WorldWideScience

Sample records for upper atmospheric temperature

  1. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  2. Temperature structure of the Uranian upper atmosphere

    Science.gov (United States)

    Elliot, J. L.; Dunham, E.

    1979-01-01

    The temperature structure of the upper atmosphere of Uranus at two locations on the planet was determined from observations of the occultation of the star SAO158687 by Uranus on 10 March 1977, carried out at the Kuiper Airborne Observatory. The temperature-pressure relationships obtained from the immersion and emersion data for 7280 A channel show peak-to-peak variations of 45 K for immersion and 35 K for emersion. The mean temperature for both immersion and emersion profiles is about 100 K, which shows that Uranus has a temperature inversion between 0.001 mbar and the 100 mbar level probed by IR measurements. Both profiles show wavelike temperature variations, which may be due to dynamical or photochemical processes.

  3. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  4. Upper atmosphere research at INPE

    International Nuclear Information System (INIS)

    Clemesha, B.R.

    1984-01-01

    Upper atmosphere research at INPE is mainly concerned with the chemistry and dynamics of the stratosphere, upper mesosphere and lower thermosphere, and the middle thermosphere. Experimental work includes lidar observations of the stratospheric aerosol, measurements of stratospheric ozone by Dobson spectrophotometers and by balloon and rocket-borne sondes, lidar measurements of atmospheric sodium, and photometric observations of O, O 2 , OH and Na emissions, including interferrometric measurements of the OI6300 emission for the purpose of determing thermospheric winds and temperature. The airglow observations also include measurements of a number of emissions produced by the precipitation of energetic neutral particles generated by charge exchange in the ring current. Some recent results of INPE's upper atmosphere program are presented. (Author) [pt

  5. Improved Mars Upper Atmosphere Climatology

    Science.gov (United States)

    Bougher, S. W.

    2004-01-01

    The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the

  6. TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Capalbo, Fernando J.; Bénilan, Yves [Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA), UMR 7583 du CNRS, Universités Paris Est Créteil (UPEC) and Paris Diderot - UPD, 61 avenue du Général de Gaulle, F-94010, Créteil Cédex (France); Yelle, Roger V.; Koskinen, Tommi T., E-mail: fernando.capalbo@lisa.u-pec.fr [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States)

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.

  7. The Upper Atmosphere; Threshold of Space.

    Science.gov (United States)

    Bird, John

    This booklet contains illustrations of the upper atmosphere, describes some recent discoveries, and suggests future research questions. It contains many color photographs. Sections include: (1) "Where Does Space Begin?"; (2) "Importance of the Upper Atmosphere" (including neutral atmosphere, ionized regions, and balloon and investigations); (3)…

  8. Composition and structure of the martian upper atmosphere: analysis of results from viking.

    Science.gov (United States)

    McElroy, M B; Kong, T Y; Yung, Y L; Nier, A O

    1976-12-11

    Densities for carbon dioxide measured by the upper atmospheric mass spectrometers on Viking 1 and Viking 2 are analyzed to yield height profiles for the temperature of the martian atmosphere between 120 and 200 kilometers. Densities for nitrogen and argon are used to derive vertical profiles for the eddy diffusion coefficient over the same height range. The upper atmosphere of Mars is surprisingly cold with average temperatures for both Viking 1 and Viking 2 of less than 200 degrees K, and there is significant vertical structure. Model calculations are presented and shown to be in good agreement with measured concentrations of carbon monoxide, oxygen, and nitric oxide.

  9. The upper atmosphere of Uranus - Mean temperature and temperature variations

    Science.gov (United States)

    Dunham, E.; Elliot, J. L.; Gierasch, P. J.

    1980-01-01

    The number-density, pressure, and temperature profiles of the Uranian atmosphere in the pressure interval from 0.3 to 30 dynes/sq cm are derived from observations of the occultation of SAO 158687 by Uranus on 1977 March 10, observations made from the Kuiper Airborne Observatory and the Cape Town station of the South African Astronomical Observatory. The mean temperature is found to be about 95 K, but peak-to-peak variations from 10 K to 20 K or more exist on a scale of 150 km or 3 scale heights. The existence of a thermal inversion is established, but the inversion is much weaker than the analogous inversion on Neptune. The mean temperature can be explained by solar heating in the 3.3 micron methane band with a methane mixing ratio of 4 x 10 to the -6th combined with the cooling effect of ethane with a mixing ratio of not greater than 4 x 10 to the -6th. The temperature variations are probably due to a photochemical process that has formed a Chapman layer.

  10. Ground-based Observations for the Upper Atmosphere at King Sejong Station, Antarctica

    Science.gov (United States)

    Jee, Geonhwa; Kim, Jeong-Han; Lee, Changsup; Kim, Yong Ha

    2014-06-01

    Since the operation of the King Sejong Station (KSS) started in Antarctic Peninsula in 1989, there have been continuous efforts to perform the observation for the upper atmosphere. The observations during the initial period of the station include Fabry-Perot Interferometer (FPI) and Michelson Interferometer for the mesosphere and thermosphere, which are no longer in operation. In 2002, in collaboration with York University, Canada, the Spectral Airglow Temperature Imager (SATI) was installed to observe the temperature in the mesosphere and lower thermosphere (MLT) region and it has still been producing the mesopause temperature data until present. The observation was extended by installing the meteor radar in 2007 to observe the neutral winds and temperature in the MLT region during the day and night in collaboration with Chungnam National University. We also installed the all sky camera in 2008 to observe the wave structures in the MLT region. All these observations are utilized to study on the physical characteristics of the MLT region and also on the wave phenomena such as the tide and gravity wave in the upper atmosphere over KSS that is well known for the strong gravity wave activity. In this article, brief introductions for the currently operating instruments at KSS will be presented with their applications for the study of the upper atmosphere

  11. Ground-based Observations for the Upper Atmosphere at King Sejong Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Geonhwa Jee

    2014-06-01

    Full Text Available Since the operation of the King Sejong Station (KSS started in Antarctic Peninsula in 1989, there have been continuous efforts to perform the observation for the upper atmosphere. The observations during the initial period of the station include Fabry-Perot Interferometer (FPI and Michelson Interferometer for the mesosphere and thermosphere, which are no longer in operation. In 2002, in collaboration with York University, Canada, the Spectral Airglow Temperature Imager (SATI was installed to observe the temperature in the mesosphere and lower thermosphere (MLT region and it has still been producing the mesopause temperature data until present. The observation was extended by installing the meteor radar in 2007 to observe the neutral winds and temperature in the MLT region during the day and night in collaboration with Chungnam National University. We also installed the all sky camera in 2008 to observe the wave structures in the MLT region. All these observations are utilized to study on the physical characteristics of the MLT region and also on the wave phenomena such as the tide and gravity wave in the upper atmosphere over KSS that is well known for the strong gravity wave activity. In this article, brief introductions for the currently operating instruments at KSS will be presented with their applications for the study of the upper atmosphere.

  12. Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2010-10-01

    Full Text Available Except for a few reactions involving electronically excited molecular or atomic oxygen or nitrogen, atmospheric chemistry modelling usually assumes that the temperature dependence of reaction rates is characterized by Arrhenius' law involving kinetic temperatures. It is known, however, that in the upper atmosphere the vibrational temperatures may exceed the kinetic temperatures by several hundreds of Kelvins. This excess energy has an impact on the reaction rates. We have used upper atmospheric OH populations and reaction rate coefficients for OH(v=0...9+O3 and OH(v=0...9+O to estimate the effective (i.e. population weighted reaction rates for various atmospheric conditions. We have found that the effective rate coefficient for OH(v=0...9+O3 can be larger by a factor of up to 1470 than that involving OH in its vibrational ground state only. At altitudes where vibrationally excited states of OH are highly populated, the OH reaction is a minor sink of Ox and O3 compared to other reactions involving, e.g., atomic oxygen. Thus the impact of vibrationally excited OH on the ozone or Ox sink remains small. Among quiescent atmospheres under investigation, the largest while still small (less than 0.1% effect was found for the polar winter upper stratosphere and mesosphere. The contribution of the reaction of vibrationally excited OH with ozone to the OH sink is largest in the upper polar winter stratosphere (up to 4%, while its effect on the HO2 source is larger in the lower thermosphere (up to 1.5% for polar winter and 2.5% for midlatitude night conditions. For OH(v=0...9+O the effective rate coefficients are lower by up to 11% than those involving OH in its vibrational ground state. The effects on the odd oxygen sink are negative and can reach −3% (midlatitudinal nighttime lowermost thermosphere, i.e. neglecting vibrational excitation overestimates the odd

  13. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    Science.gov (United States)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also

  14. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux

    Directory of Open Access Journals (Sweden)

    Barthelemy Mathieu

    2014-01-01

    Full Text Available The solar UV (UltraViolet flux, especially the EUV (Extreme UltraViolet and FUV (Far UltraViolet components, is one of the main energetic inputs for planetary upper atmospheres. It drives various processes such as ionization, or dissociation which give rise to upper atmospheric emissions, especially in the UV and visible. These emissions are one of the main ways to investigate the upper atmospheres of planets. However, the uncertainties in the flux measurement or modeling can lead to biased estimates of fundamental atmospheric parameters, such as concentrations or temperatures in the atmospheres. We explore the various problems that can be identified regarding the uncertainties in solar/stellar UV flux by considering three examples. The worst case appears when the solar reflection component is dominant in the recorded spectrum as is seen for outer solar system measurements from HST (Hubble Space Telescope. We also show that the estimation of some particular line parameters (intensity and shape, especially Lyman α, is crucial, and that both total intensity and line profile are useful. In the case of exoplanets, the problem is quite critical since the UV flux of their parent stars is often very poorly known.

  15. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    Science.gov (United States)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  16. Toward a New Capability for Upper Atmospheric Research using Atomic Oxygen Lidar

    Science.gov (United States)

    Clemmons, J. H.; Steinvurzel, P.; Mu, X.; Beck, S. M.; Lotshaw, W. T.; Rose, T. S.; Hecht, J. H.; Westberg, K. R.; Larsen, M. F.; Chu, X.; Fritts, D. C.

    2017-12-01

    Progress on development of a lidar system for probing the upper atmosphere based on atomic oxygen resonance is presented and discussed. The promise of a fully-developed atomic oxygen lidar system, which must be based in space to measure the upper atmosphere, for yielding comprehensive new insights is discussed in terms of its potential to deliver global, height-resolved measurements of winds, temperature, and density at a high cadence. An overview of the system is given, and its measurement principles are described, including its use of 1) a two-photon transition to keep the optical depth low; 2) laser tuning to provide the Doppler information needed to measure winds; and 3) laser tuning to provide a Boltzmann temperature measurement. The current development status is presented with a focus on what has been done to demonstrate capability in the laboratory and its evolution to a funded sounding rocket investigation designed to make measurements of three-dimensional turbulence in the upper mesosphere and lower thermosphere.

  17. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kasting, James F.; Kopparapu, Ravi K. [Department of Geosciences, The Pennsylvania State University, State College, PA 16801 (United States); Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  18. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    International Nuclear Information System (INIS)

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models

  19. ISAMS and MLS for NASA's Upper Atmosphere Research Satellite

    Science.gov (United States)

    Llewellyn-Jones, D.; Dickinson, P. H. G.

    1990-04-01

    The primary goal of NASA's Upper Atmosphere Research Satellite (UARS), planned to be launched in 1991, is to compile data about the structure and behavior of the stratospheric ozone layer, and especially about the threat of the chlorine-based pollutants to its stablility. Two of the payload instruments, manufactured in the UK, are described: the Improved Stratospheric and Mesospheric Sounder (ISAMS), a radiometer designed to measure thermal emission from selected atmospheric constituents at the earth's limb, then making it possible to obtain nearly global coverage of the vertical distribution of temperature and composition from 80 deg S to 80 deg N latitude; and the Microwave Limb Sounder (MLS), a limb sounding radiometer, measuring atmospheric thermal emission from selected molecular spectral lines at mm wavelength, in the frequency regions of 63, 183, and 205 GHz.

  20. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    Science.gov (United States)

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  1. The upper atmosphere of Venus: A tentative explanation of its rotation

    Science.gov (United States)

    Boyer, C.

    1986-01-01

    The upper atmosphere of Venus seems to revolve every 4 days, while the planet rotates in 243 days. Mariner 10 UV data on the changing positions of dark spots in the upper Venusian clouds have supported estimations of speeds ranging from 120-240 m/s. High rates of acceleration and deceleration occur on the night side, the former between -110 to -90 deg and the latter continuing to -50 deg. Arch and Y formations have been seen repeatedly between -110 to -70 deg. The highest are seen at about -90 deg and the lowest at about -30 deg. The temperature of the cloud layer at 60 km altitude is about 20 C, the pressure is nearly one earth atmosphere, and complex molecules, including O, C, H, N and S and combinations of these are present in abundance.

  2. NIR-driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets

    International Nuclear Information System (INIS)

    Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S.

    2017-01-01

    H 2 O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H 2 O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H 2 O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapor mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H 2 O signatures may be strengthened by a factor of a few, loosening the observational demands for a H 2 O detection.

  3. New upper limits for atmospheric constituents on Io

    Science.gov (United States)

    Fink, U.; Larson, H. P.; Gautier, T. N., III

    1976-01-01

    A spectrum of Io from 0.86 to 2.7 microns with a resolution of 3.36 per cm and a signal to rms noise ratio of 120 is presented. No absorptions due to any atmospheric constituents on Io could be found in the spectrum. Upper limits of 0.12 cm-atm for NH3, 0.12 cm-atm for CH4, 0.4 cm-atm for N2O, and 24 cm-atm for H2S were determined. Laboratory spectra of ammonia frosts as a function of temperature were compared with the spectrum of Io and showed this frost not to be present at the surface of Io. A search for possible resonance lines of carbon, silicon, and sulfur, as well as the 1.08-micron line of helium, proved negative. Upper emission limits of 60, 18, 27, and 60 kilorayleighs, respectively, were established for these lines.

  4. NIR-driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY (United States)

    2017-10-20

    H{sub 2}O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H{sub 2}O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H{sub 2}O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapor mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H{sub 2}O signatures may be strengthened by a factor of a few, loosening the observational demands for a H{sub 2}O detection.

  5. Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics

    Science.gov (United States)

    Huntress, W. T., Jr.

    1978-01-01

    A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.

  6. submitter Technical Note: Using DEG-CPCs at upper tropospheric temperatures

    CERN Document Server

    Wimmer, D; Nieminen, T; Duplissy, J; Ehrhart, S; Almeida, J; Rondo, L; Franchin, A; Kreissl, F; Bianchi, F; Manninen, H E; Kulmala, M; Curtius, J; Petäjä, T

    2015-01-01

    Over the last few years, several condensation particle counters (CPCs) capable of measuring in the sub-3 nm size range have been developed. Here we study the performance of CPCs based on diethylene glycol (DEG) at different temperatures during Cosmics Leaving OUtdoor Droplets (CLOUD) measurements at CERN. The data shown here are the first set of verification measurements for sub-3 nm CPCs under upper tropospheric temperatures using atmospherically relevant aerosol particles. To put the results in perspective we calibrated the DEG-CPC at room temperature, resulting in a cut-off diameter of 1.4 nm. All diameters refer to mobility equivalent diameters in this paper. At upper tropospheric temperatures ranging from 246.15 K to 207.15 K, we found cut-off sizes relative to a particle size magnifier in the range of 2.5 to 2.8 nm. Due to low number concentration after size classification, the cut-off diameters have a high uncertainty (±0.3 nm) associated with them. Operating two laminar flow DEG-CPCs with different c...

  7. Climate of the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Christoph Jacobi

    2009-06-01

    Full Text Available

    In the frame of the European COST 296 project (Mitigation of Ionospheric Effects on Radio Systems, MIERS

    investigations of the climate of the upper atmosphere have been carried out during the last four years to obtain

    new information on the upper atmosphere. Mainly its ionospheric part has been analysed as the ionosphere

    most essential for the propagation of radio waves. Due to collaboration between different European partners

    many new results have been derived in the fields of long-term trends of different ionospheric and related atmospheric

    parameters, the investigations of different types of atmospheric waves and their impact on the ionosphere,

    the variability of the ionosphere, and the investigation of some space weather effects on the ionosphere.


  8. Long term evolution of temperature in the venus upper atmosphere at the evening and morning terminators

    Science.gov (United States)

    Krause, P.; Sornig, M.; Wischnewski, C.; Kostiuk, T.; Livengood, T. A.; Herrmann, M.; Sonnabend, G.; Stangier, T.; Wiegand, M.; Pätzold, M.; Mahieux, A.; Vandaele, A. C.; Piccialli, A.; Montmessin, F.

    2018-01-01

    This paper contains a comprehensive dataset of long-term observations between 2009 and 2015 at the upper mesosphere/lower thermosphere providing temperature values at different locations of the morning and evening side of the terminator of Venus. Temperature information is obtained by line-resolved spectroscopy of Doppler broadened CO2 transitions features. Results are restricted to a pressure level of 1 μbar, ∼110 km altitude due the nature of the addressed non-LTE CO2 emission line at 10 μm. The required high spectral resolution of the instrumentation is provided by the ground-based spectrometers THIS (University of Cologne) and HIPWAC (NASA GSFC). For the first time upper mesosphere/lower thermosphere temperatures at the Venusian terminator derived from IR-het spectroscopy between 2009 and 2015 are investigated in order to clarify the local-time dependences, latitudinal dependences and the long-term trend. Measured temperatures were distributed in the range between 140 K and 240 K, with mean values equal to 199 K ± 17 K for the morning side of the terminator and 195 K ± 19 K for the evening side of the terminator. Within the uncertainty no difference between the averaged morning and evening terminator side temperature is found. In addition, no strong latitudinal dependency is observed at these near terminator local times. In contrast IR-het data from 2009 show a strong latitudinal dependency at noon, with a temperature difference of around 60 K between the equatorial and polar region (Sonnabend et al., 2012). Accord with the instruments of the Venus Express mission a northern-southern hemispherical symmetry is observed (Mahieux et al., 2012; Piccialli et al., 2015). The data shows no consistent long-term temperature trend throughout the six years of observation, but a variability in the order of tens of Kelvin for the different observing runs representing a time step of few month to two years. This is about the same order of magnitude as the variability

  9. Non-LTE models of Titan's upper atmosphere

    Science.gov (United States)

    Yelle, Roger V.

    1991-01-01

    Models for the thermal structure of Titan's upper atmosphere, between 0.1 mbar and 0.01 nbar are presented. The calculations include non-LTE heating/cooling in the rotation-vibration bands of CH4, C2H2, and C2H6, absorption of solar IR radiation in the near-IR bands of CH4 and subsequent cascading to the nu-4 band of CH4, absorption of solar EUV and UV radiation, thermal conduction and cooling by HCN rotational lines. Unlike earlier models, the calculated exospheric temperature agrees well with observations, because of the importance of HCN cooling. The calculations predict a well-developed mesopause with a temperature of 135-140 K at an altitude of approximately 600 km and pressure of about 0.1 microbar. The mesopause is at a higher pressure than predicted by earlier calculations because non-LTE radiative transfer in the rotation-vibration bands of CH4, C2H2, and C2H6 is treated in an accurate manner. The accuracy of the LTE approximation for source functions and heating rates is discussed.

  10. Emerging pattern of global change in the upper atmosphere and ionosphere

    Directory of Open Access Journals (Sweden)

    J. Laštovička

    2008-05-01

    Full Text Available In the upper atmosphere, greenhouse gases produce a cooling effect, instead of a warming effect. Increases in greenhouse gas concentrations are expected to induce substantial changes in the mesosphere, thermosphere, and ionosphere, including a thermal contraction of these layers. In this article we construct for the first time a pattern of the observed long-term global change in the upper atmosphere, based on trend studies of various parameters. The picture we obtain is qualitative, and contains several gaps and a few discrepancies, but the overall pattern of observed long-term changes throughout the upper atmosphere is consistent with model predictions of the effect of greenhouse gas increases. Together with the large body of lower atmospheric trend research, our synthesis indicates that anthropogenic emissions of greenhouse gases are affecting the atmosphere at nearly all altitudes between ground and space.

  11. Global Change in the Upper Atmosphere

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Akmaev, R. A.; Beig, G.; Bremer, J.; Emmert, J. T.

    2006-01-01

    Roč. 314, č. 5803 (2006), s. 1253-1254 ISSN 0036-8075 R&D Projects: GA MŠk OC 091 Institutional research plan: CEZ:AV0Z30420517 Keywords : Global change * Upper Atmosphere * Ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 30.028, year: 2006

  12. Active Upper-atmosphere Chemistry and Dynamics from Polar Circulation Reversal on Titan

    Science.gov (United States)

    Teanby, Nicholas A.; Irwin, Patrick Gerard Joseph; Nixon, Conor A.; DeKok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B.; Flasar, Michael F.

    2012-01-01

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the colocation of peak haze production and the limit of dynamical transport by the circulation's upper branch. Herewe report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  13. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  14. DIAS Project: The establishment of a European digital upper atmosphere server

    Science.gov (United States)

    Belehaki, A.; Cander, Lj.; Zolesi, B.; Bremer, J.; Juren, C.; Stanislawska, I.; Dialetis, D.; Hatzopoulos, M.

    2005-08-01

    The main objective of DIAS (European Digital Upper Atmosphere Server) project is to develop a pan-European digital data collection on the state of the upper atmosphere, based on real-time information and historical data collections provided by most operating ionospheric stations in Europe. A DIAS system will distribute information required by various groups of users for the specification of upper atmospheric conditions over Europe suitable for nowcasting and forecasting purposes. The successful operation of the DIAS system will lead to the development of new European added-value products and services, to the effective use of observational data in operational applications and consequently to the expansion of the relevant European market.

  15. Long-term trends in the ionosphere and upper atmosphere parameters

    Czech Academy of Sciences Publication Activity Database

    Bremer, J.; Alfonsi, L.; Pal, B.; Laštovička, Jan; Mikhailov, A. V.; Rogers, N.

    47 /suppl./, 2/3 (2004), s. 1009-1029 ISSN 1593-5213. [Final Meeting COST271 Action. Effects of the upper atmosphere on terrestrial and Earth-space communications (EACOS). Abingdon, 26.08.2004-27.08.2004] R&D Projects: GA MŠk OC 271.10 Institutional research plan: CEZ:AV0Z3042911 Keywords : long-term trends * ionosphere * upper atmosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.413, year: 2004

  16. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    Science.gov (United States)

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  17. CRCP-Water temperature data from loggers deployed at various reef sites off the upper Florida Keys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature loggers were deployed at various monitoring sites off the upper Florida Keys where other ecological studies were underway, most focused on aspects of...

  18. Upper Atmosphere Research Report Number 2

    Science.gov (United States)

    1946-12-30

    as a whol,. The history of the program was given in some detail in the first report*. The part of the Naval Research Laboratory in upper atmosphere...5B and 6. The third gage was installed as a service to the spectroscopy program. The gago elements were simply 6 watt, 110 volt Mazda pilot *1 lamps

  19. THE VARIABILITY OF HCN IN TITAN’S UPPER ATMOSPHERE AS IMPLIED BY THE CASSINI ION-NEUTRAL MASS SPECTROMETER MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J.; Cao, Y.-T. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Lavvas, P. P. [Groupe de Spectroscopie Moleculaire et Atmospherique, Universite de Reims, Champagne-Ardenne, CNRS UMR F-7331 (France); Koskinen, T. T. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2016-07-20

    HCN is an important constituent in Titan’s upper atmosphere, serving as the main coolant in the local energy budget. In this study, we derive the HCN abundance at the altitude range of 960–1400 km, combining the Ion-Neutral Mass Spectrometer data acquired during a large number of Cassini flybys with Titan. Typically, the HCN abundance declines modestly with increasing altitude and flattens to a near constant level above 1200 km. The data reveal a tendency for dayside depletion of HCN, which is clearly visible below 1000 km but weakens with increasing altitude. Despite the absence of convincing anti-correlation between HCN volume mixing ratio and neutral temperature, we argue that the variability in HCN abundance makes an important contribution to the large temperature variability observed in Titan’s upper atmosphere.

  20. Space fireworks for upper atmospheric wind measurements by sounding rocket experiments

    Science.gov (United States)

    Yamamoto, M.

    2016-01-01

    Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.

  1. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    Science.gov (United States)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  2. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    Science.gov (United States)

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  3. Infrared radiation in the energy balance of the upper atmosphere

    International Nuclear Information System (INIS)

    Gordiets, B.F.; Markov, M.N.

    1977-01-01

    The contribution of the infrared radiation to the energy balance of the Earth's upper atmosphere is discussed. The theoretical analysis has been carried out of the mechanisms of the transformation of the energy of outgoing particles and the ultraviolet-radiation of the Sun absorbed at the heights of Z >= 90 km into the infrared radiation. It is found out the the infrared radiation within the wave length range of 1.2-20 μ is more intensive that the 63 μ radiation of atomic oxygen and plays an important role in the general energy balance and the thermal regime of the thermosphere. It has been found out too that in the area of Z >= 120 km heights the radiation in the 5.3 μ NO band is the most intensive. This radiation is to be considered for the more accurate description of parameters of the atmosphere (temperature, density) conditioning the nature of the translocation of ionospheric sounds (ISS)

  4. Ionization Efficiency in the Dayside Martian Upper Atmosphere

    Science.gov (United States)

    Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.

    2018-04-01

    Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.

  5. A view of the upper atmosphere from Antarctica

    International Nuclear Information System (INIS)

    Rycroft, M.

    1985-01-01

    The paper reviews the phenomena associated with the earth's upper atmosphere, as detected from field stations on the Antarctic continent. A description is given of the earth's atmosphere, including the auroral regions, the ionosphere and magnetosphere. Geospace phenomena investigated from the Antarctic are described, and include whistlers, chorus and trimpi events. The earth's geomagnetic field is measured at several Antarctic stations. Possibilities for future projects in Antarctica are also discussed. (U.K.)

  6. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    Science.gov (United States)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere

  7. Simulating the 3-D Structure of Titan's Upper Atmosphere

    Science.gov (United States)

    Bell, J. M.; Waite, H.; Westlake, J.; Magee, B.

    2009-05-01

    We present results from the 3-D Titan Global Ionosphere-Thermosphere Model (Bell et al [2009], PSS, in review). We show comparisons between simulated N2, CH4, and H2 density fields and the in-situ data from the Cassini Ion Neutral Mass Spectrometer (INMS). We describe the temperature and wind fields consistent with these density calculations. Variations with local time, longitude, and latitude will be addressed. Potential plasma heating sources can be estimated using the 1-D model of De La Haye et al [2007, 2008] and the impacts on the thermosphere of Titan can be assessed in a global sense in Titan-GITM. Lastly, we will place these findings within the context of recent work in modeling the 2-D structure of Titan's upper atmosphere (Mueller-Wodarg et al [2008]).

  8. Role of solar influences on geomagnetosphere and upper atmosphere

    Science.gov (United States)

    Kumar Tripathi, Arvind

    The Earth's magnetosphere and upper atmosphere can be greatly perturbed by variations in the solar luminosity caused by disturbances on the solar surface. The state of near-Earth space environment is governed by the Sun and is very dynamic on all spatial and temporal scale. The geomagnetic field which protects the Earth from solar wind and cosmic rays is also essential to the evolution of life; its variations can have either direct or indirect effect on human physiology and health state even if the magnitude of the disturbance is small. Geomagnetic disturbances are seen at the surface of the Earth as perturbations in the components of the geomagnetic field, caused by electric currents flowing in the magnetosphere and upper atmosphere. Ionospheric and thermospheric storms also result from the redistribution of particles and fields. Global thermospheric storm winds and composition changes are driven by energy injection at high latitudes. These storm effects may penetrate downwards to the lower thermosphere and may even perturb the mesosphere. Many of the ionospheric changes at mid-latitude can be understood as a response to thermospheric perturbations. The transient bursts of solar energetic particles, often associated with large solar transients, have been observed to have effects on the Earth's middle and lower atmosphere, including the large-scale destruction of polar stratospheric and tropospheric ozone. In the present, we have discussed effect of solar influences on earth's magnetosphere and upper atmosphere that are useful to space weather and global warming, on the basis of various latest studies.

  9. Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets

    Science.gov (United States)

    Cohen, Ofer; Glocer, Alex; Garraffo, Cecilia; Drake, Jeremy J.; Bell, Jared M.

    2018-03-01

    We present a method to quantify the upper limit of the energy transmitted from the intense stellar wind to the upper atmospheres of three of the TRAPPIST-1 planets (e, f, and g). We use a formalism that treats the system as two electromagnetic regions, where the efficiency of the energy transmission between one region (the stellar wind at the planetary orbits) to the other (the planetary ionospheres) depends on the relation between the conductances and impedances of the two regions. Since the energy flux of the stellar wind is very high at these planetary orbits, we find that for the case of high transmission efficiency (when the conductances and impedances are close in magnitude), the energy dissipation in the upper planetary atmospheres is also very large. On average, the Ohmic energy can reach 0.5–1 W m‑2, about 1% of the stellar irradiance and 5–15 times the EUV irradiance. Here, using constant values for the ionospheric conductance, we demonstrate that the stellar wind energy could potentially drive large atmospheric heating in terrestrial planets, as well as in hot Jupiters. More detailed calculations are needed to assess the ionospheric conductance and to determine more accurately the amount of heating the stellar wind can drive in close-orbit planets.

  10. CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS?

    International Nuclear Information System (INIS)

    Spiegel, David S.; Silverio, Katie; Burrows, Adam

    2009-01-01

    Spitzer Space Telescope infrared observations indicate that several transiting extrasolar giant planets have thermal inversions in their upper atmospheres. Above a relative minimum, the temperature appears to increase with altitude. Such an inversion probably requires a species at high altitude that absorbs a significant amount of incident optical/UV radiation. Some authors have suggested that the strong optical absorbers titanium oxide (TiO) and vanadium oxide (VO) could provide the needed additional opacity, but if regions of the atmosphere are cold enough for Ti and V to be sequestered into solids they might rain out and be severely depleted. With a model of the vertical distribution of a refractory species in gaseous and condensed form, we address the question of whether enough TiO (or VO) could survive aloft in an irradiated planet's atmosphere to produce a thermal inversion. We find that it is unlikely that VO could play a critical role in producing thermal inversions. Furthermore, we find that macroscopic mixing is essential to the TiO hypothesis; without macroscopic mixing, such a heavy species cannot persist in a planet's upper atmosphere. The amount of macroscopic mixing that is required depends on the size of condensed titanium-bearing particles that form in regions of an atmosphere that are too cold for gaseous TiO to exist. We parameterize the macroscopic mixing with the eddy diffusion coefficient K zz and find, as a function of particle size a, the values that K zz must assume on the highly irradiated planets HD 209458b, HD 149026b, TrES-4, and OGLE-TR-56b to loft enough titanium to the upper atmosphere for the TiO hypothesis to be correct. On these planets, we find that for TiO to be responsible for thermal inversions K zz must be at least a few times 10 7 cm 2 s -1 , even for a = 0.1 μm, and increases to nearly 10 11 cm 2 s -1 for a = 10 μm. Such large values may be problematic for the TiO hypothesis, but are not impossible.

  11. A Shuttle Upper Atmosphere Mass Spectrometer /SUMS/ experiment

    Science.gov (United States)

    Blanchard, R. C.; Duckett, R. J.; Hinson, E. W.

    1982-01-01

    A magnetic mass spectrometer is currently being adapted to the Space Shuttle Orbiter to provide repeated high altitude atmosphere data to support in situ rarefied flow aerodynamics research, i.e., in the high velocity, low density flight regime. The experiment, called Shuttle Upper Atmosphere Mass Spectrometer (SUMS), is the first attempt to design mass spectrometer equipment for flight vehicle aerodynamic data extraction. The SUMS experiment will provide total freestream atmospheric quantitites, principally total mass density, above altitudes at which conventional pressure measurements are valid. Experiment concepts, the expected flight profile, tradeoffs in the design of the total system and flight data reduction plans are discussed. Development plans are based upon a SUMS first flight after the Orbiter initial development flights.

  12. New Horizons Upper Limits on O{sub 2} in Pluto’s Present Day Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kammer, J. A.; Gladstone, G. R. [Southwest Research Institute San Antonio, TX 78238 (United States); Stern, S. A.; Young, L. A.; Steffl, A. J.; Olkin, C. B. [Southwest Research Institute Boulder, CO 80302 (United States); Weaver, H. A. [Johns Hopkins Applied Physics Laboratory Laurel, MD 20723 (United States); Ennico, K., E-mail: jkammer@swri.edu [NASA Ames Research Center Moffett Field, CA 94035 (United States); Collaboration: New Horizons Atmospheres and Alice UV Spectrograph Teams

    2017-08-01

    The surprising discovery by the Rosetta spacecraft of molecular oxygen (O{sub 2}) in the coma of comet 67P/Churyumov–Gerasimenko challenged our understanding of the inventory of this volatile species on and inside bodies from the Kuiper Belt. That discovery motivated our search for oxygen in the atmosphere of Kuiper Belt planet Pluto, because O{sub 2} is volatile even at Pluto’s surface temperatures. During the New Horizons flyby of Pluto in 2015 July, the spacecraft probed the composition of Pluto’s atmosphere using a variety of observations, including an ultraviolet solar occultation observed by the Alice UV spectrograph. As described in these reports, absorption by molecular species in Pluto’s atmosphere yielded detections of N{sub 2}, as well as hydrocarbon species such as CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. Our work here further examines this data to search for UV absorption from molecular oxygen (O{sub 2}), which has a significant cross-section in the Alice spectrograph bandpass. We find no evidence for O{sub 2} absorption and place an upper limit on the total amount of O{sub 2} in Pluto’s atmosphere as a function of tangent height up to 700 km. In most of the atmosphere, this upper limit in line-of-sight abundance units is ∼3 × 10{sup 15} cm{sup −2}, which, depending on tangent height, corresponds to a mixing ratio of 10{sup −6} to 10{sup −4}, far lower than in comet 67P/CG.

  13. Upper atmospheric gravity wave details revealed in nightglow satellite imagery

    Science.gov (United States)

    Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.

    2015-01-01

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004

  14. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M. [Instituto de Astrofisica de Andalucia (CSIC), E-18080 Granada (Spain); Dinelli, B. M. [ISAC-CNR, I-40129 Bologna (Italy); Adriani, A.; D' Aversa, E. [IAPS-INAF, I-00133 Rome (Italy); Moriconi, M. L. [ISAC-CNR, I-00133 Rome (Italy); Boersma, C.; Allamandola, L. J., E-mail: puertas@iaa.es [NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States)

    2013-06-20

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  15. Magnetospheric energy inputs into the upper atmospheres of the giant planets

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-07-01

    Full Text Available We revisit the effects of Joule heating upon the upper atmospheres of Jupiter and Saturn. We show that in addition to direct Joule heating there is an additional input of kinetic energy – ion drag energy – which we quantify relative to the Joule heating. We also show that fluctuations about the mean electric field, as observed in the Earth's ionosphere, may significantly increase the Joule heating itself. For physically plausible parameters these effects may increase previous estimates of the upper atmospheric energy input at Saturn from ~10 TW to ~20 TW.

    Keywords. Ionosphere (Electric fields and currents; Planetary ionosphere – Magnetospheric physics (Auroral phenomena

  16. Registering upper atmosphere parameters in East Siberia with Fabry—Perot Interferometer KEO Scientific "Arinae"

    Science.gov (United States)

    Vasilyev, Roman; Artamonov, Maksim; Beletsky, Aleksandr; Zherebtsov, Geliy; Medvedeva, Irina; Mikhalev, Aleksandr; Syrenova, Tatyana

    2017-09-01

    We describe the Fabry–Perot interferometer designed to study Earth’s upper atmosphere. We propose a modification of the existing data processing method for determining the Doppler shift and Doppler widening and also for separating the observed line intensity and the background intensity. The temperature and wind velocity derived from these parameters are compared with physical characteristics obtained from modeling (NRLMSISE-00, HWM14). We demonstrate that the temperature is determined from the oxygen 630 nm line irrespective of the hydroxyl signal existing in interference patterns. We show that the interferometer can obtain temperature from the oxygen 557.7 nm line in case of additional calibration of the device. The observed wind velocity mainly agrees with model data. Night variations in the red and green oxygen lines quite well coincide with those in intensities obtained by devices installed nearby the interferometer.

  17. The dynamics in the upper atmospheres of Mars and Titan

    Science.gov (United States)

    Bell, Jared M.

