WorldWideScience

Sample records for upper copper river

  1. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  2. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    Science.gov (United States)

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  3. Geomorphology and river dynamics of the lower Copper River, Alaska

    Science.gov (United States)

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges.Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005–07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36–37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36–37 during average flow periods.The U.S. Geological Survey’s Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the

  4. USGS Activities at Lake Roosevelt and the Upper Columbia River

    Science.gov (United States)

    Barton, Cynthia; Turney, Gary L.

    2010-01-01

    Lake Roosevelt (Franklin D. Roosevelt Lake) is the impoundment of the upper Columbia River behind Grand Coulee Dam, and is the largest reservoir within the Bureau of Reclamation's Columbia Basin Project (CBP). The reservoir is located in northeastern Washington, and stretches 151 miles from Grand Coulee Dam north to the Canadian border. The 15-20 miles of the Columbia River downstream of the border are riverine and are under small backwater effects from the dam. Grand Coulee Dam is located on the mainstem of the Columbia River about 90 miles northwest of Spokane. Since the late 1980s, trace-element contamination has been known to be widely present in Lake Roosevelt. Trace elements of concern include arsenic, cadmium, copper, lead, mercury, and zinc. Contaminated sediment carried by the Columbia River is the primary source of the widespread occurrence of trace-element enrichment present in Lake Roosevelt. In 2001, the U.S. Environmental Protection Agency (EPA) initiated a preliminary assessment of environmental contamination of the Lake Roosevelt area (also referred to as Upper Columbia River, UCR site, or UCR/LR site) and has subsequently begun remedial investigations of the UCR site.

  5. Major and trace elements in sediments of the upper course of Lerma river

    International Nuclear Information System (INIS)

    Tejeda, S.; Zarazua-Ortega, G.; Avila-Perez, P.; Garcia-Mejia, A.; Carapia-Morales, L.; Diaz-Delgado

    2006-01-01

    The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The concentration of six major and trace elements: titanium, manganese, iron, zinc, copper and lead in the surface sediments of the upper course of Lerma river was investigated, in order to identify its distribution along the river and to recognize the principal sites of pollution. The surface sediment samples were collected at 8 sites distributed following the stream flow direction of the river. Major and trace elements concentrations were determined by energy dispersive X-ray spectrometry. The results show that the metal concentrations in the sediments decrease in the sequence: Fe > Ti > Mn > Zn > Cu > Pb. Concentration of Fe, Mn and Ti were significantly higher than the other metals in site 8,200 meters downstream the Alzate Dam. The high concentrations and spatial variations of Zn, Cu and Pb in the middle sites of the upper course of the Lerma River indicate that the river pollution is probably associated with urban and industrial discharges. (author)

  6. Mercury and other Mining-Related Contaminants in Ospreys along the Upper Clark Fork River, MT

    Science.gov (United States)

    Langner, H.; Domenech, R.; Greene, E.; Staats, M. F.

    2010-12-01

    Osprey (Pandion haliaetus) are widely recognized as bio-indicators of the health of aquatic ecosystems. Until the time of fledging, nestlings feed exclusively on fish caught within a few kilometers of the nest. Therefore, tissues of these young birds may reflect the level of contamination of local fish and more generally, the contamination status of the aquatic ecosystem they inhabit. Nests can often be accessed with a boom truck and obtaining small blood samples from the flightless chicks is fairly noninvasive. Ospreys are nesting along the Upper Clark Fork River, Montana, which is heavily contaminated with wastes left from a century of copper and precious metals mining. We have been monitoring the levels of priority pollutants (arsenic, cadmium, lead, copper, zinc, mercury and selenium) in Osprey chicks along a 250 km section of the river for four years. Objectives are to establish current contaminant status, pinpoint pollution hotspots, and assess the success of restoration efforts. Our results suggest that of highest concern may be the bioaccumulation of mercury with blood levels of up to 0.7 mg/L in the growing chicks. These concentrations are expected to increase many fold upon fledging as feather growth stops, which acts as the major sink for mercury. Interestingly, we found mercury levels increased in downstream direction, in contrast to concentrations of other pollutants. Reasons may be the different origin of mercury versus other contaminants and the distribution of wetlands where mercury can be transformed into highly bioavailable methylmercury. Blood levels of selenium are also elevated throughout the Upper Clark Fork River drainage. We discuss the implications for restoration and remediation of the Clark Fork River.

  7. Flood of August 24–25, 2016, Upper Iowa River and Turkey River, northeastern Iowa

    Science.gov (United States)

    Linhart, S. Mike; O'Shea, Padraic S.

    2018-02-05

    Major flooding occurred August 24–25, 2016, in the Upper Iowa River Basin and Turkey River Basin in northeastern Iowa following severe thunderstorm activity over the region. About 8 inches of rain were recorded for the 24-hour period ending at 4 p.m., August 24, at Decorah, Iowa, and about 6 inches of rain were recorded for the 24-hour period ending at 7 a.m., August 24, at Cresco, Iowa, about 14 miles northwest of Spillville, Iowa. A maximum peak-of-record discharge of 38,000 cubic feet per second in the Upper Iowa River at streamgage 05388250 Upper Iowa River near Dorchester, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at six locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and State Highway 76 about 3.5 miles south of Dorchester, Iowa, a distance of 15 river miles. Along the profiled reach of the Turkey River, a maximum peak-of-record discharge of 15,300 cubic feet per second at streamgage 05411600 Turkey River at Spillville, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 1–2 percent. A maximum peak discharge of 35,700 cubic feet per second occurred on August 25, 2016, along the profiled reach of the Turkey River at streamgage 05411850 Turkey River near Eldorado, Iowa, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at 11 locations along the Turkey River between County Road B64 in Elgin and 220th Street, located about 4.5 miles northwest of Spillville, Iowa, a distance of 58 river miles. The high-water marks were used to develop flood profiles for the Upper Iowa River and Turkey River.

  8. Groundwater quality in the Upper Hudson River Basin, New York, 2012

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.

    2014-01-01

    detected in one sample with a maximum of 2 colony-forming units per 100 milliliters. Water quality in the Upper Hudson River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards exceeded are color (1 sample), pH (3 samples), sodium (3 samples), chloride (1 sample), dissolved solids (1 sample), arsenic (1 sample), iron (2 samples), manganese (2 samples), uranium (1 sample), radon-222 (12 samples), and gross beta activities (3 samples). Total coliform bacteria were each detected in one sample. Concentrations of fluoride, sulfate, nitrate, nitrite, aluminum, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, and gross alpha activities did not exceed existing drinking-water standards in any of the samples collected. Methane concentration in one sample was greater than 28 milligrams per liter, with a concentration of 35.1 milligrams per liter.

  9. Hydrology and modeling of flow conditions at Bridge 339 and Mile 38-43, Copper River Highway, Alaska

    Science.gov (United States)

    Brabets, Timothy P.

    2012-01-01

    The Copper River basin, the sixth largest watershed in Alaska, drains an area of 24,200 square miles in south-central Alaska. This large, glacier-fed river flows across a wide alluvial fan before it enters the Gulf of Alaska. The Copper River Highway, which traverses the alluvial fan, has been affected by channel planform reconfiguration. Currently (2012), two areas of the Copper River Highway are at risk: at Mile 38-43, the road grade is too low and the highway could be flooded by high flows of the Copper River, and at Mile 36, the main channel of the Copper River has migrated directly toward Bridge 339. Because Bridge 339 was not designed and built to convey the main flow of the Copper River, as much as 50 feet of scour occurred at the piers in 2011. The piers can no longer absorb the lateral or vertical loads, resulting in closure of the bridge and the Copper River Highway. The U.S. Geological Survey Flow and Sediment Transport with Morphologic Evolution of Channels (FaSTMECH) model was used to simulate the flow of the Copper River and produce simulations of depth, water-surface elevation, and velocity. At the Mile 38-43 area, FaSTMECH was used to analyze the effects of raising the road grade 5 feet, and at Mile 36, FaSTMECH was used to analyze the effects of constructing a channel to divert flow away from Bridge 339. Results from FaSTMECH indicate that if raising the road grade 5 feet in the Mile 38-43 area, a flood with an annual exceedance probability of 2 percent (400,000 cubic feet per second) would not overtop the highway. In the Bridge 339 area, results from FaSTMECH indicate that a design channel could divert flows as much as 100,000 cubic feet per second away from Bridge 339.

  10. Nonnative Fishes in the Upper Mississippi River System

    Science.gov (United States)

    Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.

    2009-01-01

    The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for

  11. Streamflow and streambed scour in 2010 at bridge 339, Copper River, Alaska

    Science.gov (United States)

    Conaway, Jeffrey S.; Brabets, Timothy P.

    2011-01-01

    The Copper River Highway traverses a dynamic and complex network of braided and readily erodible channels that constitute the Copper River Delta, Alaska, by way of 11 bridges. Over the past decade, several of these bridges and the highway have sustained serious damage from both high and low flows and channel instability. This investigation studying the impact of channel migration on the highway incorporates data from scour monitoring, lidar surveys, bathymetry, hydrology, and time-lapse photography.

  12. The derivation of water quality criteria of copper in Biliu River

    Science.gov (United States)

    Zheng, Hongbo; Jia, Xinru

    2018-03-01

    Excessive copper in water can be detrimental to the health of human and aquatic life. China has promulgated Environmental Quality Standards for Surface Water to control water pollution, but uniform standard values may cause under-protection or over-protection. Therefore, the basic research work on water quality criteria of water source or reservoir is urgently needed. This study deduces the acute and chronic Water Quality Criteria (WQC) of copper in Biliu River by Species Sensitivity Distribution method (SSD). The result shows that BiDoseResp is the most suitable model and the acute and chronic water quality benchmark of copper are 10.72 µg•L-1 and 5.86 µg•L-1. This study provides basis for the construction of water quality standard of Liaoning and the environmental management of Biliu River.

  13. Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998

    Science.gov (United States)

    Paschke, Suzanne S.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    Drainage from abandoned and inactive mines and from naturally mineralized areas in the San Juan Mountains of southern Colorado contributes metals to the upper Animas River near Silverton, Colorado. Tracer-injection studies and associated synoptic sampling were performed along two reaches of the upper Animas River to develop detailed profiles of stream discharge and to locate and quantify sources of metal loading. One tracer-injection study was performed in September 1997 on the Animas River reach from Howardsville to Silverton, and a second study was performed in August 1998 on the stream reach from Eureka to Howardsville. Drainage in the upper Animas River study reaches contributed aluminum, calcium, copper, iron, magnesium, manganese, sulfate, and zinc to the surface-water system in 1997 and 1998. Colloidal aluminum, dissolved copper, and dissolved zinc were attenuated through a braided stream reach downstream from Eureka. Instream dissolved copper concentrations were lower than the State of Colorado acute and chronic toxicity standards downstream from the braided reach to Silverton. Dissolved iron load and concentrations increased downstream from Howardsville and Arrastra Gulch, and colloidal iron remained constant at low concentrations downstream from Howardsville. Instream sulfate concentrations were lower than the U.S. Environmental Protection Agency's secondary drinking-water standard of 250 milligrams per liter throughout the two study reaches. Elevated zinc concentrations are the primary concern for aquatic life in the upper Animas River. In the 1998 Eureka to Howardsville study, instream dissolved zinc load increased downstream from the Forest Queen mine, the Kittimack tailings, and Howardsville. In the 1997 Howardsville to Silverton study, there were four primary areas where zinc load increased. First, was the increase downstream from Howardsville and abandoned mining sites downstream from the Cunningham Gulch confluence, which also was measured during

  14. Glaciers along proposed routes extending the Copper River Highway, Alaska

    Science.gov (United States)

    Glass, R.L.

    1996-01-01

    Three inland highway routes are being considered by the Alaska Department of Transportation and Public Facilities to connect the community of Cordova in southcentral Alaska to a statewide road system. The routes use part of a Copper River and Northwest Railway alignment along the Copper River through mountainous terrain having numerous glaciers. An advance of any of several glaciers could block and destroy the roadway, whereas retreating glaciers expose large quantities of unconsolidated, unvegetated, and commonly ice-rich sediments. The purpose of this study was to map historical locations of glacier termini near these routes and to describe hazards associated with glaciers and seasonal snow. Historical and recent locations of glacier termini along the proposed Copper River Highway routes were determined by reviewing reports and maps and by interpreting aerial photographs. The termini of Childs, Grinnell, Tasnuna, and Woodworth Glaciers were 1 mile or less from a proposed route in the most recently available aerial photography (1978-91); the termini of Allen, Heney, and Schwan Glaciers were 1.5 miles or less from a proposed route. In general, since 1911, most glaciers have slowly retreated, but many glaciers have had occasional advances. Deserted Glacier and one of its tributary glaciers have surge-type medial moraines, indicating potential rapid advances. The terminus of Deserted Glacier was about 2.1 miles from a proposed route in 1978, but showed no evidence of surging. Snow and rock avalanches and snowdrifts are common along the proposed routes and will periodically obstruct the roadway. Floods from ice-dammed lakes also pose a threat. For example, Van Cleve Lake, adjacent to Miles Glacier, is as large as 4.4 square miles and empties about every 6 years. Floods from drainages of Van Cleve Lake have caused the Copper River to rise on the order of 20 feet at Million Dollar Bridge.

  15. 75 FR 76632 - Drawbridge Operation Regulation; Upper Mississippi River, Hannibal, MO

    Science.gov (United States)

    2010-12-09

    ... Operation Regulation; Upper Mississippi River, Hannibal, MO AGENCY: Coast Guard, DHS. ACTION: Notice of... temporary deviation from the regulation governing the operation of the Hannibal Railroad Drawbridge across the Upper Mississippi River, mile 309.9, at Hannibal, Missouri. The deviation is necessary to allow...

  16. 77 FR 28488 - Drawbridge Operation Regulation; Upper Mississippi River, Hannibal, MO

    Science.gov (United States)

    2012-05-15

    ... Operation Regulation; Upper Mississippi River, Hannibal, MO AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Hannibal Railroad Drawbridge across the Upper Mississippi River, mile 309.9, at Hannibal, Missouri. The deviation is necessary to allow the replacement of eight wire rope...

  17. 78 FR 64887 - Drawbridge Operation Regulation; Upper Mississippi River, Hannibal, MO

    Science.gov (United States)

    2013-10-30

    ... Operation Regulation; Upper Mississippi River, Hannibal, MO AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Hannibal Railroad Drawbridge across the Upper Mississippi River, mile 309.9, at Hannibal, Missouri. The deviation is necessary to allow the bridge owner time to replace...

  18. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    Science.gov (United States)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  19. Climate influences on upper Limpopo River flow

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... Keywords: Limpopo Valley, hydro-meteorology, surface water deficit. * To whom all ... millenia and there is a history of drought impacts on vegetation. (Ekblom et ... water budget of the upper Limpopo River valley using direct.

  20. Watershed Fact Sheet: Improving Utah's Water Quality, Upper Bear River Watershed

    OpenAIRE

    Extension, USU

    2012-01-01

    The Upper Watershed of the Bear River Basin extends from the river's headwaters to Pixley Dam in Wyoming. This is the largest watershed in the Bear River Basin, with an area of about 2,000 square miles.

  1. Delaware River and Upper Bay Sediment Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The area of coverage consists of 192 square miles of benthic habitat mapped from 2005 to 2007 in the Delaware River and Upper Delaware Bay. The bottom sediment map...

  2. 78 FR 69995 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-11-22

    ... Operation Regulation; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the bridge owner time...

  3. 78 FR 21537 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-04-11

    ... Operation Regulations; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the Front Street 5K Run...

  4. 75 FR 81125 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2010-12-27

    ... Operation Regulation; Upper Mississippi River, Rock Island, IL AGENCY: Coast Guard, DHS. ACTION: Notice of... the Upper Mississippi River, mile 481.4, at Rock Island, Illinois. The deviation is necessary to allow... Rock Island, Illinois to open on signal if at least 24 hours advance notice is given for 44 days from...

  5. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    Science.gov (United States)

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  6. Organically complexed copper, zinc, and chelating agents in the rivers of Western Puerto Rico

    International Nuclear Information System (INIS)

    Montgomery, J.R.; Echevarria, J.E.

    1975-01-01

    The method for determining soluble chelators gives their concentration in copper-equivalent chelating capacity units in fresh or slightly brackish (less than 3 percent salinity) water. The mean concentration of chelators in the Rio Guanajibo for December 1973 and January 1974 was 0.4 mg of copper per liter of water (N = 21, SD = 0.2) and for February 1974, 0.9 mg/liter (N = 8, SD = 0.4). The combined mean for the Rio Anasco and Culebrinas was 0.5 mg/liter (N = 7, SD = 0.4) in January and February 1974. The mean concentration of ionic copper was 0.5 μg/liter (N = 7, SD = 0.6) and of ionic zinc, 0.2 μg/liter (N = 8, SD = 0.1) in the Rio Guanajibo from November 1972 to February 1973. The concentration of organically bound copper was 0.3 μ/liter (N = 7, SD = 0.2) and that of organically bound zinc was 0.6 μg/liter (N = 8, SD = 0.6); this indicates that there was more than a sufficient quantity of chelator available in the river to complex all the soluble copper. The presence of a high ratio of Ca 2+ to Cu 2+ probably prevents the formation of larger concentrations of organically complexed copper. The mean concentration of chelating agents in the Guanajibo River seems to be directly related to the increased organic input from municipalities and a sugar mill. The concentration of chelators in tropical rivers appears to be higher than that found in Canadian lakes. The mean concentration for particulate organic carbon (POC) was 3653 μg atoms/liter (SD = 3653, N = 29). The dissolved reactive phosphate (DRP) ranged from a mean of 1.1 μg atom/liter. No significant correlation could be found between POC, DRP, and the concentration of chelators

  7. 78 FR 46258 - Safety Zone; Upper Mississippi River, Mile 662.8 to 663.9

    Science.gov (United States)

    2013-07-31

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 662.8 to 663.9 AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone for all waters of the Upper Mississippi River, from mile 662.8 to 663.9, extending the entire width of the river. This safety...

  8. Iron and copper in Plagioscion squamosissimus (Piscis: Sciaenidae) of river Orinoco, Venezuela

    International Nuclear Information System (INIS)

    Gonzalez, A. R.; Marquez, A.; Chung, S.K.

    2000-01-01

    Bauxite exploitation of the Orinoco River in recent years is an important source of heavy metals discharge in the ecosystem, changing the natural biochemical flow of these elements and their concentrations in water, sediment and organisms. Iron and copper concentrations were measured in the fish Plagioscion squamosissimus in the Orinoco river, by sampling the fish population for three months (September-November 1998) in the main channel of the middle Orinoco. The internal organs of 30 fishes per month and site were stove-dried, pulverized and dried in disecator for 30 min to use as indicators with the acid digestion method for predicting the effect of heavy metals. We found relatively high values of iron and copper concentrations in fishes of the lagoon, and high seasonal variations in the iron concentration. (Author) [es

  9. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  10. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    Science.gov (United States)

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  11. 78 FR 28139 - Drawbridge Operation Regulation; Tuckahoe River, Between Corbin City and Upper Township, NJ

    Science.gov (United States)

    2013-05-14

    ... Operation Regulation; Tuckahoe River, Between Corbin City and Upper Township, NJ AGENCY: Coast Guard, DHS... River, mile 8.0, between Corbin City and Upper Township, NJ. The deviation is necessary to facilitate... operating schedule, the State Highway Bridge, mile 8.0, between Corbin City and Upper Township, NJ shall...

  12. THE WATER QUALITY DEGRADATION OF UPPER AWASH RIVER ...

    African Journals Online (AJOL)

    Osondu

    2013-01-11

    Jan 11, 2013 ... Benthic macroinvertebrate based assessment of water quality in the ... of the upper Awash River had low water quality status which is likely to be ..... Frydenborg, R., McCarron, E., White, J.S. and ... A framework for biological.

  13. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  14. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  15. 77 FR 28255 - Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5

    Science.gov (United States)

    2012-05-14

    ... on the Upper Mississippi River. Discussion of Rule The Coast Guard is establishing a temporary safety...-AA00 Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5 AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone for all waters of the...

  16. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  17. Timber resource statistics for the Copper River inventory unit, Alaska, 1968.

    Science.gov (United States)

    Karl M. Hegg

    1975-01-01

    This first intensive forest inventory of Alaska's Copper River Valley found a commercial forest area of 287,800 acres with 303.8 million cubic feet of growing stock. Additionally, a noncommercial stratum was examined that had substantial standing volume but did not meet the growth criteria for commercial forest land. This stratum contained 152,800 acres with a...

  18. Selenium in the upper Blackfoot River watershed, southeastern Idaho, 2001-12

    Science.gov (United States)

    Mebane, Christopher A.; Mladenka, Greg; Van Every, Lynn; Williams, Marshall L.; Hardy, Mark A.; Garbarino, John R.

    2014-11-05

    The upper Blackfoot River in southeastern Idaho receives runoff from 12 large phosphate mines. Waste shales that are removed to access the phosphate ore are highly enriched with selenium, resulting in elevated selenium in runoff from the mine waste dumps. In 2001, in cooperation with the Bureau of Land Management, the U.S. Geological Survey (USGS) began monitoring streamflow, selenium, and other water-quality parameters at a single location near the outlet of the upper Blackfoot River to the Blackfoot Reservoir. Water samples primarily were collected by a flow triggered, automated pump sampler, supplemented by manual point and equal-width integrated manual samples.

  19. Sorption Characteristics of Sediments in the Upper Mississippi River System Above Lake Pepin

    National Research Council Canada - National Science Library

    James, W

    1999-01-01

    This technical note examines equilibrium phosphorus processes and sorption characteristics for sediments collected from the Minnesota River, immediately upstream from its confluence with the Upper Mississippi River (UMR...

  20. 77 FR 39393 - Special Local Regulation; Upper Mississippi River, Mile 842.0 to 840.0

    Science.gov (United States)

    2012-07-03

    ... is establishing a temporary special local regulation for all waters of the Upper Mississippi River... 1625-AA00 Special Local Regulation; Upper Mississippi River, Mile 842.0 to 840.0 AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary special local...

  1. Wetland Management Reduces Sediment and Nutrient Loading to the Upper Mississippi River

    Science.gov (United States)

    Restored riparian wetlands in the Upper Mississippi River basin have the potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh...

  2. Landform-Sediment Assemblages Units of the Upper Mississippi River Valley

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Wisconsinan and Holocene Landform-Sediment Assemblages of the Upper Mississippi River Valley. Knowledge of the spatial distribution of natural and cultural resources...

  3. A Summary of Fish Data in Six Reaches of The Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    .... The six LTRMP study reaches are Pools 4 (excluding Lake Pepin), 8, 13, and 26 of the Upper Mississippi River, an unimpounded reach of the Mississippi River near Cape Girardeau, Missouri, and the La Grange Pool of the Illinois River...

  4. 75 FR 52360 - Upper Truckee River Restoration and Golf Course Reconfiguration Project, El Dorado County, CA

    Science.gov (United States)

    2010-08-25

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Upper Truckee River Restoration and Golf Course... and comment the draft EIR/EIS for the Upper Truckee River Restoration and Golf Course Reconfiguration... include continuing existing golf course use, removal of the entire Lake Tahoe Golf Course, or...

  5. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor copper mines (Serbia) to Danube River.

    Science.gov (United States)

    Đorđievski, Stefan; Ishiyama, Daizo; Ogawa, Yasumasa; Stevanović, Zoran

    2018-06-22

    Bor, Krivelj, and Bela Rivers belong to the watershed of Timok River, which is a tributary of transboundary Danube River. These rivers receive metal-rich acidic wastewater from metallurgical facilities and acid mine drainage (AMD) from mine wastes around Bor copper mines. The aim of this study was to determine the mobility and natural attenuation of metals and arsenic in rivers from Bor copper mines to Danube River during the year 2015. The results showed that metallurgical facilities had the largest impact on Bor River by discharging about 400 t of Cu per year through highly acidic wastewater (pH = 2.6). The highest measured concentrations of Cu in river water and sediments were 40 mg L -1 and 1.6%, respectively. Dissolution of calcite from limestone bedrock and a high concentration of bicarbonate ions in natural river water (about 250 mg L -1 ) enhanced the neutralization of acidic river water and subsequent chemical precipitation of metals and arsenic. Decreases in the concentrations of Al, Fe, Cu, As, and Pb in river water were mainly due to precipitation on the river bed. On the other hand, dilution played an important role in the decreases in concentrations of Mn, Ni, Zn, and Cd. Chemically precipitated materials and flotation tailings containing Fe-rich minerals (fayalite, magnetite, and pyrite) were transported toward Danube River during the periods of high discharge. This study showed that processes of natural attenuation in catchments with limestone bedrock play an important role in reducing concentrations of metals and arsenic in AMD-bearing river water.

  6. Habits and Habitats of Fishes in the Upper Mississippi River

    Science.gov (United States)

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  7. A survey of sport fish use on the Copper River Delta, Alaska.

    Science.gov (United States)

    Dirk W. Lang

    2010-01-01

    Aerial counts, in-person interviews, and mail-in questionnaires were used to survey sport fish use during the coho salmon (Oncorhynchus kisutch Walbaum) season on the Copper River Delta, Alaska from 2002 through 2006. Angler counts provided an index of use on individual streams and were used to develop a spatial database exhibiting patterns of use...

  8. 78 FR 15292 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-03-11

    ... schedule that governs the Rock Island Railroad and Highway Drawbridge, across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the River Bandits 5K Run/Walk...) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation...

  9. Preface: Bridging the gap between theory and practice on the upper Mississippi River

    Science.gov (United States)

    Lubinski, Kenneth S.

    1995-01-01

    In July 1994, the Upper Mississippi River (UMR) served as a nexus for coalescing scientific information and management issues related to worldwide floodplain river ecosystems. The objective of the conference ‘Sustaining the Ecological Integrity of Large Floodplain Rivers: Application of Ecological Knowledge to River Management’, was to provide presentations of current ideas from the scientific community. To translate the many lessons learned on other river systems to operational decisions on the UMR, a companion workshop for managers and the general public was held immediately after the conference.An immediate local need for such sharing has existed for several years, as the U.S. Corps of Engineers is currently planning commercial navigation activities that will influence the ecological integrity of the river over the next half century. Recently, other equally important management issues have surfaced, including managing the river as an element of the watershed, and assessing its ecological value as a system instead of a collection of parts (Upper Mississippi River Conservation Committee, 1993). Regional and state natural resource agencies are becoming more convinced that they need to address these issues within their own authorities, however spatially limited, rather than relying on the U.S. Corps of Engineers to manage the ecosystem as an adjunct to its purpose of navigation support.

  10. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  11. Impact of energy development on water resources in the Upper Colorado River Basin. Completion report

    International Nuclear Information System (INIS)

    Flug, M.; Walker, W.R.; Skogerboe, G.V.; Smith, S.W.

    1977-08-01

    The Upper Colorado River Basin contains appreciable amounts of undeveloped coal, oil shale, and uranium resources, which are important in the national energy demand system. A mathematical model, which simulates the salt and water exchange phase of potential fuel conversions, has been developed, based on a subbasin analysis identifying available mineral and water resources. Potential energy developments are evaluated with respect to the resulting impacts upon both the quantity and salinity of the waters in the Colorado River. Model solutions are generated by use of a multilevel minimum cost linear programming algorithm, minimum cost referring to the cost of developing predetermined levels of energy output. Level one in the model analysis represents an aggregation of subbasins along state boundaries and thereby optimizes energy developments over the five states of the Upper Colorado River Basin. In each of the five second level problems, energy developments over a subbasin division within the respective states are optimized. Development policies which use high salinity waters of the Upper Colorado River enable a net salinity reduction to be realized in the Colorado River at Lee Ferry, Arizona

  12. Mitigation and enhancement techniques for the Upper Mississippi River system and other large river systems

    Science.gov (United States)

    Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.

    1982-01-01

    Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management

  13. 76 FR 38975 - Safety Zone; Upper Mississippi River, Mile 856.0 to 855.0, Minneapolis, MN

    Science.gov (United States)

    2011-07-05

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 856.0 to 855.0, Minneapolis, MN AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone for all waters of the Upper Mississippi River, from Mile 856.0 to 855.0, Minneapolis, Minnesota, and...

  14. Crop domestication in the upper Madeira River basin

    Directory of Open Access Journals (Sweden)

    Charles Roland Clement

    Full Text Available Abstract Most native Amazonian crops were domesticated in the periphery of the basin. The upper Madeira River basin is an important part of this periphery where several important crops were domesticated and others are suspected to have been domesticated or arrived early. Some of these crops have been reasonably well studied, such as manioc, peanut, peach palm, coca and tobacco, while others are not as well known, such as the hot peppers Capsicum baccatum and C. frutescens, and still others need confirmation, such as cocoyam and annatto. We review the information available for manioc, peach palm, Capsicum, peanut, annatto and cocoyam. The state-of-the-art for Capsicum frutescens, annatto and cocoyam is insufficient to conclude definitively that they were domesticated in the upper Madeira, while all the others have at least one of their origins or centers of diversity in the upper Madeira.

  15. SUSPENDED AND DISSOLVED MATTER FLUXES IN THE UPPER SELENGA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Sergey Chalov

    2012-01-01

    Full Text Available We synthesized recent field-based estimates of the dissolved ions (K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3-, biogens (NO3-, NO2-, PO43-(C, mg/l, heavy metal (Fesum, Mn, Pb and dissolved load (DL, kg/day, as far as suspended sediment concentration (SSC, mg/l and suspended load (SL, kg/day along upper Selenga river and its tributaries based on literature review and preliminary results of our 2011 field campaign. The crucial task of this paper is to provide full review of Russian, Mongolian and English-language literature which concern the matter fluxes in the upper part of Selenga river (within Mongolia. The exist estimates are compared with locations of 3 main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of suspended and dissolved matter transport is indicated along Tuul-Orkhon river system (right tributary of the Selenga River where Mongolia capital Ulanbaatar, gold mine Zaamar and few other mines are located. In measurement campaigns conducted in 2005, 2006 and 2008 the increase directly after the Zaamar mining site was between 167 to 383 kg/day for Fe, between 15 and 5260 kg/day for Mn. Our field campaign indicated increase of suspended load along Tuul river from 4280 kg/day at the upstream point to 712000 kg/day below Ulaanbaatar and Zaamar. The results provide evidence on a potential connection between increased dissolved and suspended matter fluxes in transboundary rivers and zones of matter supply at industrial and mining centers, along eroded river banks and pastured lands. The gaps in the understanding of matter load fluxes within this basin are discussed with regards to determining further goals of hydrological and geochemical surveys.

  16. Changes in river discharge and hydrograph separation in the upper basins of Yangtze and Yellow Rivers on the Tibetan Plateau

    Science.gov (United States)

    Ding, Y.

    2017-12-01

    Systematic changes of river discharge and the concentration-discharge relation were explored to elucidate the response of river discharge to climate change as well as the connectivity of hydrologic and hydrochemical processes using hydrological data during 1956-2015 and chemical data during 2013-2015 at Yanshiping (YSP, 4,538 km2), Tuotuohe (TTH, 15,924 km2) and Zhimenda (ZMD, 137,704 km2) gauging sections in the upper basin of Yangtze River (UBYA), and at Huangheyan (HHY, 20,930 km2), Jimai (JM, 45,019 km2), Jungong (JG, 98,414 km2) and Tangnaihai (TNH, 121,972 km2) gauging sections in the upper basin of Yellow River (UBYE) on the Tibetan Plateau (TP). Results showed that annual discharge in UBYA presents a decreasing trend from 1950s to late 1970s and exhibits an increasing trend since 1970s due to increased temperature and precipitation. However, discharge in UBYE increases from 1950s to 1980s and decrease since late 1980s due to increased temperature and decreased precipitation. Snow/ice meltwater may play an important role on changes in river discharge from the most upper catchments, particularly for periods with increasing temperature, where snow cover, glaciers and frozen soils are widely distributed. Concentration/flux-discharge in discharge was dominated by a well-defined power law relation, with R2 values lower on rising than falling limbs. This finding has important implications for efforts to estimate annual concentrations and export of major solutes from similar catchments in cold regions where only river discharge is available. Concentrations of conservative solutes in discharge resulted from mixing of two end-members at the most upper gauging sections (YSP, TTH and HHY), and three end-members at the lower gauging sections (ZMD, JM, JG and TNH), with relatively constant solute concentrations in end-members. Relationship between the fractional contributions of meltwater and/or precipitation and groundwater and river discharge followed the same relation

  17. Status and trends of selected resources in the Upper Mississippi River System

    Science.gov (United States)

    Johnson, Barry L.; Hagerty, Karen H.

    2010-01-01

    Like other large rivers, the Upper Mississippi River System (UMRS) serves a diversity of roles. The UMRS provides commercial and recreational fishing, floodplain agriculture, drinking water for many communities, an important bird migration pathway, a variety of recreational activities, and a navigation system that transports much of the country's agricultural exports. These multiple roles present significant management challenges. Regular assessment of the condition of the river is needed to improve management plans and evaluate their effectiveness. This report provides a summary of the recent status (mean and range of conditions) and trends (change in direction over time) for 24 indicators of the ecological condition of the Upper Mississippi and Illinois Rivers using data collected through the Long Term Resource Monitoring Program (LTRMP). The 24 indicators were grouped into seven categories: hydrology, sedimentation, water quality, land cover, aquatic vegetation, invertebrates, and fish. Most of the data used in the report were collected between about 1993 and 2004, although some older data were also used to compare to recent conditions.Historical observations and current LTRMP data clearly indicate that the UMRS has been changed by human activity in ways that have diminished the ecological health of the river. The data indicate that status and trends differ among regions, and we expect that regional responses to various ecological rehabilitation techniques will differ as well. The continuing role of the LTRMP will be to provide the data needed to assess changes in river conditions and to determine how those changes relate to management actions, natural variation, and the overall ecological integrity of the river system.

  18. The effect of metal pollution on the population genetic structure of brown trout (Salmo trutta L.) residing in the River Hayle, Cornwall, UK

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Christopher J. [King' s College London, Metals Metabolism Group, Division of Diabetes and Nutritional Sciences, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Stevens, Jamie R. [University of Exeter, Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD (United Kingdom); Hogstrand, Christer [King' s College London, Metals Metabolism Group, Division of Diabetes and Nutritional Sciences, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Bury, Nicolas R., E-mail: nic.bury@kcl.ac.uk [King' s College London, Metals Metabolism Group, Division of Diabetes and Nutritional Sciences, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom)

    2011-12-15

    The River Hayle in south-west England is impacted with metals and can be divided into three regions depending on the copper and zinc concentrations: a low-metal upper section; a highly-contaminated middle section and a moderately contaminated lower section. Hayle river water is toxic to metal-naive brown trout, but brown trout are found in the upper and lower regions. The study aimed to evaluate the population genetic structure of River Hayle brown trout and to determine if the highly-contaminated section acts as a chemical barrier to migration. Population genetic analysis indicated that metals were not a barrier to gene flow within the river, but there was a high level of differentiation observed between fish sampled at two sites in the upper region, despite being separated by only 1 km. The metal tolerance trait exhibited by this brown trout population may represent an important component of the species genetic diversity in this region. - Highlights: > River Hayle, Cornwall, UK, water is toxic to metal-naive brown trout. > Some brown trout populations resident in the River Hayle are tolerant of elevated metals (e.g. copper and zinc). > Elevated metals do not affect the gene flow between sites on the river. > The population genetic structure of the brown trout in the River Hayle appears unaffected by elevated metals. - Aquatic metal pollution does not affect the gene flow between brown trout resident below and above a metal mining waste discharge point in the River Hayle, Cornwall, UK.

  19. Sedimentary record and luminescence chronology of palaeoflood events along the Gold Gorge of the upper Hanjiang River, middle Yangtze River basin, China

    Science.gov (United States)

    Guo, Yongqiang; Huang, Chun Chang; Zhou, Yali; Pang, Jiangli; Zha, Xiaochun; Fan, Longjiang; Mao, Peini

    2018-05-01

    Palaeoflood slackwater deposits (SWDs) along the river banks have important implications for the reconstruction of the past hydro-climatic events. Two palaeoflood SWD beds were identified in the Holocene loess-soil sequences on the cliff river banks along the Gold Gorge of the upper Hanjiang River by field investigation and laboratory analysis. They have recorded two palaeoflood events which were dated by optically stimulated luminescence to 3.2-2.8 ka and 2.1-1.8 ka, respectively. The reliability of the ages obtained for the two events are further confirmed by the presence of archaeological remains and good regional pedostratigraphic correlation. The peak discharges of two palaeoflood events at the studied sites were estimated to be 16,560-17,930 m3/s. A correlation with the palaeoflood events identified in the other reaches shows that great floods occurred frequently during the episodes of 3200-2800 and 2000-1700 a BP along the upper Hanjiang River valley during the last 4000 years. These phases of palaeoflood events in central China are well correlated with the climatic variability identified by δ18O record in the stalagmites from the middle Yangtze River Basin and show apparent global linkages. Palaeoflood studies in a watershed scale also imply that strengthened human activities during the Shang dynasty (BCE 1600-1100) and Han dynasty (BCE206-CE265) may have caused accelerated soil erosion along the upper Hanjiang River valley.

  20. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    Science.gov (United States)

    Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.

    2016-01-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  1. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.

    Science.gov (United States)

    García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory

    2016-07-05

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  2. Characteristics of the navigational conditions and hydrotechnical infrastructure of the Upper Notec River

    Directory of Open Access Journals (Sweden)

    Grzegorz Nadolny

    2016-12-01

    Full Text Available The Upper Notec River is an important part of the waterway which is connecting Warta River and Bydgoszcz Canal. Tourist attractions are main reason for tourists visiting of the "Wielkopolska Loops". The article characterized hydrotechnical infrastructure, hydrological and depth conditions of the waterway which have an impact on the development of tourism and inland load shipping.

  3. Stomach Content of a Juvenile Bolivian River Dolphin (Inia geoffrensis boliviensis) from the Upper Madeira Basin, Bolivia

    NARCIS (Netherlands)

    Aliaga-Rossel, E.; Beerman, A.S.; Sarmiento, J.

    2010-01-01

    The article presents a study about the stomach content of a juvenile Bolivian river dolphin (Inia geoffrensis boliviensis), an endemic subspecies of the Amazon River dolphin, found in the upper Madeira River basin in Bolivia. The study finds that the stomach of Bolivian river dolphin contained a

  4. 75 FR 1706 - Drawbridge Operation Regulations; Upper Mississippi River, Dubuque, IA

    Science.gov (United States)

    2010-01-13

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket Number USCG-2009-1097] Drawbridge Operation Regulations; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District has...

  5. 76 FR 6694 - Drawbridge Operation Regulation; Upper Mississippi River, Keokuk, IA

    Science.gov (United States)

    2011-02-08

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket Number USCG-2011-0029] Drawbridge Operation Regulation; Upper Mississippi River, Keokuk, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has...

  6. Dissolution of the Upper Seven Rivers and Salado salt in the interior Palo Duro Basin, Texas: Revision: Topical report

    International Nuclear Information System (INIS)

    DeConto, R.T.; Murphy, P.J.

    1987-09-01

    The Upper Seven Rivers and Salado Formations contain the uppermost salts within the interior Palo Duro Basin, Stratigraphic and structural evidence based on geophysical well logs indicate that both dissolution and facies change have influenced the thickness of these uppermost salts. The magnitude of vertical salt loss due to dissolution is interminable at this time because original salt thickness is unknown. Gradual thinning of the Upper Seven Rivers Formation is recognized from south to north across the Palo Duro Basin. Anhydrites within the formation pinch out toward the basin margins, indicating that section loss is in part depositionally controlled. Additionally, informal subdivision of the Upper Seven Rivers Formation suggests that salt dissolution has occurred in the uppermost salt. A northeast-trending zone of thin Upper Seven Rivers Formation in portions of Deaf Smith, Randall, Castro, and Parmer Counties is possibly related to Tertiary dissolution. In New Mexico, local thinning of the Upper Seven Rivers Formation may be associated with faulting. Triassic erosion on uplifted fault blocks has affected the Upper Permian section. The Salado salt margin is located within the interior Palo Duro Basin. Geophysical well logs and core evidence indicate that the salt margin has migrated basinward as a result of dissolution. Permian dissolution probably contributed to some salt loss. 106 refs., 31 figs., 2 tabs

  7. Synthesis of Upper Verde River research and monitoring 1993-2008

    Science.gov (United States)

    Daniel G. Neary; Alvin L. Medina; John N. Rinne

    2012-01-01

    This volume is a state-of-knowledge synthesis of monitoring and research conducted on the Upper Verde River (UVR) of Arizona. It contains information on the history, hydrology, soils, geomorphology, vegetation, and fish fauna of the area that can help land managers and other scientists in successfully conducting ecosystem management and future monitoring and research...

  8. Hydraulic and sedimentary processes causing anastomosing morphology of the upper Columbia River, British Columbia, Canada

    NARCIS (Netherlands)

    Makaske, B.; Smith, D.G.; Berendsen, H.J.A.; Boer, de A.G.; Nielen-Kiezebrink, van M.F.; Locking, T.

    2009-01-01

    The upper Columbia River, British Columbia, Canada, shows typical anastomosing morphology - multiple interconnected channels that enclose floodbasins - and lateral channel stability We analysed field data on hydraulic and sedimentary processes and show that the anastomosing morphology of the upper

  9. 77 FR 69761 - Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA

    Science.gov (United States)

    2012-11-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2012-0995] Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  10. 75 FR 76279 - Drawbridge Operation Regulation; Upper Mississippi River, Burlington, IA

    Science.gov (United States)

    2010-12-08

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-1058] Drawbridge Operation Regulation; Upper Mississippi River, Burlington, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  11. 78 FR 72022 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Science.gov (United States)

    2013-12-02

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-0964] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation from drawbridge regulation. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  12. 76 FR 79066 - Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA

    Science.gov (United States)

    2011-12-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2011-1018] Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  13. 76 FR 72308 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Science.gov (United States)

    2011-11-23

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2011-1039] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  14. 78 FR 76750 - Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA

    Science.gov (United States)

    2013-12-19

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-1008] Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation from drawbridge regulations. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  15. 75 FR 70817 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Science.gov (United States)

    2010-11-19

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-1039] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  16. 75 FR 78162 - Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA

    Science.gov (United States)

    2010-12-15

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-1084] Drawbridge Operation Regulation; Upper Mississippi River, Clinton, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander, Eighth Coast Guard District, has issued a...

  17. 77 FR 69759 - Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA

    Science.gov (United States)

    2012-11-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2012-1002] Drawbridge Operation Regulation; Upper Mississippi River, Dubuque, IA AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  18. Assessing summer and fall chinook salmon restoration in the Upper Clearwater River and principal tributaries. Annual report 1994

    International Nuclear Information System (INIS)

    Arnsberg, B.D.; Statler, D.P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a

  19. Alligator Rivers Region

    International Nuclear Information System (INIS)

    1992-01-01

    An introduction to the Alligator Rivers Region is presented. It contains general information regarding the physiography, climate, hydrology and mining of the region. The Alligator Rivers Region is within an ancient basin, the Pine Creek Geosyncline, which has an area of approximately 66000 km 2 . The Geosyncline has a history of mineral exploitation dating back to 1865, during which time 16 metals have been extracted (silver, arsenic, gold, bismuth, cadmium, cobalt, copper, iron, manganese, molybdenum, lead, tin, tantalum, uranium, tungsten, zinc). Uranium exploration in the Pine Creek Geosyncline was stimulated by the discovery in 1949 of secondary uranium mineralisation near Rum June, 70 km south-east of Darwin. This was followed by a decade of intense exploration activity resulting in the discoveries of economic uranium ore bodies at Rum Jungle and in the upper reaches of the South Alligator River Valley. All the known major uranium deposits of the East Alligator River uranium field have been discovered since 1969. The present known resources of the Geosyncline are approximately 360 000 tonnes of contained U 3 O 8 . 2 refs., 2 figs., 1 tab

  20. The effect of metal pollution on the population genetic structure of brown trout (Salmo trutta L.) residing in the River Hayle, Cornwall, UK

    International Nuclear Information System (INIS)

    Durrant, Christopher J.; Stevens, Jamie R.; Hogstrand, Christer; Bury, Nicolas R.

    2011-01-01

    The River Hayle in south-west England is impacted with metals and can be divided into three regions depending on the copper and zinc concentrations: a low-metal upper section; a highly-contaminated middle section and a moderately contaminated lower section. Hayle river water is toxic to metal-naive brown trout, but brown trout are found in the upper and lower regions. The study aimed to evaluate the population genetic structure of River Hayle brown trout and to determine if the highly-contaminated section acts as a chemical barrier to migration. Population genetic analysis indicated that metals were not a barrier to gene flow within the river, but there was a high level of differentiation observed between fish sampled at two sites in the upper region, despite being separated by only 1 km. The metal tolerance trait exhibited by this brown trout population may represent an important component of the species genetic diversity in this region. - Highlights: → River Hayle, Cornwall, UK, water is toxic to metal-naive brown trout. → Some brown trout populations resident in the River Hayle are tolerant of elevated metals (e.g. copper and zinc). → Elevated metals do not affect the gene flow between sites on the river. → The population genetic structure of the brown trout in the River Hayle appears unaffected by elevated metals. - Aquatic metal pollution does not affect the gene flow between brown trout resident below and above a metal mining waste discharge point in the River Hayle, Cornwall, UK.

  1. Temporal Analyses of Select Macroinvertebrates in the Upper Mississippi River System, 1992-1995

    National Research Council Canada - National Science Library

    Sauer, Jennifer

    1998-01-01

    The annual variability in mayflies (Ephemeroptera), fingernail clams (Sphaeriidae), and midges (chironomidae) in six study areas of the Upper Mississippi River System from 1992 to 1995 was examined...

  2. Kinbasket Reservoir and Upper Columbia River Kokanee spawner index 2005

    International Nuclear Information System (INIS)

    Manson, H.; Porto, L.

    2006-01-01

    The results of an escapement survey for tributaries to the Kinbasket Reservoir and the Upper Columbia River were provided. Two aerial surveys were conducted during October, 2005. The Kokanee were grouped in schools and summed in order to provide independent estimates. Otoliths of the fish were also extracted in order to determine their age. Results of the survey showed that an estimated 236,760 Kokanee fish were spawning within 11 index streams and rivers within the Kinbasket Reservoir drainage area. Mean fork length was estimated at 24.7 cm. While the Columbia River continues to be the most important Kokanee spawning location in the Kinbasket Reservoir drainage area, the 2005 Kokanee escapement index was the third lowest recorded since 1996. It was concluded that declining fish size and declining abundance may indicate reduced reservoir productivity. 5 refs., 1 tab., 4 figs

  3. Geochemistry of the Upper Parana River floodplain. Study of the Garcas Pond and Patos Pond

    International Nuclear Information System (INIS)

    Marcelo Bevilacqua Remor; Silvio Cesar Sampaio; Marcio Antonio Vilas Boas; Ralpho Rinaldo dos Reis

    2015-01-01

    The aim of this study was to investigate the temporal evolution of the supply of chemical elements to the Upper Parana River floodplain and identify trends in the geochemistry of its drainage basin. The primary factor that regulates the supply of chemical elements of the Upper Parana River floodplain is the flood pulse, which can be magnified by the El Nino-Southern Oscillation. Garcas Pond is affected by agriculture, urbanization, discharge of industrial effluents and hydroelectric power production activities. Patos Pond is affected by sugarcane burning, gold mining, agriculture and urbanization. (author)

  4. A Submersed Macrophyte Index of Condition for the Upper Mississippi River

    Science.gov (United States)

    Portions of the Upper Mississippi River are listed as impaired for aquatic life use under section 303(d) of the United States Clean Water Act by the State of Minnesota’s Pollution Control Agency and Wisconsin’s Department of Natural Resources for exceeding turbidity and eutrophic...

  5. Hydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida

    Science.gov (United States)

    Metz, P.A.; Lewelling, B.R.

    2009-01-01

    The upper Peace River from Bartow to Fort Meade, Florida, is described as a groundwater recharge area, reflecting a reversal from historical groundwater discharge patterns that existed prior to the 1950s. The upper Peace River channel and floodplain are characterized by extensive karst development, with numerous fractures, crevasses, and sinks that have been eroded in the near-surface and underlying carbonate bedrock. With the reversal in groundwater head gradients, river water is lost to the underlying groundwater system through these karst features. An investigation was conducted to evaluate the hydrologic conditions that influence streamflow losses in the karst region of the upper Peace River. The upper Peace River is located in a basin that has been altered substantially by phosphate mining and increases in groundwater use. These alterations have changed groundwater flow patterns and caused streamflow declines through time. Hydrologic factors that have had the greatest influence on streamflow declines in the upper Peace River include the lowering of the potentiometric surfaces of the intermediate aquifer system and Upper Floridan aquifer beneath the riverbed elevation due to below-average rainfall (droughts), increases in groundwater use, and the presence of numerous karst features in the low-water channel and floodplain that enhance the loss of streamflow. Seepage runs conducted along the upper Peace River, from Bartow to Fort Meade, indicate that the greatest streamflow losses occurred along an approximate 2-mile section of the river beginning about 1 mile south of the Peace River at Bartow gaging station. Along the low-water and floodplain channel of this 2-mile section, there are about 10 prominent karst features that influence streamflow losses. Losses from the individual karst features ranged from 0.22 to 16 cubic feet per second based on measurements made between 2002 and 2007. The largest measured flow loss for all the karst features was about 50 cubic

  6. 78 FR 16411 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-03-15

    ... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the Quad City Heart...-366-9826. [[Page 16412

  7. Harmonic analyses of stream temperatures in the Upper Colorado River Basin

    Science.gov (United States)

    Steele, T.D.

    1985-01-01

    Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)

  8. 77 FR 40518 - Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York...

    Science.gov (United States)

    2012-07-10

    ... 1625-AA00 Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York Bay, Lower New York Bay; New York, NY ACTION: Final rule. SUMMARY: The Coast Guard is establishing seven temporary safety zones for swim events within the Captain of the Port (COTP) New York Zone. These...

