool, and higher for the Hernando pool than for the Inverness pool.Simulation results showed that the average recharge rate to the surficial aquifer was 10.3 inches per year for the 2004 to 2012 simulation period. Areas that recharge the surficial aquifer covered about 86 percent of the model area. Simulations identified areas along segments of the

  5. Standards and interdisciplinary treatment of boxing injuries of the head in professional boxing on the basis of an IBF World Championship Fight.

    Science.gov (United States)

    Dragu, Adrian; Unglaub, Frank; Radomirovic, Sinisa; Schnürer, Stefan; Wagner, Walter; Horch, Raymund E; Hell, Berthold

    2010-12-01

    Boxing injuries are well known in hobby boxing as well as in professional boxing. Especially in professional boxing it is of great importance to implement and follow prevention-, diagnosis- and therapy-standards in order to prevent or at least to minimize injuries of the athlete. The utmost aim would be to establish international prevention-, diagnosis- and therapy-standards for boxing injuries in professional boxing. However, this aim is on a short run unrealistic, as there are too many different professional boxing organisations with different regulations. A realistic short term aim would be to develop a national standard in order to unify the management and medical treatment of boxing injuries in professional boxing. We present the management and interdisciplinary treatment of a professional boxer with a bilateral open fracture of the mandible during a middle weight IBF World Championship Fight. On the basis of this case we want to present and discuss the possibilities of an interdisciplinary and successful medical treatment. In order to prevent or minimize boxing injuries of professional boxers, annual MRI-Scans of the head and neck have to be performed as prevention standard. Furthermore, neurocognitive tests must be performed on a regular basis. Boxing injuries in professional boxing need an interdisciplinary, unbiased and complex analysis directly at the boxing ring. The treatment of the injuries should be only performed in medical centres and thus under constant parameters. The needed qualifications must be learned in mandatory national licence courses of boxing physicians, referees and promoters.

  6. Geochemical behavior of Cs, Sr, Tc, Np, and U in saline groundwaters: Sorption experiments on shales and their clay mineral components: Progress report

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Ho, P.C.; Case, F.I.; O'Kelley, G.D.

    1987-11-01

    The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). In support of this program, preliminary studies were carried out on sorption of cesium, strontium, technetium, neptunium, and uranium onto Chattanooga (Upper Dowelltown), Pierre, Green River Formation, Nolichucky, and Pumpkin Valley Shales under oxic conditions (air present). Three simulated groundwaters were used. One of the groundwaters was a synthetic brine made up to simulate highly saline groundwaters in the Pumpkin Valley Shale. The second was a 100/1 dilution of this groundwater and the third was 0.03 M NaHCO 3 . Moderate to significant sorption was observed under most conditions for all of the tested radionuclides except technetium. Moderate technetium sorption occurred on Upper Dowelltown Shale, and although technetium sorption was low on the other shales, it was higher than expected for Tc(VII), present as the anion TcO 4 - . Little sorption of strontium onto the shales was observed from the concentrated saline groundwater. These data can be used in a generic fashion to help assess the sorption characteristics of shales in support of a national survey. 10 refs., 4 figs., 23 tabs

  7. The BOXES Methodology Black Box Dynamic Control

    CERN Document Server

    Russell, David W

    2012-01-01

    Robust control mechanisms customarily require knowledge of the system’s describing equations which may be of the high order differential type.  In order to produce these equations, mathematical models can often be derived and correlated with measured dynamic behavior.  There are two flaws in this approach one is the level of inexactness introduced by linearizations and the other when no model is apparent.  Several years ago a new genre of control systems came to light that are much less dependent on differential models such as fuzzy logic and genetic algorithms. Both of these soft computing solutions require quite considerable a priori system knowledge to create a control scheme and sometimes complicated training program before they can be implemented in a real world dynamic system. Michie and Chambers’ BOXES methodology created a black box system that was designed to control a mechanically unstable system with very little a priori system knowledge, linearization or approximation.  All the method need...

  8. River-groundwater connectivity and nutrient dynamics in a mesoscale catchment

    Science.gov (United States)

    Fleckenstein, Jan H.; Musolff, Andreas; Gilfedder, Benjamin; Frei, Sven; Wankmüller, Fabian; Trauth, Nico

    2017-04-01

    Diffuse solute exports from catchments are governed by many interrelated factors such as land use, climate, geological-/ hydrogeological setup and morphology. Those factors create spatial variations in solute concentrations and turnover rates in the subsurface as well as in the stream network. River-groundwater connectivity is a crucial control in this context: On the one hand groundwater is a main pathway for nitrate inputs to the stream. On the other hand, groundwater connectivity with the stream affects the magnitude of hyporheic exchange of stream water with the stream bed. We present results of a longitudinal sampling campaign along the Selke river, a 67 km long third-order stream in the Harz mountains in central Germany. Water quality at the catchment outlet is strongly impacted by agriculture with high concentrations of nitrate and a chemostatic nitrate export regime. However, the specific nitrate pathways to the stream are not fully understood as there is arable land distributed throughout the catchment. While the sparsely distributed arable land in the mountainous upper catchment receives much higher amounts of precipitation, the downstream alluvial plains are drier, but more intensively used. The three-day campaign was conducted in June 2016 under constant low flow conditions. Stream water samples were taken every 2 km along the main stem of the river and at its major tributaries. Samples were analyzed for field parameters, major cations and anions, N-O isotopes, nutrients and Radon-222 (Rn) concentrations. Additionally, at each sampling location, river discharge was manually measured using current meters. Groundwater influxes to each sampled river section were quantified from the Rn measurements using the code FINIFLUX, (Frei and Gilfedder 2015). Rn and ion concentrations showed an increase from the spring to the mouth, indicating a growing impact of groundwater flux to the river. However, increases in groundwater gains were not gradual. The strongest

  9. Glove boxes

    International Nuclear Information System (INIS)

    Eisert, G.A.

    1979-01-01

    An arrangement for effecting access for performing work within a glove box comprises an elongate arm-length impermeable flexible sleeve, a fitting having an aperture therethrough, adapted to be secured in sealing relation in a port, in a wall of the glove box, the fitting including an outwardly extending lip having at least one continuous groove extending around its outer periphery, one end of the sleeve extending through the aperture in fitting and being folded back against the outer periphery of the lip, a resilient fastening ring securing the sleeve in sealing engagement in the groove, clamping means securing the sleeves to the lip and a glove secured in sealing relation via a bushing to the other end of the sleeve. (author)

  10. Magnetorotational Dynamo Action in the Shearing Box

    Science.gov (United States)

    Walker, Justin; Boldyrev, Stanislav

    2017-10-01

    Magnetic dynamo action caused by the magnetorotational instability is studied in the shearing-box approximation with no imposed net magnetic flux. Consistent with recent studies, the dynamo action is found to be sensitive to the aspect ratio of the box: it is much easier to obtain in tall boxes (stretched in the direction normal to the disk plane) than in long boxes (stretched in the radial direction). Our direct numerical simulations indicate that the dynamo is possible in both cases, given a large enough magnetic Reynolds number. To explain the relatively larger effort required to obtain the dynamo action in a long box, we propose that the turbulent eddies caused by the instability most efficiently fold and mix the magnetic field lines in the radial direction. As a result, in the long box the scale of the generated strong azimuthal (stream-wise directed) magnetic field is always comparable to the scale of the turbulent eddies. In contrast, in the tall box the azimuthal magnetic flux spreads in the vertical direction over a distance exceeding the scale of the turbulent eddies. As a result, different vertical sections of the tall box are permeated by large-scale nonzero azimuthal magnetic fluxes, facilitating the instability. NSF AGS-1261659, Vilas Associates Award, NSF-Teragrid Project TG-PHY110016.

  11. Potentiometric surface of the Upper Floridan aquifer in the St. Johns River water management district and vicinity, Florida, September 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2005. Potentiometric contours are based on water-level measurements collected at 643 wells during the period September 12-28, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  12. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2008

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  13. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  14. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, September, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.

    2005-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in September 2004. Potentiometric contours are based on water-level measurements collected at 608 wells during the period September 14-October 1, near the end of the wet season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  15. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.; Knowles, Leel

    2004-01-01

    INTRODUCTION This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in May 2001. Potentiometric contours are based on water-level measurements collected at 684 wells during the period May 2 - 30, near the end of the dry season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  16. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2006

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2006. Potentiometric contours are based on water-level measurements collected at 571 wells during the period September 11-29, near the end of the wet season. Some contours are inferred from previouspotentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  17. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2006

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2006. Potentiometric contours are based on water-level measurements collected at 599 wells during the period May 14-31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  18. Hydrogeochemistry of deep groundwaters in the central part of the Fennoscandian Shields

    International Nuclear Information System (INIS)

    Blomqvist, R.

    1999-01-01

    Saline groundwaters are frequent in the central part of the Fennoscandian Shield. The results indicate large variations in groundwater chemistry and in the spatial distribution of saline groundwaters. The depths of the fresh/saline groundwater boundaries vary considerably but generally the boundary is located at 300-600 m. In some cases fresh bicarbonate groundwaters are encountered throughout the drill hole. More commonly, however, bicarbonate waters occur only as an upper layer, up to a few hundred metres in extent, overlying chloride waters of varying salinity. In coastal areas saline groundwaters are frequently found much closer to ground surface. Long-term water-rock interaction and incursions of present/ancient sea water are considered the main processes affecting the evolution of the saline groundwater bodies, while isolation from the surface-close hydrological cycle seems to be a prerequisite for the preservation of these waters. Ancient preferential leaching of low-Rb/Sr minerals (most likely plagioclase) and/or fluid inclusions are the main contribution for dissolved solids in water-rock interaction. The strontium isotope results imply that saline groundwaters in crystalline rocks do not evolve as isolated small pockets with a restricted volume of rock but may constitute more open systems in which lateral hydrogeochemical interaction extends over distances of at least hundreds of metres. One potential mechanism for formation of young calcites is related to glacial rebound where release of stress and increase in temperature in fractures make the groundwaters oversaturated with respect to calcite. Δ 18 depleted groundwaters have been observed from several sampling sites in Finland, indicative of glacial meltwater intrusion in the bedrock. As saline waters have been documented to have long residence times and are not associated with active meteoric water circulation, bedrock suites hosted by saline groundwaters could be considered as potential repository

  19. Rare Earth Element Concentrations and Fractionation Patterns Along Groundwater Flow Paths in Two Different Aquifer Types (i.e., Sand vs. Carbonate)

    Science.gov (United States)

    Johannesson, K. H.; Tang, J.

    2003-12-01

    Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally

  20. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters

  1. Opportunities in white-box cryptography

    NARCIS (Netherlands)

    Michiels, W.

    White-box cryptography is the discipline of implementing a cryptographic algorithm in software such that an adversary will have difficulty extracting the cryptographic key. This approach assumes that the adversary has full access to and full control over the implementation's execution. White-box

  2. The evolution of redox conditions and groundwater geochemistry in recharge-discharge environments on the Canadian Shield

    International Nuclear Information System (INIS)

    Gascoyne, M.

    1996-10-01

    Groundwater composition evolves along flow paths from recharge to discharge in response to interactions with bedrock and fracture-filling minerals, and dissolution of soluble (Cl-rich) salts in the rock matrix. The groundwater redox potential changes from oxidizing to reducing conditions due, initially, to rapid consumption of dissolved oxygen by organics in the upper ∼100 m of bedrock and, subsequently, interaction with Fe (II)-containing minerals. Measured Eh values of groundwaters at depth in the granitic Lac du Bonnet batholith indicate that biotite and chlorite control groundwater redox potential. This is supported by other geochemical characteristics such as absence of CH 4 , H 2 S, H 2 , NO 3 , low concentrations of Fe (II), and abundance of SO 4 . Further evidence of evolution of redox conditions is given by variations in U concentration ranging from up to 1000 μg/L in dilute near-surface waters to <1 μg/L in some deep, saline groundwaters. Groundwaters at about 400 m depth in a recharge area on the Lac du Bonnet batholith contain significantly more U than groundwaters further along the flow path or near surface in discharge areas. Uranium concentration is found to be a useful and sensitive indicator of redox conditions. (author)

  3. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    Science.gov (United States)

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water

  4. Simulated Effects of Seasonal Ground-Water Pumpage for Irrigation on Hydrologic Conditions in the Lower Apalachicola-Chattahoochee-Flint River Basin, Southwestern Georgia and Parts of Alabama and Florida, 1999-2002

    Science.gov (United States)

    Jones, L. Elliott; Torak, Lynn J.

    2006-01-01

    To determine the effects of seasonal ground-water pumpage for irrigation, a finite-element ground-water flow model was developed for the Upper Floridan aquifer in the lower Flint River Basin area, including adjacent parts of the Chattahoochee and Apalachicola River Basins. The model simulates withdrawal from the aquifer at 3,280 irrigation, municipal, and industrial wells; stream-aquifer flow between the aquifer and 36 area streams; leakage to and from the overlying upper semiconfining unit; regional ground-water flow at the lateral boundaries of the model; and water-table recharge in areas where the aquifer is at or near land surface. Steady-state calibration to drought conditions of October 1999 indicated that the model could adequately simulate measured groundwater levels at 275 well locations and streamflow gains and losses along 53 reaches of area streams. A transient simulation having 12 monthly stress periods from March 2001 to February 2002 incorporated time-varying stress from irrigation pumpage, stream and lake stage, head in the overlying upper semiconfining unit, and infiltration rates. Analysis of simulated water budgets of the Upper Floridan aquifer provides estimates of the source of water pumped for irrigation. During October 1999, an estimated 127 million gallons per day (Mgal/d) of irrigation pumpage from the Upper Floridan aquifer in the model area were simulated to be derived from changes in: stream-aquifer flux (about 56 Mgal/d, or 44 percent); leakage to or from the upper semiconfining unit (about 49 Mgal/d, or 39 percent); regional flow (about 18 Mgal/d, or 14 percent); leakage to or from Lakes Seminole and Blackshear (about 2.7 Mgal/d, or 2 percent); and flux at the Upper Floridan aquifer updip boundary (about 1.8 Mgal/d, or 1 percent). During the 2001 growing season (May-August), estimated irrigation pumpage ranged from about 310 to 830 Mgal/ d, about 79 percent of the 12-month total. During the growing season, irrigation pumpage was

  5. Peptoid–Peptide Hybrid Ligands Targeting the Polo Box Domain of Polo-Like Kinase 1k | Center for Cancer Research

    Science.gov (United States)

    The cover picture shows the binding of a PLHSpT derivative, 6q, to the polo-like kinase 1 (Plk1) polo-box domain (PBD), thereby uncovering a new hydrophobic channel (magnified upper right), which is absent in the unliganded protein (magnified lower left). The authors explain how, as a consequence of the additional interaction with the channel, the peptide binds to the Plk1 PBD

  6. GLASS BOX

    National Research Council Canada - National Science Library

    Curtis, Laura

    2008-01-01

    The goals of this effort were to develop Glass Box capabilities to allow for the capturing of analyst activities and the associated data resources, track and log the results of automated processing...

  7. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  8. Creating a monthly time series of the potentiometric surface in the Upper Floridan aquifer, Northern Tampa Bay area, Florida, January 2000-December 2009

    Science.gov (United States)

    Lee, Terrie M.; Fouad, Geoffrey G.

    2014-01-01

    In Florida’s karst terrain, where groundwater and surface waters interact, a mapping time series of the potentiometric surface in the Upper Floridan aquifer offers a versatile metric for assessing the hydrologic condition of both the aquifer and overlying streams and wetlands. Long-term groundwater monitoring data were used to generate a monthly time series of potentiometric surfaces in the Upper Floridan aquifer over a 573-square-mile area of west-central Florida between January 2000 and December 2009. Recorded groundwater elevations were collated for 260 groundwater monitoring wells in the Northern Tampa Bay area, and a continuous time series of daily observations was created for 197 of the wells by estimating missing daily values through regression relations with other monitoring wells. Kriging was used to interpolate the monthly average potentiometric-surface elevation in the Upper Floridan aquifer over a decade. The mapping time series gives spatial and temporal coherence to groundwater monitoring data collected continuously over the decade by three different organizations, but at various frequencies. Further, the mapping time series describes the potentiometric surface beneath parts of six regionally important stream watersheds and 11 municipal well fields that collectively withdraw about 90 million gallons per day from the Upper Floridan aquifer. Monthly semivariogram models were developed using monthly average groundwater levels at wells. Kriging was used to interpolate the monthly average potentiometric-surface elevations and to quantify the uncertainty in the interpolated elevations. Drawdown of the potentiometric surface within well fields was likely the cause of a characteristic decrease and then increase in the observed semivariance with increasing lag distance. This characteristic made use of the hole effect model appropriate for describing the monthly semivariograms and the interpolated surfaces. Spatial variance reflected in the monthly

  9. Policy statement—Boxing participation by children and adolescents.

    Science.gov (United States)

    Purcell, Laura; LeBlanc, Claire M A

    2011-09-01

    Thousands of boys and girls younger than 19 years participate in boxing in North America. Although boxing provides benefits for participants, including exercise, self-discipline, and self-confidence, the sport of boxing encourages and rewards deliberate blows to the head and face. Participants in boxing are at risk of head, face, and neck injuries, including chronic and even fatal neurologic injuries. Concussions are one of the most common injuries that occur with boxing. Because of the risk of head and facial injuries, the American Academy of Pediatrics and the Canadian Paediatric Society oppose boxing as a sport for children and adolescents. These organizations recommend that physicians vigorously oppose boxing in youth and encourage patients to participate in alternative sports in which intentional head blows are not central to the sport.

  10. Spirit Boxes: Expressions of Culture.

    Science.gov (United States)

    DeMuro, Ted

    1984-01-01

    After studying the culture and art of the ancient civilizations of South America, Mesopotamia, Greece, and Egypt, secondary level art students made spirit boxes as expressions of the various cultures. How to make the boxes and how to prepare the face molds are described. (RM)

  11. Decontamination of TRU glove boxes

    International Nuclear Information System (INIS)

    Crawford, J.H.

    1978-03-01

    Two glove boxes that had been used for work with transuranic nuclides (TRU) for about 12 years were decontaminated in a test program to collect data for developing a decontamination facility for large equipment highly contaminated with alpha emitters. A simple chemical technique consisting of a cycle of water flushes and alkaline permanganate and oxalic acid washes was used for both boxes. The test showed that glove boxes and similar equipment that are grossly contaminated with transuranic nuclides can be decontaminated to the current DIE nonretrievable disposal guide of <10 nCi TRU/g with a moderate amount of decontamination solution and manpower. Decontamination of the first box from an estimated 1.3 Ci to about 5 mCi (6 nCi/g) required 1.3 gallons of decontamination solution and 0.03 man-hour of work for each square foot of surface area. The second box was decontaminated from an estimated 3.4 Ci to about 2.8 mCi (4.2 nCi/g) using 0.9 gallon of decontamination solution and 0.02 man-hour for each square foot of surface area. Further reductions in contamination were achieved by repetitive decontamination cycles, but the effectiveness of the technique decreased sharply after the initial cycle

  12. An initial examination of tungsten geochemistry along groundwater flow paths

    Science.gov (United States)

    Dave, H. B.; Johannesson, K. H.

    2008-12-01

    Groundwater samples were collected along groundwater flow paths from the Upper Floridan (Florida), Carrizo Sand (Texas), and the Aquia (Maryland) aquifers and analyzed for tungsten (W) concentrations by high- resolution inductively couple plasma mass spectrometry. At each well head, groundwater samples were also analyzed for pH, specific conductance, temperature, alkalinity, dissolved oxygen (DO), oxidation-reduction potential (Eh), dissolved iron speciation, and dissolved sulfide [S(-II)] concentrations. Sediment samples from the Carrizo Sand and Aquia aquifers were also collected and subjected to sequential extractions to provide additional insights into the solid-phase speciation of W in these aquifers. Tungsten concentrations varied along the groundwater flow paths chiefly in response to changing pH, and to a lesser extent, variations in the redox conditions. For groundwater from the Carrizo Sand aquifer, W ranges between 3.64 and 1297 pmol/kg, exhibiting the lowest values proximal to the recharge zone. Tungsten concentrations progressively increase along the flow path, reaching 1297 pmol/kg in the sulfidic groundwaters located approximately 60 km downgradient from the recharge area. Tungsten is strongly correlated with S(-II) concentrations and pH in Carrizo groundwaters (r = 0.95 and 0.78, respectively). Within the Aquia aquifer, however, W generally occurs at lower concentrations than the Carrizo (14 to 184 pmol/kg; mean = 80 pmol/kg), and shows no systematic trends along the flow path (e.g., r = 0.08 and 0.4 for W vs. S(-II) and pH, respectively). Our data are consistent with the increase in W concentrations in Carrizo groundwaters reflecting, in part, pH-related desorption, which has been shown to be substantial for pH greater than 8. Moreover, because of the broad similarities in the chemistry of W and Mo, which forms thiomolybdates in sulfidic waters, we suggest that thiotungstate complexes may form in sulfidic groundwaters, thus partially explaining the

  13. Insight into Groundwater Flow Within a Crystalline Aquifer. Case study of the Ursuya Mount, Northern Basque Country (France)

    Energy Technology Data Exchange (ETDEWEB)

    Jaunat, J.; Huneau, F.; Dupuy, A.; Franceschi, M.; Le Coustumer, P. [Universite de Bordeaux, Institut EGID, EA Georessources et Environnement, Pessac (France); Celle-Jeanton, H. [Universite de Clermont-Ferrand, LMV UMR 6524, Clermont-Ferrand (France)

    2013-07-15

    Stable isotopes of the water molecule and tritium in conjunction with geochemistry have been used to understand the groundwater flow pattern and origin within the gneissic aquifer of the Ursuya Mount. This aquifer constitutes one of the main water supplies of the Northern Basque Country and improved knowledge about the water recharge, origin, quality and residence time is of strategic importance for a sustainable development of the resource. 16 springs, 4 boreholes and total rainfall have been sampled monthly since summer 2009. Preliminary results indicate complex and contrasted groundwater flows within the aquifer. Shallow groundwater restricted to the upper weathered horizons is characterized by a strong influence of anthropogenic inputs. At depth, groundwater mainly circulates along the major structural discontinuities of the gneiss in semi-confined conditions. These levels, providing the most promising resource for the water supply, show increased water mineralization caused by a longer residence time of groundwater and hence indicate a slower dynamic of the system. (author)

  14. The use of soil moisture - remote sensing products for large-scale groundwater modeling and assessment

    NARCIS (Netherlands)

    Sutanudjaja, E.H.