    2008-06-01

    This thesis explores the dynamics of two terrestrial bodies: Mars and Titan. At Mars, the coupled Mars General Circulation Model - Mars Thermospheric General Circulation Model (MGCM-MTGCM) is employed to investigate the phenomenon known as Mars winter polar warming. At Titan, a new theoretical model, the Titan Global Ionosphere - Thermosphere Model (T-GITM), is developed, based upon previous work by Ridley et al. [2006]. Using this new model, three separate numerical studies quantify the impacts of solar cycle, seasons, and lower boundary zonal winds on the Titan thermosphere structure and dynamics. At Mars, this thesis investigates thermospheric winter polar warming through three major studies: (1) a systematic analysis of vertical dust mixing in the lower atmosphere and its impact upon the dynamics of the lower thermosphere (100-130 km), (2) an interannual investigation utilizing three years of lower atmosphere infrared (IR) dust optical depth data acquired by the Thermal Emission Spectrometer (TES) instrument on board Mars Global Surveyor (MGS), and finally (3) a brief study of the MTGCM's response to variations in upward propagating waves and tides from the lower atmosphere. Ultimately, this investigation suggests that an interhemispheric summer-to-winter Hadley circulation, originating in the lower atmosphere and extending into the upper atmosphere, is responsible for thermospheric winter polar warming [ Bell etal. , 2007]. A major branch of this thesis builds upon the previous work of Müller-Wodarg et al. [2000], Müller-Wodarg et al. [2003], M7uuml;ller-Wodarg et al. [2006], and Yelle et al. [2006] as it attempts to explain the structures in Titan's upper atmosphere, between 500-1500 km. Building also upon the recent development of GITM by Ridley et al. [2006], this thesis presents a new theoretical framework, T-GITM. This model is then employed to conduct a series of numerical experiments to quantify the impacts of the solar cycle, the season, and the

  18. Assessment of NOAA NUCAPS upper air temperature profiles using COSMIC GPS radio occultation and ARM radiosondes

    Science.gov (United States)

    Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.

    2017-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.

  19. Trends in the Neutral and Ionized Upper Atmosphere

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Solomon, S.C.; Qian, L.

    2012-01-01

    Roč. 168, 1-4 (2012), s. 113-145 ISSN 0038-6308 R&D Projects: GA ČR GAP209/10/1792 Institutional support: RVO:68378289 Keywords : Global change * Long-term trends * Ionosphere * Upper atmosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 5.519, year: 2012 http://www.springerlink.com/content/d4015w2q031q5048/fulltext.pdf

  20. The microwave limb sounder for the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  1. Water temperature data from reef sites off the upper Florida Keys from 2003-09-18 to 2016-12-31 (NCEI Accession 0126994)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature loggers were deployed at various monitoring sites off the upper Florida Keys where other ecological studies were underway, most focused on aspects of...

  2. Temperature and ice layer trends in the summer middle atmosphere

    Science.gov (United States)

    Lübken, F.-J.; Berger, U.

    2012-04-01

    We present results from our LIMA model (Leibniz Institute Middle Atmosphere Model) which nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers known as noctilucent clouds. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere. We study temperature trends in the mesosphere at middle and polar latitudes and compared with temperature trends from satellites, lidar, and phase height observations. For the first time large observed temperature trends in the summer mesosphere can be reproduced and explained by a model. As will be shown, stratospheric ozone has a major impact on temperature trends in the summer mesosphere. The temperature trend is not uniform in time: it is moderate from 1961 (the beginning of our record) until the beginning of the 1980s. Thereafter, temperatures decrease much stronger until the mid 1990s. Thereafter, temperatures are nearly constant or even increase with time. As will be shown, trends in ozone and carbon dioxide explain most of this behavior. Ice layers in the summer mesosphere are very sensitive to background conditions and are therefore considered to be appropriate tracers for long term variations in the middle atmosphere. We use LIMA background conditions to determine ice layer characteristics in the mesopause region. We compare our results with measurements, for example with albedos from the SBUV satellites, and show that we can nicely reproduce observed trends. It turns out that temperature trends are positive (negative) in the upper (lower) part of the ice layer regime. This complicates an interpretation of NLC long term variations in terms of temperature trends.

  3. Upper temperature limits of tropical marine ectotherms: global warming implications.

    Directory of Open Access Journals (Sweden)

    Khanh Dung T Nguyen

    Full Text Available Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1, the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.

  4. Trends in the upper atmosphere and ionosphere: Recent progress

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan

    2013-01-01

    Roč. 118, č. 6 (2013), s. 3924-3935 ISSN 2169-9380 R&D Projects: GA ČR GAP209/10/1792; GA MŠk LD12070 Institutional support: RVO:68378289 Keywords : Long-term trends * upper atmosphere * ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50341/abstract

  5. Solar variations and their influence on trends in upper stratospheric ozone and temperature

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.; Lean, J.L.

    1990-10-01

    Over the past decade, knowledge of the magnitude and temporal structure of the variations in the sun's ultraviolet irradiance has increased steadily. A number of theoretical modeling studies have shown that changes in the solar ultraviolet flux during the 11-year solar cycle can have a significant effect on stratospheric ozone concentrations. With the exception of Brasseur et al., who examined a very broad range of solar flux variations, all of these studies assumed much larger changes in the ultraviolet flux than measurements now indicate. These studies either calculated the steady-state effect at solar maximum and solar minimum or assumed sinusoidal variations in the solar flux changes with time. It is now possible to narrow the uncertainty range of the expected effects on upper stratospheric ozone and temperature resulting from the 11-year solar cycle. A more accurate representation of the solar flux changes with time is used in this analysis, as compared to previous published studies. This study also evaluates the relative roles of solar flux variations and increasing concentrations of long-lived trace gases in determining the observed trends in upper stratospheric ozone and temperature. The LLNL two-dimensional chemical-radiative-transport model of the global atmosphere is used to evaluate the combined effects on the stratosphere from changes in solar ultraviolet irradiances and trace gas concentrations over the last several decades. Derived trends in upper stratospheric ozone concentrations and temperature are then compared with available analyses of ground-based and satellite measurements over this time period

  6. Temperature variability over the tropical middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    1994-04-01

    Full Text Available A study on the variability of temperature in the tropical middle atmosphere over Thumba (8 32' N, 76 52' E, located at the southern part of India, has been carried out based on rocket observations for a period of 20 years, extending from 1970 to 1990. The rocketsonde-derived mean temperatures over Thumba are corrected prior to 1978 and then compared with the middle atmospheric reference model developed from satellite observations and Solar Mesosphere Explorer (SME satellite data. Temperature variability at every 1 km interval in the 25-75 km region was analysed. The tropical stratosphere is found to be highly stable, whereas considerable variability is noted in the middle mesosphere. The effect of seasonal cycle is least in the lower stratosphere. Annual and semi-annual oscillations in temperature are the primary oscillations in the tropical middle atmosphere. Annual temperature oscillations are dominant in the mesosphere and semi-annual oscillations are strong in the stratosphere. The stratopause region is noted to be the part of the middle atmosphere least sensitive to the changes in solar activity and long-term variability.

  7. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 1: January

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of January. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Mean density standard deviation (all for 13 levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  8. Upper atmosphere research: Reaction rate and optical measurements

    Science.gov (United States)

    Stief, L. J.; Allen, J. E., Jr.; Nava, D. F.; Payne, W. A., Jr.

    1990-01-01

    The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information.

  9. Report from upper atmospheric science

    International Nuclear Information System (INIS)

    Carignan, G.R.; Roble, R.G.; Mende, S.B.; Nagy, A.F.; Hudson, R.D.

    1989-01-01

    Most of the understanding of the thermosphere resulted from the analysis of data accrued through the Atmosphere Explorer satellites, the Dynamics Explorer 2 satellite, and observations from rockets, balloons, and ground based instruments. However, new questions were posed by the data that have not yet been answered. The mesosphere and lower thermosphere have been less thoroughly studied because of the difficulty of accessibility on a global scale, and many rather fundamental characteristics of these regions are not well understood. A wide variety of measurement platforms can be used to implement various parts of a measurement strategy, but the major thrusts of the International Solar Terrestrial Physics Program would require Explorer-class missions. A remote sensing mission to explore the mesosphere and lower thermosphere and one and two Explorer-type spacecraft to enable a mission into the thermosphere itself would provide the essential components of a productive program of exploration of this important region of the upper atomsphere. Theoretical mission options are explored

  10. Twenty-five years of Antarctic upper atmosphere research at Rhodes University

    International Nuclear Information System (INIS)

    Gledhill, J.A.

    1987-01-01

    South Africa, as one of the twelve signatories of the Antarctic Treaty is required to establish presence in Antarctica. In this article the past 25 years of upper atmosphere research in Antarctica, and the ionosphere programme at SANAE (South African National Antarctic Expedition) are described. The use of ionograms, Barry ionosondes, airglow photometers, oblique incidence ionograms and the digitized FM ionosonde are discussed as well as anomalous daily variations, the ionospheric effects of particle precipitation, Atmosphere Explorer-C and project ISAAC (International South Atlantic Anomaly Campaign)

  11. The determination of parameters of the upper atmosphere by the radio-meteor measurements

    Science.gov (United States)

    Shamukov, Damir; Fahrutdinova, Antonina; Nugmanov, Ildus

    Study of the parameters of the upper atmosphere on the basis of amplitude-time characteristics of meteor ionization. Together with various methods meteor observations (optical, photographic, visual, spectral, television), the most effective modern method of studying meteors means is radar. The development of modern radar technology allows us to apply this tool to monitor meteors. This method allows to determine the parameters of temperature and atmospheric pressure. Actual issue is the development of methods of determining the coefficient of ambipolar diffusion, pressure, density and temperature of the atmosphere in the meteor zone. Graph of amplitude-time characteristic has the exponential form. This fact allows to determine the coefficient of ambipolar diffusion. New algorithm for estimation of the ambipolar diffusion coefficient based on a set of statistical methods and techniques of digital signal processing. There are decomposition of data on singular values and Prony's method. This method of modeling the sample data as a linear combination of exponential. Prony’s method approximates the amplitude-time characteristics of using a deterministic exponential model. Input data is amplitude-time characteristics of the meteor trail x[1]…x[N]. The method allows to estimate x[n] p-membered exponential model: begin{center} x[n]=Sigma2A_{k}exp[a _{k}(n-1)]Cos[2Pif_{k}(n-1)T+Fi_{k}] (1) end{center} 1<=n<=N, T - time range in seconds, A_{k} and a_{k} - amplitude and damping coefficient, f_{k} and Fi_{k} - frequency and initial phase. The equation describing the decay of radio signal: begin{center} A=A_{0}exp(-16Pi^{2}$D_{a}t/λ (2) ). (2) lambdaλ - radar wavelength. The output of the algorithm - the ambipolar diffusion coefficient values D_{a}. begin{center} T=0.5lnD-T_{0}+mg/2kT_{0} (3) Last equation allows to obtain temperature values using the coefficient of ambipolar diffusion depends on the height.

  12. Long-term changes and trends in the upper atmosphere - An introduction

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Akmaev, R. A.; Emmert, J. T.

    2009-01-01

    Roč. 71, 14-15 (2009), s. 1511-1513 ISSN 1364-6826 Institutional research plan: CEZ:AV0Z30420517 Keywords : long-term changes * long-term trends * upper atmosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.643, year: 2009 http://www.sciencedirect.com/science/journal/13646826

  13. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 2: February

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-09-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of February. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  14. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 7: July

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of July. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  15. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 4: April

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of April. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  16. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 3: March

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-11-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of March. Included are global analyses of: (1) Mean Temperature Standard Deviation; (2) Mean Geopotential Height Standard Deviation; (3) Mean Density Standard Deviation; (4) Height and Vector Standard Deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean Dew Point Standard Deviation for levels 1000 through 30 mb; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  17. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 10: October

    Science.gov (United States)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of October. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point/standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  18. Whole Atmosphere Simulation of Anthropogenic Climate Change

    Science.gov (United States)

    Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.

    2018-02-01

    We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.

  19. The solar-terrestrial environment. An introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere.

    Science.gov (United States)

    Hargreaves, J. K.

    This textbook is a successor to "The upper atmosphere and solar-terrestrial relations" first published in 1979. It describes physical conditions in the upper atmosphere and magnetosphere of the Earth. This geospace environment begins 70 kilometres above the surface of the Earth and extends in near space to many times the Earth's radius. It is the region of near-Earth environment where the Space Shuttle flies, the aurora is generated, and the outer atmosphere meets particles streaming out of the sun. The account is introductory. The intent is to present basic concepts, and for that reason the mathematical treatment is not complex. There are three introductory chapters that give basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magetosphere, and structures, dynamics, disturbances and irregularities. The concluding chapter deals with technological applications.

  20. Assessing atmospheric temperature data sets for climate studies

    Directory of Open Access Journals (Sweden)

    Magnus Cederlöf

    2016-07-01

    Full Text Available Observed near-surface temperature trends during the period 1979–2014 show large differences between land and ocean, with positive values over land (0.25–0.27 °C/decade that are significantly larger than over the ocean (0.06–0.12 °C/decade. Temperature trends in the mid-troposphere of 0.08-0.11 °C/decade, on the other hand, are similar for both land and ocean and agree closely with the ocean surface temperature trend. The lapse rate is consequently systematically larger over land than over the ocean and also shows a positive trend in most land areas. This is puzzling as a response to external warming, such as from increasing greenhouse gases, is broadly the same throughout the troposphere. The reduced tropospheric warming trend over land suggests a weaker vertical temperature coupling indicating that some of the processes in the planetary boundary layer such as inversions have a limited influence on the temperature of the free atmosphere. Alternatively, the temperature of the free atmosphere is influenced by advection of colder tropospheric air from the oceans. It is therefore suggested to use either the more robust tropospheric temperature or ocean surface temperature in studies of climate sensitivity. We also conclude that the European Centre for Medium-Range Weather Forecasts Reanalysis Interim can be used to obtain consistent temperature trends through the depth of the atmosphere, as they are consistent both with near-surface temperature trends and atmospheric temperature trends obtained from microwave sounding sensors.

  1. Understanding and Forecasting Upper Atmosphere Nitric Oxide Through Data Mining Analysis of TIMED/SABER Data

    Science.gov (United States)

    Flynn, S.; Knipp, D. J.; Matsuo, T.; Mlynczak, M. G.; Hunt, L. A.

    2017-12-01

    Storm time energy input to the upper atmosphere is countered by infrared radiative emissions from nitric oxide (NO). The temporal profile of these energy sources and losses strongly control thermospheric density profiles, which in turn affect the drag experienced by low Earth orbiting satellites. Storm time processes create NO. In some extreme cases an overabundance of NO emissions unexpectedly decreases atmospheric temperature and density to lower than pre-storm values. Quantifying the spatial and temporal variability of the NO emissions using eigenmodes will increase the understanding of how upper atmospheric NO behaves, and could be used to increase the accuracy of future space weather and climate models. Thirteen years of NO flux data, observed at 100-250 km altitude by the SABER instrument onboard the TIMED satellite, is decomposed into five empirical orthogonal functions (EOFs) and their amplitudes to: 1) determine the strongest modes of variability in the data set, and 2) develop a compact model of NO flux. The first five EOFs account for 85% of the variability in the data, and their uncertainty is verified using cross-validation analysis. Although these linearly independent EOFs are not necessarily independent in a geophysical sense, the first three EOFs correlate strongly with different geophysical processes. The first EOF correlates strongly with Kp and F10.7, suggesting that geomagnetic storms and solar weather account for a large portion of NO flux variability. EOF 2 shows annual variations, and EOF 3 correlates with solar wind parameters. Using these relations, an empirical model of the EOF amplitudes can be derived, which could be used as a predictive tool for future NO emissions. We illustrate the NO model, highlight some of the hemispheric asymmetries, and discuss the geophysical associations of the EOFs.

  2. Temperature retrieval at the southern pole of the Venusian atmosphere

    Science.gov (United States)

    Garate-Lopez, Itziar; Garcia-Munoz, A.; Hueso, R.; Sanchez-Lavega, A.

    2013-10-01

    Venus’ thermal radiation spectrum is punctuated by CO2 bands of various strengths probing into different atmospheric depths. It is thus possible to invert measured spectra of thermal radiation to infer atmospheric temperature profiles. VIRTIS-M observations of Venus in the 3-5 µm range allow us to study the night time thermal structure of the planet’s upper troposphere and lower mesosphere from 50 to 105 km [1, 2]. Building a forward radiative transfer model that solves the radiative transfer equation for the atmosphere on a line-by-line basis, we confirmed that aerosol scattering must be taken into account and we studied the impact of factors such as cloud opacity, and the size, composition and vertical distribution of aerosols [3]. The cloud top altitude and aerosol scale height have a notable impact on the spectrum. However, their weighting function matrices have similar structures contributing to the degeneracy of the temperature retrieval algorithm [2]. Our retrieval code is focused on the strong 4.3µm CO2 band, which enables the determination of the thermal profile above the cloud top, and based on the algorithm proposed by Grassi et al. (2008) in their equation (2). We present temperature maps for the south pole of Venus, where a highly variable vortex is observed. We aim to combine these maps with our previously measured velocity fields from the same VIRTIS-M infrared images [4], in order to infer the potential vorticity distribution for different vortex configurations and to improve the understanding of its unpredictable character and its role in the general atmospheric circulation. Acknowledgements This work was supported by the Spanish MICIIN projects AYA2009-10701 and AYA2012-36666 with FEDER funds, by Grupos Gobierno Vasco IT-765-13 and by Universidad País Vasco UPV/EHU through program UFI11/55. IGL and AGM gratefully acknowledge ESA/RSSD for hospitality and access to ‘The Grid’ computing resources. References [1] Roos-Serote, M., et al

  3. Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data

    Science.gov (United States)

    Hedin, A. E.; Spencer, N. W.; Killeen, T. L.

    1988-01-01

    Thermospheric wind data obtained from the Atmosphere Explorer E and Dynamics Explorer 2 satellites have been used to generate an empirical wind model for the upper thermosphere, analogous to the MSIS model for temperature and density, using a limited set of vector spherical harmonics. The model is limited to above approximately 220 km where the data coverage is best and wind variations with height are reduced by viscosity. The data base is not adequate to detect solar cycle (F10.7) effects at this time but does include magnetic activity effects. Mid- and low-latitude data are reproduced quite well by the model and compare favorably with published ground-based results. The polar vortices are present, but not to full detail.

  4. On the quality of MIPAS kinetic temperature in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. García-Comas

    2012-07-01

    Full Text Available The kinetic temperature and line of sight elevation information are retrieved from the MIPAS Middle Atmosphere (MA, Upper Atmosphere (UA and NoctiLucent-Cloud (NLC modes of high spectral resolution limb observations of the CO2 15 μm emission using the dedicated IMK/IAA retrieval algorithm, which considers non-local thermodynamic equilibrium conditions. These variables are accurately derived from about 20 km (MA and 40 km (UA and NLC to 105 km globally and both at daytime and nighttime. Typical temperature random errors are smaller than 0.5 K below 50 km, 0.5–2 K at 50–70 km, and 2–7 K above. The systematic error is typically 1 K below 70 km, 1–3 K from 70 to 85 km and 3–11 K from 85 to 100 km. The average vertical resolution is typically 4 km below 35 km, 3 km at 35–50 km, 4–6 km at 50–90 km, and 6–10 km above. We compared our MIPAS temperature retrievals from 2005 to 2009 with co-located ground-based measurements from the lidars located at the Table Mountain Facility and Mauna Loa Observatory, the SATI spectrograph in Granada (Spain and the Davis station spectrometer, and satellite observations from ACE-FTS, Aura-MLS and TIMED-SABER from 20 km to 100 km. We also compared MIPAS temperatures with the high latitudes climatology from falling sphere measurements. The comparisons show very good agreement, with differences smaller than 3 K below 85–90 km in mid-latitudes. Differences over the poles in this altitude range are larger but can be generally explained in terms of known biases of the other instruments. The comparisons above 90 km worsen and MIPAS retrieved temperatures are always larger than other instrument measurements.

  5. An upper bound for the proton temperature anisotrophy

    International Nuclear Information System (INIS)

    Gary, S.P.

    1994-01-01

    This tutorial describes recent research concerning the upper bound on the hot proton temperature anisotropy imposed by wave-particle scattering due to enhanced fluctuations from the electromagnetic proton cyclotron anisotropy instability. This upper bound, which has been observed in both the magnetosheath and the outer magnetosphere, represents a limited closure relation for the equations of anisotropic magnetohydrodynamics. Such a closure relation has the potential to improve the predictive capability of large-scale anisotropic models of the magnetosphere

  6. Measurements in interplanetary space and in the Martian upper atmosphere with a hydrogen absorption-cell spectrophotometer for Lα-radiation on-board Mars 4 - 7 spaceprobes

    International Nuclear Information System (INIS)

    Babichenko, S.I.; Deregusov, E.V.; Kurt, V.G.; Romanova, N.N.; Skljankin, V.A.; Smirnov, A.S.; Bertaux, J.J.; Blamont, J.

    1977-01-01

    An ultraviolet spectrophotometer UFS-2, designed to measure radiation of atomic hydrogen in the Lα-line, was installed onboard the interplanetary Mars 4 - 7 spaceprobes launched in August 1973. The absorption cell which was used for the first time outside the hydrogen geocorona allowed direct temperature measurements of neutral interstellar hydrogen near the Sun and in the upper Martian atmosphere. (Auth.)

  7. Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air.

    Science.gov (United States)

    Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro

    2018-02-13

    We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.

  8. [The response of the upper respiratory tract to the impact of atmospheric pollution].

    Science.gov (United States)

    Mukhamadiev, R A; Ismagilov, Sh M

    2015-01-01

    The present literature review characterizes the environmental conditions in the Russian Federation in general and the Republic of Tatarstan in particular with special reference to the influence of atmospheric pollution on the development and the clinical picture of the diseases of the respiratory organs including pathology of the upper respiratory tract in the populations of the industrial centres and other environmentally unfriendly areas. The views of the domestic and foreign authors concerning the role of the environmental factors in the clinical picture of the upper respiratory tract disorders are described in detail. The authors emphasize the necessity of the further investigationsinto this problem and the development of the methods for the prevention of diseases of the upper respiratory react.

  9. The effect of nodalization and temperature of reactor upper region: Sensitivity analysis for APR-1400 LBLOCA

    International Nuclear Information System (INIS)

    Kang, Dong Gu

    2017-01-01

    Highlights: • The nodalization of APR-1400 was modified to reflect the characteristic of upper region temperature. • The effect of nodalization and temperature of reactor upper region on LBLOCA consequence was evaluated. • The modification of nodalization is an essential prerequisite in APR-1400 LBLOCA analysis. - Abstract: In best estimate (BE) calculation, the definition of system nodalization is important step influencing the prediction accuracy for specific thermal-hydraulic phenomena. The upper region of reactor is defined as the region of the upper guide structure (UGS) and upper dome. It has been assumed that the temperature of upper region is close to average temperature in most large break loss of coolant accident (LBLOCA) analysis cases. However, it was recently found that the temperature of upper region of APR-1400 reactor might be little lower than or similar to hot leg temperature through the review of detailed design data. In this study, the nodalization of APR-1400 was modified to reflect the characteristic of upper region temperature, and the effect of nodalization and temperature of reactor upper region on LBLOCA consequence was evaluated by sensitivity analysis including best estimate plus uncertainty (BEPU) calculation. In basecase calculation, in case of modified version, the peak cladding temperature (PCT) in blowdown phase became higher and the blowdown quenching (or cooling) was significantly deteriorated as compared to original case, and as a result, the cladding temperature in reflood phase became higher and the final quenching was also delayed. In addition, thermal-hydraulic parameters were compared and analyzed to investigate the effect of change of upper region on cladding temperature. In BEPU analysis, the 95 percentile PCT used in current regulatory practice was increased due to the modification of upper region nodalization, and it occurred in the reflood phase unlike original case.

  10. ATOMIC CARBON IN THE UPPER ATMOSPHERE OF TITAN

    International Nuclear Information System (INIS)

    Zhang, X.; Yung, Y. L.; Ajello, J. M.

    2010-01-01

    The atomic carbon emission C I line feature at 1657 A ( 3 P 0 J - 3 P J ) in the upper atmosphere of Titan is first identified from the airglow spectra obtained by the Cassini Ultra-violet Imaging Spectrograph. A one-dimensional photochemical model of Titan is used to study the photochemistry of atomic carbon on Titan. Reaction between CH and atomic hydrogen is the major source of atomic carbon, and reactions with hydrocarbons (C 2 H 2 and C 2 H 4 ) are the most important loss processes. Resonance scattering of sunlight by atomic carbon is the dominant emission mechanism. The emission intensity calculations based on model results show good agreement with the observations.

  11. Organic chemistry in Titan's upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space

    Science.gov (United States)

    Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.

    2015-05-01

    radicals. These radical species subsequently might form carbanions via radiative electron attachment at low temperatures with thermal electrons. The classic example is the perinaphthenyl anion in Titan's upper atmosphere. Therefore, future astronomical observations of selected carbocations and corresponding carbanions are required to settle the key issue of molecular anion chemistry on Titan. Other than earth, Titan is the only planetary body in our solar system that is known to have reservoirs of permanent liquids on its surface. The synthesis of complex biomolecules either by organic catalysis of precipitated solutes “on hydrocarbon solvent” on Titan or through the solvation process indeed started in its upper atmosphere. The most notable examples in Titan's prebiotic atmospheric chemistry are conjugated and aromatic polycyclic molecules, N-heterocycles including the presence of imino >Cdbnd N-H functional group in the carbonium chemistry. Our major conclusion in this paper is that the synthesis of organic compounds in Titan's upper atmosphere is a direct consequence of the chemistry of carbocations involving the ion-molecule reactions. The observations of complexity in the organic chemistry on Titan from the Cassini-Huygens mission clearly indicate that Titan is so far the only planetary object in our solar system that will most likely provide an answer to the question of the synthesis of complex biomolecules on the primitive earth and the origin of life.

  12. Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC) consist of time series of radiosonde-based temperature anomalies for the years...

  13. Short-term cyclic variations and diurnal variations of the Venus upper atmosphere

    Science.gov (United States)

    Keating, G. M.; Taylor, F. W.; Nicholson, J. Y.; Hinson, E. W.

    1979-01-01

    The vertical structure of the nighttime thermosphere and exosphere of Venus was discussed. A comparison of the day and nighttime profiles indicates, contrary to the model of Dickinson and Riley (1977), that densities (principally atomic oxygen) dropped sharply from day to night. It was suggested either that the lower estimates were related to cooler exospheric temperatures at night or that the atomic bulge was flatter than expected at lower altitudes. Large periodic oscillations, in both density and inferred exospheric temperatures, were detected with periods of 5 to 6 days. The possibility that cyclic variations in the thermosphere and stratosphere were caused by planetary-scale waves, propagated upward from the lower atmosphere, was investigated using simultaneous temperature measurements obtained by the Venus radiometric temperature experiment (VORTEX). Inferred exospheric temperatures in the morning were found to be lower than in the evening as if the atmosphere rotated in the direction of the planet's rotation, similar to that of earth. Superrotation of the thermosphere and exosphere was discussed as a possible extension of the 4-day cyclic atmospheric rotation near the cloud tops.

  14. Solar magnetism eXplorer (SolmeX). Exploring the magnetic field in the upper atmosphere of our closest star

    Science.gov (United States)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchère, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Braukhane, A.; Casini, R.; Curdt, W.; Davila, J.; Dittus, H.; Fineschi, S.; Fludra, A.; Gandorfer, A.; Griffin, D.; Inhester, B.; Lagg, A.; Landi Degl'Innocenti, E.; Maiwald, V.; Sainz, R. Manso; Martínez Pillet, V; Matthews, S.; Moses, D.; Parenti, S.; Pietarila, A.; Quantius, D.; Raouafi, N.-E.; Raymond, J.; Rochus, P.; Romberg, O.; Schlotterer, M.; Schühle, U.; Solanki, S.; Spadaro, D.; Teriaca, L.; Tomczyk, S.; Trujillo Bueno, J.; Vial, J.-C.

    2012-04-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.

  15. Penetration of internal gravity waveguide modes into the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Rudenko G.V.

    2016-03-01

    Full Text Available The paper describes internal gravity waveguide modes, using dissipative solutions above the source. We compare such a description with an accurate approach and a WKB approximation for dissipationless equations. For waveguide disturbances, dispersion relations calculated by any method are shown to be close to each other and to be in good agreement with observed characteristics of traveling ionospheric disturbances. Unlike other methods, dissipative solutions above the source allow us to adequately describe the spatial structure of disturbances in the upper atmosphere.

  16. Deviations from LTE in a stellar atmosphere

    International Nuclear Information System (INIS)

    Kalkofen, W.; Klein, R.I.; Stein, R.F.

    1979-01-01

    Deviations from LTE are investigated in an atmosphere of hydrogen atoms with one bound level, satisfying the equations of radiative, hydrostatic, and statistical equilibrium. The departure coefficient and the kinetic temperature as functions of the frequency dependence of the radiative cross section are studied analytically and numerically. Near the outer boundary of the atmosphere, the departure coefficient b is smaller than unity when the radiative cross section αsub(ν) grows with frequency ν faster than ν 2 ; b exceeds unity otherwise. Far from the boundary the departure coefficient tends to exceed unity for any frequency dependence of αsub(ν). Overpopulation (b > 1) always implies that the kinetic temperature in the statistical equilibrium atmosphere is higher than the temperature in the corresponding LTE atmosphere. Upper and lower bounds on the kinetic temperature are given for an atmosphere with deviations from LTE only in the optically shallow layers when the emergent intensity can be described by a radiation temperature. (author)

  17. Deviations from LTE in a stellar atmosphere

    Science.gov (United States)

    Kalkofen, W.; Klein, R. I.; Stein, R. F.

    1979-01-01

    Deviations for LTE are investigated in an atmosphere of hydrogen atoms with one bound level, satisfying the equations of radiative, hydrostatic, and statistical equilibrium. The departure coefficient and the kinetic temperature as functions of the frequency dependence of the radiative cross section are studied analytically and numerically. Near the outer boundary of the atmosphere, the departure coefficient is smaller than unity when the radiative cross section grows with frequency faster than with the square of frequency; it exceeds unity otherwise. Far from the boundary the departure coefficient tends to exceed unity for any frequency dependence of the radiative cross section. Overpopulation always implies that the kinetic temperature in the statistical-equilibrium atmosphere is higher than the temperature in the corresponding LTE atmosphere. Upper and lower bounds on the kinetic temperature are given for an atmosphere with deviations from LTE only in the optically shallow layers when the emergent intensity can be described by a radiation temperature.

  18. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  19. A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Madhusudhan, N.; Seager, S.

    2009-01-01

    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of one-dimensional (1D) atmosphere models in order to cover the large range of allowed parameter space. In order to run such a large number of models, we have developed a parametric pressure-temperature (P-T) profile coupled with line-by-line radiative transfer, hydrostatic equilibrium, and energy balance, along with prescriptions for non-equilibrium molecular composition and energy redistribution. The major difference from traditional 1D radiative transfer models is the parametric P-T profile, which essentially means adopting energy balance only at the top of the atmosphere and not in each layer. We see the parametric P-T model as a parallel approach to the traditional exoplanet atmosphere models that rely on several free parameters to encompass unknown absorbers and energy redistribution. The parametric P-T profile captures the basic physical features of temperature structures in planetary atmospheres (including temperature inversions), and fits a wide range of published P-T profiles, including those of solar system planets. We apply our temperature and abundance retrieval method to the atmospheres of two transiting exoplanets, HD 189733b and HD 209458b, which have the best Spitzer and Hubble Space Telescope data available. For HD 189733b, we find efficient day-night redistribution of energy in the atmosphere, and molecular abundance constraints confirming the presence of H 2 O, CO, CH 4 , and CO 2 . For HD 209458b, we confirm and constrain the dayside thermal inversion in an average 1D temperature profile. We also report independent detections of H 2 O, CO, CH 4 , and CO 2 on the dayside of HD 209458b, based on six-channel Spitzer photometry. We report constraints for HD 189733b due to individual data sets separately; a few key observations are variable in different data sets at similar wavelengths. Moreover, a

  20. A retrieved upper limit of CS in Neptune's atmosphere

    Science.gov (United States)

    Iino, T.; Mizuno, A.; Nagahama, T.; Hirota, A.; Nakajima, T.

    2012-12-01

    We present our new result of CS(J=7-6), CO(J=3-2) observations of Neptune's atmosphere carried out with 10-m ASTE sub-mm waveband telescope on August 2010. As a result, while CS line was not detected with 6.4 mK 1-sigma r.m.s. noise level, CO line was detected as 282 mK with 9.7 mK noise level in antenna temperature scale. All of the observations were carried out with 512 MHz bandwidth and 500 kHz resolution, the total integration time for CS and CO were 23 m 40 s and 11 m 00 s, respectively. Abundances have been obtained from the comparison between the intensity and the synthesis spectra modeled by plane parallel 1-D radiative transfer code assuming various mixing ratio of each gas. The retrieved upper limit of CS mixing ratio was 0.03 ppb throughout tropopause to stratosphere. CO mixing ratio have been retrieved 1.0 ppm with errors +0.3 and -0.2 ppm, and the result was consistent with previous observation [1]. The origin of abundant CO in Neptune's atmosphere has been long discussed since its mixing ratio is 30 - 500 times higher than the value of other gas giants [2][3][4]. Assuming that all of CO is produced by thermochemical equilibrium process in deep interior of Neptune, required O/H value in interior is 440 times higher than the solar value [5]. For this reason, it is claimed that the external CO supply source, such as the impact of comet or asteroid, is also the possible candidates of the origin of CO along with the internal supply source [6]. In this observation, we searched the remnant gas of cometary impact in Neptune's atmosphere. Along with CO and HCN, CS could be one of the possible candidate of the remnant gas of cometary impact since CS was largely produced after the impact of comet SL/9 on Jupiter while many other major sulfur compounds have not been detected. Actually, derived L37-40. [7]Moreno et al., 2003. Planetary and Space Sciences 51, 591-611 [8]Zahnle et al.,1995. GRL 22, 1593-1596 [9]Feuchtgruber et al., 1999. Proceeding of the conference

  1. Upper limit on the transition temperature for non-ideal Bose gases

    International Nuclear Information System (INIS)

    Dai Wusheng; Xie Mi

    2007-01-01

    In this paper, we show that for a non-ideal Bose gas there exists an upper limit on the transition temperature above which Bose-Einstein condensation cannot occur regardless of the pressure applied. Such upper limits for some realistic Bose gases are estimated

  2. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    Science.gov (United States)

    Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita

    2011-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  3. A novel polarization interferometer for measuring upper atmospheric winds

    International Nuclear Information System (INIS)

    Ting-Kui, Mu; Chun-Min, Zhang

    2010-01-01

    A static polarization interferometer for measuring upper atmospheric winds is presented, based on two Savart plates with their optical axes perpendicular to each other. The principle and characteristics of the interferometer are described. The interferometer with a wide field of view can offer a stable benchmark optical path difference over a specified spectral region of 0.55–0.63 μm because there are no quarter wave plates. Since the instrument employs a straight line common-path configuration but without moving parts and slits, it is very compact, simple, inherently robust and has high throughput. The paper is limited to a theoretical analysis. (general)

  4. Temperature Profile of the Upper Mantle

    International Nuclear Information System (INIS)

    Anderson, O.L.

    1980-01-01

    Following the procedure outlined by Magnitsky [1971], thermal profiles of the upper mantle are computed by deriving the thermal gradient from the seismic data given as dv/sub s//drho used along with the values of (dv/sub s//dT9/sub p/ and (dv/sub s//dP)/sub T/ of selected minerals, measured at high temperature. The resulting values of dT/dZ are integrated from 380 km upward toward the surface, where the integrating constant is taken from Akagi and Akimoto's work, T=1400 0 C at 380 km. The resulting geotherms for minerals are used to derive geotherms for an eclogite mantle and a lherzolite mantle, with and without partial melting in the low-velocity zone. The geotherms are all subadiabatic, and some are virtually isothermal in the upper mantle. Some are characterized by a large thermal hump at the lithosphere boundary

  5. A non-LTE retrieval scheme for sounding the upper atmosphere of Mars in the infrared

    Science.gov (United States)

    Lopez-Valverde, Miguel Angel; García-Comas, Maya; Funke, Bernd; Jimenez-Monferrer, Sergio; Lopez-Puertas, Manuel

    2016-04-01

    Several instruments on board Mars Express have been sounding the upper atmosphere of Mars systematically in a limb geometry in the IR part of the spectrum. Two of them in particular, OMEGA and PFS, performed emission measurements during daytime and detected the strongest IR bands of species like CO2 and CO (Piccialli et al, JGRE, submitted). Similarly on Venus, the instrument VIRTIS carried out observations of CO2 and CO bands at 2.7, 4.3 and 4.7 um at high altitudes (Gilli et al, JGRE, 2009). All these daylight atmospheric emissions respond to fluorescent situations, a case of non-local thermodynamic equilibrum conditions (non-LTE), well understood nowadays using comprehensive non-LTE theoretical models and tools (Lopez-Valverde et al., Planet. Space Sci., 2011). However, extensive exploitation of these emissions has only been done in optically thin conditions to date (Gilli et al, Icarus, 2015) or in a broad range of altitudes if in nadir geometry (Peralta et al, Apj, 2015). Within the H2020 project UPWARDS we aim at performing retrievals under non-LTE conditions including optically thick cases, like those of the CO2 and CO strongest bands during daytime in the upper atmosphere of Mars. Similar effort will also be applied eventually to Venus. We will present the non-LTE scheme used for such retrievals, based on similar efforts performed recently in studies of the Earth's upper atmosphere using data from the MIPAS instrument, on board Envisat (Funke et al., Atmos. Chem. Phys., 2009; Jurado-Navarro, PhD Thesis, Univ. Granada, 2015). Acknowledgemnt: This work is supported by the European Union's Horizon 2020 Programme under grant agreement UPWARDS-633127

  6. Progress in observations and simulations of global change in the upper atmosphere

    Czech Academy of Sciences Publication Activity Database

    Qian, L.; Laštovička, Jan; Roble, R. G.; Solomon, S.C.