  9. Colonial waterbird predation on Lost River and Shortnose suckers in the Upper Klamath Basin

    Science.gov (United States)

    Evans, Allen F.; Hewitt, David A.; Payton, Quinn; Cramer, Bradley M.; Collis, Ken; Roby, Daniel D.

    2016-01-01

    We evaluated predation on Lost River Suckers Deltistes luxatus and Shortnose Suckers Chasmistes brevirostris by American white pelicans Pelecanus erythrorhynchos and double-crested cormorants Phalacrocorax auritus nesting at mixed-species colonies in the Upper Klamath Basin of Oregon and California during 2009–2014. Predation was evaluated by recovering (detecting) PIT tags from tagged fish on bird colonies and calculating minimum predation rates, as the percentage of available suckers consumed, adjusted for PIT tag detection probabilities but not deposition probabilities (i.e., probability an egested tag was deposited on- or off-colony). Results indicate that impacts of avian predation varied by sucker species, age-class (adult, juvenile), bird colony location, and year, demonstrating dynamic predator–prey interactions. Tagged suckers ranging in size from 72 to 730 mm were susceptible to cormorant or pelican predation; all but the largest Lost River Suckers were susceptible to bird predation. Minimum predation rate estimates ranged annually from <0.1% to 4.6% of the available PIT-tagged Lost River Suckers and from <0.1% to 4.2% of the available Shortnose Suckers, and predation rates were consistently higher on suckers in Clear Lake Reservoir, California, than on suckers in Upper Klamath Lake, Oregon. There was evidence that bird predation on juvenile suckers (species unknown) in Upper Klamath Lake was higher than on adult suckers in Upper Klamath Lake, where minimum predation rates ranged annually from 5.7% to 8.4% of available juveniles. Results suggest that avian predation is a factor limiting the recovery of populations of Lost River and Shortnose suckers, particularly juvenile suckers in Upper Klamath Lake and adult suckers in Clear Lake Reservoir. Additional research is needed to measure predator-specific PIT tag deposition probabilities (which, based on other published studies, could increase predation rates presented herein by a factor of roughly 2

  10. Effects of mine drainage on the River Hayle, Cornwall. Factors affecting concentrations of copper, zinc, and iron in water, sediments and dominant invertebrate fauna

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.E.

    1977-02-15

    Concentrations of copper, zinc and iron were measured in waters, sediments and invertebrates collected from the River Hayle. In river water at least 70% of copper and iron was associated with the ''particulate'' fraction whereas 80% of zinc was in the ''soluble'' form. Although total concentrations of zinc in water exceeded those of copper approximately ten fold, copper predominated over zinc in the sediments by a factor of approximately three. Iron was the most abundant metal recorded in both water and sediments. Seasonal differences in ''total'' metal content of waters suggested that concentrations of copper, zinc and iron increased during periods of high flow and decreased during lower flows. Copper concentrations in the sediment, unlike zinc and iron, showed markedly higher values during the summer sampling period when flows were minimal. In the ''free-living'' Trichoptera larvae, concentrations of copper and zinc in the tissue appeared to follow copper and zinc levels in the water. Similar relationships in Odonata and Plecoptera larvae were not obtained. Factors affecting animal/metal relationships are discussed with particular reference to adaptation shown by organisms exposed to high concentrations of heavy metals in their environment.

  11. Food and condition of the catfish Synodontis in Upper Benue River ...

    African Journals Online (AJOL)

    Investigation was carried out on food and condition of the Catfish, Synodontis species in the Upper Benue River Basin, Nigeria from March to June, 2000. Fish samples were obtained twice monthly from different fish landing sites. Analysis showed that there was no significant difference between the sizes of males and ...

  12. Population trends of smallmouth bass in the upper Colorado River basin with an evaluation of removal effects

    Science.gov (United States)

    Breton, André R.; Winkelman, Dana L.; Hawkins, John A.; Bestgen, Kevin R.

    2014-01-01

    Smallmouth bass Micropterus dolomieu were rare in the upper Colorado River basin until the early 1990’s when their abundance dramatically increased in the Yampa River sub-basin. Increased abundance was due primarily to colonization from Elkhead Reservoir, which was rapidly drawn down twice, first to make improvements to the dam (1992) and a second time for reservoir expansion (2005), and allowed escapement of resident bass to the river through an unscreened outlet. Elkhead Reservoir is located on Elkhead Creek, a tributary of the Yampa River. The rapid Elkhead Reservoir drawdown in 1992 was followed by a period of drought years with low, early runoff in the Yampa River sub-basin that benefitted smallmouth bass reproduction. This combination of factors allowed smallmouth bass to establish a self-sustaining population in the Yampa River. Subsequently, successful recruitment allowed smallmouth bass to disperse upstream and downstream in the Yampa River and eventually move into the downstream Green River. Smallmouth bass were also likely introduced, by unknown means, into the upper Colorado River and have since dispersed in this sub-basin. The rapid increase of smallmouth bass in the upper Colorado River basin overlapped with significant reductions in native fish populations in some locations. The threat to these native fishes initiated intensive mechanical removal of smallmouth bass by the Upper Colorado River Endangered Fish Recovery Program.In general, three factors explain fluctuating patterns in smallmouth bass density in the upper Colorado River basin in the last decade: reductions due to electrofishing removal, bass recovery after exploitation due to recruitment and immigration, and changes due to environmental factors not related to electrofishing and other management actions. Our analyses indicated that smallmouth bass densities were substantially reduced in most years by 7 electrofishing removal efforts. Less often, but dramatically in some cases

  13. Environmental quality assessment of Upper Birim River (Ghana)

    International Nuclear Information System (INIS)

    Asmah, M. H.; Hodgson, I. O. A.; Cobbina, S. J.; Ablordey, A. A.

    2013-01-01

    The communities along the Upper Birim River use the water resource for domestic and agricultural purposes, and the environmental quality of the river was assessed to determine the level of pollution and associated health risk from consumption and direct contact with the water. The water quality was assessed by the physico-chemical and bacteriological quality parameters. In addition, the impacts of land use activities along the river were also evaluated. Water samples were collected from 6 locations from November 2010 to January 2011 (dry season), and March to May 2011 (wet season). While the mean values of the physico-chemical parameters were within the Ghana Standards Authority (GSA) safety limits for drinking water, the levels of Fe (33.56 ± 31.94 mg/L), As (0.052± 0.088 mg/L) and Mn (4.01± 4.42 mg/L) were higher than the recommended GSA limits. The faecal contaminations were high, as the mean total coliforms, mean faecal coliforms and the level of faecal streptococci were respectively 1925± 708 cfu/100 ml, 1073±900 cfu/100 mL and 16±9 cfu/100 ml. The water quality index (WQI) of 71.79 for the Birim River indicated that most uses of the water were protected, but a few might be threatened or impaired. Hazard quotients determined for Hg, As and Ag were less than 1 at all sampling stations, implying low health risk. Provision of adequate sanitary facilities, enforcement of environmental regulations and introduction of livelihood diversification programmes would safeguard the integrity of the River from adverse anthropogenic activities. (au)

  14. 1994 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    .... The six LTRMP study reaches are Pools 4 (excluding Lake Pepin), 8,13, and 26 of the Upper Mississippi River, an unimpounded reach of the Mississippi River near Cape Girardeau, Missouri and the La Grange Pool of the Illinois River...

  15. 1996 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Burkhardt, Randy

    1997-01-01

    .... The six LTRMP study reaches are Pools 4 (excluding Lake Pepin), 8, 13, and 26 of the Upper Mississippi River, an unimpounded reach of the Mississippi River near Cape Girardeau, Missouri, and the La Grange Pool of the Illinois River...

  16. Upper Illinois River basin

    Science.gov (United States)

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  17. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    Science.gov (United States)

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in

  18. Spatial Structure and Temporal Variation of Fish Communities in the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Chick, John H; Ickes, Brian S; Pegg, Mark A; Barko, Valerie A; Hrabik, Robert A; Herzog, David P

    2005-01-01

    Variation in community composition (presence/absence data) and structure (relative abundance) of Upper Mississippi River fishes was assessed using data from the Long Term Resource Monitoring Program...

  19. Metal Chemical and Isotope Characterisation in the Upper Loire River Basin, France

    Science.gov (United States)

    Widory, D.; Nigris, R.; Morard, A.; Gassama, N.; Poirier, A.; Bourrain, X.

    2016-12-01

    The Water Framework Directive (WFD) elaborated by the European Commission regulates water resources in the EC based on five years management plans. A new management plan that started in 2016 imposes strict water quality criteria to its member states, including good status thresholds for metallic contaminants. The Loire River, the most important river in France, flows through areas with lithologies naturally containing high metal concentrations in the upper part of its basin. Understanding these metal fluxes into the river is thus a prerequisite to understand their potential impact on the quality of its water in regards to the criteria defined by the WFD. The Massif Central, a residue of the Hercynian chain, is composed of granitic and volcanic rocks. Both its upstream position in the Loire basin and its numerous metal mineralizations made this region a good candidate for characterizing the natural metal geochemical background of its surface waters. To fulfill this objective we focused on the Pb, Cd and Zn chemical and isotope characteristics of selected non-anthropized small watersheds. The investigated small watersheds were selected for supposedly draining a single lithology and undergoing (as far as possible) negligible to no anthropogenic pressure. Results showed that although the high metal potential of the upper part of the Loire River basin has been highly exploited by humans for centuries, metal concentrations during the hydrological cycle are still under the guidelines defined by the WFD. Isotope compositions/ratios are strongly related to the corresponding lithologies along the rivers and help precisely define the local geochemical background that can then be used to identify and quantify any anthropogenic inputs downstream.

  20. Occurence of the Quagga Mussel Dreissena bugensis and the Zebra Mussel Dreissena polymorha in the Upper Mississippi River System

    Science.gov (United States)

    This manuscript reports on a range expansion of the invasive quagga mussel in the Great Rivers of the Upper Missippi River Basin. This research will be of interest to great river ecologists and to invasive species specialists.

  1. 77 FR 20716 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2012-04-06

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation...) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation...

  2. 77 FR 3607 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2012-01-25

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation...) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation...

  3. 78 FR 79312 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-12-30

    ... deviation from the operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow.... Army Rock Island Arsenal requested a temporary deviation for the Rock Island Railroad and Highway...

  4. 75 FR 17561 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2010-04-07

    ... issued a temporary deviation from the regulation governing the operations of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, Mile 482.9, Rock Island, Illinois. The deviation is... Manager, Docket Operations, telephone (202) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island...

  5. 76 FR 9223 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2011-02-17

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation...) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation...

  6. 75 FR 22228 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2010-04-28

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, Mile 482.9, Rock Island, Illinois. The deviation is... Manager, Docket Operations, telephone (202) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island...

  7. 77 FR 5398 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2012-02-03

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation...) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation...

  8. 75 FR 68974 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2010-11-10

    ..., has issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois... Operations, telephone 202-366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a...

  9. Interannual variability of phytoplankton in the main rivers of the Upper Paraná River floodplain, Brazil: influence of upstream reservoirs

    Directory of Open Access Journals (Sweden)

    LC. Rodrigues

    Full Text Available The interannual variation of phytoplankton communities in the three main rivers of the Upper Paraná River floodplain is evaluated in relation to changes in the hydrosedimentological regime. These changes are a result of climatic variability and the formation of Porto Primavera Reservoir, located at the upper Paraná River. Phytoplankton species richness and density were investigated in rivers during a prior period (1993-1994 and eight years after reservoir impoundment (2000-2007. Multiple analyses were conducted to test the differences between these time periods in order to find predictor variables for phytoplankton attributes. A total of 454 phytoplanktonic taxa were found. The regression analysis revealed significant differences between periods. In the years following construction of the Porto Primavera dam, species richness was lower in the Paraná River and density was higher in the three rivers. In general, the algal density decreased from 2005 to 2007. Diatoms and cyanobacteria contributed significantly to the total density during the period from March 1993 to February 1994. The years 2000-2007 presented the lowest diatom contribution to species richness and the highest cyanobacteria contribution. From 2000 on, cryptomonads and cyanobacteria dominated. The interannual variability of phytoplankton was probably influenced by changes in hydrosedimentological regime due to climatic variations (La Niña and El Niño - Southern Oscillation events - ENSO and the operational procedures associated with an upstream reservoirs. Studies on climatic variability and its effects on hydrosedimentological regimes of the Paraná, Baía and Ivinhema rivers and the biota therein are necessary to obtain subsidies for management, including decisions related to the operation of dams upstream and downstream of the study area, with the purpose of minimizing risks to the Environmental Protection Area.

  10. Hybridization threatens shoal bass populations in the Upper Chattahoochee River Basin: Chapter 37

    Science.gov (United States)

    Dakin, Elizabeth E; Porter, Brady A.; Freeman, Byron J.; Long, James M.; Tringali, Michael D.; Long, James M.; Birdsong, Timothy W.; Allen, Micheal S.

    2015-01-01

    Shoal bass are native only to the Apalachicola-Chattahoochee-Flint river system of Georgia, Alabama, and Florida, and are vulnerable to extinction as a result of population fragmentation and introduction of non-native species. We assessed the genetic integrity of isolated populations of shoal bass in the upper Chattahoochee River basin (above Lake Lanier, Big Creek, and below Morgan Falls Dam) and sought to identify rates of hybridization with non-native, illegally stocked smallmouth bass and spotted bass.

  11. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  12. Development and implications of a sediment budget for the upper Elk River watershed, Humboldt County

    Science.gov (United States)

    Lee H. MacDonald; Michael W. Miles; Shane Beach; Nicolas M. Harrison; Matthew R. House; Patrick Belmont; Ken L. Ferrier

    2017-01-01

    A number of watersheds on the North Coast of California have been designated as sediment impaired under the Clean Water Act, including the 112 km2 upper Elk River watershed that flows into Humboldt Bay just south of Eureka. The objectives of this paper are to: 1) briefly explain the geomorphic context and anthropogenic uses of the Elk River...

  13. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  14. Do riparian plant community characteristics differ between Tamarix (L.) invaded and non-invaded sites on the upper Verde River, Arizona?

    Science.gov (United States)

    Tyler D. Johnson; Thomas E. Kolb; Alvin L. Medina

    2009-01-01

    Invasion by Tamarix (L.) can severely alter riparian areas of the western U.S., which are globally rare ecosystems. The upper Verde River, Arizona, is a relatively free-flowing river and has abundant native riparian vegetation. Tamarix is present on the upper Verde but is a minor component of the vegetation (8% of stems). This...

  15. 78 FR 18933 - Drawbridge Operation Regulations; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2013-03-28

    ... operating schedule that governs the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation is necessary to allow the Quad City Marathon..., Docket Operations, telephone (202) 366-9826. SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal...

  16. 76 FR 9224 - Drawbridge Operation Regulation; Upper Mississippi River, Rock Island, IL

    Science.gov (United States)

    2011-02-17

    ... issued a temporary deviation from the regulation governing the operation of the Rock Island Railroad and Highway Drawbridge across the Upper Mississippi River, mile 482.9, at Rock Island, Illinois. The deviation.... SUPPLEMENTARY INFORMATION: The U.S. Army Rock Island Arsenal requested a temporary deviation for the Rock Island...

  17. Comparison of historical streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon

    Science.gov (United States)

    Hess, Glen W.; Stonewall, Adam J.

    2014-01-01

    In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The

  18. Water and sediment temperatures at mussel beds in the upper Mississippi River basin

    Science.gov (United States)

    Newton, Teresa J.; Sauer, Jennifer; Karns, Byron

    2013-01-01

    Native freshwater mussels are in global decline and urgently need protection and conservation. Declines in the abundance and diversity of North American mussels have been attributed to human activities that cause pollution, waterquality degradation, and habitat destruction. Recent studies suggest that effects of climate change may also endanger native mussel assemblages, as many mussel species are living close to their upper thermal tolerances. Adult and juvenile mussels spend a large fraction of their lives burrowed into sediments of rivers and lakes. Our objective was to measure surface water and sediment temperatures at known mussel beds in the Upper Mississippi (UMR) and St. Croix (SCR) rivers to estimate the potential for sediments to serve as thermal refugia. Across four mussel beds in the UMR and SCR, surface waters were generally warmer than sediments in summer, and were cooler than sediments in winter. This suggests that sediments may act as a thermal buffer for mussels in these large rivers. Although the magnitude of this effect was usually cause mortality in laboratory studies. These data suggest that elevated water temperatures resulting from global warming, thermal discharges, water extraction, and/or droughts have the potential to adversely affect native mussel assemblages.

  19. Summary of sediment data from the Yampa river and upper Green river basins, Colorado and Utah, 1993-2002

    Science.gov (United States)

    Elliott, John G.; Anders, Steven P.

    2004-01-01

    The water resources of the Upper Colorado River Basin have been extensively developed for water supply, irrigation, and power generation through water storage in upstream reservoirs during spring runoff and subsequent releases during the remainder of the year. The net effect of water-resource development has been to substantially modify the predevelopment annual hydrograph as well as the timing and amount of sediment delivery from the upper Green River and the Yampa River Basins tributaries to the main-stem reaches where endangered native fish populations have been observed. The U.S. Geological Survey, in cooperation with the Colorado Division of Wildlife and the U.S. Fish and Wildlife Service, began a study to identify sediment source reaches in the Green River main stem and the lower Yampa and Little Snake Rivers and to identify sediment-transport relations that would be useful in assessing the potential effects of hydrograph modification by reservoir operation on sedimentation at identified razorback spawning bars in the Green River. The need for additional data collection is evaluated at each sampling site. Sediment loads were calculated at five key areas within the watershed by using instantaneous measurements of streamflow, suspended-sediment concentration, and bedload. Sediment loads were computed at each site for two modes of transport (suspended load and bedload), as well as for the total-sediment load (suspended load plus bedload) where both modes were sampled. Sediment loads also were calculated for sediment particle-size range (silt-and-clay, and sand-and-gravel sizes) if laboratory size analysis had been performed on the sample, and by hydrograph season. Sediment-transport curves were developed for each type of sediment load by a least-squares regression of logarithmic-transformed data. Transport equations for suspended load and total load had coefficients of determination of at least 0.72 at all of the sampling sites except Little Snake River near

  20. A Summary of Fish Data in Six Reaches of The Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 1,994 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1993...

  1. A proposal of conceptual model for Pertuso Spring discharge evaluation in the Upper Valley of Aniene River

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa

    2016-10-01

    Full Text Available The Upper Aniene River basin is part of a large karst aquifer, which interacts with the river, and represents the most important water resource in the southeast part of Latium Region, Central Italy, used for drinking, agriculture and hydroelectric supplies. This work provides hydrogeochemical data and their interpretations for 1 spring and 2 cross section of Aniene River, monitored from July 2014 to December 2015, in the Upper Valley of Aniene River, to identify flow paths and hydrogeochemical processes governing groundwater-surface water interactions in this region. These activities deal with the Environmental Monitoring Plan made for the catchment work project of the Pertuso Spring, in the Upper Valley of Aniene River, which is going to be exploited to supply an important drinking water network in the South part of Rome district. Discharge measurements and hydrogeochemical data were analyzed to develop a conceptual model of aquifer-river interaction, with the aim of achieving proper management and protection of this important hydrogeological system. All groundwater samples are characterized as Ca-HCO3 type. Geochemical modeling and saturation index computation of the water samples show that groundwater and surface water chemistry in the study area was evolved through the interaction with carbonate minerals. All groundwater samples were undersaturated with respect to calcite and dolomite, however some of the Aniene River samples were saturated with respect to dolomite. The analysis of Mg2+/Ca2+ ratios indicates that the dissolution of carbonate minerals is important for groundwater and surface water chemistry, depending on the hydrological processes, which control the groundwater residence time and chemical equilibria in the aquifer.

  2. Projected risk of population declines for native fish species in the Upper Mississippi River

    Science.gov (United States)

    Crimmins, S.M.; Boma, P.; Thogmartin, W.E.

    2015-01-01

    Conservationists are in need of objective metrics for prioritizing the management of habitats. For individual species, the threat of extinction is often used to prioritize what species are in need of conservation action. Using long-term monitoring data, we applied a Bayesian diffusion approximation to estimate quasi-extinction risk for 54 native fish species within six commercial navigation reaches along a 1350-km gradient of the upper Mississippi River system. We found a strong negative linear relationship between quasi-extinction risk and distance upstream. For some species, quasi-extinction estimates ranged from nearly zero in some reaches to one in others, suggesting substantial variability in threats facing individual river reaches. We found no evidence that species traits affected quasi-extinction risk across the entire system. Our results indicate that fishes within the upper Mississippi River system face localized threats that vary across river impact gradients. This suggests that conservation actions should be focused on local habitat scales but should also consider the additive effects on downstream conditions. We also emphasize the need for identification of proximate mechanisms behind observed and predicted population declines, as conservation actions will require mitigation of such mechanisms. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  4. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  5. Reproductive aspects of piranhas Serrasalmus spilopleura and Serrasalmus marginatus into the Upper Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    Agostinho C. S.

    2003-01-01

    Full Text Available Construction of the Itaipu Dam, 150 km downstream from Sete Quedas Falls, resulted in the drowning of that natural geographic barrier, with consequent invasion of Serrasalmus marginatus in the upper stream. This event was followed by the reduction in the abundance of the native species, S. spilopleura. Analyzes of reproductive activity these species revealed that in lotic waters S. marginatus had a very intense reproductive activity while activity of S. spilopleura was nil. This, probably made it possible for the invading species to occupy new environments into the Upper Paraná River, using the river as an entry port. In the 1987-1988 period there was a marked decline in reproductive activity of S. spilopleura reflecting the negative effects of its interaction with the invading species, S. marginatus. The assertiveness of S. marginatus in caring for its offspring and aggressiveness in establishing its feeding territory may be the determining factor for its competitive superiority over S. spilopleura, and consequently its success in colonizing the Upper Paraná River. In addition to the negative interference of S. marginatus, a possible recruitment failure of S. spilopleura could have benefited the colonization of the floodplain by the invader species.

  6. Reproductive aspects of piranhas Serrasalmus spilopleura and Serrasalmus marginatus into the Upper Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    C. S. Agostinho

    Full Text Available Construction of the Itaipu Dam, 150 km downstream from Sete Quedas Falls, resulted in the drowning of that natural geographic barrier, with consequent invasion of Serrasalmus marginatus in the upper stream. This event was followed by the reduction in the abundance of the native species, S. spilopleura. Analyzes of reproductive activity these species revealed that in lotic waters S. marginatus had a very intense reproductive activity while activity of S. spilopleura was nil. This, probably made it possible for the invading species to occupy new environments into the Upper Paraná River, using the river as an entry port. In the 1987-1988 period there was a marked decline in reproductive activity of S. spilopleura reflecting the negative effects of its interaction with the invading species, S. marginatus. The assertiveness of S. marginatus in caring for its offspring and aggressiveness in establishing its feeding territory may be the determining factor for its competitive superiority over S. spilopleura, and consequently its success in colonizing the Upper Paraná River. In addition to the negative interference of S. marginatus, a possible recruitment failure of S. spilopleura could have benefited the colonization of the floodplain by the invader species.

  7. Reproductive aspects of piranhas Serrasalmus spilopleura and Serrasalmus marginatus into the upper Paraná River, Brazil.

    Science.gov (United States)

    Agostinho, C S

    2003-02-01

    Construction of the Itaipu Dam, 150 km downstream from Sete Quedas Falls, resulted in the drowning of that natural geographic barrier, with consequent invasion of Serrasalmus marginatus in the upper stream. This event was followed by the reduction in the abundance of the native species, S. spilopleura. Analyzes of reproductive activity these species revealed that in lotic waters S. marginatus had a very intense reproductive activity while activity of S. spilopleura was nil. This, probably made it possible for the invading species to occupy new environments into the Upper Paraná River, using the river as an entry port. In the 1987-1988 period there was a marked decline in reproductive activity of S. spilopleura reflecting the negative effects of its interaction with the invading species, S. marginatus. The assertiveness of S. marginatus in caring for its offspring and aggressiveness in establishing its feeding territory may be the determining factor for its competitive superiority over S. spilopleura, and consequently its success in colonizing the Upper Paraná River. In addition to the negative interference of S. marginatus, a possible recruitment failure of S. spilopleura could have benefited the colonization of the floodplain by the invader species.

  8. Hydraulic Evaluation of Discharge Over Submerged Rock Wing Dams on the Upper Mississippi River

    National Research Council Canada - National Science Library

    Hendrickson, Jon

    1999-01-01

    .... This analysis was part of a study, done through the Corps of Engineers' Land Management System, to determine the impacts of zebra mussels on water quality and ecological conditions in the Upper Mississippi River (UMR). Wing dams...

  9. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Upper Naches River, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Upper Naches River Valley and Nile Slide area of interest on September 30th,...

  10. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  11. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  12. Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Dolloff, Dr. Charles A [USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech; Mathews, David C [Tennessee Valley Authority (TVA)

    2013-01-01

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.

  13. Abiotic features of a river from the Upper Tietê River Basin (SP, Brazil along an environmental gradient

    Directory of Open Access Journals (Sweden)

    Katharina Eichbaum Esteves

    2015-06-01

    Full Text Available Aim: This study aimed to assess the spatial and seasonal variation of the water quality and physical habitat characteristics along the upper-middle stretch of the Paraitinga River, a tributary of Tietê River, considering the potential influence of different riparian conditions along the stretch studied.MethodsSixteen sites with different riparian vegetation, including native forest, secondary forest, pasture, and eucalyptus were sampled during the dry and rainy seasons of 2004/2005, before the damming of the Paraitinga Reservoir. Several physicochemical and habitat parameters were determined and data analyzed in relation to spatial distribution and potential influence of riparian conditions.ResultsWater quality parameters were in general within the limits established by CONAMA for Class 2 waters, except for turbidity and total phosphorus. There were seasonal and spatial differences in the limnological parameters along the stretch studied and apparently they were related to point specific influences associated with land use and canopy cover. Habitat characteristics were markedly different between the upper and middle river stretches, especially in relation to depth, width, substrate and canopy cover.ConclusionsAlthough a direct influence on the observed variables could not be attributed solely to the riparian vegetation, vegetation cover seemed to affect particular stream characteristics. Open pasture and eucalyptus sites were subject to point specific effects that caused phosphorus inputs and higher turbidity and temperature, and showed different morphological features, suggesting that land use at the sub-watershed scale was an important factor affecting stream conditions.

  14. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  15. Diversity and genetic distance in populations of Steindachnerina in the upper Paraná river floodplain of Brazil.

    Science.gov (United States)

    Oliveira, A V; Prioli, A J; Prioli, S M A P; Pavanelli, C S; Júlio, H F; Panarari, R S

    2002-08-01

    Whereas four species of the genus Steindachnerina occur in the Paraná river basin, S. insculpta was the only endemic species of the region under analysis, which is the third lower section of the upper Paraná river. Among other factors, this species has been characterised by the absence of spots in the basal region of the dorsal fin. However, various specimens with this characteristic appeared in the region after the construction of the Itaipu Hydroelectric Plant in 1982. An analysis of the genetic variability of Steindachnerina populations with or without spots is provided. Specimens were collected in different sites of the floodplain of the upper Paraná river and samples were compared by random amplified polymorphic DNA (RAPD) technique and morphological analyses. Ninety-eight amplified loci with nine random primers were analysed in 19 specimens of each phenotype. Data for genetic distance showed great divergences between the two phenotypes and indicate two different species. Spotted specimens may be identified as S. brevipinna, found in the region downstream Sete Quedas Falls. The species must have overcome the geographical barrier during the building of the Itaipu hydroelectric dam that submerged the waterfalls and which became an obstacle between the upper and middle Paraná river some 150 km downstream. Since phenotypes do not share dominant alleles, absence of gene flow has been suggested.

  16. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  17. Radio telemetry data - Characterizing migration and survival for juvenile Snake River sockeye salmon between the upper Salmon River basin and Lower Granite Dam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project estimates survival and characterizes the migration of juvenile sockeye salmon between the upper Salmon River basin in central Idaho and Lower Granite...

  18. Upper Colorado River Basin Climate Effects Network

    Science.gov (United States)

    Belnap, Jayne; Campbell, Donald; Kershner, Jeff

    2011-01-01

    The Upper Colorado River Basin (UCRB) Climate Effects Network (CEN) is a science team established to provide information to assist land managers in future decision making processes by providing a better understanding of how future climate change, land use, invasive species, altered fire cycles, human systems, and the interactions among these factors will affect ecosystems and the services they provide to human communities. The goals of this group are to (1) identify science needs and provide tools to assist land managers in addressing these needs, (2) provide a Web site where users can access information pertinent to this region, and (3) provide managers technical assistance when needed. Answers to the team's working science questions are intended to address how interactions among climate change, land use, and management practices may affect key aspects of water availability, ecosystem changes, and societal needs within the UCRB.

  19. First record of Arapaima gigas (Schinz, 1822) (Teleostei: Osteoglossomorpha), the "pirarucu", in the upper Paraná River basin, Southeast Brazil

    OpenAIRE

    Carvalho, Fernando; Casatti, Lilian; Manzotti, Angelo; Ravazzi, Délcero

    2015-01-01

    Arapaima gigas (Schinz), the "pirarucu", is one of largest freshwater fish of the Neotropical region, naturally occurring in the Amazon, Essequibo, and Orinoco river basins. Herein, it is first recorded from the Grande River, in the upper Paraná River basin. This record is based on the finding of one dead specimen on the left margin of the Grande River, and in situ observation of juveniles and adults in the river.

  20. Differences in Ichthyophonus prevalence and infection severity between upper Yukon River and Tanana River chinook salmon, Oncorhynchus tshawytscha (Walbaum), stocks.

    Science.gov (United States)

    Kocan, R; Hershberger, P

    2006-08-01

    Two genetically distinct populations of chinook salmon, Oncorhynchus tshawytscha (Walbaum), were simultaneously sampled at the confluence of the Yukon and Tanana rivers in 2003. Upper Yukon-Canadian fish had significantly higher infection prevalence as well as more severe infections (higher parasite density in heart tissue) than the lower Yukon-Tanana River fish. Both populations had migrated the same distance from the mouth of the Yukon River at the time of sampling but had significantly different distances remaining to swim before reaching their respective spawning grounds. Multiple working hypotheses are proposed to explain the differences between the two stocks: (1) the two genetically distinct populations have different inherent resistance to infection, (2) genetically influenced differences in feeding behaviour resulted in temporal and/or spatial differences in exposure, (3) physiological differences resulting from different degrees of sexual maturity influenced the course of disease, and (4) the most severely infected Tanana River fish either died en route or fatigued and were unable to complete their migration to the Tanana River, thus leaving a population of apparently healthier fish.

  1. Ichthyofauna species of the upper Kaniv reservoir and mouth area of the Desna River

    Directory of Open Access Journals (Sweden)

    Y. M. Sytnik

    2012-07-01

    Full Text Available It was studied the fish species of the upper part of Kaniv reservoir (Kyiv water area and the mouth area of the Desna River. The found and preceding data of ichthyological research were compared. The changes in the fish population were analyzed. Two new invasive alien fish species were discovered in the Kaniv reservoir and Desna River: Amur sleeper (Perccotus glenii and Stone moroco (Pseudorasdora parva. Generally the ichthyofauna composition of these water bodies was supplemented with seven unmarketable and dirt species.

  2. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  3. The ichthyofauna of drifting macrophyte mats in the Ivinhema River, upper Paraná River basin, Brazil

    Science.gov (United States)

    Bulla, C. K.; Gomes, Luiz Carlos; Miranda, Leandro E.; Agostinho, A. A.

    2011-01-01

    We describe the fish assemblages associated with drifting macrophyte mats and consider their possible role as dispersal vectors in the Ivinhema River, a major tributary of the upper Paraná River, Brazil. Fish associated with drifting mats were sampled in the main river channel during January and March 2005, when the wind and/or the increased water level were sufficient to transport macrophyte stands. Fish in the drifting mats were sampled with a floating sieve (4 m long x 2 m wide x 0.6 m high, and 2 mm mesh size). In the laboratory, larvae, juvenile, and adult fish were counted and identified to the lowest possible taxonomic level. In four drifting macrophyte mats we captured 218 individuals belonging to at least 28 species, 17 families, and 6 orders. Aphyocharax dentatus, Serrasalmus spp., and Trachelyopterus galeatus were the most abundant taxa associated with the mats, but species richness ranged from 6 to 24 species per mat. In addition, 85% of the total number of individuals caught was larvae and juveniles. Although preliminary and based on limited samples, this study of drifting macrophyte mats was the first one in the last unregulated stretch of the Paraná River remaining inside Brazilian territory, and alerts us to the potential role of macrophytes mats as dispersers of fish species in the region.

  4. Spawning of migratory fish species between two reservoirs of the upper Uruguay River, Brazil

    Directory of Open Access Journals (Sweden)

    David A. Reynalte-Tataje

    Full Text Available This study investigated the migratory fish spawning within the reservoirs of the Machadinho and Itá dams (upper Uruguay River, Brazil and its relationship to environmental variables. Sampling was conducted in the lotic region of the river in two sites between the dams' reservoirs: Uruguay (main river and Ligeiro (tributary. Sampling included nine consecutive reproductive periods (RP spanning the period from 2001 to 2010 and was conducted at night on the water surface using cylindrical-conical plankton nets (0.5 mm mesh; environmental variables were also recorded. The spawning of the migratory species Salminus brasiliensis, Prochilodus lineatus, and Steindachneridion scriptum was registered: S. brasiliensis and P. lineatus spawned in the tributary river at the end of spring/beginning of summer, during flooding and during periods of high water temperature. Steindachneridion scriptum spawned in the main river at the beginning of spring. The study showed that S. brasiliensis, P. lineatus, and S. scriptum are able to spawn in small lotic river stretches within two reservoirs, but only under very specific and not common environmental conditions.

  5. Measured Copper Toxicity to Cnesterodon decemmaculatus (Pisces: Poeciliidae and Predicted by Biotic Ligand Model in Pilcomayo River Water: A Step for a Cross-Fish-Species Extrapolation

    Directory of Open Access Journals (Sweden)

    María Victoria Casares

    2012-01-01

    Full Text Available In order to determine copper toxicity (LC50 to a local species (Cnesterodon decemmaculatus in the South American Pilcomayo River water and evaluate a cross-fish-species extrapolation of Biotic Ligand Model, a 96 h acute copper toxicity test was performed. The dissolved copper concentrations tested were 0.05, 0.19, 0.39, 0.61, 0.73, 1.01, and 1.42 mg Cu L-1. The 96 h Cu LC50 calculated was 0.655 mg L-1 (0.823-0.488. 96-h Cu LC50 predicted by BLM for Pimephales promelas was 0.722 mg L-1. Analysis of the inter-seasonal variation of the main water quality parameters indicates that a higher protective effect of calcium, magnesium, sodium, sulphate, and chloride is expected during the dry season. The very high load of total suspended solids in this river might be a key factor in determining copper distribution between solid and solution phases. A cross-fish-species extrapolation of copper BLM is valid within the water quality parameters and experimental conditions of this toxicity test.

  6. Hydrology of the Upper Malad River basin, southeastern Idaho

    Science.gov (United States)

    Pluhowski, Edward J.

    1970-01-01

    The report area comprises 485 square miles in the Basin and Range physiographic province. It includes most of eastern' Oneida County and parts of Franklin, Bannock, and Power Counties of southeastern Idaho. Relief is about 5,000 feet; the floor of the Malad Valley is at an average altitude of about 4,400 feet. Agriculture is, by far, ,the principal economic .activity. In 1960 the population of the upper Malad River basin was about 3,600, of which about 60 percent resided in Malad City, the county seat of Oneida County. The climate is semiarid throughout the Malad Valley and its principal tributary valleys; ,above 6,500 feet the climate is subhumid. Annual precipitation ranges from about 13 inches in the lower Malad Valley to more than 30 inches on the highest peaks of the Bannock and Malad ranges. Owing to ,the normally clear atmospheric conditions, large daily and seasonal temperature fluctuations are common. Topography, distance from the Pacific Ocean, .and the general atmospheric circulation are the principal factors governing the climate of the Malad River basin. The westerlies transport moisture from the P.acific Ocean toward southeastern Idaho. The north-south tren4ing mountains flanking the basin are oriented orthogonally to the moisture flux so that they are very effective in removing precipitable water from the air. A minimum uplift of 6,000 feet is required to transport moisture from the Pacific source region; accordingly, most air masses are desiccated long before they reach the Malad basin. Heaviest precipitation is generally associated with steep pressure gradients in the midtroposphere that are so oriented as to cause a deep landward penetration of moisture from the Pacific Ocean. Annual water yields in the project area range from about 0.8 inch in the, lower Malad Valley to more than 19 inches on the high peaks north and east of Malad City. The mean annual water yield for the entire basin is 4 inches, or about 115,000 acre-feet. Evaporation is

  7. Streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, 2008-10

    Science.gov (United States)

    Banta, J. Ryan; Lambert, Rebecca B.; Slattery, Richard N.; Ockerman, Darwin J.

    2012-01-01

    The U.S. Geological Survey-in cooperation with the U.S. Army Corps of Engineers, The Nature Conservancy, the Real Edwards Conservation and Reclamation District, and the Texas Parks and Wildlife Department-investigated streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, specifically in the watersheds of the West Nueces, Nueces, Dry Frio, Frio, and Sabinal Rivers upstream from the Edwards aquifer outcrop. Streamflow in these rivers is sustained by groundwater contributions (for example, from springs) and storm runoff from rainfall events. To date (2012), there are few data available that describe streamflow and water-quality conditions of the rivers within the upper Nueces River Basin. This report describes streamflow gain-loss characteristics from three reconnaissance-level synoptic measurement surveys (hereinafter referred to as "surveys") during 2008-10 in the upper Nueces River Basin. To help characterize the hydrology, groundwater-level measurements were made, and water-quality samples were collected from both surface-water and groundwater sites in the study area from two surveys during 2009-10. The hydrologic (streamflow, springflow, and groundwater) measurements were made during three reconnaissance-level synoptic measurement surveys occurring in July 21-23, 2008; August 8-18, 2009; and March 22-24, 2010. These survey periods were selected to represent different hydrologic conditions. Streamflow gains and losses were based on streamflow and springflow measurements made at 74 sites in the study area, although not all sites were measured during each survey. Possible water chemistry relations among sample types (streamflow, springflow, or groundwater), between surveys, and among watersheds were examined using water-quality samples collected from as many as 20 sites in the study area.

  8. Temporal distribution of ichthyoplankton in the Forquilha river, upper Uruguay river – Brazil: Relationship with environmental factors - doi: 10.4025/actascibiolsci.v36i1.17993

    Directory of Open Access Journals (Sweden)

    Carolina Antonieta Lopes

    2013-09-01

    Full Text Available This study aimed to evaluate the temporal distribution of fish eggs and larvae in the Forquilha river (upper Uruguay river/Brazil and its relationship with environmental variables. Ichthyoplankton and abiotic factors were sampled from September 2006 to August 2007. At the laboratory, samples were sorted and larvae were identified to the lowest possible taxonomic level. For data analysis we applied One-way Anova, Tukey’s test, Pearson correlation and PCA. In this study 200 eggs and 308 larvae were collected, showing differences in the temporal distribution and influence of abiotic factors. Larvae were identified in all stages of development, being distributed in three order and eight families. These results point that the lower portion of the Forquilha river is an important drift and nursery area for fish larvae of the upper Uruguay river. The breeding season for most species was greatly marked, between October and January, coinciding with the increase in temperature and decrease of the water flow. The response of reproductive intensity varies according to the environmental variables.

  9. Pathogen Transport and Fate Modeling in the Upper Salem River Watershed Using SWAT Model

    Science.gov (United States)

    SWAT (Soil and Water Assessment Tool) is a dynamic watershed model that is applied to simulate the impact of land management practices on water quality over a continuous period. The Upper Salem River, located in Salem County New Jersey, is listed by the New Jersey Department of ...

  10. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    Science.gov (United States)

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  11. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  12. Land degradation trends in upper catchments and morphological developments of braided rivers in drylands: the case of a marginal graben of the Ethiopian Rift Valley

    Science.gov (United States)

    Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom

  13. Spatial and seasonal patterns in fish assemblage in Corrego Rico, upper Parana River basin

    Directory of Open Access Journals (Sweden)

    Erico L. H Takahashi

    Full Text Available The upper Paraná River basin drains areas of intensive industry and agriculture, suffering negative impacts. The Córrego Rico flows through sugar cane fields and receives urban wastewater. The aim of this work is to describe and to compare the fish assemblage structure in Córrego Rico. Six standardized bimonthly samples were collected between August 2008 and June 2009 in seven different stretches of Córrego Rico. Fishes were collected with an experimental seine and sieves, euthanized, fixed in formalin and preserved in ethanol for counting and identification. Data were recorded for water parameters, instream habitat and riparian features within each stretch. Non-metric multidimensional scaling, species richness and diversity analysis were performed to examine spatial and seasonal variation in assemblage structure. Fish assemblage structure was correlated with instream habitat and water parameters. The fish assemblage was divided in three groups: upper, middle and lower reaches. High values of richness and diversity were observed in the upper and lower stretches due to connectivity with a small lake and Mogi Guaçu River, respectively. Middle stretches showed low values of richness and diversity suggesting that a small dam in the middle stretch negatively impacts the fish assemblage. Seasonal differences in fish assemblage structure were observed only in the lower stretches.

  14. Distribution of Fish in the Upper Citarum River: an Adaptive Response to Physico-Chemical Properties

    OpenAIRE

    SUNARDI,; KANIAWATI, KEUKEU; HUSODO, TEGUH; MALINI, DESAK MADE; ASTARI, ANNISA JOVIANI

    2012-01-01

    Distribution of fish in river is controlled by physico-chemical properties of the water which is affected by land-use complexity and intensity of human intervention. A study on fish distribution was carried out in the upper Citarum River to map the effects of physio-chemical properties on habitat use. A survey was conducted to collect fish and to measure the water quality both on dry and rainy season. The result showed that distribution of the fish, in general, represented their adaptive resp...

  15. Allozyme comparison of two populations of Rineloricaria (Siluriformes, Loricariidae from the Ivaí River, upper Paraná River basin, Brazil

    Directory of Open Access Journals (Sweden)

    Daniel M. Limeira

    2009-01-01

    Full Text Available Two allopatric morphotypes of the genus Rinelocaria were compared through the allozyme electrophoresis technique: one morphotype, R. pentamaculata, from the Keller River in the middle stretch of the Ivaí River basin and the other, R. aff. pentamaculata, from the São João River in the upper portion of the Ivaí River basin. The morphotype from the São João River was collected upstream from the São João waterfall, which is about 80 m deep. Twelve enzymatic systems (AAT, ADH, EST, GCDH, G3PDH, GPI, IDH, LDH, MDH, ME, PGM and SOD were analyzed, which allowed to score 22 loci. Only loci Aat-2, Est-3 and Mdh-C showed polymorphism. The two samples differed in allele frequencies at the three polymorphic loci. The average expected heterozygosity for all loci was 0.0806 ± 0.0447 in the Keller River sample. For the São João River morphotype, this value was 0.0489 ± 0.0350. Nei' s genetic identity and distance between the two populations were respectively 0.9789 and 0.0213. Wright's F IS, F IT and F STover all loci were estimated as 0.3121, 0.4021 and 0.1309, respectively. We consider that the two morphotypes represent species in statu nascendi.

  16. Changing climatic conditions in the Upper Thames River Basin

    International Nuclear Information System (INIS)

    Simonovic, S.P.

    2009-01-01

    outcomes of the study are: (a) water resources risk and vulnerability assessment tool/s; (b) assessment of climatic vulnerability of the Upper Thames River Basin; and (c) guidelines for vulnerability reduction and hazard mitigation. The assessment tools developed are applicable to any water resources system. The selected river basin is used to verify and evaluate the benefits of the proposed methodology and demonstrate its use. (author)

  17. The Upper Santa Ynez River as Habitat for a Diverse Riparian Flora and Fauna

    Science.gov (United States)

    M. Violet Gray; James M. Greaves; Thomas E. Olson

    1989-01-01

    The upper Santa Ynez River, Santa Barbara County, provides habitats for a relatively large population of least Bell's vireos (Vireo bellii pusillus), as well as diverse riparian flora and fauna. Of particular interest is the richness of the species within particular guilds. Four species of vireos: least Bell's, warbling (Vireo...

  18. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  19. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries

    Science.gov (United States)

    Bianchi, Thomas S.; Wysocki, Laura A.; Stewart, Mike; Filley, Timothy R.; McKee, Brent A.

    2007-09-01

    In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries. A lack of correlation between POC and lignin phenol abundances ( Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ 13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C 4 in addition to C 3 source materials. A strong correlation between δ 13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C 3 and C 4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ 13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 10 8 kg y -1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 10 5 kg y -1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 10 9 kg y -1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 10 9 kg y -1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 10 11 kg).

  20. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    Science.gov (United States)

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  1. Simulating and predicting snow and glacier meltwater to the runoff of the Upper Mekong River basin in Southwest China

    Science.gov (United States)

    Han, Z.; Long, D.; Hong, Y.

    2017-12-01

    Snow and glacier meltwater in cryospheric regions replenishes groundwater and reservoir storage and is critical to water supply, hydropower development, agricultural irrigation, and ecological integrity. Accurate simulating and predicting snow and glacier meltwater is therefore fundamental to develop a better understanding of hydrological processes and water resource management for alpine basins and its lower reaches. The Upper Mekong River (or the Lancang River in China) as one of the most important transboundary rivers originating from the Tibetan Plateau (TP), features active dam construction and complicated water resources allocation of the stakeholders. Confronted by both climate change and significant human activities, it is imperative to examine contributions of snow and glacier meltwater to the total runoff and how it will change in the near future. This will greatly benefit hydropower development in the upper reach of the Mekong and better water resources allocation and management across the relevant countries. This study aims to improve snowfall and snow water equivalent (SWE) simulation using improved methods, and combines both modeling skill and remote sensing (i.e., passive microwave-based SWE, and satellite gravimetry-based total water storage) to quantify the contributions of snow and glacier meltwater there. In addition, the runoff of the Lancang River under a range of climate change scenarios is simulated using the improved modeling scheme to evaluate how climate change will impact hydropower development in the upper reaches.

  2. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  3. Microbial water quality in the upper Olifants River catchment: implications for health

    CSIR Research Space (South Africa)

    Le Rouw, Wouter J

    2012-09-01

    Full Text Available poor to fair condition. Mining-related disturbances were seen as *Corresponding author. E-mail: wleroux@csir.co.za. Tel: (+27)12 841 2189. the main cause of impairment of river health in the upper parts of the catchment, with the exception... relationship, N50: median infectious dose, r: parameter characterised by dose-response relationship. Microbial monitoring Microbial water quality was monitored over a two year period. During the first year, faecal indicator counts (E. coli) levels...

  4. Modal Investment Comparison : The Impact of Upper Mississippi River Lock and Dam Shutdowns on State Highway Infrastructure.

    Science.gov (United States)

    2017-10-30

    This project reviews southbound agricultural shipments from the Upper Mississippi River originating from the states of Illinois, Iowa, Minnesota, Missouri, and Wisconsin to understand the potential impacts of shifting barge shipments to the parallel ...

  5. Estimated monthly streamflows for selected locations on the Kabul and Logar Rivers, Aynak copper, cobalt, and chromium area of interest, Afghanistan, 1951-2010

    Science.gov (United States)

    Vining, Kevin C.; Vecchia, Aldo V.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, used the stochastic monthly water-balance model and existing climate data to estimate monthly streamflows for 1951–2010 for selected streamgaging stations located within the Aynak copper, cobalt, and chromium area of interest in Afghanistan. The model used physically based, nondeterministic methods to estimate the monthly volumetric water-balance components of a watershed. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Kabul River at Maidan and Kabul River at Tangi-Saidan indicated that the stochastic water-balance model was able to provide satisfactory estimates of monthly streamflows for high-flow months and low-flow months even though withdrawals for irrigation likely occurred. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Logar River at Shekhabad and Logar River at Sangi-Naweshta also indicated that the stochastic water-balance model was able to provide reasonable estimates of monthly streamflows for the high-flow months; however, for the upstream streamgaging station, the model overestimated monthly streamflows during periods when summer irrigation withdrawals likely occurred. Results from the stochastic water-balance model indicate that the model should be able to produce satisfactory estimates of monthly streamflows for locations along the Kabul and Logar Rivers. This information could be used by Afghanistan authorities to make decisions about surface-water resources for the Aynak copper, cobalt, and chromium area of interest.

  6. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  7. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  8. Spatial and temporal distribution of ichthyoplankton in the upper Uruguay river, Brazil

    Directory of Open Access Journals (Sweden)

    Samara Hermes-Silva

    2009-08-01

    Full Text Available The distribution and abundance of fish eggs and larvae was analyzed in three sections of the Upper Uruguay river, in a stretch of 290 km. Samples were collected monthly from October, 2001 to March, 2002 during 48-h cycles at 6-h intervals between each sampling. Surface and bottom samples were collected with a 0.5-mm mesh cylindroconical net. Fishes from the Upper Uruguay river were reproductively active mainly from October to January, and this activity was more intense at the Ligeiro and Chapecó tributaries and Chapecó main river. It was observed that the tributaries are important spawning grounds and larval nursery sites, indicating the importance of preserving such environments.Foram analisadas a distribuição e abundância de ovos e larvas de peixes em três seções do Alto rio Uruguai, num trecho de 290 km. As coletas foram realizadas mensalmente no período de outubro de 2001 a março de 2002, durante um ciclo de 48 horas com intervalos de 6 horas entre as amostragens. Foram feitas coletas de superfície e fundo, nas margens e no canal central do rio, utilizando-se redes de plâncton do tipo cônicocilíndricas de malha 0,5mm. As maiores ocorrências foram verificadas entre os meses de outubro a janeiro, sendo que a atividade reprodutiva foi mais intensa nos tributários Ligeiro e Chapecó e no rio Uruguai, na foz do rio Chapecó. Foi observado neste estudo que alguns tributários se destacam como locais de desova e desenvolvimento de larvas de peixe, indicando a importância de se preservar estes ambientes.