    2012-01-01

    In this thesis, the possibilities of using spaceborne remote sensing for large-scale groundwater modeling are explored. We focus on a soil moisture product called European Remote Sensing Soil Water Index (ERS SWI, Wagner et al., 1999) - representing the upper profile soil moisture. As a test-bed, we

  15. Grey-Box Modelling of Pharmacokinetic /Pharmacodynamic Systems

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Jacobsen, Judith L.; Pedersen, Oluf

    2004-01-01

    Grey-box pharmacokinetic/pharmacodynamic (PK/PD) modelling is presented as a promising way of modelling PK/PD systems. The concept behind grey-box modelling is based on combining physiological knowledge along with information from data in the estimation of model parameters. Grey-box modelling...

  16. The deep thermal field of the Upper Rhine Graben

    Science.gov (United States)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2017-01-01

    The Upper Rhine Graben has a significant socioeconomic relevance as it provides a great potential for geothermal energy production. The key for the utilisation of this energy resource is to understand the controlling factors of the thermal field in this area. We have therefore built a data-based lithospheric-scale 3D structural model of the Upper Rhine Graben and its adjacent areas. In addition, 3D gravity modelling was performed to constrain the internal structure of the crystalline crust consistent with seismic information. Based on this lithosphere scale 3D structural model the present-day conductive thermal field was calculated and compared to measured temperatures. Our results show that the regional thermal field is mainly controlled by the configuration of the upper crust, which has different thermal properties characteristic for the Variscan and Alpine domains. Temperature maxima are predicted for the Upper Rhine Graben where thick insulating Cenozoic sediments cause a thermal blanketing effect and where the underlying crustal units are characterised by high radiogenic heat production. The comparison of calculated and measured temperatures overall shows a reasonable fit, while locally occuring model deviations indicate where a larger influence of groundwater flow may be expected.

  17. Packing a cake into a box

    KAUST Repository

    Skopenkov, Mikhail

    2011-01-01

    Given a triangular cake and a box in the shape of its mirror image, how can the cake be cut into a minimal number of pieces so that it can be put into the box? The cake has icing, so we are not allowed to put it into the box upside down. V. G. Boltyansky asked this question in 1977 and showed that three pieces always suffice. In this paper we provide examples of cakes that cannot be cut into two pieces to be put into the box. This shows that three is the answer to Boltyansky's question. We also give examples of cakes which can be cut into two pieces. © THE MATHEMATICAL ASSOCIATION OF AMERICA.

  18. Packing a cake into a box

    KAUST Repository

    Skopenkov, Mikhail

    2011-05-01

    Given a triangular cake and a box in the shape of its mirror image, how can the cake be cut into a minimal number of pieces so that it can be put into the box? The cake has icing, so we are not allowed to put it into the box upside down. V. G. Boltyansky asked this question in 1977 and showed that three pieces always suffice. In this paper we provide examples of cakes that cannot be cut into two pieces to be put into the box. This shows that three is the answer to Boltyansky\\'s question. We also give examples of cakes which can be cut into two pieces. © THE MATHEMATICAL ASSOCIATION OF AMERICA.

  19. Ion-wake Field inside a Glass Box

    OpenAIRE

    Chen, Mudi; Dropmann, Michael; Zhang, Bo; Matthews, Lorin S.; Hyde, Truell W.

    2016-01-01

    The confinement provided by a glass box is proving ideal for the formation of vertically aligned structures and a convenient method for controlling the number of dust particles comprising these dust structures, as well as their size and shape. In this paper, the electronic confinement of the glass box is mapped and the particle interactions between the particle pairs inside the glass box are measured. The ion-wake field is shown to exist within the glass box and its vertical and horizontal ex...

  20. Drip Irrigation Aided Phytoremediation for Removal of TCE FR-om Groundwater

    International Nuclear Information System (INIS)

    Wilde, E.W.

    2003-01-01

    Groundwater in D-Area at the Savannah River Site (SRS) is contaminated with trichloroethylene (TCE) and by-products resulting FR-om discharges of this organic solvent during past disposal practices. This contaminated groundwater occurs primarily at depths of 9 meters to 15 meters below ground surface, well below the depths that are typically penetrated by plant roots. The process investigated in this study involved pumping water FR-om the contaminated aquifer and discharging the water into overlying test plots two inches below the surface using drip irrigation. The field treatability study was conducted FR-om 8/31/00 to 4/18/02 using six 0.08 hectare test plots, two each containing pines, cottonwoods, and no vegetation (controls). The primary objective was to determine the overall effectiveness of the process for TCE removal and to determine the principal biotic and abiotic pathways for its removal. Results demonstrated that the process provides a viable method to remove TCE-contaminated groundwater. The data clearly showed that the presence of trees reduced volatilization of TCE FR-om the drip irrigation system to the atmosphere. Influent groundwater TCE concentrations averaging 89 mg/L were reduced to non-detectable levels (less than 5 mg/L) within the upper two feet of soil (rhizosphere)

  1. Predicting salt advection in groundwater from saline aquaculture ponds

    Science.gov (United States)

    Verrall, D. P.; Read, W. W.; Narayan, K. A.

    2009-01-01

    SummaryThis paper predicts saltwater advection in groundwater from leaky aquaculture ponds. A closed form solution for the potential function, stream function and velocity field is derived via the series solutions method. Numerically integrating along different streamlines gives the location (or advection front) of saltwater throughout the domain for any predefined upper time limit. Extending this process produces a function which predicts advection front location against time. The models considered in this paper are easily modified given knowledge of the required physical parameters.

  2. Water-cooled target-box design at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.; Lambert, J.

    1983-01-01

    The target boxes in the main experimental beam line (Line A) at the Clinton P. Anderson Meson Physics Facility (LAMPF) have operated since 1976. A program of replacing the boxes is underway. This paper will present past history, design considerations, calculational results and the final box design

  3. Construction of dry-boxes for plutonium metallurgy

    International Nuclear Information System (INIS)

    Grison, E.; Pascard, R.

    1958-01-01

    The dry-boxes used at Chatillon are of two main types: a) boxes with a metal frame work of welded angle-pieces, panels of plexiglass, bakelite, duralumin, etc... They include a standard panel which enables them to be connected up to the contaminated repairs workshop; b) boxes made entirely of welded plastic. The working face only is of plexiglas held by screw clamps to a pure rubber joint. These boxes, which cannot be connected to the contaminated workshop, are generally reserved for small pieces of chemical apparatus. None has yet been used for working under argon, although their airtightness is excellent. After an interval of several hours, in fact, no decrease in the pressure inside the box can be detected. Several means can be adopted to ensure that the joints between panels and mountings are absolutely air-tight. Up to the present we are using three types of box with metal framework at the same time, without being able to make a definitive choice. (author) [fr

  4. Groundwater quota versus tiered groundwater pricing : two cases of groundwater management in north-west China

    NARCIS (Netherlands)

    Aarnoudse, Eefje; Qu, Wei; Bluemling, B.; Herzfeld, Thomas

    2017-01-01

    Difficulties in monitoring groundwater extraction cause groundwater regulations to fail worldwide. In two counties in north-west China local water authorities have installed smart card machines to monitor and regulate farmers’ groundwater use. Data from a household survey and in-depth interviews are

  5. 49 CFR 178.515 - Standards for reconstituted wood boxes.

    Science.gov (United States)

    2010-10-01

    ... wood boxes. (a) The identification code for a reconstituted wood box is 4F. (b) Construction requirements for reconstituted wood boxes are as follows: (1) The walls of boxes must be made of water... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for reconstituted wood boxes. 178.515...

  6. Ocular complications of boxing

    Science.gov (United States)

    Bianco, M; Vaiano, A; Colella, F; Coccimiglio, F; Moscetti, M; Palmieri, V; Focosi, F; Zeppilli, P; Vinger, P

    2005-01-01

    Objectives: To investigate the prevalence of ocular injuries in a large population of boxers over a period of 16 years, in particular, the most severe lesions that may be vision threatening. Methods: Clinical records of the medical archive of the Italian Boxing Federation were analysed. A total of 1032 boxers were examined from February 1982 to October 1998. A complete ophthalmological history was available for 956, who formed the study population (a total of 10 697 examinations). The following data were collected: age when started boxing; duration of competitive boxing career (from the date of the first bout); weight category; a thorough ocular history. The following investigations were carried out: measurement of visual acuity and visual fields, anterior segment inspection, applanation tonometry, gonioscopy, and examination of ocular fundus. Eighty age matched healthy subjects, who had never boxed, formed the control group. Results: Of the 956 boxers examined, 428 were amateur (44.8%) and 528 professional (55.2%). The median age at first examination was 23.1 (4.3) years (range 15–36). The prevalence of conjunctival, corneal, lenticular, vitreal, ocular papilla, and retinal alterations in the study population was 40.9% compared with 3.1% in the control group (p⩽0.0001). The prevalence of serious ocular findings (angle, lens, macula, and peripheral retina alterations) was 5.6% in boxers and 3.1% in controls (NS). Conclusions: Boxing does not result in a higher prevalence of severe ocular lesions than in the general population. However, the prevalence of milder lesions (in particular with regard to the conjunctiva and cornea) is noteworthy, justifying the need for adequate ophthalmological surveillance. PMID:15665199

  7. Model Refinement and Simulation of Groundwater Flow in Clinton, Eaton, and Ingham Counties, Michigan

    Science.gov (United States)

    Luukkonen, Carol L.

    2010-01-01

    potential declines in water levels in both the upper glacial aquifer and the upper sandstone bedrock aquifer under steady-state and transient conditions when recharge was reduced by 20 and 50 percent in urban areas. Transient simulations were done to investigate reduced recharge due to low rainfall and increased pumping to meet anticipated future demand with 24 months (2 years) of modified recharge or modified recharge and pumping rates. During these two simulation years, monthly recharge rates were reduced by about 30 percent, and monthly withdrawal rates for Lansing area production wells were increased by 15 percent. The reduction in the amount of water available to recharge the groundwater system affects the upper model layers representing the glacial aquifers more than the deeper bedrock layers. However, with a reduction in recharge and an increase in withdrawals from the bedrock aquifer, water levels in the bedrock layers are affected more than those in the glacial layers. Differences in water levels between simulations with reduced recharge and reduced recharge with increased pumping are greatest in the Lansing area and least away from pumping centers, as expected. Additionally, the increases in pumping rates had minimal effect on most simulated streamflows. Additional simulations included updating the estimated 10-year wellhead-contributing areas for selected Lansing-area wells under 2006-7 pumping conditions. Optimization of groundwater withdrawals with a water-resource management model was done to determine withdrawal rates while minimizing operational costs and to determine withdrawal locations to achieve additional capacity while meeting specified head constraints. In these optimization scenarios, the desired groundwater withdrawals are achieved by simulating managed wells (where pumping rates can be optimized) and unmanaged wells (where pumping rates are not optimized) and by using various combinations of existing and proposed well locations.

  8. Pollution potential of oil-contaminated soil on groundwater resources in Kuwait

    International Nuclear Information System (INIS)

    Literathy, P.; Quinn, M.; Al-Rashed, M.

    2003-01-01

    The only natural freshwater resource of Kuwait occurs as lenses floating on the saline groundwater in the northern part of the country, near to the oil fields. Rainwater is the only means of recharge of this limited groundwater resource. This groundwater is used as bottled drinking water and the fresh groundwater aquifer is considered as a strategic drinking water reserve for Kuwait. As a result of the 1991 Gulf War, the upper soil layer has been widely contaminated with crude oil and crude oil combustion products, which are potential pollutants likely affecting the groundwater resources. Significant efforts have been made to assess this pollution. These included: (a) a soil survey for assessing the soil contamination, and (b) leaching experiments to characterise the mobilization of the soil-associated pollutants. Fluorescence measurement techniques were used during field surveys as well as for laboratory testing. In addition, determination of the total extractable matter (TEM), total petroleum hydrocarbons (TPH), and GC/MS measurement of polyaromatic hydrocarbons (PAHs) were performed for the assessments. The laser induced fluorescence (LIF) measurement, having good correlation with the other laboratory measurements, was proved to provide necessary information for the assessment of the oil-contamination level in the desert soil. The subsequent leaching test with water demonstrated the mobilization of the fluorescing compounds (e.g. PAHs), and the alteration in the leaching characteristics of the contamination during the long term environmental weathering of the oil. (author)

  9. Radon occurrence in soil-gas and groundwater around an active landslide

    Energy Technology Data Exchange (ETDEWEB)

    Ramola, R.C. [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal -249 199 (India)], E-mail: rcramola@gmail.com; Choubey, V.M. [Wadia Institute of Himalayan Geology, Dehradun 248 001 (India); Negi, M.S.; Prasad, Yogesh; Prasad, Ganesh [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal -249 199 (India)

    2008-01-15

    This paper presents the results of investigation of radon levels in the soil-gas and groundwater of Uttarkashi, India within the distance of 5 km in vertical and horizontal directions from the landslide of Varunawat hill. Radon release from the soil and groundwater was found higher than the normal values. Radon concentration in groundwater over and around the landslide was found to vary from 0.51 to 86kBqm{sup -3}. The soil-gas radon concentration was found to vary from 219 to 3kBqm{sup -3} along the slope of landslide. Radon exhalation rate in collected soil samples was found to vary from 2.28x10{sup -5} to 9.01x10{sup -5}Bqkg{sup -1}h{sup -1}. Radon values were not found correlated with major and trace element contents in the upper soil of the area, which indicate that the migration of radon from deeper part of the earth along with landslide contribute to the surface radon concentration. Recorded values show a close association with local geology and Varunawat eruptions.

  10. Radon occurrence in soil-gas and groundwater around an active landslide

    International Nuclear Information System (INIS)

    Ramola, R.C.; Choubey, V.M.; Negi, M.S.; Prasad, Yogesh; Prasad, Ganesh

    2008-01-01

    This paper presents the results of investigation of radon levels in the soil-gas and groundwater of Uttarkashi, India within the distance of 5 km in vertical and horizontal directions from the landslide of Varunawat hill. Radon release from the soil and groundwater was found higher than the normal values. Radon concentration in groundwater over and around the landslide was found to vary from 0.51 to 86kBqm -3 . The soil-gas radon concentration was found to vary from 219 to 3kBqm -3 along the slope of landslide. Radon exhalation rate in collected soil samples was found to vary from 2.28x10 -5 to 9.01x10 -5 Bqkg -1 h -1 . Radon values were not found correlated with major and trace element contents in the upper soil of the area, which indicate that the migration of radon from deeper part of the earth along with landslide contribute to the surface radon concentration. Recorded values show a close association with local geology and Varunawat eruptions

  11. Use of Tritium and Helium to Define Groundwater Flow Conditions in a Coastal Aquifer Influenced by Seawater Intrusion: Everglades National Park

    Science.gov (United States)

    Price, R. M.; Top, Z.; Happell, J. D.; Swart, P. K.

    2002-05-01

    The concentrations of tritium (3H) and helium isotopes (3He, 4He) were used as tracers of groundwater flow in Everglades National Park, South Florida (USA). Both fresh and brackish groundwaters were collected from 47 wells completed at depths ranging from 2 m to 73 m within the Surficial Aquifer System (SAS). Ages as determined by 3H/3He techniques indicate that groundwater within the upper 28 m originated after the nuclear era (within the last 42 yr) and below 28 m before then with evidence of some mixing at the interface. Inter-annual variation of the 3H/3He ages within the upper 28 m was significant throughout the three year investigation, suggesting varying hydrologic conditions. The age of the shallow groundwater in the southern regions of ENP (Rocky Glades and Taylor Slough) tended to be younger following times of high water level when the dominant direction of groundwater flow water was to the southeast. In the same region, significantly older groundwater was observed following times of low water levels and a shift in the groundwater flow direction toward the southwest. Near the canals, the reverse occurred with the ages of shallow groundwater tending to be younger following times of low water levels, suggesting a greater influence of recharge water from the canals to the surrounding aquifer. Although water levels and the direction of hydrologic gradients vary greatly within a 3-month time period, the average age of the shallow (Aquifer suggesting a preferential flow path to the deeper formation. An increase in 4He with depth suggests that radiogenic 4He produced in the underlying Hawthorn Group is dispersed into the SAS. Higher Δ 4He values in brackish groundwaters compared to fresh waters from similar depths indicate an enhanced vertical transport of 4He in the seawater mixing zone. Seawater intrudes at distances of 6 to 28 km at shallow depths (Florida Bay and the Gulf of Mexico over an approximately 6 to 28 km wide strip that parallels the coastline.

  12. 49 CFR 178.517 - Standards for plastic boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for plastic boxes. 178.517 Section 178... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.517 Standards for plastic boxes. (a) The following are identification codes for plastic boxes: (1) 4H1 for an expanded plastic box; and (2) 4H2 for a...

  13. Nonneurologic emergencies in boxing.

    Science.gov (United States)

    Coletta, Domenic F

    2009-10-01

    Professional boxing has done an admirable job in promoting safety standards in its particular sport. However, injuries occur during the normal course of competition and, unfortunately, an occasional life-threatening emergency may arise. Although most common medical emergencies in boxing are injuries from closed head trauma, in this article those infrequent but potentially catastrophic nonneurologic conditions are reviewed along with some less serious emergencies that the physician must be prepared to address.

  14. Simulation of Groundwater Flow, Denpasar-Tabanan Groundwater Basin, Bali Province

    Directory of Open Access Journals (Sweden)

    Heryadi Tirtomihardjo

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i3.123Due to the complex structure of the aquifer systems and its hydrogeological units related with the space in which groundwater occurs, groundwater flows were calculated in three-dimensional method (3D Calculation. The geometrical descritization and iteration procedures were based on an integrated finite difference method. In this paper, all figures and graphs represent the results of the calibrated model. Hence, the model results were simulated by using the actual input data which were calibrated during the simulation runs. Groundwater flow simulation of the model area of the Denpasar-Tabanan Groundwater Basin (Denpasar-Tabanan GB comprises steady state run, transient runs using groundwater abstraction in the period of 1989 (Qabs-1989 and period of 2009 (Qabs-2009, and prognosis run as well. Simulation results show, in general, the differences of calculated groundwater heads and observed groundwater heads at steady and transient states (Qabs-1989 and Qabs-2009 are relatively small. So, the groundwater heads situation simulated by the prognosis run (scenario Qabs-2012 are considerably valid and can properly be used for controlling the plan of groundwater utilization in Denpasar-Tabanan GB.

  15. Biosphere modelling for a deep radioactive waste repository: site-specific consideration of the groundwater-soil pathway

    International Nuclear Information System (INIS)

    Grogan, H.A.; Baeyens, B.; Mueller, H.; Dorp, F. van

    1991-07-01

    Scenario evaluations indicate that groundwater is the most probable pathway for released radionuclides to reach the biosphere from a deep underground nuclear waste repository. This report considers a small valley in northern Switzerland where the transport of groundwater to surface soil might be possible. The hydrological situation has been examined to allow a system of compartments and fluxes for modelling this pathway with respect to the release of radionuclides from an underground repository to be produced. Assuming present day conditions the best estimate surface soil concentrations are calculated by dividing the soil into two layers (deep soil, surface soil) and assuming an annual upward flux of 10 mm from the groundwater through the two soil layers. A constant unit activity concentration is assumed for the radionuclides in the groundwater. It is concluded that the resultant best estimate values must still be considered to be biased on the conservative side, in view of the fact that the more typical situation is likely to be that no groundwater reaches the surface soil. Upper and lower estimates for the surface soil radionuclide concentrations are based on the parameter perturbation results which were carried out for three key parameters, i.e. precipitation surplus, upward flux and solid-liquid distribution coefficients (K d ). It is noted that attention must be given to the functional relationships which exist between various model parameters. Upper estimates for the surface soil concentration are determined assuming a higher annual upward flux (100 mm) as well as a more conservative K d value compared with the base case. This gives rise to surface soil concentrations more than two orders of magnitude higher than the best estimate values. The lower estimated are more easily assigned assuming that no activity reaches the surface soil via this pathway. (author) 18 figs., 4 tabs., refs

  16. Hydrogeological and quantitative groundwater assessment of the Basaltic Aquifer, Northern Harrat Rahat, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Shaibani, A.; Abokhodair, Abdulwahab A.; Lloyd, J.W.; Al-Ahmari, A.