    2011-01-01

    Roč. 116, - (2011), A00H03/1-A00H03/16 ISSN 0148-0227 R&D Projects: GA ČR GAP209/10/1792 Institutional research plan: CEZ:AV0Z30420517 Keywords : Long-term trends * upper atmosphere * ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.021, year: 2011 http://www.agu.org/pubs/crossref/2011/2010JA016317.shtml

  7. Distribution of temperature coefficient density for muons in the atmosphere

    Directory of Open Access Journals (Sweden)

    Kuzmenko V.S.

    2017-12-01

    Full Text Available To date, several dozens of new muon detectors have been built. When studying cosmic-ray intensity variations with these detectors, located deep in the atmosphere, it is necessary to calculate all characteristics, including the distribution of temperature coefficient density for muons in the atmosphere, taking into account their specific geometry. For this purpose, we calculate the density of temperature coefficients of muon intensity in the atmosphere at various zenith angles of detection at sea level and at various depths underground for different absorption ranges of primary protons and pions in the atmosphere.

  8. Comprehensive investigation of the basic parameters of the upper atmosphere at the time of the flight of the geophysical rocket 'Vertical-6'

    International Nuclear Information System (INIS)

    Apathy, I.; Szemerey, I.; Bencze, P.

    1981-01-01

    On October 25, 1977, the geophysical rocket Vertical-6 was launched from the mid-latitude area of the European part of the USSR for a comprehensive investigation of the upper atmosphere. The rocket reached an altitude of 1500 km. The measurements were conducted with the aid of five planar retarding potential analyzers and a photoelectron analyzer. Results of the investigation are presented in the form of graphs. One graph shows the variation of total ion concentration with height, while the variation of ion temperature with altitude and the electron temperature profile are given on a second graph. The heating and cooling rates of the ion gas are also shown. It is found that the variation of electron temperature with height is affected by the electron (ion) density profile to a height of about 500 km

  9. A Reanalysis for the Seasonal and Longer-Period Cycles and the Trends in Middle Atmosphere Temperature from the HALOE

    Science.gov (United States)

    Remsberg, Ellis E.

    2007-01-01

    Previously published analyses for the seasonal and longer-period cycles in middle atmosphere temperature versus pressure (or T(p)) from the Halogen Occultation Experiment (HALOE) are extended to just over 14 years and updated to properly account for the effects of autocorrelation in its time series of zonally-averaged data. The updated seasonal terms and annual averages are provided, and they can be used to generate temperature distributions that are representative of the period 1991-2005. QBO-like terms have also been resolved and are provided, and they exhibit good consistency across the range of latitudes and pressure-altitudes. Further, exploratory analyses of the residuals from each of the 221 time series have yielded significant 11-yr solar cycle (or SC-like) and linear trend terms at a number of latitudes and levels. The amplitudes of the SC-like terms for the upper mesosphere agree reasonably with calculations of the direct solar radiative effects for T(p). Those SC amplitudes increase by about a factor of 2 from the lower to the upper mesosphere and are also larger at the middle than at the low latitudes. The diagnosed cooling trends for the subtropical latitudes are in the range, -0.5 to -1.0 K/decade, which is in good agreement with the findings from models of the radiative effects on pressure surfaces due to known increases in atmospheric CO2. The diagnosed trends are somewhat larger than predicted with models for the upper mesosphere of the northern hemisphere middle latitudes.

  10. Arctic Strato-Mesospheric Temperature and Wind Variations

    Science.gov (United States)

    Schmidlin, F. J.; Goldberg, R. A.

    2004-01-01

    Upper stratosphere and mesosphere rocket measurements are actively used to investigate interaction between the neutral, electrical, and chemical atmospheres and between lower and upper layers of these regions. Satellite temperature measurements from HALOE and from inflatable falling spheres complement each other and allow illustrations of the annual cycle to 85 km altitude. Falling sphere wind and temperature measurements reveal variability that differs as a function of altitude, location, and time. We discuss the state of the Arctic atmosphere during the summer 2002 (Andoya, Norway) and winter 2003 (ESRANGE, Sweden) campaigns of MaCWAVE. Balloon-borne profiles to 30 km altitude and sphere profiles between 50 and 90 km show unique small-scale structure. Nonetheless, there are practical implications that additional measurements are very much needed to complete the full vertical profile picture. Our discussion concentrates on the distribution of temperature and wind and their variability. However, reliable measurements from other high latitude NASA programs over a number of years are available to help properly calculate mean values and the distribution of the individual measurements. Since the available rocket data in the Arctic's upper atmosphere are sparse the results we present are basically a snapshot of atmospheric structure.

  11. Upper ocean currents and sea surface temperatures (SST) from Satellite-tracked drifting buoys (drifters) as part of the Global Drifter Program for Hawaii region 1980/02/01 - 2009/03/31 (NODC Accession 0063296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite-tracked drifting buoys ("drifters") collect measurements of upper ocean currents and sea surface temperatures (SST) around the world as part of the Global...

  12. EUV-VUV photochemistry in the upper atmospheres of Titan and the early Earth

    Science.gov (United States)

    Imanaka, H.; Smith, M. A.

    2010-12-01

    Titan, the organic-rich moon of Saturn, possesses a thick atmosphere of nitrogen, globally covered with organic haze layers. The recent Cassini’s INMS and CAPS observations clearly demonstrate the importance of complex organic chemistry in the ionosphere. EUV photon radiation is the major driving energy source there. Our previous laboratory study of the EUV-VUV photolysis of N2/CH4 gas mixtures demonstrates a unique role of nitrogen photoionization in the catalytic formation of complex hydrocarbons in Titan’s upper atmosphere (Imanaka and Smith, 2007, 2009). Such EUV photochemistry could also have played important roles in the formation of complex organic molecules in the ionosphere of the early Earth. It has been suggested that the early Earth atmosphere may have contained significant amount of reduced species (CH4, H2, and CO) (Kasting, 1990, Pavlov et al., 2001, Tian et al., 2005). Recent experimental study, using photon radiation at wavelengths longer than 110 nm, demonstrates that photochemical organic haze could have been generated from N2/CO2 atmospheres with trace amounts of CH4 or H2 (Trainer et al., 2006, Dewitt et al., 2009). However, possible EUV photochemical processes in the ionosphere are not well understood. We have investigated the effect of CO2 in the possible EUV photochemical processes in simulated reduced early Earth atmospheres. The EUV-VUV photochemistry using wavelength-tunable synchrotron light between 50 - 150 nm was investigated for gas mixtures of 13CO2/CH4 (= 96.7/3.3) and N2/13CO2/CH4 (= 90/6.7/3.3). The onsets of unsaturated hydrocarbon formation were observed at wavelengths shorter than the ionization potentials of CO2 and N2, respectively. This correlation indicates that CO2 can play a similar catalytic role to N2 in the formation of heavy organic species, which implies that EUV photochemistry might have significant impact on the photochemical generation of organic haze layers in the upper atmosphere of the early Earth.

  13. Characterizing the Upper Atmosphere of Titan using the Titan Global Ionosphere- Thermosphere Model: Nitrogen and Methane.

    Science.gov (United States)

    Bell, J. M.; Waite, J. H.; Bar-Nun, A.; Bougher, S. W.; Ridley, A. J.; Magee, B.

    2008-12-01

    Recently, a great deal of effort has been put forth to explain the Cassini Ion-Neutral Mass Spectrometer (Waite et al [2004]) in-situ measurements of Titan's upper atmosphere (e.g. Muller-Wodarg [2008], Strobel [2008], Yelle et al [2008]). Currently, the community seems to agree that large amounts of CH4 are escaping from Titan's upper atmosphere at a rate of roughly 2.0 x 1027 molecules of CH4/s (3.33 x 1028 amu/s), representing a significant mass source to the Kronian Magnetosphere. However, such large escape fluxes from Titan are currently not corroborated by measurements onboard the Cassini Spacecraft. Thus, we posit another potential scenario: Aerosol depletion of atmospheric methane. Using the three-dimensional Titan Global Ionosphere-Thermosphere Model (T-GITM) (Bell et al [2008]), we explore the possible removal mechanisms of atmospheric gaseous constituents by these aerosols. Titan simulations are directly compared against Cassini Ion-Neutral Mass Spectrometer in-situ densities of N2 and CH4. From this work, we can then compare and contrast this aerosol depletion scenario against the currently posited hydrodynamic escape scenario, illustrating the merits and shortcomings of both.

  14. Upper atmospheric planetary-wave and gravity-wave observations

    Science.gov (United States)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.

  15. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  16. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  17. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    Science.gov (United States)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  18. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    Science.gov (United States)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  19. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    D. A. Pedernera

    2008-09-01

    Full Text Available A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulfate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol−1 and

  20. Sensing the upper and lower levels of the atmosphere during the 2009 equinoxes using GPS measurements

    Directory of Open Access Journals (Sweden)

    Wayan Suparta

    2014-05-01

    Full Text Available This short-term work characterized the upper and lower levels of the atmosphere through Global Positioning System (GPS measurements. The observations were conducted during the 2009 equinoxes from two pairs of conjugate polar observing stations: Husafell, Iceland (HUSA and Resolute in Nunavut, Canada (RESO and their conjugate pairs at Scott Base (SBA and Syowa (SYOG in Antarctica, respectively. The total electron content (TEC, an indicator of the upper atmosphere, and the precipitable water vapor (PWV, which served as the lower atmospheric response, were retrieved and analyzed. The results reveal a good relationship between TEC and PWV at each station during the onset day of the equinoxes, whereas an asymmetrical response was observed in the beginning of and after the equinoxes. In addition, the conjugate pairs were only consistent during the autumnal equinox. Thus, the high correlation was observed following the seasonal pattern for the onset day, while strong and moderate correlations were found only for the vernal equinox in Antarctica and the Arctic, respectively. This relationship reflects the fact that the intensity of solar activity during the solar minimum incident on the lower atmosphere through the conjugate points is associated with the variation of the Sun’s seasonal cycle, whereas the TEC and PWV showed an opposite relationship.

  1. Upper Atmosphere Research Satellite (UARS) science data processing center implementation history

    Science.gov (United States)

    Herring, Ellen L.; Taylor, K. David

    1990-01-01

    NASA-Goddard is responsible for the development of a ground system for the Upper Atmosphere Research Satellite (UARS) observatory, whose launch is scheduled for 1991. This ground system encompasses a dedicated Central Data Handling Facility (CDHF); attention is presently given to the management of software systems design and implementation phases for CDHF by the UARS organization. Also noted are integration and testing activities performed following software deliveries to the CDHF. The UARS project has an obvious requirement for a powerful and flexible data base management system; an off-the-shelf commercial system has been incorporated.

  2. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    ... the two silos for twenty-eight (28) months of storage were recorded in order to monitor temperature fluctuation at different sections inside the inert atmosphere silos loaded with two varieties of wheat namely LACRIWHT-2 (Cettia) and LACRIWHT-4 (Atilla-Gan-Atilla) from Lake Chad Research Institute, Maiduguri, Nigeria.

  3. Titan's hydrodynamically escaping atmosphere

    Science.gov (United States)

    Strobel, Darrell F.

    2008-02-01

    The upper atmosphere of Titan is currently losing mass at a rate ˜(4-5)×10 amus, by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating by CH 4 absorption. The hydrodynamic mass loss is essentially CH 4 and H 2 escape. Their combined escape rates are restricted by power limitations from attaining their limiting rates (and limiting fluxes). Hence they must exhibit gravitational diffusive separation in the upper atmosphere with increasing mixing ratios to eventually become major constituents in the exosphere. A theoretical model with solar EUV heating by N 2 absorption balanced by HCN rotational line cooling in the upper thermosphere yields densities and temperatures consistent with the Huygens Atmospheric Science Investigation (HASI) data [Fulchignoni, M., and 42 colleagues, 2005. Nature 438, 785-791], with a peak temperature of ˜185-190 K between 3500-3550 km. This model implies hydrodynamic escape rates of ˜2×10 CHs and 5×10 Hs, or some other combination with a higher H 2 escape flux, much closer to its limiting value, at the expense of a slightly lower CH 4 escape rate. Nonthermal escape processes are not required to account for the loss rates of CH 4 and H 2, inferred by the Cassini Ion Neutral Mass Spectrometer (INMS) measurements [Yelle, R.V., Borggren, N., de la Haye, V., Kasprzak, W.T., Niemann, H.B., Müller-Wodarg, I., Waite Jr., J.H., 2006. Icarus 182, 567-576].

  4. NOAA Climate Data Record (CDR) of Atmospheric Layer Temperatures, Version 3.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atmospheric Layer Temperature Climate Data Record (CDR) dataset is a monthly analysis of the tropospheric and stratospheric data using temperature sounding...

  5. Harmonic analyses of stream temperatures in the Upper Colorado River Basin

    Science.gov (United States)

    Steele, T.D.

    1985-01-01

    Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)

  6. Nitrogen isotope variations in camphor (Cinnamomum Camphora) leaves of different ages in upper and lower canopies as an indicator of atmospheric nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Huayun, E-mail: xiaohuayun@vip.skleg.c [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 46, Guanshui Road, Guiyang 550002 (China); Wu Lianghong; Zhu Renguo; Wang Yanli; Liu Congqiang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 46, Guanshui Road, Guiyang 550002 (China)

    2011-02-15

    Nitrogen isotopic composition of new, middle-aged and old camphor leaves in upper and lower canopies has been determined in a living area, near a motorway and near an industrial area (Jiangan Chemical Fertilizer Plant). We found that at sites near roads, more positive {delta}{sup 15}N values were observed in the camphor leaves, especially in old leaves of upper canopies, and {Delta}{delta}{sup 15}N = {delta}{sup 15}N{sub upper} - {delta}{sup 15}N{sub lower} > 0, while those near the industrial area had more negative {delta}{sup 15}N values and {Delta}{delta}{sup 15}N < 0. These could be explained by two isotopically different atmospheric N sources: greater uptake from isotopically heavy pools of atmospheric NO{sub x} by old leaves in upper canopies at sites adjacent to roads, and greater uptake of {sup 15}N-depleted NH{sub y} in atmospheric deposition by leaves at sites near the industrial area. This study presents novel evidence that {sup 15}N natural abundance of camphor leaves can be used as a robust indicator of atmospheric N sources. - Research highlights: Camphor leaves showed high {delta}{sup 15}N values near roads and low values near the industrial area. The {delta}{sup 15}N values of camphor leaves near roads increased with time of exposure. The {delta}{sup 15}N values of camphor leaves near the industrial area decreased with time of exposure. More positive foliage {delta}{sup 15}N values were found in the upper canopies near roads. Near the industrial area, the upper canopies showed more negative foliage {delta}{sup 15}N values. - Nitrogen isotope in camphor leaves indicating atmospheric nitrogen sources.

  7. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  8. Dependence of the muon intensity on the atmospheric temperature measured by the GRAPES-3 experiment

    Science.gov (United States)

    Arunbabu, K. P.; Ahmad, S.; Chandra, A.; Dugad, S. R.; Gupta, S. K.; Hariharan, B.; Hayashi, Y.; Jagadeesan, P.; Jain, A.; Jhansi, V. B.; Kawakami, S.; Kojima, H.; Mohanty, P. K.; Morris, S. D.; Nayak, P. K.; Oshima, A.; Rao, B. S.; Reddy, L. V.; Shibata, S.; Tanaka, K.; Zuberi, M.

    2017-09-01

    The large area (560 m2) GRAPES-3 tracking muon telescope has been operating uninterruptedly at Ooty, India since 2001. Every day, it records 4 × 109 muons of ≥1 GeV with an angular resolution of ∼4°. The variation of atmospheric temperature affects the rate of decay of muons produced by the galactic cosmic rays (GCRs), which in turn modulates the muon intensity. By analyzing the GRAPES-3 data of six years (2005-2010), a small (amplitude ∼0.2%) seasonal variation (1 year (Yr) period) in the intensity of muons could be measured. The effective temperature 'Teff' of the upper atmosphere also displays a periodic variation with an amplitude of ∼1 K which was responsible for the observed seasonal variation in the muon intensity. At GeV energies, the muons detected by the GRAPES-3 are expected to be anti-correlated with Teff. The anti-correlation between the seasonal variation of Teff, and the muon intensity was used to measure the temperature coefficient αT by fast Fourier transform (FFT) technique. The magnitude of αT was found to scale with the assumed attenuation length 'λ' of the hadrons in the range λ = 80-180 g cm-2. However, the magnitude of the correction in the muon intensity was found to be almost independent of the value of λ used. For λ = 120 g cm-2 the value of temperature coefficient αT was found to be (- 0.17 ± 0.02)% K-1.

  9. TEMPERATURE STRUCTURE AND ATMOSPHERIC CIRCULATION OF DRY TIDALLY LOCKED ROCKY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States)

    2016-07-10

    Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with gray radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective (RC) model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop an RC-subsiding model which extends our RC model to hot and thin atmospheres. We find that rocky planets develop large day–night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show, using GCM simulations, that rotation only has a strong effect on temperature structure if the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets such as GJ 1132b, and show how thermal phase curves could constrain them. Measuring phase curves of short-period planets will require similar amounts of time on the James Webb Space Telescope as detecting molecules via transit spectroscopy, so future observations should pursue both techniques.

  10. The upper atmosphere and solar-terrestrial relations - An introduction to the aerospace environment

    International Nuclear Information System (INIS)

    Hargreaves, J.K.

    1979-01-01

    A theoretical and observational overview of earth's aerospace environment is presented in this book. Emphasis is placed on the principles and observed phenomena of the neutral upper atmosphere, particularly in relation to solar activity. Topics include the structure of the ionosphere and magnetosphere, waves in the magnetosphere, solar flares and solar protons, and storms and other disturbance phenomena, while applications to communications, navigation and space technology are also discussed

  11. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    Science.gov (United States)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  12. Metadata database and data analysis software for the ground-based upper atmospheric data developed by the IUGONET project

    Science.gov (United States)

    Hayashi, H.; Tanaka, Y.; Hori, T.; Koyama, Y.; Shinbori, A.; Abe, S.; Kagitani, M.; Kouno, T.; Yoshida, D.; Ueno, S.; Kaneda, N.; Yoneda, M.; Tadokoro, H.; Motoba, T.; Umemura, N.; Iugonet Project Team

    2011-12-01

    The Inter-university Upper atmosphere Global Observation NETwork (IUGONET) is a Japanese inter-university project by the National Institute of Polar Research (NIPR), Tohoku University, Nagoya University, Kyoto University, and Kyushu University to build a database of metadata for ground-based observations of the upper atmosphere. The IUGONET institutes/universities have been collecting various types of data by radars, magnetometers, photometers, radio telescopes, helioscopes, etc. at various locations all over the world and at various altitude layers from the Earth's surface to the Sun. The metadata database will be of great help to researchers in efficiently finding and obtaining these observational data spread over the institutes/universities. This should also facilitate synthetic analysis of multi-disciplinary data, which will lead to new types of research in the upper atmosphere. The project has also been developing a software to help researchers download, visualize, and analyze the data provided from the IUGONET institutes/universities. The metadata database system is built on the platform of DSpace, which is an open source software for digital repositories. The data analysis software is written in the IDL language with the TDAS (THEMIS Data Analysis Software suite) library. These products have been just released for beta-testing.

  13. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  14. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    International Nuclear Information System (INIS)

    Druzhinin, O; Troitskaya, Yu; Zilitinkevich, S

    2016-01-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface. (paper)

  15. Dynamics of Massive Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Chemke, Rei; Kaspi, Yohai, E-mail: rei.chemke@weizmann.ac.il [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel)

    2017-08-10

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  16. Angular dependent transport of auroral electrons in the upper atmosphere

    International Nuclear Information System (INIS)

    Lummerzheim, D.; Rees, M.H.

    1989-01-01

    The transport of auroral electrons through the upper atmosphere is analyzed. The transport equation is solved using a discrete ordinate method including elastic and inelastic scattering of electrons resulting in changes of pitch angle, and degradation in energy as the electrons penetrate into the atmosphere. The transport equation is solved numerically for the electron intensity as a function of altitude, pitch angle, and energy. In situ measurements of the pitch angle and energy distribution of precipitating electrons over an auroral arc provide boundary conditions for the calculation. The electron spectra from various locations over the aurora present a variety of anisotropic pitch angle distributions and energy spectra. Good agreement is found between the observed backscattered electron energy spectra and model predictions. Differences occur at low energies (below 500 eV) in the structure of the pitch angle distribution. Model calculations were carried out with various different phase functions for elastic and inelastic collisions to attempt changing the angular scattering, but the observed pitch angle distributions remain unexplained. We suggest that mechanisms other than collisional scattering influence the angular distribution of auroral electrons at or below 300 km altitude in the low energy domain. (author)

  17. Source of temperature and pressure pulsations during sessile droplet evaporation into multicomponent atmospheres.

    Science.gov (United States)

    Persad, Aaron H; Sefiane, Khellil; Ward, Charles A

    2013-10-29

    During sessile droplet evaporation, studies with IR thermography and shadowgraphs have indicated temperature pulsations. We confirm those observations with microthermocouples, but microthermocouples also indicate temperature pulsations in the atmosphere of the droplet. The pressure in this atmosphere pulsated as well and was correlated with the temperature pulsations in the droplet. Also, we find that if a droplet evaporates into its own vapor, there are no temperature or pressure pulsations. The pulsations occur only if the droplet evaporates into an atmosphere with a component having a heat of solution with the droplet when it adsorbs-absorbs. None of the currently proposed mechanisms for the temperature pulsations provide an explanation for the coupling between the temperature pulsations in the droplet and the vapor-phase pressure pulsations, and for the absence of the pulsations when the system is single-component. As a mechanism for the pulsations, we propose that when a droplet is exposed to an atmosphere containing a component that has a heat of solution with the droplet, energy will be released from adsorption-absorption. This energy will cause pulsations in the evaporation flux, and these pulsations could cause the observed temperature and pressure pulsations. We examine this mechanism by showing that, if the measured temperature pulsations in a water droplet exposed to a methanol atmosphere are used as the input to a theory of evaporation kinetics (statistical rate theory), the pressure pulsations of the water vapor in the methanol atmosphere are predicted and agree with those measured with a quadrupole mass analyzer. When the inputs and outputs are reversed in the theory, we find that the temperature pulsations in the droplet are correctly predicted from the measured water vapor pulsations in the atmosphere.

  18. Theoretical upper critical field Hc2 for inhomogeneous high temperature superconductors

    International Nuclear Information System (INIS)

    Caixeiro, E.S.; Gonzalez, J.L.; Mello, E.V.L. de

    2004-01-01

    We present the theoretical upper critical field H c2 (T) of the high temperature superconductors (HTSC), calculated through a linearized Ginzburg-Landau equation modified to consider the intrinsic inhomogeneity of the HTSC. The unusual behavior of H c2 (T) for these compounds, and other properties like the Meissner and Nernst effects detected at temperatures much higher than the critical temperature T c of the sample, are explained by the approach

  19. Measurements of Terminal Velocities of Cirrus Clouds in the Upper Trosphere

    Directory of Open Access Journals (Sweden)

    Nee Jan Bai

    2016-01-01

    Full Text Available Cirrus clouds are composed of ice crystals condensed from humidity due to low temperature condition in the upper atmosphere. The microphysics of cirrus clouds including sizes and shapes of ice particles are not well understood but are important in climate modeling. Ice crystal will fall under gravitational sedimentation to reach terminal velocities which depend on the size, mass, and ice habit. We studied here the terminal velocity of cirrus clouds by using lidar observations at Chungli (25N, 121E. The terminal velocities for a few cases of stable cirrus clouds are measured to determine the ice particle sizes and processes in the upper atmosphere.

  20. Temperature diagnostics of a non-thermal plasma jet at atmospheric pressure

    Science.gov (United States)

    Schäfer, Jan

    2013-09-01

    The study reflects the concept of the temperature as a physical quantity resulting from the second thermodynamic law. The reliability of different approaches of the temperature diagnostics of open non-equilibrium systems is discussed using examples of low temperature atmospheric pressure discharges. The focus of this work is a miniaturized non-thermal atmospheric pressure plasma jet for local surface treatment at ambient atmosphere. The micro-discharge is driven with a capacitively coupled radio frequency electric field at 27.12 MHz and fed with argon at rates of about 1 slm through the capillary with an inner diameter of 4 mm. The discharge consists of several contracted filaments with diameter around 300 μm which are rotating azimuthally in the capillary in a self-organized manner. While the measured temperatures of the filament core exceed 700 K, the heat impact on a target below the plasma jet remains limited leading to target temperatures below 400 K. Different kinds of temperatures and energy transport processes are proposed and experimentally investigated. Nevertheless, a reliable and detailed temperature diagnostics is a challenge. We report on a novel diagnostics approach for the spatially and temporally resolved measurement of the gas temperature based on the optical properties of the plasma. Laser Schlieren Deflectometry is adapted to explore temperature profiles of filaments and their behaviour. In parallel, the method demonstrates a fundamental Fermat's principle of minimal energy. Information acquired with this method plays an important role for the optimization of local thin film deposition and surface functionalization by means of the atmospheric pressure plasma jet. The work was supported in part by the Deutsche Forschungsgemeinschaft within SFB-TR 24.

  1. Carbon monoxide in jupiter's upper atmosphere: An extraplanetary source

    International Nuclear Information System (INIS)

    Prather, M.J.; Logan, J.A.; McElroy, M.B.

    1978-01-01

    Ablation of meteoroidal material in Jupiter's atmosphere may provide substantial quantities of H 2 O. Subsequent photochemistry can convert H 2 O and CH 4 to CO and H 2 . The associated source of CO could account for the observations by Beer, Larson, Fink, and Treffers, and Beer and Taylor, and would explain the relatively low rotational temperatures inferred by Beer and Taylor. Meteoritic debris might also provide spectroscopically detectable concentrations of SiO

  2. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China.

    Science.gov (United States)

    Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong

    2017-09-21

    Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  3. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China

    Directory of Open Access Journals (Sweden)

    Zhibin Wu

    2017-09-01

    Full Text Available Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC located in the hot summer and cold winter (HSCW climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET* was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  4. Analysis of atmospheric pressure and temperature effects on cosmic ray measurements

    Science.gov (United States)

    de MendonçA, R. R. S.; Raulin, J.-P.; Echer, E.; Makhmutov, V. S.; Fernandez, G.

    2013-04-01

    In this paper, we analyze atmospheric pressure and temperature effects on the records of the cosmic ray detector CARPET. This detector has monitored secondary cosmic ray intensity since 2006 at Complejo Astronómico El Leoncito (San Juan, Argentina, 31°S, 69°W, 2550 m over sea level) where the geomagnetic rigidity cutoff, Rc, is ~9.8 GV. From the correlation between atmospheric pressure deviations and relative cosmic ray variations, we obtain a barometric coefficient of -0.44 ± 0.01 %/hPa. Once the data are corrected for atmospheric pressure, they are used to analyze temperature effects using four methods. Three methods are based on the surface temperature and the temperature at the altitude of maximum production of secondary cosmic rays. The fourth method, the integral method, takes into account the temperature height profile between 14 and 111 km above Complejo Astronómico El Leoncito. The results obtained from these four methods are compared on different time scales from seasonal time variations to scales related to the solar activity cycle. Our conclusion is that the integral method leads to better results to remove the temperature effect of the cosmic ray intensity observed at ground level.

  5. Toward Quantitative Understanding of the Atmospheric Heating over the Tibetan Plateau (Invited)

    Science.gov (United States)

    Koike, T.; Tamura, T.; Rasmy, M.; Seto, R.

    2010-12-01

    There are different ideas on the atmospheric heating over the Tibetan Plateau. Yanai et al. (1992) and Yanai and Li (1994) concluded this sensible heat flux from the surface is the major source of heating on the plateau before the summer rain commences. On the other hand, Ueda et al. (2003) also showed the importance of condensation heating in the heat balance during the pre-onset-phase of the summer monsoon over the western part of the Tibetan Plateau. The first intensive in situ observation in early spring was implemented on the plateau in April 2004 under the framework of the Coordinated Enhanced Observing Period (CEOP) (Koike, 2004). Taniguchi and Koike (2007) revealed the importance of cumulus activity in atmospheric temperature increases in the upper troposphere even in April by in situ and satellite observations and numerical simulations. They concluded that sensible heat transfer by dry convection is insufficient to warm the upper layer over the plateau and that the development of cloud convection is indispensable for atmospheric heating in the upper troposphere over the plateau during early spring. Then, Taniguchi and Koike (2008) investigated the seasonal variation in the cloud activity over the eastern part of the Tibetan Plateau, and the vertical profile of the atmosphere and moist condition causing the cloud. They showed cumulus convections easily occur under the adiabatically neutral condition of the first phase of the active convections in April. During a resting phase before the second active phase, the atmosphere is conditionally unstable but an unsaturated condition restrains cloud activity, while during second phase, the atmosphere is inclined to be saturated and cloud activity begins again. From early May to mid June, there is a resting period of cumulus convective activity. However, the tropospheric temperature at 200 hPa increases rapidly from late April. Such rapid tropospheric warming without significant cumulus convective activity is

  6. Resolving the Strange Behavior of Extraterrestrial Potassium in the Upper Atmosphere

    Science.gov (United States)

    Plane, J. M. C.; Feng, W.; Dawkins, E.; Chipperfield, M. P.; Hoeffner, J.; Janches, D.; Marsh, D. R.

    2014-01-01

    It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer.

  7. Upper limits to trace constituents in Jupiter's atmosphere from an analysis of its 5 micrometer spectrum

    Science.gov (United States)

    Treffers, R. R.; Larson, H. P.; Fink, U.; Gautier, T. N.

    1978-01-01

    A high-resolution spectrum of Jupiter at 5 micrometers recorded at the Kuiper Airborne Observatory is used to determine upper limits to the column density of 19 molecules. The upper limits to the mixing ratios of SiH4, H2S, HCN, and simple hydrocarbons are discussed with respect to current models of Jupiter's atmosphere. These upper limits are compared to expectations based upon the solar abundance of the elements. This analysis permits upper limit measurements (SiH4), or actual detections (GeH4) of molecules with mixing ratios with hydrogen as low as 10 to the minus 9th power. In future observations at 5 micrometers the sensitivity of remote spectroscopic analyses should permit the study of constituents with mixing ratios as low as 10 to the minus 10th power, which would include the hydrides of such elements as Sn and As as well as numerous organic molecules.

  8. Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India

    Science.gov (United States)

    Sharma, Priyank J.; Loliyana, V. D.; S. R., Resmi; Timbadiya, P. V.; Patel, P. L.

    2017-12-01

    The flood risk across the globe is intensified due to global warming and subsequent increase in extreme temperature and precipitation. The long-term trends in extreme rainfall (1944-2013) and temperature (1969-2012) indices have been investigated at annual, seasonal, and monthly time scales using nonparametric Mann-Kendall (MK), modified Mann-Kendall (MMK), and Sen's slope estimator tests. The extreme rainfall and temperature indices, recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), have been analyzed at finer spatial scales for trend detection. The results of trend analyses indicate decreasing trend in annual total rainfall, significant decreasing trend in rainy days, and increasing trend in rainfall intensity over the basin. The seasonal rainfall has been found to decrease for all the seasons except postmonsoon, which could affect the rain-fed agriculture in the basin. The 1- and 5-day annual maximum rainfalls exhibit mixed trends, wherein part of the basin experiences increasing trend, while other parts experience a decreasing trend. The increase in dry spells and concurrent decrease in wet spells are also observed over the basin. The extreme temperature indices revealed increasing trends in hottest and coldest days, while decreasing trends in coldest night are found over most parts of the basin. Further, the diurnal temperature range is also found to increase due to warming tendency in maximum temperature (T max) at a faster rate compared to the minimum temperature (T min). The increase in frequency and magnitude of extreme rainfall in the basin has been attributed to the increasing trend in maximum and minimum temperatures, reducing forest cover, rapid pace of urbanization, increase in human population, and thereby increase in the aerosol content in the atmosphere. The findings of the present study would significantly help in sustainable water resource planning, better decision-making for policy framework, and setting up

  9. On the role of atmospheric forcing on upper ocean physics in the Southern Ocean and biological impacts

    Science.gov (United States)

    Carranza, Magdalena M.

    The Southern Ocean (SO) plays a key role in regulating climate by absorbing nearly half of anthropogenic carbon dioxide (CO2). Both physical and biogeochemical processes contribute to the net CO2 sink. As a result of global warming and ozone depletion, westerly winds have increased, with consequences for upper ocean physics but little is known on how primary producers are expected to respond to changes in atmospheric forcing. This thesis addresses the impact of atmospheric forcing on upper ocean dynamics and phytoplankton bloom development in the SO on synoptic storm scales, combining a broad range of observations derived from satellites, reanalysis, profiling floats and Southern elephant seals. On atmospheric synoptic timescales (2-10 days), relevant for phytoplankton growth and accumulation, wind speed has a larger impact on satellite Chl-a variability than surface heat fluxes or wind stress curl. In summer, strong winds are linked to deep mixed layers, cold sea surface temperatures and enhanced satellite chlorophyll-a (Chl-a), which suggest wind-driven entrainment plays a role in sustaining phytoplankton blooms at the surface. Subsurface bio-optical data from floats and seals reveal deep Chl-a fluorescence maxima (DFM) are ubiquitous in summer and tend to sit at the base of the mixed layer, but can occur in all seasons. The fact that wind speed and Chl-a correlations are maximal at zero lag time (from daily data) and incubation experiments indicate phytoplankton growth occurs 3-4 days after iron addition, suggests high winds in summer entrain Chl-a from a subsurface maximum. Vertical profiles also reveal Chl-a fluorescence unevenness within hydrographically defined mixed layers, suggesting the biological timescales of adaptation through the light gradient (i.e. growth and/or photoacclimation) are often faster than mixing timescales, and periods of quiescence between storms are long enough for biological gradients to form within the homogeneous layer in density

  10. Mean atmospheric temperature model estimation for GNSS meteorology using AIRS and AMSU data

    Directory of Open Access Journals (Sweden)

    Rata Suwantong

    2017-03-01

    Full Text Available In this paper, the problem of modeling the relationship between the mean atmospheric and air surface temperatures is addressed. Particularly, the major goal is to estimate the model parameters at a regional scale in Thailand. To formulate the relationship between the mean atmospheric and air surface temperatures, a triply modulated cosine function was adopted to model the surface temperature as a periodic function. The surface temperature was then converted to mean atmospheric temperature using a linear function. The parameters of the model were estimated using an extended Kalman filter. Traditionally, radiosonde data is used. In this paper, satellite data from an atmospheric infrared sounder, and advanced microwave sounding unit sensors was used because it is open source data and has global coverage with high temporal resolution. The performance of the proposed model was tested against that of a global model via an accuracy assessment of the computed GNSS-derived PWV.

  11. Upper temperature tolerance of North Atlantic and North Pacific geographical isolates of Chondrus species (Rhodophyta)

    Science.gov (United States)

    Lüning, K.; Guiry, M. D.; Masuda, M.

    1987-09-01

    The upper survival temperature for most isolates of Chondrus crispus from localities ranging from northern Norway and Iceland to Spain, and for an isolate from Nova Scotia, was 28 °C after 2 weeks of exposure to temperatures of 20 31 °C at intervals of 1 °C. An upper survival limit of 29 °C was exhibited by a few European isolates from the English Channel, the North Sea, and one Irish isolate from the upper intertidal. The warm-temperate Japanese species C. nipponicus and C. giganteus forma flabellatus survived 30 °C, whereas 29 °C was the upper survival limit for the coldtemperature C. pinnulatus forma pinnulatus from northern Japan. A possible origin of C. crispus in the north Pacific is discussed.

  12. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    International Nuclear Information System (INIS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-01-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z 0 ).

  13. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, A.; Jain, R. [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom); Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309-0440 (United States)

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).

  14. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    Science.gov (United States)

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  15. Use of Fourier transforms for asynoptic mapping: Applications to the Upper Atmosphere Research Satellite microwave limb sounder

    Science.gov (United States)

    Elson, Lee S.; Froidevaux, Lucien

    1993-01-01

    Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.

  16. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  17. SPICAM: studying the global structure and composition of the Martian atmosphere

    Science.gov (United States)

    Bertaux, J.-L.; Fonteyn, D.; Korablev, O.; Chassefre, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Lefèvre, F.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    2004-08-01

    The SPICAM (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument consists of two spectrometers. The UV spectrometer addresses key issues about ozone and its H2O coupling, aerosols, the atmospheric vertical temperature structure and the ionosphere. The IR spectrometer is aimed primarily at H2O and abundances and vertical profiling of H2O and aerosols. SPICAM's density/temperature profiles will aid the development of meteorological and dynamical atmospheric models from the surface up to 160 km altitude. UV observations of the upper atmosphere will study the ionosphere and its direct interaction with the solar wind. They will also allow a better understanding of escape mechanisms, crucial for insight into the long-term evolution of the atmosphere.

  18. Present State of Knowledge of the Upper Atmosphere 1996: An Assessment Report to Congress and the Environmental Protection Agency

    Science.gov (United States)

    Kurylo, M. J.; Kaye, J. A.; Decola, P. L.; Friedl, R. R.; Peterson, D. B.