  9. Effects of Increased Commercial Navigation Traffic on Freshwater Mussels in the Upper Mississippi River: Ten-Year Evaluation

    National Research Council Canada - National Science Library

    Miller, Andrew

    2002-01-01

    ... traffic at five historically prominent mussel beds in the upper Mississippi River (UMR). The purpose was to assess effects of increased navigation traffic caused by the newly completed Melvin Price Locks and Dam at Alton, IL...

  10. Gain-loss study along two streams in the upper Sabine River basin, Texas; August-September 1981

    Science.gov (United States)

    Myers, Dennis R.

    1983-01-01

    A gain-loss study was made August-September 1981 along the upper Sabine River from Lake Tawakoni to Farm Road 2517 near Carthage and along Lake Fork Creek from Lake Fork Reservoir to its junction (mouth) with the Sabine River. The hydrologic data collected during the gain-loss study indicated that during periods of low flow on the Sabine River, at least as much water as is released from Lake Tawakoni and from Lake Fork Reservoir will be available downstream at Farm Road 14 near Big Sandy and at Farm Road 2517 near Carthage. Gains from bank seepage and small tributary inflows compensate for losses due to evaporation, evapotranspiration, and loss of water into the alluvial aquifer.

  11. Independent University Study to Assess the Performance of a Humate Amendment for Copper Detoxification at the H-12 Outfall at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harmon, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-06

    The overarching objective of this study was to evaluate the effectiveness of the copper detoxification process that is in place at the Savannah River Site H-12 Outfall. The testing was performed in two phases; Phase 1 assessed the safety and potential for intrinsic toxicity of the humate amendment being used at the H-12 Outfall, Borregro HA-1, as well as an alternative amendment sodium humic acid. The second phase assessed the effectiveness of Borregro HA-1 in mitigating and reducing toxic effects of copper.

  12. The distribution and extent of heavy metal accumulation in song sparrows along Arizona's upper Santa Cruz River

    Science.gov (United States)

    Lester, Michael B.; van Riper, Charles

    2014-01-01

    Heavy metals are persistent environmental contaminants, and transport of metals into the environment poses a threat to ecosystems, as plants and wildlife are susceptible to long-term exposure, bioaccumulation, and potential toxicity. We investigated the distribution and cascading extent of heavy metal accumulation in southwestern song sparrows (Melospiza melodia fallax), a resident riparian bird species that occurs along the US/Mexico border in Arizona’s upper Santa Cruz River watershed. This study had three goals: (1) quantify the degree of heavy metal accumulation in sparrows and determine the distributional patterns among study sites, (2) compare concentrations of metals found in this study to those found in studies performed prior to a 2009 international wastewater facility upgrade, and (3) assess the condition of song sparrows among sites with differing potential levels of exposure. We examined five study sites along with a reference site that reflect different potential sources of contamination. Body mass residuals and leukocyte counts were used to assess sparrow condition. Birds at our study sites typically had higher metal concentrations than birds at the reference site. Copper, mercury, nickel, and selenium in song sparrows did exceed background levels, although most metals were below background concentrations determined from previous studies. Song sparrows generally showed lower heavy metal concentrations compared to studies conducted prior to the 2009 wastewater facility upgrade. We found no cascading effects as a result of metal exposure.

  13. Review of the upper Cenozoic stratigraphy overlying the Columbia River Basalt Group in western Idaho

    International Nuclear Information System (INIS)

    Strowd, W.B.

    1980-12-01

    This report is a synthesis of information currently available on the rocks that stratigraphically overlie the Columbia River Basalt Group in Idaho. The primary objective is to furnish a brief but comprehensive review of the literature available on upper Cenozoic rocks in western Idaho and to discuss their general stratigraphic relationships. This study also reviews the derivation of the present stratigraphy and notes weaknesses in our present understanding of the geology and the stratigraphy. This report was prepared in support of a study to evaluate the feasibility of nuclear waste storage in the Columbia River Basalt Group of the Pasco Basin, Washington

  14. Avulsions, channel evolution and floodplain sedimentation rates of the anastomosing upper Columbia River, British Columbia, Canada

    NARCIS (Netherlands)

    Makaske, B.; Smith, D.G.; Berendsen, H.J.A.

    2002-01-01

    Ages of channels of the anastomosing upper Columbia River, south-eastern British Columbia, Canada, were investigated in a cross-valley transect by C-14 dating of subsurface floodplain organic material from beneath levees. The avulsion history within the transect was deduced from these data, and

  15. Application of hydrologic tools and monitoring to support managed aquifer recharge decision making in the Upper San Pedro River, Arizona, USA

    Science.gov (United States)

    Lacher, Laurel J.; Turner, Dale S.; Gungle, Bruce W.; Bushman, Brooke M.; Richter, Holly E.

    2014-01-01

    The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr). Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.

  16. Application of Hydrologic Tools and Monitoring to Support Managed Aquifer Recharge Decision Making in the Upper San Pedro River, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Laurel J. Lacher

    2014-11-01

    Full Text Available The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr. Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.

  17. Bed morphology, flow structure, and sediment transport at the outlet of Lake Huron and in the upper St. Clair River

    Science.gov (United States)

    Czuba, J.A.; Best, J.L.; Oberg, K.A.; Parsons, D.R.; Jackson, P.R.; Garcia, M.H.; Ashmore, P.

    2011-01-01

    An integrated multibeam echo sounder and acoustic Doppler current profiler field survey was conducted in July 2008 to investigate the morphodynamics of the St. Clair River at the outlet of Lake Huron. The principal morphological features of the upper St. Clair River included flow-transverse bedforms that appear weakly mobile, erosive bedforms in cohesive muds, thin non-cohesive veneers of weakly mobile sediment that cover an underlying cohesive (till or glacio-lacustrine) surface, and vegetation that covers the bed. The flow was characterized by acceleration as the banks constrict from Lake Huron into the St. Clair River, an approximately 1500-m long region of flow separation downstream from the Blue Water Bridge, and secondary flow connected to: i) channel curvature; ii) forcing of the flow by local bed topography, and iii) flow wakes in the lee side of ship wrecks. Nearshore, sand-sized, sediment from Lake Huron was capable of being transported into, and principally along, the banks of the upper St. Clair River by the measured flow. A comparison of bathymetric surveys conducted in 2007 and 2008 identifies that the gravel bed does undergo slow downstream movement, but that this movement does not appear to be generated by the mean flow, and could possibly be caused by ship-propeller-induced turbulence. The study results suggest that the measured mean flow and dredging within the channel have not produced major scour of the upper St. Clair River and that the recent fall in the level of Lake Huron is unlikely to have been caused by these mechanisms. ?? 2011.

  18. Challenges in merging fisheries research and management: The Upper Mississippi River experience

    Science.gov (United States)

    Garvey, J.; Ickes, B.; Zigler, S.

    2010-01-01

    The Upper Mississippi River System (UMRS) is a geographically diverse basin extending 10?? north temperate latitude that has produced fishes for humans for millennia. During European colonization through the present, the UMRS has been modified to meet multiple demands such as navigation and flood control. Invasive species, notably the common carp, have dominated fisheries in both positive and negative ways. Through time, environmental decline plus reduced economic incentives have degraded opportunities for fishery production. A renewed focus on fisheries in the UMRS may be dawning. Commercial harvest and corresponding economic value of native and non-native species along the river corridor fluctuates but appears to be increasing. Recreational use will depend on access and societal perceptions of the river. Interactions (e. g., disease and invasive species transmission) among fish assemblages within the UMRS, the Great Lakes, and other lakes and rivers are rising. Data collection for fisheries has varied in intensity and contiguousness through time, although resources for research and management may be growing. As fisheries production likely relies on the interconnectivity of fish populations and associated ecosystem processes among river reaches (e. g., between the pooled and unpooled UMRS), species-level processes such as genetics, life-history interactions, and migratory behavior need to be placed in the context of broad ecosystem- and landscape-scale restoration. Formal communication among a diverse group of researchers, managers, and public stakeholders crossing geographic and disciplinary boundaries is necessary through peer-reviewed publications, moderated interactions, and the embrace of emerging information technologies. ?? Springer Science+Business Media B.V. 2010.

  19. Phylogeography of Hypostomus strigaticeps (Siluriformes: Loricariidae inferred by mitochondrial DNA reveals its distribution in the upper Paraná River basin

    Directory of Open Access Journals (Sweden)

    Rafael Splendore de Borba

    Full Text Available In this study, phylogenetic and phylogeographic analyses of populations identified as Hypostomus strigaticeps from the upper Paraná River basin were conducted in order to test whether these different populations comprises cryptic species or structured populations and to assess their genetic variability. The sequences of the mitochondrial DNA ATP sintetase (subunits 6/8 of 27 specimens from 10 populations (one from Mogi-Guaçu River, five from Paranapanema River, three from Tietê River and one from Peixe River were analyzed. The phylogeographic analysis showed the existence of eight haplotypes (A-H, and despite the ancestral haplotype includes only individuals from the Tietê River basin, the distribution of H. strigaticeps was not restricted to this basin. Haplotypes A, B and F were the most frequent. Haplotypes D, E, F, G, and H were present in the sub-basin of Paranapanema, two (A and B were present in the sub-basin of the Tietê River, one (C was exclusively distributed in the sub-basin of the Peixe River, and one (B was also present in the sub-basin of the Grande River. The phylogenetic analysis showed that the populations of H. strigaticeps indeed form a monophyletic unit comprising two lineages: TG, with representatives from the Tietê, Mogi-Guaçu and Peixe Rivers; and PP, with specimens from the Paranapanema River. The observed degree of genetic divergence within the TG and PP lineages was 0.1% and 0.2%, respectively, whereas the genetic divergence between the two lineages themselves was approximately 1%. The results of the phylogenetic analysis do not support the hypothesis of existence of crypt species and the phylogeographic analysis confirm the presence of H. strigaticeps in other sub-basins of the upper Paraná River: Grande, Peixe, and Paranapanema sub-basins.

  20. Variability and Trend Detection in the Sediment Load of the Upper Indus River

    Directory of Open Access Journals (Sweden)

    Sardar Ateeq-Ur-Rehman

    2017-12-01

    Full Text Available Water reservoirs planned or constructed to meet the burgeoning energy and irrigation demands in Pakistan face a significant loss of storage capacity due to heavy sediment load from the upper Indus basin (UIB. Given their importance and the huge investment, assessments of current UIB sediment load and possible future changes are crucial for informed decisions on planning of optimal dams’ operation and ensuring their prolonged lifespan. In this regard, the daily suspended sediment loads (SSLs and their changes are analyzed for the meltwater-dominated zone up to the Partab Bridge and the whole UIB up to Besham Qila, which is additionally influenced by monsoonal rainfall. The gaps between intermittent suspended sediment concentration (SSC samples are filled by wavelet neural networks (WA-ANNs using discharges for each site. The temporal dynamics of SSLs and discharges are analyzed using a suite of three non-parametric trend tests while the slope is identified using Sen’s slope estimator. We found disproportional spatio-temporal trends between SSLs and discharges caused primarily by intra-annual shifts in flows, which can lead to increased trap efficiency in planned reservoirs, especially upstream of Besham Qila. Moreover, a discernible increase in SSLs recorded at Partab Bridge during summer is being deposited downstream in the river channel. This is due to a decrease in river transport capacity in the monsoonal zone. These findings will not only help to identify these morphological problems, but also accurately anticipate the spatio-temporal changes in the sediment budget of the upper Indus River. Our results will help improve reservoir operational rules and sediment management strategies for existing and 30,000-MW planned dams in the UIB.

  1. 1994 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,653 collections of fishes from stratified random sad permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1994...

  2. 1991 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1998-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,653 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1991...

  3. 1996 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Burkhardt, Randy

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,378 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1996...

  4. 1997 Annual Status Report A Summary of Fish Data in Six Reaches of The Upper Mississippi River System

    National Research Council Canada - National Science Library

    Burkhardt, Randy

    1998-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,797 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1997...

  5. 1998 Annual Status Report: A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Burkhardt, Randy

    2000-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,664 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1998...

  6. 1995 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,723 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1995...

  7. Water poverty in upper Bagmati River Basin in Nepal

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2017-04-01

    The WPI was calculated for the upper Bagmati river Basin together with High–Medium–Low category scale and interpretations. WPI intensity scale depicts Sundarijal and Lubhu are in a range of very low water poverty, which means the water situation is better in these two areas. Daman region has a medium level, meaning this region is located into poor-accessible water zone. Kathmandu, Sankhu and Thankot have a low to medium low WPI, what characterize them as neutral. WPI can be used as an effective tool in integrated water resources management and water use master plan for meeting sustainable development goals. Based on the observation, the water agencies required to focus over water-poverty interface, water for sanitation, hygiene and health, water for production and employment generation, sustainable environmental management, gender equality, and water rights.

  8. Pyomyositis in the upper Negro river basin, Brazilian Amazonia

    DEFF Research Database (Denmark)

    Borges, Alvaro Humberto Diniz; Faragher, Brian; Lalloo, David G

    2012-01-01

    Pyomyositis remains poorly documented in tropical Latin America. We therefore performed a retrospective review of cases admitted to a hospital in the upper Negro river basin during 2002-2006. Seasonality was assessed by the cosinor model and independent predictors of outcome were identified...... lesions). Staphylococcus aureus was the only identified infecting organism (18 of 20 culture results, 90%). Complications occurred in 17 patients (20.7%) and the case fatality rate was 2.4%. Children were more likely to present with eosinophilia than adults (OR= 4.20, 95% CI 1.08-16.32, p=0.......048), but no other significant differences regarding clinical presentation and outcomes were observed. The time-to-fever resolution was the only independent determinant of poor outcome (OR=1.52, 95% CI 1.22-1.92, p...

  9. Geoprocessing applied to environmental zoning in the Upper Coxim River Basin, MS

    Directory of Open Access Journals (Sweden)

    Vitor Matheus Bacani

    2014-04-01

    Full Text Available The aim of this study was to develop an environmental zoning set in a synthesis map of physical and territorial planning of the Upper Coxim River Basin (UCB, MS. The methodological procedures were based on the structuring of a geographic database implemented in a Geographic Information System. The results showed that areas associated with livestock activity are more sensitive to the occupation under the management of mechanized agriculture. It was possible to establish priority areas for preservation, conservation and sustainable use.

  10. Effects of reintroduced beaver (Castor canadensis) on riparian bird community structure along the upper San Pedro River, southeastern Arizona and northern Sonora, Mexico

    Science.gov (United States)

    Johnson, Glenn E.; van Riper, Charles

    2014-01-01

    Chapter 1.—We measured bird abundance and richness along the upper San Pedro River in 2005 and 2006, in order to document how beavers (Castor canadensis) may act as ecosystem engineers after their reintroduction to a desert riparian area in the Southwestern United States. In areas where beavers colonized, we found higher bird abundance and richness of bird groups, such as all breeding birds, insectivorous birds, and riparian specialists, and higher relative abundance of many individual species—including several avian species of conservation concern. Chapter 2.—We conducted bird surveys in riparian areas along the upper San Pedro River in southeastern Arizona (United States) and northern Sonora (Mexico) in order to describe factors influencing bird community dynamics and the distribution and abundance of species, particularly those of conservation concern. These surveys were also used to document the effects of the ecosystem-altering activities of a recently reintroduced beavers (Castor canadensis). Chapter 3.—We reviewed Southwestern Willow Flycatcher (Empidonax traillii extimus) nest records and investigated the potential for future breeding along the upper San Pedro River in southeastern Arizona, where in July 2005 we encountered the southernmost verifiable nest attempt for the species. Continued conservation and management of the area’s riparian vegetation and surface water has potential to contribute additional breeding sites for this endangered Willow Flycatcher subspecies. Given the nest record along the upper San Pedro River and the presence of high-density breeding sites to the north, the native cottonwood-willow forests of the upper San Pedro River could become increasingly important to E. t. extimus recovery, especially considering the anticipated effect of the tamarisk leaf beetle (Diorhabda carinulata) on riparian habitat north of the region.

  11. 1992 Annual Status Report: A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,221 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during I 992...

  12. Nucleotide diversity of Hemigrammus cf. marginatus (Characiformes, Characidae in the upper Paraná river floodplain - doi: 10.4025/actascibiolsci.v34i3.6669

    Directory of Open Access Journals (Sweden)

    Carla Simone Pavanelli

    2012-06-01

    Full Text Available Characidae is the largest and more diversified family from Characiformes and presents several classification problems, with several genera currently allocated as incertae sedis, such as the genus Hemigrammus. The upper Paraná river floodplain is an environment with high fish diversity. There is at least one species of Hemigrammus, however there are divergences among some authors about the number and the identification of the species from this genus. Therefore the goal of this study was to characterize, using a molecular approach, individuals of Hemigrammus from the upper Paraná river floodplain and to compare them with individuals from the type locality of Hemigrammus marginatus, since this is the only species distributed in this floodplain. For this, the DNA was extracted and a partial region from the mitochondrial genes ATPase 6 and ATPase 8 were amplified and sequenced. The results evidenced the existence of two species of Hemigrammus in the floodplain, although impossible to be distinguished only through morphological traits. High nucleotide diversity among individuals from the upper Paraná river in relation to those from the type locality was also observed, indicating that both species of Hemigrammus present in the upper Paraná river floodplain are not Hemigrammus marginatus. 

  13. Insect community structure and function in Upper Three Runs, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J.C.; English, W.R. [Clemson Univ., SC (United States). Dept. of Entomology; Looney, B.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-07-08

    A project to document the insect species in the upper reaches of Upper Three Runs at the Savannah River site was recently completed. This research was supported by the US Department of Energy under the National Environmental Research Park Program. The work was performed by the Department of Entomology at Clemson University in clemson, SC, by John C. Morse (principal investigator), William R. English and their colleagues. The major output from this study was the dissertation of Dr. William R. English entitled ``Ecosystem Dynamics of a South Carolina Sandhills Stream.`` He investigated selected environmental resources and determined their dynamics and the dynamics of the aquatic invertebrate community structure in response to them.

  14. An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America

    Science.gov (United States)

    K. J. Carim; J. C. S. Dysthe; Michael Young; Kevin McKelvey; Michael Schwartz

    2016-01-01

    The upper Missouri River basin in the northwestern US contains disjunct Arctic grayling (Thymallus arcticus) populations of conservation concern. To assist efforts aimed at understanding Artic grayling distribution, we developed a quantitative PCR assay to detect the presence of Arctic grayling DNA in environmental samples. The assay amplified low...

  15. Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia

    International Nuclear Information System (INIS)

    Plummer, L.N.; Busenberg, E.; McConnell, J.B.; Drenkard, S.; Schlosser, P.; Michel, R.L.

    1998-01-01

    The quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl - , 3 H, tritiogenic helium-3 ( 3 He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O 2 (DO), H 2 S, CH 4 , δ 18 O, δD, and 14 C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl - , δ 18 O, δD, CFC-12, and the quantity ( 3 H+ 3 He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H 2 S, CH 4 , 14 C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl - and δ 18 O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water (δ 18 O=-2.5±0.3per thousand, Cl - =12.2±2 mg/l), (2) regional infiltration water (δ 18 O=-4.2±0.1per thousand, Cl - =2.3±0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer (δ 18 O=-3.4±0.1per thousand, Cl - =2.6±0.1 mg/l) (uncertainties are ±1σ). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to the N and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining beds overlying the Upper Floridan aquifer. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Drenkard, S.; Schlosser, P. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)

    1998-11-01

    he quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl{sup -}, {sup 3}H, tritiogenic helium-3 ({sup 3}He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O{sub 2} (DO), H{sub 2}S, CH{sub 4}, {delta}{sup 18}O, {delta}D, and {sup 14}C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl{sup -}, {delta}{sup 18}O, {delta}D, CFC-12, and the quantity ({sup 3}H+{sup 3}He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H{sub 2}S, CH{sub 4}, {sup 14}C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl{sup -} and {delta}{sup 18}O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water ({delta}{sup 18}O=-2.5{+-}0.3per thousand, Cl{sup -}=12.2{+-}2 mg/l), (2) regional infiltration water ({delta}{sup 18}O=-4.2{+-}0.1per thousand, Cl{sup -}=2.3{+-}0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer ({delta}{sup 18}O=-3.4{+-}0.1per thousand, Cl{sup -}=2.6{+-}0.1 mg/l) (uncertainties are {+-}1{sigma}). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to theN and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining

  17. Hydrochemistry and land cover in the upper Naryn river basin, Kyrgyzstan

    Science.gov (United States)

    Schneider, K.; Dernedde, Y.; Breuer, L.; Frede, H. G.

    2009-04-01

    Economic and social changes at the end of the 20th century affected land use decisions and land management in the Central Asian republics of the former Soviet Union. Amongst others, land tenure changed from mainly collectivized to private land, and in consequence, land management (e.g. soil treatment and fertilization practices) altered. Apart from agricultural pollutants and the impact of irrigation management, water resources are threatened by waste dumps remaining from mining activities. However, recent studies on the effect of land use changes on ecohydrology in Central Asia remain scarce. In a preliminary study, current land use and hydrochemistry in the upper Naryn Valley (Kyrgyzstan) was analyzed in 2008. Climate is semi-arid, and annual precipitation is approximately 300 mm. Precipitation peak occurs in early summer, while the rest of the year is rather dry. Crop and hay production prevail in the valley bottom. Environmental conditions in the mountains support pastoralism with a shift between summer and winter pastures. Agriculture depends on irrigation to a great deal as precipitation is seasonal and the vegetation period usually is the dry period. Today, production is mainly for subsistence purposes or local markets. The Naryn river is the headwater of the of the Syrdarya river which is one of the major sources of irrigation water in the Aral Sea basin. Hence, the ecohydrological condition of the contributing rivers is of major importance for the irrigation management downstream. Nevertheless, information on current ecohydrological conditions and land use which may affect the distribution and chemical composition of the rivers is lacking. In the presented study, basic hydrochemical measurements in the Naryn river and its tributaries were made. In situ measurements comprised electrical conductivity, ammonia and nitrate measurements, among others. While electrical conductivity varies greatly between the Naryn river and its tributaries, ammonia and nitrate

  18. Spatial Patterns of Mercury Bioaccumulation in the Upper Clark Fork River Basin, MT

    Science.gov (United States)

    Staats, M. F.; Langner, H.; Moore, J. N.

    2010-12-01

    The Upper Clark Fork River Basin (UCFRB) in Montana has a legacy of historic gold/silver mine waste that contributes large quantities of mercury into the watershed. Mercury bioaccumulation at higher levels of the aquatic food chain, such as the mercury concentration in the blood of pre-fledge osprey, exhibit an irregular spatial signature based on the location of the nests throughout the river basin. Here we identify regions with a high concentration of bioavailable mercury and the major factors that allow the mercury to bioaccumulate within trophic levels. This identification is based on the abundance of mercury sources and the potential for mercury methylation. To address the source term, we did a survey of total mercury in fine sediments along selected UCFRB reaches, along with the assessment of environmental river conditions (percentage of backwaters/wetlands, water temperature and pH, etc). In addition, we analyzed the mercury levels of a representative number of macroinvertebrates and fish from key locations. The concentration of total mercury in sediment, which varies from reach to reach (tributaries of the Clark Fork River, 5mg/kg) affects the concentration of mercury found at various trophic levels. However, reaches with a low supply of mine waste-derived mercury can also yield substantial concentrations of mercury in the biota, due to highly favorable conditions for mercury methylation. We identify that the major environmental factor that affects the methylation potential in the UCFRB is the proximity and connectivity of wetland areas to the river.

  19. [Effect of hydrochemistry characteristics under impact of human activity: a case study in the upper reaches of the Xijiang River basin].

    Science.gov (United States)

    Yu, Shil; Sun, Ping-an; Du, Wen-yue; He, Shi-yi; Li, Rui

    2015-01-01

    In this paper, observation and sampling were taken three times a month in a hydrological year for three typical sections of the middle and upper reaches of the Xijiang River basin, based on the data of hydrochemistry and flow, the article mainly discusses the evolution process of hydrochemistry in river under natural process and impact of human activity. Hydrochemical characteristics of 116. samples were analyzed in the study area. The hydrochemistry type in the middle and upper reaches of the Xijiang River basin belonged to HCO3- -Ca2+ type, and the chemical weathering type mainly came from carbonate rock weathering. Ca2+ and HCO3- were the main cations and anions, which reflected that hydrochemical characteristics of river in karst area mainly affected by the dissolution of carbonate rock. Na, Mg2, Ca2+ and Cl- mainly affected by natural conditions, the impact of human activity was little. K+, NO3-, SO4(2-) and HCO3- were affected by human activity in different degrees, and it showed different influence ways. This study had an important significance for the change of river hydrochemistry, water quality characteristics, and the effect on substance transported fluxes in the downstream of Pearl River and water quality protection in South China Monsoon Area.

  20. Sedimentation in Lake Onalaska, Navigation Pool 7, upper Mississippi River, since impoundment

    Science.gov (United States)

    Korschgen, C.E.; Jackson, G.A.; Muessig, L.F.; Southworth, D.C.

    1987-01-01

    Sediment accumulation was evaluated in Lake Onalaska, a 2800-ha backwater impoundment on the Upper Mississippi River. Computer programs were used to process fathometric charts and generate an extensive data set on water depth for the lake. Comparison of 1983 survey data with pre-impoundment (before 1937) data showed that Lake Onalaska had lost less than 10 percent of its original mean depth in the 46 years since impoundment. Previous estimates of sedimentation rates based on Cesium-137 sediment core analysis appear to have been too high. (DBO)

  1. Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    Interactions among hydrology and geomorphology create shifting mosaics of aquatic habitat patches in large river floodplains (e.g., main and side channels, floodplain lakes, and shallow backwater areas) and the connectivity among these habitat patches underpins high levels of biotic diversity and productivity. However, the diversity and connectivity among the habitats of most floodplain rivers have been negatively impacted by hydrologic and structural modifications that support commercial navigation and control flooding. We therefore tested the hypothesis that the rate of increase in patch richness (# of types) with increasing scale reflects anthropogenic modifications to habitat diversity and connectivity in a large floodplain river, the Upper Mississippi River (UMR). To do this, we calculated the number of aquatic habitat patch types within neighborhoods surrounding each of the ≈19 million 5-m aquatic pixels of the UMR for multiple neighborhood sizes (1–100 ha). For all of the 87 river-reach focal areas we examined, changes in habitat richness (R) with increasing neighborhood length (L, # pixels) were characterized by a fractal-like power function R = Lz (R2 > 0.92 (P z) measures the rate of increase in habitat richness with neighborhood size and is related to a fractal dimension. Variation in z reflected fundamental changes to spatial patterns of aquatic habitat richness in this river system. With only a few exceptions, z exceeded the river-wide average of 0.18 in focal areas where side channels, contiguous floodplain lakes, and contiguous shallow-water areas exceeded 5%, 5%, and 10% of the floodplain respectively. In contrast, z was always less than 0.18 for focal areas where impounded water exceeded 40% of floodplain area. Our results suggest that rehabilitation efforts that target areas with <5% of the floodplain in side channels, <5% in floodplain lakes, and/or <10% in shallow-water areas could improve habitat diversity across multiple scales in the UMR.

  2. Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years

    Science.gov (United States)

    Tan, Liangcheng; Cai, Yanjun; Cheng, Hai; Edwards, Lawrence R.; Gao, Yongli; Xu, Hai; Zhang, Haiwei; An, Zhisheng

    2018-01-01

    The upper Hanjiang River region is the recharge area of the middle route of South-to-North Water Transfer Project. The region is under construction of the Hanjiang-Weihe River Water Transfer Project in China. Monsoon precipitation variations in this region are critical to water resource and security of China. In this study, high-resolution monsoon precipitation variations were reconstructed in the upper Hanjiang River region over the past 6650 years from δ18O and δ13C records of four stalagmites in Xianglong cave. The long term increasing trend of stalagmite δ18O record since the middle Holocene is consistent with other speleothem records from monsoonal China. This trend follows the gradually decreasing Northern Hemisphere summer insolation, which indicates that solar insolation may control the orbital-scale East Asian summer monsoon (EASM) variations. Despite the declined EASM intensity since the middle Holocene, local precipitation may not have decreased remarkably, as revealed by the δ13C records. A series of centennial- to decadal-scale cyclicity was observed, with quasi-millennium-, quasi-century-, 57-, 36- and 22-year cycles by removing the long-term trend of stalagmite δ18O record. Increased monsoon precipitation during periods of 4390-3800 a BP, 3590-2960 a BP, 2050-1670 a BP and 1110-790 a BP had caused four super-floods in the upper reach of Hanjiang River. Dramatically dry climate existed in this region during the 5.0 ka and 2.8 ka events, coinciding with notable droughts in other regions of monsoonal China. Remarkably intensified and southward Westerly jet, together with weakened summer monsoon, may delay the onset of rainy seasons, resulting in synchronous decreasing of monsoon precipitation in China during the two events. During the 4.2 ka event and the Little Ice Age, the upper Hanjiang River region was wet, which was similar to the climate conditions in central and southern China, but was the opposite of drought observed in northern China. We

  3. Occurrence of the Kessler’s gudgeon Romanogobio kesslerii (Dybowski, 1862) (Cyprinidae) in the Upper Vistula River (Poland)

    Czech Academy of Sciences Publication Activity Database

    Nowak, M.; Klaczak, A.; Szczerbik, P.; Mendel, Jan; Popek, W.

    2014-01-01

    Roč. 30, č. 5 (2014), s. 1062-1064 ISSN 0175-8659 R&D Projects: GA ČR GP206/09/P608 Institutional support: RVO:68081766 Keywords : Kessler's gudgeon * Upper Vistula River Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.867, year: 2014

  4. Satellite-derived temperature data for monitoring water status in a floodplain forest of the Upper Sabine River, Texas

    Science.gov (United States)

    Lemon, Mary Grace T.; Allen, Scott T.; Edwards, Brandon L.; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Decreased water availability due to hydrologic modifications, groundwater withdrawal, and climate change threaten bottomland hardwood (BLH) forest communities. We used satellite-derived (MODIS) land-surface temperature (LST) data to investigate spatial heterogeneity of canopy temperature (an indicator of plant-water status) in a floodplain forest of the upper Sabine River for 2008–2014. High LST pixels were generally further from the river and at higher topographic locations, indicating lower water-availability. Increasing rainfall-derived soil moisture corresponded with decreased heterogeneity of LST between pixels but there was weaker association between Sabine River stage and heterogeneity. Stronger dependence of LST convergence on rainfall rather than river flow suggests that some regions are less hydrologically connected to the river, and vegetation may rely on local precipitation and other contributions to the riparian aquifer to replenish soil moisture. Observed LST variations associated with hydrology encourage further investigation of the utility of this approach for monitoring forest stress, especially with considerations of climate change and continued river management.

  5. INFLUENCE OF SNOWFALL ON BLOOD LEAD LEVELS OF FREE-FLYING BALD EAGLES (HALIAEETUS LEUCOCEPHALUS) IN THE UPPER MISSISSIPPI RIVER VALLEY.

    Science.gov (United States)

    Lindblom, Ronald A; Reichart, Letitia M; Mandernack, Brett A; Solensky, Matthew; Schoenebeck, Casey W; Redig, Patrick T

    2017-10-01

    Lead poisoning of scavenging raptors occurs primarily via consumption of game animal carcasses containing lead, which peaks during fall firearm hunting seasons. We hypothesized that snowfall would mitigate exposure by concealing carcasses. We categorized blood lead level (BLL) for a subsample of Bald Eagles (Haliaeetus leucocephalus) from the Upper Mississippi River Valley and described BLL with respect to age, sex, and snowfall. We captured Bald Eagles overwintering in the Upper Mississippi River Valley (n=55) between December 1999 and January 2002. Individual BLL ranged from nondetectable to 335 μg/dL, with 73% of the samples testing positive for acute exposure to lead. Eagle BLL did not significantly differ between age or sex, but levels were higher immediately following the hunting season, and they were lower when the previous month's snowfall was greater than 11 cm. This study suggests a window of time between the white-tailed deer (Odocoileus virginianus) hunting season and the onset of snow when the population experienced peak exposure to lead. Combining these findings with existing research, we offer a narrative of the annual lead exposure cycle of Upper Mississippi River Valley Bald Eagles. These temporal associations are necessary considerations for accurate collection and interpretation of BLL.

  6. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  7. Potentiometric surface of the Upper Floridan aquifer in the St. Johns River water management district and vicinity, Florida, September 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2005. Potentiometric contours are based on water-level measurements collected at 643 wells during the period September 12-28, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  8. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2008

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  9. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2009

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  10. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  11. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, September, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.

    2005-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in September 2004. Potentiometric contours are based on water-level measurements collected at 608 wells during the period September 14-October 1, near the end of the wet season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  12. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2005

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    INTRODUCTION This map depicts the potentiometric surface of the upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2005. Potentiometric contours are based on water level measurements collected at 598 wens during the period May 5 - 31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate upper Floridan aquifer responds mainly to rainfall, and more locally, to ground water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground water withdrawals locally have lowered the potentiometric surface. Ground water in the upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  13. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May, 2004

    Science.gov (United States)

    Kinnaman, Sandra L.; Knowles, Leel

    2004-01-01

    INTRODUCTION This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in May 2001. Potentiometric contours are based on water-level measurements collected at 684 wells during the period May 2 - 30, near the end of the dry season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  14. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2006

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2006. Potentiometric contours are based on water-level measurements collected at 571 wells during the period September 11-29, near the end of the wet season. Some contours are inferred from previouspotentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  15. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2006

    Science.gov (United States)

    Kinnaman, Sandra L.

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2006. Potentiometric contours are based on water-level measurements collected at 599 wells during the period May 14-31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  16. Uranium favorability of tertiary sedimentary rocks of the western Okanogan highlands and of the upper Columbia River valley, Washington

    International Nuclear Information System (INIS)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the northern portions of the western Okanogan highlands and in the upper Columbia River valley were investigated during a regional study to determine the favorability for potential uranium resources of the Tertiary sedimentary rocks of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples. No portion of the project area of this report is rated of high or of medium favorability for potential uranium resources. Low favorability ratings are given to Oroville, Tonasket, and Pine Creek areas of the Okanogan River valley; to the Republic graben; and to the William Lakes, Colville, and Sheep Creek areas of the upper Columbia River valley. All these areas contain some fluvial, poorly sorted feldspathic or arkosic sandstones and conglomerates. These rocks are characterized by very low permeability and a consistently high siliceous matrix suggesting very low initial permeability. There are no known uranium deposits in any of these areas, and low level uranium anomalies are rare

  17. The analysis of precipitation conducted on the upper watershed of the West Morava river

    Directory of Open Access Journals (Sweden)

    Nikolić Jugoslav

    2005-01-01

    Full Text Available Precipitation is one of the basic elements of the water balance and its analysis is of the crucial importance for many scientific areas. The analysis of precipitation, conducted on the upper part watershed of the West Morava River, was done in the complex way, with the use of the appropriate numerical model. In this way, among other things, orographic and dynamic effects on the explored terrain are taken into consideration.

  18. Down, but not out: Recent decline of Berg–Breede River whitefish (Barbus andrewi in the upper Hex River, South Africa

    Directory of Open Access Journals (Sweden)

    Jeremy M. Shelton

    2017-03-01

    Full Text Available The Berg–Breede River whitefish, Barbus andrewi, an endangered Cape Floristic Region endemic, was once widespread in both the Berg and Breede River catchments. However, its distribution has been strongly reduced, apparently by human-related activities, over the last century, and the Hex River now contains one of the last recruiting populations within its native range. This population was last surveyed by Christie who found that the species occurred in six pools over a 9-km stretch of the upper Hex River. We re-surveyed fish populations at Christie’s sites in 2015 to evaluate differences in the fish community between 2002 and 2015. Our data indicated that the distribution of B. andrewi in the Hex River has declined from six to four pools and that its density in the study area in 2015 (0.57 fish per 100 m2 ± 0.31 fish per 100 m2 was more than fivefold lower than that recorded in 2002 (3.39 fish per 100 m2 ± 1.40 fish per 100 m2 . Moreover, small size classes of B. andrewi (< 10 cm were largely absent in 2015, indicating recruitment failure in recent years. Habitat degradation, exacerbated by a severe flood in 2008, and recent invasions by predatory non-native fishes (smallmouth bass, Micropterus dolomieu and sharptooth catfish, Clarias gariepinus are identified as likely causes of this decline. Cape kurper, Sandelia capensis, another native species, was relatively common in 2002 but not recorded in 2015, whereas the density of native Breede River redfin, Pseudobarbus burchelli, was higher in 2015 than in 2002. Urgent conservation actions including managing non-native fish invasions and mitigating agricultural impacts on aquatic habitat are required to prevent further decline, and possible extirpation, of the Hex River population of B. andrewi. Conservation implications: Urgent conservation actions including preventing further increases in the abundance and distribution of non-native fishes, and improving habitat and water quality through

  19. Groundwater and surface-water interaction within the upper Smith River Watershed, Montana 2006-2010

    Science.gov (United States)

    Caldwell, Rodney R.; Eddy-Miller, Cheryl A.

    2013-01-01

    The 125-mile long Smith River, a tributary of the Missouri River, is highly valued as an agricultural resource and for its many recreational uses. During a drought starting in about 1999, streamflow was insufficient to meet all of the irrigation demands, much less maintain streamflow needed for boating and viable fish habitat. In 2006, the U.S. Geological Survey, in cooperation with the Meagher County Conservation District, initiated a multi-year hydrologic investigation of the Smith River watershed. This investigation was designed to increase understanding of the water resources of the upper Smith River watershed and develop a detailed description of groundwater and surface-water interactions. A combination of methods, including miscellaneous and continuous groundwater-level, stream-stage, water-temperature, and streamflow monitoring was used to assess the hydrologic system and the spatial and temporal variability of groundwater and surface-water interactions. Collectively, data are in agreement and show: (1) the hydraulic connectedness of groundwater and surface water, (2) the presence of both losing and gaining stream reaches, (3) dynamic changes in direction and magnitude of water flow between the stream and groundwater with time, (4) the effects of local flood irrigation on groundwater levels and gradients in the watershed, and (5) evidence and timing of irrigation return flows to area streams. Groundwater flow within the alluvium and older (Tertiary) basin-fill sediments generally followed land-surface topography from the uplands to the axis of alluvial valleys of the Smith River and its tributaries. Groundwater levels were typically highest in the monitoring wells located within and adjacent to streams in late spring or early summer, likely affected by recharge from snowmelt and local precipitation, leakage from losing streams and canals, and recharge from local flood irrigation. The effects of flood irrigation resulted in increased hydraulic gradients

  20. Penelitian Pendahuluan Angkutan Sedimen Melayang Sub-Das Citarik Hulu = (Suspended Sediment Transport in the Upper Citarik Sub-River Basin: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Soewarno .

    2014-10-01

    Full Text Available Apart from its function as a soil cover, forest also plays a positive role in preserving water and sediment in a river basin. Rain water which is abundant in the rainy season is caught and stored underground, so that the erosion and flood hazard can be eliminated. In the dry season groundwater becomes reservation to minimize and even eliminate the risk of water shortage. This preliminary study is to monitor suspended sediment transport with respect to the forest area of upper Citarum River Basin at upper Citarih Sub - River Basin. On the basis of the preliminary study results, it can be said that for a river basin where percentage of the forest area is smaller (i the suspended sediment concentration is higher and (ii the total sediment per area unit is greater. These indications were found during the study period, from September 1987 to February 1988. The preliminary study was conducted in a sub-river basin where the soil type is a mixture of andosol and brown regosol, and the terrain is undulating, hilly to mountainous with slope more than 15 percent.

  1. FLUVIAL PROCESSES IN ATTACHMENT BARS IN THE UPPER PARANÁ RIVER, BRAZIL

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina Dos Santos

    2017-08-01

    Full Text Available Bars are semi-submerged fluvial forms associated with the availability of sediments and a temporal dynamic, whose dimensions are controlled by the flow and depth of the channel.  Attachment bars are very common in large anabranching river systems and play an important role in island formation and ecology. The Upper Paraná River exhibits an anabranching pattern characterized by channels of different sizes, separated by islands and bars. The objective of this work is to present the processes involved in the formation and development of attachment bars in Santa Rosa Island, situated in Porto Rico, State of Parana, Southern Brazil. Acquisition campaigns were performed to obtain data on channel hydraulics (ADCP equipment, morphometry (Echo-sound profiles and textural parameters (grain-size analyses at high and medium water levels. Santa Rosa Island divides the flow into two channels of distinct hydraulic and sedimentary dynamics. Flow diversion produces a decrease in flow velocity and consequent sediment deposition near the upstream end of Santa Rosa Island. The formation and maintenance of attachment bars in Santa Rosa Island is related to flow competence reduction and the occurrence of divergent currents. Vegetation cover and flow regime control its permanence. 

  2. Fe and Mn Transport and Settling Modelling in the Upper Course of the Lerma River

    Directory of Open Access Journals (Sweden)

    García-Aragón Juan Antonio

    2013-06-01

    Full Text Available A metal transport and deposition model together with concentration measurements of Fe and Mn was developed in the Upper Course of the Lerma River, Mexico State. The hydraulic sections of 27.9 km of the Lerma River were measured in the field in order to supply the numerical model. A general mass balance equation considering full mixing in selected reaches of the Lerma River was developed and solved using the finite-difference method. At the same time a sampling campaign of water and sediment allowed us to obtain Fe and Mn concentrations in each phase. Metal concentrations were obtained by Energy Dispersive X-Ray Fluorescence Method (EDXRF. Partition coefficients for water and suspended sediment and for water and deposited sediment were calculated. Well defined periods and areas of deposition of Fe and Mn were obtained by the transport model and the spatial variation of the partition coefficients agree with the pattern obtained in the simulation. It is concluded that the current practice of constant values of the partition coefficients could not be used in modelling transport and deposition of metals if we are dealing with hydrologic extreme events and river sediment deposition areas.

  3. Distribution of Fish in the Upper Citarum River: an Adaptive Response to Physico-Chemical Properties

    Directory of Open Access Journals (Sweden)

    SUNARDI

    2012-12-01

    Full Text Available Distribution of fish in river is controlled by physico-chemical properties of the water which is affected by land-use complexity and intensity of human intervention. A study on fish distribution was carried out in the upper Citarum River to map the effects of physio-chemical properties on habitat use. A survey was conducted to collect fish and to measure the water quality both on dry and rainy season. The result showed that distribution of the fish, in general, represented their adaptive response to physico-chemical properties. The river environment could be grouped into two categories: (i clean and relatively unpolluted sites, which associated with high DO and water current, and (ii polluted sites characterized by low DO, high COD, BOD, water temperature, NO3, PO4, H2S, NH3, and surfactant. Fish inhabiting the first sites were Xiphophorus helleri, Punctius binotatus, Xiphophorus maculatus, and Oreochromis mossambicus. Meanwhile, the latter sites were inhabited by Liposarcus pardalis, Trichogaster trichopterus, and Poecilia reticulata. Knowledge about fish distribution in association with the pysico-chemical properties of water is crucial especially for the river management.

  4. PATHOGEN TRANSPORT AND FATE MODELING IN THE UPPER SALEM RIVER WATERSHED USING SWAT MODEL - PEER-REVIEWED JOURNAL ARTICLE

    Science.gov (United States)

    Simulation of the fate and transport of pathogen contamination was conducted with SWAT for the Upper Salem River Watershed, located in Salem County, New Jersey. This watershed is 37 km2 and land uses are predominantly agricultural. The watershed drains to a 32 km str...

  5. Community Based Warning and Evacuation System against Debris Flow in the Upper Jeneberang River, Gowa, South Sulawesi

    Directory of Open Access Journals (Sweden)

    Sutikno Hardjosuwarno

    2008-07-01

    Full Text Available Gigantic collapse of the Caldera wall of Mt. Bawakaraeng (2,830 m in March 2004 had supplied the sediment volume of 230 million to the most upper stream of Jeneberang River, which flowed down to the lower reach in the form of debris flow which is triggered by rainfall. The purpose of the research is to provide a system which is able to forecast the occurrence of debris flow, to identify the weak points along the river course, to identify the hazard areas and how to inform effectively and efficiently the warning messages to the inhabitants in the dangerous area by using the existing modern equipment combined with the traditional one. The standard rainfall which is used to judge the occurrence of debris flow was established by Yano method. It is based on the historical data of rainfall that trigger and not trigger to the occurrence of debris flow which is widely used in Japan so far. The hazard area was estimated by Two-Dimensional Simulation Model for debris flow, the debris flow arrival time at each point in the river were estimated by dividing their distance from reference point by debris flow velocity, where the check dam no. 7-1 in Manimbahoi was designated as reference point. The existing evacuation routes were checked by field survey, the strength and coverage of sound for kentongan and manual siren were examined using sound pressure level at the location of the existing monitoring post and the effectiveness of warning and evacuation were evaluated by comparing the warning and evacuation time against the debris flow arrival time. It was resulted that debris flow occurrence was triggered by short duration of high rainfall intensity, long duration of low rainfall intensity and the outbreak of natural dam which is formed by land slide or bank collapses. The hazard area of upper Jeneberang River are mostly located on the river terraces where the local inhabitants earn their living through cultivating the river terraces as paddy fields, dry

  6. Factors favorable to frequent extreme precipitation in the upper Yangtze River Valley

    Science.gov (United States)

    Tian, Baoqiang; Fan, Ke

    2013-08-01

    Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land-sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.

  7. Rainfall characteristics and their implications for rain-fed agriculture : a case study in the Upper Zambezi River Basin

    NARCIS (Netherlands)

    Beyer, M.; Wallner, M.; Bahlmann, L.; Thiemig, V.; Dietrich, J.; Billib, M.

    2016-01-01

    This study investigates rainfall characteristics in the Upper Zambezi River Basin and implications for rain-fed agriculture. Seventeen indices describing the character of each rainy season were calculated using a bias-corrected version of TRMM-B42 v6 rainfall estimate for 1998–2010. These were

  8. River Network Reorganization along the Upper Yangzte, Eastern Tibet: Insights from Thermochronology and Sedimentology.

    Science.gov (United States)

    Gourbet, L.; Yang, R.; Fellin, M. G.; Maden, C.; Gong, J.; Jean-Louis, P.

    2017-12-01

    The high relief and high elevation of the southeastern margin of the Tibetan Plateau are related to tectonic uplift and the fluvial incision of the Salween, Mekong, and Yangtze rivers. The upper Yangtze is the subject of numerous debates on the evolution of its drainage area, particularly in regards to the timing and geodynamic processes, and therefore has an impact on models of the Tibetan plateau evolution. Today, portions of the course of the Yangtze are controlled by active strike-slip faults. In order to study the evolution of the Cenozoic paleoriver network, we use low-temperature thermochronometry to estimate fluvial incision and palaeoenvironmental information derived from the detrital record. The Jianchuan basin, between the Yangtze and the Red River, contains late Eocene fluvial sediments that may correspond to an ancient connection between these rivers. Sediments located further north (DongWang formation, Yunnan-Sichuan boundary) consist of unsorted conglomerates and sandstones. They are exposed on the flanks of deep valleys. These sediments do not correspond to a large riverbed such as the Yangtze but rather indicate an episode of intense sedimentation with a significant contribution from talus, followed by a >1.2 km incision by a tributary of the upper Yangtze. In the same area, we performed apatite and zircon (U-Th)/He dating on a granitic pluton that is offset by an active sinistral strike-slip fault. Mean ZHe cooling ages range from 50 to 70 Ma. Samples located above 3870 m yield mean apatite (U-Th)/He ages ranging from 30 to 40 Ma. AHe ages for samples at lower elevation range from 8 to 15 Ma. Given the crystallization age of the pluton (83 Ma, U/Pb, zircon), cooling ages reflect exhumation, not post-intrusion cooling. Further research will use thermal modeling to infer incision rates and compare results with published data.

  9. Regulating N application for rice yield and sustainable eco-agro development in the upper reaches of Yellow River basin, China.

    Science.gov (United States)

    Zhang, Aiping; Liu, Ruliang; Gao, Ji; Yang, Shiqi; Chen, Zhe

    2014-01-01

    High N fertilizer and flooding irrigation applied to rice on anthropogenic-alluvial soil often result in N leaching and low recovery of applied fertilizer N from the rice fields in Ningxia irrigation region in the upper reaches of the Yellow River, which threatens ecological environment, food security, and sustainable agricultural development. This paper reported the regulating N application for rice yield and sustainable Eco-Agro development in the upper reaches of Yellow River basin. The results showed that reducing and postponing N application could maintain crop yields while substantially reducing N leaching losses to the environment and improving the nitrogen use efficiency. Considering the high food production, the minimum environmental threat, and the low labor input, we suggested that regulating N application is an important measure to help sustainable agricultural development in this region.

  10. Discharge prediction in the Upper Senegal River using remote sensing data

    Science.gov (United States)

    Ceccarini, Iacopo; Raso, Luciano; Steele-Dunne, Susan; Hrachowitz, Markus; Nijzink, Remko; Bodian, Ansoumana; Claps, Pierluigi

    2017-04-01

    The Upper Senegal River, West Africa, is a poorly gauged basin. Nevertheless, discharge predictions are required in this river for the optimal operation of the downstream Manantali reservoir, flood forecasting, development plans for the entire basin and studies for adaptation to climate change. Despite the need for reliable discharge predictions, currently available rainfall-runoff models for this basin provide only poor performances, particularly during extreme regimes, both low-flow and high-flow. In this research we develop a rainfall-runoff model that combines remote-sensing input data and a-priori knowledge on catchment physical characteristics. This semi-distributed model, is based on conceptual numerical descriptions of hydrological processes at the catchment scale. Because of the lack of reliable input data from ground observations, we use the Tropical Rainfall Measuring Mission (TRMM) remote-sensing data for precipitation and the Global Land Evaporation Amsterdam Model (GLEAM) for the terrestrial potential evaporation. The model parameters are selected by a combination of calibration, by match of observed output and considering a large set of hydrological signatures, as well as a-priori knowledge on the catchment. The Generalized Likelihood Uncertainty Estimation (GLUE) method was used to choose the most likely range in which the parameter sets belong. Analysis of different experiments enhances our understanding on the added value of distributed remote-sensing data and a-priori information in rainfall-runoff modelling. Results of this research will be used for decision making at different scales, contributing to a rational use of water resources in this river.