    2007-01-01

    The Northern Harrat Rahat consists of 300m basalt lavas covering some 2000 km2 to the south-east of Al-Madinah in western Saudi Arabia. Like many basalt sequences, the Rahat basalts form an important aquifer and groundwater resource. The aquifer has a saturated thickness of up to 60m and made up of the weathered upper part of underlying basement, pre-basalt sands and gravels and the fractured basalts. Since 1992, groundwater has been abstracted from the aquifer as part of the Al-Madinah water supply. To assess the potential of the aquifer an assessment has been made based on pumping tests of 70 wells. The hydraulic parameters have been shown to be highly variable typical of the fractured domain. The aquifer contains good-quality water in storage, but receives limited recharge. Groundwater temperature anomalies indicate remnant volcanic activity locally. A numerical groundwater model has been constructed, which has been calibrated using limited groundwater head measurements, but with good abstraction records. Prediction of groundwater heads and the examination of several abstraction scenarios indicate that the aquifer can continue to support part of the Al-Madinah demand for the next several years, if certain well distributions are adopted. The predictions also show that the aquifer can only support the total demand of the city for a few days as a contingency resource. (author)

  17. Glove boxes. Dimensions and requirements. Draft

    International Nuclear Information System (INIS)

    1985-07-01

    The standard is to be applied to work done in glove-boxes, whereby either the personnel need to be protected from the damaging effects of the materials being handled, or the materials from the effects of the environment. It is to be applied to glove-boxes in which substances are handled which emit ionising radiation (radioactive substances). This norm is not restricted to glove-boxes in which processes are carried out on a technique scale. In accordance with this norm, only those pressures and temperatures are allowed to be present in the glove-boxes, that do not offer significantly from the work areas. Alongside the stipulations of this standard regard is also always to be taken of the regulations in the radiation protection ordinance. (orig./HP) [de

  18. Tritium/3He measurements in young groundwater: Progress in applications to complex hydrogeological systems

    Science.gov (United States)

    Schlosser, Peter; Shapiro, Stephanie D.; Stute, Martin; Plummer, Niel

    2000-01-01

    Tritium/3He dating has been applied to many problems in groundwater hydrology including, for example, determination of circulation patterns, mean residence times, recharge rates, or bank infiltration. Here, we discuss recent progress in the application of the tritium/3He dating method to sites with complex hydrogeological settings. Specifically, we report on tritium/3He dating at sites with (a) river infiltration into the basaltic fractured rock aquifer of the Eastern Snake River Plain, and (b) river infiltration through sinkholes into the karstic limestone Upper Floridian aquifer near Valdosta, Georgia.Tritium/3He dating has been applied to many problems in groundwater hydrology including, for example, determination of circulation patterns, mean residence times, recharge rates, or bank infiltration. Here, we discuss recent progress in the application of the tritium/3He dating method to sites with complex hydrogeological settings. Specifically, we report on tritium/3He dating at sites with (a) river infiltration into the basaltic fractured rock aquifer of the Eastern Snake River Plain, and (b) river infiltration through sinkholes into the karstic limestone Upper Floridian aquifer near Valdosta, Georgia.

  19. Estimating Groundwater Development area in Jianan Plain using Standardized Groundwater Index

    Science.gov (United States)

    Yu, Chang Hsiang; Haw, Lee Cheng

    2017-04-01

    Taiwan has been facing severe water crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also made the drought phenomenon increasingly prominent, which has indirectly affected groundwater recharge. Hence, in the present study, long-term monitoring data were collected from the study area of the Jianan plain. The standardized groundwater index (SGI) and was then used to analyse the region's drought characteristics. To analyse the groundwater level by using SGI, making SGI180 groundwater level be the medium water crises, and SGI360 groundwater level be the extreme water crises. Through the different water crises signal in SGI180 and SGI360, we divide groundwater in Jianan plain into two sections. Thereby the water crises indicators establishing groundwater level standard line in Jianan Plain, then using the groundwater level standard line to find the study area where could be groundwater development area in Jianan plain. Taking into account relatively more water scarcity in dry season, so the study screen out another emergency backup groundwater development area, but the long-term groundwater development area is still as a priority development area. After finding suitable locations, groundwater modeling systems(GMS) software is used to simulate our sites to evaluate development volume. Finally, the result of study will help the government to grasp the water shortage situation immediately and solve the problem of water resources deployment.

  20. Introduction to the Box Particle Filtering

    OpenAIRE

    Gning, Amadou; Ristic, B; Mihaylova, Lyudmila; Abdallah, F.

    2013-01-01

    This paper presents a novel method for solving nonlinear filtering problems. This approach is particularly appealing in practical situations involving imprecise stochastic measurements, thus resulting in very broad posterior densities. It relies on the concept of a box particle, which occupies a small and controllable rectangular region having a non-zero volume in the state space. Key advantages of the box particle filter (Box-PF) against the standard particle filter (PF) are in its reduced c...

  1. Transport and potential attenuation of nitrogen in shallow groundwaters in the lower Rangitikei catchment, New Zealand.

    Science.gov (United States)

    Collins, S; Singh, R; Rivas, A; Palmer, A; Horne, D; Manderson, A; Roygard, J; Matthews, A

    2017-11-01

    Intensive agricultural activities are generally associated with nitrogen leaching from agricultural soils, and this nitrogen has the potential to percolate and contaminate groundwater and surface waters. We assessed surface water and groundwater interactions, and nitrogen leaching and its potential attenuation in shallow groundwater in the lower Rangitikei River catchment (832km 2 ), New Zealand. We combined regional- and local-scale field surveys and experiments, nutrient budget modelling, and hydraulic and geochemical methods, to gain an insight into leaching, transformation and transport of nitrogen via groundwaters to the river in the study area. Concurrent river flow gaugings (in January 2015) and a piezometric map, developed from measured depths to groundwater in 110 bores (in October 2014), suggest groundwater discharges to the Rangitikei River in the upper parts of the study area, while there is groundwater recharge near the coast. The groundwater redox characterisation, based on sampling and analysis of 15 mostly shallow bores (shallow groundwater piezometers (3-6mbgl) using single-well push-pull tests. We found generally low levels (shallow groundwater piezometers (>5mbgl), despite being installed under intensive land uses, such as dairying and cropping. Our in-field push-pull tests showed NO 3 -N reduction at four shallow groundwater piezometers, with the rates of reduction varying from 0.04mgNL -1 h - 1 to 1.57mgNL -1 h - 1 . This highlights the importance of a sound understanding of not only the sources, but also transport and transformation, or fate, of nutrients leached from farms, to mitigate the likely impacts of land use on water quality and ecosystem health in agricultural catchments. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Y-12 Plant Groundwater Protection Program: Groundwater and surface water sampling and analysis plan for Calendar Year 1998

    International Nuclear Information System (INIS)

    1997-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 1998 at the Department of Energy (DOE) Y-12 Plant. These monitoring activities are managed by the Y-12 Plant Environmental Compliance Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 1998 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. Groundwater and surface water monitoring will be performed during CY 1998 to comply with: (1) requirements specified in Resource Conservation and Recover Act (RCRA) post-closure permits regarding RCRA corrective action monitoring and RCRA detection monitoring; (2) Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous solid waste management facilities; and (3) DOE Order 5400.1 surveillance monitoring and exit pathway monitoring. Data from some of the sampling locations in each regime will be used to meet the requirements of more than one of the monitoring drivers listed above. Modifications to the CY 1998 monitoring program may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected monitoring wells, or wells could be removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  3. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    International Nuclear Information System (INIS)

    1999-01-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  4. Golan Heights Groundwater Systems: Separation By REE+Y And Stable Isotopes

    Science.gov (United States)

    Siebert, C.; Geyer, S.; Knoeller, K.; Roediger, T.; Weise, S.; Dulski, P.; Moeller, P.; Guttman, J.

    2008-12-01

    well waters, stable isotopes showed, that the main area of recharge is the elevated Hermon-Massif, with high annually precipitation amounts. The major element composition of fresh water well Alonei HaBashan 3, situated in the basaltic Upper Golan Heights, is defined by a pre-Neogenic limy aquifer and the contact to basalts. However, REY pattern refer to a calcareous infiltration area. Stable isotope signatures are lighter than in the recharge of comparable elevated Upper Galilee. Further to the south, in the Yarmouk gorge hot Mezar springs occur, which show stable isotope signatures even lighter than in water of Alonei Habshan 3. Both, REY pattern and hydrochemistry show infiltration into and contact to the Sr-rich limestone aquifer of the Mt. Scopus group. That adds up to an infiltration area some 50 km to the north, the nearest elevated area where carbonates crop out. Nearby Mezar, hot Hammat Gader springs occur, which show comparable isotopic signatures and hydrochemical composition. However, the REY-patterns indicate infiltration in basalts. By means of those three examples we could show, that the use of a combined hydrochemical and isotopic approach reveals complex and large-scale groundwater infiltration- and flow-systems much better than a focused view on a specific band of elements.

  5. Influence of dimension box differences and time differences during operations of red box for motorcycles at signalized intersection

    Science.gov (United States)

    Mulyadi, Agah Muhammad

    2017-11-01

    Performance of signalized intersection has declined due to a large number of motorcycles. The number of motorcycles reached 98.2 million units and the composition of motorcycles has reached around 81.7% of the total composition of vehicles in Indonesia (AISI, 2017). To solve that problem, the red box for motorcycles are provided at the signalized intersection. Red box for the motorcycle at signalized intersections was developed from the concept of Advance Stop Line (ASL) for bicycles. The Red Box was developed to split the queue between motorcycles and other vehicles when waiting at red light. This paper aims to evaluate the influence of the red box dimension and red time operation differences. The survey was conducted as many as 30 cycles of traffic signals per day. The data were analyzed using software IBM SPSS Statistics 20 by using Analysis of Variance (ANOVA) to obtain p-value (significant). The analysis shows that there are insignificant influences between the occupancy rates to the dimension of Red Box. Furthermore, that there is a significant difference that shows the dependency of only motorcycles in the Red Box Area towards red time operation.

  6. River-groundwater connectivity in a karst system, Wellington, New South Wales, Australia

    Science.gov (United States)

    Keshavarzi, Mohammadreza; Baker, Andy; Kelly, Bryce F. J.; Andersen, Martin S.

    2017-03-01

    The characterization of river-aquifer connectivity in karst environments is difficult due to the presence of conduits and caves. This work demonstrates how geophysical imaging combined with hydrogeological data can improve the conceptualization of surface-water and groundwater interactions in karst terrains. The objective of this study is to understand the association between the Bell River and karst-alluvial aquifer at Wellington, Australia. River and groundwater levels were continuously monitored, and electrical resistivity imaging and water quality surveys conducted. Two-dimensional resistivity imaging mapped the transition between the alluvium and karst. This is important for highlighting the proximity of the saturated alluvial sediments to the water-filled caves and conduits. In the unsaturated zone the resistivity imaging differentiated between air- and sediment-filled karst features, and in the saturated zone it mapped the location of possible water- and sediment-filled caves. Groundwater levels are dynamic and respond quickly to changes in the river stage, implying that there is a strong hydraulic connection, and that the river is losing and recharging the adjacent aquifer. Groundwater extractions (1,370 ML, megalitres, annually) from the alluvial aquifer can cause the groundwater level to fall by as much as 1.5 m in a year. However, when the Bell River flows after significant rainfall in the upper catchment, river-leakage rapidly recharges the alluvial and karst aquifers. This work demonstrates that in complex hydrogeological settings, the combined use of geophysical imaging, hydrograph analysis and geochemical measurements provide insights on the local karst hydrology and groundwater processes, which will enable better water-resource and karst management.

  7. Long-term effects of surface coal mining on ground-water levels and quality in two small watersheds in eastern Ohio

    International Nuclear Information System (INIS)

    Cunningham, W.L.; Jones, R.L.

    1990-01-01

    Two small eastern Ohio watersheds surface mined for coal and reclaimed were studied during 1986-89. Water level and water quality data were compared with data from investigations conducted during 1976-83 to determine long-term effects of surface mining on the hydrologic system. Before mining, the watersheds were characterized by flatlying sedimentary rocks above clay beds underlying two major coal seams. Two aquifers overlay each under clay. Surface mining removed the upper aquifer, stripped the coal seam, and replaced the spoil, creating a new aquifer with hydraulic and chemical characteristics different from those of the original upper aquifer. Water levels were measured continuously in one well in each aquifer and every 2 months in other wells. Water levels in upper aquifers reached hydraulic equilibrium from 2 to 5 years after mining and, in middle aquifers, water levels increased more than 5 ft during mining; equilibrium occurred almost immediately thereafter. Water samples were collected from three upper aquifer wells, one middle-aquifer well, a seep from the upper aquifer, and the stream in each watershed. Samples were collected in 1986, 1987, 1988, and 1989. In both watersheds, sulfate replaced bicarbonate as the dominant anion in the upper aquifer after mining. In general, significant increases in concentrations of dissolved constituents in groundwater resulted from surface mining. The continued decrease in pH indicates that groundwater had not reached complete geochemical equilibrium in either watershed more than 8 years after mining ended

  8. Generation, combination and extension of random set approximations to coherent lower and upper probabilities

    International Nuclear Information System (INIS)

    Hall, Jim W.; Lawry, Jonathan

    2004-01-01

    Random set theory provides a convenient mechanism for representing uncertain knowledge including probabilistic and set-based information, and extending it through a function. This paper focuses upon the situation when the available information is in terms of coherent lower and upper probabilities, which are encountered, for example, when a probability distribution is specified by interval parameters. We propose an Iterative Rescaling Method (IRM) for constructing a random set with corresponding belief and plausibility measures that are a close outer approximation to the lower and upper probabilities. The approach is compared with the discrete approximation method of Williamson and Downs (sometimes referred to as the p-box), which generates a closer approximation to lower and upper cumulative probability distributions but in most cases a less accurate approximation to the lower and upper probabilities on the remainder of the power set. Four combination methods are compared by application to example random sets generated using the IRM

  9. Risk assessment of salt contamination of groundwater under uncertain aquifer properties

    KAUST Repository

    Litvinenko, Alexander

    2017-10-01

    One of the central topics in hydrogeology and environmental science is the investigation of salinity-driven groundwater flow in heterogeneous porous media. Our goals are to model and to predict pollution of water resources. We simulate a density driven groundwater flow with uncertain porosity and permeability. This strongly non-linear model describes the unstable transport of salt water with building ‘fingers’-shaped patterns. The computation requires a very fine unstructured mesh and, therefore, high computational resources. We run the highly-parallel multigrid solver, based on ug4, on supercomputer Shaheen II. A MPI-based parallelization is done in the geometrical as well as in the stochastic spaces. Every scenario is computed on 32 cores and requires a mesh with ~8M grid points and 1500 or more time steps. 200 scenarios are computed concurrently. The total number of cores in parallel computation is 200x32=6400. The main goal of this work is to estimate propagation of uncertainties through the model, to investigate sensitivity of the solution to the input uncertain parameters. Additionally, we demonstrate how the multigrid ug4-based solver can be applied as a black-box in the uncertainty quantification framework.

  10. The spectral sensitivity of the lens eyes of a box jellyfish, Tripedalia cystophora (Conant)

    DEFF Research Database (Denmark)

    Coates, Melissa M; Garm, Anders; Theobald, Jamie C

    2006-01-01

    Box jellyfish, or cubomedusae (class Cubozoa), are unique among the Cnidaria in possessing lens eyes similar in morphology to those of vertebrates and cephalopods. Although these eyes were described over 100 years ago, there has been no work done on their electrophysiological responses to light. ...... result from the presence of a single receptor type containing a single opsin. The peak sensitivity is to blue-green light. Visual pigment template fits indicate a vitamin A-1 based opsin with peak sensitivity near 500 nm for both eye types.......Box jellyfish, or cubomedusae (class Cubozoa), are unique among the Cnidaria in possessing lens eyes similar in morphology to those of vertebrates and cephalopods. Although these eyes were described over 100 years ago, there has been no work done on their electrophysiological responses to light. We...... used an electroretinogram (ERG) technique to measure spectral sensitivity of the lens eyes of the Caribbean species Tripedalia cystophora. The cubomedusae have two kinds of lens eyes, the lower and upper lens eyes. We found that both lens eye types have similar spectral sensitivities, which likely...

  11. 49 CFR 178.512 - Standards for steel or aluminum boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for steel or aluminum boxes. 178.512... aluminum boxes. (a) The following are identification codes for steel or aluminum boxes: (1) 4A for a steel box; and (2) 4B for an aluminum box. (b) Construction requirements for steel or aluminum boxes are as...

  12. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    Science.gov (United States)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-12-01

    Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr-1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10

  13. Structure and optics of the eyes of the box jellyfish Chiropsella bronzie

    DEFF Research Database (Denmark)

    O’Connor, Megan; Garm, Anders Lydik; Nilsson, Dan-E.

    2009-01-01

    Cubomedusae have a total of 24 eyes of four morphologically different types. Two of these eye types are camera-type eyes (upper and lower lens-eye), while the other two eye types are simpler pigment pit eyes (pit and slit eye). Here, we give a description of the visual system of the box jellyfish...... those in the previously investigated species Tripedalia cystophora. In the lower lens-eye of C. bronzie, blur circles subtend 20 and 52° for closed and open pupil, respectively, effectively removing all but the coarsest structures of the image. Histology reveals that the retina of the lower lens...

  14. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  15. What Makes a Better Box?

    Science.gov (United States)

    Moyer, Richard; Everett, Susan

    2010-01-01

    Every morning, many Americans start their day with a bowl of cereal. Some spend time while they eat breakfast reading the back of the cereal box, but few consider its size, shape, and construction, or realize that it was designed by an engineer. This article describes a lesson in which students design, build, and critique cereal boxes. The lesson…

  16. Transport and potential attenuation of nitrogen in shallow groundwaters in the lower Rangitikei catchment, New Zealand

    Science.gov (United States)

    Collins, S.; Singh, R.; Rivas, A.; Palmer, A.; Horne, D.; Manderson, A.; Roygard, J.; Matthews, A.

    2017-11-01

    Intensive agricultural activities are generally associated with nitrogen leaching from agricultural soils, and this nitrogen has the potential to percolate and contaminate groundwater and surface waters. We assessed surface water and groundwater interactions, and nitrogen leaching and its potential attenuation in shallow groundwater in the lower Rangitikei River catchment (832 km2), New Zealand. We combined regional- and local-scale field surveys and experiments, nutrient budget modelling, and hydraulic and geochemical methods, to gain an insight into leaching, transformation and transport of nitrogen via groundwaters to the river in the study area. Concurrent river flow gaugings (in January 2015) and a piezometric map, developed from measured depths to groundwater in 110 bores (in October 2014), suggest groundwater discharges to the Rangitikei River in the upper parts of the study area, while there is groundwater recharge near the coast. The groundwater redox characterisation, based on sampling and analysis of 15 mostly shallow bores ( 5 m bgl), despite being installed under intensive land uses, such as dairying and cropping. Our in-field push-pull tests showed NO3-N reduction at four shallow groundwater piezometers, with the rates of reduction varying from 0.04 mg N L- 1 h-1 to 1.57 mg N L- 1 h-1. This highlights the importance of a sound understanding of not only the sources, but also transport and transformation, or fate, of nutrients leached from farms, to mitigate the likely impacts of land use on water quality and ecosystem health in agricultural catchments.

  17. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling

    Science.gov (United States)

    Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.

    2014-03-01

    This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.

  18. Infectious disease and boxing.

    Science.gov (United States)

    King, Osric S

    2009-10-01

    There are no unique boxing diseases but certain factors contributing to the spread of illnesses apply strongly to the boxer, coach, and the training facility. This article examines the nature of the sport of boxing and its surrounding environment, and the likelihood of spread of infection through airborne, contact, or blood-borne routes of transmission. Evidence from other sports such as running, wrestling, and martial arts is included to help elucidate the pathophysiologic elements that could be identified in boxers.

  19. Simulation of the impact of managed aquifer recharge on the groundwater system in Hanoi, Vietnam

    Science.gov (United States)

    Glass, Jana; Via Rico, Daniela A.; Stefan, Catalin; Nga, Tran Thi Viet

    2018-05-01

    A transient numerical groundwater flow model using MODFLOW-NWT was set up and calibrated for Hanoi city, Vietnam, to understand the local groundwater flow system and to suggest solutions for sustainable water resource management. Urban development in Hanoi has caused a severe decline of groundwater levels. The present study evaluates the actual situation and investigates the suitability of managed aquifer recharge (MAR) to stop further depletion of groundwater resources. The results suggest that groundwater is being overexploited, as vast cones of depression exist in parts of the study area. Suitable locations to implement two MAR techniques—riverbank filtration and injection wells—were identified using multi-criteria decision analysis based on geographic information system (GIS). Three predictive scenarios were simulated. The relocation of pumping wells towards the Red River to induce riverbank filtration (first scenario) demonstrates that groundwater levels can be increased, especially in the depression cones. Groundwater levels can also be improved locally by the infiltration of surplus water into the upper aquifer (Holocene) via injection wells during the rainy season (second scenario), but this is not effective to raise the water table in the depression cones. Compared to the first scenario, the combination of riverbank filtration and injection wells (third scenario) shows a slightly raised overall water table. Groundwater flow modeling suggests that local overexploitation can be stopped by a smart relocation of wells from the main depression cones and the expansion of riverbank filtration. This could also avoid further land subsidence while the city's water demand is met.

  20. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  1. The applicability of a multitask boxing program using the BoxMaster ® for Parkinson’s disease

    OpenAIRE

    Domingos, Josefa; Loureiro, Rita; Godinho, Catarina; Dean, John; Ferreira, Joaquim J.