    1997-01-01

    This document is issued in response to the Clean Air Act Amendment of 1990, Public Law 101-549, which mandates that the National Aeronautics and Space Administration (NASA) and other key agencies submit triennial report to congress and the Environmental Protection Agency. NASA is charged with the responsibility to report on the state of our knowledge of the Earth's upper atmosphere, particularly the Stratosphere. Part 1 of this report summarizes the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program and Atmospheric Chemistry Modeling and Analysis Program for the period of 1994-1996. Part 2 (this document) presents summaries of several scientific assessments, reviews, and summaries. These include the executive summaries of two scientific assessments: (Section B) 'Scientific Assessment of Ozone Depletion: 1994'; (Section C) 'l995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft); end of mission/series statements for three stratospherically-focused measurement campaigns: (Section D) 'ATLAS End-of-Series Statement'; (Section E) 'ASHOE/MAESA End-of-Mission Statement'; (Section F) 'TOTE/VOTE End-of-Mission Statement'; a summary of NASA's latest biennial review of fundamental photochemical processes important to atmospheric chemistry 'Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling'; and (Section H) the section 'Atmospheric Ozone Research" from the Mission to Planet Earth Science Research Plan, which describes NASA's current and future research activities related to both tropospheric and stratospheric chemistry.

  19. Magnetohydrodynamic simulations of hot jupiter upper atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Trammell, George B.; Li, Zhi-Yun; Arras, Phil, E-mail: gbt8f@virginia.edu, E-mail: zl4h@virginia.edu, E-mail: arras@virginia.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2014-06-20

    Two-dimensional simulations of hot Jupiter upper atmospheres including the planet's magnetic field are presented. The goal is to explore magnetic effects on the layer of the atmosphere that is ionized and heated by stellar EUV radiation, and the imprint of these effects on the Lyα transmission spectrum. The simulations are axisymmetric, isothermal, and include both rotation and azimuth-averaged stellar tides. Mass density is converted to atomic hydrogen density through the assumption of ionization equilibrium. The three-zone structure—polar dead zone (DZ), mid-latitude wind zone (WZ), and equatorial DZ—found in previous analytic calculations is confirmed. For a magnetic field comparable to that of Jupiter, the equatorial DZ, which is confined by the magnetic field and corotates with the planet, contributes at least half of the transit signal. For even stronger fields, the gas escaping in the mid-latitude WZ is found to have a smaller contribution to the transit depth than the equatorial DZ. Transmission spectra computed from the simulations are compared to Hubble Space Telescope Space Telescope Imaging Spectrograph and Advanced Camera for Surveys data for HD 209458b and HD 189733b, and the range of model parameters consistent with the data is found. The central result of this paper is that the transit depth increases strongly with magnetic field strength when the hydrogen ionization layer is magnetically dominated, for dipole magnetic field B {sub 0} ≳ 10 G. Hence transit depth is sensitive to magnetic field strength, in addition to standard quantities such as the ratio of thermal to gravitational binding energies. Another effect of the magnetic field is that the planet loses angular momentum orders of magnitude faster than in the non-magnetic case, because the magnetic field greatly increases the lever arm for wind braking of the planet's rotation. Spin-down timescales for magnetized models of HD 209458b that agree with the observed transit depth

  20. Validation of the Atmospheric Chemistry Experiment (ACE version 2.2 temperature using ground-based and space-borne measurements

    Directory of Open Access Journals (Sweden)

    R. J. Sica

    2008-01-01

    Full Text Available An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS. The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.

  1. Haze heats Pluto's atmosphere yet explains its cold temperature.

    Science.gov (United States)

    Zhang, Xi; Strobel, Darrell F; Imanaka, Hiroshi

    2017-11-15

    Pluto's atmosphere is cold and hazy. Recent observations have shown it to be much colder than predicted theoretically, suggesting an unknown cooling mechanism. Atmospheric gas molecules, particularly water vapour, have been proposed as a coolant; however, because Pluto's thermal structure is expected to be in radiative-conductive equilibrium, the required water vapour would need to be supersaturated by many orders of magnitude under thermodynamic equilibrium conditions. Here we report that atmospheric hazes, rather than gases, can explain Pluto's temperature profile. We find that haze particles have substantially larger solar heating and thermal cooling rates than gas molecules, dominating the atmospheric radiative balance from the ground to an altitude of 700 kilometres, above which heat conduction maintains an isothermal atmosphere. We conclude that Pluto's atmosphere is unique among Solar System planetary atmospheres, as its radiative energy equilibrium is controlled primarily by haze particles instead of gas molecules. We predict that Pluto is therefore several orders of magnitude brighter at mid-infrared wavelengths than previously thought-a brightness that could be detected by future telescopes.

  2. Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations

    Science.gov (United States)

    Koskinen, T. T.; Guerlet, S.

    2018-06-01

    We combine measurements from stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and limb scans observed by the Composite Infrared Spectrometer (CIRS) to create empirical atmospheric structure models for Saturn corresponding to the locations probed by the occultations. The results cover multiple locations at low to mid-latitudes between the spring of 2005 and the fall of 2015. We connect the temperature-pressure (T-P) profiles retrieved from the CIRS limb scans in the stratosphere to the T-P profiles in the thermosphere retrieved from the UVIS occultations. We calculate the altitudes corresponding to the pressure levels in each case based on our best fit composition model that includes H2, He, CH4 and upper limits on H. We match the altitude structure to the density profile in the thermosphere that is retrieved from the occultations. Our models depend on the abundance of helium and we derive a volume mixing ratio of 11 ± 2% for helium in the lower atmosphere based on a statistical analysis of the values derived for 32 different occultation locations. We also derive the mean temperature and methane profiles in the upper atmosphere and constrain their variability. Our results are consistent with enhanced heating at the polar auroral region and a dynamically active upper atmosphere.

  3. Characterization and evolution of distant planetary atmospheres using stellar occultations

    Science.gov (United States)

    Young, L. A.

    2008-09-01

    Ground-based or near-Earth (e.g., HST) stellar occultations of every atmosphere in our solar system has been observed: Venus, Mars, Jupiter, Saturn, Titan, Uranus, Neptune, Triton, and Pluto [1]. These observations probe the atmospheres at roughly 0.1 to 100 microbar. I will talk about three aspects of stellar occultations: one-dimensional vertical profiles of the atmosphere, two- or three-dimensional atmospheric states, and the time evolution of atmosphere. In all three, I will draw on recent observations, with an emphasis on Pluto. Occultations are particularly important for the study of Pluto's atmosphere, which is impossible to study with imaging, and extremely difficult to study with spectroscopy. It was discovered by stellar occultation in 1988 [2]. No subsequent Pluto occultations were observed until two events in 2002 [3]. Pluto is now crossing the galactic plane, and there have been several additional occultations observed since 2006. These include a high signal-to-noise observation from the Anglo Australian Observatory in 2006 [4] (Fig 1), densely spaced visible and infrared observations of Pluto's upper atmosphere from telescopes in the US and Mexico in March, 2007 [5] (Fig. 2), and a dualwavelength central flash observation from Mt. John in July, 2007 [6] (Fig 3). The flux from a star occulted by an atmosphere diminishes primarily due to the increase in refraction with depth in the atmosphere, defocusing the starlight, although absorption and tangential focusing can also contribute. Because the atmospheric density, to first order, follows an exponential, it is feasible to derive a characteristic pressure and temperature from isothermal fits to even low-quality occultation light curves. Higher quality light curves allow fits with more flexible models, or light curve inversions that derive temperatures limited by the resolution of the data. These allow the derivation of one-dimensional profiles of temperature and pressure vs. altitude, which are critical

  4. Diurnal variability of upper ocean temperature and heat budget in ...

    Indian Academy of Sciences (India)

    Time-series data on upper-ocean temperature, Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents and surface meteorological parameters have been obtained for the first time in the southern Bay of Bengal at 7° N, 10° N, and 13° N locations along 87° E during October - November, 1998 ...

  5. Simultaneous temperature measurement of ionospheric plasma and neutral atmosphere with K-10-11 rocket

    International Nuclear Information System (INIS)

    Murasato, Yukio; Kaneko, Osamu; Sasaki, Susumu; Kawashima, Nobuki; Kibune, Tadashi.

    1976-01-01

    Ion temperature and neutral atmospheric temperature in lower ionospheric layer were measured by the ''Shadow Method'', which has been developed and improved by the authors. The principle of the method, which utilizes the fact that the shadow due to the reduction of density of medium behind on obstacle depends upon the flow velocity and the temperature of the medium, is briefly explained together with the apparatus used for the measurement. A pair of the Langmuir probes with the interval of 44 mm was used for the measurement of ion temperature. For the measurement of the neutral atmospheric temperature, its density was measured with the ionization gauge. The measuring system was mounted on the K-10-11 rocket, and launched from KSC at 2 p.m., September 24, 1975. Although the rocket itself reached its highest altitude of 196 km, the temperature measurement was performed between the altitude of 80 km and 140 km. The measured temperatures of ions, neutral atmosphere, and electrons are presented as the functions of altitude. It is confirmed that the temperatures of ions and neutral atmosphere are lower than that of electrons in that range of altitude. (Aoki, K.)

  6. Pluto's atmosphere

    International Nuclear Information System (INIS)

    Elliot, J.L.; Dunham, E.W.; Bosh, A.S.; Slivan, S.M.; Young, L.A.

    1989-01-01

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references

  7. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    Science.gov (United States)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.

  8. Investigation of water content in primary upper shield of high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Sawa, Kazuhiro; Mogi, Haruyoshi; Itahashi, Shuuji; Kitami, Toshiyuki; Akutu, Youichi; Fuchita, Yasuhiro; Kawaguchi, Toru; Moriya, Masahiro

    1999-09-01

    A primary upper shield of the High Temperature Engineering Test Reactor (HTTR) is composed of concrete (grout) which is packed into iron frames. The main function of the primary upper shield is to attenuate neutron and gamma ray from the core, that leads to satisfy dose equivalent rate limit of operating floor and stand-pipe room. Water content in the concrete is one of the most important things because it strongly affects neutron-shielding ability. Then, we carried out out-of-pile experiments to investigate relationship between temperature and water content in the concrete. Based on the experimental results, a hydrolysis-diffusion model was developed to investigate water release behavior from the concrete. The model showed that water content used for shielding design in the primary upper shield of the HTTR will be maintained if temperature during operating life is under 110degC. (author)

  9. Increasing influence of air temperature on upper Colorado River streamflow

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  10. An appraisal of crack arrest results and their relevance to the onset of upper shelf temperature issue

    International Nuclear Information System (INIS)

    Smith, E.

    1996-01-01

    The paper appraises experimental results which support the view that a crack can propagate by cleavage mechanism in a ferritic steel as used in a nuclear reactor pressure vessel, at temperatures that are markedly in excess of the onset of upper shelf temperature as estimated using an initiation based criterion. At temperatures in the vicinity of the onset shelf as estimated by such a criterion, cleavage crack propagation can occur at K values that are markedly less than the static fracture toughness values appropriate to the same temperature regime. It is demonstrated how these conclusions are reflected in the ASME Code Section III Appendix G procedure for defining the pressure-temperature limits associated with the normal operation of a PWR reactor pressure vessel in the USA. This procedure defines the onset of upper shelf temperature in relation to the crack arrest toughness curve and not the initiation toughness curve, the difference between the onset of upper shelf temperatures using the two definitions being about 80 o F. (author)

  11. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    Science.gov (United States)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  12. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences

    International Nuclear Information System (INIS)

    Kamra, Leena

    2015-01-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10 m in a 68 m deep borehole. The analysis of long time series for 2006–2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=−0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. - Highlights: • Seasonal variability of radon in borehole. • Influence of atmospheric temperature and pressure on radon variability. • Partial correlation coefficient.

  13. First ever in situ observations of Venus' polar upper atmosphere density using the tracking data of the Venus Express Atmospheric Drag Experiment (VExADE)

    Science.gov (United States)

    Rosenblatt, P.; Bruinsma, S. L.; Müller-Wodarg, I. C. F.; Häusler, B.; Svedhem, H.; Marty, J. C.

    2012-02-01

    On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186-176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73-83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin's density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin's model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus' thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus' upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from

  14. Assessment of the Quality of the Version 1.07 Temperature-Versus-Pressure Profiles of the Middle Atmosphere from TIMED/SABER

    Science.gov (United States)

    Remsberg, E. E.; Marshall, B. T.; Garcia-Comas, M.; Krueger, D.; Lingenfelser, G. S.; Martin-Torres, J.; Mlynczak, M. G.; Russell, J. M., III; Smith, A. K.; Zhao, Y.; hide

    2008-01-01

    The quality of the retrieved temperature-versus-pressure (or T(p)) profiles is described for the middle atmosphere for the publicly available Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) Version 1.07 (V1.07) data set. The primary sources of systematic error for the SABER results below about 70 km are (1) errors in the measured radiances, (2) biases in the forward model, and (3) uncertainties in the corrections for ozone and in the determination of the reference pressure for the retrieved profiles. Comparisons with other correlative data sets indicate that SABER T(p) is too high by 1-3 K in the lower stratosphere but then too low by 1 K near the stratopause and by 2 K in the middle mesosphere. There is little difference between the local thermodynamic equilibrium (LTE) algorithm results below about 70 km from V1.07 and V1.06, but there are substantial improvements/differences for the non-LTE results of V1.07 for the upper mesosphere and lower thermosphere (UMLT) region. In particular, the V1.07 algorithm uses monthly, diurnally averaged CO2 profiles versus latitude from the Whole Atmosphere Community Climate Model. This change has improved the consistency of the character of the tides in its kinetic temperature (T(sub k)). The T(sub k) profiles agree with UMLT values obtained from ground-based measurements of column-averaged OH and O2 emissions and of the Na lidar returns, at least within their mutual uncertainties. SABER T(sub k) values obtained near the mesopause with its daytime algorithm also agree well with the falling sphere climatology at high northern latitudes in summer. It is concluded that the SABER data set can be the basis for improved, diurnal-to-interannual-scale temperatures for the middle atmosphere and especially for its UMLT region.

  15. Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): Towards a New Adjusted Radiosonde Dataset

    Science.gov (United States)

    Free, M. P.; Angell, J. K.; Durre, I.; Klein, S.; Lanzante, J.; Lawrimore, J.; Peterson, T.; Seidel, D.

    2002-05-01

    The objective of NOAA's RATPAC project is to develop climate-quality global, hemispheric and zonal upper-air temperature time series from the NCDC radiosonde database. Lanzante, Klein and Seidel (LKS) have produced an 87-station adjusted radiosonde dataset using a multifactor expert decision approach. Our goal is to extend this dataset spatially and temporally and to provide a method to update it routinely at NCDC. Since the LKS adjustment method is too labor-intensive for these purposes, we are investigating a first-difference method (Peterson et al., 1998) and an automated version of the LKS method. The first difference method (FD) can be used to combine large numbers of time series into spatial means, but also introduces a random error in the resulting large-scale averages. If the portions of the time series with suspect continuity are withheld from the calculations, it has the potential to reconstruct the real variability without the effects of the discontinuities. However, tests of FD on unadjusted radiosonde data and on reanalysis temperature data suggest that it must be used with caution when the number of stations is low and the number of data gaps is high. Because of these problems with the first difference approach, we are also considering an automated version of the LKS adjustment method using statistical change points, day-night temperature difference series, relationships between changes in adjacent atmospheric levels, and station histories to identify inhomogeneities in the temperature data.

  16. Investigation of Temperature Dynamics in Small and Shallow Reservoirs, Case Study: Lake Binaba, Upper East Region of Ghana

    Directory of Open Access Journals (Sweden)

    Ali Abbasi

    2016-03-01

    Full Text Available An unsteady fully three-dimensional model of Lake Binaba (a shallow small reservoir in semi-arid Upper East Region of Ghana has been developed to simulate its temperature dynamics. The model developed is built on the Reynolds Averaged Navier–Stokes (RANS equations, utilizing the Boussinesq approach. As the results of the model are significantly affected by the physical conditions on the boundaries, allocating appropriate boundary conditions, particularly over a water surface, is essential in simulating the lake’s thermal structure. The thermal effects of incoming short-wave radiation implemented as a heat source term in the temperature equation, while the heat fluxes at the free water surface, which depend on wind speed, air temperature, and atmospheric stability conditions are considered as temperature boundary condition. The model equations were solved using OpenFOAM CFD toolbox. As the flow is completely turbulent, which is affected by the complex boundary conditions, a new heat transfer solver and turbulence model were developed to investigate the spatial and temporal distribution of temperature in small and shallow inland water bodies using improved time-dependent boundary conditions. The computed temperature values were compared with four days of observed field data. Simulated and observed temperature profiles show reasonable agreement where the root mean square error (RMSE over the simulation period ranges from 0.11 to 0.44 °C in temporal temperature profiles with an average value of 0.33 °C. Results indicate that the model is able to simulate the flow variables and the temperature distribution in small inland water bodies with complex bathymetry.

  17. Cosmic ray induced charged particle albedos in the upper atmosphere

    International Nuclear Information System (INIS)

    Bhatnagar, S.P.; Verma, S.D.

    1982-01-01

    There are several observations made in balloon and satellite experiments of relativistic albedo electrons in 50 to 10,000 MeV energy region. The spectrum of these electrons is a power law with negative exponent. At lower energies, 1 to 50 MeV region theoretical evaluations indicate that their energy spectrum will have a similar shape, thus the flux at low energies will be much higher. The only spectrum measurements available below 20 MeV were taken at Ft. Churchill by Hovestadt and Meyer (1969). The flux and energy spectrum of the Re-entrant albedos electrons have been calculated in the energy range 3-50 MeV for Ft. Churchill, Canada, Palestein, Texas and Hyderabad, India, and are presented. The angular distribution of re-entrant electrons in the upper atmosphere is not yet observed, however Kurnosova et. al. (1979) have measured the Vertical and Horizontal integral flux at Hyderabad, India

  18. Degradation of ZrN films at high temperature under controlled atmosphere

    International Nuclear Information System (INIS)

    Lu, F.-H.; Lo, W.-Z.

    2004-01-01

    The degradation of ZrN films deposited onto Si substrates by unbalanced magnetron sputtering was investigated over temperatures of 300-1200 deg. C in different atmospheres by analyzing changes in color and appearance, as well as microstructures. The atmospheres contained air, nitrogen, and forming gas (N 2 /H 2 =9), which exhibited drastically different oxygen/nitrogen partial pressure ratios. The resultant degradation included mainly color changes and formation of blisters on the film surface. Color change was associated with the oxidation of the nitride film, which was analyzed by looking into the Gibbs free-energy changes at various temperatures and oxygen partial pressures. Two types of blisters occurred at different temperature ranges. Several large round blisters, denoted as A-type blisters, occurring at low temperatures originated from the large residual stress in the films. Many small irregular blisters, denoted as B-type blisters, appearing at relatively high temperatures resulted from the oxidation of the film

  19. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    Science.gov (United States)

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  20. The effect of atmospheric temperature and pressure on the occurrence of acute myocardial infarction in Kaunas.

    Science.gov (United States)

    Radišauskas, Ričardas; Vaičiulis, Vidmantas; Ustinavičienė, Rūta; Bernotienė, Gailutė

    2013-01-01

    OBJECTIVE. The aim of the study was to evaluate the impact of meteorological variables (atmospheric temperature and pressure) on the daily occurrence of acute myocardial infarction (AMI). MATERIAL AND METHODS. The study used the daily values of atmospheric temperature and pressure in 2000-2007. The meteorological data were obtained from the Lithuanian Hydrometeorological Service for Kaunas. The relative risks of event occurrence were computed for 5°C atmospheric temperature and for 10-hPa atmospheric pressure variations by means of the Poisson regression model. RESULTS. The occurrence of AMI and atmospheric temperature showed an inverse linear relationship, while the occurrence of AMI and atmospheric pressure, a positive linear relationship. Among the youngest subjects (25-44 years old), no relationships were detected. Contrary, among the subjects aged 45-64 years and those aged 65 years and older, the occurrence of AMI significantly decreased with higher temperature (P=0.001 and P=0.002, respectively). A decrease in atmospheric temperature by 10ºC reduced the risk of AMI by 8.7% in the age groups of 45-64 and 65 years and older and by 19% in the age group of 25 years and older. Among the first AMI cases, the risk increased by 7.5% in the age group of 45-64-year olds and by 6.4% in the age group of 25-64-year olds. The relationship between atmospheric temperature and pressure, and AMI occurrence was found to be linear but inverse. An increase in atmospheric pressure by 10 hPa resulted in an increase in risk by 4% among the subjects aged 65 years and more and by 3% among the subjects aged 25 years and more. CONCLUSIONS. Atmospheric temperature and pressure variations had the greatest effect on middle-aged and aging subjects (starting from 45 years). At younger age, the effect of such factors on the AMI risk was considerably lower.

  1. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy......, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2...

  2. Variation of transition temperatures from upper to lower bainites in plain carbon steels

    International Nuclear Information System (INIS)

    Oka, M.; Okamoto, H.

    1995-01-01

    Experimental results and explanations for the transition temperature from upper to lower bainites in carbon steels containing from 0.20 to 1.80 wt%C were presented metallographically and kinematically. The experimental results are summarized as follows: (1) Lower bainite is not formed in steels with less than 0.35 wt%C and no transition from upper to lower bainite occurs. (2) The transition temperature of steels containing from 0.54 to 1.10 %C indicates a constant temperature of 350 C and does not depend on the carbon content. It is important to note that a transition temperature of 350 C corresponds to the Ms temperature of a 0.55%C steel being the boundary of the martensite morphology between a lath and a plate. (3) Transition temperatures of steels with more than 1.10%C decrease along the a line below about 65 C from T 0 -composition line. The bainitic transformation is essentially a kind of the martensitic one and its nucleation site is considered to be a carbon depleted zone in austenite by the thermal fluctuation of carbon atom at an isothermal holding temperature. The supercooling of about 65 C below the T 0 -composition line at the carbon range more than 1.10 wt%C is attributed to the non-chemical free energy for the displacive growth of lower bainite. (orig.)

  3. Corrections for hydrostatic atmospheric models: radii and effective temperatures of Wolf Rayet stars

    International Nuclear Information System (INIS)

    Loore, C. de; Hellings, P.; Lamers, H.J.G.L.M.

    1982-01-01

    With the assumption of plane-parallel hydrostatic atmospheres, used generally for the computation of evolutionary models, the radii of WR stars are seriously underestimated. The true atmospheres may be very extended, due to the effect of the stellar wind. Instead of these hydrostatic atmospheres the authors consider dynamical atmospheres adopting a velocity law. The equation of the optical depth is integrated outwards using the equation of continuity. The ''hydrostatic'' radii are to be multiplied with a factor 2 to 8, and the effective temperatures with a factor 0.8 to 0.35 when Wolf Rayet characteristics for the wind are considered, and WR mass loss rates are used. With these corrections the effective temperatures of the theoretical models, which are helium burning Roche lobe overflow remnants, range between 30,000 K and 50,000 K. Effective temperatures calculated in the hydrostatic hypothesis can be as high as 150,000 K for helium burning RLOF-remnants with WR mass loss rates. (Auth.)

  4. Concentrations of ethane (C2H6) in the lower stratosphere and upper troposphere and acetylene (C2H2) in the upper troposphere deduced from Atmospheric Trace Molecule Spectroscopy/Spacelab 3 spectra

    Science.gov (United States)

    Rinsland, C. P.; Russell, J. M., III; Zander, R.; Farmer, C. B.; Norton, R. H.

    1987-01-01

    This paper reports the results of the spectroscopic analysis of C2H6 and C2H2 absorption spectra obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument flown on the Shuttle as part of the Spacelab 3 mission. The spectra were recorded during sunset occultations occurring between 25 deg N and 31 deg N latitudes, yielding volume-mixing ratio profiles of C2H6 in the lower stratosphere and the upper troposphere, and an upper tropospheric profile of C2H2. These results compare well with previous in situ and remote sounding data obtained at similar latitudes and with model calculations. The results demonstrate the feasibility of the ATMOS instrument to sound the lower atmosphere from space.

  5. Decomposition of atmospheric water content into cluster contributions based on theoretical association equilibrium constants

    International Nuclear Information System (INIS)

    Slanina, Z.

    1987-01-01

    Water vapor is treated as an equilibrium mixture of water clusters (H 2 O)/sub i/ using quantum-chemical evaluation of the equilibrium constants of water associations. The model is adapted to the conditions of atmospheric humidity, and a decomposition algorithm is suggested using the temperature and mass concentration of water as input information and used for a demonstration of evaluation of the water oligomer populations in the Earth's atmosphere. An upper limit of the populations is set up based on the water content in saturated aqueous vapor. It is proved that the cluster population in the saturated water vapor, as well as in the Earth's atmosphere for a typical temperature/humidity profile, increases with increasing temperatures

  6. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  7. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    Science.gov (United States)

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gholizadeh, Ahmad, E-mail: gholizadeh@du.ac.ir; Jafari, Elahe, E-mail: ah_gh1359@yahoo.com

    2017-01-15

    In this work, effects of sintering atmosphere and temperature on structural and magnetic properties of Ni{sub 0.3}Cu{sub 0.2}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles prepared by citrate precursor method have been studied. The structural characterization of the samples by X-ray powder diffraction and FT-IR spectroscopy is evidence for formation of a cubic structure with no presence of impurity phase. Calculated values of crystallite size and unit cell parameter show an increase with sintering temperature under different atmospheres. Variation of saturation magnetization with sintering temperature and atmosphere can be attributed to change of three factors: magnetic core size, inversion parameter and the change of Fe{sup 3+}-ion concentration due to the presence of Fe{sup 4+} and Fe{sup 2+} ions. The saturation magnetization gradually grows with sintering temperature due to increase of magnetic core size and a maximum 63 emu/g was achieved at 600 °C under carbon monoxide-ambient atmosphere. - Highlights: • Different sintering atmosphere and temperature cause substantial differences in Ni{sub 0.3}Cu{sub 0.2}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles. • The saturation magnetization gradually grows. • A maximum 63 emu/g was achieved at 600 °C under a reducing atmosphere.

  9. Convective cells of internal gravity waves in the earth's atmosphere with finite temperature gradient

    Directory of Open Access Journals (Sweden)

    O. Onishchenko

    2013-03-01

    Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.

  10. A telescope for observation from space of extreme lightnings in the upper atmosphere

    International Nuclear Information System (INIS)

    Nam, S.; Artikova, S.; Chung, T.; Garipov, G.; Jeon, J.A.; Jeong, S.; Jin, J.Y.; Khrenov, B.A.; Kim, J.E.; Kim, M.; Kim, Y.K.; Klimov, P.; Lee, J.; Lee, H.Y.; Na, G.W.; Oh, S.J.; Panasyuk, M.; Park, I.H.; Park, J.H.; Park, Y.-S.

    2008-01-01

    A new type of telescope with a wide field-of-view and functions of fast zoom-in has been introduced. Two kinds of MEMS (Micro-Electro-Mechanical Systems) micromirrors, digital and analog, are used for reflectors of the telescope, placed at different focal lengths. We apply this technology to the observation from space of TLE (Transient Luminous Events), extremely large transient sparks occurring at the upper atmosphere. TLE are one type of important backgrounds to be understood for future space observation of UHECR (Ultra-High Energy Cosmic Rays). The launch of the payload carried by a Russian microsatellite is foreseen in the middle of 2008

  11. Temperature fluctuations in fully-developed turbulent channel flow with heated upper wall

    Science.gov (United States)

    Bahri, Carla; Mueller, Michael; Hultmark, Marcus

    2013-11-01

    The interactions and scaling differences between the velocity field and temperature field in a wall-bounded turbulent flow are investigated. In particular, a fully developed turbulent channel flow perturbed by a step change in the wall temperature is considered with a focus on the details of the developing thermal boundary layer. For this specific study, temperature acts as a passive scalar, having no dynamical effect on the flow. A combination of experimental investigation and direct numerical simulation (DNS) is presented. Velocity and temperature data are acquired with high accuracy where, the flow is allowed to reach a fully-developed state before encountering a heated upper wall at constant temperature. The experimental data is compared with DNS data where simulations of the same configuration are conducted.

  12. HIGH-TEMPERATURE PHOTOCHEMISTRY IN THE ATMOSPHERE OF HD 189733b

    International Nuclear Information System (INIS)

    Line, M. R.; Yung, Y. L.; Liang, M. C.

    2010-01-01

    Recent infrared spectroscopy of hot exoplanets is beginning to reveal their atmospheric composition. Deep within the planetary atmosphere, the composition is controlled by thermochemical equilibrium. Photochemistry becomes important higher in the atmosphere, at levels above ∼1 bar. These two chemistries compete between ∼1 and 10 bars in hot-Jupiter-like atmospheres, depending on the strength of the eddy mixing and temperature. HD 189733b provides an excellent laboratory in which to study the consequences of chemistry of hot atmospheres. The recent spectra of HD 189733b contain signatures of CH 4 , CO 2 , CO, and H 2 O. Here we identify the primary chemical pathways that govern the abundances of CH 4 , CO 2 , CO, and H 2 O in the cases of thermochemical equilibrium chemistry, photochemistry, and their combination. Our results suggest that the disequilibrium mechanisms can significantly enhance the abundances of these species above their thermochemical equilibrium value, so some caution must be taken when assuming that an atmosphere is in strict thermochemical equilibrium.

  13. A data-driven approach for retrieving temperatures and abundances in brown dwarf atmospheres

    OpenAIRE

    Line, MR; Fortney, JJ; Marley, MS; Sorahana, S

    2014-01-01

    © 2014. The American Astronomical Society. All rights reserved. Brown dwarf spectra contain a wealth of information about their molecular abundances, temperature structure, and gravity. We present a new data driven retrieval approach, previously used in planetary atmosphere studies, to extract the molecular abundances and temperature structure from brown dwarf spectra. The approach makes few a priori physical assumptions about the state of the atmosphere. The feasibility of the approach is fi...

  14. On the structure of the upper atmosphere of Mars according to data from experiments on the Viking space vehicles

    Science.gov (United States)

    Izakov, M. N.

    1979-01-01

    Altitude profiles of the concentrations of the atmospheric components measured by the on board mass spectrometers during the descent of Viking lander are discussed by assuming that temperature has a smoother profile, and the eddy mixing coefficients are smaller at altitudes of 120 to 170 km than those formally determined. The influence of acoustic gravitational waves and errors in measurements and calculations are discussed in relation to the convolutions in the altitude profiles of the concentrations of the atmospheric components and the temperature of the atmosphere.

  15. Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements in the Closed Source Neutral mode

    Science.gov (United States)

    Cui, Jun

    In this thesis I present an in-depth study of the distribution of various neutral species in Titan's upper atmosphere, at altitudes between 950 and 1,500 km for abundant species (N 2 , CH 4 as well as their isotopes) and between 950 and 1,200 km for most minor species. However, the study of the H 2 distribution on Titan is extended to an altitude as high as 6,000 km in the exosphere. The analysis is based on a large sample of Cassini/INMS (Ion Neutral Mass Spectrometer) measurements in the CSN (Closed Source Neutral) mode, obtained during 15 close flybys of Titan. The densities of abundant species including N 2 , CH 4 and H 2 are determined directly from their main channels. However, to untangle the overlapping cracking patterns of minor species, the technique of Singular Value Decomposition (SVD) is used to determine simultaneously the densities of various hydrocarbons, nitriles and oxygen compounds. All minor species except for 40 Ar present density enhancements measured during the outbound legs. This can be interpreted as a result of wall effects, which could be either adsorption/desorption or heterogeneous surface chemistry on the chamber walls. In the thesis, I use a simple model to describe the observed time behavior of minor species. Results on their atmospheric abundances are provided both in terms of direct inbound measurements assuming ram pressure enhancement and values corrected for wall adsorption/desorption. Among all minor species of photochemical interest, the INMS data provide direct observational evidences for C 2 H 2 , C 2 H 4 , C 2 H 6 , CH 3 C 2 H, C 4 H 2 , C 6 H 6 , HC 3 N and C 2 N 2 in Titan's upper atmosphere. Upper limits are put for other minor species. The globally averaged distribution of N 2 , CH 4 and H 2 are each modeled with the diffusion approximation. The N 2 profile suggests an average thermospheric temperature of 154 K. The CH 4 and H 2 distribution constrains their fluxes to be 3.0 × 10 9 cm -2 s -1 and 1.3 × 10 10 cm -2 s

  16. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  17. INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Demory, Brice-Olivier; De Wit, Julien; Lewis, Nikole; Zsom, Andras; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Fortney, Jonathan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Knutson, Heather; Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Heng, Kevin [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012, Bern (Switzerland); Madhusudhan, Nikku [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Gillon, Michael [Institut d' Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août, 17, Bat. B5C, B-4000 Liège 1 (Belgium); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Parmentier, Vivien [Laboratoire J.-L. Lagrange, UMR 7293, Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur B.P. 4229, F-06304 Nice Cedex 4 (France); Cowan, Nicolas B., E-mail: demory@mit.edu [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, F165, Evanston, IL 60208 (United States)

    2013-10-20

    We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 ± 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H{sub 2} molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.

  18. Explaining the mechanisms through which regional atmospheric circulation variability drives summer temperatures and glacial melt in western High Mountain Asia (HMA)

    Science.gov (United States)

    Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David

    2017-04-01

    Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of

  19. The Relation Between Atmospheric Humidity and Temperature Trends for Stratospheric Water

    Science.gov (United States)

    Fueglistaler, S.; Liu, Y. S.; Flannaghan, T. J.; Haynes, P. H.; Dee, D. P.; Read, W. J.; Remsberg, E. E.; Thomason, L. W.; Hurst, D. F.; Lanzante, J. R.; hide

    2013-01-01

    We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higherfrequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer

  20. Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres

    Science.gov (United States)

    Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya

    2011-10-01

    Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.

  1. NOAA Climate Data Record for Mean Layer Temperature (Upper Troposphere & Lower Stratosphere) from UCAR, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Temperatures of Troposphere / Stratosphere (TTS) (AMSU channel 7 and MSU channel 3) CDR is generated by using National Oceanic and Atmospheric Administration...

  2. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2014-01-01

    and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  3. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows.

    Science.gov (United States)

    Gallis, Michael A; Bond, Ryan B; Torczynski, John R

    2009-09-28

    Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.

  4. Aerosol Properties of the Atmospheres of Extrasolar Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Lavvas, P. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims Champagne Ardenne, Reims (France); Koskinen, T., E-mail: panayotis.lavvas@univ-reims.fr [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States)

    2017-09-20

    We use a model of aerosol microphysics to investigate the impact of high-altitude photochemical aerosols on the transmission spectra and atmospheric properties of close-in exoplanets, such as HD 209458 b and HD 189733 b. The results depend strongly on the temperature profiles in the middle and upper atmospheres, which are poorly understood. Nevertheless, our model of HD 189733 b, based on the most recently inferred temperature profiles, produces an aerosol distribution that matches the observed transmission spectrum. We argue that the hotter temperature of HD 209458 b inhibits the production of high-altitude aerosols and leads to the appearance of a clearer atmosphere than on HD 189733 b. The aerosol distribution also depends on the particle composition, photochemical production, and atmospheric mixing. Due to degeneracies among these inputs, current data cannot constrain the aerosol properties in detail. Instead, our work highlights the role of different factors in controlling the aerosol distribution that will prove useful in understanding different observations, including those from future missions. For the atmospheric mixing efficiency suggested by general circulation models, we find that the aerosol particles are small (∼nm) and probably spherical. We further conclude that a composition based on complex hydrocarbons (soots) is the most likely candidate to survive the high temperatures in hot-Jupiter atmospheres. Such particles would have a significant impact on the energy balance of HD 189733 b’s atmosphere and should be incorporated in future studies of atmospheric structure. We also evaluate the contribution of external sources to photochemical aerosol formation and find that their spectral signature is not consistent with observations.

  5. Sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere observed with GPS radio occultation

    Science.gov (United States)

    Scherllin-Pirscher, Barbara; Randel, William J.; Kim, Joowan

    2017-04-01

    We investigate sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere (UTLS) region using daily gridded fields of GPS radio occultation measurements. The unprecedented vertical resolution (from about 100 m in the troposphere to about 1.5 km in the stratosphere) and high accuracy and precision (0.7 K to 1 K between 8 km and 25 km) make these data ideal for characterizing temperature oscillations with short vertical wavelengths. Long-term behavior of sub-seasonal temperature variability is investigated using the entire RO record from January 2002 to December 2014 (13 years of data). Transient sub-seasonal waves including eastward-propagating Kelvin waves (isolated with space-time spectral analysis) dominate large-scale zonal temperature variability in the tropical tropopause region and in the lower stratosphere. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO). Enhanced wave activity can be found during the westerly shear phase of the QBO. In the tropical tropopause region, however, sub-seasonal waves are highly transient in time. Several peaks of Kelvin-wave activity coincide with short-term fluctuations in tropospheric deep convection, but other episodes are not evidently related. Also, there are no obvious relationships with zonal winds or stability fields near the tropical tropopause. Further investigations of convective forcing and atmospheric background conditions along the waves' trajectories are needed to better understand sub-seasonal temperature variability near the tropopause. For more details, see Scherllin-Pirscher, B., Randel, W. J., and Kim, J.: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements, Atmos. Chem. Phys., 17, 793-806, doi:10.5194/acp-17-793-2017, 2017. http://www.atmos-chem-phys.net/17/793/2017/acp-17-793-2017.html

  6. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    Science.gov (United States)

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1030–1048. PMID:24283926

  7. Climate of the upper atmosphere

    Czech Academy of Sciences Publication Activity Database

    Bremer, J.; Laštovička, Jan; Mikhailov, A. V.; Altadill, D.; Pal, B.; Burešová, Dalia; Franceschi de, G.; Jacobi, C.; Kouris, S. S.; Perrone, L.; Turunen, E.