  11. MODELLING THE IMPACTS OF WILDFIRE ON SURFACE RUNOFF IN THE UPPER UBERABINHA RIVER WATERSHED USING HEC-HMS

    Directory of Open Access Journals (Sweden)

    Jean Maikon Santos Oliveira

    2017-01-01

    Full Text Available Fire significantly affects hydrological processes in the waters hed because it changes land cover and it creates a double layer of hydrophobic soil co vered with ash, increasing the surface runoff and the production of debris flow in the basin. Assessing the impacts of fire on overland flow requires the use of modeli ng softwares capable of simulating post-fire discharge. Because a total of 760 wildfire s were detected in the Upper Uberabinha River subbasin in the last nine years, it is o f dire importance to understand the consequential impacts of fire on hydrological pr ocesses in this basin. In this study, the HEC-HMS model was used to evaluate post-fire di scharge in the Upper Uberabinha River watershed. Model was previously calibrated and validated using two representative storms observed in the wet season. After calibra tion, the 5-, 10-, 25-, 50-, 100-, and 200-year storms were simulated in scenarios with incr easing burn severity. The calibrated model performed well in the prediction of discha rge values at a daily basis (0% difference in peak tim ing; 0% difference in peak flow ; 31.8% BIAS . Peak flow and discharge volume increased and peak timing shifted to the left as severity of burn increased. The highest increment in peak discharge was 74. 7% for the 10-year storm, whereas overall discharge volume raised in up to 31.9% f or the 50-year storm, both after simulation in the mos t fire-impacted scenario. The results reveal that fire highly affects hydrological characteristics, e.g. peak timing a nd flow and discharge volume, in the Upper Uberabinha River watershed. The authors su ggest further investigations concerning the impacts of wildfire on other proc esses, such as the production of debris flow in the basin.

  12. Assessing the relationship between water quality parameters and changes in landuse patterns in the Upper Manyame River, Zimbabwe

    Science.gov (United States)

    Kibena, J.; Nhapi, I.; Gumindoga, W.

    For the past 30 years, the increases in population pressure and external influences, such as economic growth, have accelerated the demand for land within the Upper Manyame River catchment in Zimbabwe which has caused substantial changes in landuse. The general objective of this research was to assess the impacts of landuse activities on the water quality of the Upper Manyame River which drains the rural and urbanised part of the catchment up to flow gauging station C21. Landcover data for the month of April in years of 1984, 1995, 2003 and 2011 were acquired from available Landsat TM and ETM images and were classified through the maximum likelihood digital image classification using the supervised classification approach. The status of water quality of the Upper Manyame River was also assessed through analyses of historical concentrations and pollution loads for TP, DO, COD, NH3-N, SS, Pb, NO3, BOD5, EC, PO4-P and TN at the Environmental Management Agency (EMA) gauging station CR21 sampling point for 1996, 2000/1 and 2008/9. Water quality of 15 monitoring sites comprising 25 water quality parameters were monitored monthly from January to June 2012. These locations were selected to reflect a wide array of landuse for both the dry and wet seasons. The results indicated that there was an increase in pollution load from 1995 to 2012; for TP from 130 kg/day to 376 kg/d, and for TN from 290 kg/day to 494 kg/d. This indicates high pollution levels which have severe impacts on downstream users and also severe sewage contamination. Significant deviations occurred in DO (0.1-6.8) mg/L, COD (11-569) mg/L, BOD5 (5-341) mg/L, PO4-P (0.01-4.45) mg/L, NH3-N (0.001-6.800) mg/L and EC (38-642) μS/cm. Hydrologic Response Unit and buffer analysis were used to determine the dominant landuse which contributes to a certain water quality. Results of digital image classification indicate that woodland/forest, grassland and bareland decreased between years 1984 to 2011 by 24.0%, 22.6% and

  13. Flow of river water into a karstic limestone aquifer - 2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    Science.gov (United States)

    Plummer, Niel; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 (3H/3He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3H/3He age is independent of the extent of dilution with older (3H-free and 3He(trit)-free) water. The groundwater mixtures are designated as Type-I for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl- and ??18O data for water from the Upper Floridan aquifer at Valdosta, Georgia The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most allaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-I water. CFC-12 persists in both SO4-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg-1) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-I mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water sam pies obtained from the Upper Floridan aquifer have CFC-12-based ages of the young traction that are consistent with the 3H concentration of the groundwater. Because of uncertainties associated with very low 3H and 3He content in dilute mixtures, 3H/3He dating is limited to the river

  14. Eutrophication Potential of Wastewater Treatment Plants in the Upper Reaches of Svratka River

    Directory of Open Access Journals (Sweden)

    Jan Grmela

    2014-01-01

    Full Text Available During the year 2012 thirteen selected sites were monitored in the stretch between Brno reservoir and Nedvědice village. Based on the former monitoring, samples from the major tributaries (Besenek, Loucka, Nedvedicka, Lube, Bily brook and Svratka River above and below monitored area were taken. Besides the water from tributaries and the river also samples of water discharged from sewage treatment plants in villages Nedvědice, Doubravník, Březina and Veverská Bítýška were taken. Basic chemical and physical parameters of water were measured. Major impact of monitoring was to target the amount of nutrients, especially phosphorus. Requirements for salmonid (Svratka upper, Nedvedicka, Loucka, Besenek, Bily brook or cyprinid (Lube, Kurimka, Svratka lower waters quality meet at all localities. Wastewater treatment plants (WWTP meet the emission standards in all cases. Monitoring of the amount of nutrients out-flowing from WWTP at extreme flows is not usually carried out at all. Based on our results, the phosphorus inflow into Brno reservoir would be up to 50 t per year in the case of average flow 7.96 m3.s−1 of Svratka River in Veverská Bítýška.

  15. Automated lidar-derived canopy height estimates for the Upper Mississippi River System

    Science.gov (United States)

    Hlavacek, Enrika

    2015-01-01

    Land cover/land use (LCU) classifications serve as important decision support products for researchers and land managers. The LCU classifications produced by the U.S. Geological Survey’s Upper Midwest Environmental Sciences Center (UMESC) include canopy height estimates that are assigned through manual aerial photography interpretation techniques. In an effort to improve upon these techniques, this project investigated the use of high-density lidar data for the Upper Mississippi River System to determine canopy height. An ArcGIS tool was developed to automatically derive height modifier information based on the extent of land cover features for forest classes. The measurement of canopy height included a calculation of the average height from lidar point cloud data as well as the inclusion of a local maximum filter to identify individual tree canopies. Results were compared to original manually interpreted height modifiers and to field survey data from U.S. Forest Service Forest Inventory and Analysis plots. This project demonstrated the effectiveness of utilizing lidar data to more efficiently assign height modifier attributes to LCU classifications produced by the UMESC.

  16. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    Science.gov (United States)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  17. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    Science.gov (United States)

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.

    2015-01-01

    This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs.

  18. Application of the PRMS model in the Zhenjiangguan watershed in the Upper Minjiang River basin

    Directory of Open Access Journals (Sweden)

    L. Fang

    2015-05-01

    Full Text Available The PRMS model was established for Zhenjiangguan watershed in the upper reach of the Minjiang River basin, China. The results showed that PRMS had an acceptable performance in simulating monthly runoff in the study area. The analysis on the impacts of precipitation changes on hydrological processes indicated that both runoff and evapotranspiration increased with the increase of precipitation. Moreover, evapotranspiration had larger sensitivity to the change of precipitation than runoff.

  19. Propagation and composition of the flood wave on the upper Mississippi River, 1993

    Science.gov (United States)

    Moody, John A.

    1995-01-01

    During spring and summer 1993, record flooding inundated much of the upper Mississippi River Basin. The magnitude of the damages-in terms of property, disrupted business, and personal trauma was unmatched by any other flood disaster in United States history. Property damage alone is expected to exceed $10 billion. Damaged highways and submerged roads disrupted overland transportation throughout the flooded region. The Mississippi and the Missouri Rivers were closed to navigation before, during, and after the flooding. Millions of acres of productive farmland remained under water for weeks during the growing season. Rills and gullies in many tilled fields are the result of the severe erosion that occurred throughout the Midwestern United States farmbelt. The hydrologic effects of extended rainfall throughout the upper Midwestern United States were severe and widespread. The banks and channels of many rivers were severely eroded, and sediment was deposited over large areas of the basin's flood plain. Record flows submerged many areas that had not been affected by previous floods. Industrial and agricultural areas were inundated, which caused concern about the transport and fate of industrial chemicals, sewage effluent, and agricultural chemicals in the floodwaters. The extent and duration of the flooding caused numerous levees to fail. One failed levee on the Raccoon River in Des Moines, Iowa, led to flooding of the city's water treatment plant. As a result, the city was without drinking water for 19 days.As the Nation's principal water-science agency, the U.S. Geological Survey (USGS) is in a unique position to provide an immediate assessment of some of the hydrological effects of the 1993 flood. The USGS maintains a hydrologic data network and conducts extensive water-resources investigations nationwide. Long-term data from this network and information on local and regional hydrology provide the basis for identifying and documenting the effects of the flooding

  20. Application of the multi-dimensional surface water modeling system at Bridge 339, Copper River Highway, Alaska

    Science.gov (United States)

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    The Copper River Basin, the sixth largest watershed in Alaska, drains an area of 24,200 square miles. This large, glacier-fed river flows across a wide alluvial fan before it enters the Gulf of Alaska. Bridges along the Copper River Highway, which traverses the alluvial fan, have been impacted by channel migration. Due to a major channel change in 2001, Bridge 339 at Mile 36 of the highway has undergone excessive scour, resulting in damage to its abutments and approaches. During the snow- and ice-melt runoff season, which typically extends from mid-May to September, the design discharge for the bridge often is exceeded. The approach channel shifts continuously, and during our study it has shifted back and forth from the left bank to a course along the right bank nearly parallel to the road.Maintenance at Bridge 339 has been costly and will continue to be so if no action is taken. Possible solutions to the scour and erosion problem include (1) constructing a guide bank to redirect flow, (2) dredging approximately 1,000 feet of channel above the bridge to align flow perpendicular to the bridge, and (3) extending the bridge. The USGS Multi-Dimensional Surface Water Modeling System (MD_SWMS) was used to assess these possible solutions. The major limitation of modeling these scenarios was the inability to predict ongoing channel migration. We used a hybrid dataset of surveyed and synthetic bathymetry in the approach channel, which provided the best approximation of this dynamic system. Under existing conditions and at the highest measured discharge and stage of 32,500 ft3/s and 51.08 ft, respectively, the velocities and shear stresses simulated by MD_SWMS indicate scour and erosion will continue. Construction of a 250-foot-long guide bank would not improve conditions because it is not long enough. Dredging a channel upstream of Bridge 339 would help align the flow perpendicular to Bridge 339, but because of the mobility of the channel bed, the dredged channel would

  1. Native copper in Permian Mudstones from South Devon: A natural analogue of copper canisters for high-level radioactive waste

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Werme, L.; Oversby, V.M.

    2001-01-01

    Native copper (>99.9% Cu) sheets associated with complex uraniferous and vanadiferous concretions in Upper Permian Mudstones from south Devon (United Kingdom) have been studied as a 'natural analogue' for copper canisters designed to be used in the isolation of spent fuel and high-level radioactive wastes (HLW) for deep geological disposal. Detailed analysis demonstrates that the copper formed before the mudstones were compacted. The copper displays complex corrosion and alteration. The earliest alteration was to copper oxides, followed sequentially by the formation of copper arsenides, nickel arsenide and copper sulphide, and finally nickel arsenide accompanied by nickel-copper arsenide, copper arsenide and uranium silicates. Petrographic observations demonstrate that these alteration products also formed prior to compaction. Consideration of the published history for the region indicates that maximum compaction of the rocks will have occurred by at least the Lower Jurassic (i.e. over 176 Ma ago). Since that time the copper sheets have remained isolated by the compacted mudstones and were unaffected by further corrosion until uplift and exposure to present-day surface weathering

  2. Contents of cadmium, copper, zinc, and lead in organs of Rhizophora mangle in Sevilla River mouth - Cienaga Grande de Santa Marta, Colombian Caribbean

    International Nuclear Information System (INIS)

    Naranjo Sanchez, Yury A; Troncoso, Olivo Walberto

    2008-01-01

    In order to determine the contents of cadmium, copper, zinc, and lead in leaves, stalks, and root of Rhizophora mangle, samples from three parcels located in the river Sevilla mouth - Cienaga Grande de Santa Marta, were taken in October 2003. Measures of metals concentrations were made through the Inductively Coupled Plasma Atomic Emission Spectrometry technique (ICP-AES). The results indicated that lead concentration in R. mangle organs was below method detection limit ≤38 g/g) except the absorbent root (16.3 g/g); and significant differences exist in the contents of cadmium, copper, zinc, and lead into R. mangle organs, following this concentration order: absorbent roots ≥ stalk ≥ young leaves ≥adult leaves ≥ aerial roots

  3. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  4. A new species of Hyphessobrycon (Characiformes, Characidae from the upper Guaviare River, Orinoco River Basin, Colombia

    Directory of Open Access Journals (Sweden)

    Carlos A. García-Alzate

    2017-04-01

    Full Text Available Hyphessobrycon klausanni sp. n. is described from small drainages of the upper Guaviare River (Orinoco River Basin in Colombia. It differs from all congeners by having a wide, conspicuous, dark lateral stripe extending from the anterior margin of the eye across the body and continued through the middle caudal-fin rays, and that covers (vertically three or four horizontal scale rows. It also differs by having an orange-yellow stripe extending from the anterosuperior margin of the eye to the caudal peduncle above the lateral line in life. It differs from all other species of Hyphessobrycon that have a similar dark lateral stripe: H. cyanotaenia, H. loretoensis, H. melanostichos, H. nigricinctus, H. herbertaxelrodi, H. eschwartzae, H. montogoi, H. psittacus, H. metae, H. margitae, H. vanzolinii, and H. peruvianus in having only three or four pored scales in the lateral line, 21 to 24 lateral scales and six teeth in the inner premaxillary row. Hyphessobrycon klausanni differs from H. loretoensis in having seven to eight maxillary teeth (vs. three to four and in having a longer caudal peduncle (12.4–17.0% SL vs. 4.6–8.0% SL. Additionally Hyphessobrycon klausanni can be distinguished from the other species of Hyphessobrycon with a dark lateral stripe from the Orinoco River Basin (H. metae and H. acaciae in having two teeth in the outer premaxillary row (vs. three to four and 10 branched pectoral–fin rays (vs. 11 to 12. It further differs from H. metae by the length of the snout (17.6–22.8% HL vs. 9.9–15.2% HL and by the length of the caudal peduncle (12.4–17.0% SL vs. 7.3–11.8% SL.

  5. Mercury Contributions from Flint Creek and other Tributaries to the Upper Clark Fork River in Northwestern Montana

    Science.gov (United States)

    Langner, H.; Young, M.; Staats, M. F.

    2013-12-01

    Methylmercury contamination in biota is a major factor diminishing the environmental quality of the Upper Clark Fork River (CFR), e.g. by triggering human consumption limits of fish. The CFR is subject to one of the largest Superfund cleanup projects in the US, but remediation and restoration is currently focused exclusively on other mining-related contaminants (As, Cu, Zn, Pb, Cd), which may be counterproductive with respect to the bio-availability of mercury, for example by creation of wetlands along mercury-contaminated reaches of the river. The identification and elimination of Hg sources is an essential step toward reducing the methylmercury exposure in the biota of the CFR watershed because a strong correlation exists between total mercury levels in river sediment and methylmercury levels in aquatic life. We analyzed duplicate samples from the top sediment layer of the main stem and significant tributaries to the Clark Fork River along a 240 km reach between Butte, MT and downstream of the Missoula Valley. Mercury concentrations were 1.3 × 1.6 (mean × SD, n = 35) in the main stem. Concentrations in tributaries varied widely (0.02 to 85 mg/kg) and seemed only loosely related to the number of historic precious metal mines in the watershed. In the upper reach of the CFR, elevated Hg levels are likely caused by residual contaminated sediments in the flood plain. Levels tend to decrease downstream until Drummond, MT, where Flint Creek contributes a significant amount of mercury, causing Hg levels in the main stem CFR to increase from 0.7 to 4 mg/kg. Levels continue to decrease downstream. Flint Creek is the single largest contributor of Hg to the CFR. Detailed sampling of the main stem Flint Creek and tributaries (26 sites) showed extremely high levels in two tributaries (22 to 85 mg/kg) where historic milling operations were located. Elimination of these point sources may be accomplished comparatively economically and may significantly reduce mercury levels in

  6. Alien freshwater polychaetes Hypania invalida (Grube 1860 and Laonome calida Capa 2007 in the Upper Odra River (Baltic Sea catchment area

    Directory of Open Access Journals (Sweden)

    Pabis Krzysztof

    2017-01-01

    Full Text Available Two polychaete species, Hypania invalida and Laonome calida, were found in the Upper Odra River in 2016. Both species were recorded close to a natural river bank down to 1 m depths. They inhabited sandy-gravelly and sandy-muddy sediments. H. invalida is an alien invasive Ponto-Caspian species, previously known in Poland from the Odra River estuary only. Our results may indicate a further rapid dispersal of H. invalida upstream the Odra River or an accidental introduction. This study is the first record of L. calida in the Baltic Sea catchment. This Australian species has been recently introduced into Europe. Prior to this study, it had been reported from Dutch rivers only. The present data suggest accidental introduction of the species to European rivers; however, our findings show an urgent need for a close monitoring of the polychaete in Europe.

  7. Copper foliar sorption: study of cuticular uptake and penetration

    International Nuclear Information System (INIS)

    Chamel, Andre; Bougie, Bernadette

    1977-01-01

    Results show that copper is easily retained by enzymatically isolated cuticles from pear leaves discs. The sorption is very rapid during the first hour, then progressively slower with increasing time. Upper and lower cuticles exhibit the same sorption when immersed, but the sorption by the upper internal surface is greater than that by the external surface. Sorption depends on the dates of sampling of the leaves and vegetal species. The variation of the process with concentrations is hyperbolic. The retained copper may be partially exchanged: from 16 to 95% after 24 hours of exchange in a cupric solution, as the Cu concentration increases from 10 -6 to 10 -2 M. The penetration of copper through astomatous cuticular discs is extremely reduced if there is pure water in the receiver unit [fr

  8. Hydrology and water quality of the copper-nickel study region, northeastern Minnesota

    Science.gov (United States)

    Siegel, Donald I.; Ericson, Donald W.

    1980-01-01

    Data were collected on the hydrology of the Copper-Nickel study region to identify the location and nature of groundwater resources, determine the flow characteristics and general quality of the major streams, and determine the potential effects of mining copper and nickel on the hydrologic stream. Groundwater generally occurs in local flow systems within surficial deposits and in fractures in the upper few hundred feet of bedrock. Yields commonly range from 1 to 5 gallons per minute from wells in surficial materials and bedrock, but can be as much as 1,000 gallons per minute from wells in the sand and gravel aquifer underlying the Embarrass River valley. Groundwater generally is calcium-magnesium bicarbonate types. Over a mineralized zone, groundwater has concentrations of copper and nickel greater than 5 micrograms per liter. The average annual runoff from streams in the study area is about 10 inches. About 60% of the annual runoff occurs during snowmelt in spring. Flood peaks are reduced in streams that have surface storage available in on-channel lakes and wetlands. Specific conductance in streams can exceed 250 micromhos per centimeter at 25 Celsius where mine dewatering supplements natural discharge. Estimated groundwater discharge to projected copper-nickel mines ranges from less than 25 to about 2,000 gallons per minute. The introduction of trace metals from future mining activities to the groundwater system can be reduced if tailings basins and stockpiles are located on material which has low permeability, such as till, peat, or bedrock. (USGS)

  9. Increasing influence of air temperature on upper Colorado River streamflow

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  10. Structural analysis of the Upper Internals Structure for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Houtman, J.L.

    1979-01-01

    The Upper Internals Structure (UIS) of the Clinch River Breeder Reactor Plant (CRBRP) provides control of core outlet flow to prevent severe thermal transients from occuring at the reactor vessel and primary heat transport outlet piping, provides instrumentation to monitor core performance, provides support for the control rod drivelines, and provides secondary holddown of the core. All of the structural analysis aspects of assuring the UIS is structurally adequate are presented including simplified and rigorous inelastic analysis methods, elevated temperature criteria, environmental effects on material properties, design techniques, and manufacturing constraints

  11. Validation of a biotic ligand model on site-specific copper toxicity to Daphnia magna in the Yeongsan River, Korea.

    Science.gov (United States)

    Park, Jinhee; Ra, Jin-Sung; Rho, Hojung; Cho, Jaeweon; Kim, Sang Don

    2018-03-01

    The objective of this study was to determine whether the water effect ratio (WER) or biotic ligand model (BLM) could be applied to efficiently develop water quality criteria (WQC) in Korea. Samples were collected from 12 specific sites along the Yeongsan River (YSR), Korea, including two sewage treatment plants and one estuary lake. A copper toxicity test using Daphnia magna was performed to determine the WER and to compare to the BLM prediction. The results of the WER from YSR samples also indicated significantly different copper toxicities in all sites. The model-based predictions showed that effluent and estuary waters had significantly different properties in regard to their ability to be used to investigate water characteristics and copper toxicity. It was supposed that the slight water characteristics changes, such as pH, DOC, hardness, conductivity, among others, influence copper toxicity, and these variable effects on copper toxicity interacted with the water composition. The 38% prediction was outside of the validation range by a factor of two in all sites, showing a poor predictive ability, especially in STPs and streams adjacent to the estuary, while the measured toxicity was more stable. The samples that ranged from pH 7.3-7.7 generated stable predictions, while other samples, including those with lower and the higher pH values, led to more unstable predictions. The results also showed that the toxicity of Cu in sample waters to D. magna was closely proportional to the amounts of acidity, including the carboxylic and phenolic groups, as well as the DOC concentrations. Consequently, the acceptable prediction of metal toxicity in various water samples needs the site-specific results considering the water characteristics such as pH and DOC properties particularly in STPs and estuary regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2007

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2007. Potentiometric contours are based on water-level measurements collected at 566 wells during the period May 4-June 11 near the end of the dry season, however most of the water level data for this map were collected by the U.S. Geological Survey during the period May 21-25, 2007. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  13. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    Science.gov (United States)

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water

  14. Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America.

    Science.gov (United States)

    Smolders, A J P; Lock, R A C; Van der Velde, G; Medina Hoyos, R I; Roelofs, J G M

    2003-04-01

    From 1997 until 1999 the extent and the ecological effects of zinc, copper, lead, and cadmium pollution were studied in different reaches of the South American Pilcomayo River. A comparison of metal concentrations in water, sediment, and chironomid larvae, as well as the diversity of macroinvertebrate species, was made between sites near the origin of the Pilcomayo River, with hardly any mining activities, sites in the Potosí region, with intensive mining, and sites located 500 km or further downstream of Potosí, in the Chaco plain. Samples were also collected in an unpolluted river (Cachi Mayu River) and in the Tarapaya River, which is strongly contaminated by mine tailings (1000 tons a day). The upper parts of the Pilcomayo River are strongly affected by the release of mine tailings from the Potosí mines where mean concentrations of lead, cadmium, copper, and zinc in water, filtered water, sediment, and chironomid larvae were up to a thousand times higher than the local background levels. The diversity of the benthic macroinvertebrate community was strongly reduced in the contaminated parts; 97% of the benthic macroinvertebrates consisted of chironomid larvae. The degree of contamination in the lower reaches of the river, however, was fairly low because of sedimentation processes and the strong dilution of mine tailings with enormous amounts of clean sediment from erosion processes. Analysis of sediment cores from the Ibibobo floodplain, however, reveal an increase of the heavy metal concentrations in the lower reaches since the introduction of the contaminating flotation process in the mine industry in 1985.

  15. Hydrological Impacts of Flood Storage and Management on Irrigation Water Abstraction in Upper Ewaso Ng’iro River Basin, Kenya

    NARCIS (Netherlands)

    Ngigi, S.N.; Savenije, H.H.G.; Gichuki, F.N.

    2008-01-01

    The upper Ewaso Ng’iro basin, which starts from the central highlands of Kenya and stretches northwards transcending different climatic zones, has experienced decreasing river flows for the last two decades. The Naro Moru sub-basin is used to demonstrate the looming water crisis in this water scarce

  16. Characteristics of dissolved organic matter in the Upper Klamath River, Lost River, and Klamath Straits Drain, Oregon and California

    Science.gov (United States)

    Goldman, Jami H.; Sullivan, Annett B.

    2017-12-11

    Concentrations of particulate organic carbon (POC) and dissolved organic carbon (DOC), which together comprise total organic carbon, were measured in this reconnaissance study at sampling sites in the Upper Klamath River, Lost River, and Klamath Straits Drain in 2013–16. Optical absorbance and fluorescence properties of dissolved organic matter (DOM), which contains DOC, also were analyzed. Parallel factor analysis was used to decompose the optical fluorescence data into five key components for all samples. Principal component analysis (PCA) was used to investigate differences in DOM source and processing among sites.At all sites in this study, average DOC concentrations were higher than average POC concentrations. The highest DOC concentrations were at sites in the Klamath Straits Drain and at Pump Plant D. Evaluation of optical properties indicated that Klamath Straits Drain DOM had a refractory, terrestrial source, likely extracted from the interaction of this water with wetland peats and irrigated soils. Pump Plant D DOM exhibited more labile characteristics, which could, for instance, indicate contributions from algal or microbial exudates. The samples from Klamath River also had more microbial or algal derived material, as indicated by PCA analysis of the optical properties. Most sites, except Pump Plant D, showed a linear relation between fluorescent dissolved organic matter (fDOM) and DOC concentration, indicating these measurements are highly correlated (R2=0.84), and thus a continuous fDOM probe could be used to estimate DOC loads from these sites.

  17. Prevalence of Anguillicoloides crassus and growth variation in migrant yellow-phase American eels of the upper Potomac River drainage

    Science.gov (United States)

    Zimmerman, Jennifer L.; Welsh, Stuart A.

    2012-01-01

    Prevalence of the non-native swim bladder nematode Anguillicoloides crassus has recently increased in American eels from estuaries of the North American Atlantic coast, but little is known about parasite prevalence or conditions of previous infection in upstream migrant eels within upper watersheds. This study is the first to confirm presence of A. crassus in the upper Potomac River watershed. We estimated A. crassus prevalence during 3 time periods: September to October 2006 (5/143 eels, 3.5%), August to October 2007 (0/49 eels), and June 2008 (0/50 eels). All eels were sampled from the Millville Dam eel ladder on the lower Shenandoah River, a Potomac River tributary located approximately 285 km upstream of Chesapeake Bay, USA. Of the 5 infected eels, parasite intensity was 1 for each eel, and mean intensity was also 1.0. A swim bladder degenerative index (SDI) was calculated for the 50 eels from the final sampling period, and 38% of those eels (19 of 50) showed signs of previous infection by A. crassus. We also aged 42 of the 50 eels (mean ± SE = 6.7 ± 0.29 yr, range 4 to 11 yr) from the final sampling period. Based on the range of possible SDI scores (0 to 6), severity of previously infected swim bladders was moderate (SDI = 1 or 2). Previously infected eels, however, had a lower length-at-age than that of uninfected eels. Female yellow-phase eels in upper watersheds develop into large highly fecund silver-phase adults; hence, a parasite-induced effect on growth of yellow-phase eels could ultimately reduce reproductive potential.

  18. Studies on heavy metal contamination in Godavari river basin

    Science.gov (United States)

    Hussain, Jakir; Husain, Ikbal; Arif, Mohammed; Gupta, Nidhi

    2017-12-01

    Surface water samples from Godavari river basin was analyzed quantitatively for the concentration of eight heavy metals such as arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc using atomic absorption spectrophotometer. The analyzed data revealed that iron and zinc metals were found to be the most abundant metals in the river Godavari and its tributaries. Iron (Fe) recorded the highest, while cadmium (Cd) had the least concentration. Arsenic, cadmium, chromium, iron and zinc metals are within the acceptable limit of BIS (Bureau of Indian Standards (BIS) 1050 (2012) Specification for drinking water, pp 1-5). The analysis of Godavari river and its tributary's water samples reveals that the water is contaminated at selected points which are not suitable for drinking. Nickel and Copper concentration is above acceptable limit and other metal concentration is within the acceptable limit. Comprehensive study of the results reveals that out of 18 water quality stations monitored, water samples collected at 7 water quality stations are found to be within the permissible limit for all purposes. While Rajegaon, Tekra, Nandgaon, P. G. Bridge, Bhatpalli, Kumhari, Pauni, Hivra, Ashti, Bamini, and Jagda stations were beyond the desirable limit due to presence of copper and nickel metals. The contents of copper metal ions were higher at some water quality stations on Wunna river (Nandgaon); Wardha river (Hivra) and Wainganga river (Kumhari, Pauni, Ashti) during Feb. 2012, while nickel concentration during Feb. 2012, June 2012, March 2013 and Aug. 2013 at some water quality stations on rivers Bagh, Indravati, Pranhita, Wunna, Penganga, Peddavagu, Wainganga and Wardha. It can be concluded that rapid population growth and industrialization have brought about resource degradation and a decline in environmental quality.

  19. Biological and associated water-quality data for lower Olmos Creek and upper San Antonio River, San Antonio, Texas, March-October 1990

    Science.gov (United States)

    Taylor, R. Lynn

    1995-01-01

    Biological and associated water-quality data were collected from lower Olmos Creek and upper San Antonio River in San Antonio, Texas, during March-October 1990, the second year of a multiyear data-collection program. The data will be used to document water-quality conditions prior to implementation of a proposal to reuse treated wastewater to irrigate city properties in Olmos Basin and Brackenridge Parks and to augment flows in the Olmos Creek/San Antonio River system.

  20. Flow of river water into a karstic limestone aquifer-2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)

    1998-11-01

    Tritium/helium-3 ({sup 3}H/{sup 3}He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The {sup 3}H/{sup 3}He age is independent of the extent of dilution with older ({sup 3}H-free and {sup 3}He{sub trit}-free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl{sup -} and {delta}{sup 18}O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO{sub 4}-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg{sup -1}) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the {sup 3}H concentration of the groundwater. Because of uncertainties associated with very low {sup 3}H

  1. Flow of river water into a karstic limestone aquifer-2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    International Nuclear Information System (INIS)

    Plummer, L.N.; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 ( 3 H/ 3 He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3 H/ 3 He age is independent of the extent of dilution with older ( 3 H-free and 3 He trit -free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl - and δ 18 O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO 4 -reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg -1 ) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the 3 H concentration of the groundwater. Because of uncertainties associated with very low 3 H and 3 He content in dilute mixtures, 3 H/ 3 He dating is

  2. New Data on Conodonts of the Upper Devonian of the Polar Urals (Ostantsovy Section, Malaya Usa River

    Directory of Open Access Journals (Sweden)

    M.A. Soboleva

    2016-09-01

    Full Text Available The main features of the Upper Devonian sediments on the right side of the Ostantsovy Creek (the left tributary of the Malaya Usa River in the eastern part of the Bielsko-Eletskaya structural formational belt on the western slope of the Polar Urals have been considered. The late Frasnian age of these sediments has been determined on the basis of conodonts (the linguiformis zone of the standard conodont scale. The transition from clastic and organic limestones with massive stromatoporoid forms to limestones with fused (reservoir stromatoporoid forms and Palmatolepis biofacies is indicative of the transgressive shift of the linguiformis phase. This transgressive level is an indirect expression of the Upper Kellwasser global event.

  3. Influence of fluvial environments on sediment archiving processes and temporal pollutant dynamics (Upper Loire River, France).

    Science.gov (United States)

    Dhivert, E; Grosbois, C; Rodrigues, S; Desmet, M

    2015-02-01

    Floodplains are often cored to build long-term pollutant trends at the basin scale. To highlight the influences of depositional environments on archiving processes, aggradation rates, archived trace element signals and vertical redistribution processes, two floodplain cores were sampled near in two different environments of the Upper Loire River (France): (i) a river bank ridge and (ii) a paleochannel connected by its downstream end. The base of the river bank core is composed of sandy sediments from the end of the Little Ice Age (late 18th century). This composition corresponds to a proximal floodplain aggradation (sediments that settled in the distal floodplain. In this distal floodplain environment, the aggradation rate depends on the topography and connection degree to the river channel. The temporal dynamics of anthropogenic trace element enrichments recorded in the distal floodplain are initially synchronous and present similar levels. Although the river bank core shows general temporal trends, the paleochannel core has a better resolution for short-time variations of trace element signals. After local water depth regulation began in the early 1930s, differences of connection degree were enhanced between the two cores. Therefore, large trace element signal divergences are recorded across the floodplain. The paleochannel core shows important temporal variations of enrichment levels from the 1930s to the coring date. However, the river bank core has no significant temporal variations of trace element enrichments and lower contamination levels because of a lower deposition of contaminated sediments and a pedogenetic trace elements redistribution. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China.

    Science.gov (United States)

    Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong

    2017-11-01

    This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Kinetics of excited levels in copper-vapor laser

    International Nuclear Information System (INIS)

    Smilanski, I.

    1981-10-01

    A full and representative description of the excited copper level kinetics in a copper-vapor laser is presented. The research was carried out in three stages. The first stage was the development of a representative and reliable measurement cell. A laser tube constructed of refractory materials and an excitation circuit which provides short pulses at a high repetition rate to heat the tube and excite the copper atoms were developed. This stage was also dedicated to characterizing the laser and studying its scaling laws. In the second stage a rapid neasuring system which avoids the problem of spectral line shape was developed. The system is based on the 'hook' method, which utilizes the anomalous dispersion in the vicinity of an atomic line. The light source, a wide band nitrogen-laser-pumped dye laser, ensures a short sampling time, and the recording system, with a television camera face as the recording medium, allows precise data reduction. In the third stage the excited copper level kinetics in a copper vapor laser is measured. The principal conclusions, that only a small part of the energy in the discharge is utilized to populate the upper laser levels and that the lower laser level population is very large at the end of the excitation pulse and cannot be attributed to relaxation of the upper levels, necessitate a new kinetic description of the copper-vapor laser. The laser is not self-terminating; it is activated and terminated by the electrical discharge

  6. Upper Bound Performance Estimation for Copper Based Broadband Access

    DEFF Research Database (Denmark)

    Jensen, Michael; Gutierrez Lopez, Jose Manuel

    2012-01-01

    of copper based access connections at a household level by using Geographical Information System data. This can be combined with different configurations of DSLAMs distributions, in order to calculate the required number of active equipment points to guarantee certain QoS levels. This method can be used...

  7. Genetic investigation of natural hybridization between rainbow and coastal cutthroat trout in the copper River Delta, Alaska

    Science.gov (United States)

    Williams, I.; Reeves, G.H.; Graziano, S.L.; Nielsen, J.L.

    2007-01-01

    Molecular genetic methods were used to quantify natural hybridization between rainbow trout Oncorhynchus mykiss or steelhead (anadromous rainbow trout) and coastal cutthroat trout O. clarkii clarkii collected in the Copper River delta, Southeast Alaska. Eleven locations were sampled to determine the extent of hybridization and the distribution of hybrids. Four diagnostic nuclear microsatellite loci and four species-specific simple sequence repeat markers were used in combination with restriction fragment length polymorphism analyses of NADH dehydrogenase 5/6 (ND5/6) mitochondrial DNA (mtDNA) to investigate the genetic structure of trout from both species and identify putative interspecific hybrids. Hybrids were found in 7 of the 11 streams sampled in the Copper River delta, the extent of hybridization across all streams varying from 0% to 58%. Hybrid trout distribution appeared to be nonrandom, most individuals of mixed taxonomic ancestry being detected in streams containing rainbow trout rather than in streams containing coastal cutthroat trout. Genotypic disequilibrium was observed among microsatellite loci in populations with high levels of hybridization. We found no significant correlation between unique stream channel process groups and the number of hybrid fish sampled. Eighty-eight percent of fish identified as first-generation hybrids (F1) in two populations contained coastal cutthroat trout mtDNA, suggesting directionality in hybridization. However, dominance of coastal cutthroat trout mtDNA was not observed at a third location containing F1 hybrids, indicating that interspecific mating behavior varied among locations. Backcrossed individuals were found in drainages lacking F1 hybrids and in populations previously thought to contain a single species. The extent and distribution of backcrossed individuals suggested that at least some hybrids are reproductively viable and backcrossed hybrid offspring move throughout the system.

  8. Simulated Effects of Year 2030 Water-Use and Land-Use Changes on Streamflow near the Interstate-495 Corridor, Assabet and Upper Charles River Basins, Eastern Massachusetts

    Science.gov (United States)

    Carlson, Carl S.; Desimone, Leslie A.; Weiskel, Peter K.

    2008-01-01

    Continued population growth and land development for commercial, industrial, and residential uses have created concerns regarding the future supply of potable water and the quantity of ground water discharging to streams in the area of Interstate 495 in eastern Massachusetts. Two ground-water models developed in 2002-2004 for the Assabet and Upper Charles River Basins were used to simulate water supply and land-use scenarios relevant for the entire Interstate-495 corridor. Future population growth, water demands, and commercial and residential growth were projected for year 2030 by the Metropolitan Area Planning Council. To assess the effects of future development on subbasin streamflows, seven scenarios were simulated by using existing computer-based ground-water-flow models with the data projected for year 2030. The scenarios incorporate three categories of projected 2030 water- and land-use data: (1) 2030 water use, (2) 2030 land use, and (3) a combination of 2030 water use and 2030 land use. Hydrologic, land-use, and water-use data from 1997 through 2001 for the Assabet River Basin study and 1989 through 1998 for the Upper Charles River Basin study were used to represent current conditions - referred to as 'basecase' conditions - in each basin to which each 2030 scenario was compared. The effects of projected 2030 land- and water-use change on streamflows in the Assabet River Basin depended upon the time of year, the hydrologic position of the subbasin in the larger basin, and the relative areas of new commercial and residential development projected for a subbasin. Effects of water use and land use on streamflow were evaluated by comparing average monthly nonstorm streamflow (base flow) for March and September simulated by using the models. The greatest decreases in streamflow (up to 76 percent in one subbasin), compared to the basecase, occurred in September, when streamflows are naturally at their lowest level. By contrast, simulated March streamflows

  9. Analysis of the spatial and temporal variability of mountain snowpack and terrestrial water storage in the Upper Snake River, USA

    Science.gov (United States)

    The spatial and temporal relationships of winter snowpack and terrestrial water storage (TWS) in the Upper Snake River were analyzed for water years 2001–2010 at a monthly time step. We coupled a regionally validated snow model with gravimetric measurements of the Earth’s water...

  10. Simulation of river plume behaviors in a tropical region: Case study of the Upper Gulf of Thailand

    Science.gov (United States)

    Yu, Xiaojie; Guo, Xinyu; Morimoto, Akihiko; Buranapratheprat, Anukul

    2018-02-01

    River plumes are a general phenomenon in coastal regions. Most previous studies focus on river plumes in middle and high latitudes with few studies examining those in low latitude regions. Here, we apply a numerical model to the Upper Gulf of Thailand (UGoT) to examine a river plume in low latitudes. Consistent with observational data, the modeled plume has seasonal variation dependent on monsoon conditions. During southwesterly monsoons, the plume extends northeastward to the head of the gulf; during northeasterly monsoons, it extends southwestward to the mouth of the gulf. To examine the effects of latitude, wind and river discharge on the river plume, we designed several numerical experiments. Using a middle latitude for the UGoT, the bulge close to the river mouth becomes smaller, the downstream current flows closer to the coast, and the salinity in the northern UGoT becomes lower. The reduction in the size of the bulge is consistent with the relationship between the offshore distance of a bulge and the Coriolis parameter. Momentum balance of the coastal current is maintained by advection, the Coriolis force, pressure gradient and internal stresses in both low and middle latitudes, with the Coriolis force and pressure gradient enlarged in the middle latitude. The larger pressure gradient in the middle latitude is induced by more offshore freshwater flowing with the coastal current, which induces lower salinity. The influence of wind on the river plume not only has the advection effects of changing the surface current direction and increasing the surface current speed, but also decreases the current speed due to enhanced vertical mixing. Changes in river discharge influence stratification in the UGoT but have little effect on the behavior of the river plume.

  11. Mechanical and Hydrologic Effects of Riparian Vegetation on Critical Conditions for Streambank Stability: Upper Truckee River, California

    Science.gov (United States)

    Simon, A.; Pollen, N. L.; Langendoen, E. J.

    2005-05-01

    The Upper Truckee River is the single largest contributor of sediment to Lake Tahoe with a large proportion of the suspended-sediment load coming from eroding streambanks. Recent advances in quantifying streambank processes highlight the combined effects of hydraulic erosion at the bank toe with geotechnical stability of the upper part of the bank and resulted in the development of a deterministic model of bank-toe erosion and streambank stability (Simon et al., 1999). The use of riparian vegetation in schemes of bank stabilization and stream restoration have become popular but are often implemented on a trial and error basis because of a lack of quantifiable information on the mechanical and hydrologic effects of vegetation on bank stability. This study, conducted along an unstable reach of the Upper Truckee River, combines field data with numerical modeling to quantify (1) hydraulic and geotechnical driving and resisting forces that control bank failures, (2) the mechanical and hydrologic effects of vegetation on shear strength, and (3) the critical conditions for bank stability with and without indigenous riparian species. Tests were conducted using three top-bank treatments: bare (control), Lemmon's willow, and young Lodgepole pine. The susceptibility of the bank toe to erosion by hydraulic forces was quantified by conducting submerged jet tests of in situ material to determine the erodibility coefficient (k) and the critical shear stress of the material. Drained, shear-strength parameters (cohesion and friction angle) of the banks were determined from borehole shear tests at various depths. Pore-water pressure and matric suction were monitored at three depths (30, 100, and 150 cm) with digital tensiometers to calculate changes in apparent cohesion for the period (September 2003 - May 2004) and to differentiate between the hydrologic effects of the two species. Root reinforcement of the two species was quantified by determining the relation between root

  12. Distribution, Health, and Development of Larval and Juvenile Lost River and Shortnose Suckers in the Williamson River Delta Restoration Project and Upper Klamath Lake, Oregon: 2008 Annual Data Summary

    Science.gov (United States)

    Burdick, Summer M.; Ottinger, Christopher; Brown, Daniel T.; VanderKooi, Scott P.; Robertson, Laura; Iwanowicz, Deborah

    2009-01-01

    Federally endangered Lost River sucker Deltistes luxatus and shortnose sucker Chasmistes brevirostris were once abundant throughout their range but populations have declined; they have been extirpated from several lakes, and may no longer reproduce in others. Poor recruitment into the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species, and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable rearing habitat. Within Upper Klamath Lake, a lack of marshes also may allow larval suckers to be swept from suitable rearing areas downstream into the seasonally anoxic waters of the Keno Reservoir. The Nature Conservancy (TNC) flooded about 3,600 acres to the north of the Williamson River mouth (Tulana Unit) in October 2007, and about 1,400 acres to the south and east of the Williamson River mouth (Goose Bay Unit) a year later, to retain larval suckers in Upper Klamath Lake, create nursery habitat for suckers, and improve water quality. In collaboration with TNC, the Bureau of Reclamation, and Oregon State University, we began a long-term collaborative research and monitoring program in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. Our approach includes two equally important aspects. One component is to describe habitat use and colonization processes by larval and juvenile suckers and non-sucker fish species. The second is to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report contains a summary of the first year of data collected as a part of this monitoring effort.

  13. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  14. Leach-SX-EW copper revalorization from overburden of abandoned copper mine Cerovo, Eastern Serbia

    Directory of Open Access Journals (Sweden)

    Stevanović Z.

    2009-01-01

    Full Text Available Hydrometallurgical processes for copper revalorization from overburden of abandoned mine Cerovo in Eastern Serbia were studied. Paper contain results of percolation leaching tests, performed with acidic mine waters accumulated in the bottom of the former open pit, followed by solvent extraction (SX and electrowinning (EW processes on achieved copper pregnant leach solutions. Usage of accumulated waste waters was objected to minimizing the environmental hazard due to uncontrolled leaking of these waters in nearby creeks and rivers. Chemical composition of acidic mine waters used for leaching tests was: (g/dm3: Cu - 0.201; Fe - 0.095; Mn - 0.041; Zn - 0.026; Ni - 0.0004; pH value - 3.3. Copper content in overburden sample used for leaching tests was 0.21% from which 64% were oxide copper minerals. In scope of leaching tests were examined influence of leaching solution pH values and iron (III concentration on copper recovery. It was established that for 120 hours of leaching on pH=1.5 without oxidant agents, copper concentration in pregnant leach solutions enriched up to 1.08g/dm3 which was enough for copper extraction from solution with SX-EW treatment. As extraction reagent in SX circuit was used LIX-984N in a kerosene diluent. Cathode current density in electrowinning cell was 220Am-2 while electrolyte temperature was kept on 50±2oC. Produced cathode copper at the end of SX-EW process has purity of 99.95% Cu.

  15. A luminescence dating study of the sediment stratigraphy of the Lajia Ruins in the upper Yellow River valley, China

    Science.gov (United States)

    Zhang, Yuzhu; Huang, Chun Chang; Pang, Jiangli; Zhou, Yali; Zha, Xiaochun; Wang, Longsheng; Zhou, Liang; Guo, Yongqiang; Wang, Leibin

    2014-06-01

    Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20-3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.

  16. On the question of how the natural migration of copper in Lake Onega

    Directory of Open Access Journals (Sweden)

    Belkina Natalia Alexandrovna

    2012-03-01

    Full Text Available Features of the natural migration of copper in Lake Onega studied. It is shown that under conditions of surface water the copper is present in a state of Cu (II in ionic form. The forms of migration are change depending on the physic-chemical characteristics of the environment. The main part of the copper enters the lake from river runoff, the proportion of rainfall and ground water in total coming of copper is low.

  17. Response of ammonia oxidizing archaea and bacteria to decabromodiphenyl ether and copper contamination in river sediments.

    Science.gov (United States)

    Wang, Linqiong; Li, Yi; Niu, Lihua; Zhang, Wenlong; Zhang, Huanjun; Wang, Longfei; Wang, Peifang

    2018-01-01

    Ammonia oxidation plays a fundamental role in river nitrogen cycling ecosystems, which is normally governed by both ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB). Co-contamination of typical emerging pollutant Polybrominated diphenyl ethers (PBDEs) and heavy metal on AOA and AOB communities in river sediments remains unknown. In this study, multiple analytical tools, including high-throughput pyrosequencing and real-time quantitative PCR (qPCR), were used to reveal the ammonia monooxygenase (AMO) activity, subunit alpha (amoA) gene abundance, and community structures of AOA and AOB in river sediments. It was found that the inhibition of AMO activities was increased with the increase of decabromodiphenyl ether (BDE 209, 1-100 mg kg -1 ) and copper (Cu, 50-500 mg kg -1 ) concentrations. Moreover, the synergic effects of BDE 209 and Cu resulted in a higher AMO activity reduction than the individual pollutant BDE 209. The AOA amoA copy number declined by 75.9% and 83.2% and AOB amoA gene abundance declined 82.8% and 90.0% at 20 and 100 mg kg -1 BDE 209 with a 100 mg kg -1 Cu co-contamination, respectively. The pyrosequencing results showed that both AOB and AOA community structures were altered, with a higher change of AOB than that of AOA. The results demonstrated that the AOB microbial community may be better adapted to BDE 209 and Cu pollution, while AOA might possess a greater capacity for stress resistance. Our study provides a better understanding of the ecotoxicological effects of heavy metal and micropollutant combined exposure on AOA and AOB in river sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Distribution and geochemistry of selected trace elements in the Sacramento River near Keswick Reservoir

    Science.gov (United States)

    Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.

    2012-01-01

    The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67. km from Keswick Dam.The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250m 3/s (cubic meters per second), even flows as low as 0.3m 3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow.The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100. ?? 2012.

  19. Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin; project description

    Science.gov (United States)

    Mades, D.M.

    1987-01-01

    In 1986, the U.S. Geological Survey began a National Water-Quality Assessment program to (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation's surface- and ground-water resources; (2) define, where possible, trends in water quality; and (3) identify and describe the relations of both status and trends in water quality to natural factors and the history of land use and land- and waste-management activities. The program is presently in a pilot phase that will test and modify, as necessary, concepts and approaches in preparation for possible full implementation of the program in the future. The upper Illinois River basin is one of four basins selected to test the concepts and approaches of the surface-water-quality element of the national program. The basin drains 10,949 square miles of Illinois, Indiana, and Wisconsin. Three principal tributaries are the Kankakee and Des Plaines Rivers that join to form the Illinois River and the Fox River. Land use is predominantly agricultural; about 75 percent of the basin is cultivated primarily for production of corn and soybeans. About 13 percent of the basin is urban area, most of which is located in the Chicago metropolitan area. The population of the basin is about 7 million. About 6 million people live in the Des Plaines River basin. Many water-quality issues in the upper Illinois River basin are related to sediment, nutrients, potentially toxic inorganic and organic constituents, and to water-management practices. Occurrence of sediment and the chemical constituents in the rivers and lakes within the basin has the potential to adversely affect the water's suitability for aquatic life, recreation, or, through the consumption of fish, human health. The upper Illinois River basin project consists of five major activities. The first activity--analysis of existing information and preparation of a report that describes

  20. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  1. Land Use/Land Cover Changes and Its Response to Hydrological Characteristics in the Upper Reaches of Minjiang River

    Science.gov (United States)

    Ma, Kai; Huang, Xiaorong; Guo, Biying; Wang, Yanqiu; Gao, Linyun

    2018-06-01

    Land use changes alter the hydrological characteristics of the land surface, and have significant impacts on hydrological cycle and water balance, the analysis of complex effects on natural systems has become one of the main concerns. In this study, we generated the land use conversion matrixes using ArcGIS and selected several landscape indexes (contagion index, CONTAG, Shannon's diversity index, SHDI, etc.) to evaluate the impact of land use/cover changes on hydrological process in the upper reaches of Minjiang River. We also used a statistical regression model which was established based on hydrology and precipitation data during the period of 1959-2008 to simulate the impacts of different land use conditions on rainfall and runoff in different periods. Our results showed that the simulated annual mean flow from 1985 to 1995 and 1995 to 2008 are 9.19 and 1.04 m3 s-1 lower than the measured values, respectively, which implied that the ecological protection measures should be strengthened in the study area. Our study could provide a scientific basis for water resource management and proper land use planning of upper reaches of Minjiang River.