    2016-01-01

    Poster presented at the 4th World Parkinson Congress. Portland, Oregon, 20-23 September 2016 "Objective: To test the applicability of a multitasking boxing program using the BoxMaster® in individuals with Parkinson’s disease that combines motor, cognitive and vocal exercises." N/A

  2. STATISTICAL INVESTIGATION OF THE GROUNDWATER SYSTEM IN DARB EL-ARBAEIN, SOUTHWESTERN DESERT, EGYPT

    Directory of Open Access Journals (Sweden)

    Kashouty Mohamed El

    2009-12-01

    Full Text Available In Darb El Arbaein, the groundwater is the only water resources. The aquifer system starts from Paleozoic-Mesozoic to Upper Cretaceous sandstone rocks. They overlay the basement rocks and the aquifer is confined. In the present research, the performance of the statistical analyses to classify groundwater samples depending on their chemical characters has been tested. The hydrogeological and hydrogeochemical data of 92 groundwater samples was obtained from the GARPAD authority in northern, central, and southern Darb El Arbaein. A robust classification scheme for partitioning groundwater chemistry into homogeneous groups was an important tool for the characterization of Nubian sandstone aquifer. We test the performance of the many available graphical and statistical methodologies used to classify water samples. R-mode, Q-mode, correlation analysis, and principal component analysis were investigated. All the methods were discussed and compared as to their ability to cluster, ease of use, and ease of interpretation. The correlation investigation clarifies the relationship among the lithology, hydrogeology, and anthropogenic. Factor investigation revealed three factors namely; the evaporation process-agriculturalimpact-lithogenic dissolution, the hydrogeological characteristics of the aquifer system, and the surface meteoric water that rechargethe aquifer system. Two main clusters that subdivided into four sub clusters were identified in groundwater system based on hydrogeological and hydrogeochemical data. They reflect the impact of geomedia, hydrogeology, geographic position, and agricultural wastewater. The groundwater is undersaturated with respect to most selected minerals. The groundwater was supersaturated with respect to iron minerals in northern and southern Darb El Arbaein. The partial pressure of CO2 of the groundwater versus saturation index of calcite shows the gradual change in PCO2 from atmospheric to the present aquifer

  3. Slow arsenic poisoning of the contaminated groundwater users

    International Nuclear Information System (INIS)

    Uddin, M. M.; Harun-Ar-Rashid, A. K. M.; Hossain, S. M.; Hafiz, M. A.; Nahar, K.; Mubin, S. H.

    2006-01-01

    This paper gives impact of Arsenic contaminated water on human health as well as overview of the extent and severity of groundwater arsenic contamination in Bangladesh. Scalp hair is the most important part of the human body to monitor the accumulation of this type of poison. Therefore, an experiment has been carried out by Neutron Activation Analysis at Atomic Energy Research Establishment , Savar, Dhaka, Bangladesh on human hair of corresponding tube well water users of these areas to determine the total accumulation of arsenic to their body. Hair samples collected from the region where the groundwater was found highly contaminated with arsenic. The obtained results of arsenic concentration in the lower age (Hb) categories of users (below 12 years of age users) is in the range of 0.33 to 3.29 μg/g (ppm) and that in the Hu categories (upper 12 years of age users) is 0.47 to 6.64 μg/g (ppm). Where as maximum permissible range is 1 ppm certified from WHO. Results show that the peoples are highly affected where the groundwater is highly contaminated with arsenic and acts as the primary source of arsenic poisoning among the peoples of those areas. The results indicate that human population is affected with arsenic locally using the contaminated water for a long time

  4. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (step 2)

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Endo, Yoshinobu

    2005-02-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations are being conducted using an iterative approach. In this study, hydrogeological modeling and groundwater flow analyses have been carried out using the data from surface-based investigations at Step 2, in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) The understanding of groundwater flow is enhanced, and the hydrogeological model has renewed; 2) The importance of faults as major groundwater flow pathways has been demonstrated; 3) The importance of iterative approach as progress of investigations has been demonstrated; 4) Geological and hydraulic characteristics of faults with orientation of NNW, NW and NE were shown to be especially significant; 5) the hydraulic properties of the Lower Sparsely Fractured Domain (LSFD) significantly influence the groundwater flow. The main items specified for further investigations are summarized as follows: 1) Geological and hydraulic characteristics of NNW, NW and NE trending faults; 2) Hydraulic properties of the LSFD; 3) More accuracy upper and lateral boundary conditions of the site scale model. (author)

  5. Subsurface fate and transport of cyanide species at a manufactured-gas plant site

    International Nuclear Information System (INIS)

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Nakles, D.V.

    1999-01-01

    Cyanide is present at manufactured-gas plant (MGP) sites in oxide-box residuals, which were often managed on-site as fill during active operations. Cyanide can leach from these materials, causing groundwater contamination. Speciation, fate, and transport of cyanide in a sand-gravel aquifer underlying an MGP site in the upper Midwest region of the US were studied through characterization, monitoring, and modeling of a plume of cyanide-contaminated groundwater emanating from the site. Results indicate that cyanide in the groundwater is primarily in the form of iron-cyanide complexes (>98%), that these complexes are stable under the conditions of the aquifer, and that they are transported as nonreactive solutes in the sand-gravel aquifer material. Weak-acid-dissociable cyanide, which represents a minute fraction of total cyanide in the site groundwater, may undergo chemical-biological degradation in the sand-gravel aquifer. It seems that dilution may be the only natural attenuation mechanism for iron-cyanide complexes in sand-gravel aquifers at MGP sites

  6. Cosmetic Foot Surgery: Fashion's Pandora's Box

    Science.gov (United States)

    ... Fashion’s Pandora’s Box? A A A | Print | Share Cosmetic Foot Surgery: Fashion’s Pandora’s Box? Foot and ankle ... extreme and imprudent as it may sound, the cosmetic surgery craze is not just for faces anymore— ...

  7. Three-Dimensional Slowness Images of the Upper Crust Beneath the Lucky Strike Hydrothermal Vent Sites

    Science.gov (United States)

    Seher, T.; Crawford, W.; Singh, S.; Canales, J. P.; Combier, V.; Cannat, M.; Carton, H.; Dusunur, D.; Escartin, J.; Miranda, M. J.; Pouillet-Erguy, A.

    2005-12-01

    In June-July 2005 we carried out the SISMOMAR cruise, as part of the MOMAR project (Monitoring the Mid-Atlantic Ridge). Within this cruise, we conducted a 3D seismic reflection survey over an 18 km km x 3.8 km area covering both the Lucky Strike volcano and hydrothermal vents field. In order to have a full coverage inside the 3D box, shots continued for 2.25 km on either side of the box and extended out to the median valley bounding faults. To complement the streamer measurements 25 Ocean Bottom Seismometers (OBS) were placed in an 18 km x 18 km area. 11 OBS positions lie inside the 3D box and can be used to determine a very detailed image of the 3D velocity structure beneath the Lucky Strike volcano and hydrothermal vents field. For the 3D box a tuned array of 14 air guns (2600 cubic inches) was fired at an interval of 37.5 m for a total of 39 lines. We will present the first results of the OBS measurements near the Lucky Strike volcano. As a first step towards a joint 3D travel time and slowness (the inverse of velocity at turning depth) tomography, we present the 3D slowness function (latitude, longitude, offset), which can be considered as a 3D brute stack velocity image of the sub-surface (c.f. Barton and Edwards, 1999). The presence of fluid in the upper crust due to hydrothermal circulation should appear as a low velocity anomaly beneath the hydrothermal vents. In the next step the OBS measurements will be used to corroborate the reflection images of layer 2A observed in the streamer data for the 3D box. The OBS inside the 3D box recorded turning ray arrivals from the upper crust at a very fine sampling interval (37.5 m x 100 m) over a large azimuth. This provides the unique opportunity for jointly inverting travel time and slowness. Hence the measurements contain information on local gradients and should provide a very detailed velocity model of the subsurface, including information on hydrothermal systems and a possilbe anisotropy (e.g. Cherret and Singh

  8. Getting started with Citrix VDI-in-a-Box

    CERN Document Server

    Brown, Stuart Arthur

    2013-01-01

    A practical and fast-paced guide that gives you all the information you need to simplify and streamline virtual desktops so you get a production-quality solution while instantly lowering your costs and improving security.Getting Started with Citrix VDI-in-a-Box is great for IT professionals who are new to VDI-in-a-Box and who are looking for a good grounding in the product. You may be planning to research VDI-in-a-Box in more detail, or you may be tasked with researching how VDI-in-a-Box could improve the productivity of your organization. No prior knowledge of VDI-in-a-Box is required, just a

  9. Spacer for supporting fuel element boxes

    International Nuclear Information System (INIS)

    Wild, E.

    1979-01-01

    A spacer plate unit arranged externally on each side and at a predetermined level of a polygonal fuel element box for mutually supporting, with respect to one another, a plurality of the fuel element boxes forming a fuel element bundle, is formed of a first and a second spacer plate part each having the same length and the same width and being constituted of unlike first and second materials, respectively. The first and second spacer plate parts of the several spacer plate units situated at the predetermined level are arranged in an alternating continuous series when viewed in the peripheral direction of the fuel element box, so that any two spacer plate units belonging to face-to-face oriented sides of two adjoining fuel element boxes in the fuel element bundle define interfaces of unlike materials

  10. Vadose Zone Nitrate Transport Dynamics Resulting from Agricultural Groundwater Banking

    Science.gov (United States)

    Murphy, N. P.; McLaughlin, S.; Dahlke, H. E.

    2017-12-01

    In recent years, California's increased reliance on groundwater resources to meet agricultural and municipal demands has resulted in significant overdraft and water quality issues. Agricultural groundwater banking (AGB) has emerged as a promising groundwater replenishment opportunity in California; AGB is a form of managed aquifer recharge where farmland is flooded during the winter using excess surface water in order to recharge the underlying groundwater. Suitable farmland that is connected to water delivery systems is available for AGB throughout the Central Valley. However, questions remain how AGB could be implemented on fertilized agricultural fields such that nitrate leaching from the root zone is minimized. Here, we present results from field and soil column studies that investigate the transport dynamics of nitrogen in the root and deeper vadose zone during flooding events. We are specifically interested in estimating how timing and duration of flooding events affect percolation rates, leaching and nitrification/denitrification processes in three soil types within the Central Valley. Laboratory and field measurements include nitrogen (NO3-, NH4+, NO2-, N2O), redox potentials, total organic carbon, dissolved oxygen, moisture content and EC. Soil cores are collected in the field before and after recharge events up to a depth of 4m, while other sensors monitor field conditions continuously. Preliminary results from the three field sites show that significant portions of the applied floodwater (12-62 cm) infiltrated below the root zone: 96.1% (Delhi), 88.6% (Modesto) and 76.8% (Orland). Analysis of the soil cores indicate that 70% of the residual nitrate was flushed from the sandy soil, while the fine sandy loam showed only a 5% loss and in some cores even an increase in soil nitrate (in the upper 20cm). Column experiments support these trends and indicate that increases in soil nitrate in the upper root zone might be due to organic nitrogen mineralization and

  11. Sport medicine and the ethics of boxing

    Science.gov (United States)

    Leclerc, S.; Herrera, C. D.

    1999-01-01

    In the light of medical evidence of the health risks associated with boxing, a watchful agnostic position among sport physicians is no longer justifiable. The normal activity in a boxing match places the athletes at risk of head injury, some of which may be difficult to detect and impossible to repair. This suggests that sport physicians and others expert in the prevention and diagnosis of such injuries should take a public stand against boxing, as other medical associations have. Although there is a need for continuing research into the health risks, doctors can in the interim take steps to increase public awareness of these risks. Sport physicians in particular can make a strong public statement by also ending their professional involvement with boxing. This need not be interpreted as paternalism; doctors are qualified neither to make laws nor to restrict private behaviour. Sport physicians are, however, well equipped to advise those who do make laws and those who choose to engage in boxing. In the end, because this stance against boxing will probably reduce the number of brain injuries in certain athletes, autonomy will be preserved, rather than restricted. 


 PMID:10597855

  12. North American box turtles: A natural history

    Science.gov (United States)

    Dodd, C. Kenneth

    2002-01-01

    Once a familiar backyard visitor in many parts of the United States and Mexico, the box turtle is losing the battle against extinction. In North American Box Turtles, C. Kenneth Dodd, Jr., has written the first book-length natural history of the twelve species and subspecies of this endangered animal. This volume includes comprehensive information on the species’ evolution, behavior, courtship and reproduction, habitat use, diet, population structure, systematics, and disease. Special features include color photos of all species, subspecies, and their habitats; a simple identification guide to both living and fossil species; and a summary of information on fossil Terrapene and Native uses of box turtles. End-of-chapter sections highlight future research directions, including the need for long-term monitoring and observation of box turtles within their natural habitat and conservation applications. A glossary and a bibliography of literature on box turtles accompany the text.

  13. Hydrogeologic framework, groundwater and surface-water systems, land use, pumpage, and water budget of the Chamokane Creek basin, Stevens County, Washington

    Science.gov (United States)

    Kahle, Sue C.; Taylor, William A.; Lin, Sonja; Sumioka, Steven S.; Olsen, Theresa D.

    2010-01-01

    A study of the water resources of the unconsolidated groundwater system of the Chamokane Creek basin was conducted to determine the hydrogeologic framework, interactions of shallow and deep parts of the groundwater system with each other and the surface-water system, changes in land use and land cover, and water-use estimates. Chamokane Creek basin is a 179 mi2 area that borders and partially overlaps the Spokane Indian Reservation in southern Stevens County in northeastern Washington State. Aquifers within the Chamokane Creek basin are part of a sequence of glaciofluvial and glaciolacustrine sediment that may reach total thicknesses of about 600 ft. In 1979, most of the water rights in the Chamokane Creek basin were adjudicated by the United States District Court requiring regulation in favor of the Spokane Tribe of Indians' senior water right. The Spokane Tribe, the State of Washington, and the United States are concerned about the effects of additional groundwater development within the basin on Chamokane Creek. Information provided by this study will be used to evaluate the effects of potential increases in groundwater withdrawals on groundwater and surface-water resources within the basin. The hydrogeologic framework consists of six hydrogeologic units: The Upper outwash aquifer, the Landslide Unit, the Valley Confining Unit, the Lower Aquifer, the Basalt Unit, and the Bedrock Unit. The Upper outwash aquifer occurs along the valley floors of the study area and consists of sand, gravel, cobbles, boulders, with minor silt and (or) clay interbeds in places. The Lower aquifer is a confined aquifer consisting of sand and gravel that occurs at depth below the Valley confining unit. Median horizontal hydraulic conductivity values for the Upper outwash aquifer, Valley confining unit, Lower aquifer, and Basalt unit were estimated to be 540, 10, 19, and 3.7 ft/d, respectively. Many low-flow stream discharge measurements at sites on Chamokane Creek and its tributaries

  14. Environmental tracers as indicators of groundwater flow and evolution in a fractured rock aquifer, Clare Valley, South Australia

    International Nuclear Information System (INIS)

    Love, A.J.; Cook, P.G.; Herczeg, A.L.; Simmons, C.T.

    1999-01-01

    Environmental tracers, chemistry and hydraulic data have been used to develop a conceptual model for groundwater flow in a fractured rock aquifer, at Clare, South Australia. In the upper 36 m there is relatively high horizontal flow, closely spaced fractures and large apertures. Below 36 m, horizontal flow rates are less and apertures become smaller. A sub horizontal fracture at 36 m separates the upper system from flow systems below. There is minimum vertical connection of groundwater above and below 36 m as indicated by low hydraulic conductivity and a steep 14 C concentration gradient. The observed linear trends in chemistry and isotope data are a result of mixing between old saline water and relatively younger fresh water. Greater mixing has occurred in the upper 36 m, with the amount of mixing diminishing with depth. We propose that this mixing is a recent process that has been triggered as a result of increased recharge to the system since the clearing of native vegetation approximately 100 years ago. Increased recharge of lower salinity water has resulted in the establishment of concentration gradients between the matrix and the fractures. This has resulted in diffusion of relatively immobile water in the matrix into relatively fast moving water in the fractures. Greater flushing has occurred in the upper 36 m due greater fracture density and larger apertures and higher horizontal flow rates. (author)

  15. A new set of ESTs from chickpea (Cicer arietinum L. embryo reveals two novel F-box genes, CarF-box_PP2 and CarF-box_LysM, with potential roles in seed development.

    Directory of Open Access Journals (Sweden)

    Shefali Gupta

    Full Text Available Considering the economic importance of chickpea (C. arietinum L. seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development.

  16. A new set of ESTs from chickpea (Cicer arietinum L.) embryo reveals two novel F-box genes, CarF-box_PP2 and CarF-box_LysM, with potential roles in seed development.

    Science.gov (United States)

    Gupta, Shefali; Garg, Vanika; Bhatia, Sabhyata

    2015-01-01

    Considering the economic importance of chickpea (C. arietinum L.) seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development.

  17. Box-Particle Cardinality Balanced Multi-Target Multi-Bernoulli Filter

    OpenAIRE

    L. Song; X. Zhao

    2014-01-01

    As a generalized particle filtering, the box-particle filter (Box-PF) has a potential to process the measurements affected by bounded error of unknown distributions and biases. Inspired by the Box-PF, a novel implementation for multi-target tracking, called box-particle cardinality balanced multi-target multi-Bernoulli (Box-CBMeMBer) filter is presented in this paper. More important, to eliminate the negative effect of clutters in the estimation of the numbers of targets, an improved generali...

  18. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  19. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  20. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not more...

  1. The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales

    Science.gov (United States)

    Gabrielli, C. P.; McDonnell, J. J.; Jarvis, W. T.

    2012-07-01

    SummaryBedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at quantifying bedrock groundwater contributions to hillslope flow and catchment runoff. We present results from the Maimai M8 research catchment in New Zealand and Watershed 10 (WS10) at the H.J. Andrews Experimental Forest in Oregon, USA. Analysis of bedrock groundwater at Maimai, through a range of flow conditions, revealed that the bedrock water table remained below the soil-bedrock interface, indicating that the bedrock aquifer has minimal direct contributions to event-based hillslope runoff. However, the bedrock water table did respond significantly to storm events indicating that there is a direct connection between hillslope processes and the underlying bedrock aquifer. WS10 groundwater dynamics were dominated by fracture flow. A highly fractured and transmissive zone within the upper one meter of bedrock conducted rapid lateral subsurface stormflow and lateral discharge. The interaction of subsurface stormflow with bedrock storage directly influenced the measured hillslope response, solute transport and computed mean residence time. This research reveals bedrock groundwater to be an extremely dynamic component of the hillslope hydrological system and our comparative analysis illustrates the potential range of hydrological and geological controls on runoff generation in headwater catchments.

  2. Demographic data on the Little Owl (Athene noctua in Upper-Kiskunság (Hungary

    Directory of Open Access Journals (Sweden)

    Hámori Dániel

    2017-12-01

    Full Text Available This study focused on the clutch size and age-specific apparent survival rate of the Little Owl (Athene noctua population in Upper-Kiskunság, Hungary. Between May 2005 and April 2017, 640 individuals were captured and ringed in a total of 746 capture-recapture occasions. Artificial nest boxes were installed in the study area, breeding birds and pulli were captured for ringing/recaptured in these boxes (from March to May, or at the close neighbourhood of those (max. 168 m. Jolly-Seber’s open population method was applied to model the survival rate. The candidate model set included models incorporating age, year-effect, and the combination of those. AICc value was used to compare models in a selection approach. The final model was constructed via model averaging based on the models with significant explanatory power. The average number and SD of pullus/breeding pair was 3.78 ± 0.76. The average apparent annual survival rate (which does not differentiate between mortality and permanent emigration for the period between pullus stage and the time of the first breeding was estimated as 9.47% ± 2.99% SE, whereas the annual survival rate of adults was 82.74% ± 8.46% SE. The effect of sex on the survival rate of adults was not investigated due to female-biased sample, as the probability of capturing females is significantly higher in late spring months. Our experience reveals that during February and March it is possible to capture both sexes in the nest boxes, and it does not influence negatively the breeding success. Based on our results, the population of the Little Owl is stable in Upper-Kiskunság. A slight increase in estimated population size is observable even if we make no difference between mortality and permanent emigration. The high occupancy rate of the installed nest boxes reveals that nest site availability is an important limiting factor in the studied population.

  3. Grey Box Modelling of Hydrological Systems

    DEFF Research Database (Denmark)

    Thordarson, Fannar Ørn

    of two papers where the stochastic differential equation based model is used for sewer runoff from a drainage system. A simple model is used to describe a complex rainfall-runoff process in a catchment, but the stochastic part of the system is formulated to include the increasing uncertainty when...... rainwater flows through the system, as well as describe the lower limit of the uncertainty when the flow approaches zero. The first paper demonstrates in detail the grey box model and all related transformations required to obtain a feasible model for the sewer runoff. In the last paper this model is used......The main topic of the thesis is grey box modelling of hydrologic systems, as well as formulation and assessment of their embedded uncertainties. Grey box model is a combination of a white box model, a physically-based model that is traditionally formulated using deterministic ordinary differential...

  4. Black-Box Search by Unbiased Variation

    DEFF Research Database (Denmark)

    Lehre, Per Kristian; Witt, Carsten

    2012-01-01

    The complexity theory for black-box algorithms, introduced by Droste, Jansen, and Wegener (Theory Comput. Syst. 39:525–544, 2006), describes common limits on the efficiency of a broad class of randomised search heuristics. There is an obvious trade-off between the generality of the black-box model...... and the strength of the bounds that can be proven in such a model. In particular, the original black-box model provides for well-known benchmark problems relatively small lower bounds, which seem unrealistic in certain cases and are typically not met by popular search heuristics.In this paper, we introduce a more...... restricted black-box model for optimisation of pseudo-Boolean functions which we claim captures the working principles of many randomised search heuristics including simulated annealing, evolutionary algorithms, randomised local search, and others. The key concept worked out is an unbiased variation operator...