    2009-01-01

    Roč. 52, 3/4 (2009), s. 273-299 ISSN 1593-5213 R&D Projects: GA MŠk OC 091 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * trends * atmospheric waves * ionospheric variability * incoherent radar * space weather Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.548, year: 2009

  8. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    Science.gov (United States)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  9. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

    Science.gov (United States)

    Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

    2010-11-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

  10. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    Science.gov (United States)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In

  11. Room-temperature atmospheric pressure plasma plume for biomedical applications

    International Nuclear Information System (INIS)

    Laroussi, M.; Lu, X.

    2005-01-01

    As low-temperature nonequilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little ozone is generated and the gas temperature, as measured by emission spectroscopy, remains at room temperature even after hours of operations. The plasma plume can be touched by bare hands and can be directed manually by a user to come in contact with delicate objects and materials including skin and dental gum without causing any heating or painful sensation

  12. A model for atmospheric brightness temperatures observed by the special sensor microwave imager (SSM/I)

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    A closed-form mathematical model for the atmospheric contribution to microwave the absorption and emission at the SSM/I frequencies is developed in order to improve quantitative interpretation of microwave imagery from the Special Sensor Microwave Imager (SSM/I). The model is intended to accurately predict upwelling and downwelling atmospheric brightness temperatures at SSM/I frequencies, as functions of eight input parameters: the zenith (nadir) angle, the integrated water vapor and vapor scale height, the integrated cloud water and cloud height, the effective surface temperature, atmospheric lapse rate, and surface pressure. It is shown that the model accurately reproduces clear-sky brightness temperatures computed by explicit integration of a large number of radiosonde soundings representing all maritime climate zones and seasons.

  13. Correlation between the season, temperature and atmospheric pressure with incidence and pathogenesis of acute appendicitis.

    Science.gov (United States)

    Karanikolić, Aleksandar; Karanikolić, Vesna; Djordjević, Lidija; Pešić, Ivan

    2016-01-01

    There is very little literature data on the correlation between the seasons, temperature and atmospheric pressure, and pathogenesis of acute appendicitis (AA). The aim of this research is to investigate the association between the seasons, changes in atmospheric temperature and pressure, and patients’ age and severity of the clinical form of AA in the city of Niš This study included 395 patients diagnosed with AA, who, during the two-year period, from July 1st 2011 to June 30th 2013, were hospitalized and operated on at the Department of General Surgery, Clinical Center in Niš, Serbia. The increased average daily values of barometric pressure by 1 millibar on the day when the event took place was associated (p atmospheric temperature and pressure.

  14. Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air

    Science.gov (United States)

    Grinstead, Jay H.; Laufer, Gabriel; Mcdaniel, James C., Jr.

    1993-01-01

    Conditions for obtaining laser-induced O2 fluorescence using a tunable KrF laser has been determined theoretically and experimentally. With this laser source, O2 rotational temperature measurement is possible even in the absence of vibrational equilibrium. Temperature measurement using a two-line excitation scheme has been demonstrated in a high-temperature atmospheric-air furnace. A measurement uncertainty of 10.7 percent for the temperature range 1325-1725 K was realized. At atmospheric pressure, O2 LIF measurements are possible for air temperatures above 1250 K. Interference from OH fluorescence in reacting flows can be avoided by the proper selection of O2 transitions. Depletion of the ground state population by the incident laser is negligible for intensities below 7.5 x 10 to the 6th W/sq cm/per cm.

  15. On the fluctuations of density and temperature in outer space atmosphere obtained from orbital shift of TAIYO

    International Nuclear Information System (INIS)

    Kato, Yoshio; Onishi, Nobuto; Shimizu, Osamu; Enmi, Sachiko; Hirao, Kunio.

    1976-01-01

    The temperature and density in outer space atmosphere were obtained from the change of the orbital period of the artificial satellite TAIYO which was launched on February 24, 1975, from Kagoshima. An equation to calculate atmospheric density with the characteristic values of the satellite is presented in the first part together with the observed variation of the orbital elements of TAIYO. The weekly changes of temperature and density in outer space atmosphere at the altitude of 250 km, which is the perigee of the satellite, from April 1975 to May 1976 were obtained. The relations between outer space temperature and sigma KP, F10.7, and the position of the perigee were also obtained. The outer space temperature as a function of local time is presented, and it is observed that the temperature change in relation to the local time agrees with the atmospheric model, and that the ratio of maximum or minimum temperature within a day becomes nearly 1.3. It is commented that more data will be available for the further detailed analysis because TAIYO is still orbiting normally. (Aoki, K.)

  16. ANALYSIS OF STRESS STATE IN UPPER LAYER OF ROAD CONCRETE PAVEMENT WITH TEMPERATURE ACTION

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2017-01-01

    Full Text Available While being operated auto-road pavements are subjected to intensive mechanical impacts, ultraviolet ray irradiation, freeze-thaw temperatures, freezing and thawing, drying and moistening. Due to these actions various types of pavement distresses appear on the road pavement. The most significant and dangerous type of distresses is micro-cracks on the road surface. One of the main reasons for their formation is an action of weather and climatic factors that initiate large changes in temperature of coating surface and occurrence of large temperature gradients in the upper layer. In this context while designing and operating auto-roads it is rather essential to investigate a stress state in road surface which is caused by temperature action. Purpose of the described investigations is to determine permissible temperature gradients for cement-concrete pavements that exclude formation of micro-cracks on their surface and thickness of damaged surface layer. Calculations of road pavement have been carried out at various laws for temperature distribution in its depth. A finite difference method realized in PARUS software has been used for studying a stress state of cement-concrete auto-roads. Regularities for distribution of stresses in cement-concrete pavement of auto-roads have been obtained at various surface temperatures. Permissible temperature gradients in the upper pavement layer have been determined and thickness of the layer where micro-cracks are formed has been assessed in the paper. Strength criterion based on the process of micro-crack formation and development in the concrete has been used for calculations. Risk of micro-crack formation on the auto-road pavement depends on material strength, conditions of plate fixing and temperature gradients.

  17. Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

    Directory of Open Access Journals (Sweden)

    C. A. Keller

    2011-02-01

    Full Text Available A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement with the MH derived from concurrent Radon-222 (222Rn measurements and in previous studies.

  18. Composition and structure of the martian atmosphere: preliminary results from Viking 1

    International Nuclear Information System (INIS)

    Nier, A.O.; Hanson, W.B.; Seiff, A.; McElroy, M.B.; Spencer, N.W.; Duckett, R.J.; Knight, T.C.D.; Cook, W.S.

    1976-01-01

    Results from the aeroshell-mounted neutral mass spectrometer on Viking 1 indicate that the upper atmosphere of Mars is composed mainly of CO 2 with trace quantities of N 2 , Ar, O, O 2 , and CO. The mixing ratios by volume relative to CO 2 for N 2 , Ar, and O 2 are about 0.06, 0.015, and 0.003, respectively, at an altitude near 135 kilometers. Molecular oxygen (O 2 + ) is a major component of the ionosphere according to results from the retarding potential analyzer. The atmosphere between 140 and 200 kilometers has an average temperature of about 180 0 +- 20 0 K. Atmospheric pressure at the landing site for Viking 1 was 7.3 millibars at an air temperature of 241 0 K. The descent data are consistent with the view that CO 2 should be the major constituent of the lower martian atmosphere

  19. Efficiency and limitations of the upper airway mucosa as an air conditioner evaluated from the mechanisms of bronchoconstriction in asthmatic subjects.

    Science.gov (United States)

    Konno, A; Terada, N; Okamoto, Y; Togawa, K

    1985-01-01

    To elucidate a limit to the efficiency of the upper airway mucosa as an air conditioner, the temperatures of the inspiratory air and mucosa were measured in the cervical trachea. Both of them were affected only minimally by change of atmospheric air temperature during resting nose breathing, but were affected greatly by change of mode of breathing. During hyperventilation through the mouth, when the atmospheric air temperature was 1 degree C, a temperature difference of 9 degrees C was noted between inspiratory air in the cervical trachea and body temperature, together with a mucosal temperature fall by 1.86 +/- 0.61 degree C. Wearing of a mask caused a rise of 3 degrees C in the inspiratory air temperature in the cervical trachea.

  20. Multiple climate regimes in an idealized lake-ice-atmosphere model

    Science.gov (United States)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  1. Light in Condensed Matter in the Upper Atmosphere as the Origin of Homochirality: Circularly Polarized Light from Rydberg Matter

    Science.gov (United States)

    Holmlid, Leif

    2009-08-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  2. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    Science.gov (United States)

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  3. Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmospheric limb-emission measurements

    Directory of Open Access Journals (Sweden)

    M. Ridolfi

    2007-08-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA. The high resolution (0.035 cm−1 full width half maximum, unapodized limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62 of the inversion algorithms. The products of this processing chain are pressures at the tangent points and geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons.

    The results of the intercomparison indicate that the bias of the MIPAS profiles is generally smaller than 1 or 2 K depending on altitude. Furthermore we find that, especially at the edges of the altitude range covered by the MIPAS scan, the random error estimated from the intercomparison is larger (typically by a factor of two to three than the corresponding estimate derived on the basis of error propagation.

    In this work we also characterize the discrepancies between MIPAS temperature and the temperature fields resulting from the analyses of the European Centre for Medium-range Weather Forecasts (ECMWF. The bias and the standard deviation of these discrepancies are consistent with those obtained when

  4. Effect of stress relief annealing temperature and atmosphere on the magnetic properties of silicon steel

    International Nuclear Information System (INIS)

    Paolinelli, Sebastiao C.; Cunha, Marco A. da

    2006-01-01

    Fully processed non-oriented silicon steel samples 0.50 mm thick were sheared and submitted to stress relief annealing under different conditions of temperature and atmosphere to investigate the effect of this treatment on the recovery of magnetic properties. Two different compositions were used, with different Si and Al contents. Temperature was varied in the range of 600-900 deg. C and four atmospheres were used: N 2 and N 2 +10%H 2 combined with dew points of -10 and 15 deg. C. The results showed that annealing atmosphere has very important effect on the magnetic properties and that the beneficial effect of stress relief annealing can be overcome by the detrimental effect of the atmosphere under certain conditions, due to oxidation and nitration

  5. Reconciling atmospheric temperatures in the early Archean

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end include...... weathering on climate). Selective alteration of δD in Isua rocks to values of -130 to -100‰ post-dates ca. 3.55Ga Ameralik dikes, but may be associated with a poorly defined 2.6-2.8Ga metamorphic event that is coincident with the amalgamation of the “Kenorland supercontinent.”...

  6. Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean-atmosphere hindcasts

    Energy Technology Data Exchange (ETDEWEB)

    Orsolini, Yvan J. [Norwegian Institute for Air Research (NILU), PO BOX 100, Kjeller (Norway); Senan, Retish; Benestad, Rasmus E.; Melsom, Arne [Norwegian Meteorological Institute (met. no), Oslo (Norway)

    2012-06-15

    The autumn and early winter atmospheric response to the record-low Arctic sea ice extent at the end of summer 2007 is examined in ensemble hindcasts with prescribed sea ice extent, made with the European Centre for Medium-Range Weather Forecasts state-of-the-art coupled ocean-atmosphere seasonal forecast model. Robust, warm anomalies over the Pacific and Siberian sectors of the Arctic, as high as 10 C at the surface, are found in October and November. A regime change occurs by December, characterized by weaker temperatures anomalies extending through the troposphere. Geopotential anomalies extend from the surface up to the stratosphere, associated to deeper Aleutian and Icelandic Lows. While the upper-level jet is weakened and shifted southward over the continents, it is intensified over both oceanic sectors, especially over the Pacific Ocean. On the American and Eurasian continents, intensified surface Highs are associated with anomalous advection of cold (warm) polar air on their eastern (western) sides, bringing cooler temperatures along the Pacific coast of Asia and Northeastern North America. Transient eddy activity is reduced over Eurasia, intensified over the entrance and exit regions of the Pacific and Atlantic storm tracks, in broad qualitative agreement with the upper-level wind anomalies. Potential predictability calculations indicate a strong influence of sea ice upon surface temperatures over the Arctic in autumn, but also along the Pacific coast of Asia in December. When the observed sea ice extent from 2007 is prescribed throughout the autumn, a higher correlation of surface temperatures with meteorological re-analyses is found at high latitudes from October until mid-November. This further emphasises the relevance of sea ice for seasonal forecasting in the Arctic region, in the autumn. (orig.)

  7. Atmospheric Dynamics Leading to West European Summer Hot Temperatures Since 1851

    Directory of Open Access Journals (Sweden)

    M. Carmen Alvarez-Castro

    2018-01-01

    Full Text Available Summer hot temperatures have many impacts on health, economy (agriculture, energy, and transports, and ecosystems. In Western Europe, the recent summers of 2003 and 2015 were exceptionally warm. Many studies have shown that the genesis of the major heat events of the last decades was linked to anticyclonic atmospheric circulation and to spring precipitation deficit in Southern Europe. Such results were obtained for the second part of the 20th century and projections into the 21st century. In this paper, we challenge this vision by investigating the earlier part of the 20th century from an ensemble of 20CR reanalyses. We propose an innovative description of Western-European heat events applying the dynamical system theory. We argue that the atmospheric circulation patterns leading to the most intense heat events have changed during the last century. We also show that the increasing temperature trend during major heatwaves is encountered during episodes of Scandinavian Blocking, while other circulation patterns do not yield temperature trends during extremes.

  8. Impedance measurements on Au microelectrodes using controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Wu, Yuehua; Hansen, Karin Vels; Jacobsen, Torben

    2011-01-01

    High temperature impedance measurements on Au microelectrodes deposited on polished yttria stabilized zirconia (YSZ) pellets were demonstrated using a newly designed controlled atmosphere high temperature scanning probe microscope (CAHT-SPM). Probes based on Pt0.8Ir0.2 were fabricated and employed...

  9. Water loss from terrestrial planets with CO2-rich atmospheres

    International Nuclear Information System (INIS)

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-01-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO 2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO 2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO 2 -rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m –2 (global mean) unlikely to lose more than one Earth ocean of H 2 O over their lifetimes unless they lose all their atmospheric N 2 /CO 2 early on. Because of the variability of H 2 O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO 2 /H 2 O-rich atmospheres, and high mean surface temperatures.

  10. High-temperature controlled atmosphere for post-harvest control of Indian meal moth (Lepidoptera: Pyralidae) on preserved flowers.

    Science.gov (United States)

    Sauer, Jodi A; Shelton, Mark D

    2002-10-01

    High carbon dioxide atmospheres combined with high temperature were effective for controlling Indian meal moth, Plodia interpunctella (Hübner) pupae. Pupae were exposed to atmospheres of 60, 80, or 98% carbon dioxide (CO2) in nitrogen (N2), or 60 or 80% CO2 in air at temperatures of 26.7 degrees C or 32.2 degrees C and 60% RH. Controlled atmosphere treatments at 32.2 degrees C controlled pupae faster than the same treatments at the lower temperature. At both temperatures high CO2 concentration treatments combined with nitrogen killed pupae faster than high CO2 concentration treatments combined with air. Exposure to 80% carbon dioxide mixed with nitrogen was the most effective treatment causing 100% mortality in 12 h at 32.2 degrees C and 93.3% mortality in 18 h at 26.6 degrees C. High-temperature controlled atmosphere treatments had no adverse effects on quality of two preserved floral products, Limonium sinuatum (L.) and Gypsophila elegans (Bieb.), tested for 12, 18, and 24 h according to industry standards.

  11. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    the atmosphere. Without atmospheric correction, the absolute mean difference between RST and in situ measurements was 1.1°C with a standard devi- ation of 1.3°C. Thus, a correction of atmospheric influences on radiances measured at the top of the atmosphere was necessary and two different methods for atmospheric correction (ATCOR2 and the Atmospheric Correction Parameter Calculator) were applied. The correction results showed that for both methods, the correct choice of atmospheric profiles is very important. With the calculator, an absolute mean difference of 0.8 +/- 1.0°C and with the selected overall best scenes, an absolute mean difference of 0.5 ± 0.7°C was achieved. The selected corrected RST can be used to interpolate between in situ measurements available only for a limited number of points along the river course and longitudinal example profiles of the surface water temperature in the Upper and Middle Rhine could be calculated for different seasons. On the basis of these profiles, the increasing temperature gradient along the Upper Rhine could be identified and the possibility to detect heat or cooling discharge from tributaries and other sources is evaluated.

  12. Average Potential Temperature of the Upper Mantle and Excess Temperatures Beneath Regions of Active Upwelling

    Science.gov (United States)

    Putirka, K. D.

    2006-05-01

    The question as to whether any particular oceanic island is the result of a thermal mantle plume, is a question of whether volcanism is the result of passive upwelling, as at mid-ocean ridges, or active upwelling, driven by thermally buoyant material. When upwelling is passive, mantle temperatures reflect average or ambient upper mantle values. In contrast, sites of thermally driven active upwellings will have elevated (or excess) mantle temperatures, driven by some source of excess heat. Skeptics of the plume hypothesis suggest that the maximum temperatures at ocean islands are similar to maximum temperatures at mid-ocean ridges (Anderson, 2000; Green et al., 2001). Olivine-liquid thermometry, when applied to Hawaii, Iceland, and global MORB, belie this hypothesis. Olivine-liquid equilibria provide the most accurate means of estimating mantle temperatures, which are highly sensitive to the forsterite (Fo) contents of olivines, and the FeO content of coexisting liquids. Their application shows that mantle temperatures in the MORB source region are less than temperatures at both Hawaii and Iceland. The Siqueiros Transform may provide the most precise estimate of TpMORB because high MgO glass compositions there have been affected only by olivine fractionation, so primitive FeOliq is known; olivine thermometry yields TpSiqueiros = 1430 ±59°C. A global database of 22,000 MORB show that most MORB have slightly higher FeOliq than at Siqueiros, which translates to higher calculated mantle potential temperatures. If the values for Fomax (= 91.5) and KD (Fe-Mg)ol-liq (= 0.29) at Siqueiros apply globally, then upper mantle Tp is closer to 1485 ± 59°C. Averaging this global estimate with that recovered at Siqueiros yields TpMORB = 1458 ± 78°C, which is used to calculate plume excess temperatures, Te. The estimate for TpMORB defines the convective mantle geotherm, and is consistent with estimates from sea floor bathymetry and heat flow (Stein and Stein, 1992), and

  13. Atmospheric QBO and ENSO indices with high vertical resolution from GNSS radio occultation temperature measurements

    Science.gov (United States)

    Wilhelmsen, Hallgeir; Ladstädter, Florian; Scherllin-Pirscher, Barbara; Steiner, Andrea K.

    2018-03-01

    We provide atmospheric temperature variability indices for the tropical troposphere and stratosphere based on global navigation satellite system (GNSS) radio occultation (RO) temperature measurements. By exploiting the high vertical resolution and the uniform distribution of the GNSS RO temperature soundings we introduce two approaches, both based on an empirical orthogonal function (EOF) analysis. The first method utilizes the whole vertical and horizontal RO temperature field from 30° S to 30° N and from 2 to 35 km altitude. The resulting indices, the leading principal components, resemble the well-known patterns of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the tropics. They provide some information on the vertical structure; however, they are not vertically resolved. The second method applies the EOF analysis on each altitude level separately and the resulting indices contain information on the horizontal variability at each densely available altitude level. They capture more variability than the indices from the first method and present a mixture of all variability modes contributing at the respective altitude level, including the QBO and ENSO. Compared to commonly used variability indices from QBO winds or ENSO sea surface temperature, these new indices cover the vertical details of the atmospheric variability. Using them as proxies for temperature variability is also of advantage because there is no further need to account for response time lags. Atmospheric variability indices as novel products from RO are expected to be of great benefit for studies on atmospheric dynamics and variability, for climate trend analysis, as well as for climate model evaluation.

  14. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    Science.gov (United States)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  15. Diffusion phenomena in polycrystalline chromium near the upper homological temperature of intercrystalline diffusion manifestation

    International Nuclear Information System (INIS)

    Kajgorodov, V.N.; Klothman, S.M.; Kurkin, M.I.; Dyakin, V.V.; Zherebthov, D.V.

    1997-01-01

    A study is made into the temperature dependences of density of states in a zone of intercrystalline diffusion of atomic probes 57 Co in polycrystalline chromium as well as in the temperature dependences of isomer shift and line width in Moessbauer spectra near the upper temperature boundary of manifestation of intercrystalline diffusion. In polycrystalline chromium the release of states in the core of the crystallite conjugation region (CCR) takes place only at high temperatures due to the fact that a stationary zone of high point defect concentration in the vicinity of CCR is conserved up to high temperatures. The atomic probe escape from the core of CCR starts at the temperatures at which the equilibrium vacancy concentration in the bulk of crystallite is equal to that in a stationary zone of high defect concentration

  16. Extension of the MSIS thermosphere model into the middle and lower atmosphere

    International Nuclear Information System (INIS)

    Hedin, A.E.

    1991-01-01

    The MSIS-86 empirical model has been revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating temperature and density profiles representative of the climatological average for various geophysical conditions. Tabulations from the Handbook for MAP 16 are the primary guide for the lower atmosphere and are supplemented by historical rocket and incoherent scatter data in the upper mesosphere and lower thermosphere. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and simplified local time and longitude variations. While month to month details cannot be completely represented, lower atmosphere temperature data are fit to an overall standard deviation of 3 K and pressure to 2%. Comparison with rocket and other data indicates that the model represents current knowledge of the climatological average reasonably well, although there is some conflict as to details near the mesopause

  17. Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets

    Science.gov (United States)

    Zhang, X.; Showman, A. P.

    2015-12-01

    Depending on the metallicity of the protoplanetary disk, the details of gas accretion during planetary formation, and atmospheric loss during planetary evolution, the atmospheres of sub-Jupiter-sized planets could exhibit a variety of bulk compositions. Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich atmospheres like Neptune, evaporated atmospheres dominated by helium, or of course carbon dioxide, water vapor, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets using an idealized three-dimensional general circulation model (GCM). Composition—in particular, the molecular mass and specific heat—affect the sound speed, gravity wave speeds, atmospheric scale height, and Rossby deformation radius, and therefore in principle can exert significant controls on the atmospheric circulation, including the day-night temperature difference and other observables. We performed numerous simulations exploring a wide range of molecular masses and molar specific heats. The effect of molecular weight dominates. We found that a higher-molecular-weight atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal light curve, and a narrower equatorial super-rotating jet that occurs in a deeper atmosphere. The zonal-mean zonal wind is smaller and more prone to exhibit a latitudinally alternating pattern in a higher-molecular-weight atmosphere. If the vertical temperature profile is close to adiabatic, molar specific heat will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere. We are also working on analytical theories to explain aspects of the simulations relevant for possible observables on tidally locked

  18. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Science.gov (United States)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  19. Infrared investigation of the temperature structure of the solar atmosphere

    International Nuclear Information System (INIS)

    Allen, R.G.

    1978-01-01

    Narrow-band continuum limb darkening observations of the sun were taken with the Infrared Spectrometer and the West Auxiliary of the McMath Solar Telescope during the first half of 1974. The infrared limb darkening measures were used with a few absolute intensity and limb darkening measures of other investigators to develop a series of empirical solar models. The temperatures in most of the solar models were adjusted until the predictions of the model atmosphere program matched the observational measures as well as possible. Limb darkening residuals were calculated by subtracting the observational measures of the limb darkening from the limb darkening measures that were computed from the program. Experiments with several models indicated that a steep temperature gradient was needed to fit the observations at short wavelengths while a rather low temperature gradient was needed at long wavelengths. Non-LTE effects and errors in the H - opacity were ruled out as possible sources of this discrepancy. An excellent fit to the observations was ultimately achieved with a two-component LTE solar model. The hot component of this model represents the half of the solar surface that is above the median temperature at each depth; while the cool component represents the half of the solar surface that is below the median temperature. Most of the observations are fitted to within the expected errors by this model. Discrepancies below 4500 A are probably due to line blanketing. The splitting between the hot and cool components of the model is consistent with current estimates of the rms intensity fluctuations in the solar atmosphere. The model also resembles several theoretical two-component models that have recently appeared in the literature

  20. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O2 airglow temperatures measurements

    Science.gov (United States)

    Taori, A.; Jayaraman, A.; Raghunath, K.; Kamalakar, V.

    2012-01-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O2 temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation.

  1. Refining multi-model projections of temperature extremes by evaluation against land-atmosphere coupling diagnostics

    Science.gov (United States)

    Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.

    2017-05-01

    The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected

  2. Temporal and Spatial Variabilities of Japan Sea Surface Temperature and Atmospheric Forcings

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    1998-01-01

    ...) and surface air temperature (SAT) data during 1982-1994 and the National Center for Atmospheric Research surface wind stress curl data during 1982-1989 to investigate the Japan Sea SST temporal and spatial variabilities...

  3. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wordsworth, R. D.; Pierrehumbert, R. T., E-mail: rwordsworth@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 60637 IL (United States)

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  4. A Climate Benchmark of Upper Air Temperature Observations from GNSS Radio Occultation

    Science.gov (United States)

    Ao, C. O.; Mannucci, A. J.; Leroy, S. S.; Verkhoglyadova, O. P.

    2017-12-01

    GPS (Global Positioning System), or more generally Global Navigation Satellite System (GNSS), radio occultation (RO) is a remote sensing technique that produces highly accurate temperature in the upper troposphere and lower stratosphere across the globe with fine vertical resolution. Its fundamental measurement is the time delay of the microwave signal as it travels from a GNSS satellite to the receiver in low Earth orbit. With a relatively simple physical retrieval, the uncertainty in the derived temperature can be traced rigorously through the retrieval chain back to the raw measurements. The high absolute accuracy of RO allows these observations to be assimilated without bias correction in numerical weather prediction models and provides an anchor for assimilating other types of observations. The high accuracy, coupled with long-term stability, makes RO valuable in detecting decadal temperature trends. In this presentation, we will summarize the current state of RO observations and show temperature trends derived from 15 years of RO data in the upper troposphere and lower stratosphere. We will discuss our recent efforts in developing retrieval algorithms that are more tailored towards climate applications. Despite the relatively robust "self-calibrating" nature of RO observations, disparity in receiver hardware and software may introduce subtle differences that need to be carefully addressed. While the historic RO data record came from relatively homogeneous hardware based largely on NASA/JPL design (e.g., CHAMP and COSMIC), the future data will likely be comprised of a diverse set of observations from Europe, China, and various commercial data providers. In addition, the use of non-GPS navigation systems will become more prevalent. We will discuss the challenges involved in establishing a long-term RO climate data record from a suite of research and operational weather satellites with changes in instrumentation and coverage.

  5. Age Spreads and the Temperature Dependence of Age Estimates in Upper Sco

    Energy Technology Data Exchange (ETDEWEB)

    Fang Qiliang; Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan Lu 5, Haidian Qu, 100871 Beijing (China); Rizzuto, Aaron [Department of Astronomy, University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States)

    2017-06-20

    Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on a timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.

  6. Analysis of chosen urban bioclimatic conditions in Upper Silesian Industrial Region, Poland

    Science.gov (United States)

    Zimnol, Jan

    2013-04-01

    Due to the increasing urbanization, people spend more and more time in cities. Because of that fact during the last century the human bioclimatological approach had an important influence on the applied urban bioclimatology. The aim of the study was to analyze chosen thermal bioclimatic conditions in urban area of Upper Silesian Industrial Region in connection with the atmospheric circulation and air masses. The study was focused on the thermal conditions that are important for the bioclimatological research on human thermal comfort. They were the basis for making study on how to show the influence of the air masses and circulations types on frequency and variability of the chosen bioclimate indexes. That research was based on data (2004 - 2008) acquired by the Silesian University (Faculty of Earth Sciences) meteorological station located in the city of Sosnowiec (50°17'N, 19°08'E, h=263 m a.s.l.). The temperature measurements were made automatically every 10 minutes on the 2 meters above the ground level. Previous research showed that the station is a good representation of the local urban climate conditions in Upper Silesian Industrial Region. In the study the following air temperatures were taken into consideration: average day temperature, maximum day temperature, minimum day temperature and the average air temperature at 12 UTC. They were associated with atmospheric circulation types and masses typical for the region. Using the data mentioned above I conducted a classification to divide days into following objective categories: cool, cold, comfortable, hot, warm and very hot in the seasonal depiction. The final stage of the work was to find the answer to the following question: "When and how do the strong air masses and air circulations types modify bioclimatic conditions in the study area?" Answer to that question together with further results of the research will be presented on my poster.

  7. Evidence that global evapotranspiration makes a substantial contribution to the global atmospheric temperature slowdown

    Science.gov (United States)

    Leggett, L. Mark W.; Ball, David A.

    2018-02-01

    The difference between the time series trend for temperature expected from the increasing level of atmospheric CO2 and that for the (more slowly rising) observed temperature has been termed the global surface temperature slowdown. In this paper, we characterise the single time series made from the subtraction of these two time series as the `global surface temperature gap'. We also develop an analogous atmospheric CO2 gap series from the difference between the level of CO2 and first-difference CO2 (that is, the change in CO2 from one period to the next). This paper provides three further pieces of evidence concerning the global surface temperature slowdown. First, we find that the present size of both the global surface temperature gap and the CO2 gap is unprecedented over a period starting at least as far back as the 1860s. Second, ARDL and Granger causality analyses involving the global surface temperature gap against the major candidate physical drivers of the ocean heat sink and biosphere evapotranspiration are conducted. In each case where ocean heat data was available, it was significant in the models: however, evapotranspiration, or its argued surrogate precipitation, also remained significant in the models alongside ocean heat. In terms of relative scale, the standardised regression coefficient for evapotranspiration was repeatedly of the same order of magnitude as—typically as much as half that for—ocean heat. The foregoing is evidence that, alongside the ocean heat sink, evapotranspiration is also likely to be making a substantial contribution to the global atmospheric temperature outcome. Third, there is evidence that both the ocean heat sink and the evapotranspiration process might be able to continue into the future to keep the temperature lower than the level-of-CO2 models would suggest. It is shown that this means there can be benefit in using the first-difference CO2 to temperature relationship shown in Leggett and Ball (Atmos Chem Phys 15

  8. Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment

    Science.gov (United States)

    Giordani, Hervé; Planton, Serge; Benech, Bruno; Kwon, Byung-Hyuk

    1998-10-01

    The sensitivity of the marine atmospheric boundary layer (MABL) subjected to sea surface temperatures (SST) during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in 1993 has been studied. Atmospheric analyses produced by the Action de Recherche, Petite Echelle, Grande Echelle (ARPEGE) operational model at the French meteorological weather service assimilated data sets collected between October 7 and November 17, 1993, merged with the Global Telecommunication System (GTS) data. Analyses were validated against independent data from aircraft instruments collected along a section crossing the Azores oceanic front, not assimilated into the model. The responses of the mean MABL in the aircraft cross section to changes in SST gradients of about 1°C/100 km were the presence of an atmospheric front with horizontal gradients of 1°C/100 km and an increase of the wind intensity from the cold to the warm side during an anticyclonic synoptic situation. The study of the spatiotemporal characteristics of the MABL shows that during 3 days of an anticyclonic synoptic situation the SST is remarkably stationary because it is principally controlled by the Azores ocean current, which has a timescale of about 10 days. However, the temperature and the wind in the MABL are influenced by the prevailing atmospheric conditions. The ocean does not appear to react to the surface atmospheric forcing on the timescale of 3 days, whereas the atmospheric structures are modified by local and synoptic-scale advection. The MABL response appears to be much quicker than that of the SSTs. The correlation between the wind and the thermal structure in the MABL is dominated by the ageostrophic and not by the geostrophic component. In particular, the enhancement of the wind on either side of the SST front is mainly due to the ageostrophic component. Although the surface heat fluxes are not the only cause of ageostrophy, the

  9. Polarisation of auroral emission lines in the Earth's upper atmosphere : first results and perspectives

    Science.gov (United States)

    Lamy, H.; Barthelemy, M.; Simon Wedlund, C.; Lilensten, J.; Bommier, V.

    2011-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Following the pioneering and controversial work of Duncan in 1959, the polarisation of auroral emission lines in the Earth's upper atmosphere has been overlooked for a long time, even though the red intense auroral line (6300Å) produced by collisional impacts with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated again by Lilensten et al (2006) and observations were obtained by Lilensten et al (2008) confirming that the red auroral emission line is polarised. More recent measurements obtained by Barthélemy et al (2011) are presented and discussed. The results are compared to predictions of the theoretical work of Bommier et al (2011) and are in good agreement. Following these encouraging results, a new dedicated spectropolarimeter is currently under construction between BIRA-IASB and IPAG to provide simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... Perspectives regarding the theoretical polarisation of some of these lines will be presented. The importance of these polarisation measurements in the framework of atmospheric modeling and geomagnetic activity will be discussed.

  10. Water and sediment temperatures at mussel beds in the upper Mississippi River basin

    Science.gov (United States)

    Newton, Teresa J.; Sauer, Jennifer; Karns, Byron

    2013-01-01

    Native freshwater mussels are in global decline and urgently need protection and conservation. Declines in the abundance and diversity of North American mussels have been attributed to human activities that cause pollution, waterquality degradation, and habitat destruction. Recent studies suggest that effects of climate change may also endanger native mussel assemblages, as many mussel species are living close to their upper thermal tolerances. Adult and juvenile mussels spend a large fraction of their lives burrowed into sediments of rivers and lakes. Our objective was to measure surface water and sediment temperatures at known mussel beds in the Upper Mississippi (UMR) and St. Croix (SCR) rivers to estimate the potential for sediments to serve as thermal refugia. Across four mussel beds in the UMR and SCR, surface waters were generally warmer than sediments in summer, and were cooler than sediments in winter. This suggests that sediments may act as a thermal buffer for mussels in these large rivers. Although the magnitude of this effect was usually cause mortality in laboratory studies. These data suggest that elevated water temperatures resulting from global warming, thermal discharges, water extraction, and/or droughts have the potential to adversely affect native mussel assemblages.

  11. Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer.

    Science.gov (United States)

    Vu, Henry M; Duman, John G

    2017-08-01

    Upper lethal temperatures (ULTs) of cold-adapted insect species in winter have not been previously examined. We anticipated that as the lower lethal temperatures (LLTs) decreased (by 20-30°C) with the onset of winter, the ULTs would also decrease accordingly. Consequently, given the recent increases in winter freeze-thaw cycles and warmer winters due to climate change, it became of interest to determine whether ambient temperatures during thaws were approaching ULTs during the cold seasons. However, beetle Dendroides canadensis (Coleoptera: Pyrochroidae) larvae had higher 24 and 48 h ULT 50 (the temperature at which 50% mortality occurred) in winter than in summer. The 24 and 48 h ULT 50 for D. canadensis in winter were 40.9 and 38.7°C, respectively. For D. canadensis in summer, the 24 and 48 h ULT 50 were 36.7 and 36.4°C. During the transition periods of spring and autumn, the 24 h ULT 50 was 37.3 and 38.5°C, respectively. While D. canadensis in winter had a 24 h LT 50 range between LLT and ULT of 64°C, the summer range was only 41°C. Additionally, larvae of the beetle Cucujus clavipes clavipes (Coleoptera: Cucujidae) and the cranefly Tipula trivittata (Diptera: Tipulidae) also had higher ULTs in winter than in summer. This unexpected phenomenon of increased temperature survivorship at both lower and higher temperatures in the winter compared with that in the summer has not been previously documented. With the decreased high temperature tolerance as the season progresses from winter to summer, it was observed that environmental temperatures are closest to upper lethal temperatures in spring. © 2017. Published by The Company of Biologists Ltd.

  12. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O{sub 2} airglow temperatures measurements

    Energy Technology Data Exchange (ETDEWEB)

    Taori, A.; Jayaraman, A.; Raghunath, K. [National Atmospheric Research Laboratory, Gadanki (India); Kamalakar, V. [S.V. Univ., Tirupati (India). Dept. of Physics

    2012-07-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O{sub 2} temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation. (orig.)

  13. Comparing daily temperature averaging methods: the role of surface and atmosphere variables in determining spatial and seasonal variability

    Science.gov (United States)

    Bernhardt, Jase; Carleton, Andrew M.

    2018-05-01

    The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.

  14. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes

    International Nuclear Information System (INIS)

    Lenderink, Geert; Van Meijgaard, Erik

    2010-01-01

    Relations between hourly precipitation extremes and atmospheric temperature and moisture derived for the present-day climate are studied with the aim of understanding the behavior (and the uncertainty in predictions) of hourly precipitation extremes in a changing climate. A dependency of hourly precipitation extremes on the daily mean 2 m temperature of approximately two times the Clausius-Clapeyron (CC) relation is found for temperatures above 10 deg. C. This is a robust relation obtained in four observational records across western Europe. A dependency following the CC relation can be explained by the observed increase in atmospheric (absolute) humidity with temperature, whereas the enhanced dependency (compared to the CC relation) appears to be caused by dynamical feedbacks owing to excess latent heat release in extreme showers. Integrations with the KNMI regional climate model RACMO2 at 25 km grid spacing show that changes in hourly precipitation extremes may indeed considerably exceed the prediction from the CC relation. The results suggests that increases of + 70% or even more are possible by the end of this century. However, a different regional model (CLM operated at ETHZ) predicts much smaller increases; this is probably caused by a too strong sensitivity of this model to a decrease in relative humidity.