  2. Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA

    Science.gov (United States)

    Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.

    2017-12-01

    Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.

  3. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    Science.gov (United States)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  4. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska.

    Science.gov (United States)

    Dirk W. Lang; Gordon H. Reeves; James D. Hall; Mark S. Wipfli

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchrcs kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from...

  5. The Landscape Change of Qiang’s Settlements in the Upper Reaches of Minjiang River after Wenchuan Earthquake

    OpenAIRE

    Xiaofei Wen; Ying Meng; Changliu Wang

    2015-01-01

    Qiang ethnic group is one of the oldest ethnic groups in China, mainly living in upper reaches of Minjiang River in southwest of China. Qiang’s traditional settlements are valuable cultural heritages. Unfortunately, most of Qiang’s settlements were damaged during Wenchuan earthquake in 2008 in different degree. After the earthquake, settlements were reconstructed in different ways. The landscape of Qiang’s settlements had been changed greatly by dual influences, the destruction of earthquake ...

  6. Conservation genetics of the vulnerable Treur River barb, Barbus ...

    African Journals Online (AJOL)

    At present there are only two populations of the vulnerable Treur River barb, Barbus treurensis, in existence; a founder population in the upper Blyde River and a translocated population in the Treur River where the species became extinct. The translocated population was derived from individuals from the upper Blyde River ...

  7. Integrated Hydro-geomorphological Monitoring System of the Upper Bussento river basin (Cilento and Vallo Diano Geopark, S-Italy)

    Science.gov (United States)

    Guida, D.; Cuomo, A.; Longobardi, A.; Villani, P.; Guida, M.; Guadagnuolo, D.; Cestari, A.; Siervo, V.; Benevento, G.; Sorvino, S.; Doto, R.; Verrone, M.; De Vita, A.; Aloia, A.; Positano, P.

    2012-04-01

    The Mediterranean river ecosystem functionings are supported by river-aquifer interactions. The assessment of their ecological services requires interdisciplinary scientific approaches, integrate monitoring systems and inter-institutional planning and management. This poster illustrates the Hydro-geomorphological Monitoring System build-up in the Upper Bussento river basin by the University of Salerno, in agreement with the local Basin Autorities and in extension to the other river basins located in the Cilento and Vallo Diano National Park (southern Italy), recently accepted in the European Geopark Network. The Monitoring System is based on a hierarchical Hydro-geomorphological Model (HGM), improved in a multiscale, nested and object-oriented Hydro-geomorphological Informative System (HGIS, Figure 1). Hydro-objects are topologically linked and functionally bounded by Hydro-elements at various levels of homogeneity (Table 1). Spatial Hydro-geomorpho-system, HG-complex and HG-unit support respectively areal Hydro-objects, as basin, sector and catchment and linear Hydro-objects, as river, segment, reach and section. Runoff initiation points, springs, disappearing points, junctions, gaining and water losing points complete the Hydro-systems. An automatic procedure use the Pfafstetter coding to hierarchically divide a terrain into arbitrarily small hydro-geomorphological units (basin, interfluve, headwater and no-contribution areas, each with a unique label with hierarchical topological properties. To obtain a hierarchy of hydro-geomorphological units, the method is then applied recursively on each basin and interbasin, and labels of the subdivided regions are appended to the existing label of the original region. The monitoring stations are ranked consequently in main, secondary, temporary and random and located progressively at the points or sections representative for the hydro-geomorphological responses by validation control and modeling calibration. The datasets

  8. 100 Area Columbia River sediment sampling

    International Nuclear Information System (INIS)

    Weiss, S.G.

    1993-01-01

    Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g

  9. 100 Area Columbia River sediment sampling

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.G. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-08

    Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.

  10. Investigating runoff efficiency in upper Colorado River streamflow over past centuries

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.

    2018-01-01

    With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid to the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods of high and low flow, and its correspondence to a reconstruction of late runoff season UCRB temperature variability. Results indicate that runoff efficiency has played a consistent role in modulating the relationship between precipitation and streamflow over past centuries, and that temperature has likely been the key control. While negative runoff efficiency is most common during dry periods, and positive runoff efficiency during wet years, there are some instances of positive runoff efficiency moderating the impact of precipitation deficits on streamflow. Compared to past centuries, the 20th century has experienced twice as many high flow years with negative runoff efficiency, likely due to warm temperatures. These results suggest warming temperatures will continue to reduce runoff efficiency in wet or dry years, and that future flows will be less than anticipated from precipitation due to warming temperatures.

  11. Thallium isotope composition of the upper continental crust and rivers - An investigation of the continental sources of dissolved marine thallium

    Science.gov (United States)

    Nielsen, S.G.; Rehkamper, M.; Porcelli, D.; Andersson, P.; Halliday, A.N.; Swarzenski, P.W.; Latkoczy, C.; Gunther, D.

    2005-01-01

    The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols. The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ??205Tl = -2.0 ?? 0.3 (??205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ??1.5 ??205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ?? 4 ng/kg and ??205Tl = -2.5 ?? 1.0, respectively. In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. Copyright ?? 2005 Elsevier Ltd.

  12. Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air.

    Science.gov (United States)

    Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro

    2018-02-13

    We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.

  13. Nutrient cycling, connectivity, and free-floating plant abundance in backwater lakes of the Upper Mississippi River

    Science.gov (United States)

    Houser, Jeff N.; Giblin, Shawn M.; James, William F.; Langrehr, H.A.; Rogala, James T.; Sullivan, John F.; Gray, Brian R.

    2013-01-01

    River eutrophication may cause the formation of dense surface mats of free floating plants (FFP; e.g., duckweeds and filamentous algae) which may adversely affect the ecosystem. We investigated associations among hydraulic connectivity to the channel, nutrient cycling, FFP, submersed aquatic vegetation (SAV), and dissolved oxygen concentration (DO) in ten backwater lakes of the Upper Mississippi River (UMR) that varied in connectivity to the channel. Greater connectivity was associated with higher water column nitrate (NO3-N) concentration, higher rates of sediment phosphorus (P) release, and higher rates of NO3-N flux to the sediments. Rates of sediment P and N (as NH4-N) release were similar to those of eutrophic lakes. Water column nutrient concentrations were high, and FFP tissue was nutrient rich suggesting that the eutrophic condition of the UMR often facilitated abundant FFP. However, tissue nutrient concentrations, and the associations between FFP biomass and water column nutrient concentrations, suggested that nutrients constrained FFP abundance at some sites. FFP abundance was positively associated with SAV abundance and negatively associated with dissolved oxygen concentration. These results illustrate important connections among hydraulic connectivity, nutrient cycling, FFP, SAV, and DO in the backwaters of a large, floodplain river.

  14. Sources of nitrate in water from springs and the Upper Floridan aquifer, Suwannee River basin, Florida

    Science.gov (United States)

    Katz, B.G.; Hornsby, H.D.; Böhlke, John Karl

    1999-01-01

    In the Suwannee River basin of northern Florida, nitrate-N concentrations are 1.5 to 20 mg 1-1 in waters of the karstic Upper Floridan aquifer and in springs that discharge into the middle reach of the Suwannee River. During 1996-1997, fertilizers and animal wastes from farming operations in Suwannee County contributed approximately 49% and 45% of the total N input, respectively. Values of ??15N-NO3 in spring waters range from 3.9??? to 5.8???, indicating that nitrate most likely originates from a mixture of inorganic (fertilizers) and organic (animal waste) sources. In Lafayette County, animal wastes from farming operations and fertilizers contributed approximately 53% and 39% of the total N input, respectively, but groundwater near dairy and poultry farms has ??15N-NO3 values of 11.0-12.1???, indicative of an organic source of nitrate. Spring waters that discharge to the Suwannee River from Lafayette County have ??15N-NO3 values of 5.4-8.39???, which are indicative of both organic and inorganic sources. Based on analyses of CFCs, the mean residence time of shallow groundwater and spring water ranges between 8-12 years and 12-25 years, respectively.

  15. SWOT data assimilation for operational reservoir management on the upper Niger River Basin

    Science.gov (United States)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2015-01-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of corrupted model states. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence," which describes the duration of the assimilation effect, was clearly improved (greater than 21 days) by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the data assimilation resulted in substantial improvements in the performances of the Selingue dam management with a greater ability to meet environmental requirements (the number of days the target is missed falls to zero) and a minimum volume of water released from the dam.

  16. Use of watershed factors to predict consumer surfactant toxic units in the upper Trinity river, Texas

    DEFF Research Database (Denmark)

    Johnson, David; Sanderson, Hans; Atkinson, Sam

    2009-01-01

    Surfactants are high production volume chemicals that are used in a wide assortment of "down-the-drain" consumer products. Wastewater treatment plants (WWTPs) generally remove 85 to more than 99% of all surfactants from influents, but residual concentrations are discharged into receiving waters v...... the potential to be a reliable and inexpensive method of predicting water and habitat quality in the upper Trinity River watershed and perhaps other highly urbanized watersheds in semi-arid regions. © 2009 Elsevier B.V. All rights reserved. Udgivelsesdato: June 15...

  17. Anatomical Peculiarities in Wheat (Triticum Aestivum L.) varieties Under Copper Stress

    International Nuclear Information System (INIS)

    Atabayeva, S.; Nurmahanova, A.; Akhmetova, A.; Narmuratova, M.; Asrandina, S.; Alybayeva, R.

    2016-01-01

    The effect of different concentrations (0.25 mM, 0.5 mM) of Cu/sup 2+/ on anatomical parameters of leaves and roots was investigated in hydroponically grown five wheat (Triticum aestivum L.) varieties (Kazakhstanskaya rannaya, Kazakhstanskaya-3, Melturn, Kaiyr and Shagala). The results showed that wheat varieties exposed to 0.5 mM Cu/sup 2+/ exhibited significant alterations in anatomical structure of leaves and roots. The thickness of the upper and lower epidermis, diameter of vascular bundles of leaves of almost all varieties showed a tendency to decrease under copper stress. Our experiments showed an activation of defense responses in the root anatomical structure like exodermis thickening in some varieties in the presence of copper in growth medium as compared to the control. This indicates that copper ions increase the thickness of exodermis, which reduce the absorption of toxic elements by root cells. Copper stress caused a decrease in the thickness of the lower and upper epidermis to varying degrees and reduction in the diameter of vascular bundles of wheat leaves. Copper stress caused a reduction in endodermis thickness thereby decreasing the diameter of the central cylinder of wheat roots. (author)

  18. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are

  19. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    Science.gov (United States)

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-01-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats. PMID:27966673

  20. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  1. Cyclopidae (Crustacea, Copepoda from the upper Paraná River floodplain, Brazil

    Directory of Open Access Journals (Sweden)

    F. A. LANSAC-TÔHA

    Full Text Available Cyclopid copepods from samples of fauna associated with aquatic macrophytes and plancton obtained in lotic and lentic environments were obtained from the upper Paraná River floodplain (in the states of Paraná and Mato Grosso do Sul, Brazil. Macrophytes were collected in homogeneous stands and washed. Plankton samples, taken from the water column surface and bottom, were obtained using a motor pump, with a 70 mum mesh plankton net for filtration. Twelve taxa of Cyclopidae were identified. Among them, Macrocyclops albidus albidus, Paracyclops chiltoni, Ectocyclops rubescens, Homocyclops ater, Eucyclops solitarius, Mesocyclops longisetus curvatus, Mesocyclops ogunnus, and Microcyclops finitimus were new finds for this floodplain. Eight species were recorded exclusively in aquatic macrophyte samples. Among these species, M. albidus albidus and M. finitimus presented greatest abundances. Only four species were recorded in plankton samples, and Thermocyclops minutus and Thermocyclops decipiens are limited to this type of habitat. Among these four species, T. minutus is the most abundant, especially in lentic habitats.

  2. Cyclopidae (Crustacea, Copepoda from the upper Paraná River floodplain, Brazil

    Directory of Open Access Journals (Sweden)

    LANSAC-TÔHA F. A.

    2002-01-01

    Full Text Available Cyclopid copepods from samples of fauna associated with aquatic macrophytes and plancton obtained in lotic and lentic environments were obtained from the upper Paraná River floodplain (in the states of Paraná and Mato Grosso do Sul, Brazil. Macrophytes were collected in homogeneous stands and washed. Plankton samples, taken from the water column surface and bottom, were obtained using a motor pump, with a 70 mum mesh plankton net for filtration. Twelve taxa of Cyclopidae were identified. Among them, Macrocyclops albidus albidus, Paracyclops chiltoni, Ectocyclops rubescens, Homocyclops ater, Eucyclops solitarius, Mesocyclops longisetus curvatus, Mesocyclops ogunnus, and Microcyclops finitimus were new finds for this floodplain. Eight species were recorded exclusively in aquatic macrophyte samples. Among these species, M. albidus albidus and M. finitimus presented greatest abundances. Only four species were recorded in plankton samples, and Thermocyclops minutus and Thermocyclops decipiens are limited to this type of habitat. Among these four species, T. minutus is the most abundant, especially in lentic habitats.

  3. Cyclopidae (Crustacea, Copepoda) from the upper Paraná River floodplain, Brazil.

    Science.gov (United States)

    Lansac-Tôha, F A; Velho, L F M; Higuti, J; Takahashi, E M

    2002-02-01

    Cyclopid copepods from samples of fauna associated with aquatic macrophytes and plancton obtained in lotic and lentic environments were obtained from the upper Paraná River floodplain (in the states of Paraná and Mato Grosso do Sul, Brazil). Macrophytes were collected in homogeneous stands and washed. Plankton samples, taken from the water column surface and bottom, were obtained using a motor pump, with a 70 microns mesh plankton net for filtration. Twelve taxa of Cyclopidae were identified. Among them, Macrocyclops albidus albidus, Paracyclops chiltoni, Ectocyclops rubescens, Homocyclops ater, Eucyclops solitarius, Mesocyclops longisetus curvatus, Mesocyclops ogunnus, and Microcyclops finitimus were new finds for this floodplain. Eight species were recorded exclusively in aquatic macrophyte samples. Among these species, M. albidus albidus and M. finitimus presented greatest abundances. Only four species were recorded in plankton samples, and Thermocyclops minutus and Thermocyclops decipiens are limited to this type of habitat. Among these four species, T. minutus is the most abundant, especially in lentic habitats.

  4. Identification of fish nursery areas in a free tributary of an impoundment region, upper Uruguay River, Brazil

    Directory of Open Access Journals (Sweden)

    Patrícia Alves da Silva

    Full Text Available This study aims to determine the importance of different environments of the Ligeiro River (upper Uruguay River, Brazil in fish reproduction. For this purpose, three environments (sampling sites were selected: rapids, a pool, and the mouth of the Ligeiro River. Ichthyoplankton, zooplankton, and benthos were sampled six times per month from September, 2006 to March, 2007. Zooplankton and ichthyoplankton samples were collected early in the evening with plankton nets (64 µm and 500 µm, respectively. Benthos samples were also collected early in the evening with a Van Veen dredge. Local abiotic variables (temperature, dissolved oxygen, pH, electrical conductivity, water speed, alkalinity, water hardness, and water transparency were measured simultaneously with the biotic data sampling and were complemented by regional variables (water flow and precipitation. A total of 43,475 eggs and 2,269 larvae were captured. Of these larvae, 80.1% were in the pre-flexion and larval yolk stages. Digestive tract content showed that the greatest degree of repletion among the larvae in more advanced phases occurred in the pool environment. Water speed was the main characteristic used to differentiate the river's rapids and mouth from the pool. The abundance of zooplankton and benthos was not related to the distribution of densities among the different components of the ichthyoplankton. A greater abundance of eggs and larvae with yolk was found in the rapids and river mouth. Ordination analyses showed a connection between the advanced stage larvae and the pool environment. In conclusion, the rapids and river mouth of the Ligeiro River's are important locations for fish reproduction, particularly in regard to spawning and drifting of the ichthyoplankton's initial stages, whereas the pool represents a nursery place for larval growth.

  5. Small rural communities in the inland Northwest: an assessment of small communities in the interior and upper Columbia River basins.

    Science.gov (United States)

    Charles C. Harris; William McLaughlin; Greg Brown; Dennis R. Becker

    2000-01-01

    An assessment of small rural communities in the interior and upper Columbia River basin was conducted for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). The characteristics and conditions of the rural communities in this region, which are complex and constantly changing, were examined. The research also assessed the resilience of the region’s...

  6. A case study on the diagnosis and consequences of flash floods in south-western Romania: The upper basin of Desnatui River

    Directory of Open Access Journals (Sweden)

    Morosanu Gabriela Adina

    2014-01-01

    Full Text Available The paper examines the flash floods that may appear in a representative river basin occupying the south-western Romania and also feature an example of the most recent flash flood from 2005-2006, more specifically, its causes and consequences. In order to accomplish the objectives, hydrological data were used to identify the characteristics of the floods. Finally, the case study of the flash flood was delivered through the field research, observational method, discussion with the authorities and investigation of the meteorological and hydrological available data. The research offers an insight on the dimension of damages triggered by a flash flood event, based on the statistical data provided by the village hall and the few remaining places preserving the traces of the floods (houses, bridges. Because we could not provide all the necessary data in order to determine the frequency and scale of such risk phenomena, the analysis is assessed on general hydrological statistics of flood events between 1964 to 2011. By leading the research, it resulted that the specific feature of the upper basin of Desnatui River is its temporary drainage and that in the periods of high flow, the capacity of the river channels is diminshed and the floods may occur. The paper succeeds to revive the insufficient scientific concerns on this kind of hydrological risks issued in the space occupied by the upper basin of Desnatui River and eventually, to supply the need for such study in the context of modern hydrological research preoccupations.

  7. Geochemistry and mineralogy of late Quaternary loess in the upper Mississippi River valley, USA: Provenance and correlation with Laurentide Ice Sheet history

    Science.gov (United States)

    Muhs, Daniel; Bettis, E. Arthur; Skipp, Gary L.

    2018-01-01

    The midcontinent of North America contains some of the thickest and most extensive last-glacial loess deposits in the world, known as Peoria Loess. Peoria Loess of the upper Mississippi River valley region is thought to have had temporally varying glaciogenic sources resulting from inputs of sediment to the Mississippi River from different lobes of the Laurentide Ice Sheet. Here, we explore a new method of determining loess provenance using K/Rb and K/Ba values (in K-feldspars and micas) in loess from a number of different regions in North America. Results indicate that K/Rb and K/Ba values can distinguish loess originating from diverse geologic terrains in North America. Further, different loess bodies that are known to have had the same source sediments (using other criteria) have similar K/Rb and K/Ba values. We also studied three thick loess sections in the upper Mississippi River valley region. At each site, the primary composition of the loess changed over the course of the last glacial period, and K/Rb and K/Ba values parallel changes in carbonate mineral content and clay mineralogy. We thus confirm conclusions of earlier investigators that loess composition changed as a result of the shifting dominance of different lobes of the Laurentide Ice Sheet and the changing course of the Mississippi River. We conclude that K/Rb and K/Ba values are effective, robust, and rapid indicators of loess provenance that can be applied to many regions of the world.

  8. Geochemistry and mineralogy of late Quaternary loess in the upper Mississippi River valley, USA: Provenance and correlation with Laurentide Ice Sheet history

    Science.gov (United States)

    Muhs, Daniel R.; Bettis, E. Arthur; Skipp, Gary L.

    2018-05-01

    The midcontinent of North America contains some of the thickest and most extensive last-glacial loess deposits in the world, known as Peoria Loess. Peoria Loess of the upper Mississippi River valley region is thought to have had temporally varying glaciogenic sources resulting from inputs of sediment to the Mississippi River from different lobes of the Laurentide Ice Sheet. Here, we explore a new method of determining loess provenance using K/Rb and K/Ba values (in K-feldspars and micas) in loess from a number of different regions in North America. Results indicate that K/Rb and K/Ba values can distinguish loess originating from diverse geologic terrains in North America. Further, different loess bodies that are known to have had the same source sediments (using other criteria) have similar K/Rb and K/Ba values. We also studied three thick loess sections in the upper Mississippi River valley region. At each site, the primary composition of the loess changed over the course of the last glacial period, and K/Rb and K/Ba values parallel changes in carbonate mineral content and clay mineralogy. We thus confirm conclusions of earlier investigators that loess composition changed as a result of the shifting dominance of different lobes of the Laurentide Ice Sheet and the changing course of the Mississippi River. We conclude that K/Rb and K/Ba values are effective, robust, and rapid indicators of loess provenance that can be applied to many regions of the world.

  9. Flood effects provide evidence of an alternate stable state from dam management on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Hupp, Cliff R.; Schenk, Edward R.; Galloway, Joel M.; Nustad, Rochelle A.

    2017-01-01

    We examine how historic flooding in 2011 affected the geomorphic adjustments created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND, USA. The largest flood since dam regulation occurred in 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until October, peaking with a flow of more than 4200 m3 s−1. Channel cross-section data and aerial imagery before and after the flood were compared with historic rates of channel change to assess the relative impact of the flood on the river morphology. Results indicate that the 2011 flood maintained trends in island area with the loss of islands in the reach just below the dam and an increase in island area downstream. Channel capacity changes varied along the Garrison Segment as a result of the flood. The thalweg, which has been stable since the mid-1970s, did not migrate. And channel morphology, as defined by a newly developed shoaling metric, which quantifies the degree of channel braiding, indicates significant longitudinal variability in response to the flood. These results show that the 2011 flood exacerbates some geomorphic trends caused by the dam while reversing others. We conclude that the presence of dams has created an alternate geomorphic and related ecological stable state, which does not revert towards pre-dam conditions in response to the flood of record. This suggests that management of sediment transport dynamics as well as flow modification is necessary to restore the Garrison Segment of the Upper Missouri River towards pre-dam conditions and help create or maintain habitat for endangered species. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  10. Coupled hydrologic and hydraulic modeling of Upper Niger River Basin

    Science.gov (United States)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir

    2017-04-01

    The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river

  11. Potential for Water Savings by Defoliation of Saltcedar (Tamarix spp.) by Saltcedar Beetles (Diorhabda carinulata) in the Upper Colorado River Basin

    Science.gov (United States)

    Nagler, P. L.; Nguyen, U.; Bateman, H. L.; Jarchow, C.; van Riper, C., III; Waugh, W.; Glenn, E.

    2016-12-01

    Northern saltcedar beetles (Diorhabda carinata) have spread widely in riparian zones on the Colorado Plateau since their initial release in 2002. One goal of the releases was to reduce water consumption by saltcedar in order to conserve water through reduction of evapotranspiration (ET). The beetle moved south on the Virgin River and reached Big Bend State Park in Nevada in 2014, an expansion rate of 60 km/year. This is important because the beetle's photoperiod requirement for diapause was expected to prevent them from moving south of 37°N latitude, where endangered southwest willow flycatcher habitat occurs. In addition to focusing on the rate of dispersal of the beetles, we used remote sensing estimates of ET at 13 sites on the Colorado, San Juan, Virgin and Dolores rivers and their tributaries to estimate riparian zone ET before and after beetle releases. We estimate that water savings from 2007-2015 was 31.5 million m3/yr (25,547 acre-ft/yr), amounting to 0.258 % of annual river flow from the Upper Colorado River Basin to the Lower Basin. Reasons for the relatively low potential water savings are: 1) baseline ET before beetle release was modest (0.472 m/yr); 2) reduction in ET was low (0.061 m/yr) because saltcedar stands tended to recover after defoliation; 3) riparian ET even in the absence of beetles was only 1.8 % of river flows, calculated as the before beetle average annual ET (472 mm/yr) times the total area of saltcedar (51,588 ha) divided by the combined total average annual flows (1964-2015) from the upper to lower catchment areas of the Colorado River Basin at the USGS gages (12,215 million m3/yr or 9.90 million acre-ft). Further research is suggested to concentrate on the ecological impacts (both positive and negative) of beetles on riparian zones and on identifying management options to maximize riparian health.

  12. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  13. Spatially explicit habitat models for 28 fishes from the Upper Mississippi River System (AHAG 2.0)

    Science.gov (United States)

    Ickes, Brian S.; Sauer, J.S.; Richards, N.; Bowler, M.; Schlifer, B.

    2014-01-01

    Environmental management actions in the Upper Mississippi River System (UMRS) typically require pre-project assessments of predicted benefits under a range of project scenarios. The U.S. Army Corps of Engineers (USACE) now requires certified and peer-reviewed models to conduct these assessments. Previously, habitat benefits were estimated for fish communities in the UMRS using the Aquatic Habitat Appraisal Guide (AHAG v.1.0; AHAG from hereon). This spreadsheet-based model used a habitat suitability index (HSI) approach that drew heavily upon Habitat Evaluation Procedures (HEP; U.S. Fish and Wildlife Service, 1980) by the U.S. Fish and Wildlife Service (USFWS). The HSI approach requires developing species response curves for different environmental variables that seek to broadly represent habitat. The AHAG model uses species-specific response curves assembled from literature values, data from other ecosystems, or best professional judgment. A recent scientific review of the AHAG indicated that the model’s effectiveness is reduced by its dated approach to large river ecosystems, uncertainty regarding its data inputs and rationale for habitat-species response relationships, and lack of field validation (Abt Associates Inc., 2011). The reviewers made two major recommendations: (1) incorporate empirical data from the UMRS into defining the empirical response curves, and (2) conduct post-project biological evaluations to test pre-project benefits estimated by AHAG. Our objective was to address the first recommendation and generate updated response curves for AHAG using data from the Upper Mississippi River Restoration-Environmental Management Program (UMRR-EMP) Long Term Resource Monitoring Program (LTRMP) element. Fish community data have been collected by LTRMP (Gutreuter and others, 1995; Ratcliff and others, in press) for 20 years from 6 study reaches representing 1,930 kilometers of river and >140 species of fish. We modeled a subset of these data (28 different

  14. Bioassessment of mercury, cadmium, polychlorinated biphenyls, and pesticides in the Upper Mississippi River with zebra mussels (Dreissena polymorpha)

    Energy Technology Data Exchange (ETDEWEB)

    Cope, W.G.; Bartsch, M.R.; Rada, R.G.; Balogh, S.J.; Rupprecht, J.E.; Young, R.D.; Johnson, D.K.

    1999-12-15

    Zebra mussels (Dreissena polymorpha) were sampled from artificial substrates deployed from May 30 to October 19, 1995, at 19 locks and dams from Minneapolis, MN, to Muscatine, IA. Analyses of composite tissue samples of zebra mussels revealed accumulation of mercury (Hg), cadmium (Cd), and polychlorinated biphenyls (PCBs) during a 143-d exposure period. Concentrations of total Hg ranged from 2.6 to 6.1 ng/g wet weight and methylmercury (CH{sub 3}Hg) from 1.0 to 3.3 ng/g wet weight. About 50% of the mean total Hg in zebra mussels was CH{sub 3}Hg. Cadmium ranged from 76 to 213 ng/g wet weight. Concentrations of total PCBs in zebra mussels varied longitudinally, but the composition of PCB congeners was similar throughout the river. Chlordane and dieldrin were the only two pesticides detected of the 15 analyzed. Zebra mussels are sentinels of contaminant bioavailability in the Upper Mississippi River and may be an important link in the trophic transfer of contaminants in the river because of their increasing importance in the diets of certain fish and waterfowl.

  15. Erosion control works and the intensity of soil erosion in the upper part of the river Toplica drainage basin

    International Nuclear Information System (INIS)

    Kostadinov, S; Dragovic, N; Zlatic, M; Todosijevic, M

    2008-01-01

    Aiming at the protection of the future storage 'Selova' against erosion and sediment, and also to protect the settlements and roads in the drainage basin against torrential floods, erosion control works in the upper part of the river Toplica basin, upstream of the storage 'Selova', started in 1947. The works included building-technical works (check dams) and biological works (afforestation and grassing of bare lands and other erosion risk areas). Within the period 1947-2006, the following erosion control works were executed: afforestation of bare lands on the slopes 2,257.00 ha, grassing of bare lands 1,520.00 ha, and altogether 54 dams were constructed in the river Toplica tributaries. This caused the decrease of sediment transport in the main flow of the river Toplica. This paper, based on the field research conducted in two time periods: 1988 and in the period 2004-2007, presents the state of erosion in the basin before erosion control works; type and scope of erosion control works and their effect on the intensity of erosion in the river Toplica basin upstream of the future storage 'Selova'.

  16. Organochlorine compounds and trace elements in fish tissue and bed sediments in the lower Snake River basin, Idaho and Oregon

    Science.gov (United States)

    Clark, Gregory M.; Maret, Terry R.

    1998-01-01

    in all three bed-sediment samples, ranged from 1.1 micrograms per kilogram dry weight in C.J. Strike Reservoir to 11 micrograms per kilogram dry weight in Brownlee Reservoir at Burnt River. Data from this study, compared with data collected in the upper Snake River Basin from 1992 to 1994, indicates that, in general, organochlorine concentrations in fish tissue and bed sediment increased from the headwaters of the Snake River in Wyoming downstream to Brownlee Reservoir. The largest trace-element concentrations in fish tissue were in liver samples from carp from Brownlee Reservoir at Burnt River and suckers from the Boise River near Twin Springs. Concentrations of most trace elements were larger in livers than in the sport- fish fillets. However, mercury concentrations were generally larger in the sportfish fillets; they ranged from 0.08 microgram per gram wet weight in yellow perch from C.J. Strike Reservoir to 0.32 microgram per gram wet weight in channel catfish from Brownlee Reservoir at Burnt River. None of the trace-element concentrations in fillets exceeded median international standards or U.S. Food and Drug Administration action levels. Large trace-element concentrations in the upper Snake River Basin were reported in liver samples from suckers from headwater streams, probably a result of historical mining and weathering of metal-rich rocks. Concentrations of most trace elements in the bed-sediment samples were largest in Brownlee Reservoir at Mountain Man Lodge. Concentrations of arsenic, cadmium, chromium, copper, nickel, and zinc in bed sediment from the Mountain Man Lodge site exceeded either the threshold effect level or probable effect level established by the Canadian Government for the protection of benthic life. Arsenic, chromium, copper, and nickel concentrations in bed sediment from Brownlee Reservoir at Burnt River and chromium, copper, and nickel in bed sediment from C.J. Strike Reservoir also exceeded the threshold effect level.

  17. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality in an urban part of the Twin Cities Metropolitan area, Minnesota, 1996

    Science.gov (United States)

    Andrews, W.J.; Fong, A.L.; Harrod, Leigh; Dittes, M.E.

    1998-01-01

    In the spring of 1996, the Upper Mississippi River Basin Study Unit of the National Water-Quality Assessment Program drilled 30 shallow monitoring wells in a study area characterized by urban residential and commercial land uses. The monitoring wells were installed in sandy river-terrace deposits adjacent to the Mississippi River in Anoka and Hennepin Counties, Minnesota, in areas where urban development primarily occurred during the past 30 years.

  18. Soil and Terrain Database for Upper Tana River Catchment (version 1.1) - scale 1:250,000 (SOTER_UT_v1.1)

    NARCIS (Netherlands)

    Dijkshoorn, J.A.; Macharia, P.; Kempen, B.

    2014-01-01

    The Soil and Terrain database for the Upper Tana River Catchment (version 1.1) (SOTER_UT_v1.1) at scale 1:250,000 was compiled to support the Green Water Credits (GWC) programme by creating a primary SOTER dataset for a hydrology assessment of the basin. The Kenya Soil Survey of the Kenya

  19. Accumulation of heavy metals by flat tree-oyster isognomon alatus, in Sepang River, Malaysia

    International Nuclear Information System (INIS)

    Saed, K.; Ismail, A.

    1999-01-01

    Zinc, copper and cadmium were studied in flat tree-oysters from the estuary of Sepang River which receives effluent from pig farm and other human activities. Oysters were collected from six stations along the river in August 1998, and the soft tissue of individuals were analyses. The results showed that concentrations of these metals are in the range of 97.78 - 598.40 μgg -1 for zinc, 1 1. 2 8-49.24 μgg -1 for copper and 0.41 - 7.74 μgg -1 for cadmium. Oysters sampled close to pig farm appeared to have significantly (p<0.01) higher mean concentrations of Zn, Cu and Cd than the other oysters. Zinc, cadmium and copper concentrations in all stations studied are higher than the maximum permissible levels, except copper from three stations which are further from pig farm. So far there is no available data on heavy metals in oysters from Sepang River. These results can be a useful information for future studies. (Author)

  20. Characteristics of streams and aquifers and processes affecting the salinity of water in the upper Colorado River basin, Texas

    Science.gov (United States)

    Slade, R.M.; Buszka, P.M.

    1994-01-01

    The upper Colorado River and some of its tributaries between Lake J.B. Thomas and O.H. Ivie Reservoir contain saline water (defined as water having dissolved-solids concentrations greater than 1,000 milligrams per liter). Dissolved-solids loads at nine streamflow water-quality stations increased from 1986 to 1988. The largest increases were in Beals Creek and in the Colorado River downstream from Beals Creek as a result of outflow of saline water from Natural Dam Salt Lake. The outflow contained 654,000 tons of dissolved solids and had a mean dissolved-solids concentration of 7,900 milligrams per liter. This amount represents about 51 percent of the dissolved-solids load to E.V. Spence Reservoir during 1986-88.

  1. Time and order of eruption of first functional teeth in the upper jaw of post-larval life of Sicyopterus japonicus (Gobiidiae: Sicydiinae) during cranial metamorphosis at the time of river recruitment.

    Science.gov (United States)

    Sahara, Noriyuki; Moriyama, Keita; Iida, Midori; Watanabe, Shun

    2016-06-01

    The present study was aimed at elucidating the time and order of eruption of first functional teeth in the upper jaw of post-larval life of Sicyopterus japonicus (S. japonicus) during cranial metamorphosis at the time of river recruitment. Fishes were caught at the post-larval stage at a river mouth and maintained for 7 days in a water tank. Each of 10 specimens was evaluated every day for 7 days by using microcomputed tomography, scanning electron microscopy, and light microscopy with peculiar attention to the development of the upper jaw teeth. Fishes caught at the river mouth were mostly transparent, with a rostral terminal mouth, and no teeth could be found in either the upper or lower jaw. At 2 days after collection, the mouth position changed from terminal to subterminal, resulting from a change in head shape. The initial eruption of first functional teeth was detected at the anterior two-thirds region of each upper jaw. These teeth erupted in adjacent positions, most had a tricuspid crown, and they represented miniature versions of adult teeth. At 5 days, the position of the mouth became further relocated from terminal rostral to ventral. The number of erupted teeth increased, followed by spreading of them anteriorly and posteriorly. At 7 days, they formed a single row of close-set tricuspid teeth along the entire length of each upper jaw. The present study demonstrated that even under laboratory conditions a rapid and drastic cranial metamorphosis took place within a week after the time of collection of post-larval S. japonicus from a river. The eruption of first functional teeth in the upper jaw of S. japonicus, which teeth are adapted to scraping algae off the substrate, was initially detected at 2 days after collection, and first functional dentition of the upper jaw was set up within 7 days after it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Potential water-quality effects of coal-bed methane production water discharged along the upper Tongue River, Wyoming and Montana

    Science.gov (United States)

    Kinsey, Stacy M.; Nimick, David A.

    2011-01-01

    Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to

  3. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan; Heine, Ruben A.; Ickes, Brian

    2016-01-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  4. Occurrence of Organic Compounds and Trace Elements in the Upper Passaic and Elizabeth Rivers and Their Tributaries in New Jersey, July 2003 to February 2004: Phase II of the New Jersey Toxics Reduction Workplan for New York-New Jersey Harbor

    Science.gov (United States)

    Wilson, Timothy P.; Bonin, Jennifer L.

    2008-01-01

    Samples of surface water and suspended sediment were collected from the Passaic and Elizabeth Rivers and their tributaries in New Jersey from July 2003 to February 2004 to determine the concentrations of selected chlorinated organic and inorganic constituents. This sampling and analysis was conducted as Phase II of the New York-New Jersey Harbor Estuary Workplan?Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. Samples were collected from three groups of tributaries: (1) the Second, Third, and Saddle Rivers; (2) the Pompton and upper Passaic Rivers; and (3) the West Branch and main stem of the Elizabeth River. The Second, Third, and Saddle Rivers were sampled near their confluence with the tidal Passaic River, but at locations not affected by tidal flooding. The Pompton and upper Passaic Rivers were sampled immediately upstream from their confluence at Two Bridges, N.J. The West Branch and the main stem of the Elizabeth River were sampled just upstream from their confluence at Hillside, N.J. All tributaries were sampled during low-flow discharge conditions using the protocols and analytical methods for organic constituents used in low-flow sampling in Phase I. Grab samples of streamflow also were collected at each site and were analyzed for trace elements (mercury, methylmercury, cadmium, and lead) and for suspended sediment, particulate organic carbon, and dissolved organic carbon. The measured concentrations and available historical suspended-sediment and stream-discharge data (where available) were used to estimate average annual loads of suspended sediment and organic compounds in these rivers. Total suspended-sediment loads for 1975?2000 were estimated using rating

  5. CROATIAN AND INTERNATIONAL COPPER AND SALT ROUTES IN THE PART OF EUROPE

    Directory of Open Access Journals (Sweden)

    Berislav Šebečić

    2001-12-01

    Full Text Available Middle Ages as well as in modern times. Those were caravan and cart routes and navigable river routes adapted to the possibilities of the then traffic. The iinportance of the copper and salt trade has been fin pointed out. From ancient times up until the mid-nineteenth century copper was pro-duced from copper ores in Rude near Samobor and from the mid-nine-teenth century until the beginning of the World War I mostly in Trgovi and Bešinac in Trgovska gora. The main copper trade was carried out from Rude over Dubovac (Karlovac, later on and Vrbovsko to Bakar and later on to Rijeka. I have named that the most important Croatian copper route. Intense intenational trade through Croatia that took place at the late fifteenth and in the course of the sixteenth centuries was a combination of river and cart traffic from the former foundries iu Bans-ka Bistrica (in Slovakia todayover Budim, Zagreb, Dubovac and Mod-ruš to Senj from where cargo was loaded on the ships sailing to Venice and all over the world. That route I have named the intenational copper route. Sea-salt was transported from the Adriatic saltvorks towards inland areas (Croatia salts routes; rock-salt was imported from Hungarian salt-works (todaj in ihe western Roumania and from the Tuzla salts works to the northern part of Croatia (International salt routes (the paper is published in Croatian.

  6. 1998 Annual Status Report: Submersed and Floating-Leaf Vegetation in Pools 4, 8, 13, and 26 and La Grange Pool of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Yin, Yao

    2001-01-01

    Aquatic vegetation was investigated in five navigation pools in the Upper Mississippi River System using a new protocol named 'stratified random sampling' or SRS protocol for the first time in 1998...

  7. Biological monitoring of Upper Three Runs Creek, Savannah River Site, Aiken County, South Carolina, March 1990--July 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Runs Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F/H area effluent on the creek, the study included qualitative and quantitative macroinvertebrate stream surveys at five sites (see map), chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. In a March 1990 study of the potential impact of F/H Area effluent on the macroinvertebrate communities of Upper Three Runs Creek was extended, with reductions in the number of sites to be sampled and in the frequency of water chemistry sampling. This report presents the results of macroinvertebrate stream surveys at three sites, chronic toxicity testing of the effluent and water chemistry analysis of the three stream sites and the effluent from March 1990 to July 1991.

  8. Distribution and extent of heavy metal accumulation in Song Sparrows (Melospiza melodia), upper Santa Cruz River watershed, southern Arizona, 2011-12

    Science.gov (United States)

    Lester, Michael B.; van Riper, Charles

    2014-01-01

    Riparian ecosystems in arid environments provide critical habitat for breeding, migratory, and wintering birds, yet are often at risk of contamination by heavy metals. Birds and other animals living in contaminated areas are susceptible to adverse health effects as a result of long-term exposure and bioaccumulation of heavy metals. We investigated the distribution and cascading extent of heavy metal accumulation in Song Sparrows (Melospiza melodia) in Arizona’s upper Santa Cruz River watershed. This study had three goals: (1) quantify the degree of heavy metal accumulation in sparrows and determine the distributional patterns among study sites, (2) compare concentrations of metals found in this study to those found in studies performed prior to the 2009 international wastewater treatment plant upgrade, and (3) assess sparrow condition among sites with differing potential sources of contamination exposure. We examined six study sites that reflected different potential sources of contamination. Hematocrit values, body mass residuals, and leukocyte counts were used to assess sparrow condition. Cadmium, copper, mercury, nickel, and selenium exceeded background concentrations at some sites, but generally were lower than or similar to concentrations found in earlier studies performed prior to the 2009 international wastewater treatment plant upgrade. Concentrations were higher in recaptured birds in 2012 than in 2011 for 7 metals in feathers and 14 metals in blood, suggesting possible bioaccumulation. We found no cascading effects as a result of heavy metal exposure, but did find that heavy metal concentrations were reduced following the 2009 international wastewater treatment plant upgrade.

  9. Analysis of evapotranspiration and biomass in pastures with degradation indicatives in the Upper Tocantins River Basin, in Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    Ricardo Guimarães Andrade

    Full Text Available ABSTRACT The objective of this study was to apply the Simple Algorithm For Evapotranspiration Retrieving (SAFER with MODIS images together with meteorological data to analyze evapotranspiration (ET and biomass production (BIO according to indicative classes of pasture degradation in Upper Tocantins River Basin. Indicative classes of degraded pastures were obtained from the NDVI time-series (2002-2012. To estimate ET and BIO in each class, MODIS images and data from meteorological stations of the year 2012 were used. The results show that compared to not-degraded pastures, ET and BIO were different in pastures with moderate to strong degradation, mainly during water stress period. Therefore, changes in energy balance partition may occur according to the degradation levels, considering that those indicatives of degradation processes were identified in 24% of the planted pasture areas. In this context, ET and BIO estimates using remote sensing techniques can be a reliable indicator of forage availability, and large-scale aspects related to the degradation of pastures. It is expected that this knowledge may contribute to initiatives of public policies aimed at controlling the loss of production potential of pasture areas in the Upper Tocantins River Basin in the state of Goiás, Brazil.

  10. Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques

    Directory of Open Access Journals (Sweden)

    Nabajit Hazarika

    2015-06-01

    Full Text Available This work documents land-use changes driven by river dynamics along two tributaries in the chronically flood affected Upper Brahmaputra floodplain which supports a population of more than half a million. Planform changes for a period of 40 years are documented using topographical map and Landsat data, and the associated land-use change is assessed by utilising hybrid classification in GIS environment. Quantification of bankline migration shows that the river courses are unstable. A reversal in the rate of erosion and deposition is also observed. Hybrid classification of Landsat images yielded a higher level of accuracy as evident from the confusion matrixes. Overall, the accuracy of land-use classification ranged between 88.5% and 96.25%. Land-use change shows that there is an increase in settlement and agriculture and a decrease in the grassland. The area affected by erosion–deposition and river migration comprises primarily of the agricultural land. Effect of river dynamics on settlements is also evident. Loss of agricultural land and homestead led to the loss of livelihood and internal migration in the floodplains. The observed pattern of river dynamics and the consequent land-use change in the recent decades have thrown newer environmental challenges at a pace and magnitude way beyond the coping capabilities of the dwellers.

  11. Hydrogeologic framework and groundwater/surface-water interactions of the upper Yakima River Basin, Kittitas County, central Washington

    Science.gov (United States)

    Gendaszek, Andrew S.; Ely, D. Matthew; Hinkle, Stephen R.; Kahle, Sue C.; Welch, Wendy B.

    2014-01-01

    The hydrogeology, hydrology, and geochemistry of groundwater and surface water in the upper (western) 860 square miles of the Yakima River Basin in Kittitas County, Washington, were studied to evaluate the groundwater-flow system, occurrence and availability of groundwater, and the extent of groundwater/surface-water interactions. The study area ranged in altitude from 7,960 feet in its headwaters in the Cascade Range to 1,730 feet at the confluence of the Yakima River with Swauk Creek. A west-to-east precipitation gradient exists in the basin with the western, high-altitude headwaters of the basin receiving more than 100 inches of precipitation per year and the eastern, low-altitude part of the basin receiving about 20 inches of precipitation per year. From the early 20th century onward, reservoirs in the upper part of the basin (for example, Keechelus, Kachess, and Cle Elum Lakes) have been managed to store snowmelt for irrigation in the greater Yakima River Basin. Canals transport water from these reservoirs for irrigation in the study area; additional water use is met through groundwater withdrawals from wells and surface-water withdrawals from streams and rivers. Estimated groundwater use for domestic, commercial, and irrigation purposes is reported for the study area. A complex assemblage of sedimentary, metamorphic, and igneous bedrock underlies the study area. In a structural basin in the southeastern part of the study area, the bedrock is overlain by unconsolidated sediments of glacial and alluvial origin. Rocks and sediments were grouped into six hydrogeologic units based on their lithologic and hydraulic characteristics. A map of their extent was developed from previous geologic mapping and lithostratigraphic information from drillers’ logs. Water flows through interstitial space in unconsolidated sediments, but largely flows through fractures and other sources of secondary porosity in bedrock. Generalized groundwater-flow directions within the

  12. Flower morphology, nectar features, and hummingbird visitation to Palicourea crocea (Rubiaceae) in the Upper Paraná River floodplain, Brazil

    OpenAIRE

    Mendonça, Luciana B.; Anjos, Luiz dos

    2006-01-01

    We investigated flower morphology, nectar features, and hummingbird visitation to Palicourea crocea (Rubiaceae), a common ornithophilous shrub found in the riparian forest understory in the Upper Paraná River floodplain, Brazil. Flowers are distylous and the style-stamen dimorphism is accompanied by other intermorph dimorphisms in corolla length, anther length, and stigma lobe length and form. We did not observe strict reciprocity in the positioning of stigma and anthers between floral morphs...

  13. Bull trout (Salvelinus confluentus) telemetry and associated habitat data collected in a geodatabase from the upper Boise River, southwestern Idaho

    Science.gov (United States)

    MacCoy, Dorene E.; Shephard, Zachary M.; Benjamin, Joseph R.; Vidergar, Dmitri T.; Prisciandaro, Anthony F.

    2017-03-23

    Bull trout (Salvelinus confluentus), listed as threatened under the Endangered Species Act, are among the more thermally sensitive of coldwater species in North America. The Boise River upstream of Arrowrock Dam in southwestern Idaho (including Arrowrock Reservoir) provides habitat for one of the southernmost populations of bull trout. The presence of the species in Arrowrock Reservoir poses implications for dam and reservoir operations. From 2011 to 2014, the Bureau of Reclamation and the U.S. Geological Survey collected fish telemetry data to improve understanding of bull trout distribution and movement in Arrowrock Reservoir and in the upper Boise River tributaries. The U.S. Geological Survey compiled the telemetry (fish location) data, along with reservoir elevation, river discharge, precipitation, and water-quality data in a geodatabase. The geodatabase includes metadata compliant with Federal Geographic Data Committee content standards. The Bureau of Reclamation plans to incorporate the data in a decision‑support tool for reservoir management.

  14. Juvenile Lost River and shortnose sucker year class strength, survival, and growth in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California—2016 Monitoring Report

    Science.gov (United States)

    Burdick, Summer M.; Ostberg, Carl O.; Hoy, Marshal S.

    2018-04-20

    Executive SummaryThe largest populations of federally endangered Lost River (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) exist in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California. Upper Klamath Lake populations are decreasing because adult mortality, which is relatively low, is not being balanced by recruitment of young adult suckers into known spawning aggregations. Most Upper Klamath Lake juvenile sucker mortality appears to occur within the first year of life. Annual production of juvenile suckers in Clear Lake Reservoir appears to be highly variable and may not occur at all in very dry years. However, juvenile sucker survival is much higher in Clear Lake, with non-trivial numbers of suckers surviving to join spawning aggregations. Long-term monitoring of juvenile sucker populations is needed to (1) determine if there are annual and species-specific differences in production, survival, and growth, (2) to identify the season (summer or winter) in which most mortality occurs, and (3) to help identify potential causes of high juvenile sucker mortality, particularly in Upper Klamath Lake.We initiated an annual juvenile sucker monitoring program in 2015 to track cohorts in 3 months (June, August, and September) annually in Upper Klamath Lake and Clear Lake Reservoir. We tracked annual variability in age-0 sucker apparent production, juvenile sucker apparent survival, and apparent growth. Using genetic markers, we were able to classify suckers as one of three taxa: shortnose or Klamath largescale suckers, Lost River, or suckers with genetic markers of both species (Intermediate Prob[LRS]). Using catch data, we generated taxa-specific indices of year class strength, August–September apparent survival, and overwinter apparent survival. We also examined prevalence and severity of afflictions such as parasites, wounds, and deformities.Indices of year class strength in Upper Klamath Lake were similar for shortnose suckers in 2015

  15. Geochemical baseline studies and relations between water quality and streamflow in the upper Blackfoot Watershed, Montana: data for July 1997-December 1998

    Science.gov (United States)

    Nagorski, Sonia A.; Moore, Johnnie N.; Smith, David B.