  5. Evaluation method for the deformation of channel box

    International Nuclear Information System (INIS)

    Sadaoka, Noriyuki; Kumahora, Hiroki; Miki, Kazuyoshi.

    1990-01-01

    In a BWR type nuclear reactor, a channel box undergoes creep deformation due to the effects of a pressure difference between inside and outside of the channel box and a reactor water temperature, which is accelerated by the irradiation of radiation rays and the extent of which depends on the loading position. Then, there are provided a step of determining the extent of the deformation of the channel box in a burning period in the past, a step of setting the loading position for the channel box in the reactor core, a step of forecasting the extent of the deformation of the channel box based on the data of reactor core characteristics, the date of the physical properties of the materials and the shape of the channel box, the data of the loading pattern of fuel assemblies and the extent of deformation, and a step of estimating whether the forecast deforming extent is within an allowable range or not. As a result, the deforming extent for each of the channel boxes can be forecast and, accordingly, the interference with the control rods can be estimated accurately. (N.H.)

  6. Development of a shared vision for groundwater management to protect and sustain baseflows of the Upper San Pedro River, Arizona, USA

    Science.gov (United States)

    Richter, Holly E.; Gungle, Bruce; Lacher, Laurel J.; Turner, Dale S.; Bushman, Brooke M.

    2014-01-01

    Groundwater pumping along portions of the binational San Pedro River has depleted aquifer storage that supports baseflow in the San Pedro River. A consortium of 23 agencies, business interests, and non-governmental organizations pooled their collective resources to develop the scientific understanding and technical tools required to optimize the management of this complex, interconnected groundwater-surface water system. A paradigm shift occurred as stakeholders first collaboratively developed, and then later applied, several key hydrologic simulation and monitoring tools. Water resources planning and management transitioned from a traditional water budget-based approach to a more strategic and spatially-explicit optimization process. After groundwater modeling results suggested that strategic near-stream recharge could reasonably sustain baseflows at or above 2003 levels until the year 2100, even in the presence of continued groundwater development, a group of collaborators worked for four years to acquire 2250 hectares of land in key locations along 34 kilometers of the river specifically for this purpose. These actions reflect an evolved common vision that considers the multiple water demands of both humans and the riparian ecosystem associated with the San Pedro River.

  7. Development of a Shared Vision for Groundwater Management to Protect and Sustain Baseflows of the Upper San Pedro River, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Holly E. Richter

    2014-08-01

    Full Text Available Groundwater pumping along portions of the binational San Pedro River has depleted aquifer storage that supports baseflow in the San Pedro River. A consortium of 23 agencies, business interests, and non-governmental organizations pooled their collective resources to develop the scientific understanding and technical tools required to optimize the management of this complex, interconnected groundwater-surface water system. A paradigm shift occurred as stakeholders first collaboratively developed, and then later applied, several key hydrologic simulation and monitoring tools. Water resources planning and management transitioned from a traditional water budget-based approach to a more strategic and spatially-explicit optimization process. After groundwater modeling results suggested that strategic near-stream recharge could reasonably sustain baseflows at or above 2003 levels until the year 2100, even in the presence of continued groundwater development, a group of collaborators worked for four years to acquire 2250 hectares of land in key locations along 34 kilometers of the river specifically for this purpose. These actions reflect an evolved common vision that considers the multiple water demands of both humans and the riparian ecosystem associated with the San Pedro River.

  8. Fuel element box inspection device

    International Nuclear Information System (INIS)

    Ortmayer, R.M.; Pick, W.

    1985-01-01

    The invention concerns a device for inspecting the outer geometry of a long fuel element box by measuring the surface contours over its longitudinal crossection and along its length by sensors. These are kept in a sledge which can be moved along the fuel element guide in a slot guide. The measurement signals reach an evaluation device outside the longitudinal box. (orig./HP) [de

  9. Neurochemical aftermath of amateur boxing.

    Science.gov (United States)

    Zetterberg, Henrik; Hietala, M Albert; Jonsson, Michael; Andreasen, Niels; Styrud, Ewa; Karlsson, Ingvar; Edman, Ake; Popa, Cornel; Rasulzada, Abdullah; Wahlund, Lars-Olof; Mehta, Pankaj D; Rosengren, Lars; Blennow, Kaj; Wallin, Anders

    2006-09-01

    Little solid information is available on the possible risks for neuronal injury in amateur boxing. To determine whether amateur boxing and severity of hits are associated with elevated levels of biochemical markers for neuronal injury in cerebrospinal fluid. Longitudinal study. Referral center specializing in evaluation of neurodegenerative disorders. Fourteen amateur boxers (11 men and 3 women) and 10 healthy male nonathletic control subjects. The boxers underwent lumbar puncture 7 to 10 days and 3 months after a bout. The control subjects underwent LP once. Neurofilament light protein, total tau, glial fibrillary acidic protein, phosphorylated tau, and beta-amyloid protein 1-40 (Abeta([1-40])) and 1-42 (Abeta([1-42])) concentrations in cerebrospinal fluid were measured. Increased levels after a bout compared with after 3 months of rest from boxing were found for 2 markers for neuronal and axonal injury, neurofilament light protein (mean +/- SD, 845 +/- 1140 ng/L vs 208 +/- 108 ng/L; P = .008) and total tau (mean +/- SD, 449 +/- 176 ng/L vs 306 +/- 78 ng/L; P = .006), and for the astroglial injury marker glial fibrillary acidic protein (mean +/- SD, 541 +/- 199 ng/L vs 405 +/- 138 ng/L; P = .003). The increase was significantly higher among boxers who had received many hits (>15) or high-impact hits to the head compared with boxers who reported few hits. In the boxers, concentrations of neurofilament light protein and glial fibrillary acidic protein, but not total tau, were significantly elevated after a bout compared with the nonathletic control subjects. With the exception of neurofilament light protein, there were no significant differences between boxers after 3 months of rest from boxing and the nonathletic control subjects. Amateur boxing is associated with acute neuronal and astroglial injury. If verified in longitudinal studies with extensive follow-up regarding the clinical outcome, analyses of cerebrospinal fluid may provide a scientific basis for

  10. Groundwater recharge mechanism in an integrated tableland of the Loess Plateau, northern China: insights from environmental tracers

    Science.gov (United States)

    Huang, Tianming; Pang, Zhonghe; Liu, Jilai; Ma, Jinzhu; Gates, John

    2017-11-01

    Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55-71 mm yr-1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160-400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July-September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.

  11. Groundwater Recharge and Flow Regime revealed by multi-tracers approach in a headwater, North China Plain

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2014-05-01

    Groundwater recharge is a crucial hydrological process for effective water management especially in arid/ semi-arid regions. However, the insufficient number of specific research regarding groundwater recharge process has been reported previously. Intensive field surveys were conducted during rainy season, mid dry season, and end of dry season, in order to clarify comprehensive groundwater recharge and flow regime of Wangkuai watershed in a headwater, which is a main recharge zone of North China Plain. The groundwater, spring, stream water and lake water were sampled, and inorganic solute constituents and stable isotopes of oxygen 18 and deuterium were determined on all water samples. Also the stream flow rate was observed. The solute ion concentrations and stable isotopic compositions show that the most water of this region can be characterized by Ca-HCO3 type and the main water source is precipitation which is affected by altitude effect of stable isotopes. In addition, the river and reservoir of the area seem to recharge the groundwater during rainy season, whereas interaction between surface water and groundwater does not become dominant gradually after the rainy season. The inversion analysis applied in Wangkuai watershed using simple mixing model represents an existing multi-flow systems which shows a distinctive tracer signal and flow rate. In summary, the groundwater recharged at different locations in the upper stream of Wangkuai reservoir flows downward to alluvial fan with a certain amount of mixing together, also the surface water recharges certainly the groundwater in alluvial plain in the rainy season.

  12. 30 CFR 18.49 - Connection boxes on machines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Connection boxes on machines. 18.49 Section 18..., AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.49 Connection boxes on machines. Connection boxes used to facilitate replacement...

  13. 49 CFR 178.513 - Standards for boxes of natural wood.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for boxes of natural wood. 178.513... natural wood. (a) The following are the identification codes for boxes of natural wood: (1) 4C1 for an ordinary box; and (2) 4C2 for a box with sift-proof walls. (b) Construction requirements for boxes of...

  14. Box Plots in the Australian Curriculum

    Science.gov (United States)

    Watson, Jane M.

    2012-01-01

    This article compares the definition of "box plot" as used in the "Australian Curriculum: Mathematics" with other definitions used in the education community; describes the difficulties students experience when dealing with box plots; and discusses the elaboration that is necessary to enable teachers to develop the knowledge…

  15. Construction and properties of Box-Behnken designs

    OpenAIRE

    Jo, Jinnam

    1992-01-01

    Box-Behnken designs are used to estimate parameters in a second-order response surface model (Box and Behnken, 1960). These designs are formed by combining ideas from incomplete block designs (BIBD or PBIBD) and factorial experiments, specifically 2k full or 2k-1 fractional factorials. In this dissertation, a more general mathematical formulation of the Box-Behnken method is provided, a general expression for the coefficient matrix in the least squares analysis for estimatin...

  16. Analysis on the Change in Shallow Groundwater Level based on Monitoring Electric Energy Consumption - A Case Study in the North China Plain

    Science.gov (United States)

    Wang, L.; Wolfgang, K.; Steiner, J. F.

    2016-12-01

    Groundwater has been over-pumped for irrigation in the North China Plain in the past decades causing a drastic decrease in the groundwater level. Shallow groundwater can be recharged by rainfall, and the aquifer could be rehabilitated for sustainable use. However, understanding and maintaining the balance of the aquifer - including climatic as well as anthropogenic influences - are fundamental to enable such a sustainable groundwater management. This is still severely obstructed by a lack of measurements of recharge and exploitation. A project to measure groundwater pumping rate at the distributed scale based on monitoring electric energy consumption is going on in Guantao County (456 km2) located in the southern part of the North China Plain. Considerably less costly than direct measurements of the pumping rate, this approach enables us to (a) cover a larger area and (b) use historic electricity data to reconstruct water use in the past. Pumping tests have been carried out to establish a relation between energy consumption and groundwater exploitation. Based on the results of the pumping tests, the time series of the pumping rate can be estimated from the historical energy consumption and serves as the input for a box model to reconstruct the water balance of the shallow aquifer for recent years. This helps us to determine the relative contribution of recharge due to rainfall as well as drawdown due to groundwater pumping for irrigation. Additionally, 100 electric meters have been installed at the electric transformers supplying power for irrigation. With insights gained from the pumping tests, real-time monitoring of the groundwater exploitation is achieved by converting the measured energy consumption to the water use, and pumping control can also be achieved by limiting the energy use. A monitoring and controlling system can then be set up to implement the strategy of sustainable groundwater use.

  17. ArduiPod Box: a low-cost and open-source Skinner box using an iPod Touch and an Arduino microcontroller.

    Science.gov (United States)

    Pineño, Oskar

    2014-03-01

    This article introduces the ArduiPod Box, an open-source device built using two main components (i.e., an iPod Touch and an Arduino microcontroller), developed as a low-cost alternative to the standard operant conditioning chamber, or "Skinner box." Because of its affordability, the ArduiPod Box provides an opportunity for educational institutions with small budgets seeking to set up animal laboratories for research and instructional purposes. A pilot experiment is also presented, which shows that the ArduiPod Box, in spite of its extraordinary simplicity, can be effectively used to study animal learning and behavior.

  18. Plutonium glove boxes - metrology and operational states

    International Nuclear Information System (INIS)

    Thyer, A.M.

    2001-01-01

    The main objective was to undertake a literature review in support of NII's ongoing work in improving safety in the nuclear industry to help define suitable standards of cleanliness for plutonium glove boxes. This is to cover the following areas: existing or proposed national/international standards relating to plutonium glove box cleanliness management; practicable metrology options for assessing the plutonium content of glove boxes; any available dose information relating to the operation of modern and 'old design'; current contamination levels of specific significance (i.e. any accepted level in decommissioning/waste terms, typical criticality limits (if available), any box plutonium loadings that are documented with corresponding operator doses etc.); and, techniques for the decontamination of plutonium glove boxes and their relative effectiveness. This should then form the basis of any further development work undertaken by the UK nuclear industry. Main recommendations are as follows: 1) No information could be found in open literature on acceptable levels of contamination in boxes and action levels for cleanup. If these are not available in closed publications the 2) Where possible, the decontamination methods identified should be tested and dose information recorded against each method to allow informed decisions on which is the optimum technique for a particular form of contamination. 3) Consideration should be given to utilisation of metrology options which have the lowest potential for exposure of operators. Preferred options, may be detection from the outside of boxes using hand-held or permanently located radiation detectors, or semi-intrusive methods such as air-ionisation readings which would require one-off installation of detectors in ductwork

  19. Designing key-dependent chaotic S-box with larger key space

    International Nuclear Information System (INIS)

    Yin Ruming; Yuan Jian; Wang Jian; Shan Xiuming; Wang Xiqin

    2009-01-01

    The construction of cryptographically strong substitution boxes (S-boxes) is an important concern in designing secure cryptosystems. The key-dependent S-boxes designed using chaotic maps have received increasing attention in recent years. However, the key space of such S-boxes does not seem to be sufficiently large due to the limited parameter range of discretized chaotic maps. In this paper, we propose a new key-dependent S-box based on the iteration of continuous chaotic maps. We explore the continuous-valued state space of chaotic systems, and devise the discrete mapping between the input and the output of the S-box. A key-dependent S-box is constructed with the logistic map in this paper. We show that its key space could be much larger than the current key-dependent chaotic S-boxes.

  20. Design of strong wooden box coated with fiberglass reinforced resin for shipping and burial of contaminated glove boxes. Final report

    International Nuclear Information System (INIS)

    1982-01-01

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of al bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; and (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This attachment contains design of strong wooden box coated with fiberglass reinforced resin for shipping and burial of contaminated glove boxes

  1. Light Therapy Boxes for Seasonal Affective Disorder

    Science.gov (United States)

    Seasonal affective disorder treatment: Choosing a light therapy box Light therapy boxes can offer an effective treatment for seasonal affective disorder. Features such as light intensity, safety, cost and ...

  2. Summary and evaluation of hydraulic property data available for the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Vermeul, V.R.

    1994-09-01

    Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated using recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10 0 to 10 2 m 2 /d, with 65% of the calculated estimate values occurring between 10 1 to 10 2 m 2 d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt

  3. Assessment of ground-water contamination from a leaking underground storage tank at a defense supply center near Richmond, Virginia

    International Nuclear Information System (INIS)

    Powell, J.D.; Wright, W.G.

    1990-01-01

    During 1988-89, 24 wells were installed in the vicinity of the post-exchange gasoline station on the Defense General Supply Center, near Richmond, Virginia, to collect and analyze groundwater samples for the presence of gasoline contamination from a leaking underground storage tank. Concentrations of total petroleum hydrocarbons and benzene were as high as 8.2 mg/L and 9,000 microg/L, respectively, in water from wells in the immediate vicinity of the former leaking tank, and benzene concentrations were as high as 2,300 microg/L in a well 600 ft down gradient from the gasoline station. Groundwater flow rate are estimated to be about 60 to 80 ft/yr; on the basis of these flow rates, the contaminants may have been introduced into the groundwater as long as 7-10 yrs ago. Groundwater might infiltrate a subsurface storm sewer, where the sewer is below the water table, and discharge into a nearby stream. Preliminary risk assessment for the site identified no potential human receptors to the groundwater contamination because there were no groundwater users identified in the area. Remediation might be appropriate if exposure of future potential users is concern. Alternatives discussed for remediation of groundwater contamination in the upper aquifer at the PX Service Station include no-action, soil vapor extraction, and groundwater pumping and treatment alternatives

  4. Implementation of T-box/T/sup -1/-box based AES design on latest xilinx fpga

    International Nuclear Information System (INIS)

    Kundi, D.E.; Aziz, A.

    2015-01-01

    This work presents an efficient implementation of the AES (Advance Encryption Standard) based on Tbox/T-1-box design for both the encryption and decryption on FPGA (Field Programmable Gate Array). The proposed architecture not only make efficient use of full capacity of dedicated 32 Kb BRAM (Block RAM) of latest Xilinx FPGAs (Virtex-5, Virtex-6 and 7 Series) but also saves considerable amount of BRAM and logical resources by using multiple accesses from single BRAM in one cycle of system clock as compared to conventional LUT (Look-Up-Table) techniques. The proposed T-box/T-1-box based AES design for both the encryption and decryption fits into just 4 BRAMs on FPGA and results in good efficiency TPS (Throughput per Slice) with less power consumption. (author)

  5. Hydrogen atom within spherical boxes with penetrable walls

    International Nuclear Information System (INIS)

    Ley-Koo, E.; Rubinstein, S.

    1979-01-01

    We study a model for the hydrogen atom confined within spherical boxes with penetrable walls. The potential consists of the Coulomb potential inside the box and a constant potential outside the box; the Schroedinger equation admits analytical solutions in both regions. The energy eigenvalues and eigenfunctions for the lowest states of the system are determined numerically for boxes of different sizes and penetrabilities. In addition, we also evaluate the hyperfine splitting, nuclear magnetic shielding, polarizability and pressure of the system and investigate the effect of the confinement on these atomic properties

  6. A novel heuristic method for obtaining S-boxes

    International Nuclear Information System (INIS)

    Chen Guo

    2008-01-01

    An efficient algorithm named chaotic multi-swapping and simulated annealing (CMSSA) for obtaining cryptographically strong 8 x 8 S-boxes is presented. The method is based on chaotic maps and simulated annealing. In addition, cryptographic properties such as bijectivity, strict avalanche criterion, nonlinearity, output bits independence criterion and equiprobable input/output XOR distribution are analyzed in detail for the S-box produced. The results of numerical analysis show that the box has nearly fulfilled the criteria for a cryptographically strong S-box and can effectively resist several attacks

  7. Electrical requirements for unshielded glove boxes

    International Nuclear Information System (INIS)

    1978-02-01

    The specification relates to the general design and installation of electrical services required in unshielded glove boxes in which atmospheres of air, argon or nitrogen etc. may exist either temporarily or permanently. The specification does not apply to electrical services for glove boxes with flammable explosive atmospheres. (author)

  8. Boxing Injuries from an Instructional Program.

    Science.gov (United States)

    Welch, Michael J.; And Others

    1986-01-01

    This paper describes the safeguards as well as the injury pattern of the boxing program at the US Military Academy at West Point from 1983 to 1985. About 2,100 cadets received boxing instruction during this period with an injury rate of less than four percent. (Author/MT)

  9. DOE groundwater protection strategy

    International Nuclear Information System (INIS)

    Lichtman, S.

    1988-01-01

    EH is developing a DOE-wide Groundwater Quality Protection Strategy to express DOE's commitment to the protection of groundwater quality at or near its facilities. This strategy responds to a September 1986 recommendation of the General Accounting Office. It builds on EPA's August 1984 Ground-Water Protection Strategy, which establishes a classification system designed to protect groundwater according to its value and vulnerability. The purposes of DOE's strategy are to highlight groundwater protection as part of current DOE programs and future Departmental planning, to guide DOE managers in developing site-specific groundwater protection practices where DOE has discretion, and to guide DOE's approach to negotiations with EPA/states where regulatory processes apply to groundwater protection at Departmental facilities. The strategy calls for the prevention of groundwater contamination and the cleanup of groundwater commensurate with its usefulness. It would require long-term groundwater protection with reliance on physical rather than institutional control methods. The strategy provides guidance on providing long-term protection of groundwater resources; standards for new remedial actions;guidance on establishing points of compliance; requirements for establishing classification review area; and general guidance on obtaining variances, where applicable, from regulatory requirements. It also outlines management tools to implement this strategy

  10. Groundwater residence time downgradient of Trench No. 22 at the Chernobyl Pilot Site: Constraints on hydrogeological aquifer functioning

    International Nuclear Information System (INIS)

    Le Gal La Salle, C.; Aquilina, L.; Fourre, E.; Jean-Baptiste, P.; Michelot, J.-L.; Roux, C.; Bugai, D.; Labasque, T.; Simonucci, C.; Van Meir, N.; Noret, A.; Bassot, S.; Dapoigny, A.; Baumier, D.