  15. Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics

    Directory of Open Access Journals (Sweden)

    S. Sippel

    2017-05-01

    Full Text Available The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land–atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land–atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T and evapotranspiration (ET benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land–atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5 archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T–ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T–ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand

  16. Atmospheric electrodynamics

    International Nuclear Information System (INIS)

    Volland, H.

    1984-01-01

    The book Atmospheric Electrodynamics, by Hans Voland is reviewed. The book describes a wide variety of electrical phenomena occurring in the upper and lower atmosphere and develops the mathematical models which simulate these processes. The reviewer finds that the book is of interest to researchers with a background in electromagnetic theory but is of only limited use as a reference work

  17. NF3: UV Absorption Spectrum Temperature Dependence and the Atmospheric and Climate Forcing Implications

    Science.gov (United States)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively.

  18. Spatial and Temporal Variations of Infrared Emissions in the Upper Atmosphere. 3. 5.3-μm Nitric Oxide Emission

    Science.gov (United States)

    Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.

    2018-03-01

    The results of rocket and satellite measurements available in the literature of 5.3-μm nitric oxide emission in the upper atmosphere have been systematized and analyzed. Analytical dependences describing the height distribution of volumetric intensity of 5.3-μm emission of the NO molecule and its variations in a range of heights from 100 to 130 km as a function of the time of year, day, latitude, and solar activity have been obtained.

  19. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  20. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold.

    Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  1. Trend-outflow method for understanding interactions of surface water with groundwater and atmospheric water for eight reaches of the Upper Rio Grande

    Science.gov (United States)

    Liu, Yi; Sheng, Zhuping

    2011-11-01

    SummaryAtmospheric water, surface water, and groundwater interact very actively through hydrologic processes such as precipitation, infiltration, seepage, irrigation, drainage, evaporation, and evapotranspiration in the Upper Rio Grande Basin. A trend-outflow method has been developed in this paper to gain a better understanding of the interactions based on cumulated inflow and outflow data for any river reaches of interest. A general trend-outflow equation was derived by associating the net interaction of surface water with atmospheric water as a polynomial of inflow and the net interaction of surface water with groundwater as a constant based on surface water budget. Linear and quadratic relations are probably two common trend-outflow types in the real world. It was found that trend-outflows of the Upper Rio Grande reaches, Española, Albuquerque, Socorro-Engle, Palomas, and Rincon are linear with inflow, while those of reaches, Belen, Mesilla and Hueco are quadratic. Reaches Belen, Mesilla and Hueco are found as water deficit reaches mainly for irrigated agriculture in extreme drought years.

  2. ESA STSE Project “Sea Surface Temperature Diurnal Variability: Regional Extend – Implications in Atmospheric Modelling”

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    of the vertical extend of diurnal signals. Drifting buoys provide measurements close to the surface but are not always available. Moored buoys are generally not able to resolve the daily SST signal, which strongly weakens with depth within the upper water column. For such reasons, the General Ocean Turbulence......, atmospheric and oceanic modelling, bio-chemical processes and oceanic CO2 studies. The diurnal variability of SST, driven by the coincident occurrence of low enough wind and solar heating, is currently not properly understood. Atmospheric, oceanic and climate models are currently not adequately resolving...... the daily SST variability, resulting in biases of the total heat budget estimates and therefore, demised model accuracies. The ESA STSE funded project SSTDV:R.EX.-IM.A.M. aimed at characterising the regional extend of diurnal SST signals and their impact in atmospheric modelling. This study will briefly...

  3. Temperature dependence of the upper critical field of type II superconductors with fluctuation effects

    International Nuclear Information System (INIS)

    Mikitik, G.P.

    1992-01-01

    Fluctuations of the order parameter are taken into consideration in an analysis of the temperature dependence of the upper critical field of a type II superconductor with a three-dimensional superconductivity. This temperature dependence is of universal applicability, to all type II superconductors, if the magnetic fields and temperatures are expressed in appropriate units. This dependence is derived explicitly for the regions of strong and weak magnetic fields. The results are applied to high T c superconductors, for which fluctuation effects are important. For these superconductors, the H c2 (T) dependence is quite different from the linear dependence characteristic of the mean-field theory, over a broad range of magnetic fields

  4. Sparse Bayesian Inference and the Temperature Structure of the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Byers, Jeff M. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States); Crump, Nicholas A. [Naval Center for Space Technology, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-02-20

    Measuring the temperature structure of the solar atmosphere is critical to understanding how it is heated to high temperatures. Unfortunately, the temperature of the upper atmosphere cannot be observed directly, but must be inferred from spectrally resolved observations of individual emission lines that span a wide range of temperatures. Such observations are “inverted” to determine the distribution of plasma temperatures along the line of sight. This inversion is ill posed and, in the absence of regularization, tends to produce wildly oscillatory solutions. We introduce the application of sparse Bayesian inference to the problem of inferring the temperature structure of the solar corona. Within a Bayesian framework a preference for solutions that utilize a minimum number of basis functions can be encoded into the prior and many ad hoc assumptions can be avoided. We demonstrate the efficacy of the Bayesian approach by considering a test library of 40 assumed temperature distributions.

  5. Investigating gravity waves evidences in the Venus upper atmosphere

    Science.gov (United States)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide

    2014-05-01

    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  6. Observations of peroxyacetyl nitrate (PAN) in the upper troposphere by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)

    Science.gov (United States)

    Tereszchuk, K. A.; Moore, D. P.; Harrison, J. J.; Boone, C. D.; Park, M.; Remedios, J. J.; Randel, W. J.; Bernath, P. F.

    2013-01-01

    Peroxyacetyl nitrate (CH3CO·O2NO2, abbreviated as PAN) is a trace molecular species present in the troposphere and lower stratosphere due primarily to pollution from fuel combustion and the pyrogenic outflows from biomass burning. In the lower troposphere, PAN has a relatively short life-time and is principally destroyed within a few hours through thermolysis, but it can act as a reservoir and carrier of NOx in the colder temperatures of the upper troposphere where UV photolysis becomes the dominant loss mechanism. Pyroconvective updrafts from large biomass burning events can inject PAN into the upper troposphere and lower stratosphere (UTLS), providing a means for the long-range transport of NOx. Given the extended lifetimes at these higher altitudes, PAN is readily detectable via satellite remote sensing. A new PAN data product is now available for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) Version 3.0 data set. We report measurements of PAN in Boreal biomass burning plumes recorded during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign. The retrieval method employed and errors analysis are described in full detail. The retrieved volume mixing ratio (VMR) profiles are compared to coincident measurements made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on the European Space Agency (ESA) ENVIronmental SATellite (ENVISAT). Three ACE-FTS occultations containing measurements of Boreal biomass burning outflows, recorded during BORTAS, were identified as having coincident measurements with MIPAS. In each case, the MIPAS measurements demonstrated good agreement with the ACE-FTS VMR profiles for PAN. The ACE-FTS PAN data set is used to obtain zonal mean distributions of seasonal averages from ~5 to 20 km. A strong seasonality is clearly observed for PAN concentrations in the global UTLS. Since the

  7. Atmospheric transport of pollution to the Arctic

    International Nuclear Information System (INIS)

    Iversen, T.

    1984-01-01

    If the atmospheric processes are assumed to be nearly adiabatic, the conclusion is that the possible source areas of Arctic air pollution detected at ground level have to be situated in areas with almost the same temperature as observed in the Arctic itself. Sources south of the polar front system can only contribute to high-altitude (or upper level) Arctic pollution. The amplitude and phase of long, planetary waves are important since they determine the position of the polar front, and provide conditions for meridional transport of air at certain longitudes

  8. Modes of North Atlantic Decadal Variability in the ECHAM1/LSG Coupled Ocean-Atmosphere General Circulation Model.

    Science.gov (United States)

    Zorita, Eduardo; Frankignoul, Claude

    1997-02-01

    The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean-atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean-atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air-sea fluxes and Ekman pumping, which after some delay affects the intensity of the subtropical and subpolar gyres. The SST is also strongly modulated by the gyre currents. In the thermocline, the temperature and salinity fluctuations are in phase, as if caused by thermocline displacements, and they have no apparent connection with the thermohaline circulation. The 20-yr mode is the most energetic one; it is easily seen in the thermocline and can be found in SST data, but it is not detected in the atmosphere alone. As there is no evidence of positive ocean-atmosphere feedback, the 20-yr mode primarily reflects the passive response of the ocean to atmospheric fluctuations, which may be in part associated with climate anomalies appearing a few years earlier in the North Pacific. The 10-yr mode is more surface trapped in the ocean. Although the mode is most easily seen in the temperature variations of the upper few hundred meters of the ocean, it is also detected in the atmosphere alone and thus appears to be a coupled ocean-atmosphere mode. In both modes

  9. Segregation of Calcium Isotopes in the Atmospheres of CP Stars as a Consequence of Light-Induced Drift

    Science.gov (United States)

    Parkhomenko, A. I.; Shalagin, A. M.

    2018-06-01

    A mechanism for the segregation of calcium isotopes in the atmospheres of chemically peculiar (CP) stars due to light-induced drift (LID) of singly charged 48Ca+ ions is discussed. One peculiarity of Ca+ is that an adequate description of the effect of LID requires taking into account several energy levels of Ca+, and thus several pairs of relative differences ( ν i - ν k )/ ν i for the transport frequencies for collisions of levels i and k with neutral atoms (hydrogen, helium). The known real (calculated ab initio) interaction potentials are used to numerically calculate the factors ( ν i - ν k )/ ν i for several states of Ca+ for collisions with H and He atoms. These computations show that, at the temperatures characteristic of the atmospheres of CP stars, T = 6600-12 000 K, fairly high values are obtained for Ca+ ions, ( ν i - ν k )/ ν i ≈ 0.4-0.6. Simple, transparent computations demonstrate that the LID rates of Ca+ ions in the atmospheres of cool CP stars ( T eff = 6600 K) exceed the drift rate due to light pressure by two orders of magnitude. The LID is directed upward in the stellar atmosphere, and the heavy isotope 48Ca is pushed into upper layers of the atmosphere. This can explain the observed predominance of the heavy isotope 48Ca in the upper atmospheric layers of CP stars; according to the radiative-diffusion theory, the action of light pressure alone (in the absence of LID) would lead to sinking of the isotope 48Ca deeper into stellar atmosphere, following the lighter main isotope 40Ca. The 48Ca+ LIDrate decreases and its drift rate due to light pressure increases with growth of the effective temperatures in the atmospheres of CP stars. The manifestations of LID and light pressure are roughly comparable in the atmospheres of CP stars with effective temperatures near T eff = 9500 K.

  10. A New High-Precision Correction Method of Temperature Distribution in Model Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2013-06-01

    Full Text Available The main features of the temperature correction methods, suggested and used in modeling of plane-parallel stellar atmospheres, are discussed. The main features of the new method are described. Derivation of the formulae for a version of the Unsöld-Lucy method, used by us in the SMART (Stellar Model Atmospheres and Radiative Transport software for modeling stellar atmospheres, is presented. The method is based on a correction of the model temperature distribution based on minimizing differences of flux from its accepted constant value and on the requirement of the lack of its gradient, meaning that local source and sink terms of radiation must be equal. The final relative flux constancy obtainable by the method with the SMART code turned out to have the precision of the order of 0.5 %. Some of the rapidly converging iteration steps can be useful before starting the high-precision model correction. The corrections of both the flux value and of its gradient, like in Unsöld-Lucy method, are unavoidably needed to obtain high-precision flux constancy. A new temperature correction method to obtain high-precision flux constancy for plane-parallel LTE model stellar atmospheres is proposed and studied. The non-linear optimization is carried out by the least squares, in which the Levenberg-Marquardt correction method and thereafter additional correction by the Broyden iteration loop were applied. Small finite differences of temperature (δT/T = 10−3 are used in the computations. A single Jacobian step appears to be mostly sufficient to get flux constancy of the order 10−2 %. The dual numbers and their generalization – the dual complex numbers (the duplex numbers – enable automatically to get the derivatives in the nilpotent part of the dual numbers. A version of the SMART software is in the stage of refactorization to dual and duplex numbers, what enables to get rid of the finite differences, as an additional source of lowering precision of the

  11. Response of the middle atmosphere to solar UV and dynamical perturbations

    International Nuclear Information System (INIS)

    Chandra, S.

    1989-01-01

    Recent studies of solar UV related changes of ozone and temperature have considerably improved the understanding of the solar UV and ozone relationship in the middle atmosphere on time scales of a solar rotation. These studies have shown that during periods of high solar activity, ozone in the upper stratosphere has a measurable response to changes in the solar UV flux in accordance with theoretical predictions. The problem of measuring solar response of the stratospheric ozone and temperature on time scales of a solar cycle is more difficult. In the altitude range of 2 mb, the model based calculations, based on plausible scenarios of solar UV variation, suggest a change of less than 4 percent in ozone mixing ratio and 1 to 2 K in temperature. The relative response was studied of the middle atmosphere to solar forcing at 155 and 27 day periods as indicated from the spectral analyses of a number of solar indices

  12. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Science.gov (United States)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Amundsen, D. S.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth's atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  13. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    International Nuclear Information System (INIS)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Amundsen, D. S.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  14. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P. [Maison de la Simulation, CEA-CNRS-INRIA-UPS-UVSQ, USR 3441, CEA Paris-Saclay, F-91191 Gif-Sur-Yvette (France); Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Amundsen, D. S. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10025 (United States); Fromang, S., E-mail: pascal.tremblin@cea.fr [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-20

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  15. Observations of peroxyacetyl nitrate (PAN) in the upper troposphere by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)

    Science.gov (United States)

    Tereszchuk, K. A.; Moore, D. P.; Harrison, J. J.; Boone, C. D.; Park, M.; Remedios, J. J.; Randel, W. J.; Bernath, P. F.

    2013-06-01

    Peroxyacetyl nitrate (CH3CO·O2NO2, abbreviated as PAN) is a trace molecular species present in the troposphere and lower stratosphere due primarily to pollution from fuel combustion and the pyrogenic outflows from biomass burning. In the lower troposphere, PAN has a relatively short lifetime and is principally destroyed within a few hours through thermolysis, but it can act as a reservoir and carrier of NOx in the colder temperatures of the upper troposphere, where UV photolysis becomes the dominant loss mechanism. Pyroconvective updrafts from large biomass burning events can inject PAN into the upper troposphere and lower stratosphere (UTLS), providing a means for the long-range transport of NOx. Given the extended lifetimes at these higher altitudes, PAN is readily detectable via satellite remote sensing. A new PAN data product is now available for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) version 3.0 data set. We report observations of PAN in boreal biomass burning plumes recorded during the BORTAS (quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) campaign (12 July to 3 August 2011). The retrieval method employed by incorporating laboratory-recorded absorption cross sections into version 3.0 of the ACE-FTS forward model and retrieval software is described in full detail. The estimated detection limit for ACE-FTS PAN is 5 pptv, and the total systematic error contribution to the ACE-FTS PAN retrieval is ~ 16%. The retrieved volume mixing ratio (VMR) profiles are compared to coincident measurements made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on the European Space Agency (ESA) Environmental Satellite (ENVISAT). The MIPAS measurements demonstrated good agreement with the ACE-FTS VMR profiles for PAN, where the measured VMR values are well within the associated measurement errors for both instruments and comparative

  16. Upper mixed layer temperature anomalies at the North Atlantic storm-track zone

    Directory of Open Access Journals (Sweden)

    S. N. Moshonkin

    1995-10-01

    Full Text Available Synoptic sea surface temperature anomalies (SSTAs were determined as a result of separation of time scales smaller than 183 days. The SSTAs were investigated using daily data of ocean weather station "C" (52.75°N; 35.5°W from 1 January 1976 to 31 December 1980 (1827 days. There were 47 positive and 50 negative significant SSTAs (lifetime longer than 3 days, absolute value greater than 0.10 °C with four main intervals of the lifetime repetitions: 1. 4–7 days (45% of all cases, 2. 9–13 days (20–25%, 3. 14–18 days (10–15%, and 4. 21–30 days (10–15% and with a magnitude 1.5–2.0 °C. An upper layer balance model based on equations for temperature, salinity, mechanical energy (with advanced parametrization, state (density, and drift currents was used to simulate SSTA. The original method of modelling taking into account the mean observed temperature profiles proved to be very stable. The model SSTAs are in a good agreement with the observed amplitudes and phases of synoptic SSTAs during all 5 years. Surface heat flux anomalies are the main source of SSTAs. The influence of anomalous drift heat advection is about 30–50% of the SSTA, and the influence of salinity anomalies is about 10–25% and less. The influence of a large-scale ocean front was isolated only once in February-April 1978 during all 5 years. Synoptic SSTAs develop just in the upper half of the homogeneous layer at each winter. We suggest that there are two main causes of such active sublayer formation: 1. surface heat flux in the warm sectors of cyclones and 2. predominant heat transport by ocean currents from the south. All frequency functions of the ocean temperature synoptic response to heat and momentum surface fluxes are of integral character (red noise, though there is strong resonance with 20-days period of wind-driven horizontal heat advection with mixed layer temperature; there are some other peculiarities on the time scales from 5.5 to 13 days. Observed and

  17. Biosystematics, genetics and upper temperature tolerance of Gigartina teedii (Rhodophyta) from the Atlantic and Mediterranean

    Science.gov (United States)

    Guiry, M. D.; Tripodi, G.; Lüning, K.

    1987-09-01

    Plants of Gigartina teedii from the mediterranean isolated into laboratory culture showed Polysiphonia-type life histories with consistent formation of dioecious gametangial plants, as previously reported for Atlantic isolates. Male and female plants from the Atlantic and Mediterranean were almost completely compatible in terms of cystocarp formation on female plants, and carpospores from positive crosses always formed plants that released viable tetraspores. Sex-linked inheritance of branching pattern was found in all strains, but showed varying degrees of expression. Female plants were more branched than male plants and it is suggested that this may be an adaptation for spermatial capture. G. teedii plants showed differences in morphology in culture that are considered to be genetically-based. Preliminary studies of tip elongation showed that Mediterranean strains may have up to three times the elongation rates of Atlantic strains at 15°C,bar 8. Such genetic variation in fully-interbreeding strains suggests that populations of this species in the Atlantic and Mediterranean are genecodemic. All strains showed an upper temperature tolerance of 31°C when tested at 1°C intervals from 29—34°C. An upper temperature tolerance of 31 32°C was found for the related species G. intermedia from Korea and Japan, but G. johnstonii from the Gulf of California showed an upper tolerance of 32 33°C.

  18. A mechanistic model of an upper bound on oceanic carbon export as a function of mixed layer depth and temperature

    Directory of Open Access Journals (Sweden)

    Z. Li

    2017-11-01

    Full Text Available Export production reflects the amount of organic matter transferred from the ocean surface to depth through biological processes. This export is in large part controlled by nutrient and light availability, which are conditioned by mixed layer depth (MLD. In this study, building on Sverdrup's critical depth hypothesis, we derive a mechanistic model of an upper bound on carbon export based on the metabolic balance between photosynthesis and respiration as a function of MLD and temperature. We find that the upper bound is a positively skewed bell-shaped function of MLD. Specifically, the upper bound increases with deepening mixed layers down to a critical depth, beyond which a long tail of decreasing carbon export is associated with increasing heterotrophic activity and decreasing light availability. We also show that in cold regions the upper bound on carbon export decreases with increasing temperature when mixed layers are deep, but increases with temperature when mixed layers are shallow. A meta-analysis shows that our model envelopes field estimates of carbon export from the mixed layer. When compared to satellite export production estimates, our model indicates that export production in some regions of the Southern Ocean, particularly the subantarctic zone, is likely limited by light for a significant portion of the growing season.

  19. Upper-Atmospheric Space and Earth Weather Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The USEWX project is seeking to monitor, record, and distribute atmospheric measurements of the radiation environment by installing a variety of dosimeters and other...

  20. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    International Nuclear Information System (INIS)

    Hörst, S. M.; Brown, M. E.

    2013-01-01

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  1. A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation

    Directory of Open Access Journals (Sweden)

    Natal'ya V. Burmasheva

    2017-12-01

    Full Text Available In this paper a new exact solution of an overdetermined system of Oberbeck–Boussinesq equations that describes a stationary shear flow of a viscous incompressible fluid in an infinite layer is under study. The given exact solution is a generalization of the Ostroumov–Birich class for a layered unidirectional flow. In the proposed solution, the horizontal velocities depend only on the transverse coordinate z. The temperature field and the pressure field are three-dimensional. In contradistinction to the Ostroumov–Birich solution, in the solution presented in the paper the horizontal temperature gradients are linear functions of the $z$ coordinate. This structure of the exact solution allows us to find a nontrivial solution of the Oberbeck–Boussinesq equations by means of the identity zero of the incompressibility equation. This exact solution is suitable for investigating large-scale flows of a viscous incompressible fluid by quasi-two-dimensional equations. Convective fluid motion is caused by the setting of tangential stresses on the free boundary of the layer. Inhomogeneous thermal sources are given on both boundaries. The pressure in the fluid at the upper boundary coincides with the atmospheric pressure. The paper focuses on the study of temperature and pressure fields, which are described by polynomials of three variables. The features of the distribution of the temperature and pressure profiles, which are polynomials of the seventh and eighth degree, respectively, are discussed in detail. To analyze the properties of temperature and pressure, algebraic methods are used to study the number of roots on a segment. It is shown that the background temperature and the background pressure are nonmonotonic functions. The temperature field is stratified into zones that form the thermocline and the thermal boundary layer near the boundaries of the fluid layer. Investigation of the properties of the pressure field showed that it is stratified

  2. Atmospheric Circulations of Rocky Planets as Heat Engines

    Science.gov (United States)

    Koll, D. D. B.

    2017-12-01

    Rocky planets are extremely common in the galaxy and include Earth, Mars, Venus, and hundreds of exoplanets. To understand and compare the climates of these planets, we need theories that are general enough to accommodate drastically different atmospheric and planetary properties. Unfortunately, few such theories currently exist.For Earth, there is a well-known principle that its atmosphere resembles a heat engine - the atmosphere absorbs heat near the surface, at a hot temperature, and emits heat to space in the upper troposphere, at a cold temperature, which allows it to perform work and balance dissipative processes such as friction. However, previous studies also showed that Earth's hydrological cycle uses up a large fraction of the heat engine's work output, which makes it difficult to view other atmospheres as heat engines.In this work I extend the heat engine principle from Earth towards other rocky planets. I explore both dry and moist atmospheres in an idealized general circulation model (GCM), and quantify their work output using entropy budgets. First, I show that convection and turbulent heat diffusion are important entropy sources in dry atmospheres. I develop a scaling that accounts for its effects, which allows me to predict the strength of frictional dissipation in dry atmospheres. There are strong parallels between my scaling and so-called potential intensity theory, which is a seminal theory for understanding tropical cyclones on Earth. Second, I address how moisture affects atmospheric heat engines. Moisture modifies both the thermodynamic properties of air and releases latent heat when water vapor condenses. I explore the impact of both effects, and use numerical simulations to explore the difference between dry and moist atmospheric circulations across a wide range of climates.

  3. Simulation of non-hydrostatic gravity wave propagation in the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Y. Deng

    2014-04-01

    Full Text Available The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM, which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.

  4. Temperature Trend Detection in Upper Indus Basin by Using Mann-Kendall Test

    Directory of Open Access Journals (Sweden)

    Ateeq Ur Rauf

    2016-10-01

    Full Text Available Global warming and Climate change are commonly acknowledged as the most noteworthy environmental quandary the world is undergoing today. Contemporary studies have revealed that the Earth’s surface air temperature has augmented by 0.6°C – 0.8°C in the course of the 20th century, together with alterations in the hydrological cycle. This study focuses on detecting trends in seasonal temperature for the five selected stations in the Upper Indus Basin. The Mann-Kendall test was run at 5% significance level on time series data for each of the five stations during the time period, 1985 to 2014. The Standard Test Statistic (Zs indicates the presence of trend and whether it is increasing or decreasing. The analysis showed an increasing trend in mean monthly temperature at Astore, Gilgit and Gupiz in March and a decreasing trend for Astore, Drosh, Gilgit and Skardu in September. Gilgit and Gupiz showed unexpected increasing trend in October. This study concludes that the temperature starts increasing in March and stays elevated till the month of June and starts rising again in October thus resulting in expansion of summer season and prolonged glacial melting.

  5. Changing storm track diffusivity and the upper limit to poleward latent heat transport

    Science.gov (United States)

    Caballero, R.

    2010-12-01

    Poleward atmospheric energy transport plays a key role in the climate system by helping set the mean equator-pole temperature gradient. The mechanisms controlling the response of poleward heat flux to climate change are still poorly understood. Recent work shows that midlatitude poleward latent heat flux in atmospheric GCMs generally increases as the climate warms but reaches an upper limit at sufficiently high temperature and decreases with further warming. The reasons for this non-monotonic behavior have remained unclear. Simple arguments suggests that the latent heat flux Fl should scale as Fl ˜ vref qs, where vref is a typical meridional velocity in the baroclinic zone and qs is saturation humidity. While vref decreases with temperature, qs increases much more rapidly, so this scaling implies monotonically increasing moisture flux. We study this problem using a series of simulations employing NCAR’s CAM3 GCM coupled to a slab-ocean aquaplanet and spanning a wide range of atmospheric CO2 concentrations. We find that a modified scaling, Fl ˜ vref2 qs, describes the changes in moisture flux much more accurately. Using Lagrangian trajectory analysis, we explain the success of this scaling in terms of changes in the mixing length, which contracts proportionally to vref.

  6. A unique airborne observation. [Martian atmospheric temperature and abundances from occultation of Epsilon Geminorum

    Science.gov (United States)

    Elliot, J. L.; Dunham, E.; Church, C.

    1976-01-01

    The occultation of 3rd magnitude Epsilon Geminorum by Mars was observed using a 36-inch telescope equipped with a photoelectric photometer at the bent Cassegrain focus, carried aboard the Kuiper Airborne Observatory at altitudes up to 45,000 feet. Scintillation from the earth's atmosphere was greatly reduced in comparison with ground observations. The observations clearly show the central flash, caused by the symmetrical refraction of light by the atmosphere of Mars. The data are being analyzed to obtain temperature profiles and to assess the relative abundance of argon and carbon dioxide in the atmosphere of the planet.

  7. Multi-station synthesis of early twentieth century surface atmospheric electricity measurements for upper tropospheric properties

    Directory of Open Access Journals (Sweden)

    R. G. Harrison

    2007-07-01

    Full Text Available The vertical columnar current density in the global atmospheric electrical circuit depends on the local columnar resistance. A simple model for the columnar resistance is suggested, which separates the local boundary layer component from the upper troposphere cosmic ray component, and calculates the boundary layer component from a surface measurement of air conductivity. This theory is shown to provide reasonable agreement with observations. One application of the simple columnar model theory is to provide a basis for the synthesis of surface atmospheric electrical measurements made simultaneously at several European sites. Assuming the ionospheric potential to be common above all the sites, the theoretical air-earth current density present in the absence of a boundary layer columnar resistance can be found by extrapolation. This is denoted the free troposphere limit air-earth current density, J0. Using early surface data from 1909 when no ionospheric potential data are available for corroboration, J0 is found to be ~6 pA m−2, although this is subject to uncertainties in the data and limitations in the theory. Later (1966–1971 European balloon and surface data give J0=2.4 pA m−2.

  8. Response of the upper atmosphere to variations in the solar soft x-ray irradiance. Ph.D. Thesis

    Science.gov (United States)

    Bailey, Scott Martin

    1995-01-01

    Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airflow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.

  9. Role of upper-most crustal composition in the evolution of the Precambrian ocean-atmosphere system

    Science.gov (United States)

    Large, R. R.; Mukherjee, I.; Zhukova, I.; Corkrey, R.; Stepanov, A.; Danyushevsky, L. V.

    2018-04-01

    Recent research has emphasized the potential relationships between supercontinent cycles, mountain building, nutrient flux, ocean-atmosphere chemistry and the origin of life. The composition of the Upper-Most Continental Crust (UMCC) also figures prominently in these relationships, and yet little detailed data on each component of this complex relationship has been available for assessment. Here we provide a new set of data on the trace element concentrations, including the Rare Earth Elements (REE), in the matrix of 52 marine black shale formations spread globally through the Archean and Proterozoic. The data support previous studies on the temporal geochemistry of shales, but with some important differences. Results indicate a change in provenance of the black shales (upper-most crustal composition), from more mafic in the Archean prior to 2700 Ma, to more felsic from 2700 to 2200 Ma, followed by a return to mafic compositions from 2200 to 1850 Ma. Around 1850 to 1800 Ma there is a rapid change to uniform felsic compositions, which remained for a billion years to 800 Ma. The shale matrix geochemistry supports the assertion that the average upper-most continental source rocks for the shales changed from a mix of felsic, mafic and ultramafic prior to 2700 Ma to more felsic after 1850 Ma, with an extended transition period between. The return to more mafic UMCC from 2200 to 1850 Ma is supported by the frequency of Large Igneous Provinces (LIPs) and banded iron formations, which suggest a peak in major mantle-connected plume events and associated Fe-rich hydrothermal activity over this period. Support for the change to felsic UMCC around 1850 Ma is provided by previous geological data which shows that felsic magmas, including, A-type granites and K-Th-U-rich granites intruded vast areas of the continental crust, peaking around 1850 Ma and declining to 1000 Ma. The implications of this change in UMCC are far reaching and may go some way to explain the distinct

  10. SHORT-TERM EXPOSURE TO ATMOSPHERIC AMMONIA DOES NOT AFFECT LOW-TEMPERATURE HARDENING OF WINTER-WHEAT

    NARCIS (Netherlands)

    CLEMENT, JMAM; VENEMA, JH; VANHASSELT, PR

    The effect of atmospheric NH3 on low-temperature hardening of winter wheat (Triticum aestivum L. cv. Urban) was investigated. Growth and photosynthesis were stimulated by ammonia exposure. After a 14 d exposure at moderate temperatures (day/night 18.5/16 degrees C) total nitrogen content was

  11. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2005-01-01

    Full Text Available The amount of carbon dioxide (CO2 of the Earths atmosphere is increasing, which has the potential of increasing greenhouse effect and air temperature in the future. Plants respond to environment CO2 and temperature. Therefore, climate change may affect agriculture. The purpose of this paper was to review the literature about the impact of a possible increase in atmospheric CO2 concentration and temperature on crop growth, development, and yield. Increasing CO2 concentration increases crop yield once the substrate for photosynthesis and the gradient of CO2 concentration between atmosphere and leaf increase. C3 plants will benefit more than C4 plants at elevated CO2. However, if global warming will take place, an increase in temperature may offset the benefits of increasing CO2 on crop yield.

  12. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    Science.gov (United States)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  13. "Ring rain" on Saturn's ionosphere: densities and temperatures from 2011 observations and re-detection in 2013 observations

    Science.gov (United States)

    O'Donoghue, J.; Moore, L.; Melin, H.; Connerney, J. E. P.; Oliversen, R. J.

    2017-12-01

    In ground-based observations using the 10 meter W. M. Keck telescope in 2011, we discovered that the "ring rain" which falls on Saturn from the rings (along magnetic field lines) leaves an imprint on the upper-atmospheric H3+ ion. H3+ emissions were brightest where water products are expected to fall. Through subsequent modeling of the upper atmosphere, it became clear that an influx of water products (e.g. H2O+, O+, etc.) would act to soak up electrons - something that would otherwise destroy H3+ through recombination - and lead to a higher H3+ density and therefore emission. Here we present the first re-detections of the imprint of "ring rain" on Saturn's ionospheric H3+ from ground-based Keck telescope data from 2013. Observed intensities at low-latitudes decreased by an order of magnitude from 2011 to 2013, likely due to a decrease in upper atmospheric temperature by 100 K. A new analysis of 2011 observations revealed temperatures and densities as a function of latitude on Saturn for the first time. Where water influx is expected, H3+ column densities are high (as models predicted) and temperatures are low. While the latter was unexpected, the effect of ring rain on electron densities is stronger at lower altitudes. Therefore, as ring rain enhances density at lower altitudes where the temperature is lower, it should result in the emitting column of H3+ having a lower average temperature. These results come at a critical time as the Cassini spacecraft completes all orbits between planet and rings, with the opportunity to sample the forces and material fluxes related to ring rain.

  14. Effects of atmospheric gas composition and temperature on the gasification of coal in hot briquetting carbon composite iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y.; Kanayama, M.; Maeda, T.; Nishika, K.; Shimizu, M. [Kyushu University, Fukuoka (Japan). Dept. of Materials Science & Engineering

    2007-01-15

    The gasification behavior of carbon composite iron ore produced by hot briquetting process was examined under various gas atmospheres such as CO-N{sub 2}, CO{sub 2}-N, and CO-CO{sub 2} at various temperatures. The gasification of coal was affected strongly by atmospheric gas concentration and reaction temperature. Kinetic analysis in various gas atmospheres was carried out by using the first order reaction model, which yields the straight line relation between reaction rate constants for the gasification of coal and the gas concentration. Therefore, reaction rate constants for the gasification of coal in CO-CO{sub 2}-N{sub 2} gas atmosphere were derived.

  15. Long-term changes of the upper stratosphere as seen by Japanese rocketsondes at Ryori (39°N, 141°E

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    1999-09-01

    Full Text Available Wind and temperature profiles measured routinely by rockets at Ryori (Japan since 1970 are analysed to quantify interannual changes that occur in the upper stratosphere. The analysis involved using a least square fitting of the data with a multiparametric adaptative model composed of a linear combination of some functions that represent the main expected climate forcing responses of the stratosphere. These functions are seasonal cycles, solar activity changes, stratospheric optical depth induced by volcanic aerosols, equatorial wind oscillations and a possible linear trend. Step functions are also included in the analyses to take into account instrumental changes. Results reveal a small change for wind data series above 45 km when new corrections were introduced to take into account instrumental changes. However, no significant change of the mean is noted for temperature even after sondes were improved. While wind series reveal no significant trends, a significant cooling of 2.0 to 2.5 K/decade is observed in the mid upper stratosphere using this analysis method. This cooling is more than double the cooling predicted by models by a factor of more than two. In winter, it may be noted that the amplitude of the atmospheric response is enhanced. This is probably caused by the larger ozone depletion and/or by some dynamical feedback effects. In winter, cooling tends to be smaller around 40-45 km (in fact a warming trend is observed in December as already observed in other data sets and simulated by models. Although the winter response to volcanic aerosols is in good agreement with numerical simulations, the solar signature is of the opposite sign to that expected. This is not understood, but it has already been observed with other data sets.Key words. Atmospheric composition and structure (evolution of one atmosphere; pressure · density · and temperature · Meteorology and atmospheric dynamics (middle atmosphere dynamics

  16. 3D General Circulation Model of the Middle Atmosphere of Jupiter

    Science.gov (United States)

    Zube, Nicholas Gerard; Zhang, Xi; Li, Cheng; Le, Tianhao

    2017-10-01

    The characteristics of Jupiter’s large-scale stratospheric circulation remain largely unknown. Detailed distributions of temperature and photochemical species have been provided by recent observations [1], but have not yet been accurately reproduced by middle atmosphere general circulation models (GCM). Jupiter’s stratosphere and upper troposphere are influenced by radiative forcing from solar insolation and infrared cooling from hydrogen and hydrocarbons, as well as waves propagating from the underlying troposphere [2]. The relative significance of radiative and mechanical forcing on stratospheric circulation is still being debated [3]. Here we present a 3D GCM of Jupiter’s atmosphere with a correlated-k radiative transfer scheme. The simulation results are compared with observations. We analyze the impact of model parameters on the stratospheric temperature distribution and dynamical features. Finally, we discuss future tracer transport and gravity wave parameterization schemes that may be able to accurately simulate the middle atmosphere dynamics of Jupiter and other giant planets.[1] Kunde et al. 2004, Science 305, 1582.[2] Zhang et al. 2013a, EGU General Assembly, EGU2013-5797-2.[3] Conrath 1990, Icarus, 83, 255-281.

  17. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Errard, J.; Borrill, J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff CF10 3XQ (United Kingdom); Akiba, Y.; Chinone, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T. [Department of Physics, University of California, San Diego, CA 92093-0424 (United States); Baccigalupi, C.; Fabbian, G. [International School for Advanced Studies (SISSA), Trieste I-34014 (Italy); Boettger, D. [Department of Astronomy, Pontifica Universidad Catolica de Chile (Chile); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Cukierman, A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Delabrouille, J. [AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France); Dobbs, M.; Gilbert, A. [Physics Department, McGill University, Montreal, QC H3A 0G4 (Canada); Ducout, A.; Feeney, S. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Feng, C. [Department of Physics and Astronomy, University of California, Irvine (United States); and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  18. The Upper Atmosphere Research Satellite: From Coffee Table Art to Quantitative Science

    Science.gov (United States)

    Douglass, Anne R.