    2001-01-01

    We used ultraclean sampling techniques to study the solute (operationally defined as water geochemistry at five sites along the Upper Blackfoot River and four sites along the Landers Fork, some in more detail and more regularly than others. We collected samples also from Hogum Creek, a tributary to the Blackfoot, from Copper Creek, a tributary to the Landers Fork, and from ground water seeps contributing to the flow along the Landers Fork. To better define the physical dynamics of the hydrologic system and to determine geochemical loads, we measured streamflow at all the sites where we took samples for water quality analysis. The Upper Blackfoot River, which drains historic mines ca. 20 Km upstream of the study area, had higher trace metal concentrations than did the Landers Fork, which drains the pristine Scapegoat Wilderness area. In both rivers, many of the major elements were inversely related to streamflow, and at some sites, several show a hysteresis effect in which the concentrations were lower on the rising limb of the hydrograph than on the falling limb. However, many of the trace elements followed far more irregular trends, especially in the Blackfoot River. Elements such as As, Cu, Fe, Mn, S, and Zn exhibited complex and variable temporal patterns, which included almost no response to streamflow differences, increased concentrations following a summer storm and at the start of snowmelt in the spring, and/or increased concentrations throughout the course of spring runoff. In summary, complex interactions between the timing and magnitude of streamflow with physical and chemical processes within the watershed appeared to greatly influence the geochemistry at the sites, and streamflow values alone were not good predictors of solute concentrations in the rivers.

  16. Detailed measured sections, cross sections, and paleogeographic reconstructions of the upper cretaceous and lower tertiary nonmarine interval, Wind River Basin, Wyoming: Chapter 10 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    Science.gov (United States)

    Johnson, Ronald C.

    2007-01-01

    Detailed measured sections and regional stratigraphic cross sections are used to reconstruct facies maps and interpret paleogeographic settings for the interval from the base of Upper Cretaceous Mesaverde Formation to top of lower member of the Paleocene Fort Union Formation in the Wind River Basin, Wyoming. The Mesaverde Formation spans the time during which the Upper Cretaceous seaway retreated eastward out of central Wyoming in Campanian time and the initial stages of the Lewis transgression in earliest Maastrichtian time. This retreat stalled for a considerable period of time during deposition of the lower part of the Mesaverde, creating a thick buildup of marginal marine sandstones and coaly coastal plain deposits across the western part of the basin. The Lewis sea transgressed into the northeast part of Wind River Basin, beginning in early Maastrichtian time during deposition of the Teapot Sandstone Member of the Mesaverde Formation. The Meeteetse Formation, which overlies the Teapot, was deposited in a poorly-drained coastal plain setting southwest of the Lewis seaway. The Lewis seaway, at maximum transgression, covered much of the northeast half of the Wind River Basin area but was clearly deflected around the present site of the Wind River Range, southwest of the basin, providing the first direct evidence of Laramide uplift on that range. Uplift of the Wind River Range continued during deposition of the overlying Maastrichtian Lance Formation. The Granite Mountains south of the basin also became a positive feature during this time. A rapidly subsiding trough during the Maastrichtian time formed near the presentday trough of the Wind River Basin in which more than 6,000 feet of Lance was deposited. The development of this trough appears to have begun before the adjacent Owl Creek Mountains to the north started to rise; however, a muddy facies in the upper part of Lance in the deep subsurface, just to the south, might be interpreted to indicate that the

  17. Metals transport in the Sacramento River, California, 1996-1997; Volume 2: Interpretation of metal loads

    Science.gov (United States)

    Alpers, Charles N.; Antweiler, Ronald C.; Taylor, Howard E.; Dileanis, Peter D.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, from July 1996 to June 1997 was evaluated in terms of metal loads from samples of water and suspended colloids that were collected on up to six occasions at 13 sites in the Sacramento River Basin. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions, respectively. This study focused primarily on loads of cadmium, copper, lead, and zinc, with secondary emphasis on loads of aluminum, iron, and mercury.Trace metals in acid mine drainage from abandoned and inactive base-metal mines, in the East and West Shasta mining districts, enter the Sacramento River system in predominantly dissolved form into both Shasta Lake and Keswick Reservoir. The proportion of trace metals that was dissolved (as opposed to colloidal) in samples collected at Shasta and Keswick dams decreased in the order zinc ≈ cadmium > copper > lead. At four sampling sites on the Sacramento River--71, 256, 360, and 412 kilometers downstream of Keswick Dam--trace-metal loads were predominantly colloidal during both high- and low-flow conditions. The proportion of total cadmium, copper, lead, and zinc loads transported to San Francisco Bay and the Sacramento-San Joaquin Delta estuary (referred to as the Bay-Delta) that is associated with mineralized areas was estimated by dividing loads at Keswick Dam by loads 412 kilometers downstream at Freeport and the Yolo Bypass. During moderately high flows in December 1996, mineralization-related total (dissolved + colloidal) trace-metal loads to the Bay-Delta (as a percentage of total loads measured downstream) were cadmium, 87 percent; copper, 35 percent; lead, 10 percent; and zinc, 51 percent. During flood conditions in January 1997 loads were cadmium, 22 percent; copper, 11 percent; lead, 2 percent; and zinc, 15

  18. Hot Firing of a Full Scale Copper Tubular Combustion Chamber

    National Research Council Canada - National Science Library

    Cooley, C

    2002-01-01

    This paper describes the chamber design and hot firing test results for a full-scale copper tubular combustion chamber that has future application in a high-thrust, upper-stage expander cycle engine...

  19. Temperature effect on crack resistance and fracture micromechanisms in tungsten-copper pseudoalloy

    International Nuclear Information System (INIS)

    Babak, A.V.; Gopkalo, E.E.; Krasovskij, A.Ya.; Nadezhdin, G.N.; Uskov, E.I.

    1988-01-01

    Results of the mechanical- and-physical study of peculiarities of the tungsten-copper pseudoalloy fracture in the temperature range of 293-2273 K are presented. It is shown that the studied material possesses maximum crack resistance in the vicinity of the upper temperature range boundary of the ductile-brittle transition and minimum resistance to cracks propagation when it contains melted copper. It is established that the peculiarities of changes in crack-resistance correspond to peculiarities of fracture micromechanisms for tungsten-copper pseudoalloy in the studied tempearture range

  20. Streamflow in the upper Santa Cruz River basin, Santa Cruz and Pima Counties, Arizona

    Science.gov (United States)

    Condes de la Torre, Alberto

    1970-01-01

    Streamflow records obtained in the upper Santa Cruz River basin of southern Arizona, United States, and northern Sonora, Mexico, have been analyzed to aid in the appraisal of the surface-water resources of the area. Records are available for 15 sites, and the length of record ranges from 60 years for the gaging station on the Santa .Cruz River at Tucson to 6 years for Pantano Wash near Vail. The analysis provides information on flow duration, low-flow frequency magnitude, flood-volume frequency and magnitude, and storage requirements to maintain selected draft rates. Flood-peak information collected from the gaging stations has been projected on a regional basis from which estimates of flood magnitude and frequency may be made for any site in the basin. Most streams in the 3,503-square-mile basin are ephemeral. Ground water sustains low flows only at Santa Cruz River near Nogales, Sonoita Creek near Patagonia, and Pantano Wash near Vail. Elsewhere, flow occurs only in direct response to precipitation. The median number of days per year in which there is no flow ranges from 4 at Sonoita Creek near Patagonia to 335 at Rillito Creek near Tomson. The streamflow is extremely variable from year to year, and annual flows have a coefficient of variation close to or exceeding unity at most stations. Although the amount of flow in the basin is small most of the time, the area is subject to floods. Most floods result from high-intensity precipitation caused by thunderstorms during the period ,July to September. Occasionally, when snowfall at the lower altitudes is followed by rain, winter floods produce large volumes of flow.

  1. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].

    Science.gov (United States)

    Jian, Min-Fei; Li, Ling-Yu; Xu, Peng-Fei; Chen, Pu-Qing; Xiong, Jian-Qiu; Zhou, Xue-Ling

    2014-05-01

    Overlying water, sediments, surface soils in the typical wetland areas of Lean River and Poyang Lake which were rich in non-ferrous metal mineral resources on both sides of the river, were chosen for monitoring heavy metals including copper, lead and cadmium of base flow in average season, flood season, and dry season in 2012. Statistical analysis methods were coupled to characterize the spatiotemporal variation of heavy metals pollution and identify the main sources. The results indicated that the concentrations of copper were the highest in all samples of each sampling sites in the Lean River-Poyang Lake wetland. And the content values of copper, lead and cadmium in different samples of different sampling sites also showed that the content values of copper were higher than those of lead, and the content values of lead were also higher than those of cadmium. The results also showed that the heavy metals pollution of copper, lead and cadmium in flood season was the heaviest whereas the heavy metals pollution in dry season was comparatively light. The results of the contents of the three kinds of heavy metals elements in different sampling sites of the watersheds of lean River showed that the contents of copper in the samples from the upstream sampling sites of Lean River were higher than those of other samples from other sites. And the contents of lead in the samples from the downstream sampling sites of Lean River were higher than those of other samples from other sampling sites. The contents of cadmium in the samples from the midstream sampling sites of Lean River were higher than those of other samples from other sites. The first principal component representing copper pollution explained 36. 99% of the total variance of water quality. The second principal component concerning representing lead pollution explained 30. 12% of the total variance. The correlation analysis results showed that there were significant positive correlations among the contents of copper

  2. Hazard evaluation of inorganics, singly and in mixtures, to Flannelmouth Sucker Catostomus latipinnis in the San Juan River, New Mexico

    Science.gov (United States)

    Hamilton, S.J.; Buhl, K.J.

    1997-01-01

    Larval flannelmouth sucker (Catostomus latipinnis) were exposed to arsenate, boron, copper, molybdenum, selenate, selenite, uranium, vanadium, and zinc singly, and to five mixtures of five to nine inorganics. The exposures were conducted in reconstituted water representative of the San Juan River near Shiprock, New Mexico. The mixtures simulated environmental ratios reported for sites along the San Juan River (San Juan River backwater, Fruitland marsh, Hogback East Drain, Mancos River, and McElmo Creek). The rank order of the individual inorganics, from most to least toxic, was: copper > zinc > vanadium > selenite > selenate > arsenate > uranium > boron > molybdenum. All five mixtures exhibited additive toxicity to flannelmouth sucker. In a limited number of tests, 44-day-old and 13-day-old larvae exhibited no difference in sensitivity to three mixtures. Copper was the major toxic component in four mixtures (San Juan backwater, Hogback East Drain, Mancos River, and McElmo Creek), whereas zinc was the major toxic component in the Fruitland marsh mixture, which did not contain copper. The Hogback East Drain was the most toxic mixture tested. Comparison of 96-h LC50values with reported environmental water concentrations from the San Juan River revealed low hazard ratios for arsenic, boron, molybdenum, selenate, selenite, uranium, and vanadium, moderate hazard ratios for zinc and the Fruitland marsh mixture, and high hazard ratios for copper at three sites and four environmental mixtures representing a San Juan backwater, Hogback East Drain, Mancos River, and McElmo Creek. The high hazard ratios suggest that inorganic contaminants could adversely affect larval flannelmouth sucker in the San Juan River at four sites receiving elevated inorganics.

  3. Cumulative effects of restoration efforts on ecological characteristics of an open water area within the Upper Mississippi River

    Science.gov (United States)

    Gray, B.R.; Shi, W.; Houser, J.N.; Rogala, J.T.; Guan, Z.; Cochran-Biederman, J. L.

    2011-01-01

    Ecological restoration efforts in large rivers generally aim to ameliorate ecological effects associated with large-scale modification of those rivers. This study examined whether the effects of restoration efforts-specifically those of island construction-within a largely open water restoration area of the Upper Mississippi River (UMR) might be seen at the spatial scale of that 3476ha area. The cumulative effects of island construction, when observed over multiple years, were postulated to have made the restoration area increasingly similar to a positive reference area (a proximate area comprising contiguous backwater areas) and increasingly different from two negative reference areas. The negative reference areas represented the Mississippi River main channel in an area proximate to the restoration area and an open water area in a related Mississippi River reach that has seen relatively little restoration effort. Inferences on the effects of restoration were made by comparing constrained and unconstrained models of summer chlorophyll a (CHL), summer inorganic suspended solids (ISS) and counts of benthic mayfly larvae. Constrained models forced trends in means or in both means and sampling variances to become, over time, increasingly similar to those in the positive reference area and increasingly dissimilar to those in the negative reference areas. Trends were estimated over 12- (mayflies) or 14-year sampling periods, and were evaluated using model information criteria. Based on these methods, restoration effects were observed for CHL and mayflies while evidence in favour of restoration effects on ISS was equivocal. These findings suggest that the cumulative effects of island building at relatively large spatial scales within large rivers may be estimated using data from large-scale surveillance monitoring programs. Published in 2010 by John Wiley & Sons, Ltd.

  4. WATER QUALITY ANALYSIS OF LOTIC ECOSYSTEMS FROM UPPER MUREŞ RIVER CATCHMENT AREA USING DIFFERENT BIOTIC INDICES

    Directory of Open Access Journals (Sweden)

    Milca PETROVICI

    2012-01-01

    Full Text Available Present paper approach the issue of assessing the water quality of tributaries located in the upper basin of the river Mureş, taking into account changes in the value of biotic indices. In this sense, have been selected the next five biotic indices: Ephemeroptera Plecoptera Trichoptera index (EPT, Total Invertebrates index (T, Chironomidae index (Ch, EPT / Total invertebrates index (EPT / T, EPT / Chironomidae index (EPT / Ch and % Chironomidae index (% Chironomidae. Considering all these indices, it was found existence of a medium to best quality water in Mureş tributaries from Harghita Mountains and a good quality water which comes from the Maramureş Mountains and Transylvania Plateau.

  5. Turbidity as an Indicator of Water Quality in Diverse Watersheds of the Upper Pecos River Basin

    Directory of Open Access Journals (Sweden)

    Gregory M. Huey

    2010-06-01

    Full Text Available Microbial concentrations, total suspended solids (TSS and turbidity vary with stream hydrology and land use. Turbidity, TSS, and microbial concentrations, loads and yields from four watersheds were assessed: an unburned montane forest, a catastrophically burned montane forest, urban land use and rangeland prairie. Concentrations and loads for most water quality variables were greatest during storm events. Turbidity was an effective indicator of TSS, E. coli and Enterococci spp. The greatest threat to public health from microbial contamination occurs during storm runoff events. Efforts to manage surface runoff and erosion would likely improve water quality of the upper Pecos River basin in New Mexico, USA.

  6. An integrated approach to the Environmental Monitoring Plan of the Pertuso spring (Upper Valley of Aniene River

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa

    2014-06-01

    Full Text Available Quantitative assessment of groundwater and surface water is an important tool for sustainable management and protection of these important resources. This paper deals with the design of a multi-disciplinary monitoring plan related to the catchment project of the Pertuso spring, in the Upper Valley of Aniene River, which is going to be exploited to supply an important water network in the South part of Roma district. According to the Legislative Decree 152/2006, as modified by DM 260/2010, any infrastructure design should take in consideration an Environmental Monitoring Plan for the hydrogeological settings of the study area. Thus, the hydrogeological characterization combined with an Environmental Monitoring Plan provides to evaluate the potential adverse environmental impacts due catchment works. For water resources assessment and management, the quantification of groundwater recharge is a preliminary step. As a matter of fact, it has been included the quantitative characterization of the Pertuso spring, in the aim of to protect catchment area, which is directly affect by the natural hydrogeological balance of this aquifer. Thus, a multi-disciplinary monitoring plan has been set up, including quantitative and hydrogeochemical measurements, both for groundwater and surface water of the Upper Valley of Aniene River. The target of this Environmental Monitoring Plan is to set up the background framework on the hydromorphological, physico-chemical and biological properties of water resources in the water basin influenced aim by any potential environmental impact due to the construction activities. The Environmental Monitoring Plan and main features of the monitoring network will be presented in this study.

  7. Hydrochemistry of the Parauari-Maues Acu river basin (Amazon region, Brazil)

    International Nuclear Information System (INIS)

    Bringel, S.R.B.

    1980-08-01

    The chemical composition of the Parauari-Maues Acu basin is studied through the determination of pH, calcium, magnesium, iron, chloride, sodium, potassium, zinc, copper and manganese. Four expeditions were made and samples were collected in 16 different points of the main course. Chemical analysis of the rivers waters shows seasonal flutuations of the concentrations of the elements in the main river as well as in the main afluents like Nambi river, Amana river and Urupadi river. (Author) [pt

  8. Smoothing an isolated interface of cobalt-copper under irradiation by low-energy argon ions

    International Nuclear Information System (INIS)

    Stognij, A.I.; Novitskij, N.N.; Stukalov, O.M.

    2003-01-01

    Multilayer film structures, i.e. gold layer-copper-cobalt, are considered. It is shown that the structure, where cobalt surface prior to copper layer deposition was subjected to additional irradiation by a flow of argon ions, features the smoothest surface. The conclusion is made about smoothing out of cobalt-copper interface as a result of multiple collisions of argon slow ions and cobalt atoms during braking within two or three upper atomic rows of the cobalt layer [ru

  9. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    Science.gov (United States)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using

  10. Stirring, charging, and picking: hunting tactics of potamotrygonid rays in the upper Paraná River

    Directory of Open Access Journals (Sweden)

    Domingos Garrone-Neto

    Full Text Available Hunting tactics of potamotrygonid freshwater rays remain unreported under natural conditions. Three main foraging tactics of Potamotrygon falkneri and P. motoro are described here based on underwater observations in the upper Paraná River. Both species displayed similar behaviors. The most common tactic was to undulate the disc margins close to, or on, the bottom and thus stirring the substrate and uncovering hidden preys. Another tactic was to charge upon prey concentrated in the shallows. The least common tactic was to pick out prey adhered to the substrate. The first tactic is widespread in several species of marine rays in the Dasyatidae, whereas the remainder (especially picking up prey on substrata above water surface may be restricted to the Potamotrygonidae.

  11. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    International Nuclear Information System (INIS)

    Paller, M.

    1992-01-01

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70 degrees C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams ampersand Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS

  12. The Laramide Mesa formation and the Ojo de Agua caldera, southeast of the Cananea copper mining district, Sonora, Mexico

    Science.gov (United States)

    Cox, Dennis P.; Miller, Robert J.; Woodbourne, Keith L.

    2006-01-01

    The Mesa Formation extends from Cananea, Mexico, southeast to the Sonora River and is the main host rock of Laramide porphyry copper deposits in the Cananea District and at the Alacran porphyry prospect to the east. The Mesa consists of two members-a lower andesite and an upper dacite. The lowest part of the dacite member is a crystal tuff about 100 m thick. This tuff is the outfall of a caldera centered near the village of Ojo de Agua, dated by 40Ar/39Ar at 65.8 Ma ?0.4. The Ojo de Agua Caldera is about 9 km in diameter and is filled by a light gray biotite dacite tuff with abundant flattened pumice fragments. The volume of the caldera is estimated to be 24 km3.

  13. Biokinetics of copper in black-banded rainbowfish (Melanotaenia nigrans) tolerant to elevated copper concentrations, using the radioisotope 64Cu

    International Nuclear Information System (INIS)

    Gale, S.; Jeffree, R.; Smith, S.; Lim, R.

    2000-01-01

    Full text: For over 40 years black-banded rainbowfish (Melanotaenia nigrans) living in the East Branch of the Finniss River, Northern Territory have been exposed to elevated copper concentrations due to mine waste from the Rum Jungle uranium/copper mine. In the 1970s prior to remediation of the mine, fish kills were observed along the length of the East Branch. While copper concentrations remain comparatively high (up to 2000 μg/L) in the East Branch since remediation of the mine site, M. nigrans have been observed in the area. It was, therefore, hypothesised that due to selective pressure of lethal exposure, the population of black-banded rainbowfish in the East Branch have developed a tolerance to elevated copper concentrations. This project aimed to demonstrate copper tolerance and evaluate possible mechanism(s). In May 2000, fish were collected from the East Branch (exposed fish) and from a catchment previously unexposed to elevated metal concentrations (reference fish). The 96-hour EC 50 , fish imbalance (i.e. the concentration of copper that affects 50% of fish over 96 hours) for the exposed fish was over 8 times higher than the reference fish. Using the radioisotope, 64 Cu, the biokinetics of newly accumulated copper was traced in exposed and reference fish at low and elevated copper concentrations. The uptake rate, and therefore body burden, were significantly (p=0.000) lower in exposed fish, at both low and elevated copper concentrations compared to reference fish. Possible mechanisms of reducing copper uptake will be discussed. Tolerance was not lost when fish were maintained in relatively low copper concentrations in the laboratory. Also, the two populations of fish were genetically dissimilar based on allozyme analysis, which suggests that the mechanism is genetically mediated. The outcome of this project will be important in assisting accurate risk assessment and the development of environmental management strategies for the conservation of biota. The

  14. Precipitation Reconstructions and Periods of Drought in the Upper Green River Basin, Wyoming, USA

    Science.gov (United States)

    Follum, M.; Barnett, A.; Bellamy, J.; Gray, S.; Tootle, G.

    2008-12-01

    Due to recent drought and stress on water supplies in the Colorado River Compact States, more emphasis has been placed on the study of water resources in the Upper Green River Basin (UGRB) of Wyoming, Utah, and Colorado. The research described here focuses on the creation of long-duration precipitation records for the UGRB using tree-ring chronologies. When combined with existing proxy streamflow reconstructions and drought frequency analysis, these records offer a detailed look at hydrologic variability in the UGRB. Approximately thirty-three existing tree ring chronologies were analyzed for the UGRB area. Several new tree ring chronologies were also developed to enhance the accuracy and the geographical diversity of the resulting tree-ring reconstructions. In total, three new Douglas-fir (Pseudotsuga menziesii) and four new limber pine (Pinus flexilis) sites were added to the available tree-ring chronologies in this area. Tree-ring based reconstructions of annual (previous July through current June) precipitation were then created for each of the seventeen sub-watersheds in the UGRB. Reconstructed precipitation records extend back to at least 1654 AD, with reconstructions for some sub-basins beginning pre-1500. Variance explained (i.e. adjusted R2) ranged from 0.41 to 0.74, and the reconstructions performed well in a variety of verification tests. Additional analyses focused on stochastic estimation of drought frequency and return period, and detailed comparisons between reconstructed records and instrumental observations. Overall, this work points to the prevalence of severe, widespread drought in the UGRB. These analyses also highlight the relative wetness and lack of sustained dry periods during the instrumental period (1895-Present). Such long- term assessments are, in turn, vital tools as the Compact States contemplate the "Law of the River" in the face of climate change and ever-growing water demands.

  15. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.

    Science.gov (United States)

    Tillman, Fred D; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-07-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  16. Occurrence of antibiotic compounds in source water and finished drinking water from the upper Scioto River Basin, Ohio, 2005-6

    Science.gov (United States)

    Finnegan, Dennis P.; Simonson, Laura A.; Meyer, Michael T.

    2010-01-01

    The occurrence of antibiotics in surface water and groundwater in urban basins has become a topic of increasing interest in recent years. Little is known about the occurrence, fate, or transport of these compounds and the possible health effects in humans and aquatic life. The U.S. Geological Survey, in cooperation with the City of Columbus, Division of Power and Water, did a study to provide a synoptic view of the occurrence of antibiotics in source and finished waters in the upper Scioto River Basin. Water samples were collected seasonally-winter (December 2005), spring (May 2006), summer (August 2006) and fall (October 2006)-at five surface-water sites, one groundwater site, and three water-treatment plants (WTPs). Within the upper Scioto River Basin, sampling at each WTP involved two sampling sites: a source-water intake site and a finished-water site. One or more antibiotics were detected at 11 of the 12 sampling sites. Of the 49 targeted antibiotic compounds, 12 (24 percent) were detected at least one time for a total of 61 detections overall. These compounds were azithromycin, tylosin, erythromycin-H2O, erythromycin, roxithromycin, ciprofloxacin, ofloxacin, sulfamethazine, sulfamethoxazole, iso-chlorotetracycline, lincomycin, and trimethoprim. Detection results were at low levels, with an overall median of 0.014 (u or mu)g/L. Hap Cremean WTP had the fewest detections, with two source-water detections of sulfamethoxazole and azithromycin and no detections in the finished water. Of the total of 61 detections, 31 were in the winter sample run. Sulfamethoxazale and azithromycin detections represent 41 percent of all antibiotic detections. Azithromycin was detected only in the winter sample. Some antibiotics, such as those in the quinoline and tetracycline families, dissipate more quickly in warm water, which may explain why they were detected in the cool months (winter, spring, and fall) and not in the summer. Antibiotic data collected during this study were

  17. Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions

    Science.gov (United States)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.

    2014-09-01

    This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.

  18. Regional-scale controls on dissolved nitrous oxide in the Upper Mississippi River

    Science.gov (United States)

    Turner, P.A.; Griffis, T.J.; Baker, J.M.; Lee, X.; Crawford, John T.; Loken, Luke C.; Venterea, R.T.

    2016-01-01

    The U.S. Corn Belt is one of the most intensive agricultural regions of the world and is drained by the Upper Mississippi River (UMR), which forms one of the largest drainage basins in the U.S. While the effects of agricultural nitrate (NO3-) on water quality in the UMR have been well documented, its impact on the production of nitrous oxide (N2O) has not been reported. Using a novel equilibration technique, we present the largest data set of freshwater dissolved N2O concentrations (0.7 to 6 times saturation) and examine the controls on its variability over a 350 km reach of the UMR. Driven by a supersaturated water column, the UMR was an important atmospheric N2O source (+68 mg N2ONm-2 yr-1) that varies nonlinearly with the NO3-concentration. Our analyses indicated that a projected doubling of the NO3-concentration by 2050 would cause dissolved N2O concentrations and emissions to increase by about 40%.

  19. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Science.gov (United States)

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River... Snake—Asotin 17060103 17060103 17060103 Upper Grande Ronde 17060104 Wallowa 17060105 Lower Grande Ronde...

  20. Lingual dyskinesia and tics: a novel presentation of copper-metabolism disorder.

    Science.gov (United States)

    Goez, Helly R; Jacob, Francois D; Yager, Jerome Y

    2011-02-01

    Copper is a trace element that is required for cellular respiration, neurotransmitter biosynthesis, pigment formation, antioxidant defense, peptide amidation, and formation of connective tissue. Abnormalities of copper metabolism have been linked with neurologic disorders that affect movement, such as Wilson disease and Menkes disease; however, the diagnosis of non-Wilson, non-Menkes-type copper-metabolism disorders has been more elusive, especially in cases with atypical characteristics. We present here the case of an adolescent with a novel presentation of copper-metabolism disorder who exhibited acute severe hemilingual dyskinesia and prominent tics, with ballismus of the upper limbs, but had normal brain and spinal MRI results and did not show any signs of dysarthria or dysphagia. His serum copper and ceruloplasmin levels were low, but his urinary copper level was elevated after penicillamine challenge. We conclude that copper-metabolism disorders should be included in the differential diagnosis for movement disorders, even in cases with highly unusual presentations, because many of them are treatable. Moreover, a connection between copper-metabolism disorders and tics is presented, to our knowledge, for the first time in humans; further investigation is needed to better establish this connection and understand its underlying pathophysiology.

  1. ASSESSMENT OF HEAVY METALS CONTENTS IN BOTTOM SEDIMENTS OF BUG RIVER

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorbiłowicz

    2014-07-01

    Full Text Available The development of industry, agriculture, and transport contributes to an increased environmental pollution by heavy metals. The aim of the study was preliminary assessment of the contents of selected metals (lead, cobalt, copper, chromium, cadmium and nickel in the sediments of Bug river. The study comprised part of the river flowing through Poland. It was found that the Bug river sediments are not contaminated in respect to the content of tested metals. Based on the analysis of the study results, these metals can be lined up in the following order: Cr > Pb > Cu > Ni > Co > Cd. Statistical analysis showed that copper and chromium occur in Bug river sediments in forms bindings with organic matter in majority of cases. The granulometric analysis of sediments from Bug river revealed the largest percentage of two fractions: 1.0–0.2 mm with average of 47.7 ± 19.77% and 0.2–0.1 mm with average of 20.6 ± 7.7%. These are the dominant fractions with the accumulation of metals in river sediments, which has been confirmed by statistical analysis.

  2. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  3. Classificação fitogeográfica das florestas do Alto Rio Xingu Phytogeographical classification of the Upper Xingu River forest

    Directory of Open Access Journals (Sweden)

    Natália Macedo Ivanauskas

    2008-01-01

    Full Text Available Este trabalho propõe a inclusão da categoria Floresta Estacional Perenifólia no sistema oficial de classificação da vegetação brasileira, devido às particularidades florísticas e fisionômicas da floresta da borda sul-amazônica, que atinge maior amplitude geográfica na região do Alto Rio Xingu. Para justificar essa inclusão são apresentadas as características ambientais (clima, solo, hidrologia e diferenças fisionômicas e florísticas entre as florestas do Alto Xingu e demais florestas ombrófilas da Bacia do Amazonas e estacionais do Planalto Central.This paper proposes the inclusion of the "Evergreen Seasonal Forest" category in the official system used to classify Brazilian forests. This proposal is based upon the floristic and physiognomic particularities of the Southern Amazonian forest, which reach a greater magnitude around the Upper Xingu River. In order to justify the inclusion, the paper reports environmental characteristics (climate, soil and hydrology as well as floristic and physiognomic differences between the Upper Xingu River forest and both the Ombrophilous Forest from the Amazon Basin and the Seasonal Forest of the Central Plateau.

  4. The ichthyofauna of drifting macrophyte mats in the Ivinhema River, upper Paraná River basin, Brazil

    Directory of Open Access Journals (Sweden)

    Cíntia Karen Bulla

    2011-06-01

    Full Text Available We describe the fish assemblages associated with drifting macrophyte mats and consider their possible role as dispersal vectors in the Ivinhema River, a major tributary of the upper Paraná River, Brazil. Fish associated with drifting mats were sampled in the main river channel during January and March 2005, when the wind and/or the increased water level were sufficient to transport macrophyte stands. Fish in the drifting mats were sampled with a floating sieve (4 m long x 2 m wide x 0.6 m high, and 2 mm mesh size. In the laboratory, larvae, juvenile, and adult fish were counted and identified to the lowest possible taxonomic level. In four drifting macrophyte mats we captured 218 individuals belonging to at least 28 species, 17 families, and 6 orders. Aphyocharax dentatus, Serrasalmus spp., and Trachelyopterus galeatus were the most abundant taxa associated with the mats, but species richness ranged from 6 to 24 species per mat. In addition, 85% of the total number of individuals caught was larvae and juveniles. Although preliminary and based on limited samples, this study of drifting macrophyte mats was the first one in the last unregulated stretch of the Paraná River remaining inside Brazilian territory, and alerts us to the potential role of macrophytes mats as dispersers of fish species in the region.Nesse trabalho as assembleias de peixes associadas a bancos de macrófitas flutuantes à deriva foram descritas. Além disso, foi considerado o possível papel desses bancos como vetores de dispersão no rio Ivinhema, importante tributário do alto rio Paraná, Brasil. Os peixes associados aos bancos à deriva foram amostrados no canal principal desse rio, entre os meses de Janeiro a Março de 2005, quando o vento e/ou o aumento no nível da água foram suficientes para transportar os bancos de macrófitas. Os peixes foram amostrados com uma rede flutuante (4 m de comprimento x 2 m de largura x 0,6 m de altura e 2 mm de tamanho de malha. No

  5. The Feeding Behaviour of Fish from the Upper Lake Baikal Watershed of the Eroo River in Mongolia

    Directory of Open Access Journals (Sweden)

    Sudeep Chandra

    2005-06-01

    Full Text Available The upper Selenge watershed in Mongolia is home to some of the world’s unique fish species. In this study we determined the feeding behaviour of selected fish species collected from the main stream of the Eroo River and two of its upstream tributaries, the Sharlan and Bar Chuluut rivers. Using stable isotope (carbon and nitrogen measurements combined with qualitative and literature information, we determined that taimen ( Hucho taimen and pike ( Esox luceus were the top predators in the Eroo River. They received a substantial amount of their energy from other fish species as well as terrestrial derived sources. Percent presence of biota in lenok ( Brachymystax lenok stomachs demonstrated they eat zoobenthos, invertebrates, fish, and terrestrial rodents. Siberian dace ( Leuciscus baicalensis , a small forage fish collected from the Sharlan and Bar Chuluut rivers demonstrate these fish eat periphyton, zoobenthos and terrestrial invertebrates. In the Bar Chuluut tributary, lenok eat a combination of foods including zoobenthos and other fish species, while arctic grayling ( Thymallus arcticus fed primarily on zoobenthos. Percent frequency analysis showed the two game fish species collected from the Bar Chuluut tributary fed primarily on zoobenthos (85 % for lenok and 80 % for grayling, with 28 families and 10 orders represented in their stomachs. Interviews with families suggested local people fish for a variety of species and that there has been a decline in the catch of taimen and sturgeon ( Acipenser baeri baicalensis over time. Since fishing was poor below highly disturbed areas (e.g. mine sites, local people fished above mine locations or in areas least impacted by these anthropogenic impacts.

  6. Determination of flow times and flow velocities in the upper Rhine river using 3HHO as tracer

    International Nuclear Information System (INIS)

    Krause, W.J.; Mundschenk, H.

    1990-01-01

    The behaviour of water bodies of the Upper Rhine river discretely traced with 3 HHO-loaded waste waters from the nuclear power plants of Beznau, Fessenheim, Philippsburg and Biblis was investigated along a distance of nearly 385 km down to Nierstein. The passage of the distinct entrainment charged by different emissions was measured at the sampling points of Bad Saeckingen, Weil, Weisweil, Iffezheim and Nierstein. From these profiles the flow times and flow velocities were calculated for the discharge range from 0.6 to 1.7 MQ (mean discharge), taking the begin, end and duration of the individual releases into account. (orig./HP) [de

  7. Species richness and abundance of bats in fragments of the stational semidecidual forest, Upper Paraná River, southern Brazil

    Directory of Open Access Journals (Sweden)

    H. Ortêncio-Filho

    Full Text Available The Upper Paraná River floodplain is inserted in a region of the Mata Atlântica biome, which is a critical area to preserve. Due to the scarcity of researches about the chiropterofauna in this region, the present study investigated species richness and abundance of bats in remnants from the stational semidecidual forest of the Upper Paraná River, southern Brazil. Samplings were taken every month, from January to December 2006, using 32 mist nets with 8.0 x 2.5 m, resulting in 640 m²/h and totaling a capture effort of 87,040 m²/h. In order to estimate the species richness, the following estimators were employed Chao1 and Jack2. During the study, a total of 563 individuals belonging to 17 species (Artibeus planirostris, Artibeus lituratus, Carollia perspicillata, Platyrrhinus lineatus, Sturnira lilium, Artibeus fimbriatus, Myotis nigricans, Desmodus rotundus, Artibeus obscurus, Noctilio albiventris, Phylostomus discolor, Phylostomus hastatus, Chrotopterus auritus, Lasiurus ega, Chiroderma villosum, Pygoderma bilabiatum and Lasiurus blossevillii were captured. The estimated richness curves tended to stabilize, indicating that most of the species were sampled. Captured species represented 10% of the taxa recorded in Brazil and 28% in Paraná State, revealing the importance of this area for the diversity of bats. These findings indicate the need to determine actions aiming to restrict human activities in these forest fragments, in order to minimize anthropogenic impacts on the chiropterofauna.

  8. Ring structures and copper mineralization in Kerman porphyry copper belt, SE Iran

    Directory of Open Access Journals (Sweden)

    Gholamreza Mirzababaei

    2012-10-01

    Full Text Available The role of some ring structures in the distribution of porphyry copper deposits in south Kerman porphyry copper belt is discussed. In the study area, ring structures are circular or elliptical shaped features which are partly recognized on satellite images. In this study, Landsat multispectral images were used to identify ring structures in the area. The rudimentary identification stages of the circles were mainly based on their circular characteristics on the images. These structures match with the regional tectonic features and can be seen mainly in two types; namely, large-magnitude and small scale circles. The associated mineralization in the study area is mainly porphyry Cu and vein type base metal sulfide deposits. There is a sensible relationship between the large circles and mineralization. These circles have encompassed almost entire Cu deposits and prospects in south part of Kerman porphyry copper belt. The small circles seem to be external traces of (porphyritic intrusive bodies that appear on surface as small circles. Formation of the large circular structures do not appear to be related to the external processes and there is no clear indication of how they came into existence but, their arrangement around the edges of a positive residual anomaly area shows the probable role of this anomaly in their formation. This matter is also recognized on the generalized crustal thickness map of the region in which an updoming of the upper mantle is observed. This study can improve our collective knowledge for copper exploration in this region.

  9. Surface-water and karst groundwater interactions and streamflow-response simulations of the karst-influenced upper Lost River watershed, Orange County, Indiana

    Science.gov (United States)

    Bayless, E. Randall; Cinotto, Peter J.; Ulery, Randy L.; Taylor, Charles J.; McCombs, Gregory K.; Kim, Moon H.; Nelson, Hugh L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) and the Indiana Office of Community and Rural Affairs (OCRA), conducted a study of the upper Lost River watershed in Orange County, Indiana, from 2012 to 2013. Streamflow and groundwater data were collected at 10 data-collection sites from at least October 2012 until April 2013, and a preliminary Water Availability Tool for Environmental Resources (WATER)-TOPMODEL based hydrologic model was created to increase understanding of the complex, karstic hydraulic and hydrologic system present in the upper Lost River watershed, Orange County, Ind. Statistical assessment of the optimized hydrologic-model results were promising and returned correlation coefficients for simulated and measured stream discharge of 0.58 and 0.60 and Nash-Sutcliffe efficiency values of 0.56 and 0.39 for USGS streamflow-gaging stations 03373530 (Lost River near Leipsic, Ind.), and 03373560 (Lost River near Prospect, Ind.), respectively. Additional information to refine drainage divides is needed before applying the model to the entire karst region of south-central Indiana. Surface-water and groundwater data were used to tentatively quantify the complex hydrologic processes taking place within the watershed and provide increased understanding for future modeling and management applications. The data indicate that during wet-weather periods and after certain intense storms, the hydraulic capacity of swallow holes and subsurface conduits is overwhelmed with excess water that flows onto the surface in dry-bed relic stream channels and karst paleovalleys. Analysis of discharge data collected at USGS streamflow-gaging station 03373550 (Orangeville Rise, at Orangeville, Ind.), and other ancillary data-collection sites in the watershed, indicate that a bounding condition is likely present, and drainage from the underlying karst conduit system is potentially limited to near 200 cubic feet per second. This

  10. Comparison of sediment pollution in the rivers of the Hungarian Upper Tisza Region using non-destructive analytical techniques

    International Nuclear Information System (INIS)

    Osan, Janos; Toeroek, Szabina; Alfoeldy, Balint; Alsecz, Anita; Falkenberg, Gerald; Baik, Soo Yeun; Van Grieken, Rene

    2007-01-01

    The rivers in the Hungarian Upper Tisza Region are frequently polluted mainly due to mining activities in the catchment area. At the beginning of 2000, two major mining accidents occurred in the Romanian part of the catchment area due to the failure of a tailings dam releasing huge amounts of cyanide and heavy metals to the rivers. Surface sediment as well as water samples were collected at six sites in the years 2000-2003, from the northeast-Hungarian section of the Tisza, Szamos and Tur rivers. The sediment pollution of the rivers was compared based on measurements of bulk material and selected single particles, in order to relate the observed compositions and chemical states of metals to the possible sources and weathering of pollution. Non-destructive X-ray analytical methods were applied in order to obtain different kinds of information from the same samples or particles. In order to identify the pollution sources, their magnitude and fate, complementary analyses were carried out. Heterogeneous particulate samples were analyzed from a large geographical territory and a 4-year time period. Individual particles were analyzed only from the 'hot' samples that showed elevated concentrations of heavy metals. Particles that were classified as anthropogenic were finally analyzed to identify trace concentrations and chemical states of heavy metals. Although the Tisza river was affected by water pollution due to the two major mining accidents at the beginning of 2000, the concentration of heavy metals in sediments decreased to the mineral background level 1 year after the pollution event. In the tributaries Szamos and Tur, however, no significant decrease of the heavy metal concentrations was observed in the recent years, indicating a continuous pollution. Among the water suspended particles collected from river Tur, fibers of unknown origin were observed by electron microscopy; these particles were aluminosilicates enriched in Zn and Mn. Cd was also concentrated in

  11. Porphyry copper assessment of Southeast Asia and Melanesia: Chapter D in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Dicken, Connie L.; Drenth, Benjamin J.; Ludington, Steve; Robinson, Gilpin R.; Setiabudi, Bambang Tjahjono; Sukserm, Wudhikarn; Sunuhadi, Dwi Nugroho; Wah, Alexander Yan Sze; Zientek, Michael L.

    2013-01-01

    The U.S. Geological Survey collaborated with member countries of the Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) on an assessment of the porphyry copper resources of Southeast Asia and Melanesia as part of a global mineral resource assessment. The region hosts world-class porphyry copper deposits and underexplored areas that are likely to contain undiscovered deposits. Examples of known porphyry copper deposits include Batu Hijau and Grasberg in Indonesia; Panguna, Frieda River, and Ok Tedi in Papua New Guinea; and Namosi in Fiji.

  12. Determination of mercury and copper in water samples by activation analysis using preconcentration on emission spectroscopic carbon powder

    International Nuclear Information System (INIS)

    Nagatsuka, Sumiko; Tanizaki, Yoshiyuki

    1978-01-01

    A simple preconcentration procedure for mercury and copper was examined in the activation analysis of water samples. The preconcentration using pure activated carbon has been reported in several papers. The authors found that the carbon powder for emission spectroscopic analysis showed the high purity equivalent to pure activated carbon. The influence of various parameters in adsorption conditions was studied by radioactive tracers 197 Hg and 64 Cu. It was confirmed that 100% of these elements were adsorbed on carbon powders as pyrrolidine dithiocarbonate complexes at an acidity of pH 6 - 8, the temperature of 50 0 C and the stirring time of 30 minutes. This method was applied to the activation analysis of the river water samples taken from the upper stream area of the Arakawa river and the ground water samples taken from the wells of the environs of Tokyo Megalopolis. The carbon powders which adsorbed these elements were filtered, dried and analyzed by instrumental neutron activation analysis. The Hg concentrations of 0.01 - 0.1 ppb in river water and 0.03 - 1.4 ppb in ground water were obtained as well as the Cu concentrations of 0.3 - 3.0 ppb in ground water. The limits of determination of this method are 0.01 ppb Hg and 0.2 ppb Cu in the case of 1.1 sample of fresh water. (auth.)

  13. Evaluating the applicability of four recent satellite–gauge combined precipitation estimates for extreme precipitation and streamflow predictions over the upper Yellow river basin in China

    Science.gov (United States)

    This study aimed to statistically and hydrologically assess the performance of four latest and widely used satellite–gauge combined precipitation estimates (SGPEs), namely CRT, BLD, 3B42CDR, and 3B42 for the extreme precipitation and stream'ow scenarios over the upper Yellow river basin (UYRB) in ch...

  14. Tracing the contribution of debris flow-dominated channels to gravel-bed torrential river channel: implementing pit-tags in the upper Guil River (French Alps)

    Science.gov (United States)

    Arnaud-Fassetta, Gilles; Lissak, Candide; Fort, Monique; Bétard, François; Carlier, Benoit; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier

    2014-05-01

    In the upper, wider reaches of Alpine valleys, shaping of active channels is usually subject to rapid change. It mostly depends upon hydro-climatic variability, runoff concentration and sediment supply, and may result in alternating sequences of fluvial and debris-flow pulses, as recorded in alluvial fans and terraces. Our study, carried in the frame of SAMCO (ANR) project, focuses on the upper Guil River Valley (Queyras, Southern French Alps) cut into the slaty shale "schistes lustrés". Steep, lower order drains carry a contrasted solid discharge, including predominantly sandy-loam particles mixed with gravels and boulders (sandstone schists, ophiolites). Abundant sediment supply by frost shattering, snow avalanche and landslides is then reworked during snowmelt or summer storm runoff events, and may result in catastrophic, very destructive floods along the main channel, as shown by historical records. Following the RI-30 year 2000 flood, our investigations included sediment budgets, i.e. balance of erosion and deposition, and the mapping of the source, transport and storage of various sediments (talus, colluvium, torrential fans, terraces). To better assess sediment fluxes and sediment delivery into the main channel network, we implemented tracers (pit-tags) in selected sub-catchments, significantly contributing to the sediment yield of the valley bottoms during the floods and/or avalanches: Maloqueste, Combe Morel, Bouchouse and Peyronnelle catchments. The first three are direct tributaries of the Guil River whereas the Peyronnelle is a left bank tributary of the Peynin River, which joins the Guil River via an alluvial cone with high human and material stakes. The Maloqueste and the Combe Morel are two tributaries facing each other in the Guil valley, representing a double lateral constraint for the road during flood events of the Guil River. After pit-tag initialisation in laboratory, we set them up along the four tributaries: Maloqueste (20 pit-tags), Combe

  15. Design, Fabrication and Test of a Full Scale Copper Tubular Combustion Chamber

    National Research Council Canada - National Science Library

    Cooley, Christine

    2002-01-01

    This paper presents the design fabrication and test of a full scale copper tubular combustion chamber as an enabling technology for future application in a high thrust upper-stage expander-cycle engine...

  16. Digenea, Nematoda, Cestoda, and Acanthocephala, parasites in Potamotrygonidae (Chondrichthyes from the upper Paraná River floodplain, states of Paraná and Mato Grosso do Sul, Brazil.

    Directory of Open Access Journals (Sweden)

    Pavanelli, G. C.

    2008-01-01

    Full Text Available The present paper represents the first study on the endoparasitic fauna of Potamotrygon falkneri and P.motoro in the upper Paraná River floodplain. Fishes were collected by fishing rod and gillnetting in different stations ofthe floodplain, from March, 2005 to September, 2006. Parasites were sampled, fixed and preserved according tospecialized literature. About half of the analyzed fish were parasitized by at least one of the following species ofendoparasites: Clinostomum complanatum, Genarchella sp. and Tylodelphys sp. (metacercaria (Digenea;Acanthobothrium regoi, Rhinebothrium paratrygoni, Paroncomegas araya and Potamotrygonocestus travassosi(Cestoidea; Brevimulticaecum sp. (larva, Cucullanus sp., Echinocephalus sp. and Spinitectus sp. (Nematoda; andQuadrigyrus machadoi (Acanthocephala. Some species were already registered in Chondrichthyes and others werepreviously recorded in Osteichthyes from the study area. The study listed ten new records of parasites in the host P.falkneri, one new record in the host P. motoro and five new records in the locality upper Paraná River.

  17. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  18. Accuracy analysis of SRTM usage for upper Citarum River flood modeling

    Directory of Open Access Journals (Sweden)

    Inanda Siregar Riza

    2017-01-01

    Full Text Available Natural channel cross section is generally very irregular and varied, for complex cross-sections and natural cross sections no specific formula presents to express the elements of the geometric cross section of the channel. The study uses HEC-Geo RAS with Arc GIS 10 and HEC-RAS 4.1.0 for modeling and 1D hydrodynamic. The surveyed cross sections modeling is calibrated and validated with observed daily discharge. Then the surveyed data cross sections are replaced by the cross sections extracted from SRTM. Accuracy is suitability between the surveyed data cross sections with data cross sections which extracted from SRTM. Accuracy is expressed by the magnitude of the error. The ratio of simulated discharges between two models by surveyed data cross sections and SRTM data cross sections have index of performance indicator for Nash–Sutcliffe Index (NI is 0.95 and index of Root Mean Square Error (RMSE is 0.41. Index of Performance indicator for comparison of simulated discharges between models with Nash–Sutcliffe Index (NI is 0.95 and index of Root Mean Square Error (RMSE is 0.41. The results show that cross sections from SRTM can be an alternative to extract data cross sections for Upper Citarum River flood modeling.

  19. Predictive Management of Asian Carps in the Upper Mississippi River System

    Science.gov (United States)

    Vondracek, Bruce C.; Carlson, Andrew K.

    2014-01-01

    Prolific non-native organisms pose serious threats to ecosystems and economies worldwide. Nonnative bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix), collectively referred to as Asian carps, continue to colonize aquatic ecosystems throughout the central United States. These species are r-selected, exhibiting iteroparous spawning, rapid growth, broad environmental tolerance, high density, and long-distance movement. Hydrological, thermal, and physicochemical conditions are favorable for establishment beyond the current range, rendering containment and control imperative. Ecological approaches to confine Asian carp populations and prevent colonization characterize contemporary management in the United States. Foraging and reproduction of Asian carps govern habitat selection and movement, providing valuable insight for predictive control. Current management approaches are progressive and often anticipatory but deficient in human dimensions. We define predictive management of Asian carps as synthesis of ecology and human dimensions at regional and local scales to develop strategies for containment and control. We illustrate predictive management in the Upper Mississippi River System and suggest resource managers integrate predictive models, containment paradigms, and human dimensions to design effective, socially acceptable management strategies. Through continued research, university-agency collaboration, and public engagement, predictive management of Asian carps is an auspicious paradigm for preventing and alleviating consequences of colonization in the United States.

  20. Water-quality assessment of the Upper Mississippi River Basin, Minnesota and Wisconsin- Polychlorinated biphenyls in common carp and walleye fillets, 1975-95

    Science.gov (United States)

    Lee, Kathy E.; Anderson, Jesse P.