    2012-01-01

    Following the explosion of reactor 4 at the Chernobyl power plant in northern Ukraine in 1986, contaminated soil and vegetation were buried in shallow trenches dug directly on-site in an Aeolian sand deposit. These trenches are sources of radionuclide (RN) pollution. The objective of the present study is to provide constraints for the Chernobyl flow and RN transport models by characterising groundwater residence time. A radiochronometer 3 H/ 3 He method (t 1/2 = 12.3 a) and anthropogenic tracers including CFC and SF 6 are investigated along with the water mass natural tracers Na, Cl, 18 O and 2 H. The groundwater is stratified, as evidenced by Na and Cl concentrations and stable isotopes ( 18 O, 2 H). In the upper aeolian layer, the Na–Cl relationship corresponds to evapotranspiration of precipitation, while in the underlying alluvial layer, an increase in Na and Cl with depth suggests both water–rock interactions and mixing processes. The 3 H/ 3 He and CFC apparent groundwater ages increase with depth, ranging from ‘recent’ (1–3 a) at a 2 m depth below the groundwater table to much higher apparent ages of 50–60 a at 27 m depth below the groundwater table. Discrepancies in 3 H/ 3 He and CFC apparent ages (20–25 a and 3–10 a, respectively) were observed during the 2008 campaign at an intermediate depth immediately below the aeolian/alluvial sand limit, which were attributed to the complex water transfer processes. Extremely high SF 6 concentrations, well above equilibrium with the atmosphere and up to 1112 pptv, are attributed to significant contamination of the soils following the nuclear reactor explosion in 1986. The SF 6 concentration vs. the apparent groundwater ages agrees with this interpretation, as the high SF 6 concentrations are all more recent than 1985. The persistence of the SF 6 concentration suggests that SF 6 was introduced in the soil atmosphere and slowly integrated in the groundwater moving along the hydraulic gradient. The

  11. Prohibiting Headgear for Safety in Amateur Boxing? Opinion of the Canadian Boxing Community: an Online Poll.

    Science.gov (United States)

    Dickinson, Philip; Rempel, Philip

    In 2013, the Amateur International Boxing Association (AIBA) introduced a rule banning headgear for male-senior open class boxers during competition. The AIBA has defended the rule change as motivated by safety and supported by internal unpublished studies. As a result, in 2018, the AIBA plans to universally prohibit headgear in competition: for all competitors (male and female), all ages and all levels. Within Canada, this ruling has generated controversy in the boxing community, yet there has been no overall measure of opinion. To address this, we instituted a voluntary, anonymous, online open-access poll to allow members of the boxing community to express their stance on headgear use in competition. In total, 636 responses were received. A total of 71.5 % of Canadian respondents believed headgear should be mandatory at all levels. Only 5.8 % agreed that headgear should be prohibited, as planned for 2018. Estimating results on a representative breakdown of boxing membership in Canada, a similar pattern emerged, whereby 68.2 % concurred with mandatory headgear while only 4.95 % supported its prohibition. Parents of boxers were almost unanimously against banning headgear, stating they would change sports as a result. Similarly, only 1.7 % of women believed headgear should be prohibited. The consensus of the Canadian boxing community largely opposes the rule changes that the AIBA has implemented. The results highlight risks posed to the long-term viability of the sport, if significant grassroots safety concerns are disregarded.

  12. 49 CFR 178.514 - Standards for plywood boxes.

    Science.gov (United States)

    2010-10-01

    ... identification code for a plywood box is 4D. (b) Construction requirements for plywood boxes are as follows: (1..., commercially dry and free from defects that would materially lessen the strength of the box. The strength of the material used and the method of construction must be appropriate to the capacity and intended use...

  13. 47 CFR 90.241 - Radio call box operations.

    Science.gov (United States)

    2010-10-01

    ... remains on for a period in excess of three minutes. The automatic cutoff system must be designed so the... Public Safety Pool for highway call box systems subject to the following requirements: (1) Call box... effective radiated power (ERP). (3) The height of a call box antenna may not exceed 6.1 meters (20 feet...

  14. The quality of our Nation's waters: water quality in the Upper Floridan aquifer and overlying surficial aquifers, southeastern United States, 1993-2010

    Science.gov (United States)

    Berndt, Marian P.; Katz, Brian G.; Kingsbury, James A.; Crandall, Christy A.

    2015-01-01

    About 10 million people rely on groundwater from the Upper Floridan and surficial aquifers for drinking water. The Upper Floridan aquifer also is of primary importance to the region as a source of water for irrigation and as a source of crystal clear water that discharges to springs and streams providing recreational and tourist destinations and unique aquatic habitats. The reliance of the region on the Upper Floridan aquifer for drinking water and for the tourism and agricultural economies highlights the importance of long-term management to sustain the availability and quality of these resources.

  15. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems

    Science.gov (United States)

    Dimova, Natasha T.; Swarzenski, Peter W.; Dulaiova, Henrieta; Glenn, Craig R.

    2012-01-01

    Multichannel electrical resistivity (ER) measurements were conducted at two contrasting coastal sites in Hawaii to obtain new information on the spatial scales and dynamics of the fresh water–seawater interface and rates of coastal groundwater exchange. At Kiholo Bay (located on the dry, Kona side of the Big Island) and at a site in Maunalua Bay (Oahu), there is an evidence for abundant submarine groundwater discharge (SGD). However, the hydrologic and geologic controls on coastal groundwater discharge are likely to be different at these two sites. While at Kiholo Bay SGD is predominantly through lava tubes, at the Maunalua Bay site exchange occurs mostly through nearshore submarine springs. In order to calculate SGD fluxes, it is important to understand the spatial and temporal scales of coastal groundwater exchange. From ER time series data, subsurface salinity distributions were calculated using site-specific formation factors. A salinity mass balance box model was then used to calculate rates of point source (i.e., spatially discreet) and total fresh water discharge. From these data, mean SGD rates were calculated for Kiholo Bay (∼9,200 m3/d) and for the Maunalua Bay site (∼5,900 m3/d). While such results are on the same order of magnitude to geochemical tracer-derived SGD rates, the ER SGD rates provide enhanced details of coastal groundwater exchange that can enable a more cohesive whole watershed perspective.

  16. Improving large-scale groundwater models by considering fossil gradients

    Science.gov (United States)

    Schulz, Stephan; Walther, Marc; Michelsen, Nils; Rausch, Randolf; Dirks, Heiko; Al-Saud, Mohammed; Merz, Ralf; Kolditz, Olaf; Schüth, Christoph

    2017-05-01

    Due to limited availability of surface water, many arid to semi-arid countries rely on their groundwater resources. Despite the quasi-absence of present day replenishment, some of these groundwater bodies contain large amounts of water, which was recharged during pluvial periods of the Late Pleistocene to Early Holocene. These mostly fossil, non-renewable resources require different management schemes compared to those which are usually applied in renewable systems. Fossil groundwater is a finite resource and its withdrawal implies mining of aquifer storage reserves. Although they receive almost no recharge, some of them show notable hydraulic gradients and a flow towards their discharge areas, even without pumping. As a result, these systems have more discharge than recharge and hence are not in steady state, which makes their modelling, in particular the calibration, very challenging. In this study, we introduce a new calibration approach, composed of four steps: (i) estimating the fossil discharge component, (ii) determining the origin of fossil discharge, (iii) fitting the hydraulic conductivity with a pseudo steady-state model, and (iv) fitting the storage capacity with a transient model by reconstructing head drawdown induced by pumping activities. Finally, we test the relevance of our approach and evaluated the effect of considering or ignoring fossil gradients on aquifer parameterization for the Upper Mega Aquifer (UMA) on the Arabian Peninsula.

  17. 3D modeling of groundwater heat transport in the shallow Westliches Leibnitzer Feld aquifer, Austria

    Science.gov (United States)

    Rock, Gerhard; Kupfersberger, Hans

    2018-02-01

    For the shallow Westliches Leibnitzer feld aquifer (45 km2) we applied the recently developed methodology by Kupfersberger et al. (2017a) to derive the thermal upper boundary for a 3D heat transport model from observed air temperatures. We distinguished between land uses of grass and agriculture, sealed surfaces, forest and water bodies. To represent the heat flux from heated buildings and the mixture between different land surfaces in urban areas we ran the 1D vertical heat conduction module SoilTemp which is coupled to the heat transport model (using FEFLOW) on a time step basis. Over a simulation period of 23 years the comparison between measured and observed groundwater temperatures yielded NSE values ranging from 0.41 to 0.92 including readings at different depths. The model results showed that the thermal input signals lead to distinctly different vertical groundwater temperature distributions. To overcome the influence of specific warm or cold years we introduced the computation of an annual averaged groundwater temperature profile. With respect to the use of groundwater cooling or heating facilities we evaluated the application of vertically averaged statistical groundwater temperature distributions compared to the use of temperature distributions at selected dates. We concluded that the heat transport model serves well as an aquifer scale management tool to optimize the use of the shallow subsurface for thermal purposes and to analyze the impacts of corresponding measures on groundwater temperatures.

  18. Preliminary three-dimensional geohydrologic framework of the San Antonio Creek Groundwater Basin, Santa Barbara County, California

    Science.gov (United States)

    Cromwell, G.; Sweetkind, D. S.; O'leary, D. R.

    2017-12-01

    The San Antonio Creek Groundwater Basin is a rural agricultural area that is heavily dependent on groundwater to meet local water demands. The U.S. Geological Survey (USGS) is working cooperatively with Santa Barbara County and Vandenberg Air Force Base to assess the quantity and quality of the groundwater resources within the basin. As part of this assessment, an integrated hydrologic model that will help stakeholders to effectively manage the water resources in the basin is being developed. The integrated hydrologic model includes a conceptual model of the subsurface geology consisting of stratigraphy and variations in lithology throughout the basin. The San Antonio Creek Groundwater Basin is a relatively narrow, east-west oriented valley that is structurally controlled by an eastward-plunging syncline. Basin-fill material beneath the valley floor consists of relatively coarse-grained, permeable, marine and non-marine sedimentary deposits, which are underlain by fine-grained, low-permeability, marine sedimentary rocks. To characterize the system, surficial and subsurface geohydrologic data were compiled from geologic maps, existing regional geologic models, and lithology and geophysical logs from boreholes, including two USGS multiple-well sites drilled as part of this study. Geohydrologic unit picks and lithologic variations are incorporated into a three-dimensional framework model of the basin. This basin (model) includes six geohydrologic units that follow the structure and stratigraphy of the area: 1) Bedrock - low-permeability marine sedimentary rocks; 2) Careaga Formation - fine to coarse grained near-shore sandstone; 3) Paso Robles Formation, lower portion - sandy-gravely deposits with clay and limestone; 4) Paso Robles Formation, middle portion - clayey-silty deposits; 5) Paso Robles Formation, upper portion - sandy-gravely deposits; and 6) recent Quaternary deposits. Hydrologic data show that the upper and lower portions of the Paso Robles Formation are

  19. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.).

    Science.gov (United States)

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-02-10

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.

  20. Interspecific and intraspecific spatial separation by birds breeding in nest boxes

    Directory of Open Access Journals (Sweden)

    Denis C. Deeming

    2017-12-01

    Full Text Available Nest boxes can be seen as a conservation tool for improving low-grade nesting habitat but it is unclear how sympatric species using boxes establish a spatial distribution relative to conspecifics and heterospecifics. This study determined the distances between nest boxes occupied by Blue Tits (Cyanistes caeruleus and Great Tits (Parus major in two British woodlands to ascertain whether spatial distribution was affected by species and, if it was, whether there were reproductive consequences of this breeding distribution. Occupancy of nest boxes at two woodland sites were recorded on an annual basis between 2010 and 2014, inclusive. Distances between nest boxes, and reproductive activity, were recorded. Even if nest boxes showed a clumped distribution in the woodlands, the occupancy of the boxes was random. Not all boxes were used and the minimum distance between occupied boxes was at least twice the distance between boxes in general. Blue Tits tended to have greater distances between boxes containing conspecifics but distances between boxes containing heterospecifics were generally of comparable lengths. Reproductive output was only affected in relation to clutch size for Blue Tits nesting at one site. Nest boxes that aim to improve habitats that lack suitable nesting sites should be placed to reflect actual dispersal distances of the focal bird species.

  1. Two particle states in an asymmetric box

    OpenAIRE

    Li, Xin; Liu, Chuan

    2004-01-01

    The exact two-particle energy eigenstates in an asymmetric rectangular box with periodic boundary conditions in all three directions are studied. Their relation with the elastic scattering phases of the two particles in the continuum are obtained. These results can be viewed as a generalization of the corresponding formulae in a cubic box obtained by L\\"uscher before. In particular, the s-wave scattering length is related to the energy shift in the finite box. Possible applications of these f...

  2. Two particle states in an asymmetric box

    International Nuclear Information System (INIS)

    Li Xin; Liu Chuan

    2004-01-01

    The exact two-particle energy eigenstates in an asymmetric rectangular box with periodic boundary conditions in all three directions are studied. Their relation with the elastic scattering phases of the two particles in the continuum are obtained. These results can be viewed as a generalization of the corresponding formulae in a cubic box obtained by Luescher before. In particular, the s-wave scattering length is related to the energy shift in the finite box. Possible applications of these formulae are also discussed

  3. New approaches to glove box design at Hanford

    International Nuclear Information System (INIS)

    Lini, D.C.; Fisher, F.D.; Walters, F.F.

    1986-01-01

    Glove boxes provide the primary environmental containment system for plutonium processing operations at US Dept. of Energy (DOE)-owned facilities such as Rockwell Hanford. As noted in previous presentations, glove box designs and operations have evolved through stages that are a result of advances in processing techniques, new regulatory requirements, and cost escalation. These factors will continue to influence the current glove box designs and operations. The purpose of this presentation is to discuss required upgrades and changes that are being incorporated into glove boxes being installed at Rockwell Hanford and other DOE installations or are being evaluated for future upgrades

  4. Aquifer characterization and groundwater modeling in support of remedial actions at the Weldon Spring Site

    International Nuclear Information System (INIS)

    Durham, L.A.; Carman, J.D.

    1993-01-01

    Aquifer characterization studies were performed to develop a hydrogeologic understanding of an unconfined shallow aquifer at the Weldon Spring site west of St. Louis, Missouri. The 88-ha site became contaminated because of uranium and thorium processing and disposal activities that took place from the 1940s through the 1960s. Slug and pumping tests provided valuable information on the lateral distribution of hydraulic conductivities, and packer tests and lithologic information were used to determine zones of contrasting hydrologic properties within the aquifer. A three-dimensional, finite- element groundwater flow model was developed and used to simulate the shallow groundwater flow system at the site. The results of this study show that groundwater flow through the system is predominantly controlled by a zone of fracturing and weathering in the upper portion of the limestone aquifer. The groundwater flow model, developed and calibrated from field investigations, improved the understanding of the hydrogeology and supported decisions regarding remedial actions at the site. The results of this study illustrate the value, in support of remedial actions, of combining field investigations with numerical modeling to develop an improved understanding of the hydrogeology at the site

  5. Design of housing file box of fire academy based on RFID

    Science.gov (United States)

    Li, Huaiyi

    2018-04-01

    This paper presents a design scheme of intelligent file box based on RFID. The advantages of RFID file box and traditional file box are compared and analyzed, and the feasibility of RFID file box design is analyzed based on the actual situation of our university. After introducing the shape and structure design of the intelligent file box, the paper discusses the working process of the file box, and explains in detail the internal communication principle of the RFID file box and the realization of the control system. The application of the RFID based file box will greatly improve the efficiency of our school's archives management.

  6. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    International Nuclear Information System (INIS)

    Thorne, P.

    1999-01-01

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995)

  7. Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Koung Woo; Ji, Sung Hoon; Kim, Chun Soo; Kim, Kyoung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ji Yeon [Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2008-12-15

    Based on the site characterization works in a low and intermediate level waste (LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network (DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  8. Changes in the Chemistry of Groundwater Reacted with CO2: Comparison of Laboratory Results with the ZERT Field Pilot

    Science.gov (United States)

    Kharaka, Yousif K.; Thordsen, James J.; Abedini, Atosa A.; Beers, Sarah; Thomas, Burt

    2017-01-01

    As part of the ZERT program, sediments from two wells at the ZERT site, located in Bozeman, Montana, USA were reacted with a solution having the composition of local groundwater. A total of 50 water samples were collected from 7 containers placed for 15 days in a glove box with one atmosphere of CO2 to investigate detailed changes in the concentrations of major, minor and trace inorganic compounds, and to compare these with changes observed in groundwater at the ZERT site following CO2 injection. Laboratory results included rapid changes in pH (8.6 to 5.7), alkalinity (243 to 1295 mg/L as HCO3), electrical conductance (539 to 1822 μS/cm), Ca (28 to 297 mg/L), Mg (18 to 63 mg/L), Fe (5 to 43 μg/L) and Mn (2 to 837 μg/L) following CO2 injection. These chemical changes, which are in general agreement with those obtained from sampling the ZERT monitoring wells, could provide early detection of CO2 leakage into shallow groundwater. Dissolution of calcite, some dolomite and minor Mn-oxides, and desorption/ion exchange are likely the main geochemical processes responsible for the observed changes.

  9. Dendrimer-encapsulated nanoparticle-core micelles as a modular strategy for particle-in-a-box-in-a-box nanostructures

    NARCIS (Netherlands)

    Hove, ten J.B.; Wang, J.; Leeuwen, van F.W.B.; Velders, A.H.

    2017-01-01

    The hierarchically controlled synthesis and characterization of self-assembling macromolecules and particles are key to explore and exploit new nanomaterials. Here we present a versatile strategy for constructing particle-in-a-box-in-a-box systems by assembling dendrimer-encapsulated gold

  10. Software sensors based on the grey-box modelling approach

    DEFF Research Database (Denmark)

    Carstensen, J.; Harremoës, P.; Strube, Rune

    1996-01-01

    In recent years the grey-box modelling approach has been applied to wastewater transportation and treatment Grey-box models are characterized by the combination of deterministic and stochastic terms to form a model where all the parameters are statistically identifiable from the on......-box model for the specific dynamics is identified. Similarly, an on-line software sensor for detecting the occurrence of backwater phenomena can be developed by comparing the dynamics of a flow measurement with a nearby level measurement. For treatment plants it is found that grey-box models applied to on......-line measurements. With respect to the development of software sensors, the grey-box models possess two important features. Firstly, the on-line measurements can be filtered according to the grey-box model in order to remove noise deriving from the measuring equipment and controlling devices. Secondly, the grey...

  11. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of water volume) is needed to maintain the current salinity conditions. The minimum time required to develop the current hydrochemical composition of the water in the Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our approach using a combined water

  12. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2007. Potentiometric contours are based on water-level measurements collected at 566 wells during the period May 4-June 11 near the end of the dry season, however most of the water level data for this map were collected by the U.S. Geological Survey during the period May 21-25, 2007. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  13. Black holes in a box

    International Nuclear Information System (INIS)

    Witek, Helvi; Cardoso, Vitor; Nerozzi, Andrea; Gualtieri, Leonardo; Herdeiro, Carlos; Zilhao, Miguel; Sperhake, Ulrich

    2010-01-01

    The evolution of BHs in 'confining boxes' is interesting for a number of reasons, particularly because it mimics some aspects of anti-de Sitter spacetimes. These admit no Cauchy surface and are a simple example of a non-globally hyperbolic spacetime. We are here interested in the potential role that boundary conditions play in the evolution of a BH system. For that, we imprison a binary BH in a box, at which boundary we set mirror-like boundary conditions.

  14. Identifying competencies of boxing coaches

    Directory of Open Access Journals (Sweden)

    Ioannis Tasiopoulos

    2014-10-01

    Full Text Available The purpose of this study was to find out the management skills required by boxing coaches to administrate their clubs. For the purposes of this study a scale was constructed which was answered by 98 boxing coaches. Explanatory factor analysis revealed seven factors: Communication-public relations (5 items, event management (4 items, management techniques (4 items, new technologies (4 items, prevention-safety (2 items, sport (5 items and sports facilities (2 items. The Cronbach of the scale was 0.85. The five competencies that rated by the coaches were: Supervisors of the area of training, maintaining excellent communication with athletes, using new technologies (e-mail, internet, handling disciplinary matters, accidents, complaints and reports on some sporting games and promoted harmony among athletes. We concluded that boxing coaches understand that the competencies required for meeting their obligations, were related to sports, prevention, safety and communications-public relations.

  15. Groundwater conditions in Georgia, 2015–16

    Science.gov (United States)

    Gordon, Debbie W.; Painter, Jaime A.

    2018-02-21

    The U.S. Geological Survey collects groundwater data and conducts studies to monitor hydrologic conditions, define groundwater resources, and address problems related to water supply, water use, and water quality. In Georgia, water levels were monitored continuously at 157 wells during calendar years 2015 and 2016. Because of missing data or short periods of record (less than 5 years) for several of these wells, data for 147 wells are presented in this report. These wells include 15 in the surficial aquifer system, 18 in the Brunswick aquifer system and equivalent sediments, 59 in the Upper Floridan aquifer, 13 in the Lower Floridan aquifer and underlying units, 9 in the Claiborne aquifer, 1 in the Gordon aquifer, 8 in the Clayton aquifer, 16 in the Cretaceous aquifer system, 2 in Paleozoic-rock aquifers, and 6 in crystalline-rock aquifers. Data from the well network indicate that water levels generally rose during the 10-year period from 2007 through 2016, with water levels rising in 105 wells and declining in 31 wells; insufficient data prevented determination of a 10-year trend in 11 wells. Water levels declined over the long-term period of record at 80 wells, increased at 62 wells, and remained relatively constant at 5 wells.In addition to continuous water-level data, periodic water-level data were collected and used to construct potentiometric-surface maps for the Upper Floridan aquifer in the Brunswick–Glynn County area during October 2015 and October 2016 and in the Albany–Dougherty County area during December 2015 and November and December 2016. Periodic water-level measurements were also collected and used to construct potentiometric-surface maps for the Cretaceous aquifer system in the Augusta–Richmond County area during July 2015 and June 2016. In general, water levels in the Upper Floridan aquifer were higher during 2015 than during 2016 in the Brunswick–Glynn County and Albany–Dougherty County areas due to higher precipitation during 2015

  16. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia

    International Nuclear Information System (INIS)

    Kebede, Seifu; Travi, Yves; Alemayehu, Tamiru; Ayenew, Tenalem

    2005-01-01

    Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO 2 influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na-HCO 3 type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca-Mg-HCO 3 type waters. Despite the high altitude (mean altitude ∼2500 masl) and the relatively low mean annual air temperature (18 deg. C) of the region compared to Sahelian Africa, there is no commensurate depletion in δ 18 O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted δ 18 O groundwaters. Altitudinal depletion of δ 18 O is 0.1%o/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude

  17. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Seifu [Laboratory of Hydrogeology, University of Avignon, 33 Rue Louis Pasteur, 84000 Avignon (France) and Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)]. E-mail: seifu.kebede@univ-avignon.fr; Travi, Yves [Laboratory of Hydrogeology, University of Avignon, 33 Rue Louis Pasteur, 84000 Avignon (France); Alemayehu, Tamiru [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Ayenew, Tenalem [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2005-09-15

    Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO{sub 2} influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na-HCO {sub 3} type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca-Mg-HCO {sub 3} type waters. Despite the high altitude (mean altitude {approx}2500 masl) and the relatively low mean annual air temperature (18 deg. C) of the region compared to Sahelian Africa, there is no commensurate depletion in {delta} {sup 18}O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted {delta} {sup 18}O groundwaters. Altitudinal depletion of {delta} {sup 18}O is 0.1%o/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude.