    1999-01-01

    The Upper Atmosphere Research Satellite (UARS) has provided an unprecedented set of observations of constituents of the stratosphere. When used in combination with data from other sources and appropriate modeling tools, these observations are useful for quantitative evaluation of stratospheric photochemical processes. This is illustrated by comparing ozone observations from airborne Differential Absorption Lidar (DIAL), from the Polar Ozone and Aerosol Measurement (POAM), from the Microwave Limb Sounder (MLS), and from the Halogen occultation Experiment (HALOE) with ozone fields generated with a three dimensional model. For 1995-96, at polar latitudes, observations from DIAL flights on December 9 and January 30, and POAM and MLS between late December and late January are compared with ozone fields from the GSFC 3D chemistry and transport model. Data from the three platforms consistently show that the observed ozone has a negative trend relative to the modeled ozone, and that the trend is uniform in time between early and mid winter, with no obvious dependence on proximity to the vortex edge. The importance of chlorine catalyzed photochemistry to this ozone loss is explored by comparing observations from MLS and HALOE with simulations for other northern winters, particularly 1997-98.

  19. A modelling study of the impact of cirrus clouds on the moisture budget of the upper troposphere

    Directory of Open Access Journals (Sweden)

    S. Fueglistaler

    2006-01-01

    Full Text Available We present a modelling study of the effect of cirrus clouds on the moisture budget of the layer wherein the cloud formed. Our framework simplifies many aspects of cloud microphysics and collapses the problem of sedimentation onto a 0-dimensional box model, but retains essential feedbacks between saturation mixing ratio, particle growth, and water removal through particle sedimentation. The water budget is described by two coupled first-order differential equations for dimensionless particle number density and saturation point temperature, where the parameters defining the system (layer depth, reference temperature, amplitude and time scale of temperature perturbation and inital particle number density, which may or may not be a function of reference temperature and cooling rate are encapsulated in a single coefficient. This allows us to scale the results to a broad range of atmospheric conditions, and to test sensitivities. Results of the moisture budget calculations are presented for a range of atmospheric conditions (T: 238–205 K; p: 325–180 hPa and a range of time scales τT of the temperature perturbation that induces the cloud formation. The cirrus clouds are found to efficiently remove water for τT longer than a few hours, with longer perturbations (τT≳10 h required at lower temperatures (T≲210 K. Conversely, we find that temperature perturbations of duration order 1 h and less (a typical timescale for e.g., gravity waves do not efficiently dehydrate over most of the upper troposphere. A consequence is that (for particle densities typical of current cirrus clouds the assumption of complete dehydration to the saturation mixing ratio may yield valid predictions for upper tropospheric moisture distributions if it is based on the large scale temperature field, but this assumption is not necessarily valid if it is based on smaller scale temperature fields.

  20. GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Richard S. [SETI Institute, Mountain View, CA (United States); Lustig-Yaeger, Jacob [Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lupu, Roxana E.; Marley, Mark S. [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA (United States); Lodders, Katharina, E-mail: Richard.S.Freedman@nasa.gov [Planetary Chemistry Laboratory, Washington University, St. Louis, MO (United States)

    2014-10-01

    We present new calculations of Rosseland and Planck gaseous mean opacities relevant to the atmospheres of giant planets and ultracool dwarfs. Such calculations are used in modeling the atmospheres, interiors, formation, and evolution of these objects. Our calculations are an expansion of those presented in Freedman et al. to include lower pressures, finer temperature resolution, and also the higher metallicities most relevant for giant planet atmospheres. Calculations span 1 μbar to 300 bar, and 75-4000 K, in a nearly square grid. Opacities at metallicities from solar to 50 times solar abundances are calculated. We also provide an analytic fit to the Rosseland mean opacities over the grid in pressure, temperature, and metallicity. In addition to computing mean opacities at these local temperatures, we also calculate them with weighting functions up to 7000 K, to simulate the mean opacities for incident stellar intensities, rather than locally thermally emitted intensities. The chemical equilibrium calculations account for the settling of condensates in a gravitational field and are applicable to cloud-free giant planet and ultracool dwarf atmospheres, but not circumstellar disks. We provide our extensive opacity tables for public use.

  1. Predicting top-of-atmosphere radiance for arbitrary viewing geometries from the visible to thermal infrared: generalization to arbitrary average scene temperatures

    Science.gov (United States)

    Florio, Christopher J.; Cota, Steve A.; Gaffney, Stephanie K.

    2010-08-01

    In a companion paper presented at this conference we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) may be used in conjunction with a limited number of runs of AFRL's MODTRAN4 radiative transfer code, to quickly predict the top-of-atmosphere (TOA) radiance received in the visible through midwave IR (MWIR) by an earth viewing sensor, for any arbitrary combination of solar and sensor elevation angles. The method is particularly useful for large-scale scene simulations where each pixel could have a unique value of reflectance/emissivity and temperature, making the run-time required for direct prediction via MODTRAN4 prohibitive. In order to be self-consistent, the method described requires an atmospheric model (defined, at a minimum, as a set of vertical temperature, pressure and water vapor profiles) that is consistent with the average scene temperature. MODTRAN4 provides only six model atmospheres, ranging from sub-arctic winter to tropical conditions - too few to cover with sufficient temperature resolution the full range of average scene temperatures that might be of interest. Model atmospheres consistent with intermediate temperature values can be difficult to come by, and in any event, their use would be too cumbersome for use in trade studies involving a large number of average scene temperatures. In this paper we describe and assess a method for predicting TOA radiance for any arbitrary average scene temperature, starting from only a limited number of model atmospheres.

  2. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  3. High Resolution Spectra of Carbon Monoxide, Propane and Ammonia for Atmospheric Remote Sensing

    Science.gov (United States)

    Beale, Christopher Andrew

    Spectroscopy is a critical tool for analyzing atmospheric data. Identification of atmospheric parameters such as temperature, pressure and the existence and concentrations of constituent gases via remote sensing techniques are only possible with spectroscopic data. These form the basis of model atmospheres which may be compared to observations to determine such parameters. To this end, this dissertation explores the spectroscopy of three molecules: ammonia, propane and carbon monoxide. Infrared spectra have been recorded for ammonia in the region 2400-9000 cm-1. These spectra were recorded at elevated temperatures (from 293-973 K) using a Fourier Transform Spectrometer (FTS). Comparison between the spectra recorded at different temperatures yielded experimental lower state energies. These spectra resulted in the measurement of roughly 30000 lines and about 3000 quantum assignments. In addition spectra of propane were recorded at elevated temperatures (296-700 K) using an FTS. Atmospheres with high temperatures require molecular data at appropriate conditions. This dissertation describes collection of such data and the potential application to atmospheres in our solar system, such as auroral regions in Jupiter, to those of planets orbiting around other stars and cool sub-stellar objects known as brown dwarfs. The spectra of propane and ammonia provide the highest resolution and most complete experimental study of these gases in their respective spectral regions at elevated temperatures. Detection of ammonia in an exoplanet or detection of propane in the atmosphere of Jupiter will most likely rely on the work presented here. The best laboratory that we have to study atmospheres is our own planet. The same techniques that are applied to these alien atmospheres originated on Earth. As such it is appropriate to discuss remote sensing of our own atmosphere. This idea is explored through analysis of spectroscopic data recorded by an FTS on the Atmospheric Chemistry

  4. Factors favorable to frequent extreme precipitation in the upper Yangtze River Valley

    Science.gov (United States)

    Tian, Baoqiang; Fan, Ke

    2013-08-01

    Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land-sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.

  5. The atmospheric temperature structure of Titan

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, J. B.; Courtin, Regis; Lunine, Jonathan I.

    1992-01-01

    The contribution of various factors to the thermal structure of Titan's past and present atmosphere are discussed. A one dimensional model of Titan's thermal structure is summarized. The greenhouse effect of Titan's atmosphere, caused primarily by pressure induced opacity of N2, CH4, and H2, is discussed together with the antigreenhouse effect dominated by the haze which absorbs incident sunlight. The implications for the atmosphere of the presence of an ocean on Titan are also discussed.

  6. Mesopause region temperature variability and its trend in southern Brazil

    Science.gov (United States)

    Venturini, Mateus S.; Bageston, José V.; Caetano, Nattan R.; Peres, Lucas V.; Bencherif, Hassan; Schuch, Nelson J.

    2018-03-01

    Nowadays, the study of the upper atmosphere is increasing, mostly because of the need to understand the patterns of Earth's atmosphere. Since studies on global warming have become very important for the development of new technologies, understanding all regions of the atmosphere becomes an unavoidable task. In this paper, we aim to analyze the temperature variability and its trend in the mesosphere and lower thermosphere (MLT) region during a period of 12 years (from 2003 to 2014). For this purpose, three different heights, i.e., 85, 90 and 95 km, were focused on in order to investigate the upper atmosphere, and a geographic region different to other studies was chosen, in the southern region of Brazil, centered in the city of Santa Maria, RS (29°41'02'' S; 53°48'25'' W). In order to reach the objectives of this work, temperature data from the SABER instrument (Sounding of the Atmosphere using Broadband Emission Radiometry), aboard NASA's Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite, were used. Finally, two cases were studied related to distinct grids of latitude/longitude used to obtain the mean temperature profiles. The first case considered a grid of 20° × 20° lat/long, centered in Santa Maria, RS, Brazil. In the second case, the region was reduced to a size of 15° × 15° in order to compare the results and discuss the two cases in terms of differences or similarities in temperature trends. Observations show that the size of the geographical area used for the average temperature profiles can influence the results of variability and trend of the temperature. In addition, reducing the time duration of analyses from 24 to 12 h a day also influences the trend significantly. For the smaller geographical region (15° × 15°) and the 12 h daily time window (09:00-21:00 UT) it was found that the main contributions for the temperature variability at the three heights were the annual and semi-annual cycles and the solar flux influence

  7. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement.

    Science.gov (United States)

    Ito, Yuki; Okawa, Takahisa; Fukumoto, Takahiro; Tsurumi, Akiko; Tatsuta, Mitsuhiro; Fujii, Takamasa; Tanaka, Junko; Tanaka, Masahiro

    2016-10-01

    Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement. The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure. Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure. Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  8. Female upper body and breast skin temperature and thermal comfort following exercise.

    Science.gov (United States)

    Ayres, B; White, J; Hedger, W; Scurr, J

    2013-01-01

    Breast support reduces breast pain and movement during exercise, however, an extra layer of clothing may affect thermoregulation. This preliminary study investigated female upper body and breast skin temperature and thermal comfort following short-duration exercise. Eight female participants with C-cup breasts had thermal images (infra-red camera, FLIR systems) of the bare breasts, the breasts in two sports bras (composite and polyester) and the abdomen, taken before and after 20 min of exercise at 28(o)C. Following exercise, bare-breast, bra and abdomen temperatures reduced by 0.61(o)C, 0.92(o)C and 2.06(o)C, respectively. The polyester sports bra demonstrated greater thermal comfort and enabled a greater change in skin temperature than the composite sports bra. It is concluded that following short-duration exercise, sports bras reduced the cooling ability of the breast. Material properties of the bras affect thermal comfort and post-exercise skin temperature; this should be an important consideration for sports bra manufacturers. This study investigates the effect of sports bras on thermal regulation of the breast following exercise. Sports bras negatively affected the cooling ability of the skin on the breast, with the material properties of the bra affecting thermal comfort following exercise. These results present important considerations for sports bra manufacturers.

  9. A Method for Assessing the Quality of Model-Based Estimates of Ground Temperature and Atmospheric Moisture Using Satellite Data

    Science.gov (United States)

    Wu, Man Li C.; Schubert, Siegfried; Lin, Ching I.; Stajner, Ivanka; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed for validating model-based estimates of atmospheric moisture and ground temperature using satellite data. The approach relates errors in estimates of clear-sky longwave fluxes at the top of the Earth-atmosphere system to errors in geophysical parameters. The fluxes include clear-sky outgoing longwave radiation (CLR) and radiative flux in the window region between 8 and 12 microns (RadWn). The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data, and multiple global four-dimensional data assimilation (4-DDA) products. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic clear-sky longwave fluxes from two different 4-DDA data sets. Simple linear regression is used to relate the clear-sky longwave flux discrepancies to discrepancies in ground temperature ((delta)T(sub g)) and broad-layer integrated atmospheric precipitable water ((delta)pw). The slopes of the regression lines define sensitivity parameters which can be exploited to help interpret mismatches between satellite observations and model-based estimates of clear-sky longwave fluxes. For illustration we analyze the discrepancies in the clear-sky longwave fluxes between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS2) and a recent operational version of the European Centre for Medium-Range Weather Forecasts data assimilation system. The analysis of the synthetic clear-sky flux data shows that simple linear regression employing (delta)T(sub g)) and broad layer (delta)pw provides a good approximation to the full radiative transfer calculations, typically explaining more thin 90% of the 6 hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters, Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for

  10. Analytical design of sensors for measuring during terminal phase of atmospheric temperature planetary entry

    Science.gov (United States)

    Millard, J. P.; Green, M. J.; Sommer, S. C.

    1972-01-01

    An analytical study was conducted to develop a sensor for measuring the temperature of a planetary atmosphere from an entry vehicle traveling at supersonic speeds and having a detached shock. Such a sensor has been used in the Planetary Atmosphere Experiments Test Probe (PAET) mission and is planned for the Viking-Mars mission. The study specifically considered butt-welded thermocouple sensors stretched between two support posts; however, the factors considered are sufficiently general to apply to other sensors as well. This study included: (1) an investigation of the relation between sensor-measured temperature and free-stream conditions; (2) an evaluation of the effects of extraneous sources of heat; (3) the development of a computer program for evaluating sensor response during entry; and (4) a parametric study of sensor design characteristics.

  11. Effect of salinity on the upper lethal temperature tolerance of early-juvenile red drum.

    Science.gov (United States)

    McDonald, Dusty; Bumguardner, Britt; Cason, Paul

    2015-10-01

    Previous work investigating the temperature tolerance of juvenile red drum ranging 18-50mm TL found evidence for positive size dependence (smaller fish less tolerant to higher temperatures) suggesting smaller size classes (temperatures. Here, we explored the upper lethal temperature tolerance (ULT) in smaller-sized red drum which ranged from 10 to 20mm TL across multiple salinities to further understand the thermal limitations of this propagated game fish. In order to investigate the combined effect of temperature and salinity on ULT, temperature trials were conducted under three levels of salinity which commonly occur along the coast of Texas (25, 35, and 45ppt). The rate of temperature increase (+0.25°C/h) was designed to mimic a natural temperature increase of a summer day in Texas. We determined that the lethal temperature at 50% (LT50) did not differ between the three salinities examined statistically; median lethal temperature for individuals exposed to 25ppt ranged from 36.4 to 37.7°C, 35ppt ranged from 36.4 to 37.7°C, and 45ppt ranged from 36.1 to 37.4°C. Further, LT50 data obtained here for early-juvenile red drum did not differ from data of a similar experiment examining 25mm TL sized fish. Published by Elsevier Ltd.

  12. Climate change scenarios of extreme temperatures and atmospheric humidity for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda-Martinez, A. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)]. E-mail: atejeda@uv.mx; Conde-Alvarez, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Valencia-Treviso, L.E. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)

    2008-10-15

    The following study explores climatic change scenarios of extreme temperature and atmospheric humidity for the 2020 and 2050 decades. They were created for Mexico through the GFDLR30, ECHAM4 and HadCM2 general circulation models. Base scenario conditions were associated with the normal climatological conditions for the period 1961-1990, with a database of 50 surface observatories. It was necessary to empirically estimate the missing data in approximately half of the pressure measurements. For the period 1961-1990, statistical models of the monthly means of maximum and minimum temperatures and atmospheric humidity (relative and specific) were obtained from the observed data of temperature, solar radiation and precipitation. Based on the simulations of the GFDLR30, ECHAM4 and HADCM2 models, a future scenario of monthly means of maximum and minimum temperatures and humidity in climatic change conditions was created. The results shown are for the representative months of winter (January) and summer (July). [Spanish] En este articulo se presentan escenarios de cambio climatico referidos a temperaturas extremas y humedad atmosferica para las decadas de 2020 y 2050. Fueron generados para Mexico a partir de los modelos de circulacion general GFDLR30, ECHAM4 y HADCM2. El escenario base corresponde a las normales climatologicas del periodo 1961-1990 para 50 observatorios de superficie. Para la mitad de ellos fue necesario estimar empiricamente la presion atmosferica a partir de la altitud y para la totalidad se obtuvieron modelos estadisticos de los promedios mensuales de temperaturas maxima y minima asi como de humedad atmosferica (relativa y especifica). Esos modelos estadisticos, combinados con las salidas de los modelos de circulacion general mencionados, produjeron escenarios futuros de medias mensuales de temperaturas extremas y de humedad bajo condiciones de cambio climatico. Se mostraran los resultados para un mes representativo del invierno (enero) y otro del verano

  13. A study of the middle atmospheric thermal structure over western India: Satellite data and comparisons with models

    Science.gov (United States)

    Sharma, Som; Kumar, Prashant; Vaishnav, Rajesh; Jethva, Chintan; Beig, G.

    2017-12-01

    Long term variations of the middle atmospheric thermal structure in the upper stratosphere and lower mesosphere (20-90 km) have been studied over Ahmedabad (23.1°N, 72.3°E, 55 m amsl), India using SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) onboard TIMED (Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics) observations during year 2002 to year 2014. For the same period, three different atmospheric models show over-estimation of temperature (∼10 K) near the stratopause and in the upper mesosphere, and a signature of under-estimation is seen above mesopause when compared against SABER measured temperature profiles. Estimation of monthly temperature anomalies reveals a semiannual and ter-annual oscillation moving downward from the mesosphere to the stratosphere during January to December. Moreover, Lomb Scargle periodogram (LSP) and Wavelet transform techniques are employed to characterize the semi-annual, annual and quasi-biennial oscillations to diagnose the wave dynamics in the stratosphere-mesosphere system. Results suggested that semi-annual, annual and quasi-biennial oscillations are exist in stratosphere, whereas, semi-annual and annual oscillations are observed in mesosphere. In lower mesosphere, LSP analyses revealed conspicuous absence of annual oscillations in altitude range of ∼55-65 km, and semi-annual oscillations are not existing in 35-45 km. Four monthly oscillations are also reported in the altitude range of about 45-65 km. The temporal localization of oscillations using wavelet analysis shows strong annual oscillation during year 2004-2006 and 2009-2011.

  14. On transient events in the upper atmosphere generated away of thunderstorm regions

    Science.gov (United States)

    Morozenko, V.; Garipov, G.; Khrenov, B.; Klimov, P.; Panasyuk, M.; Sharakin, S.; Zotov, M.

    2011-12-01

    origin may be related to electromagnetic pulses (EMP) or waves (whistler, EMW) generated by lightning. The EMP-EMW is transmitted in the ionosphere- ground channel to large distances R with low absorption. The part of EMP-EMW "visible" in the detector aperture diminishes with distance as R-1 due to observation geometry. The EMP-EMW triggers the electric discharge in the upper atmosphere (lower ionosphere, ~70 km). Estimates of resulting transients luminosity and their correlation with geomagnetic field are in progress.

  15. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure

    NARCIS (Netherlands)

    Seshan, V.; Ullien, D.; Castellanos-Gomez, A.; Sachdeva, S.; Murthy, D.H.K.; Savenije, T.J.; Ahmad, H.A.; Nunney, T.S.; Janssens, S.D.; Haenen, K.; Nesládek, M.; Van der Zant, H.S.J.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2013-01-01

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ?50 ml/min (STP) at

  16. Temperature oscillations in the upper thermocline region- A case study on internal waves off Kalpeni Island in the southern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Charyulu, R.J.K.; Sarma, Y.V.B.; Sarma, M.S.S.; Rao, L.V.G.

    characteristics of the temperature oscillations. The power spectra of temperature fluctuations at 11 depths in the upper thermocline from 80 to 100 m with 2 m interval, were computed for studying the short period internal waves. Power spectra density was higher...

  17. New atmospheric program

    Science.gov (United States)

    The National Science Foundation's Division of Atmospheric Sciences has established an Upper Atmospheric Facilities program within its Centers and Facilities section. The program will support the operation of and the scientific research that uses the longitudinal chain of incoherent scatter radars. The program also will ensure that the chain is maintained as a state-of-the-art research tool available to all interested and qualified scientists.For additional information, contact Richard A. Behnke, Division of Atmospheric Sciences, National Science Foundation, 1800 G Street, N.W., Washington, DC 20550 (telephone: 202-357-7390).

  18. Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination

    International Nuclear Information System (INIS)

    Shangguan Ming-Jia; Xia Hai-Yun; Dou Xian-Kang; Wang Chong; Qiu Jia-Wei; Zhang Yun-Peng; Shu Zhi-Feng; Xue Xiang-Hui

    2015-01-01

    A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar (RDL), since the so-called Rayleigh response is directly related to the convolution of the optical transmission of the frequency discriminator and the Rayleigh–Brillouin spectrum of the molecular backscattering. Thus, real-time and on-site profiles of atmospheric pressure, temperature, and aerosols should be provided as inputs to the wind retrieval. Firstly, temperature profiles under 35 km and above the altitude are retrieved, respectively, from a high spectral resolution lidar (HSRL) and a Rayleigh integration lidar (RIL) incorporating to the RDL. Secondly, the pressure profile is taken from the European Center for Medium range Weather Forecast (ECMWF) analysis, while radiosonde data are not available. Thirdly, the Klett–Fernald algorithms are adopted to estimate the Mie and Rayleigh components in the atmospheric backscattering. After that, the backscattering ratio is finally determined in a nonlinear fitting of the transmission of the atmospheric backscattering through the Fabry–Perot interferometer (FPI) to a proposed model. In the validation experiments, wind profiles from the lidar show good agreement with the radiosonde in the overlapping altitude. Finally, a continuous wind observation shows the stability of the correction scheme. (paper)

  19. Sintering of nickel catalysts. Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, Jens; Gelten, Johannes A.P.; Helveg, Stig [Haldor Topsoee A/S, Nymoellevej 55, DK-2800 Kgs. Lyngby (Denmark)

    2006-08-01

    Supported nickel catalysts are widely used in the steam-reforming process for industrial scale production of hydrogen and synthesis gas. This paper provides a study of sintering in nickel-based catalysts (Ni/Al{sub 2}O{sub 3} and Ni/MgAl{sub 2}O{sub 4}). Specifically the influence of time, temperature, atmosphere, nickel-carrier interactions and dopants on the rate of sintering is considered. To probe the sintering kinetics, all catalysts were analyzed by sulfur chemisorption to determine the Ni surface area. Furthermore selected samples were further analyzed using X-ray diffraction (XRD), mercury porosimetry, BET area measurements, and electron microscopy (EM). The observed sintering rates as a function of time, temperature, and P{sub H{sub 2}O}/P{sub H{sub 2}} ratio were consistent with recent model predictions [J. Sehested, J.A.P. Gelten, I.N. Remediakis, H. Bengaard, J.K. Norskov, J. Catal. 223 (2004) 432] over a broad range of environmental conditions. However, exposing the catalysts to severe sintering conditions the loss of nickel surface area is faster than model predictions and the deviation is attributed to a change in the sintering mechanism and nickel removal by nickel-carrier interactions. Surprisingly, alumina-supported Ni particles grow to sizes larger than the particle size of the carrier indicating that the pore diameter does not represent an upper limit for Ni particle growth. The effects of potassium promotion and sulfur poisoning on the rates of sintering were also investigated. No significant effects of the dopants were observed after ageing at ambient pressure. However, at high pressures of steam and hydrogen (31bar and H{sub 2}O:H{sub 2}=10:1) potassium promotion increased the sintering rate relative to that of the unpromoted catalyst. Sulfur also enhances the rate of sintering at high pressures, but the effect of sulfur is less than for potassium. (author)

  20. Wavelength Dependence of Solar Irradiance Enhancement During X-Class Flares and Its Influence on the Upper Atmosphere

    Science.gov (United States)

    Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Chamberlin, Phillip C.; Qian, Liying; Solomon, Stanley C.; Roble, Raymond G.; Xiao, Zuo

    2013-01-01

    The wavelength dependence of solar irradiance enhancement during flare events is one of the important factors in determining how the Thermosphere-Ionosphere (T-I) system responds to flares. To investigate the wavelength dependence of flare enhancement, the Flare Irradiance Spectral Model (FISM) was run for 61 X-class flares. The absolute and the percentage increases of solar irradiance at flare peaks, compared to pre-flare conditions, have clear wavelength dependences. The 0-14 nm irradiance increases much more (approx. 680% on average) than that in the 14-25 nm waveband (approx. 65% on average), except at 24 nm (approx. 220%). The average percentage increases for the 25-105 nm and 122-190 nm wavebands are approx. 120% and approx. 35%, respectively. The influence of 6 different wavebands (0-14 nm, 14-25 nm, 25-105 nm, 105- 120 nm, 121.56 nm, and 122-175 nm) on the thermosphere was examined for the October 28th, 2003 flare (X17-class) event by coupling FISM with the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) under geomagnetically quiet conditions (Kp=1). While the enhancement in the 0-14 nm waveband caused the largest enhancement of the globally integrated solar heating, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for the 25-105 nm waveband (EUV), which accounts for about 33 K of the total 45 K temperature enhancement, and approx. 7.4% of the total approx. 11.5% neutral density enhancement. The effect of 122-175 nm flare radiation on the thermosphere is rather small. The study also illustrates that the high-altitude thermospheric response to the flare radiation at 0-175 nm is almost a linear combination of the responses to the individual wavebands. The upper thermospheric temperature and density enhancements peaked 3-5 h after the maximum flare radiation.

  1. Simulations of the Boreal Winter Upper Mesosphere and Lower Thermosphere With Meteorological Specifications in SD-WACCM-X

    Science.gov (United States)

    Sassi, Fabrizio; Siskind, David E.; Tate, Jennifer L.; Liu, Han-Li; Randall, Cora E.

    2018-04-01

    We investigate the benefit of high-altitude nudging in simulations of the structure and short-term variability of the upper mesosphere and lower thermosphere (UMLT) dynamical meteorology during boreal winter, specifically around the time of the January 2009 sudden stratospheric warming. We compare simulations using the Specified Dynamics, Whole Atmosphere Community Climate Model, extended version, nudged using atmospheric specifications generated by the Navy Operational Global Atmospheric Prediction System, Advanced Level Physics High Altitude. Two sets of simulations are carried out: one uses nudging over a vertical domain from 0 to 90 km; the other uses nudging over a vertical domain from 0 to 50 km. The dynamical behavior is diagnosed from ensemble mean and standard deviation of winds, temperature, and zonal accelerations due to resolved and parameterized waves. We show that the dynamical behavior of the UMLT is quite different in the two experiments, with prominent differences in the structure and variability of constituent transport. We compare the results of our numerical experiments to observations of carbon monoxide by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer to show that the high-altitude nudging is capable of reproducing with high fidelity the observed variability, and traveling planetary waves are a crucial component of the dynamics. The results of this study indicate that to capture the key physical processes that affect short-term variability (defined as the atmospheric behavior within about 10 days of a stratospheric warming) in the UMLT, specification of the atmospheric state in the stratosphere alone is not sufficient, and upper atmospheric specifications are needed.

  2. Electron-impact vibrational excitation of the hydroxyl radical in the nighttime upper atmosphere

    Science.gov (United States)

    Campbell, Laurence; Brunger, Michael J.

    2018-02-01

    Chemical processes produce vibrationally excited hydroxyl (OH) in a layer centred at an altitude of about 87 km in the Earth's atmosphere. Observations of this layer are used to deduce temperatures in the mesosphere and to observe the passage of atmospheric gravity waves. Due to the low densities and energies at night of electrons at the relevant altitude, it is not expected that electron-impact excitation of OH would be significant. However, there are unexplained characteristics of OH densities and radiative emissions that might be explained by electron impact. These are measurements of higher than expected densities of OH above 90 km and of emissions at higher energies that cannot be explained by the chemical production processes. This study simulates the role of electron impact in these processes, using theoretical cross sections for electron-impact excitation of OH. The simulations show that electron impact, even in a substantial aurora, cannot fully explain these phenomena. However, in the process of this investigation, apparent inconsistencies in the theoretical cross sections and reaction rates were found, indicating that measurements of electron-impact excitation of OH are needed to resolve these problems and scale the theoretical predictions to allow more accurate simulations.

  3. The solar-flare infrared continuum: observational techniques and upper limits

    International Nuclear Information System (INIS)

    Hudson, H.S.

    1975-01-01

    Exploratory observations at 20μ and 350 μ have determined detection thresholds for solar flares in these wavelengths. In the 20μ range solar atmospheric fluctuations (the 'temperature field') set the basic limits on flare detectability at approximately 5K; at 350μ the extinction in the Earth's atmosphere provides the basic limitation of approximately 30 K. These thresholds are low enough for the successful detection of several infrared-emitting components of large flares. Limited observing time and lack of solar activity have prevented observations of large flares up to the present, but the techniques promise to be extremely useful in the future. The upper limits obtained thus far, for subflares, indicate that the thickness of the Hα flare region does not exceed approximately 10 km. This result confirms the conclusion of Suemoto and Hiei (1959) regarding the small effective thickness of the Hα-emitting regions in solar flares. (Auth.)

  4. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel; Vettier, Ludovic; Määttänen, Anni, E-mail: benjamin.fleury@latmos.ipsl.fr [Université Versailles St-Quentin, Sorbonne Universités, UPMC Univ. Paris 06, CNRS/INSU, LATMOS-IPSL, 11 Boulevard d’Alembert, F-78280 Guyancourt (France)

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Water was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.

  5. Solar tides in the equatorial upper thermosphere: A comparison between AE-E data and the TIGCM for solstice, solar minimum conditions

    International Nuclear Information System (INIS)

    Burrage, M.D.; Storz, M.F.; Abreu, V.J.; Fesen, C.G.; Roble, R.G.

    1991-01-01

    Equatorial thermospheric tidal temperatures and densities inferred from Atmosphere Explorer E (AE-E) mass spectrometer data are compared with theoretical predictions from the National Center for Atmospheric Research Thermosphere/Ionisphere General Circulation Model (TIGCM) for solar minimum, solstice conditions. The thermospheric diurnal and semidiurnal tides are excited in situ by solar heating and by ion-neutral momentum coupling. Semidiurnal tides are also generated by upward propagating waves excited by heating in the lower atmosphere. The model calculations include all of these sources. The TIGCM reproduces the gross tidal features observed by the satellite, including the midnight temperature anomaly, and the diurnal phases are in good agreement for the densities of atomic oxygen and molecular nitrogen. However, for the neutral temperature, the predicted phases are 1-2 hours earlier than observed. In addition, the diurnal temperature and density amplitudes predicted by the model are considerably weaker than indicated by the AE-E measurements. The semidiurnal variations found in the observations agree well with the model for December solstice but not for June. The present results indicate that upward propagating tides from the lower atmosphere are responsible for at least half of the amplitude of the semidiurnal tide in the upper thermosphere

  6. Stable methods for ill-posed problems and application to reconstruction of atmospheric temperature profile

    International Nuclear Information System (INIS)

    Son, H.H.; Luong, P.T.; Loan, N.T.

    1990-04-01

    The problems of Remote Sensing (passive or active) are investigated on the base of main principle which consists in interpretation of radiometric electromagnetic measurements in such spectral interval where the radiation is sensitive to interested physical property of medium. Those problems such as an analysis of composition and structure of atmosphere using the records of scattered radiation, cloud identification, investigation of thermodynamic state and composition of system, reconstructing the atmospheric temperature profile on the base of data processing of infrared radiation emitted by system Earth-Atmosphere... belong to class of inverse problems of mathematical physics which are often incorrect. Int his paper a new class of regularized solution corresponding to general formulated RATP-problem is considered. (author). 14 refs, 3 figs, 3 tabs

  7. CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    Science.gov (United States)

    Mcgillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2014-01-01

    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendations

  8. Variability of Jovian ion winds: an upper limit for enhanced Joule heating

    Directory of Open Access Journals (Sweden)

    M. B. Lystrup

    2007-05-01

    Full Text Available It has been proposed that short-timescale fluctuations about the mean electric field can significantly increase the upper atmospheric energy inputs at Jupiter, which may help to explain the high observed thermospheric temperatures. We present data from the first attempt to detect such variations in the Jovian ionosphere. Line-of-sight ionospheric velocity profiles in the Southern Jovian auroral/polar region are shown, derived from the Doppler shifting of H3+ infrared emission spectra. These data were recently obtained from the high-resolution CSHELL spectrometer at the NASA Infrared Telescope Facility. We find that there is no variability within this data set on timescales of the order of one minute and spatial scales of 640 km, putting upper limits on the timescales of fluctuations that would be needed to enhance Joule heating.

  9. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Hussain, Muhammad Mustafa

    2014-01-01

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High Temperature, Controlled-Atmosphere Aerodynamic Levitation Experiments with Applications in Planetary Science

    Science.gov (United States)

    Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies

  12. THE DISSOCIATIVE RECOMBINATION OF PROTONATED ACRYLONITRILE, CH2CHCNH+, WITH IMPLICATIONS FOR THE NITRILE CHEMISTRY IN DARK MOLECULAR CLOUDS AND THE UPPER ATMOSPHERE OF TITAN

    International Nuclear Information System (INIS)

    Vigren, E.; Hamberg, M.; Zhaunerchyk, V.; Kaminska, M.; Thomas, R. D.; Larsson, M.; Geppert, W. D.; Millar, T. J.; Walsh, C.

    2009-01-01

    Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH 2 CHCNH + , have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at ∼2 meV relative kinetic energy about 50% of the DR events involve only ruptures of X-H bonds (where X = C or N) while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H 2 ). The absolute DR cross section has been investigated for relative kinetic energies ranging from ∼1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 x 10 -6 (T/300) - 0.80 cm 3 s -1 for electron temperatures ranging from ∼10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan's upper atmosphere are discussed.

  13. The upper end of climate model temperature projections is inconsistent with past warming

    International Nuclear Information System (INIS)

    Stott, Peter; Good, Peter; Jones, Gareth; Gillett, Nathan; Hawkins, Ed

    2013-01-01

    Climate models predict a large range of possible future temperatures for a particular scenario of future emissions of greenhouse gases and other anthropogenic forcings of climate. Given that further warming in coming decades could threaten increasing risks of climatic disruption, it is important to determine whether model projections are consistent with temperature changes already observed. This can be achieved by quantifying the extent to which increases in well mixed greenhouse gases and changes in other anthropogenic and natural forcings have already altered temperature patterns around the globe. Here, for the first time, we combine multiple climate models into a single synthesized estimate of future warming rates consistent with past temperature changes. We show that the observed evolution of near-surface temperatures appears to indicate lower ranges (5–95%) for warming (0.35–0.82 K and 0.45–0.93 K by the 2020s (2020–9) relative to 1986–2005 under the RCP4.5 and 8.5 scenarios respectively) than the equivalent ranges projected by the CMIP5 climate models (0.48–1.00 K and 0.51–1.16 K respectively). Our results indicate that for each RCP the upper end of the range of CMIP5 climate model projections is inconsistent with past warming. (letter)

  14. SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Korey; Mandell, Avi M. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Madhusudhan, Nikku [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Knutson, Heather, E-mail: khaynes0112@gmail.com [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-06-20

    We present observations of two occultations of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is the most highly irradiated hot Jupiter discovered to date, and the only exoplanet known to orbit a δ-Scuti star. We observed in spatial scan mode to decrease instrument systematic effects in the data, and removed fluctuations in the data due to stellar pulsations. The rms for our final, binned spectrum is 1.05 times the photon noise. We compare our final spectrum, along with previously published photometric data, to atmospheric models of WASP-33b spanning a wide range in temperature profiles and chemical compositions. We find that the data require models with an oxygen-rich chemical composition and a temperature profile that increases at high altitude. We find that our measured spectrum displays an excess in the measured flux toward short wavelengths that is best explained as emission from TiO. If confirmed by additional measurements at shorter wavelengths, this planet would become the first hot Jupiter with a thermal inversion that can be definitively attributed to the presence of TiO in its dayside atmosphere.

  15. Behavior of radioactive organic iodide in an atmosphere of High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Saeki, Masakatsu; Nakashima, Mikio; Sagawa, Chiaki; Masaki, Nobuyuki; Hirabayashi, Takakuni; Aratono, Yasuyuki

    1990-06-01

    Formation and decomposition behavior of radioactive organic iodide have been studied in an atmosphere of High Temperature Gas-cooled Reactor (High Temperature Engineering Test Reactor, HTTR). Na 125 I was chosen for radioactive iodine source instead of CsI diffusing from coated fuel particles. Na 125 I adsorbed on graphite was heated in pure He and He containing O 2 or H 2 O atmosphere. The results obtained are as follows. It was proved that organic iodide was formed with organic radicals released from graphite even in He atmosphere. Thus, the interchange rate of inorganic iodide with organic iodide was remarkably decreased with prolonged preheat-treatment period at 1000degC. Organic iodide formed was easily decomposed by its recirculation into hot reaction tube kept at 900degC. When organic iodide was passed through powdered graphite bed, more than 70% was decomposed at 90degC. Oxygen and water vapour intermixed in He suppressed the interchange rate of inorganic iodide with organic iodide. These results suggest that organic iodide rarely exists in the pressure vessel under normal operating condition of HTTR, and, under hypothetical accident condition of HTTR, organic iodide fraction never exceeds the value used for a safety assessment of light water reactor. (author)

  16. Upper-Level Mediterranean Oscillation index and seasonal variability of rainfall and temperature

    Science.gov (United States)

    Redolat, Dario; Monjo, Robert; Lopez-Bustins, Joan A.; Martin-Vide, Javier

    2018-02-01

    The need for early seasonal forecasts stimulates continuous research in climate teleconnections. The large variability of the Mediterranean climate presents a greater difficulty in predicting climate anomalies. This article reviews teleconnection indices commonly used for the Mediterranean basin and explores possible extensions of one of them, the Mediterranean Oscillation index (MOi). In particular, the anomalies of the geopotential height field at 500 hPa are analyzed using segmentation of the Mediterranean basin in seven spatial windows: three at eastern and four at western. That is, different versions of an Upper-Level Mediterranean Oscillation index (ULMOi) were calculated, and monthly and annual variability of precipitation and temperature were analyzed for 53 observatories from 1951 to 2015. Best versions were selected according to the Pearson correlation, its related p value, and two measures of standardized error. The combination of the Balearic Sea and Libya/Egypt windows was the best for precipitation and temperature, respectively. The ULMOi showed the highest predictive ability in combination with the Atlantic Multidecadal Oscillation index (AMOi) for the annual temperature throughout the Mediterranean basin. The best model built from the indices presented a final mean error between 15 and 25% in annual precipitation for most of the studied area.