    1998-01-01

    Spatial and temporal distribution of polychlorinated biphenyls (PCBs) in common carp (Cyprinus carpio) and walleye (Stizostedion vitreum) fillets from rivers in the Upper Mississippi River Basin upstream of the outlet of Lake Pepin are summarized. PCB concentrations in common carp and walleye fillets collected from rivers in the UMIS during 1975-95 by the Minnesota Fish Contaminant Monitoring Program (MFCMP) and the Wisconsin Department of Natural Resources (WDNR) were analyzed. PCBs in fish tissue are of concern because PCBs are potentially toxic, teratogenic, and are linked to poor fetal development and endocrine disruption in fish and other animals including humans, that consume fish. This summary was part of an analysis of historical data for the Upper Mississippi River (UMIS) study unit of the National Water-Quality Assessment (NAWQA) Program. The UMIS study unit is a 47,000 square-mile basin that includes the drainage of the Mississippi River upstream of the outlet of Lake Pepin and encompasses the Twin Cities metropolitan area. PCB concentrations for individual samples at all sites ranged from 0.07 to 33.0 milligrams per kilograms (mg/kg) for common carp and from 0.07 to 9.8 mg/kg for walleye during 1975-95. During 1975-79 and 1980-87, 10 and 4 percent of walleye samples and 45 and 36 percent of common carp samples, respectively, exceeded the U.S. Food and Drug Administration guideline of 2 mg/kg PCB in fish tissue. PCB concentrations in individual common carp and walleye samples were below 2 mg/kg after 1987. Median PCB concentrations at individual sites and within stream segments were generally greatest in common carp and walleye from Mississippi River segments in the TCMA during 1975-79 and 1980-87. There was a significant difference among lipid-normalized PCB (LNPCB) concentrations in common carp, considering all stream segments combined, during all three time periods (1975-79, 1980-87, and 1988-95). LNPCB concentrations in common carp and walleye at

  1. An externally heated copper vapour laser

    International Nuclear Information System (INIS)

    Rochefort, P.A.; Sopchyshyn, F.C.; Selkirk, E.B.; Green, L.W.

    1993-08-01

    A pulsed Copper Vapour Laser (CVL), with a nominal 6 kHz repetition rate, was designed, build, and commissioned at Chalk River laboratories. The laser was required for Resonant Ionization Mass Spectroscopy (RIMS) experiments and for projects associated with Atomic Vapour laser Isotope Separation (AVLIS) studies. For the laser to operate, copper coupons position along the length of a ceramic tube must be heated sufficiently to create an appropriate vapour pressure. The AECL CVL uses an external heater element with a unique design to raise the temperature of the tube. The Cylindrical graphite heating element is shaped to compensate for the large radiation end losses of the laser tube. The use of an external heater saves the expensive high-current-voltage switching device from heating the laser tube, as in most commercial lasers. This feature is especially important given the intermittent usage typical of experimental research. As well, the heater enables better parametric control of the laser output when studying the lasing of copper (or other) vapour. This report outlines the lasing process in copper vapour, describes in detail all three major laser sub-systems: the laser body; the laser tube heater; the high voltage pulsed discharge; and, reports parametric measurements of the individual sub-systems and the laser system as a whole. Also included are normal operating procedures to heat up, run and shut down the laser

  2. Radioecological survey of the Belgian upper part of the Meuse river during the triennial low water

    International Nuclear Information System (INIS)

    Van Hees, M.; Hurtgen, Ch.; Verrezen, F.; Bruggeman, M.; Hardeman, F.

    2007-01-01

    Every three years, when the dams on the upper Meuse river are opened to allow heavy maintenance works on the sluices and banks, specific and more extensive sampling campaigns are organised, taking advantage of the low water. This particular situation facilitates sampling and, hence, provides the opportunity to enlarge the sample set and the sampled quantities. This triennial campaign, carried out in September 2004, allowed to confirm the impact of the commissioning of the new units on the Meuse. Upon demand of the Federal Agency for Nuclear Control (FANC), the programme has been modified considerably, as the activity levels observed in previous years (1998 - 2001) proved to be very low in most of the compartments, often even below limits of detection.

  3. Radioecological survey of the Belgian upper part of the Meuse river during the triennial low water

    Energy Technology Data Exchange (ETDEWEB)

    Van Hees, M.; Hurtgen, Ch.; Verrezen, F.; Bruggeman, M.; Hardeman, F.

    2007-01-15

    Every three years, when the dams on the upper Meuse river are opened to allow heavy maintenance works on the sluices and banks, specific and more extensive sampling campaigns are organised, taking advantage of the low water. This particular situation facilitates sampling and, hence, provides the opportunity to enlarge the sample set and the sampled quantities. This triennial campaign, carried out in September 2004, allowed to confirm the impact of the commissioning of the new units on the Meuse. Upon demand of the Federal Agency for Nuclear Control (FANC), the programme has been modified considerably, as the activity levels observed in previous years (1998 - 2001) proved to be very low in most of the compartments, often even below limits of detection.

  4. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Voytek, Emily B.; Lane, John W.

    2016-01-01

    The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers), thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling), and geophysical (electromagnetic-induction) methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared) may be useful in locating and protecting other currently unknown mussel populations.

  5. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon in the upper reaches of the Delaware River, northeastern USA

    Directory of Open Access Journals (Sweden)

    D. O. Rosenberry

    2016-10-01

    Full Text Available The remaining populations of the endangered dwarf wedgemussel (DWM (Alasmidonta heterodon in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers, thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling, and geophysical (electromagnetic-induction methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared may be useful in locating and protecting other currently unknown mussel populations.

  6. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand

    Science.gov (United States)

    Burnett, William C.; Wattayakorn, Gullaya; Taniguchi, Makoto; Dulaiova, Henrieta; Sojisuporn, Pramot; Rungsupa, Sompop; Ishitobi, Tomotoshi

    2007-01-01

    We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes. Our findings show that disseminated seepage of nutrient-rich mostly saline groundwater into the Upper Gulf of Thailand is significant. Estimated fluxes of dissolved inorganic nitrogen (DIN) supplied via groundwater discharge were 40-50% of that delivered by the Chao Phraya River, inorganic phosphate was 60-70%, and silica was 15-40%. Dissolved organic nitrogen (DON) and phosphorus (DOP) groundwater fluxes were also high at 30-40% and 30-130% of the river inputs, respectively. These observations are especially impressive since the comparison is being made to the river that is the largest source of fresh water into the Gulf of Thailand and flows directly through the megacity of Bangkok with high nutrient loadings from industrial and domestic sources.

  7. Surface-water and groundwater interactions in an extensively mined watershed, upper Schuylkill River, Pennsylvania, USA

    Science.gov (United States)

    Cravotta,, Charles A.; Goode, Daniel J.; Bartles, Michael D.; Risser, Dennis W.; Galeone, Daniel G.

    2014-01-01

    Streams crossing underground coal mines may lose flow, while abandoned mine drainage (AMD) restores flow downstream. During 2005-12, discharge from the Pine Knot Mine Tunnel, the largest AMD source in the upper Schuylkill River Basin, had near-neutral pH and elevated concentrations of iron, manganese, and sulfate. Discharge from the tunnel responded rapidly to recharge but exhibited a prolonged recession compared to nearby streams, consistent with rapid infiltration and slow release of groundwater from the mine. Downstream of the AMD, dissolved iron was attenuated by oxidation and precipitation while dissolved CO2 degassed and pH increased. During high-flow conditions, the AMD and downstream waters exhibited decreased pH, iron, and sulfate with increased acidity that were modeled by mixing net-alkaline AMD with recharge or runoff having low ionic strength and low pH. Attenuation of dissolved iron within the river was least effective during high-flow conditions because of decreased transport time coupled with inhibitory effects of low pH on oxidation kinetics. A numerical model of groundwater flow was calibrated using groundwater levels in the Pine Knot Mine and discharge data for the Pine Knot Mine Tunnel and the West Branch Schuylkill River during a snowmelt event in January 2012. Although the calibrated model indicated substantial recharge to the mine complex took place away from streams, simulation of rapid changes in mine pool level and tunnel discharge during a high flow event in May 2012 required a source of direct recharge to the Pine Knot Mine. Such recharge produced small changes in mine pool level and rapid changes in tunnel flow rate because of extensive unsaturated storage capacity and high transmissivity within the mine complex. Thus, elimination of stream leakage could have a small effect on the annual discharge from the tunnel, but a large effect on peak discharge and associated water quality in streams.

  8. Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River (South West Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Olias, M.; Nieto, J.M.; Sarmiento, A.M.; Ceron, J.C.; Canovas, C.R

    2004-10-15

    This paper intends to analyse seasonal variations of the quality of the water of the Odiel River. This river, together with the Tinto River, drains the Iberian Pyrite Belt (IPB), a region containing an abundance of massive sulphide deposits. Because of mining activity dating back to prehistoric times, these two rivers are heavily contaminated. The Odiel and Tinto Rivers drain into a shared estuary known as the Ria of Huelva. This work studies dissolved contaminant data in water of the Odiel River collected by various organisations, between October 1980 and October 2002, close to the rivers entry into the estuary. Flow data for this location were also obtained. The most abundant metals in the water, in order of abundance, are zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu). Arsenic (As), cadmium (Cd) and lead (Pb) are also present but in much lower quantities. The quality of the river water is linked to precipitation; the maximum sulphate, Fe, Zn, Mn, Cd and Pb concentrations occur during the autumn rains, which dissolve the Fe hydroxysulphates that were precipitated during the summer months. In winter, the intense rains cause an increase in the river flow, producing a dilution of the contaminants and a slight increase in the pH. During spring and summer, the sulphate and metal concentration (except Fe) recover and once again increase. The Fe concentration pattern displays a low value during summer due to increased precipitation of ferric oxyhydroxides. The arsenic concentration displays a different evolution, with maximum values in winter, and minimum in spring and summer as they are strongly adsorbed and/or coprecipitated by the ferric oxyhydroxides. Mn and sulphates are the most conservative species in the water. Relative to sulphate, Mn, Zn and Cd, copper displays greater values in winter and lower ones in summer, probably due to its coprecipitation with hydroxysulphates during the spring and summer months. Cd and Zn also appear to be affected by the same

  9. Developing a shared understanding of the Upper Mississippi River: the foundation of an ecological resilience assessment

    Science.gov (United States)

    Bouska, Kristen; Houser, Jeff N.; De Jager, Nathan R.; Hendrickson, Jon S.

    2018-01-01

    The Upper Mississippi River System (UMRS) is a large and complex floodplain river ecosystem that spans the jurisdictions of multiple state and federal agencies. In support of ongoing ecosystem restoration and management by this broad partnership, we are undertaking a resilience assessment of the UMRS. We describe the UMRS in the context of an ecological resilience assessment. Our description articulates the temporal and spatial extent of our assessment of the UMRS, the relevant historical context, the valued services provided by the system, and the fundamental controlling variables that determine its structure and function. An important objective of developing the system description was to determine the simplest, adequate conceptual understanding of the UMRS. We conceptualize a simplified UMRS as three interconnected subsystems: lotic channels, lentic off-channel areas, and floodplains. By identifying controlling variables within each subsystem, we have developed a shared understanding of the basic structure and function of the UMRS, which will serve as the basis for ongoing quantitative evaluations of factors that likely contribute to the resilience of the UMRS. As we undertake the subsequent elements of a resilience assessment, we anticipate our improved understanding of interactions, feedbacks, and critical thresholds will assist natural resource managers to better recognize the system’s ability to adapt to existing and new stresses.

  10. Geochronology and Geomorphology of the Pioneer Archaeological Site (10BT676), Upper Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Keene, Joshua L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Pioneer site in southeastern Idaho, an open-air, stratified, multi-component archaeological locality on the upper Snake River Plain, provides an ideal situation for understanding the geomorphic history of the Big Lost River drainage system. We conducted a block excavation with the goal of understanding the geochronological context of both cultural and geomorphological components at the site. The results of this study show a sequence of five soil formation episodes forming three terraces beginning prior to 7200 cal yr BP and lasting until the historic period, preserving one cultural component dated to ~3800 cal yr BP and multiple components dating to the last 800 cal yr BP. In addition, periods of deposition and stability at Pioneer indicate climate fluctuation during the middle Holocene (~7200-3800 cal yr BP), minimal deposition during the late Holocene, and a period of increased deposition potentially linked to the Little Ice Age. In addition, evidence for a high-energy erosion event dated to ~3800 cal yr BP suggest a catastrophic flood event during the middle Holocene that may correlate with volcanic activity at the Craters of the Moon lava fields to the northwest. This study provides a model for the study of alluvial terrace formations in arid environments and their potential to preserve stratified archaeological deposits.

  11. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, May 2008

    Science.gov (United States)

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2008. Potentiometric contours are based on water-level measurements collected at 567 wells during the period May 6-May 27, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours. Measured values of the potentiometric surface ranged from 7 feet below NGVD29 near Fernandina Beach, Florida, to 124 feet above NGVD29 in Polk County, Florida. The average water level of the network in May 2008 was about 1 foot lower than the average in September 2007 following below-average rainfall during the dry season of 2007-08. Seasonal differences in network average water levels generally range from 4 to 6 feet. For 457 wells with previous measurements, May 2008 levels ranged from about 19 feet below to about 11 feet above September 2007 water levels. The average water level of the network in May 2008 was about 1 foot higher than the average in May 2007. For 544 wells with previous measurements, May 2008 levels ranged from about 8 feet below to about 13 feet above May 2007 water levels. Long-term hydrographs of ground-water levels for continuous and periodic wells are available

  12. Polychlorinated biphenyls in adult black bass and yellow perch were not associated with their reproductive success in the upper Hudson River, New York, USA.

    Science.gov (United States)

    Maceina, Michael J; Sammons, Steven M

    2013-07-01

    Although production and use of polychlorinated biphenyls (PCBs) ceased nearly 35 yr ago, questions still remain concerning the potential chronic effects these compounds may have on wild fish, including their reproductive success. In the upper Hudson River, New York, USA, fish were exposed to PCBs primarily from 2 manufacturing plants located approximately 320 km upstream of New York City, New York, from the 1940s to 1977. The authors collected yellow perch (Perca flavescens), smallmouth bass (Micropterus dolomieu), and largemouth bass (M. salmoides) using electrofishing, measured PCBs in these adults, and estimated abundance and size of their offspring at age 1 yr (age-1 fish). Fish were collected annually from 2004 to 2009 from 1 control site upstream of the PCB discharge sites and from 2 sites downstream from where PCBs were released. These sites (pools) are separated by a series of dams, locks, and canals. Muscle tissue wet weight PCB and lipid-based PCB concentrations in adults in the 2 PCB exposure pools averaged approximately 1 to 3 µg/g and 100 to 500 µg/g, respectively. Age-1 abundances were not related to adult PCB concentrations but were inversely related to river flow. Size of age-1 fish was slightly greater at the PCB-exposure sites. Levels of PCBs in yellow perch, largemouth bass, and smallmouth bass in the upper Hudson River did not impair or reduce recruitment or reproductive success. Copyright © 2013 SETAC.

  13. Assessing the impacts of river regulation on native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats in the upper Flathead River, Montana, USA

    Science.gov (United States)

    Muhlfeld, Clint C.; Jones, Leslie A.; Kotter, D.; Miller, William J.; Geise, Doran; Tohtz, Joel; Marotz, Brian

    2012-01-01

    Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin.

  14. Lava tubes and aquifer vulnerability in the upper Actopan River basin, Veracruz, México

    Science.gov (United States)

    Espinasa-Pereña, R.; Delgado Granados, H.

    2011-12-01

    Rapid infiltration leads to very dry conditions on the surface of some volcanic terrains, with large allogenic streams sometimes sinking underground upon reaching a lava flow. Aquifers in lava flows tend to be heterogeneous and discontinuous, generally unconfined and fissured, and have high transmissivity. Springs associated with basalts may be very large but are typically restricted to lava-flow margins. Concern has been expressed regarding the potential for lava-tube caves to facilitate groundwater contamination similar to that afflicting some karst aquifers (Kempe et al., 2003; Kiernan et al., 2002; Halliday 2003). The upper Actopan River basin is a series of narrow valleys excavated in Tertiary volcanic brechias. Several extensive Holocene basaltic tube-fed lava flows have partially filled these valleys. The youngest and longest flow originates at El Volcancillo, a 780 ybP monogenetic volcano. It is over 50 km long, and was fed through a major master tube, the remains of which form several lava-tube caves (Gassos and Espinasa-Pereña, 2008). Another tube-fed flow initiates at a vent at the bottom of Barranca Huichila and can be followed for 7 km to where it is covered by the Volcancillo flow. The Huichila River is captured by this system of lava tubes and can be followed through several underground sections. In dry weather the stream disappears at a sump in one of these caves, although during hurricanes it overflows the tube, floods the Tengonapa plain, and finally sinks through a series of skylights into the master tube of the Volcancillo flow. Near villages, the cave entrances are used as trash dumps, which are mobilized during floods. These include household garbage, organic materials associated with agriculture and even medical supplies. This is a relatively recent phenomenon, caused by population growth and the building of houses above the lava flows. The water resurges at El Descabezadero, gushing from fractures in the lava above the underlying brechias

  15. Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Yobbi, D.K.; McBride, W.S.

    2009-01-01

    A study of the Withlacoochee River watershed in west-central Florida was conducted from October 2003 to March 2007 to gain a better understanding of the hydrology and surface-water and groundwater interactions along the river. The Withlacoochee River originates in the Green Swamp area in north-central Polk County and flows northerly through seven counties, emptying into the Gulf of Mexico. This study includes only the part of the watershed located between the headwaters in the Green Swamp and the U.S. Geological Survey gaging station near Holder, Florida. The Withlacoochee River within the study area is about 108 miles long and drains about 1,820 square miles. The Withlacoochee River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the degree of confinement between the Upper Florida aquifer and the surficial aquifer is highly variable throughout the watershed. The potential for movement of water from the surface or shallow deposits to deeper deposits, or from deeper deposits to the shallow deposits, exists throughout the Withlacoochee River watershed. Water levels were higher in deeper Upper Floridan aquifer wells than in shallow Upper Floridan aquifer wells or surficial aquifer wells at 11 of 19 paired or nested well sites, indicating potential for discharge to the surface-water system. Water levels were higher in shallow Upper Floridan aquifer or surficial aquifer wells than in deeper Upper Floridan aquifer wells at five other sites, indicating potential for recharge to the deeper Upper Floridan aquifer. Water levels in the surficial aquifer and Upper Floridan aquifer wells at the remaining three sites were virtually the same, indicating little or no confinement at the sites. Potentiometric-surface maps of the Upper Floridan aquifer indicate the pattern of groundwater

  16. Wintering bats of the upper Snake River Plain: occurrence in lava-tube caves

    Energy Technology Data Exchange (ETDEWEB)

    Genter, D.L.

    1986-04-30

    Distribution and habitat selection of hibernating bats at the Idaho National Engineering Laboratory (INEL) and adjacent area are reported. Exploration of over 30 lava-tube caves revealed that two species, Myotis leibii and Plecotus townsendii, hibernate in the upper Snake River Plain. Five species, M. lucifugus, M. evotis, Eptesicus fuscus, Lasionycteris noctivagans, and Lasiurus cinereus are considered migratory. Myotis leibii and P. townsendii hibernate throughout much of the area, occasionally in mixed-species groups. Myotis leibii uses the dark and protected regions of the cave, usually wedged into tiny pockets and crevices near or at the highest portion of the ceiling. Individuals of P. townsendii may be found at any height or depth in the cave. Temperature appears to be primary limiting factor in habitat selection. Myotis leibii was found in significantly cooler air temperatures than P. townsendii. Neither species tolerated continuous temperatures below 1.5 C. Relative humidity does not seem to be a significant factor in the distribution or habitat selection of the two species in lava-tube caves. 18 references, 1 figure, 1 table.

  17. Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA

    Science.gov (United States)

    Deligne, Natalia I.; Conrey, Richard M.; Cashman, Katharine V.; Champion, Duane E.; Amidon, William H.

    2016-01-01

    To assess the complexity of eruptive activity within mafic volcanic fields, we present a detailed geologic investigation of Holocene volcanism in the upper McKenzie River catchment in the central Oregon Cascades, United States. We focus on the Sand Mountain volcanic field, which covers 76 km2 and consists of 23 vents, associated tephra deposits, and lava fields. We find that the Sand Mountain volcanic field was active for a few decades around 3 ka and involved at least 13 eruptive units. Despite the small total volume erupted (∼1 km3 dense rock equivalent [DRE]), Sand Mountain volcanic field lava geochemistry indicates that erupted magmas were derived from at least two, and likely three, different magma sources. Single units erupted from one or more vents, and field data provide evidence of both vent migration and reoccupation. Overall, our study shows that mafic volcanism was clustered in space and time, involved both explosive and effusive behavior, and tapped several magma sources. These observations provide important insights on possible future hazards from mafic volcanism in the central Oregon Cascades.

  18. Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River

    Science.gov (United States)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-11-01

    Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58-1.311, NSE = 0.99-0.97, d = 0.98-0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = -0.10 to -1.30). Validation analyses showed all models performed well; the

  19. Developing and testing temperature models for regulated systems: a case study on the Upper Delaware River

    Science.gov (United States)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-01-01

    Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58–1.311, NSE = 0.99–0.97, d = 0.98–0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = −0.10 to −1.30). Validation analyses showed all models performed

  20. Mapping Irrigation Potential in the Upper East Region of Ghana

    Science.gov (United States)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  1. Source apportionment of trace metals in river sediments: A comparison of three methods

    International Nuclear Information System (INIS)

    Chen, Haiyang; Teng, Yanguo; Li, Jiao; Wu, Jin; Wang, Jinsheng

    2016-01-01

    Increasing trace metal pollution in river sediment poses a significant threat to watershed ecosystem health. Identifying potential sources of sediment metals and apportioning their contributions are of key importance for proposing prevention and control strategies of river pollution. In this study, three advanced multivariate receptor models, factor analysis with nonnegative constraints (FA-NNC), positive matrix factorization (PMF), and multivariate curve resolution weighted-alternating least-squares (MCR-WALS), were comparatively employed for source apportionment of trace metals in river sediments and applied to the Le'an River, a main tributary of Poyang Lake which is the largest freshwater lake in China. The pollution assessment with contamination factor and geoaccumulation index suggested that the river sediments in Le'an River were contaminated severely by trace metals due to human activities. With the three apportionment tools, similar source profiles of trace metals in sediments were extracted. Especially, the MCR-WALS and PMF models produced essentially the same results. Comparatively speaking, the weighted schemes might give better solutions than the unweighted FA-NNC because the uncertainty information of environmental data was considered by PMF and MCR-WALS. Anthropogenic sources were apportioned as the most important pollution sources influencing the sediment metals in Le'an River with contributions of about 90%. Among them, copper tailings occupied the largest contribution (38.4–42.2%), followed by mining wastewater (29.0–33.5%), and agricultural activities (18.2–18.7%). To protect the ecosystem of Le'an River and Poyang Lake, special attention should be paid to the discharges of mining wastewater and the leachates of copper tailing ponds in that region. - Highlights: • Three advanced receptor models were comparatively employed for source apportionment. • The MCR-WALS and PMF models produce essentially same source profiles. • Copper

  2. Toxicity of smelter slag-contaminated sediments from Upper Lake Roosevelt and associated metals to early life stage White Sturgeon (Acipenser transmontanus Richardson, 1836)

    Science.gov (United States)

    Little, E.E.; Calfee, R.D.; Linder, G.

    2014-01-01

    The toxicity of five smelter slag-contaminated sediments from the upper Columbia River and metals associated with those slags (cadmium, copper, zinc) was evaluated in 96-h exposures of White Sturgeon (Acipenser transmontanus Richardson, 1836) at 8 and 30 days post-hatch. Leachates prepared from slag-contaminated sediments were evaluated for toxicity. Leachates yielded a maximum aqueous copper concentration of 11.8 μg L−1 observed in sediment collected at Dead Man's Eddy (DME), the sampling site nearest the smelter. All leachates were nonlethal to sturgeon that were 8 day post-hatch (dph), but leachates from three of the five sediments were toxic to fish that were 30 dph, suggesting that the latter life stage is highly vulnerable to metals exposure. Fish maintained consistent and prolonged contact with sediments and did not avoid contaminated sediments when provided a choice between contaminated and uncontaminated sediments. White Sturgeon also failed to avoid aqueous copper (1.5–20 μg L−1). In water-only 96-h exposures of 35 dph sturgeon with the three metals, similar toxicity was observed during exposure to water spiked with copper alone and in combination with cadmium and zinc. Cadmium ranging from 3.2 to 41 μg L−1 or zinc ranging from 21 to 275 μg L−1 was not lethal, but induced adverse behavioral changes including a loss of equilibrium. These results suggest that metals associated with smelter slags may pose an increased exposure risk to early life stage sturgeon if fish occupy areas contaminated by slags.

  3. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River.

    Science.gov (United States)

    Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A

    2015-11-01

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed

  4. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River

    Energy Technology Data Exchange (ETDEWEB)

    Degteva, M.O.; Shagina, N.B.; Shishkina, E.A.; Vozilova, A.V.; Volchkova, A.Y.; Vorobiova, M.I. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Wieser, A. [Helmholtz Centrum Munich, Neuherberg (Germany); Fattibene, P.; Della Monaca, S. [Instituto Superiore di Sanita, Rome (Italy); Ainsbury, E.; Moquet, J. [Public Health England, Chilton, Didcot (United Kingdom); Anspaugh, L.R. [University of Utah, Salt Lake City, UT (United States); Napier, B.A. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-11-15

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated {sup 89,90}Sr, the EPR and FISH assays were supported by measurements of {sup 90}Sr-body burdens and estimates of {sup 90}Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from {sup 137}Cs incorporated in donors' soft tissues. It is shown here that the

  5. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River

    International Nuclear Information System (INIS)

    Degteva, M.O.; Shagina, N.B.; Shishkina, E.A.; Vozilova, A.V.; Volchkova, A.Y.; Vorobiova, M.I.; Wieser, A.; Fattibene, P.; Della Monaca, S.; Ainsbury, E.; Moquet, J.; Anspaugh, L.R.; Napier, B.A.

    2015-01-01

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated "8"9","9"0Sr, the EPR and FISH assays were supported by measurements of "9"0Sr-body burdens and estimates of "9"0Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from "1"3"7Cs incorporated in donors' soft tissues. It is shown here that the TRDS

  6. Trace metal detection in Sibenik Bay, Croatia: Cadmium, Lead and Copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. a case study

    International Nuclear Information System (INIS)

    Omanovic, D.; Kwokal, Z.; Goodwin, A.; Lawrence, A.; Banks, C.E.; Compton, R.G.; Komersky-Lovric, S.

    2006-01-01

    The vertical profiles of the concentration of reactive Mn and total concentrations of Cd, Pb, and Cu ions in the water column of the Sibenik Bay (Krka river estuary) were determined. The measured ranges of concentrations are: 60-1300 ng 1 -1f or Mn, 5-13 ng 1 -1 for Cd, 70-230 ng 1 -1f or Pb, and 375-840 ng 1 -1f or Cu. These values are comparable with the concentrations found in the unpolluted estuaries. The Krka river estuary is highly stratified, with the measured salinity gradient of 20% within a half meter of the freshwater-seawater interface . The main changes in the vertical profiles of the measured parameters occur in the freshwater-seawater interface: the temperature increases for 1 d ig C and the pH decreases for 0.1 unit, whereas the metal concentrations show different behaviour. Generally, Mn, Pb, and Cd ions show the increase of concentrations in the freshwater-seawater interface , while copper concentration profile indicates anthropogenic pollution in the brackish layer caused by agriculture activities and by the paint with copper basis used as an antifoulant biocide for the ships. UV-digested samples show an increase in manganese concenbations for at least 3.5 times comparing to non UV-digested. This suggests that in natural water manganese exists mainly in the form of inert complexes and as associated to particulate matter (about 70-80%). UV irradiation has no influence on the concentration of cadmium, while for lead an increase of 50% in the seawater layer is observed. The twofold increase of the copper concentration in the upper freshwater layer and at least the fourfold one in the seawater layer were measured in the UV-digested samples. These results show that copper is strongly bound to inert complexes, and that UV-digestion is necessary step in determination of the total metal concentrations in natural water samples. No significant increase of the metal concentrations in the deeper seawater layer was observed, indicating the absence of the

  7. Prediction of hydrological responds to climate changes in the Upper Yangtze River Basin, China

    Science.gov (United States)

    Yang, X.; Ren, L.; Wang, Y.; Zhang, M.; Liu, Y.; Jiang, S.; Yuan, F.

    2017-12-01

    Climate changes have direct effects on hydrological cycle, with the increasing temperature and seasonal shift of precipitation. Therefore, understanding of how climate change may affect the population and water resources and economic development is critical to the water and food security for China. This study aims to evaluate the potential impacts of future climate changes on water resources of the upper basin of Yangtze River (the area controlled by the Yichang hydrological station) using the variable infiltration capacity (VIC) model driven by composite observations (1961-2005) and projections of eight CMIP5 models under scenarios RCP4.5 and RCP8.5 from 2006 to 2099. The raw eight CMIP5 models have been downscaled by the equidistant cumulative distribution functions (EDCDF) statistical downscaling approach from 1961 to 2099. The assessment of the performance of model simulated precipitation and temperature were calculated by comparing to the observations during the historical period (1961-2005). For the same variables, eight CMIP5 models for RCP 4.5 and RCP 8.5 downscaled by EDCDF method were generated during the future period (2006-2099). Overall, the VIC model performed well in monthly streamflow simulation, with the Nash-Sutcliffe coefficient of efficiency (NSCE) 0.92 and 0.97 for calibration and validation, respectively. The annual precipitation is projected to increase by 6.3mm and 8.6mm per decade and the annual temperature will increase by 0.22 °C and 0.53°C per decade (2006-2099) for RCP4.5 and RCP8.5, respectively. In the future period, The total runoff of the study basins would either remain stable or moderately increase by 2.7% and 22.4% per decade, the evapotranspiration increase by 2mm and 13mm per decade, and the soil moisture will reduce by -0.1% and -7.4% per decade under RCP4.5 and RCP8.5, respectively. The changes of model-simulated soil moisture, runoff, and evapotranspiration suggest that there probably be an increasing risk of drought in

  8. Modern (1992–2011) and projected (2012–99) peak snowpack and May–July runoff for the Fort Peck Lake and Lake Sakakawea watersheds in the Upper Missouri River Basin

    Science.gov (United States)

    Stamm, John F.; Todey, Dennis; Mayes Bousted, Barbara; Rossi, Shawn; Norton, Parker A.; Carter, Janet M.

    2016-02-09

    Mountain snowpack is an important contributor to runoff in the Upper Missouri River Basin; for example, high amounts of winter and spring precipitation in the mountains and plains in 2010–11 were associated with the peak runoff of record in 2011 in the Upper Missouri River Basin. To project trends in peak mountain snowpack and runoff in the upcoming decades, multiple linear regression models of peak mountain snowpack and total May–July runoff were developed for the Fort Peck Lake (above Fort Peck Dam) and lower Lake Sakakawea watersheds (between Fort Peck and Garrison Dams) in the Upper Missouri River Basin. Input to regression models included seasonal estimates of precipitation, air temperature, and total reference evapotranspiration stratified by elevation. Calibration was based on records from 107 weather stations from 1991 to 2011. Regressed annual peak mountain snowpack was used as input to the transfer function of May–July runoff. Peak snowpack and May–July runoff were projected for 2012–99 on the basis of air temperature and precipitation from the Community Climate System Model (CCSM) output. Two estimates of projected peak snowpack and May–July runoff for 2012–99 were computed: one estimate was based on output from the CCSM, version 3.0 (CCSM3), and the second estimate was based on output from the CCSM, version 4.0 (CCSM4). The significance of projected trends was based on the Kendall’s tau nonparametric test.

  9. Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China

    Science.gov (United States)

    Li, Zhanjie; Yu, Jingshan; Xu, Xinyi; Sun, Wenchao; Pang, Bo; Yue, Jiajia

    2018-06-01

    Hydrological models are important and effective tools for detecting complex hydrological processes. Different models have different strengths when capturing the various aspects of hydrological processes. Relying on a single model usually leads to simulation uncertainties. Ensemble approaches, based on multi-model hydrological simulations, can improve application performance over single models. In this study, the upper Yalongjiang River Basin was selected for a case study. Three commonly used hydrological models (SWAT, VIC, and BTOPMC) were selected and used for independent simulations with the same input and initial values. Then, the BP neural network method was employed to combine the results from the three models. The results show that the accuracy of BP ensemble simulation is better than that of the single models.

  10. The Upper Mississippi River floodscape: spatial patterns of flood inundation and associated plant community distributions

    Science.gov (United States)

    DeJager, Nathan R.; Rohweder, Jason J.; Yin, Yao; Hoy, Erin E.

    2016-01-01

    Questions How is the distribution of different plant communities associated with patterns of flood inundation across a large floodplain landscape? Location Thirty-eight thousand nine hundred and seventy hectare of floodplain, spanning 320 km of the Upper Mississippi River (UMR). Methods High-resolution elevation data (Lidar) and 30 yr of daily river stage data were integrated to produce a ‘floodscape’ map of growing season flood inundation duration. The distributions of 16 different remotely sensed plant communities were quantified along the gradient of flood duration. Results Models fitted to the cumulative frequency of occurrence of different vegetation types as a function of flood duration showed that most types exist along a continuum of flood-related occurrence. The diversity of community types was greatest at high elevations (0–10 d of flooding), where both upland and lowland community types were found, as well as at very low elevations (70–180 d of flooding), where a variety of lowland herbaceous communities were found. Intermediate elevations (20–60 d of flooding) tended to be dominated by floodplain forest and had the lowest diversity of community types. Conclusions Although variation in flood inundation is often considered to be the main driver of spatial patterns in floodplain plant communities, few studies have quantified flood–vegetation relationships at broad scales. Our results can be used to identify targets for restoration of historical hydrological regimes or better anticipate hydro-ecological effects of climate change at broad scales.

  11. Development and application of a groundwater/surface-water flow model using MODFLOW-NWT for the Upper Fox River Basin, southeastern Wisconsin

    Science.gov (United States)

    Feinstein, D.T.; Fienen, M.N.; Kennedy, J.L.; Buchwald, C.A.; Greenwood, M.M.

    2012-01-01

    The Fox River is a 199-mile-long tributary to the Illinois River within the Mississippi River Basin in the states of Wisconsin and Illinois. For the purposes of this study the Upper Fox River Basin is defined as the topographic basin that extends from the upstream boundary of the Fox River Basin to a large wetland complex in south-central Waukesha County called the Vernon Marsh. The objectives for the study are to (1) develop a baseline study of groundwater conditions and groundwater/surface-water interactions in the shallow aquifer system of the Upper Fox River Basin, (2) develop a tool for evaluating possible alternative water-supply options for communities in Waukesha County, and (3) contribute to the methodology of groundwater-flow modeling by applying the recently published U.S. Geological Survey MODFLOW-NWT computer code, (a Newton formulation of MODFLOW-2005 intended for solving difficulties involving drying and rewetting nonlinearities of the unconfined groundwater-flow equation) to overcome computational problems connected with fine-scaled simulation of shallow aquifer systems by means of thin model layers. To simulate groundwater conditions, a MODFLOW grid is constructed with thin layers and small cell dimensions (125 feet per side). This nonlinear unconfined problem incorporates the streamflow/lake (SFR/LAK) packages to represent groundwater/surface-water interactions, which yields an unstable solution sensitive to initial conditions when solved using the Picard-based preconditioned-gradient (PCG2) solver. A particular problem is the presence of many isolated wet water-table cells over dry cells, causing the simulated water table to assume unrealistically high values. Attempts to work around the problem by converting to confined conditions or converting active to inactive cells introduce unacceptable bias. Application of MODFLOW-NWT overcomes numerical problem by smoothing the transition from wet to dry cells and keeps all cells active. The simulation is

  12. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological

  13. Investigation of geology and hydrology of the upper and middle Verde River watershed of central Arizona: a project of the Arizona Rural Watershed Initiative

    Science.gov (United States)

    Woodhouse, Betsy; Flynn, Marilyn E.; Parker, John T.C.; Hoffmann, John P.

    2002-01-01

    The upper and middle Verde River watershed in west-central Arizona is an area rich in natural beauty and cultural history and is an increasingly popular destination for tourists, recreationists, and permanent residents seeking its temperate climate. The diverse terrain of the region includes broad desert valleys, upland plains, forested mountain ranges, narrow canyons, and riparian areas along perennial stream reaches. The area is predominantly in Yavapai County, which in 1999 was the fastest-growing rural county in the United States (Woods and Poole Economics, Inc., 1999); by 2050, the population is projected to more than double. Such growth will increase demands on water resources. The domestic, industrial, and recreational interests of the population will need to be balanced against protection of riparian, woodland, and other natural areas and their associated wildlife and aquatic habitats. Sound management decisions will be required that are based on an understanding of the interactions between local and regional aquifers, surface-water bodies, and recharge and discharge areas. This understanding must include the influence of climate, geology, topography, and cultural development on those components of the hydrologic system. In 1999, the U.S. Geological Survey (USGS), in cooperation with the Arizona Department of Water Resources (ADWR), initiated a regional investigation of the hydrogeology of the upper and middle Verde River watershed. The project is part of the Rural Watershed Initiative (RWI), a program established by the State of Arizona and managed by the ADWR that addresses water supply issues in rural areas while encouraging participation from stakeholder groups in affected communities. The USGS is performing similar RWI investigations on the Colorado Plateau to the north and in the Mogollon Highlands to the east of the Verde River study area (Parker and Flynn, 2000). The objectives of the RWI investigations are to develop: (1) a single database

  14. Assessing the spatial pattern of a river water quality in southern Brazil by multivariate analysis of biological and chemical indicators

    Directory of Open Access Journals (Sweden)

    M. B. B. Cassanego

    Full Text Available Abstract This study assessed the genotoxicity and chemical quality of the Rio dos Sinos, southern Brazil. During two years, bimonthly, cuttings of Tradescantia pallida var. purpurea with flower buds were exposed to river water samples from Caraá, Santo Antônio da Patrulha, Taquara and Campo Bom, which are municipalities located in the upper, middle and lower stretches of the Rio dos Sinos basin. Simultaneously, chemical parameters were analyzed, rainfall data were surveyed and negative (distilled water and positive (0.1% formaldehyde controls were made. Micronuclei (MCN frequencies were determined in tetrads of pollen grain mother cells. From the upper stretch toward the lower, there was an increase in the frequency of MCN and in concentrations of chemical parameters. Cadmium, lead, copper, total chromium and zinc were present at the four sites and a concentration gradient was not demonstrated along the river. The multivariate analysis revealed that two principal components exist, which accounted for 62.3% of the observed variances. Although genotoxicity was observed in Santo Antônio da Patrulha, the water presented higher mean values for most of the assessed parameters, in the lower stretch, where urbanization and industrialization are greater. The spatial and temporal pattern of water quality observed reinforces the importance of considering the environmental factors and their effects on organisms in an integrated way in watercourse monitoring programs.

  15. Particulate matter characterization of Cauca River water in Colombia

    NARCIS (Netherlands)

    Gutierrez Marin, Juan Pablo; van Halem, D.; Rietveld, L.C.

    2016-01-01

    The particulate matter composition in the Upper Cauca River section was studied, considering the importance of this river for the water supply of Cali, Colombia, and the implications that the turbidity of this water source has had for the city's water treatment. Additionally, the upstream Palo River

  16. 76 FR 76153 - Notice of Effectiveness of Exempt Wholesale Generator Status; Caney River Wind Project, LLC...

    Science.gov (United States)

    2011-12-06

    ...] Notice of Effectiveness of Exempt Wholesale Generator Status; Caney River Wind Project, LLC, Mesquite Solar 1, LLC, Copper Crossing Solar LLC, Copper Mountain Solar 1, LLC, Pinnacle Wind, LLC, Bellevue... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EG11-115-000, EG11-116-000...

  17. An 1800-yr record of decadal-scale hydroclimatic variability in the upper Arkansas River basin from bristlecone pine

    Science.gov (United States)

    Woodhouse, C.A.; Pederson, G.T.; Gray, S.T.

    2011-01-01

    Bristlecone pine trees are exceptionally long-lived, and with the incorporation of remnant material have been used to construct multi-millennial length ring-width chronologies. These chronologies can provide valuable information about past temperature and moisture variability. In this study, we outline a method to build a moisture-sensitive bristlecone chronology and assess the robustness and consistency of this sensitivity over the past 1200. yr using new reconstructions of Arkansas River flow (AD 1275-2002 and 1577-2002) and the summer Palmer Drought Sensitivity Index. The chronology, a composite built from parts of three collections in the central Rocky Mountains, is a proxy for decadal-scale moisture variability for the past 18 centuries. Since the sample size is small in some portions of the time series, the chronology should be considered preliminary; the timing and duration of drought events are likely the most robust characteristics. This chronology suggests that the region experienced increased aridity during the medieval period, as did much of western North America, but that the timing and duration of drought episodes within this period were somewhat different from those in other western locations, such as the upper Colorado River basin. ?? 2010 University of Washington.

  18. Effects of barge traffic on distribution and survival of ichthyoplankton and small fishes in the upper Mississippi River

    Science.gov (United States)

    Holland, L.E.

    1986-01-01

    Short-term impacts of commercial barge traffic on fish eggs, larvae, young-of-the-year (age-0) fishes, and small adults in the main channel of the upper Mississippi River were examined. Barge passages caused significant changes in the distribution of eggs and larvae in the study area. The mean catch of ichthyoplankton was reduced in both surface and bottom waters for 90 min after passage of vessels downstream. The effects of upstream traffic on catch ranged from nil in surface or bottom samples to short-term increases in surface samples immediately after passage. No consistent effect on the catch of age-0 or small adult fishes in surface or bottom trawls was evident.

  19. Book review: Hollowed ground—Copper mining and community building on Lake Superior, 1840s–1990s

    Science.gov (United States)

    Schulz, Klaus J.

    2010-01-01

    In 1843, six years before the Forty-niners headed west for the goldfields of California, the United States’ first great mineral rush began to a land that was, as Patrick Henry told Congress, “beyond the most distant wilderness and remote as the moon.” He was referring to the Keweenaw Peninsula of northern Michigan. This rush was not for gold or silver, but for copper. And not just any copper, but native copper, so pure it required little refining before use. The early horde of fortune-seekers came with visions of finding mountains of solid copper, spurred on by stories of large masses of “float copper” that included the famous Ontonagon Boulder, a large mass of native copper originally found lying 32 km up the steep and rugged valley of the Ontonagon River (and now gathering dust in the Smithsonian Museum).

  20. Groundwater Discharge to Upper Barataria Basin Driven by Mississippi River Stage

    Science.gov (United States)

    Cable, J. E.; Kim, J.; Johannesson, K. H.; Kolker, A.; Telfeyan, K.; Breaux, A.

    2017-12-01

    Groundwater flow into deltaic wetlands occurs despite the heterogeneous and anisotropic depositional environment of deltas. Along the Mississippi River this groundwater flow is augmented by the vast alluvial aquifer and the levees which confine the river to a zone much more narrow than the historical floodplain. The effect of the levees has been to force the river stage to as much as 10 m above the adjacent back-levee wetlands. Consequently, the head difference created by higher river stages can drive groundwater flow into these wetlands, especially during flood seasons. We measured Rn-222 in the surface waters of a bayou draining a bottomland hardwood swamp in the lower Mississippi River valley over a 14-month period. With a half-life of 3.83 days and its conservative geochemical behavior, Rn-222 is a well-known tracer for groundwater inputs in both fresh and marine environments. Transects from the mouth to the headwaters of the bayou were monitored for Rn-222 in real-time using Rad-7s on a semi-monthly basis. We found that Rn-222 decreased exponentially from the swamp at the headwaters to the mouth of the bayou. Using a mass balance approach, we calculated groundwater inputs to the bayou headwaters and compared these discharge estimates to variations in Mississippi River stage. Groundwater inputs to the Barataria Basin, Louisiana, represent a significant fraction of the freshwater budget of the basin. The flow appears to occur through the sandy Point Bar Aquifer that lies adjacent to the river and underlies many of the freshwater swamps of the Basin. Tracer measurements throughout the Basin in these swamp areas appear to confirm our hypothesis about the outlet for groundwater in this deltaic environment.

  1. Inter-annual variability in apparent relative production, survival, and growth of juvenile Lost River and shortnose suckers in Upper Klamath Lake, Oregon, 2001–15

    Science.gov (United States)

    Burdick, Summer M.; Martin, Barbara A.

    2017-06-15

    Executive SummaryPopulations of the once abundant Lost River (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) of the Upper Klamath Basin, decreased so substantially throughout the 20th century that they were listed under the Endangered Species Act in 1988. Major landscape alterations, deterioration of water quality, and competition with and predation by exotic species are listed as primary causes of the decreases in populations. Upper Klamath Lake populations are decreasing because fish lost due to adult mortality, which is relatively low for adult Lost River suckers and variable for adult shortnose suckers, are not replaced by new young adult suckers recruiting into known adult spawning aggregations. Catch-at-age and size data indicate that most adult suckers presently in Upper Klamath Lake spawning populations were hatched around 1991. While, a lack of egg production and emigration of young fish (especially larvae) may contribute, catch-at-length and age data indicate high mortality during the first summer or winter of life may be the primary limitation to the recruitment of young adults. The causes of juvenile sucker mortality are unknown.We compiled and analyzed catch, length, age, and species data on juvenile suckers from Upper Klamath Lake from eight prior studies conducted from 2001 to 2015 to examine annual variation in apparent production, survival, and growth of young suckers. We used a combination of qualitative assessments, general linear models, and linear regression to make inferences about annual differences in juvenile sucker dynamics. The intent of this exercise is to provide information that can be compared to annual variability in environmental conditions with the hopes of understanding what drives juvenile sucker population dynamics.Age-0 Lost River suckers generally grew faster than age-0 shortnose suckers, but the difference in growth rates between the two species varied among years. This unsynchronized annual variation in

  2. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    Science.gov (United States)

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and

  3. Are two systemic fish assemblage sampling programmes on the upper Mississippi River telling us the same thing?

    Science.gov (United States)

    Dukerschein, J.T.; Bartels, A.D.; Ickes, B.S.; Pearson, M.S.

    2013-01-01

    We applied an Index of Biotic Integrity (IBI) used on Wisconsin/Minnesota waters of the upper Mississippi River (UMR) to compare data from two systemic sampling programmes. Ability to use data from multiple sampling programmes could extend spatial and temporal coverage of river assessment and monitoring efforts. We normalized for effort and tested fish community data collected by the Environmental Monitoring and Assessment Program-Great Rivers Ecosystems (EMAP-GRE) 2004–2006 and the Long Term Resource Monitoring Program (LTRMP) 1993–2006. Each programme used daytime electrofishing along main channel borders but with some methodological and design differences. EMAP-GRE, designed for baseline and, eventually, compliance monitoring, used a probabilistic, continuous design. LTRMP, designed primarily for baseline and trend monitoring, used a stratified random design in five discrete study reaches. Analysis of similarity indicated no significant difference between EMAP-GRE and LTRMP IBI scores (n=238; Global R= 0.052; significance level=0.972). Both datasets distinguished clear differences only between 'Fair' and 'Poor' condition categories, potentially supporting a 'pass–fail' assessment strategy. Thirteen years of LTRMP data demonstrated stable IBI scores through time in four of five reaches sampled. LTRMP and EMAPGRE IBI scores correlated along the UMR's upstream to downstream gradient (df [3, 25]; F=1.61; p=0.22). A decline in IBI scores from upstream to downstream was consistent with UMR fish community studies and a previous, empirically modelled human disturbance gradient. Comparability between EMAP-GRE (best upstream to downstream coverage) and LTRMP data (best coverage over time and across the floodplain) supports a next step of developing and testing a systemic, multi-metric fish index on the UMR that both approaches could inform.

  4. Climate change adaptation in European river basins

    NARCIS (Netherlands)

    Huntjens, P.; Pahl-Wostl, C.; Grin, J.