  18. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    International Nuclear Information System (INIS)

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet

  19. Assessment of Groundwater Quality of Ilorin Metropolis using Water Quality Index Approach

    Directory of Open Access Journals (Sweden)

    J. A. Olatunji

    2015-06-01

    Full Text Available Groundwater as a source of potable water is becoming more important in Nigeria. Therefore, the need to ascertain the continuing potability of the sources cannot be over emphasised. This study is aimed at assessing the quality of selected groundwater samples from Ilorin metropolis, Nigeria, using the water quality index (WQI method. Twenty two water samples were collected, 10 samples from boreholes and 12 samples from hand dug wells. All these were analysed for their physico – chemical properties. The parameters used for calculating the water quality index include the following: pH, total hardness, total dissolved solid, calcium, fluoride, iron, potassium, sulphate, nitrate and carbonate. The water quality index for the twenty two samples ranged from 0.66 to 756.02 with an average of 80.77. Two of the samples exceeded 100, which is the upper limit for safe drinking water. The high values of WQI from the sampling locations are observed to be due to higher values of iron and fluoride. This study reveals that the investigated groundwaters are mostly potable and can be consumed without treatment. Nonetheless, the sources identified to be unsafe should be treated before consumption.

  20. Air-tighten test for used glove boxes

    International Nuclear Information System (INIS)

    Itoh, Masanori; Kashiro, Kashio; Matsumoto, Masaki; Ogiya, Takashi; Nakata, Keiji; Gohda, Masahiko

    2000-05-01

    All of the glove boxes in Plutonium Fuel Fabrication facilities are operated after confirming their condition by conducting negative pressure maintenance test and air-tighten test. Although we check the negative pressure maintenance condition before operating glove boxes in a daily basis, we have not been conducted the air-tighten test. Hence, we have conduct air-tighten test using the glove box that will be dismantled in the near future. In order to compare the present data to the criteria of licensing and to the measurement data for new glove box, the test was conducted by leak tightness vessel which is used the competent authority's test for newly constructed equipments. We also have confirmed the leakage condition in case failure of keeping negative pressure. The main results are as follows: 1. No leakage was detected after leaving the glove box 21 days in case failure of keeping negative pressure condition. 2. The measurement result of the air-tighten test was 0.025 vol%/h, and it was confirmed that this result is within the range of licensing criteria (-0.04 - 0.06 vol%/h). 3. The measurement result was also within the error of leak tightness vessel, and it was confirmed that the air-tighten condition was in force within this past 10 years after installing this glove box (the corresponding value for used the competent authority test for newly constructed equipments was 0.019 vol%/h). (author)

  1. Groundwater sapping channels: Summary of effects of experiments with varied stratigraphy

    Science.gov (United States)

    Kochel, R. Craig; Simmons, David W.

    1987-01-01

    Experiments in the recirculating flume sapping box have modeled valley formation by groundwater sapping processes in a number of settings. The effects of the following parameters on sapping channel morphology were examined: surface slope; stratigraphic variations in permeability cohesion and dip; and structure of joints and dikes. These kinds of modeling experiments are particularly good for: testing concepts; developing a suite of distinctive morphologies and morphometries indicative of sapping; helping to relate process to morphology; and providing data necessary to assess the relative importance of runoff, sapping, and mass wasting processes on channel development. The observations from the flume systems can be used to help interpret features observed in terrestrial and Martian settings where sapping processes are thought to have played an important role in the development of valley networks.

  2. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    CERN Document Server

    Croft, S; Chard-Mj, P; Estop, J R; Martancik, D; Sheila-Melton; Young, B

    2003-01-01

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nucli...

  3. Eye trauma in boxing.

    Science.gov (United States)

    Corrales, Gustavo; Curreri, Anthony

    2009-10-01

    In boxing, along with a few other sports, trauma is inherent to the nature of the sport; therefore it is considered a high-risk sport for ocular injuries. The long-term morbidity of ocular injuries suffered by boxers is difficult to estimate due to the lack of structured long-term follow-up of these athletes. Complications of blunt ocular trauma may develop years after the athlete has retired from the ring and is no longer considered to be at risk for boxing-related injuries. This article describes the wide range of eye injuries a boxer can sustain, and their immediate and long-term clinical management.

  4. Hydrostratigraphic interpretation of test-hole and geophysical data, Upper Loup River Basin, Nebraska, 2008-10

    Science.gov (United States)

    Hobza, Christopher M.; Asch, Theodore H.; Bedrosian, Paul A.

    2011-01-01

    Nebraska's Upper Loup Natural Resources District is currently (2011) participating in the Elkhorn-Loup Model to understand the effect of various groundwater-management scenarios on surface-water resources. During Phase 1 of the Elkhorn-Loup Model, a lack of subsurface geological information in the Upper Loup Natural Resources District, hereafter referred to as the upper Loup study area, was identified as a gap in current knowledge that needed to be addressed. To improve the understanding of the hydrogeology of the upper Loup study area, the U.S. Geological Survey, in cooperation with the Upper Loup Natural Resources District and the University of Nebraska Conservation and Survey Division, collected and described the lithology of drill cuttings from nine test holes, and concurrently collected borehole geophysical data to identify the base of the High Plains aquifer. Surface geophysical data also were collected using time-domain electromagnetic (TDEM) and audio-magnetotelluric (AMT) methods at test-hole locations and between test holes, as a quick, non-invasive means of identifying the base of the High Plains aquifer.

  5. Occurrence of pesticides in groundwater and sediments and mineralogy of sediments and grain coatings underlying the Rutgers Agricultural Research and Extension Center, Upper Deerfield, New Jersey, 2007

    Science.gov (United States)

    Reilly, Timothy J.; Smalling, Kelly L.; Meyer, Michael T.; Sandstrom, Mark W.; Hladik, Michelle; Boehlke, Adam R.; Fishman, Neil S.; Battaglin, William A.; Kuivila, Kathryn

    2014-01-01

    Water and sediment samples were collected from June through October 2007 from seven plots at the Rutgers Agricultural Research and Extension Center in Upper Deerfield, New Jersey, and analyzed for a suite of pesticides (including fungicides) and other physical and chemical parameters (including sediment mineralogy) by the U.S. Geological Survey. Plots were selected for inclusion in this study on the basis of the crops grown and the pesticides used. Forty-one pesticides were detected in 14 water samples; these include 5 fungicides, 13 herbicides, 1 insecticide, and 22 pesticide degradates. The following pesticides and pesticide degradates were detected in 50 percent or more of the groundwater samples: 1-amide-4-hydroxy-chorothalonil, alachlor sulfonic acid, metolachlor oxanilic acid, metolachlor sulfonic acid, metalaxyl, and simazine. Dissolved-pesticide concentrations ranged from below their instrumental limit of detection to 36 micrograms per liter (for metolachlor sulfonic acid, a degradate of the herbicide metolachlor). The total number of pesticides found in groundwater samples ranged from 0 to 29. Fourteen pesticides were detected in sediment samples from continuous cores collected within each of the seven sampled plots; these include 4 fungicides, 2 herbicides, and 7 pesticide degradates. Pesticide concentrations in sediment samples ranged from below their instrumental limit of detection to 34.2 nanograms per gram (for azoxystrobin). The total number of pesticides found in sediment samples ranged from 0 to 8. Quantitative whole-rock and grain-coating mineralogy of sediment samples were determined by x-ray diffraction. Whole-rock analysis indicated that sediments were predominantly composed of quartz. The materials coating the quartz grains were removed to allow quantification of the trace mineral phases present.

  6. Features of groundwater pollution and its relation to overexploitation of groundwater in Shijiazhuang city

    International Nuclear Information System (INIS)

    Guo Yonghai; Wang Zhiming; Liu Shufen; Li Ping

    2005-01-01

    The groundwater pollution in Shijiazhuang city is characterized by an excess of some components and parameters over permitted values. The main pollutants are originated from the city sewage which is quite typical for groundwater pollution in many cities of China. On the basis of agonizingly features of groundwater pollution, the relationship between the groundwater pollution and the groundwater overexploitation is discussed in this paper, and the mechanism of intensifying the pollution by overexploitation has been revealed. Finally, it is proposed that the overexploitation of groundwater is an important inducing factor leading to the groundwater pollution in cities. (authors)

  7. Geostatistical analysis of tritium, groundwater age and other noble gas derived parameters in California.

    Science.gov (United States)

    Visser, A; Moran, J E; Hillegonds, Darren; Singleton, M J; Kulongoski, Justin T; Belitz, Kenneth; Esser, B K

    2016-03-15

    Key characteristics of California groundwater systems related to aquifer vulnerability, sustainability, recharge locations and mechanisms, and anthropogenic impact on recharge are revealed in a spatial geostatistical analysis of a unique data set of tritium, noble gases and other isotopic analyses unprecedented in size at nearly 4000 samples. The correlation length of key groundwater residence time parameters varies between tens of kilometers ((3)H; age) to the order of a hundred kilometers ((4)Heter; (14)C; (3)Hetrit). The correlation length of parameters related to climate, topography and atmospheric processes is on the order of several hundred kilometers (recharge temperature; δ(18)O). Young groundwater ages that highlight regional recharge areas are located in the eastern San Joaquin Valley, in the southern Santa Clara Valley Basin, in the upper LA basin and along unlined canals carrying Colorado River water, showing that much of the recent recharge in central and southern California is dominated by river recharge and managed aquifer recharge. Modern groundwater is found in wells with the top open intervals below 60 m depth in the southeastern San Joaquin Valley, Santa Clara Valley and Los Angeles basin, as the result of intensive pumping and/or managed aquifer recharge operations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Characterization of Co(III) EDTA-Reducing Bacteria in Metal- and Radionuclide-Contaminated Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weimin [Arizona State University; Gentry, Terry J [ORNL; Mehlhorn, Tonia L [ORNL; Carroll, Sue L [ORNL; Jardine, Philip M [ORNL; Zhou, Jizhong [University of Oklahoma, Norman

    2010-01-01

    The Waste Area Grouping 5 (WAG5) site at Oak Ridge National Laboratory has a potential to be a field site for evaluating the effectiveness of various bioremediation approaches and strategies. The site has been well studied in terms of its geological and geochemical properties over the past decade. However, despite the importance of microorganisms in bioremediation processes, the microbiological populations at the WAG5 site and their potential in bioremediation have not been similarly evaluated. In this study, we initiated research to characterize the microbial populations in WAG5 groundwater. Approximately 100 isolates from WAG5 groundwater were isolated and selected based on colony morphology. Fifty-five unique isolates were identified by BOX-PCR and subjected to further characterization. 16S rRNA sequences indicated that these isolates belong to seventeen bacterial genera including Alcaligenes (1 isolate), Aquamonas (1), Aquaspirillum (1), Bacillus (10), Brevundimonas (5), Caulobacter (7), Dechloromonas (2), Janibacter (1), Janthinobacterium (2), Lactobacillus (1), Paenibacillus (4), Pseudomonas (9), Rhodoferax (1), Sphingomonas (1), Stenotrophomonas (6), Variovorax (2), and Zoogloea (1). Metal respiration assays identified several isolates, which phylogenically belong or are close to Caulobacter, Stenotrophomonas, Bacillus, Paenibacillus and Pseudomonas, capable of reducing Co(III)EDTA- to Co(II)EDTA{sup 2-} using the defined M1 medium under anaerobic conditions. In addition, using WAG5 groundwater directly as the inoculants, we found that organisms associated with WAG5 groundwater can reduce both Fe(III) and Co(III) under anaerobic conditions. Further assays were then performed to determine the optimal conditions for Co(III) reduction. These assays indicated that addition of various electron donors including ethanol, lactate, methanol, pyruvate, and acetate resulted in metal reduction. These experiments will provide useful background information for future

  9. Fuel assembly, channel box of fuel assembly, fuel spacer of fuel assembly and method of manufacturing channel box

    International Nuclear Information System (INIS)

    Chaki, Masao; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Nishida, Koji; Kawasaki, Terufumi.

    1997-01-01

    In a fuel assembly of a BWR type reactor, fuel rods disposed at corners of side walls of a channel box or in the periphery of the side walls are partially removed, and recessed portions are formed on the side walls of the channel box from which the fuel rods are removed. Spaces closed at the sides are formed in the inner side of the corner portions. Openings are formed for communicating the closed space with the outside of the channel box. Then, the channel area of the outer side of the channel box is increased, through which much water flows to increase the amount of water in the reactor core thereby promoting the moderation of neutrons and providing thermal neutrons suitable to nuclear fission. The degree of freedom for distribution of the spaces in the reactor core is increased to improve neutron economy thereby enabling to utilize reactor fuels effectively. (N.H.)

  10. Relations between precipitation, groundwater withdrawals, and changes in hydrologic conditions at selected monitoring sites in Volusia County, Florida, 1995--2010

    Science.gov (United States)

    Murray, Louis C.

    2012-01-01

    A study to examine the influences of climatic and anthropogenic stressors on groundwater levels, lake stages, and surface-water discharge at selected sites in northern Volusia County, Florida, was conducted in 2009 by the U.S. Geological Survey. Water-level data collected at 20 monitoring sites (17 groundwater and 3 lake sites) in the vicinity of a wetland area were analyzed with multiple linear regression to examine the relative influences of precipitation and groundwater withdrawals on changes in groundwater levels and lake stage. Analyses were conducted across varying periods of record between 1995 and 2010 and included the effects of groundwater withdrawals aggregated from municipal water-supply wells located within 12 miles of the project sites. Surface-water discharge data at the U.S. Geological Survey Tiger Bay canal site were analyzed for changes in flow between 1978 and 2001. As expected, water-level changes in monitoring wells located closer to areas of concentrated groundwater withdrawals were more highly correlated with withdrawals than were water-level changes measured in wells further removed from municipal well fields. Similarly, water-level changes in wells tapping the Upper Floridan aquifer, the source of municipal supply, were more highly correlated with groundwater withdrawals than were water-level changes in wells tapping the shallower surficial aquifer system. Water-level changes predicted by the regression models over precipitation-averaged periods of record were underestimated for observations having large positive monthly changes (generally greater than 1.0 foot). Such observations are associated with high precipitation and were identified as points in the regression analyses that produced large standardized residuals and/or observations of high influence. Thus, regression models produced by multiple linear regression analyses may have better predictive capability in wetland environments when applied to periods of average or below average

  11. 49 CFR 230.103 - Tender roller bearing journal boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tender roller bearing journal boxes. 230.103... Locomotives and Tenders Running Gear § 230.103 Tender roller bearing journal boxes. Tender roller bearing journal boxes shall be maintained in a safe and suitable condition. ...

  12. Decontamination and dismantling of large plutonium-contamined glove boxes

    International Nuclear Information System (INIS)

    Draulans, J.

    1991-01-01

    This report describes the work performed in the frame of two C.E.C. - Contracts FI1D-002400-B Decommissioning of very large glove boxes and FI1D-0058 Decommissioning of a complex glove box structure to be dismounted partially on place. Detailed information is given about each glove box. The selection of the solution Transportation of the glove boxes to a specialized dismantling plant is justified. The necessary contacts inside the BELGONUCLEAIRE MOX plant and between the latter and other organizations are explained. The problems of manipulating large gloves are listed and the retained solution of building a so called Stiffening frame around each glove box is described. Furthermore information is given concerning required operators time for cleaning, manipulating, packing and dismantling together with received doses and quantities of waste produced. Concerning the glove box unit partially to be dismounted on place, detailed information is given about the way the glove boxes have been treated prior to this partial dismantling on place and about the way this partial dismantling has been performed. From these results one can conclude that such a delicate task can be performed without major difficulties. Finally information is given of the decontamination test of a highly Pu contaminated glove box with freon with rather poor results and of the preliminary CO 2 blasting tests on non active samples

  13. Outside the box

    International Nuclear Information System (INIS)

    Pichon, Max

    2011-01-01

    Full text: Queensland-based Hydrasyst wants to take its motto of 'Do more with less' into the greywater sector with a new water recycling and energy recovery technology launched in November, called The Grey Box. The company is initially targeting large industrial laundries as they are major generators of greywater and heavy energy users, but it has ambitions well beyond that. The average commercial laundry consumes 1-5ML of water a week, using about 16 litres for every 1kg of clothing washed. Hydrasyst director Stephen Balemi said The Grey Box can slash the volume by 80 per cent. While he was reluctant to disclose too much technical detail, he claimed it is the only technology serving the $1 billion a year laundry sector that combines microfiltration / ultrafiltration membrane technology and energy reduction components. The heart of the system is a ceramic hollow fibre membrane. Balemi said it produces higher filtrate quality than competitors, meaning the recycled water can be reused more often, and can process feed water of up to 70°C compared to typical ultrafiltration membranes that cap out at about 38°C. This means the recycled water can be reused at higher temperatures, with the heat in it recovered by a precise steam heater built into The Grey Box. “As an overall measure, it saves 80 per cent of the water that is processed and saves 20 per cent of the energy,” Balemi said. Four systems have already been installed, with one going into a large commercial laundry in south Queensland and another to AMP's state-of-the-art 6 Green Star building in Brisbane. “We can modify them slightly to suit the industry, depending on the quality of raw water they are trying to recycle and also depending on the size of the project,,” said Balemi. Where many organisations build systems to specification, The Grey Box is offered in three standard sizes: the HY20 (20kL per day, based on a 10 hour day), HY80 (80kL per day) and HY130 (130kL per day). They can be used

  14. Work plan for the Oak Ridge National Laboratory groundwater program: Continuous groundwater collection

    International Nuclear Information System (INIS)

    1995-08-01

    The continuous collection of groundwater data is a basic and necessary part of Lockeheed Martin Energy Systems' ORNL Environmental Restoration Area-Wide Groundwater Program. Continuous groundwater data consist primarily of continually recorded groundwater levels, and in some instances, specific conductivity, pH, and/or temperature measurements. These data will be collected throughout the ORNL site. This Work Plan (WP) addresses technical objectives, equipment requirements, procedures, documentation requirements, and technical instructions for the acquisition of the continuous groundwater data. Intent of this WP is to provide an approved document that meets all the necessary requirements while retaining the flexibility necessary to effectively address ORNL's groundwater problems

  15. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona

    Science.gov (United States)

    Carruth, Rob; Beisner, Kimberly; Smith, Greg

    2013-01-01

    The Hopi Tribe Water Resources Program has granted contracts for studies to evaluate water supply conditions for the Moenkopi villages in Coconino County, Arizona. The Moenkopi villages include Upper Moenkopi Village and the village of Lower Moencopi, both on the Hopi Indian Reservation south of the Navajo community of Tuba City. These investigations have determined that water supplies are limited and vulnerable to several potential sources of contamination, including the Tuba City Landfill and a former uranium processing facility known as the Rare Metals Mill. Studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are greater than regional groundwater concentrations. The source of water supply for the Upper Moenkopi Village is three public-supply wells. The wells are referred to as MSW-1, MSW-2, and MSW-3 and all three wells obtain water from the regionally extensive N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and consists of thick beds of sandstone between less permeable layers of siltstone and mudstone. The relatively fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells. In recent years, water levels have declined in the three public-supply wells, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. Analyses of major ions, nutrients, selected trace metals, stable and radioactive isotopes, and radiochemistry were performed on the groundwater samples from the three public-supply wells to describe general water-quality conditions and groundwater ages in and immediately surrounding the Upper Moenkopi Village area. None of the water samples collected from the public-supply wells exceeded the U.S. Environmental Protection Agency primary drinking water standards. The ratios of the major dissolved ions from the samples collected from MSW-1 and MSW-2 indicate

  16. Pore Pressure Response to Groundwater Fluctuations in Saturated Double-Layered Soil

    Directory of Open Access Journals (Sweden)

    Hongwei Ying

    2015-01-01

    Full Text Available Analytical solutions are developed for one-dimensional consolidation of double-layered saturated soil subjected to groundwater fluctuations. The solutions are derived by an explicit mathematical procedure using Duhamel’s theorem in conjunction with a Fourier series, when groundwater fluctuation is described by a general time-dependent function and assumed to be the pore water pressure variations at the upper boundary. Taking as an example the harmonic groundwater fluctuation, the relevant response of the excess pore water pressure is discussed in detail, and the main influencing factors of the excess pore pressure distribution are analyzed. A dimensionless parameter θ has been introduced because it significantly affects the phase and the amplitude of excess pore pressures. The influences of the coefficients of permeability and compressibility of soil on the excess pore pressure distribution are different and cannot be incorporated into the coefficient of consolidation in double-layered soil. The relative permeability ratio of two clayey soils also plays an important role on the curves of the distributions of the excess pore pressures. The effects of the thickness of the soil layer on the excess pore pressure distribution should be considered together with the dimensionless parameter θ and the permeability and compressibility of the double-layered soil system.