    2010-01-01

    This paper contains an assessment and standardized comparative analysis of the current water management regimes in four case-studies in three European river basins: the Hungarian part of the Upper Tisza, the Ukrainian part of the Upper Tisza (also called Zacarpathian Tisza), Alentejo Region

  5. Species richness of testate amoebae in different environments from the upper Paraná river floodplain (PR/MS - doi: 10.4025/actascibiolsci.v33i3.7261 Species richness of testate amoebae in different environments from the upper Paraná river floodplain (PR/MS - doi: 10.4025/actascibiolsci.v33i3.7261

    Directory of Open Access Journals (Sweden)

    Fábio Amodêo Lansac-Tôha

    2011-07-01

    Full Text Available This study evaluated the species richness of testate amoebae in the plankton from different environments of the upper Paraná river floodplain. Samplings were performed at subsurface of pelagic region from twelve environments using motorized pump and plankton net (68 µm, during four hydrological periods. We identified 67 taxa, distributed in seven families and Arcellidae, Difflugiidae and Centropyxidae were the most representative families. Higher values of species richness were observed in the lakes (connected and isolated during the flood pulses. Centropyxis aculeata, Difflugia gramem and D. pseudogramem were frequent throughout the study period. Seasonal variability of species in the channels and isolated lakes was evidenced by beta diversity. Besides that, in the rivers, extreme changes in species composition were verified during the high-water period. Our results highlight the importance of the present study to improve the knowledge about the diversity and geographic distribution of these organisms in Brazil and emphasize the importance of current flow in the displacement of testate amoebae from their preferred habitats, marginal vegetation and sediment.This study evaluated the species richness of testate amoebae in the plankton from different environments of the upper Paraná river floodplain. Samplings were performed at subsurface of pelagic region from twelve environments using motorized pump and plankton net (68 µm, during four hydrological periods. We identified 67 taxa, distributed in seven families and Arcellidae, Difflugiidae and Centropyxidae were the most representative families. Higher values of species richness were observed in the lakes (connected and isolated during the flood pulses. Centropyxis aculeata, Difflugia gramem and D. pseudogramem were frequent throughout the study period. Seasonal variability of species in the channels and isolated lakes was evidenced by beta diversity. Besides that, in the rivers, extreme

  6. Origin and fate of copper in a small Mediterranean vineyard catchment: New insights from combined chemical extraction and δ{sup 65}Cu isotopic composition

    Energy Technology Data Exchange (ETDEWEB)

    El Azzi, D. [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); Viers, J. [Université de Toulouse (France); UPS, Géosciences Environnement Toulouse (GET), 14, avenue Édouard Belin, Toulouse31400 (France); CNRS, IRD, CNES (France); GET, 14, avenue Édouard Belin, Toulouse 31400 (France); Guiresse, M.; Probst, A. [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); Aubert, D. [Université de Perpignan Via Domitia, CEntre de Formation et de Recherche sur les Environnements Méditérranéens (CEFREM), UMR 5110, F-66860, Perpignan (France); CNRS, CEFREM, UMR 5110, F-66860, Perpignan (France); Caparros, J.; Charles, F.; Guizien, K. [CNRS, FRE 3350, LECOB, Observatoire Océanologique, F-66651 Banyuls/mer (France); UPMC Université Paris 6, FRE 3350, LECOB, Observatoire Océanologique, F-66651 Banyuls/mer (France); Probst, J.L., E-mail: jean-luc.probst@ensat.fr [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France)

    2013-10-01

    For centuries, many Mediterranean catchments were covered with vineyards in which copper was widely applied to protect grapevines against fungus. In the Mediterranean-type flow regime, brief and intense flood events increase the stream water discharge by up to 10 times and cause soil leaching and storm runoff. Because vineyards are primarily cultivated on steep slopes, high Cu fluxes are discharged by surface water runoff into the rivers. The purpose of this work was to investigate the riverine behavior and transport of anthropogenic Cu by coupling a sequential chemical extraction (SCE) procedure, used to determine Cu partitioning between residual and non-residual fractions, with δ{sup 65}Cu isotopic measurements in each fraction. In the Baillaury catchment, France, we sampled soils (cultivated and abandoned), river bed sediments (BS), suspended particulate matter (SPM), and river water during the flash flood event of February 2009. Copper partitioning using SCE show that most of Cu in abandoned vineyard soil was in the residual phase (> 60%) whereas in cultivated soil, BS and SPM, Cu was mostly (> 25%) in non-residual fractions, mainly adsorbed onto iron oxide fractions. A small fraction of Cu was associated with organic matter (5 to 10%). Calculated enrichment factors (EF) are higher than 2 and the anthropogenic contribution was estimated between 50 to 85%. Values for δ{sup 65}Cu in bulk samples were similar to bedrock therefore; δ{sup 65}Cu on SCE fractions of superficial soils and SPM allowed for discrimination between Cu origin and distribution. Copper in residual fractions was of natural mineral origin (δ{sup 65}Cu close to local bedrock, + 0.07‰). Copper in water soluble fraction of SPM (δ{sup 65}Cu = + 0.26‰) was similar to dissolved river Cu (δ{sup 65}Cu = + 0.31‰). Copper from fungicide treatment (δ{sup 65}Cu = − 0.35‰) was bound to organic matter (δ{sup 65}Cu = − 0.20‰) without or with slight isotopic fractioning. A preferential

  7. Relation of periphyton and benthic invertebrate communities to environmental factors and land use at selected sites in part of the upper Mississippi River basin, 1996-98

    Science.gov (United States)

    ZumBerge, Jeremy Ryan; Lee, Kathy E.; Goldstein, Robert M.

    2003-01-01

    The Upper Mississippi River Basin is one of the hydrologic systems selected for study by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey. NAWQA utilizes a multi-disciplinary approach to explain factors that affect water quality. Part of the NAWQA design addresses the relation of land use and environmental factors to periphyton and benthic invertebrate communities in streams.

  8. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  9. Assessment of the Impact of Reservoirs in the Upper Mekong River Using Satellite Radar Altimetry and Remote Sensing Imageries

    Directory of Open Access Journals (Sweden)

    Kuan-Ting Liu

    2016-04-01

    Full Text Available Water level (WL and water volume (WV of surface-water bodies are among the most crucial variables used in water-resources assessment and management. They fluctuate as a result of climatic forcing, and they are considered as indicators of climatic impacts on water resources. Quantifying riverine WL and WV, however, usually requires the availability of timely and continuous in situ data, which could be a challenge for rivers in remote regions, including the Mekong River basin. As one of the most developed rivers in the world, with more than 20 dams built or under construction, Mekong River is in need of a monitoring system that could facilitate basin-scale management of water resources facing future climate change. This study used spaceborne sensors to investigate two dams in the upper Mekong River, Xiaowan and Jinghong Dams within China, to examine river flow dynamics after these dams became operational. We integrated multi-mission satellite radar altimetry (RA, Envisat and Jason-2 and Landsat-5/-7/-8 Thematic Mapper (TM/Enhanced Thematic Mapper plus (ETM+/Operational  Land Imager (OLI optical remote sensing (RS imageries to construct composite WL time series with enhanced spatial resolutions and substantially extended WL data records. An empirical relationship between WL variation and water extent was first established for each dam, and then the combined long-term WL time series from Landsat images are reconstructed for the dams. The R2 between altimetry WL and Landsat water area measurements is >0.95. Next, the Tropical Rainfall Measuring Mission (TRMM data were used to diagnose and determine water variation caused by the precipitation anomaly within the basin. Finally, the impact of hydrologic dynamics caused by the impoundment of the dams is assessed. The discrepancy between satellite-derived WL and available in situ gauge data, in term of root-mean-square error (RMSE is at 2–5 m level. The estimated WV variations derived from combined RA

  10. Determination of Copper and Zinc in Brass: Two Basic Methods

    Science.gov (United States)

    Fabre, Paul-Louis; Reynes, Olivier

    2010-01-01

    In this experiment, the concentrations of copper and zinc in brass are obtained by two methods. This experiment does not require advanced instrumentation, uses inexpensive chemicals, and can be easily carried out during a 3-h upper-level undergraduate laboratory. Pedagogically, the basic concepts of analytical chemistry in solutions, such as pH,…

  11. A Water Model Study on Mixing Behavior of the Two-Layered Bath in Bottom Blown Copper Smelting Furnace

    Science.gov (United States)

    Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Jiang, Xu; Chen, Mao; Xiang, Yong; Zhao, Baojun

    2018-05-01

    The bottom-blown copper smelting furnace is a novel copper smelter developed in recent years. Many advantages of this furnace have been found, related to bath mixing behavior under its specific gas injection scheme. This study aims to use an oil-water double-phased laboratory-scale model to investigate the impact of industry-adjustable variables on bath mixing time, including lower layer thickness, gas flow rate, upper layer thickness and upper layer viscosity. Based on experimental results, an overall empirical relationship of mixing time in terms of these variables has been correlated, which provides the methodology for industry to optimize mass transfer in the furnace.

  12. Spatial and temporal variations of aeolian sediment input to the tributaries (the Ten Kongduis) of the upper Yellow River

    Science.gov (United States)

    Yang, Hui; Shi, Changxing

    2018-02-01

    The Ten Kongduis of the upper Yellow River, located in Inner Mongolia, northern China, is an area with active wind-water coupled erosion and hence one of the main sediment sources of the Yellow River. In this study, we analyzed the characteristics of spatial and temporal variations of aeolian sediment input to the river channel. For this purpose, three segments of sand dune-covered banks of the Maobula and the Xiliugou kongduis were investigated three times from November 2014 to November 2015 using a 3-D laser scanner, and the displacement of banks of desert reaches of three kongduis was derived from interpreting remote sensing images taking in the years from 2005 to 2015. The data of the surveyed sand dunes reveal that the middle kongduis were fed by aeolian sand through the sand dunes moving towards the river channels. The amount of aeolian sediment input was estimated to be about 14.94 × 104 t/yr in the Maobula Kongdui and about 5.76 × 104 t/yr in the Xiliugou Kongdui during the period from November 2014 to November 2015. According to the interpretation results of remote sensing images, the amount of aeolian sediment input to the Maobula Kongdui was about 15.74 × 104 t in 2011 and 18.2 × 104 t in 2012. In the Xiliugou Kongdui, it was in the range of 9.52 × 104 - 9.99 × 104 t in 2012 and in the springs of 2013 and 2015. In the Hantaichuan Kongdui, it was 7.04 × 104 t in 2012, 7.53 × 104 t in the spring of 2013, and 8.52 × 104 t in the spring of 2015. Owing to the changes in wind and rainfall, both interseasonal and interannual sediment storage and release mechanisms exist in the processes of aeolian sand being delivered into the kongduis. However, all of the aeolian sediment input to the Ten Kongduis should be delivered downstream by the river flows during a long term.

  13. Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China

    Science.gov (United States)

    You, Xingying; Tang, Jinwu

    2017-06-01

    Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of {}1.2‱, a silty clay content of the concave bank {>}{9.5}%, and a median diameter of the bed sediment {>}{0.158} mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long river

  14. Multistate models of bigheaded carps in the Illinois River reveal spatial dynamics of invasive species

    Science.gov (United States)

    Coulter, Alison A.; Brey, Marybeth; Lubejko, Matthew; Kallis, Jahn L.; Coulter, David P.; Glover, David C.; Whitledge, Gregory W.; Garvey, James E.

    2018-01-01

    Knowledge of the spatial distributions and dispersal characteristics of invasive species is necessary for managing the spread of highly mobile species, such as invasive bigheaded carps (Bighead Carp [Hypophthalmichthys nobilis] and Silver Carp [H. molitrix]). Management of invasive bigheaded carps in the Illinois River has focused on using human-made barriers and harvest to limit dispersal towards the Laurentian Great Lakes. Acoustic telemetry data were used to parameterize multistate models to examine the spatial dynamics of bigheaded carps in the Illinois River to (1) evaluate the effects of existing dams on movement, (2) identify how individuals distribute among pools, and (3) gauge the effects of reductions in movement towards the invasion front. Multistate models estimated that movement was generally less likely among upper river pools (Starved Rock, Marseilles, and Dresden Island) than the lower river (La Grange and Peoria) which matched the pattern of gated versus wicket style dams. Simulations using estimated movement probabilities indicated that Bighead Carp accumulate in La Grange Pool while Silver Carp accumulate in Alton Pool. Fewer Bighead Carp reached the upper river compared to Silver Carp during simulations. Reducing upstream movement probabilities (e.g., reduced propagule pressure) by ≥ 75% into any of the upper river pools could reduce upper river abundance with similar results regardless of location. Given bigheaded carp reproduction in the upper Illinois River is presently limited, reduced movement towards the invasion front coupled with removal of individuals reaching these areas could limit potential future dispersal towards the Great Lakes.

  15. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  16. Ferricrete, manganocrete, and bog iron occurrences with selected sedge bogs and active iron bogs and springs in the upper Animas River watershed, San Juan County, Colorado

    Science.gov (United States)

    Yager, Douglas B.; Church, Stan E.; Verplanck, Philip L.; Wirt, Laurie

    2003-01-01

    During 1996 to 2000, the Bureau of Land Management, National Park Service, Environmental Protection Agency, United States Department of Agriculture (USDA) Forest Service, and the U.S. Geological Survey (USGS) developed a coordinated strategy to (1) study the environmental effects of historical mining on Federal lands, and (2) remediate contaminated sites that have the greatest impact on water quality and ecosystem health. This dataset provides information that contributes to these overall objectives and is part of the USGS Abandoned Mine Lands Initiative. Data presented here represent ferricrete occurrences and selected iron bogs and springs in the upper Animas River watershed in San Juan County near Silverton, Colorado. Ferricretes (stratified iron and manganese oxyhydroxide-cemented sedimentary deposits) are one indicator of the geochemical baseline conditions as well as the effect that weathering of mineralized rocks had on water quality in the Animas River watershed prior to mining. Logs and wood fragments preserved in several ferricretes in the upper Animas River watershed, collected primarily along streams, yield radiocarbon ages of modern to 9,580 years B.P. (P.L. Verplanck, D.B. Yager, and S.E. Church, work in progress). The presence of ferricrete deposits along the current stream courses indicates that climate and physiography of the Animas River watershed have been relatively constant throughout the Holocene and that weathering processes have been ongoing for thousands of years prior to historical mining activities. Thus, by knowing where ferricrete is preserved in the watershed today, land-management agencies have an indication of (1) where metal precipitation from weathering of altered rocks has occurred in the past, and (2) where this process is ongoing and may confound remediation efforts. These data are included as two coverages-a ferricrete coverage and a bogs and springs coverage. The coverages are included in ArcInfo shapefile and Arc

  17. Determination of levels of copper in Kamiti river along coffee farms ...

    African Journals Online (AJOL)

    Copper‐based fungicides are extensively used in the control of coffee pests and diseases because they are relatively cheap and effective. This practice presents serious environmental implications owing to the toxic nature of copper. We report here an assessment on the effects of the use of copper‐based fungicides on ...

  18. Additional record of Batasio merianiensis (Chaudhuri 1913, a catfish (Teleostei: Bagridae in upper Brahmaputra River drainage in Arunachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    L. Tamang

    2014-05-01

    Full Text Available This paper communicates the extension of the distribution range of Batasio merianiensis in Sille River in the upper Brahmaputra drainage, East Siang District, Arunachal Pradesh. Detailed examinations of the specimens revealed existence of few morphological variations against those reported by Heok Hee Ng in 2009 on the following characteristics: by having a longer preanal (70.4-73.4 vs. 66.3-68.2% SL; a longer prepectoral (25.1-29.3 vs. 21.4-25.7% SL; a longer adipose-fin base (22.0-27.6 vs. 16.9-22.2% SL; a shorter post-adipose distance (11.6-13.4 vs.13.4-15.5% SL; a deeper body at anus (depth 18.3-20.8 vs.15.2-18.4% SL and broader head (width 17.6-20.0 vs.13.5-16.2 % HL. Few additional characters of the fish are included along with brief information on its habitat. The LIPUM, the semi-traditional method of fishing in the river is identified as a major threat to this species.

  19. A new species of Jainus (Monogenea, gill parasite of Schizodon borellii (Characiformes, Anostomidae from the upper Paraná river floodplain, Brazil - doi: 10.4025/actascibiolsci.v33i2.6168 A new species of Jainus (Monogenea, gill parasite of Schizodon borellii (Characiformes, Anostomidae from the upper Paraná river floodplain, Brazil - doi: 10.4025/actascibiolsci.v33i2.6168

    Directory of Open Access Journals (Sweden)

    Gilberto Cezar Pavanelli

    2011-05-01

    Full Text Available Jainus piava n. sp. is described from the gills of Schizodon borellii (Boulenger, 1900 (Characiform, commonly named as piava from the upper Paraná River floodplain, Brazil. The new species differs from the other members of Jainus in the following features: ventral bar thin broadly V-shaped and male copulatory organ (MCO a coil of about 1.5 rings. Jainus piava n. sp. is similar to species of Jainus by having a ventral anchor base with flattened superficial root and elongate rodlike deep root.Jainus piava n. sp. is described from the gills of Schizodon borellii (Boulenger, 1900 (Characiform, commonly named as piava from the upper Paraná River floodplain, Brazil. The new species differs from the other members of Jainus in the following features: ventral bar thin broadly V-shaped and male copulatory organ (MCO a coil of about 1.5 rings. Jainus piava n. sp. is similar to species of Jainus by having a ventral anchor base with flattened superficial root and elongate rodlike deep root.

  20. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from

  1. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  2. Allozyme analysis of the four species of Hypostomus (Teleostei: Loricariidae from the Ivaí river, upper Paraná river basin, Brazil - doi: 10.4025/actascibiolsci.v35i4.16355

    Directory of Open Access Journals (Sweden)

    Suzana de Paiva

    2013-07-01

    Full Text Available Allozyme electrophoresis analysis were performed in four species of Hypostomus (Loricariidae, H. albopunctatus, H. hermanni, H. regani, e Hypostomus sp. 1/NUP 5612 from the Ivaí river, a tributary of the upper Paraná river. The study of 14 loci revealed diagnostic characters and exclusive alleles in a low frequency. The heterozygosity ranged from 0.000 in H. albopunctatus to 0.199 in H. hermanni, which was higher than the heterozygosity in other samples of Hypostomus in literature, as well as in other fish groups. Hypostomus albopunctatus and H. regani revealed higher similarity (I = 0.804, while H. hermanni and Hypostomus sp. 1/NUP 5612 showed the least genetic identity (I = 0.569. All samples were genetically distinguished, despite there were several shared alleles. The FST value was 0.671, showing a high genetic differentiation among the samples. Hypostomus sp. 1/NUP 5612 was genetically distinguished from the three congeners by the loci Adh-A and G3pdh-B and by present rare exclusive alleles in other six enzymatic systems.

  3. Hydromorphological pattern in middle upper segment of the Arroyo Ventana (Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Belén García Martínez

    2017-01-01

    Full Text Available The fluvial pattern of the Ventana creek is determined, through hydrological and geomorphologic features in the middle upper segment of the watercourse. A Digital Terrain Model of the middle and upper basin of the course was generated based on the contours of the 1:50,000 Tornquist topographic map. The geomorphological mapping of the course was made from photogrammetric flight (1981 at 1:20,000. Three cross sections of the channel were surveyed. Two different river patterns were identified: a braided type, in the upper segment of the course, and another meandering type in the middle segment of the course. Current river dynamics shows a tendency of incision in the course.

  4. Differences in breeding bird assemblages related to reed canary grass cover cover and forest structure on the Upper Mississippi River

    Science.gov (United States)

    Kirsch, Eileen M.; Gray, Brian R.

    2017-01-01

    Floodplain forest of the Upper Mississippi River provides habitat for an abundant and diverse breeding bird community. However, reed canary grass Phalaris arundinacea invasion is a serious threat to the future condition of this forest. Reed canary grass is a well-known aggressive invader of wetland systems in the northern tier states of the conterminous United States. Aided by altered flow regimes and nutrient inputs from agriculture, reed canary grass has formed dense stands in canopy gaps and forest edges, retarding tree regeneration. We sampled vegetation and breeding birds in Upper Mississippi River floodplain forest edge and interior areas to 1) measure reed canary grass cover and 2) evaluate whether the breeding bird assemblage responded to differences in reed canary grass cover. Reed canary grass was found far into forest interiors, and its cover was similar between interior and edge sites. Bird assemblages differed between areas with more or less reed canary grass cover (.53% cover breakpoint). Common yellowthroat Geothlypis trichas, black-capped chickadee Parus atricapillus, and rose-breasted grosbeak Pheucticus ludovicianus were more common and American redstart Setophaga ruticilla, great crested flycatcher Myiarchus crinitus, and Baltimore oriole Icterus galbula were less common in sites with more reed canary grass cover. Bird diversity and abundance were similar between sites with different reed canary grass cover. A stronger divergence in bird assemblages was associated with ground cover ,15%, resulting from prolonged spring flooding. These sites hosted more prothonotary warbler Protonotaria citrea, but they had reduced bird abundance and diversity compared to other sites. Our results indicate that frequently flooded sites may be important for prothonotary warblers and that bird assemblages shift in response to reed canary grass invasion.

  5. Seasonal climate signals from multiple tree ring metrics: A case study of Pinus ponderosa in the upper Columbia River Basin

    Science.gov (United States)

    Dannenberg, Matthew P.; Wise, Erika K.

    2016-04-01

    Projected changes in the seasonality of hydroclimatic regimes are likely to have important implications for water resources and terrestrial ecosystems in the U.S. Pacific Northwest. The tree ring record, which has frequently been used to position recent changes in a longer-term context, typically relies on signals embedded in the total ring width of tree rings. Additional climatic inferences at a subannual temporal scale can be made using alternative tree ring metrics such as earlywood and latewood widths and the density of tree ring latewood. Here we examine seasonal precipitation and temperature signals embedded in total ring width, earlywood width, adjusted latewood width, and blue intensity chronologies from a network of six Pinus ponderosa sites in and surrounding the upper Columbia River Basin of the U.S. Pacific Northwest. We also evaluate the potential for combining multiple tree ring metrics together in reconstructions of past cool- and warm-season precipitation. The common signal among all metrics and sites is related to warm-season precipitation. Earlywood and latewood widths differ primarily in their sensitivity to conditions in the year prior to growth. Total and earlywood widths from the lowest elevation sites also reflect cool-season moisture. Effective correlation analyses and composite-plus-scale tests suggest that combining multiple tree ring metrics together may improve reconstructions of warm-season precipitation. For cool-season precipitation, total ring width alone explains more variance than any other individual metric or combination of metrics. The composite-plus-scale tests show that variance-scaled precipitation reconstructions in the upper Columbia River Basin may be asymmetric in their ability to capture extreme events.

  6. Trends in suspended-sediment loads and concentrations in the Mississippi River Basin, 1950–2009

    Science.gov (United States)

    Heimann, David C.; Sprague, Lori A.; Blevins, Dale W.

    2011-01-01

    Trends in loads and concentrations of suspended sediment and suspended sand generally were downward for stations within the Mississippi River Basin during the 60-, 34-, and 12-year periods analyzed. Sediment transport in the lower Mississippi River has historically been, and continues to be, most closely correlative to sediment contributions from the Missouri River, which generally carried the largest annual suspended-sediment load of the major Mississippi River subbasins. The closure of Fort Randall Dam in the upper Missouri River in 1952 was the single largest event in the recorded historical decline of suspended-sediment loads in the Mississippi River Basin. Impoundments on tributaries and sediment reductions as a result of implementation of agricultural conservation practices throughout the basin likely account for much of the remaining Mississippi River sediment transport decline. Scour of the main-stem channel downstream from the upper Missouri River impoundments is likely the largest source of suspended sand in the lower Missouri River. The Ohio River was second to the Missouri River in terms of sediment contributions, followed by the upper Mississippi and Arkansas Rivers. Declines in sediment loads and concentrations continued through the most recent analysis period (1998–2009) at available Mississippi River Basin stations. Analyses of flow-adjusted concentrations of suspended sediment indicate the recent downward temporal changes generally can be explained by corresponding decreases in streamflows.

  7. Evaluations of the Levels of Heavy Metals in River Water and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: Ogba River provides source of drinking water in Benin City ... was therefore aimed at assessing the concentrations of copper, cadmium, chromium and lead in water and fish .... pollution where large influx of municipal waste flow.

  8. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  9. Impact of the operation of cascade reservoirs in upper Yangtze River on hydrological variability of the mainstream

    Science.gov (United States)

    Changjiang, Xu; Dongdong, Zhang

    2018-06-01

    As the impacts by climate changes and human activities are intensified, variability may occur in river's annual runoff as well as flood and low water characteristics. In order to understand the characteristics of variability in hydrological series, diagnosis and identification must be conducted specific to the variability of hydrological series, i.e., whether there was variability and where the variability began to occur. In this paper, the mainstream of Yangtze River was taken as the object of study. A model was established to simulate the impounding and operation of upstream cascade reservoirs so as to obtain the runoff of downstream hydrological control stations after the regulation by upstream reservoirs in different level years. The Range of Variability Approach was utilized to analyze the impact of the operation of upstream reservoirs on the variability of downstream. The results indicated that the overall hydrologic alterations of Yichang hydrological station in 2010 level year, 2015 level year and the forward level year were 68.4, 72.5 and 74.3 % respectively, belonging to high alteration in all three level years. The runoff series of mainstream hydrological stations presented variability in different degrees, where the runoff series of the four hydrological stations including Xiangjiaba, Gaochang and Wulong belonged to high alteration in the three level years; and the runoff series of Beibei hydrological station in 2010 level year belonged to medium alteration, and high alteration in 2015 level year and the forward level year. The study on the impact of the operation of cascade reservoirs in Upper Yangtze River on hydrological variability of the mainstream had important practical significance on the sustainable utilization of water resources, disaster prevention and mitigation, safe and efficient operation and management of water conservancy projects and stable development of the economic society.

  10. Subacute copper-deficiency myelopathy in a patient with occult celiac disease.

    Science.gov (United States)

    Cavallieri, Francesco; Fini, Nicola; Contardi, Sara; Fiorini, Massimo; Corradini, Elena; Valzania, Franco

    2017-07-01

    Acquired copper deficiency represents a rare cause of progressive myelopathy presenting with sensory ataxia and spastic gait. The time interval from neurological symptoms onset to diagnosis of myelopathy ranges from 2 months to several years in almost all cases, mimicking the clinical course of subacute combined degeneration due to vitamin B12 deficiency. A 60-year-old man, without any gastrointestinal symptoms, developed over the course of one week rapidly progressive gait imbalance, tingling and numbness in his feet and ascending lower limb weakness. Spine magnetic resonance imaging revealed hyperintensity involving cervical and dorsal posterior columns of spinal cord. Blood analysis revealed undetectable serum copper levels, low serum ceruloplasmin and positive serum Immunoglobulin A anti-tissue transglutaminase. Upper gastrointestinal endoscopy was performed revealing duodenal villous atrophy consistent with a malabsorption pattern. A gluten-free diet in association with intravenous then oral copper supplementation prompted sustained normalization of serum copper levels and progressive clinical improvement. We report a rare case of myelopathy induced by copper deficiency secondary to undiagnosed celiac disease, peculiarly presenting with a subacute onset. This case expands the neurological presentation and clinical course of myelopathy due to acquired copper deficiency. We suggest investigation of copper deficiency in patients presenting with subacute or even acute sensory ataxia and spastic gait. Detection of hypocupremia in patients without a previous history of gastric surgery should lead to diagnostic testing for celiac disease even in the absence of any obvious gastrointestinal symptoms.

  11. Bioaccumulation of Copper (Cu) and Chromium (Cr) on export comodity vanamei shrimp from Karawang, West Java

    Science.gov (United States)

    Rahman, A.; Takarina, N. D.; Siswantining, T.; Pin, T. G.; Soedjiarti, T.

    2018-05-01

    Karawang is one of regencies in West Java which has great potential for vannamei culture. The farm here was modern farm and using Citarum River as water source. Human activities like household and industry around the river cause its quality decrease and give negative impact to shrimp farm. This research was aimed to investigate the bioaccumulation of copper (Cu) and chromium (Cr) on vannamei shrimp from Karawang, West Java. Amount of shrimp’s meat and carapace were used for heavy metal measurement using Atomic Absorption Specthrophotometry. Result showed that contents of copper both in meat and carapace were higher than content of chromium. Moreover, the content of both metals was higher on carapace compared to meat. Since the content of meat were below threshold, so it is safe for consumption. There is no significant difference content of both metals in carapace.

  12. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Vincent; Boye, Kristin; Kukkadapu, Ravi K.; Bone, Sharon; Lezama Pacheco, Juan S.; Cardarelli, Emily; Janot, Noémie; Fendorf, Scott; Williams, Kenneth H.; Bargar, John R.

    2017-12-15

    River floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, may have water quality jeopardized by native or exogenous metals. Redox processes mediate the accumulation and release of these species in groundwater. Understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability and variability of redox conditions is therefore critical to developing conceptual and numerical models of contaminants transport within floodplains. The distribution and intensity of redox activity at the Rifle, CO, site within the Upper Colorado River Basin (UCRB), are believed to be controlled by textural and compositional heterogeneities. Regionally, the UCRB is impacted by former uranium and vanadium ore processing, resulting in contaminations by U, Mo, V, As, Se, and Mn. Floodplains throughout the UCRB share sediment and groundwater characteristics, making redox activity regionally important to metal and radionuclide mobility. In this study, Fe and S speciation were used to track the distribution and stability of redox processes in sediment cores from three floodplain sites covering a 250 km range in the central portion of the UCRB. The results of the present study support the hypothesis that Fe(III) and sulfate reducing sediments are regionally important in the UCRB. The presence of organic carbon together with pore saturation were the key requirements for reducing conditions, dominated by sulfate-reduction. Sediment texture moderated the response of the system to external forcing, such as oxidant infusion, making fine-grain sediments resistant to change in comparison to coarser-grained sediments. Exposure to O2 and NO3- mediates the reactivity and longevity of freshly precipitated sulfides creating the potential for release of sequestered radionuclides and metals. The physical and chemical parameters of reducing zones evidenced in this study are thus thought to be key parameters on the dynamic exchange

  13. Metal surveys in South African estuaries I. Swartkops River

    International Nuclear Information System (INIS)

    Watling, R.J.; Watling, H.R.

    1982-01-01

    Water, surface sediment and sediment core samples were collected from sites in the Swartkops River up to 15 km from the mouth and analysed for up to sixteen elements. The results indicate the presence of four main areas of contamination in the river, at Redhouse, Swartkops, the brickworks and Amsterdam Hoek. The accumulation of zinc, copper, lead and nickel by oysters grown at the mouth of the river confirms the presence of greater than normal metal concentrations in the river. Fish-water Flats outfall contributes metals to the nearshore marine environment, but the strong tidal sweep disperses the effluent relatively quickly so that metal build-up in the area is minimal. In general, metal levels in the Swartkops River are low and, as yet, the area cannot be described as 'polluted' in the true sense of the word

  14. Studies on the influence of public nuisance to rice plants. VI. On countermeasure for the improvement of the paddy field polluted with surplus copper

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, H.; Hiroyama, T.

    1974-01-01

    To reduce the toxicity of surplus copper in the soil to rice plants, some experiments were carried out for three years (1971-1973) at two paddy fields, of which soil contained 0.1 N-HCl soluble copper at a concentration of about 270 ppm in the top soil. These fields are situated in the basin of the River Oda, which had been polluted by Iwami Copper Mine in the eastern part of Tottori prefecture.

  15. Geologic map of the upper Arkansas River valley region, north-central Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Shroba, Ralph R.; Ruleman, Chester A.; Bohannon, Robert G.; McIntosh, William C.; Premo, Wayne R.; Cosca, Michael A.; Moscati, Richard J.; Brandt, Theodore R.

    2017-11-17

    This 1:50,000-scale U.S. Geological Survey geologic map represents a compilation of the most recent geologic studies of the upper Arkansas River valley between Leadville and Salida, Colorado. The valley is structurally controlled by an extensional fault system that forms part of the prominent northern Rio Grande rift, an intra-continental region of crustal extension. This report also incorporates new detailed geologic mapping of previously poorly understood areas within the map area and reinterprets previously studied areas. The mapped region extends into the Proterozoic metamorphic and intrusive rocks in the Sawatch Range west of the valley and the Mosquito Range to the east. Paleozoic rocks are preserved along the crest of the Mosquito Range, but most of them have been eroded from the Sawatch Range. Numerous new isotopic ages better constrain the timing of both Proterozoic intrusive events, Late Cretaceous to early Tertiary intrusive events, and Eocene and Miocene volcanic episodes, including widespread ignimbrite eruptions. The uranium-lead ages document extensive about 1,440-million years (Ma) granitic plutonism mostly north of Buena Vista that produced batholiths that intruded an older suite of about 1,760-Ma metamorphic rocks and about 1,700-Ma plutonic rocks. As a result of extension during the Neogene and possibly latest Paleogene, the graben underlying the valley is filled with thick basin-fill deposits (Dry Union Formation and older sediments), which occupy two sub-basins separated by a bedrock high near the town of Granite. The Dry Union Formation has undergone deep erosion since the late Miocene or early Pliocene. During the Pleistocene, ongoing steam incision by the Arkansas River and its major tributaries has been interrupted by periodic aggradation. From Leadville south to Salida as many as seven mapped alluvial depositional units, which range in age from early to late Pleistocene, record periodic aggradational events along these streams that are

  16. Major ions, nutrients, and trace elements in the Mississippi River near Thebes, Illinois, July through September 1993

    Science.gov (United States)

    Taylor, Howard E.; Antweiler, Ronald C.; Brinton, Terry I.; Roth, David A.; Moody, John A.

    1994-01-01

    Extensive flooding in the upper Mississippi River Basin during summer 1993 had a significant effect on the water quality of the Mississippi River. To evaluate the change in temporal distribution and transport of dissolved constituents in the Mississippi River, six water samples were collected by a discharge-weighted method from July through September 1993 near Thebes, Illinois. Sampling at this location provided water-quality information from the upper Mississippi, the Missouri, and the Illinois River Basins. Dissolved major constituents that were analyzed in each of the samples included bicarbonate, calcium (Ca), carbonate (C03), chloride (Cl), dissolved organic carbon, magnesium (Mg), potassium (K), silica NOD, sodium (Na), and sulfate (S04). Dissolved nutrients included ammonium ion (NH4), nitrate (N03), nitrite (N02), and orthophosphate (P04) . Dissolved trace elements included aluminum (Al), arsenic (As), barium (Ba), boron (B), beryllium (Be), bromide (Br), cadmium (Cd), chromium (Cr), cobalt, (Co), copper (Cu), fluoride (F), iron (Fe), lead, lithium (Li), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), strontium (Sr), thallium, uranium (U), vanadium (V), and zinc (Zn). Other physical properties of water that were measured included specific conductance, pH and suspended-sediment concentration (particle size, less than 63 micrometers). Results of this study indicated that large quantities of dissolved constituents were transported through the river system. Generally, pH, alkalinity, and specific conductance and the concentrations of B, Br, Ca, Cl, Cr, K, Li, Mg, Mo, Na, S04, Sr, U, and V increased as water discharge decreased, while concentrations of F, Hg, and suspended sediment sharply decreased as water discharge decreased after the crest of the flood. Concentrations of other constituents, such as Al, As, Ba, Be, Co, Cu, Ni, N03, N02, NH4, P04, and Si02, varied with time as discharge decreased after the crest of the flood. For most constituents

  17. Exploring relationships among land ownership, agricultural land use, and native fish species richness in the Upper Mississippi River Basin

    Science.gov (United States)

    DeJager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    The general effects of agriculture on in-stream fish communities in the Upper Midwestern United States have been well studied for nearly three decades (Karr et al. 1985; Nerbonne and Vondracek 1991; Zimmerman et al. 2001; Goldstein and Meador 2005). Specific impacts include: lowered water levels, sediment loading and nutrient enrichment, loss of riparian habitat, changes to channel morphometry and physical habitat, and changes to the forage base. As part of the National Fish Habitat Action Plan (NFHAP), an initiative to protect, restore, and enhance the nation's fish and aquatic communities, the Fishers and Farmers Partnership specifically focuses on working with agricultural producers to help protect and restore aquatic resources in the Upper Mississippi River Basin (UMRB) (Fig. 1). Successful protection and/or restoration will require the partnership and local conservation agencies to effectively communicate and work with local landowners. However, roughly 43% of the agricultural lands in the UMRB are not operated by those who own the land (National Agricultural Statistics Service 2009) and this is expected to increase as heirs of farm estates now reside greater distances from their home farms than ever before (Arbuckle 2010).

  18. Design and performance of a high intensity copper atom beam source nozzle for use in inelastic atom--atom collision experiments

    International Nuclear Information System (INIS)

    Santavicca, D.A.

    1975-01-01

    The research was aimed at developing a neutral copper atom beam source which could be used to study the collision cross sections for electronic excitation of neutral copper atoms in collision with neutral argon atoms. Of particular interest is the excitation from the ground state to the two upper laser levels at 3.80 and 3.82 electron volts

  19. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  20. Application of sediment characteristics and transport conditions to resource management in selected main-stem reaches of the Upper Colorado River, Colorado and Utah, 1965-2007

    Science.gov (United States)

    Williams, Cory A.; Schaffrath, Keelin R.; Elliott, John G.; Richards, Rodney J.

    2013-01-01

    The Colorado River Basin provides habitat for 14 native fish, including 4 endangered species protected under the Federal Endangered Species Act of 1973. These endangered fish species once thrived in the Colorado River system, but water-resource development, including the building of numerous diversion dams and several large reservoirs, and the introduction of non-native fish, resulted in large reductions in the numbers and range of the four species through loss of habitat and stream function. Understanding how stream conditions and habitat change in response to alterations in streamflow is important for water administrators and wildlife managers and can be determined from an understanding of sediment transport. Characterization of the processes that are controlling sediment transport is an important first step in identifying flow regimes needed for restored channel morphology and the sustained recovery of endangered fishes within these river systems. The U.S. Geological Survey, in cooperation with the Upper Colorado River Endangered Fish Recovery Program, Bureau of Reclamation, U.S. Fish and Wildlife Service, Argonne National Laboratory, Western Area Power Administration, and Wyoming State Engineer’s Office, began a study in 2004 to characterize sediment transport at selected locations on the Colorado, Gunnison, and Green Rivers to begin addressing gaps in existing datasets and conceptual models of the river systems. This report identifies and characterizes the relation between streamflow (magnitude and timing) and sediment transport and presents the findings through discussions of (1) suspended-sediment transport, (2) incipient motion of streambed material, and (3) a case study of sediment-transport conditions for a reach of the Green River identified as a razorback sucker spawning habitat (See report for full abstract).

  1. 76 FR 4818 - Drawbridge Operation Regulations; Hackensack River, Jersey City, NJ

    Science.gov (United States)

    2011-01-27

    ... Operation Regulations; Hackensack River, Jersey City, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of... Hackensack River, mile 6.9, at Secaucus, New Jersey. The deviation is necessary for electrical rehabilitation...-9826. SUPPLEMENTARY INFORMATION: The Upper Hack Bridge, across the Hackensack River at mile 6.9 has a...

  2. 75 FR 68704 - Drawbridge Operation Regulations; Hackensack River, Jersey City, NJ

    Science.gov (United States)

    2010-11-09

    ... Operation Regulations; Hackensack River, Jersey City, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of... the Hackensack River, at Secaucus, New Jersey. Under this temporary deviation the bridge may remain in.... SUPPLEMENTARY INFORMATION: The Upper Hack Bridge, across the Hackensack River at mile 6.9 has a vertical...

  3. FLORISTIC AND STRUCTURAL CHARACTERIZATION OF GALLERY FOREST FRAGMENTS OF UPPER ARAGUAIA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Christian Dias Cabacinha

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814575The forests of upper Araguaia river basin are daily exposed to degradation agents due to intense agriculture practices. Twenty two fragments (of 10 until 169 ha were surveyed according to point-centered quarter method to characterize vegetation structure and to create a database to forest restoration. One hundred and nine (109 species, belonging to 78 genus and 42 families, were sampled where 73.4% revealed zoochorous dispersal pattern, and 69.7% were classified to initial sucessional category. Shannon index and Pielou equability index were 3.86 nats. ind-1 and 0.82, respectively. Density and total basal area estimated were 1,351 trees.ha-1 and 19.28 m2.ha-1. The areas showed lower richness, Shannon and Pielou heterogeneity indices, lower basal area, and high number of species of intermediate stage of ecological sucession and colonization of cerrado and cerradão species in disturbed areas, altering the original landscape. Such situation, added to the importance of those areas for the biodiversity conservation and ecological services (mainly relative to the water, demands protection actions and management that use the great regenerative potential of the area, given by the existence of a great number of initial secondary species and the prevalence of zoochoric species.

  4. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    Science.gov (United States)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  5. Multidisciplinary work on barium contamination of the karstic upper Kupa River drainage basin (Croatia and Slovenia); calling for watershed management.

    Science.gov (United States)

    Francisković-Bilinski, S; Bilinski, H; Grbac, R; Zunić, J; Necemer, M; Hanzel, D

    2007-02-01

    The present work was designed as an extension of a previous study of a barium anomaly observed in stream sediments of the Kupa River. In its upper part the Kupa River drains a region underlain by a trans-boundary aquifer. The river is a significant water resource in a region of tourism, sport, and fishing in both Croatia and Slovenia. The contamination source is situated in Homer (Lokve), Croatia, where barite was mined until 10 years ago. The barium processing waste material (waste and stream sediments were analyzed using comparative techniques: X-ray diffraction (XRD), X-ray fluorescence (XRF), Mössbauer spectroscopy, and grain size analysis. XRD of the waste material identified the major minerals quartz, barite, and dolomite and the Fe-containing minor minerals muscovite and goethite. Barite was identified as a minor or trace mineral in the Kupica River sediments. XRF analysis of the waste material has shown Ba and Fe to be the predominant elements, Ca and K to be minor elements, and Mn, Zn, Sr, Pb, Co, Cu, As, Zr, Rb, Y, and Mo to be trace elements. Mössbauer spectroscopy performed at room temperature (RT) was used to study iron minerals, particularly to obtain information on the valence status of Fe ions. Grain size analysis of the waste material (waste disposal on human health in Lokve. At this stage of the work, concentrations of Ba and other toxic elements in the water compartment of the Kupica River (a source of drinking water) have not been monitored by Croatian Waters (name of the Croatian water authorities). The necessity of such measurements in future studies has been highlighted. A preliminary study of diseases diagnosed in Lokve shows that about 18% of the total inhabitants have serious medical problems. Diseases of the circulatory system, endocrine, nutritional, and metabolic diseases, neoplasms, and respiratory diseases predominate. This paper calls for further multidisciplinary research on the health effects of barium and trace elements, as well

  6. Phytoplankton diversity in the Upper Paraná River floodplain during two years of drought (2000 and 2001

    Directory of Open Access Journals (Sweden)

    PAF. Borges

    Full Text Available Floodplain lakes and lotic environments of the High Paraná River floodplain present notable biodiversity, especially in relation to phytoplanktonic community. The goal of this work was to evaluate phytoplankton diversity (alpha, beta and gamma in three subsystems during two years of drought (2000 and 2001. We sampled 33 habitats at the pelagic zone subsurface during February and August. Due to low hydrometric levels of the Paraná and Ivinhema Rivers, there was no clear distinction between the potamophase and limnophase periods for the two hydrosedimentological cycles analysed. We recorded 366 taxa. The values obtained for gamma diversity estimators ranged from 55.5-87.8%. DCA and variance analyses revealed only spatial differences in the phytoplankton composition. The mean values of species richness, evenness and Shannon diversity were low, especially when compared to those obtained in previous periods for Baía subsystem. The highest mean values of species richness were verified in the connected floodplain lakes. The highest beta diversity was obtained from the Paraná subsystem and lotic environments in 2001. In general, we observed that the Upper Paraná River floodplain has the highest values of species richness, evenness and H' during the potamophase period, when the flood facilitates dispersion. However, this pattern was not observed in 2000 and 2001, years influenced by La Niña. Besides the low precipitation observed during that period, we must consider the influence of the Porto Primavera impoundment, which also altered the discharge regime of the Paraná River by decreasing the degree of connectivity between fluvial channels and the lentic environments of the floodplain. Thus, the prevalence of conditions characterising the limnophase during 2000 and 2001 explains the lack of significant variability registered for most components of phytoplankton diversity over the study period. We conclude that variations in phytoplankton diversity

  7. Planning countryside space for recreational purposes: The case of the upper water basin of the River Soča

    Directory of Open Access Journals (Sweden)

    Aleš Golja

    2008-01-01

    Full Text Available Based on the upper Soča River basin, the article deals with the problem of exploitation of valuable natural features for tourist and recreational purposes. The goal was to propose a model of recreational use of a selected section of the Soča River, to put forward a proposal of legal framework for managing the selected area and work out a management plan for recreational purposes; thus the most burdened area of the Soča River during summer months was chosen, i.e. a 9 km reach of the Soča (between Log Čezsoški and Trnovo ob Soči, and accordingly a feasible marketing proposal, control proposal and spatial planning proposal were given in order to reduce the negative effects on the environment. The chosen methodology combines knowledge and practice from different fields, having in mind that this kind of problem solving should be carried out in an interdisciplinary connection of expert knowledge. Our basic theoretical premise has been environmental protection with an objective to preserve space as a value everywhere and in all its forms. The purpose of environmental protection is to encourage and direct such spatial development that provides a long-term basis for human health, well-being and quality of life as well as maintaining biotic diversity. This enables us to connect space with all its parts and features, sport recreation and tourism, thus achieving quality of life of local inhabitants, well-being of guests, protection of the natural environment, economic development, creation of new work places and income.

  8. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  9. Dynamics of suspended sediment load in the upper part of the Rasina River Basin in 2010

    Directory of Open Access Journals (Sweden)

    Mustafić Sanja

    2013-01-01

    Full Text Available The paper treats the issue of the suspended sediment load transport in the upper part of the Rasina River Basin, upstream from the "Ćelije" reservoir during the year of 2010. Measurements of the suspended sediment concentrations were being done at two hydrological profiles Brus and Ravni. Total quantity of the suspended sediment load that was transported at the profile of Brus in 2010 amounted to 3,437.3 t, which gave the specific transport of 16.4 t/km2/year. At the downstream profile of Ravni, 43,165 t of the suspended sediment load was transported, that is, 95.7 t/km2/year. The basin on the whole is characterized by the existence of two seasons, which by their characteristics in the load transport represent the extreme variants. During the winter-spring season, 74-85.8 % of the total annual load was transported, аnd during the summer-autumn season between 14.2 and 26 %.

  10. Olympic Dam copper-uranium-gold deposit, South Australia

    International Nuclear Information System (INIS)

    Lalor, J.H.

    1986-01-01

    The Olympic Dam copper-uranium-gold deposit was discovered in July 1975. It is located 650 km north-northwest of Adelaide on Roxby Downs Station in South Australia. The first diamond drill hole, RD1, intersected 38 m of 1.05% copper. A further eight holes were drilled with only marginal encouragement to November 1976, when RD10 cored 170 m of 2.12% copper and 0.06% of uranium oxide, thus confirming an economic discovery. The discovery of Olympic Dam is an excellent example applying broad-scale, scientifically based conceptual studies to area selection. Exploration management supported its exploration scientists in testing their ideas with stratigraphic drilling. Geologic modeling, supported by geophysical interpretations and tectonic studies, was used to site the first hole. The discovery also illustrates the persistence required in mineral exploration. The deposit appears to be a new type of stratabound sediment-hosted ore. It has an areal extent exceeding 20 km 2 with vertical thicknesses of mineralization up to 350 m. It is estimated to contain more than 2000 million MT of mineralized material with an average grade of 1.6% copper, 0.06% uranium oxide, and 0.6 g/MT gold. The deposit occurs in middle Proterozoic basement beneath 350 m of unmineralized, flat upper Proterozoic sediments. The sediments comprising the local basement sequence are predominantly sedimentary breccias controlled by a northwest-trending graben

  11. Changing levels of heavy metal accumulation in birds at Tumacacori National Historic Park along the Upper Santa Cruz River Watershed in southern Arizona

    Science.gov (United States)

    van Riper, Charles; Lester, Michael B.

    2016-01-01

    National Parks and other protected areas can be influenced by contamination from outside their boundaries. This is particularly true of smaller parks and those in riparian ecosystems, a habitat that in arid environments provides critical habitat for breeding, migratory, and wintering birds. Animals living in contaminated areas are susceptible to adverse health effects as a result of long-term exposure and bioaccumulation of heavy metals. We investigated the distribution and cascading extent of heavy metal accumulation in Song Sparrows (Melospiza melodia) at Tumacacori National Historic Park (TUMA) along the upper Santa Cruz River watershed in southern Arizona. This study had three goals: (1) quantify the concentrations and distributional patterns of heavy metals in blood and feathers of Song Sparrows at Tumacacori National Historic Park, (2) quantify hematocrit values, body conditions (that is, residual body mass), and immune conditions of Song Sparrows in the park (3) compare our findings with prior studies at the park to assess the extent of heavy metal accumulation in birds at downstream sites after the 2009 wastewater treatment plant upgrade, and (4) quantify concentrations and distributional patterns of heavy metals in blood and feathers of Song Sparrows among six study sites throughout the upper Santa Cruz River watershed. This study design would allow us to more accurately assess song sparrow condition and blood parameters among sites with differing potential sources of contamination exposure, and how each location could have contributed to heavy metal levels of birds in the park.

  12. Feeding ecology of stream-dwelling Characidae (Osteichthyes: Characiformes from the upper Tocantins River, Brazil

    Directory of Open Access Journals (Sweden)

    Maíra Moraes

    2013-12-01

    Full Text Available In this contribution we studied the trophic ecology of four Characidae species from the Cavalo Stream, upper Tocantins River, considering diet overlap and trophic niche breadth. The diet of the four species was composed of adult and immature insects, both autochthonous and allochthonous in origin. Autochthonous items dominated the diet of Moenkhausia dichroura (Kner, 1858, Bryconamericus sp., and Creagrutus atrisignum Myers, 1917. By contrast, allochthonous items were dominant in the diet of Astyanax bimaculatus (Linnaeus, 1758. Trophic niche breadth varied among species, with the highest value recorded for M. dichroura (0.48, followed by Bryconamericus sp. (0.39, A. bimaculatus (0.33 and C. atrisignum (0.29. Similarity analysis revealed two groups with different patterns of food preference. The first group was composed of insectivorous and the second by omnivorous species. The overlap in food items consumed by the four species studied was high. We suggest that resources are not limited in this stream and that competition might not be regulating these populations. This is one more case corroborating the general pattern registered for Tropical environments, where resource partitioning and specialization are responsible by the organization of fish communities.

  13. Estuarine modification of dissolved and particulate trace metals in major rivers of East-Hainan, China

    Science.gov (United States)

    Fu, Jun; Tang, Xiao-Liang; Zhang, Jing; Balzer, Wolfgang

    2013-04-01

    Dissolved and particulate cadmium, copper, iron, lead, cobalt and nickel were analyzed in surface waters of the Wanquan River estuary and the Wenchang/Wenjiao River estuary in East-Hainan Island during the dry season (December 2006) and two wet seasons (August 2007 and July/August 2008). A major difference to other Chinese rivers was the very low concentration of suspended particles in these tropical Hainan estuaries. In the dissolved phase, a positive deviation from the theoretical dilution line was observed for Cd during different expeditions. Dissolved Cu and Ni essentially behaved conservatively, while Fe, Pb and partly also Co correlated in their negative deviation from simple mixing. Strong seasonal variability was observed only for dissolved Fe, Pb and Cd: sorption by the much higher loading with suspended particles during the dry season lead to a strong lowering of dissolved Fe and Pb, while the opposite was observed for dissolved Cd. In both estuaries all six metals in particulate form showed almost constant values with a tendency for slight decreases along the sal