  17. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  18. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  19. The Influence of Climate Variability Effects on Groundwater Time Series in the Lower Central Plains of Thailand

    Directory of Open Access Journals (Sweden)

    Korrakoch Taweesin

    2018-03-01

    Full Text Available This research studies the relationship between the climate index and the groundwater level of the lower Chao Phraya basin, in order to forecast the groundwater level in the studied area by using Autoregressive Integrated Moving Average with Explanatory (ARIMAX. The combination of 6 climate indices—Dipole Mode Index, Indian Summer Monsoon Index, Multivariate ENSO Index, Sea Surface Temperature NINO4, Southern Oscillation Index and the Western North Pacific Monsoon Index—were used, along with the groundwater level data from 14 stations during the period 1980–2011 to develop the forecast model and verify it with the data of 2012.The first step was correlation of the ARIMA model with Autocorrelation Function and Partial Autocorrelation Function. The possible model was then selected using BIC statistics. Diagnostic Checking was done to consider the white noise characteristic of estimated residuals by using the statistics of Box and Ljung (Q-statistic. If the selected models were found to be proper, then the Granger Causality Test of the leading parameters or the climate index would be performed as the next step. The results show that there is a relationship between the groundwater level and the climate index. The model could be used to forecast effectively the average RMSE value at 0.6. The last step was to develop the MODFLOW for a conceptual model and synthesize groundwater levels in the study area, which covers around 43,000 km2 and has 8 layers of groundwater, with Bangkok clay on the top. All other boundary values were set to be steady. The calibration was done using the data of 325 observed wells. The normalized RMS value was 9.705%. The results were verified by the data using ARIMAX over the same time periods. To conclude, the simulated results of the monthly groundwater level in 2012 of the wells have a confidence interval of around 95%, which is near the result from the ARIMAX model. The advantages of the ARIMAX model include high

  20. Fire test of DOT 7A Boxes

    International Nuclear Information System (INIS)

    Jensen, J.D.

    1979-05-01

    The primary objective of conducting the full-scale fire tests of the DOT (Department of Transportation) 7A FRP Boxes was to provide information to assist in quantifying the fire hazard of the storage located at the Radioactive Waste Management Complex (RWMC), and to learn if changing the storage array will decrease the fire risk. Also, the level of fire fighting and fire protection required to maintain the risk at the RWMC within acceptable DOE guidelines was investigated. Two full-scale fire tests were conducted at Southwest Research Institute (SwRI) in June 1978, using the DOE 7A FRP Plywood Storage Containers. The fire tests showed that when subjected to a substantial ignition source, the boxes will propagate fire as long as no fire-suppression measures are taken. Fire will breach the boxes and spread the radioactive contaminated waste if it is not extinguished. As the fire progresses, additional boxes will become involved, and eventually the entire storage array will ignite. It is recommended that the use of DOT 7A Boxes be discontinued and replaced with noncombustible storage containers. In the event this is not practicable, guidance recommendations are presented to minimize the large fire loss potential. It is also recommended that an investigation be conducted into the number of boxes that can be destroyed and still maintain a safe environment for employees and the public. This investigation should include how far radioactive contamination will spread, what cleanup will be required, anticipated exposure of the people within the area, and the public impact of such a fire

  1. Hadron scattering in an asymmetric box

    International Nuclear Information System (INIS)

    Li Xin; Chen Ying; Meng Guozhan; Feng Xu; Gong Ming; He Song; Li Gang; Liu Chuan; Liu Yubin; Ma Jianping; Meng Xiangfei; Shen Yan; Zhang Jianbo

    2007-01-01

    We propose to study hadron-hadron scattering using lattice QCD in an asymmetric box which allows one to access more non-degenerate low-momentum modes for a given volume. The conventional Luescher's formula applicable in a symmetric box is modified accordingly. To illustrate the feasibility of this approach, pion-pion elastic scattering phase shifts in the I = 2, J = 0 channel are calculated within quenched approximation using improved gauge and Wilson fermion actions on anisotropic lattices in an asymmetric box. After the chiral and continuum extrapolation, we find that our quenched results for the scattering phase shifts in this channel are consistent with the experimental data when the three-momentum of the pion is below 300MeV. Agreement is also found when compared with previous theoretical results from lattice and other means. Moreover, with the usage of asymmetric volume, we are able to compute the scattering phases in the low-momentum range (pion three momentum less than about 350MeV in the center of mass frame) for over a dozen values of the pion three-momenta, much more than using the conventional symmetric box with comparable volume

  2. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany--evidence from stable and radiogenic isotopes.

    Science.gov (United States)

    van Geldern, Robert; Baier, Alfons; Subert, Hannah L; Kowol, Sigrid; Balk, Laura; Barth, Johannes A C

    2014-10-15

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ~20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Groundwater drought in different geological conditions

    International Nuclear Information System (INIS)

    Machlica, A; Stojkovova, M

    2008-01-01

    The identification of hydrological extremes (drought) is very actual at present. The knowledge of the mechanism of hydrological extremes evolution could be useful at many levels of human society, such as scientific, agricultural, local governmental, political and others. The research was performed in the Upper part of the Nitra River catchment (central part of Slovakia) and in the Topla and Ondava River catchments (eastern part of Slovakia). Lumped hydrological model BILAN was used to identify relationships among compounds of the water balance. Presented results are focused on drought in groundwater storage, soil moisture, base flow and discharges. BFI model for baseflow estimation was used and results were compared with those gained by BILAN model. Another item of the research was to compare results of hydrological balance model application on catchments with different geological conditions.

  4. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought

  5. Analysis of the potential contamination risk of groundwater resources circulating in areas with anthropogenic activities

    Directory of Open Access Journals (Sweden)

    M. Spizzico

    2005-01-01

    Full Text Available The area investigated is located in the province of Brindisi (Italy. It is a generally flat area separated from the nearby carbonatic plateau of the Murgia by quite indistinct and high fault scarps. As regards the geological features, carbonatic basement rocks and post-cretaceous terrains made up of calabrian calcarenites and middle-upper Pleistocenic marine terraced deposits can be distinguished. In the examined area there are two different hydrogeological environments. The first is represented by deep groundwater, the main groundwater resource in Apulia. The second hydrogeological environment, now of lesser importance than the deep aquifer in terms of size and use, is made up of some small shallow groundwater systems situated in post-calabrian sands and located in the eastern area. During some sampling cycles carried out in the studied area, water was withdrawn from both the deep aquifer and from the shallow groundwater. For every sample, the necessary parameters were determined for the physical and chemical characterisation of two different hydrogeological environments. Moreover, some chemical parameters indicating anthropogenic activities were determined. Analysis of the aerial distribution of the measured parameters has shown some main areas subject to different conditions of contamination risk, in accordance with the hydrogeological and geological features of the investigated area. In the south-eastern part of the investigated area, the important action performed by the surface aquifer for protecting the deep groundwater from contamination of anthropogenic origin is clear. On the other hand, in the shallow groundwater, areas of nitrate and nitrite contamination have been identified, which result from the extensive use of fertilizers.

  6. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China

    Science.gov (United States)

    Lin, Jingjing; Ma, Rui; Hu, Yalu; Sun, Ziyong; Wang, Yanxin; McCarter, Colin P. R.

    2018-03-01

    The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114 × 104 m3/year in 2017 to 11,875 × 104 m3/year in 2021, and to 17,039 × 104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277 × 104 m3/year in 2017 to 1857 × 104 m3/year in 2021, and to 510 × 104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.

  7. DFBX boxes -- electrical and cryogenic distribution boxes for the superconducting magnets in the LHC straight sections

    International Nuclear Information System (INIS)

    Zbasnik, Jon P.; Corradi, Carol A.; Gourlay, S.A.; Green, MichaelA.; Hafalia, Aurelio Q.; Kajiyama, Yoichi Jr.; Knolls, Michael J.; LaMantia, Roberto F.; Rasson, Joseph E.; Reavill, Dulie; Turner, William C.

    2002-01-01

    DFBX distribution boxes provide cryogenic and electrical services to superconducting quadrupoles and to a superconducting dipole at either end of four of the long straight sections in the LHC. The DFBX boxes also provide instrumentation and quench protection to the magnets. Current for the quadrupole and the dipole magnet is delivered through leads that combine HTS and gas cooled leads. Current for the 600 A and 120 A correction magnets is provided by pure gas-cooled leads. The bus bars from the leads to the magnets pass through low leak-rate lambda plugs between 1.8 K and 4.4 K. The heat leak into the 1.9 K region from the liquid helium tank is determined by the design of the lambda plugs. This paper describes the DFBX boxes and their function of delivering current and instrumentation signals to the magnets

  8. Lightweight S-Box Architecture for Secure Internet of Things

    Directory of Open Access Journals (Sweden)

    A. Prathiba

    2018-01-01

    Full Text Available Lightweight cryptographic solutions are required to guarantee the security of Internet of Things (IoT pervasiveness. Cryptographic primitives mandate a non-linear operation. The design of a lightweight, secure, non-linear 4 × 4 substitution box (S-box suited to Internet of Things (IoT applications is proposed in this work. The structure of the 4 × 4 S-box is devised in the finite fields GF (24 and GF ((222. The finite field S-box is realized by multiplicative inversion followed by an affine transformation. The multiplicative inverse architecture employs Euclidean algorithm for inversion in the composite field GF ((222. The affine transformation is carried out in the field GF (24. The isomorphic mapping between the fields GF (24 and GF ((222 is based on the primitive element in the higher order field GF (24. The recommended finite field S-box architecture is combinational and enables sub-pipelining. The linear and differential cryptanalysis validates that the proposed S-box is within the maximal security bound. It is observed that there is 86.5% lesser gate count for the realization of sub field operations in the composite field GF ((222 compared to the GF (24 field. In the PRESENT lightweight cipher structure with the basic loop architecture, the proposed S-box demonstrates 5% reduction in the gate equivalent area over the look-up-table-based S-box with TSMC 180 nm technology.

  9. Groundwater sampling and chemical characterisation of the Laxemar deep borehole KLX02

    International Nuclear Information System (INIS)

    Laaksoharju, M.; Skaarman, C.; Smellie, J.; Nilsson, A.C.

    1995-02-01

    The Laxemar deep borehole, KLX02 (1705 m depth), located close to the Aespoe Hard Rock Laboratory (HRL), has been investigated. Groundwater sampling was conducted on two occasions and using different methods. The first sampling was taken in the open borehole using the so-called Tube sampler; the second sampling carried out using the SKB-packer equipment to isolate pre-determined borehole sections. Groundwater compositions consist of two distinct groupings; one shallow to intermediate Sodium-Bicarbonate type (Na(Ca,K):HC 3 Cl(SO 4 )) to a depth of 1000 m, and the other of deep origin, a calcium-chloride type (Ca-Na(K):Cl-SO 4 (Br)), occurring below 1000 m. The deep brines contain up to 46000 mg of Cl per litre. The influence of borehole activities are seen in the tritium data which record significant tritium down to 1000 m, and even to 1420 m. Mixing modelling shows that water from the 1960's is the main source for this tritium. The high tritium values in the 1090-1096.2 m section are due to contamination of 1% shallow water from 1960 and 2% of modern shallow water. The upper 800 m of bedrock at Laxemar lies within a groundwater recharge area; the sub-vertical to moderate angled fracture zones facilitate groundwater circulation to considerable depths, at least to 800 m, thus accounting for some of the low saline brackish groundwaters in these conducting fracture zones. Below 1000 m the system is hydraulically and geochemically 'closed' such that highly saline brines exist in a near-stagnant environment. 30 refs, 22 figs, 8 tabs

  10. Cloning and analysis of two Ceratopteris thalictroides MADS-box genes

    Directory of Open Access Journals (Sweden)

    XU Daolan

    2014-06-01

    Full Text Available MADS-box transcription factors,as a large gene family,play an important role in plant growth and development,especially act as key regulators in controlling the identities of floral organs in flowering plants.They are also significant in the evolutionary revelation.In order to understand MADS-box genes,we need more information of MADS-box genes in non flowering plant.MADS-box genes of Ceratopteris thalictroides were selected to clone and analysis by using RACE method.Two MADS-box genes,designated CtMADS1 and CtMADS2 in C. thalictroides,were cloned.Analysis indicates that CtMADS1 is belonged to MIKC*-clade,while CtMADS2 is belonged to MIKCc-clade.Phylogeny suggests that these two MADS-box genes of C. thalictroides have a close relationship with flowering plants,the data indicates that at least two different MADS-box genes are homologous to floral homeotic genes existed in the last common ancestor of contemporary vascular plants.

  11. Review: Occurrence of the pathogenic amoeba Naegleria fowleri in groundwater

    Science.gov (United States)

    Bright, Kelly R.; Gerba, Charles P.

    2017-06-01

    Naegleria fowleri is a thermophilic free-living amoeba found worldwide in soils and warm freshwater. It is the causative agent of primary amebic meningoencephalitis, a nearly always fatal disease afflicting mainly children and young adults. Humans are exposed to the organism via swimming, bathing, or other recreational activity during which water is forcefully inhaled into the upper nasal passages. Although many studies have looked at the occurrence of N. fowleri in surface waters, limited information is available regarding its occurrence in groundwater and geothermally heated natural waters such as hot springs. This paper reviews the current literature related to the occurrence of N. fowleri in these waters and the methods employed for its detection. Case reports of potential groundwater exposures are also included. Despite increased interest in N. fowleri in recent years due to well-publicized cases linked to drinking water, many questions still remain unanswered. For instance, why the organism persists in some water sources and not in others is not well understood. The role of biofilms in groundwater wells and plumbing in individual buildings, and the potential for warming due to climate change to expand the occurrence of the organism into new regions, are still unclear. Additional research is needed to address these questions in order to better understand the ecology of N. fowleri and the conditions that result in greater risks to bathers.

  12. An early warning system for groundwater pollution based on the assessment of groundwater pollution risks.

    Science.gov (United States)

    Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong

    2009-04-01

    Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords

  13. Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint

    International Nuclear Information System (INIS)

    Gleeson, Tom; Wada, Yoshihide

    2013-01-01

    Groundwater is a critical resource for agricultural production, ecosystems, drinking water and industry, yet groundwater depletion is accelerating, especially in a number of agriculturally important regions. Assessing the stress of groundwater resources is crucial for science-based policy and management, yet water stress assessments have often neglected groundwater and used single data sources, which may underestimate the uncertainty of the assessment. We consistently analyze and interpret groundwater stress across whole nations using multiple data sources for the first time. We focus on two nations with the highest national groundwater abstraction rates in the world, the United States and India, and use the recently developed groundwater footprint and multiple datasets of groundwater recharge and withdrawal derived from hydrologic models and data synthesis. A minority of aquifers, mostly with known groundwater depletion, show groundwater stress regardless of the input dataset. The majority of aquifers are not stressed with any input data while less than a third are stressed for some input data. In both countries groundwater stress affects agriculturally important regions. In the United States, groundwater stress impacts a lower proportion of the national area and population, and is focused in regions with lower population and water well density compared to India. Importantly, the results indicate that the uncertainty is generally greater between datasets than within datasets and that much of the uncertainty is due to recharge estimates. Assessment of groundwater stress consistently across a nation and assessment of uncertainty using multiple datasets are critical for the development of a science-based rationale for policy and management, especially with regard to where and to what extent to focus limited research and management resources. (letter)

  14. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  15. The Roles of T-Box Genes in Vertebrate Limb Development.

    Science.gov (United States)

    Sheeba, C J; Logan, M P O

    2017-01-01

    Members of the T-box gene family have diverse roles during embryogenesis and many play critical roles in the developing limb. This is exemplified by the fact that, in humans, mutations in T-box genes are associated with several congenital syndromes that include limb defects as part of their characteristic spectrum of abnormalities. T-box genes encode for evolutionary conserved transcription factors that include both transcriptional activators and repressors. The hallmark of T-box gene members is the presence of the eponymous DNA-binding T-box domain. There are 17 mammalian T-box genes, which based on the sequence homology of the T-box domain, are grouped into five subfamilies, namely, T, Tbx1, Tbx2, Tbx6, and Tbr1. At least nine T-box genes are expressed during limb development with distinct and dynamic expression patterns. All four members of Tbx2 subfamily (Tbx2, Tbx3, Tbx4, Tbx5) and three members of Tbx1 (Tbx1, Tbx15, Tbx18), Brachyury (T) and Eomes (Tbr2) are expressed in the developing limb. © 2017 Elsevier Inc. All rights reserved.

  16. Evaluation of water harvesting and managed aquifer recharge potential in Upper Fara'basin in Palestine : Comparing MYWAS and water productivity approaches

    NARCIS (Netherlands)

    Tiehatten, B.M.H.; Assaf, K; Barhumic, Hala; Bastiaanssen, W.G.M.; Ghaneme, Marwan; Jayyousi, Anan; Marei, Amer; Mostert, E.; Shadeed, Sameer; Schoups, G.H.W.; Smidt, Ebel; Zayed, O

    2017-01-01

    The Upper Wadi Fara' basin, located at the West Bank, Palestine, has an average annual rainfall of 500 mm, which occurs only during winter. Agriculture uses stored soil water and complimentary irrigation from groundwater. Water harvesting (WH) and managed aquifer recharge (MAR) therefore is

  17. Geochemical and isotopic characterization of groundwater resources in El Hicha region, Gabes, southern Tunisia

    International Nuclear Information System (INIS)

    Ben Hamouda, M.F.; Ben Kraiem, H.; Mahjoub, A.; Labidi, B.; Ghoudi, R.; Hamrouni, H.; Nasr, H.; Zouari, K.; Froehlich, K.; Sajjad, M.I.; Garcia-Agudo, E.

    2002-01-01

    The groundwater study area is located in the southern part of Tunisia at some kilometers from the Mediterranean Sea, about 35 km north of the town Gabes. It extends over 300 km 2 and is bounded by the Gulf of Gabes in the East, El Hamma in the West and Skhira in the North. This region is characterized by a semi-arid climate with an average annual rainfall of about 180 mm and a potential evaporation of 2130 mm per year. The groundwater resources of the region are represented by four hydrogeological units: the Continental Intercalaire, the Sfax Aquifer, the Jeffara Aquifer and the shallow aquifer of El Hicha. The dug wells and boreholes used for groundwater abstraction in this region reach depths between a few meters and about 170m. The upper zone of 50m depths is formed by sandy clay and gypsum, and the lower zone of 50 to 70m depths consists of sandy layers. The salinity measured in groundwater samples from this area is rather high; the values range between 5 and 7g/l. Since the water will be used to grow salt-tolerant plants, it is important to know the origin of the groundwater (to assess its availability) and the source(s) of its salinity. To this end, groundwater samples for isotope and chemical analysis were taken from 6 dug wells, 6 boreholes (one of them is an artesian well), a spring and a drainage canal. Each site was sampled in March, June, July, September and December 1999. During these sampling campaigns, in-situ measurements of temperature and electrolytic conductivity were carried out

  18. Groundwater salinity at Olkiluoto and its effects on a spent fuel repository

    Energy Technology Data Exchange (ETDEWEB)

    Vieno, T. [VTT Energy, Espoo (Finland)

    2000-06-01

    The Olkiluoto island rose from the Baltic Sea 2500 to 3000 years ago. The layered sequence of groundwaters can be related to climatic and shoreline changes from modern tune through former Baltic stages to the deglaciation phase about 10 000 years ago and even to preglacial times. Fresh groundwater is found to the depth of about 150 metres, brackish between 100 and 400 metres, deeper groundwaters are saline. At the depth of 500 meters, the content of Total Dissolved Solids (TDS) varies between 10 and 25 g/l. The most saline waters at depths greater than 800 metres have TDS values between 30 and 75 g/l. These deep saline waters seem to have been undisturbed during the most recent glaciation and even much longer in the past. Today fresh water infiltrating at the surface gradually displaces brackish and saline groundwater in the bedrock. Due to the still ongoing postglacial land uplift, Olkiluoto is likely to become an inland site with brackish or fresh groundwater at the depth of 500 metres within the next 10 000 years. During the construction and operation phases groundwater will be drawn into the repository from the surrounding bedrock. As a consequence, more saline groundwaters, presently laying 100 to 200 metres below the repository level, may rise to the disposal level. After the closing of the repository the salinity distribution will gradually return towards the natural state. During the glacial cycle groundwater salinity may increase, for example, during freezing of groundwater into permafrost, when dissolved solids concentrate in the remaining water phase, and in a situation where deep saline groundwaters from under the centre of the glacier are pushed to the upper parts of the bedrock at the periphery of the glacier. The most significant open issue related to saline groundwater is the performance of the tunnel backfill which in the BS-3 concept has been planned to consist of a mixture of crushed rock and 10-30% of bentonite. Saline groundwater may

  19. Boxing against drones : Drones in sports education

    NARCIS (Netherlands)

    Zwaan, S.G.; Barakova, E.I.

    2016-01-01

    This paper investigates how drones could be integrated into the context of sports, boxing in particular. The goal of this project is to design a drone application that allows direct and embodied interaction. The sport of boxing provides a very interesting setting, because the intimidating and

  20. 49 CFR 230.102 - Tender plain bearing journal boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tender plain bearing journal boxes. 230.102... Locomotives and Tenders Running Gear § 230.102 Tender plain bearing journal boxes. Plain bearing journal boxes... expected to damage the bearing; or have a detrimental effect on the lubrication of the journal and bearing...