  17. Long-term changes of the upper stratosphere as seen by Japanese rocketsondes at Ryori (39°N, 141°E

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    Full Text Available Wind and temperature profiles measured routinely by rockets at Ryori (Japan since 1970 are analysed to quantify interannual changes that occur in the upper stratosphere. The analysis involved using a least square fitting of the data with a multiparametric adaptative model composed of a linear combination of some functions that represent the main expected climate forcing responses of the stratosphere. These functions are seasonal cycles, solar activity changes, stratospheric optical depth induced by volcanic aerosols, equatorial wind oscillations and a possible linear trend. Step functions are also included in the analyses to take into account instrumental changes. Results reveal a small change for wind data series above 45 km when new corrections were introduced to take into account instrumental changes. However, no significant change of the mean is noted for temperature even after sondes were improved. While wind series reveal no significant trends, a significant cooling of 2.0 to 2.5 K/decade is observed in the mid upper stratosphere using this analysis method. This cooling is more than double the cooling predicted by models by a factor of more than two. In winter, it may be noted that the amplitude of the atmospheric response is enhanced. This is probably caused by the larger ozone depletion and/or by some dynamical feedback effects. In winter, cooling tends to be smaller around 40-45 km (in fact a warming trend is observed in December as already observed in other data sets and simulated by models. Although the winter response to volcanic aerosols is in good agreement with numerical simulations, the solar signature is of the opposite sign to that expected. This is not understood, but it has already been observed with other data sets.

    Key words. Atmospheric composition and structure (evolution of one atmosphere; pressure · density · and temperature · Meteorology and atmospheric dynamics (middle atmosphere dynamics

  18. Atmospheric dayglow diagnostics involving the O2(b-X) Atmospheric band emission: Global Oxygen and Temperature (GOAT) mapping

    Science.gov (United States)

    Slanger, T. G.; Pejaković, D. A.; Kostko, O.; Matsiev, D.; Kalogerakis, K. S.

    2017-03-01

    The terrestrial dayglow displays prominent emission features from the 0-0 and 1-1 bands of the O2 Atmospheric band system in the 760-780 nm region. We present an analysis of observations in this wavelength region recorded by the Space Shuttle during the Arizona Airglow Experiment. A major conclusion is that the dominant product of O(1D) + O2 energy transfer is O2(b, v = 1), a result that corroborates our previous laboratory studies. Moreover, critical to the interpretation of dayglow is the possible interference by N2 and N2+ bands in the 760-780 nm region, where the single-most important component is the N2 1PG 3-1 band that overlaps with the O2(b-X) 0-0 band. When present, this background must be accounted for to reveal the O2(b-X) 0-0 and 1-1 bands for altitudes at which the O2 and N2/N2+ emissions coincide. Finally, we exploit the very different collisional behavior of the two lowest O2(b) vibrational levels to outline a remote sensing technique that provides information on Atmospheric composition and temperature from space-based observations of the 0-0 and 1-1 O2 atmospheric bands.

  19. A tethered balloon system for observation of atmospheric temperature inversion

    International Nuclear Information System (INIS)

    Hayashi, Takashi; Kakuta, Michio

    1979-05-01

    In environmental assessment of near-shore nuclear plants, information is often required on the development of internal boundary layer (IBL) and associated fumigation condition. Single tower data is not sufficient to clarify the site-dependent IBL structure that affects the atmospheric diffusion in shoreline-stack-site boundary complex. A tethered balloon system has been developed, which comprises a fixed point kitoon and a car-borne small balloon. The system enables us to measure the detailed time-space distribution of temperature without much man-power. The system and example of field observations with it are described. (author)

  20. GCM simulations of cold dry Snowball Earth atmospheres

    Science.gov (United States)

    Voigt, A.; Held, I.; Marotzke, J.

    2009-12-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We

  1. MIPAS: an instrument for atmospheric and climate research

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2008-04-01

    Full Text Available MIPAS, the Michelson Interferometer for Passive Atmospheric Sounding, is a mid-infrared emission spectrometer which is part of the core payload of ENVISAT. It is a limb sounder, i.e. it scans across the horizon detecting atmospheric spectral radiances which are inverted to vertical temperature, trace species and cloud distributions. These data can be used for scientific investigations in various research fields including dynamics and chemistry in the altitude region between upper troposphere and lower thermosphere.

    The instrument is a well calibrated and characterized Fourier transform spectrometer which is able to detect many trace constituents simultaneously. The different concepts of retrieval methods are described including multi-target and two-dimensional retrievals. Operationally generated data sets consist of temperature, H2O, O3, CH4, N2O, HNO3, and NO2 profiles. Measurement errors are investigated in detail and random and systematic errors are specified. The results are validated by independent instrumentation which has been operated at ground stations or aboard balloon gondolas and aircraft. Intercomparisons of MIPAS measurements with other satellite data have been carried out, too. As a result, it has been proven that the MIPAS data are of good quality.

    MIPAS can be operated in different measurement modes in order to optimize the scientific output. Due to the wealth of information in the MIPAS spectra, many scientific results have already been published. They include intercomparisons of temperature distributions with ECMWF data, the derivation of the whole NOy family, the study of atmospheric processes during the Antarctic vortex split in September~2002, the determination of properties of Polar Stratospheric Clouds, the downward transport of NOx in the middle atmosphere, the stratosphere-troposphere exchange, the influence of

  2. Mars Exospheric Temperature Trends as Revealed by MAVEN NGIMS Measurements

    Science.gov (United States)

    Bougher, Stephen W.; Olsen, Kirk; Roeten, Kali; Bell, Jared; Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith; Jakosky, Bruce

    2015-11-01

    The Martian dayside upper thermosphere and exosphere temperatures (Texo) have been the subject of considerable debate and study since the first Mariner ultraviolet spectrometer (UVS) measurements (1969-1972), up to recent Mars Express SPICAM UVS measurements (2004-present) (e.g., see reviews by Stewart 1987; Bougher et al. 2000, 2014; Müeller-Wodarg et al. 2008; Stiepen et al. 2014). Prior to MAVEN, the Martian upper atmosphere thermal structure was poorly constrained by a limited number of both in-situ and remote sensing measurements at selected locations, seasons, and periods scattered throughout the solar cycle. Nevertheless, it is recognized that the Mars orbit eccentricity determines that both the solar cycle and seasonal variations in upper atmosphere temperatures must be considered together. The MAVEN NGIMS instrument measures the neutral composition of the major gas species (e.g. He, N, O, CO, N2, O2, NO, Ar and CO2) and their major isotopes, with a vertical resolution of ~5 km for targeted species and a target accuracy of <25% for most of these species (Mahaffy et al. 2014; 2015). Corresponding temperatures can now be derived from the neutral scale heights (especially CO2, Ar, and N2) (e.g. Mahaffy et al. 2015; Bougher et al. 2015). Texo mean temperatures spanning ~200 to 300 km are examined for both Deep Dip and Science orbits over 11-February 2015 (Ls ~ 290) to 14-July 2015 (Ls ~ 12). During these times, dayside sampling below 300 km occurred from the dusk terminator, across the dayside, and approaching the dawn terminator. NGIMS temperatures are investigated to extract spatial (e.g. SZA) and temporal (e.g. orbit-to-orbit, seasonal, solar rotational) variability and trends over this sampling period. Solar and seasonal driven trends in Texo are clearly visible, but orbit-to-orbit variability is significant, and demands further investigation to uncover the major drivers that are responsible.

  3. Emerging pattern of global change in the upper atmosphere and ionosphere

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Akmaev, R. A.; Beig, G.; Bremer, J.; Emmert, J. T.; Jacobi, C.; Jarvis, M.J.; Nedoluha, G.; Portnyagin, Yu. I.; Ulich, T.

    2008-01-01

    Roč. 26, č. 5 (2008), s. 1255-1268 ISSN 0992-7689 R&D Projects: GA MŠk OC 091 Institutional research plan: CEZ:AV0Z30420517 Keywords : Atmospheric composition and structure * Thermosphere – composition and chemistry * Evolution of the atmosphere * Ionosphere * Ionosphere-atmosphere interactions Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.660, year: 2008 http://www.ann-geophys.net/26/1255/2008/

  4. Near-infrared brightness of the Galilean satellites eclipsed in Jovian shadow: A new technique to investigate Jovian upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, K. [Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Arimatsu, K.; Matsuura, S.; Shirahata, M.; Wada, T. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Egami, E. [Department of Astronomy, Arizona University, Tucson, AZ 85721 (United States); Hayano, Y.; Minowa, Y. [Hawaii Observatory, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Honda, C. [Research Center for Advanced Information Science and Technology, Aizu Research Cluster for Space Science, The University of Aizu, Aizu-Wakamatsu, Fukushima 965-8589 (Japan); Kimura, J. [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Kuramoto, K.; Takahashi, Y. [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Nakajima, K. [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Nakamoto, T. [Department of Earth and Planetary Sciences, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Surace, J., E-mail: tsumura@astr.tohoku.ac.jp [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-07-10

    Based on observations from the Hubble Space Telescope and the Subaru Telescope, we have discovered that Europa, Ganymede, and Callisto are bright around 1.5 μm even when not directly lit by sunlight. The observations were conducted with non-sidereal tracking on Jupiter outside of the field of view to reduce the stray light subtraction uncertainty due to the close proximity of Jupiter. Their eclipsed luminosity was 10{sup –6}-10{sup –7} of their uneclipsed brightness, which is low enough that this phenomenon has been undiscovered until now. In addition, Europa in eclipse was <1/10 of the others at 1.5 μm, a potential clue to the origin of the source of luminosity. Likewise, Ganymede observations were attempted at 3.6 μm by the Spitzer Space Telescope, but it was not detected, suggesting a significant wavelength dependence. It is still unknown why they are luminous even when in the Jovian shadow, but forward-scattered sunlight by hazes in the Jovian upper atmosphere is proposed as the most plausible candidate. If this is the case, observations of these Galilean satellites while eclipsed by the Jovian shadow provide us with a new technique to investigate the Jovian atmospheric composition. Investigating the transmission spectrum of Jupiter by this method is important for investigating the atmosphere of extrasolar giant planets by transit spectroscopy.

  5. Phosphorus Chemistry in the Atmosphere of Jupiter: A Reassessment

    Science.gov (United States)

    Borunov, Sergei; Dorofeeva, Vera; Khodakovsky, Igor; Drossart, Pierre; Lellouch, Emmanuel; Encrenaz, Thérèse

    1995-02-01

    A new distribution of phosphorus compounds in the atmosphere of Jupiter is given, using revised values for the chemical constants. In contrast with previous works, it is shown that phosphine PH 3 remains the most abundant equilibrium gaseous compound even at the upper levels of Jupiter's troposphere. The observed PH 3 abundance is equal to the equilibrium value, at all temperatures above 535 K for solar P and O elemental abundances, and above 600 K for a reasonable range of P and O abundances. P 4O 6 does not take part in the phosphorus cycle on Jupiter.

  6. Upper mixed layer temperature anomalies at the North Atlantic storm-track zone

    Science.gov (United States)

    Moshonkin, S. N.; Diansky, N. A.

    1995-10-01

    Synoptic sea surface temperature anomalies (SSTAs) were determined as a result of separation of time scales smaller than 183 days. The SSTAs were investigated using daily data of ocean weather station C (52.75°N; 35.5°W) from 1 January 1976 to 31 December 1980 (1827 days). There were 47 positive and 50 negative significant SSTAs (lifetime longer than 3 days, absolute value greater than 0.10 °C) with four main intervals of the lifetime repetitions: 1. 4-7 days (45% of all cases), 2. 9-13 days (20-25%), 3. 14-18 days (10-15%), and 4. 21-30 days (10-15%) and with a magnitude 1.5-2.0 °C. An upper layer balance model based on equations for temperature, salinity, mechanical energy (with advanced parametrization), state (density), and drift currents was used to simulate SSTA. The original method of modelling taking into account the mean observed temperature profiles proved to be very stable. The model SSTAs are in a good agreement with the observed amplitudes and phases of synoptic SSTAs during all 5 years. Surface heat flux anomalies are the main source of SSTAs. The influence of anomalous drift heat advection is about 30-50% of the SSTA, and the influence of salinity anomalies is about 10-25% and less. The influence of a large-scale ocean front was isolated only once in February-April 1978 during all 5 years. Synoptic SSTAs develop just in the upper half of the homogeneous layer at each winter. We suggest that there are two main causes of such active sublayer formation: 1. surface heat flux in the warm sectors of cyclones and 2. predominant heat transport by ocean currents from the south. All frequency functions of the ocean temperature synoptic response to heat and momentum surface fluxes are of integral character (red noise), though there is strong resonance with 20-days period of wind-driven horizontal heat advection with mixed layer temperature; there are some other peculiarities on the time scales from 5.5 to 13 days. Observed and modelled frequency functions

  7. Hypoxial death inferred from thermally induced injuries at upper lethal temperatures, in the banded killifish, Fundulus diaphanus (LeSueur)

    Energy Technology Data Exchange (ETDEWEB)

    Rombough, P J; Garside, E T

    1977-10-01

    Banded killifish, Fundulus diaphanus (LeSueur), acclimated to 25/sup 0/C were subjected to upper lethal temperatures using a 10,000 min bioassay procedure. The incipient upper lethal temperature (LT/sub 50/) was about 34.5/sup 0/C. Histologic examination of heat-treated fish revealed no obvious injury to the heart, spleen, trunk musculature, eye, naris, integument, or digestive tract. Thermal stress induced progressive injury to the gills characterized by subepithelial edema, congestion of lamellar capillaries, and delamination of the respiratory epithelium from the pillar cell system. Areas of necrosis were observed in the lobus inferior of the hypothalamus and in the medulla oblongata. The pseudobranch epithelium was necrotic. Fatty change occurred in the liver. Acinar cells of the pancreas appeared autolytic and adjacent blood vessels damaged. Degenerative tubular changes and contracted glomerular tufts were noted in the kidney. The ovary was extremely temperature sensitive and displayed severe injury to oocytes and follicular cells after relatively short exposure to temperatures near the LT/sub 50/. It is proposed that primary thermally induced injury is to the gills. This results in abnormal gas exchange and osmoregulation and leads to pathologic changes in other tissues. Hypoxia of the central nervous system appears to be the ultimate cause of death.

  8. The atmosphere of Pluto as observed by New Horizons.

    Science.gov (United States)

    Gladstone, G Randall; Stern, S Alan; Ennico, Kimberly; Olkin, Catherine B; Weaver, Harold A; Young, Leslie A; Summers, Michael E; Strobel, Darrell F; Hinson, David P; Kammer, Joshua A; Parker, Alex H; Steffl, Andrew J; Linscott, Ivan R; Parker, Joel Wm; Cheng, Andrew F; Slater, David C; Versteeg, Maarten H; Greathouse, Thomas K; Retherford, Kurt D; Throop, Henry; Cunningham, Nathaniel J; Woods, William W; Singer, Kelsi N; Tsang, Constantine C C; Schindhelm, Eric; Lisse, Carey M; Wong, Michael L; Yung, Yuk L; Zhu, Xun; Curdt, Werner; Lavvas, Panayotis; Young, Eliot F; Tyler, G Leonard

    2016-03-18

    Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales. Copyright © 2016, American Association for the Advancement of Science.

  9. Containment atmosphere response to external sprays

    International Nuclear Information System (INIS)

    Green, J.; Almenas, K.

    1995-01-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J 2 /He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated

  10. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  11. Poster 6: Influence of traces elements in the organic chemistry of upper atmosphere of Titan

    Science.gov (United States)

    Mathe, Christophe; Carrasco, Nathalie; Trainer, Melissa G.; Gautier, Thomas; Gavilan, Lisseth; Dubois, David; Li, Xiang

    2016-06-01

    In the upper atmosphere of Titan, complex chemistry leads to the formation of organic aerosols. Since the work of Khare et al. in 1984, several experiments investigated the formation of Titan aerosols, so called tholins, in the laboratory. It has been suggested that nitrogen-containing compounds may contribute significantly to the aerosols formation process. In this study, we focused on the influence of pyridine, the simplest nitrogenous aromatic hydrocarbon, on the chemistry of Titan's atmosphere and on aerosol formation. To assess the effect of pyridine on aerosol formation chemistry, we used two different experimental setups : a capacitively coupled radio-frequency (electronic impact), and a VUV Deuterium lamp (photochemistry) in a collaboration between LATMOS (Guyancourt) and NASA-GSFC (Greenbelt), respectively. Aerosols produced with both setups were first analyzed using a FTIR-ATR (Fourier Transform Infrared spectroscopy - Attenuated Total Reflection) with a spectral range of 4000-800 cm-1 to characterize their optical properties. Next the samples were analysed using a Bruker Autoflex Speed MALDI mass spectrometer with a m/z range up to 2000 Da in order to infer their composition. Infrared spectroscopy analysis showed that tholins produced with a nitrogen-methane gas mixture (95:5) and nitrogenpyridine gas mixture (99:250ppm) present very similar spectra features. Tholins produced with a mixture of nitrogenmethane-pyridine (99:1:250ppm) do not present aliphatic CH2 or CH3 vibrational signatures. This could indicate a cyclic polymerization by a pyridine skeleton. Mass spectrometry is still in progress to confirm this.

  12. Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature?

    Energy Technology Data Exchange (ETDEWEB)

    Corre, L.; Terray, L.; Weaver, A. [Cerfacs-CNRS, Toulouse (France); Balmaseda, M. [E.C.M.W.F, Reading (United Kingdom); Ribes, A. [CNRM-GAME, Meteo France-CNRS, Toulouse (France)

    2012-03-15

    A multivariate analysis of the upper ocean thermal structure is used to examine the recent long-term changes and decadal variability in the upper ocean heat content as represented by model-based ocean reanalyses and a model-independent objective analysis. The three variables used are the mean temperature above the 14 C isotherm, its depth and a fixed depth mean temperature (250 m mean temperature). The mean temperature above the 14 C isotherm is a convenient, albeit simple, way to isolate thermodynamical changes by filtering out dynamical changes related to thermocline vertical displacements. The global upper ocean observations and reanalyses exhibit very similar warming trends (0.045 C per decade) over the period 1965-2005, superimposed with marked decadal variability in the 1970s and 1980s. The spatial patterns of the regression between indices (representative of anthropogenic changes and known modes of internal decadal variability), and the three variables associated with the ocean heat content are used as fingerprint to separate out the different contributions. The choice of variables provides information about the local heat absorption, vertical distribution and horizontal redistribution of heat, this latter being suggestive of changes in ocean circulation. The discrepancy between the objective analysis and the reanalyses, as well as the spread among the different reanalyses, are used as a simple estimate of ocean state uncertainties. Two robust findings result from this analysis: (1) the signature of anthropogenic changes is qualitatively different from those of the internal decadal variability associated to the Pacific Interdecadal Oscillation and the Atlantic Meridional Oscillation, and (2) the anthropogenic changes in ocean heat content do not only consist of local heat absorption, but are likely related with changes in the ocean circulation, with a clear shallowing of the tropical thermocline in the Pacific and Indian oceans. (orig.)

  13. Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    1997-09-01

    Full Text Available Latent heat release associated with tropical deep convective activity is investigated as a source for migrating (sun-synchronous diurnal and semidiurnal tidal oscillations in the 80–150-km height region. Satellite-based cloud brightness temperature measurements made between 1988 and 1994 and averaged into 3-h bins are used to determine the annual- and longitude-average local-time distribution of rainfall rate, and hence latent heating, between ±40° latitude. Regional average rainfall rates are shown to be in good agreement with climatological values derived from surface rain gauge data. A global linearized wave model is used to estimate the corresponding atmospheric perturbations in the mesosphere/lower thermosphere (80–150 km resulting from upward-propagating tidal components excited by the latent heating. The annual-average migrating diurnal and semidiurnal components achieve velocity and temperature amplitudes of order 10–20 m s–1 and 5–10 K, respectively, which represent substantial contributions to the dynamics of the region. The latent heat forcing also shifts the phase (local solar time of maximum of the semidiurnal surface pressure oscillation from 0912 to 0936 h, much closer to the observed value of 0944 h.

  14. A secular carbon debt from atmospheric high temperature combustion of stem wood?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2012-01-01

    ' approach for smokestack emissions that was propagated within the Kyoto process, the first phase of which is terminating in 2012. Otherwise, it is tolerated that the substitution of wood pellets for coal or other fossil fuels creates long lasting extra emissions of carbon dioxide – a mistake of climate......Basically, combustion of woody biomass in high temperature processes that react with atmospheric air results in a long lasting addition of carbon dioxide to the atmosphere. When harvesting large extra amounts of stem tree for energetic use, a global as well as secular time frame is needed to assess...... overall consequences with due attention given to biosphere processes, including the complex productivity of whole ecosystems. Analytically, a time dependent variable of carbon neutralization can be traced by a simple carbon neutrality or CN factor. Using the forgotten Marland approach, project managers...

  15. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere

    Science.gov (United States)

    Zhang, Yuzhong; Forrister, Haviland; Liu, Jiumeng; Dibb, Jack; Anderson, Bruce; Schwarz, Joshua P.; Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Wang, Yuhang; Nenes, Athanasios; Weber, Rodney J.

    2017-07-01

    Carbonaceous aerosols affect the global radiative balance by absorbing and scattering radiation, which leads to warming or cooling of the atmosphere, respectively. Black carbon is the main light-absorbing component. A portion of the organic aerosol known as brown carbon also absorbs light. The climate sensitivity to absorbing aerosols rapidly increases with altitude, but brown carbon measurements are limited in the upper troposphere. Here we present aircraft observations of vertical aerosol distributions over the continental United States in May and June 2012 to show that light-absorbing brown carbon is prevalent in the troposphere, and absorbs more short-wavelength radiation than black carbon at altitudes between 5 and 12 km. We find that brown carbon is transported to these altitudes by deep convection, and that in-cloud heterogeneous processing may produce brown carbon. Radiative transfer calculations suggest that brown carbon accounts for about 24% of combined black and brown carbon warming effect at the tropopause. Roughly two-thirds of the estimated brown carbon forcing occurs above 5 km, although most brown carbon is found below 5 km. The highest radiative absorption occurred during an event that ingested a wildfire plume. We conclude that high-altitude brown carbon from biomass burning is an unappreciated component of climate forcing.

  16. Temperature minima in the average thermal structure of the middle mesosphere (70 - 80 km) from analysis of 40- to 92-km SME global temperature profiles

    Science.gov (United States)

    Clancy, R. Todd; Rusch, David W.; Callan, Michael T.

    1994-01-01

    Global temperatures have been derived for the upper stratosphere and mesosphere from analysis of Solar Mesosphere Explorer (SME) limb radiance profiles. The SME temperature represent fixed local time observations at 1400 - 1500 LT, with partial zonal coverage of 3 - 5 longitudes per day over the 1982-1986 period. These new SME temperatures are compared to the COSPAR International Ionosphere Reference Atmosphere 86 (CIRA 86) climatology (Fleming et al., 1990) as well as stratospheric and mesospheric sounder (SAMS); Barnett and Corney, 1984), National Meteorological Center (NMC); (Gelman et al., 1986), and individual lidar and rocket observations. Significant areas of disagreement between the SME and CIRA 86 mesospheric temperatures are 10 K warmer SME temperatures at altitudes above 80 km. The 1981-1982 SAMS temperatures are in much closer agreement with the SME temperatures between 40 and 75 km. Although much of the SME-CIRA 86 disagreement probably stems from the poor vertical resolution of the observations comprising the CIRA 86 modelm, some portion of the differences may reflect 5- to 10-year temporal variations in mesospheric temperatures. The CIRA 86 climatology is based on 1973-1978 measurements. Relatively large (1 K/yr) 5- to 10-year trends in temperatures as functions of longitude, latitude, and altitude have been observed for both the upper stratosphere (Clancy and Rusch, 1989a) and mesosphere (Clancy and Rusch, 1989b; Hauchecorne et al., 1991). The SME temperatures also exhibit enhanced amplitudes for the semiannual oscillation (SAO) of upper mesospheric temperatures at low latitudes, which are not evident in the CIRA 86 climatology. The so-called mesospheric `temperature inversions' at wintertime midlatitudes, which have been observed by ground-based lidar (Hauschecorne et al., 1987) and rocket in situ measurements (Schmidlin, 1976), are shown to be a climatological aspect of the mesosphere, based on the SME observations.

  17. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores

    Science.gov (United States)

    Deng, X. T.; Shi, J. J.; Shama, G.; Kong, M. G.

    2005-10-01

    Current inactivation studies of Bacillus subtilis spores using atmospheric-pressure glow discharges (APGD) do not consider two important factors, namely microbial loading at the surface of a substrate and sporulation temperature. Yet these are known to affect significantly microbial resistance to heat and hydrogen peroxide. This letter investigates effects of microbial loading and sporulation temperature on spore resistance to APGD. It is shown that microbial loading can lead to a stacking structure as a protective shield against APGD treatment and that high sporulation temperature increases spore resistance by altering core water content and cross-linked muramic acid content of B. subtilis spores.

  18. Exploring atmospheric blocking with GPS radio occultation observations

    Directory of Open Access Journals (Sweden)

    L. Brunner

    2016-04-01

    Full Text Available Atmospheric blocking has been closely investigated in recent years due to its impact on weather and climate, such as heat waves, droughts, and flooding. We use, for the first time, satellite-based observations from Global Positioning System (GPS radio occultation (RO and explore their ability to resolve blocking in order to potentially open up new avenues complementing models and reanalyses. RO delivers globally available and vertically highly resolved profiles of atmospheric variables such as temperature and geopotential height (GPH. Applying a standard blocking detection algorithm, we find that RO data robustly capture blocking as demonstrated for two well-known blocking events over Russia in summer 2010 and over Greenland in late winter 2013. During blocking episodes, vertically resolved GPH gradients show a distinct anomalous behavior compared to climatological conditions up to 300 hPa and sometimes even further up into the tropopause. The accompanying increase in GPH of up to 300 m in the upper troposphere yields a pronounced tropopause height increase. Corresponding temperatures rise up to 10 K in the middle and lower troposphere. These results demonstrate the feasibility and potential of RO to detect and resolve blocking and in particular to explore the vertical structure of the atmosphere during blocking episodes. This new observation-based view is available globally at the same quality so that blocking in the Southern Hemisphere can also be studied with the same reliability as in the Northern Hemisphere.

  19. On the influence of density and temperature fluctuations on the formation of spectral lines in stellar atmospheres

    International Nuclear Information System (INIS)

    Stahlberg, J.

    1985-01-01

    A method taking into account the influence of temperature and density fluctuations generated by the velocity field in stellar atmospheres on the formation of spectral lines is presented. The influenced line profile is derived by exchanging the values in a static atmosphere by a mean value and a fluctuating one. The correlations are calculated with the help of the well-know hydrodynamic eqs. It results, that in normal stellar atmospheres the visual lines are only very weakly influenced by such fluctuations due to the small values of the gradients of the pressure and density and of the velocity dispersion. (author)

  20. Development of an apparatus to study chemical reactions at high temperature - a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sturzenegger, M; Schelling, Th; Steiner, E; Wuillemin, D [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    TREMPER is an apparatus that was devised to study kinetic and thermodynamic aspects of high-temperature reactions under concentrated solar irradiation. The design allows investigations on solid or liquid samples under inert or reactive atmospheres. The working temperature is adjustable; the upper limit that has yet been reached is about 1900 K. TREMPER will facilitate chemical reactivity studies on a temperature level that is difficult to access by other means. First experiments were conducted to study the decomposition of manganese oxide MnO{sub 2}. Chemical analysis of exposed samples confirmed that the parent MnO{sub 2} was decomposed to mixtures of Mn O and Mn{sub 3}O{sub 4}. The amount of Mn O ranged from 60 mol-% in air to 86 mol-% under inert atmosphere. (author) 1 fig., 1 tab., 2 refs.

  1. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li, E-mail: mawanli002@163.com; Li, Yi-Fan, E-mail: ijrc_pts_paper@yahoo.com

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m{sup 3} and 180 pg/m{sup 3}, respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas–particle partitioning coefficients (logK{sub p}) for most low molecular weight BFRs were highly temperature dependent as well. Gas–particle partitioning coefficients (logK{sub p}) also correlated with the sub-cooled liquid vapor pressure (logP{sub L}{sup o}). Our results indicated that absorption into organic matter is the main control mechanism for the gas–particle partitioning of atmospheric PBDEs. - Highlights: • Both PBDEs and alternative BFRs were analyzed in the atmosphere of Northeast China. • Partial pressure of BFRs was significantly correlated with the ambient temperature. • A strong temperature dependence of gas-particle partitioning was found. • Absorption into organic matter was the control mechanism for G-P partitioning.

  2. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Science.gov (United States)

    Thankamani Akhil Raj, Sivan; Venkat Ratnam, Madineni; Narayana Rao, Daggumati; Venkata Krishna Murthy, Boddam

    2018-01-01

    We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993-2005), Aura Microwave Limb Sounder (MLS, 2004-2015), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002-2015) on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics)) observations covering the period 1993-2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E) and New Delhi (28° N, 77° E), covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E), for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (-1.71 ± 0.49 K decade-1) and New Delhi (-1.15 ± 0.55 K decade-1). The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998-2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (˜ 10 hPa) and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  3. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    Science.gov (United States)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  4. WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer

    Science.gov (United States)

    1992-01-01

    As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.

  5. The sources of atmospheric gravity waves

    International Nuclear Information System (INIS)

    Nagpal, O.P.

    1979-01-01

    The gravity wave theory has been very successful in the interpretation of various upper atmospheric phenomena. This article offers a review of the present state of knowledge about the various sources of atmospheric gravity waves, particularly those which give rise to different types of travelling ionospheric disturbance. Some specific case studies are discussed. (author)

  6. ON THE COMBINATION OF IMAGING-POLARIMETRY WITH SPECTROPOLARIMETRY OF UPPER SOLAR ATMOSPHERES DURING SOLAR ECLIPSES

    International Nuclear Information System (INIS)

    Qu, Z. Q.; Deng, L. H.; Dun, G. T.; Chang, L.; Zhang, X. Y.; Cheng, X. M.; Qu, Z. N.; Xue, Z. K.; Ma, L.; Allington-Smith, J.; Murray, G.

    2013-01-01

    We present results from imaging polarimetry (IP) of upper solar atmospheres during a total solar eclipse on 2012 November 13 and spectropolarimetry of an annular solar eclipse on 2010 January 15. This combination of techniques provides both the synoptic spatial distribution of polarization above the solar limb and spectral information on the physical mechanism producing the polarization. Using these techniques together we demonstrate that even in the transition region, the linear polarization increases with height and can exceed 20%. IP shows a relatively smooth background distribution in terms of the amplitude and direction modified by solar structures above the limb. A map of a new quantity that reflects direction departure from the background polarization supplies an effective technique to improve the contrast of this fine structure. Spectral polarimetry shows that the relative contribution to the integrated polarization over the observed passband from the spectral lines decreases with height while the contribution from the continuum increases as a general trend. We conclude that both imaging and spectral polarimetry obtained simultaneously over matched spatial and spectral domains will be fruitful for future eclipse observations

  7. Upper limits for absorption by water vapor in the near-UV

    International Nuclear Information System (INIS)

    Wilson, Eoin M.; Wenger, John C.; Venables, Dean S.

    2016-01-01

    There are few experimental measurements of absorption by water vapor in the near-UV. Here we report the results of spectral measurements of water vapor absorption at ambient temperature and pressure from 325 nm to 420 nm, covering most tropospherically relevant short wavelengths. Spectra were recorded using a broadband optical cavity in the chemically controlled environment of an atmospheric simulation chamber. No absorption attributable to the water monomer (or the dimer) was observed at the 0.5 nm resolution of our system. Our results are consistent with calculated spectra and recent DOAS field observations, but contradict a report of significant water absorption in the near-UV. Based on the detection limit of our instrument, we report upper limits for the water absorption cross section of less than 5×10 −26 cm 2 molecule −1 at our instrument resolution. For a typical, indicative slant column density of 4×10 23 cm 2 , we calculate a maximum optical depth of 0.02 arising from absorption of water vapor in the atmosphere at wavelengths between 340 nm and 420 nm, with slightly higher maximum optical depths below 340 nm. The results of this work, together with recent atmospheric observations and computational results, suggest that water vapor absorption across most of the near-UV is small compared to visible and infrared wavelengths. - Highlights: • The absorption cross section of water vapor was studied from 325 to 420 nm. • The upper limit was 5×10 −26 cm 2 molecule −1 above 340 nm at 0.5 nm resolution. • Our result contradicts a recent report of appreciable absorption by water vapor.

  8. The SPICAV-SOIR instrument probing the atmosphere of Venus: an overview

    Science.gov (United States)

    Trompet, Loïc; Mahieux, Arnaud; Wilquet, Valérie; Robert, Séverine; Chamberlain, Sarah; Thomas, Ian; Carine Vandaele, Ann; Bertaux, Jean-Loup

    2016-04-01

    The Solar Occultation in the Infrared (SOIR) channel mounted on top of the SPICAV instrument of the ESA's Venus Express mission has observed the atmosphere of Venus during more than eight years. This IR spectrometer (2.2-4.3 μm) with a high spectral resolution (0.12 cm-1) combined an echelle grating with an acousto-optic tunable filter for order selection. SOIR performed more than 1500 solar occultation measurements leading to about two millions spectra. The Royal Belgian Institute for Space Aeronomy (BIRA-IASB) was in charge of SOIR's development and operations as well as its data pipeline. BIRA-IASB carried out several studies on the composition of Venus mesosphere and lower thermosphere: carbon dioxide, carbon monoxide, hydrogen halide (HF, HCl, DF, DCl), sulfur dioxide, water (H2O, HDO) as well as sulphuric acid aerosols in the upper haze of Venus. Density and temperature profiles of the upper atmosphere of Venus (60 km to 170 km) at the terminator have been retrieved from SOIR's spectra using different assumptions, wherein the hydrostatic equilibrium and the local thermodynamical equilibrium in the radiative transfer calculations. These results allow us to produce an Atmospheric model of Venus called Venus Atmosphere from SOIR measurements at the Terminator (VAST). Data obtained by SOIR will also contribute to update the Venus International Reference Atmosphere (VIRA). Recently, the treatment of the raw data to transmittance has been optimized, and a new dataset of spectra has been produced. All raw spectra (PSA level 2) as well as calibrated spectra (PSA level 3) have been delivered to ESA's Planetary Science Archive (PDSPSA). Consequently the re-analysis of all spectra has been undergone. We will briefly present the improvements implemented in the data pipeline. We will also show a compilation of results obtained by the instrument considering the complete mission duration.

  9. Study of Atmospheric Forcing and Responses (SAFAR campaign: overview

    Directory of Open Access Journals (Sweden)

    A. Jayaraman

    2010-01-01

    Full Text Available Study of Atmospheric Forcing and Responses (SAFAR is a five year (2009–2014 research programme specifically to address the responses of the earth's atmosphere to both natural and anthropogenic forcings using a host of collocated instruments operational at the National Atmospheric Research Laboratory, Gadanki (13.5° N, 79.2° E, India from a unified viewpoint of studying the vertical coupling between the forcings and responses from surface layer to the ionosphere. As a prelude to the main program a pilot campaign was conducted at Gadanki during May–November 2008 using collocated observations from the MST radar, Rayleigh lidar, GPS balloonsonde, and instruments measuring aerosol, radiation and precipitation, and supporting satellite data. We show the importance of the large radiative heating caused by absorption of solar radiation by soot particles in the lower atmosphere, the observed high vertical winds in the convective updrafts extending up to tropopause, and the difficulty in simulating the same with existing models, the upward traveling waves in the middle atmosphere coupling the lower atmosphere with the upper atmosphere, their manifestation in the mesospheric temperature structure and inversion layers, the mesopause height extending up to 100 km, and the electro-dynamical coupling between mesosphere and the ionosphere which causes irregularities in the ionospheric F-region. The purpose of this communication is not only to share the knowledge that we gained from the SAFAR pilot campaign, but also to inform the international atmospheric science community about the SAFAR program as well as to extend our invitation to join in our journey.

  10. Parachute systems for the atmospheric reentry of launcher upper stages

    Directory of Open Access Journals (Sweden)

    Bogdan DOBRESCU

    2017-03-01

    Full Text Available Parachute systems can be used to control the reentry trajectory of launcher upper stages, in order to lower the risks to the population or facilitate the retrieval of the stage. Several types of parachutes deployed at subsonic, supersonic and hypersonic speeds are analyzed, modeled as single and multistage systems. The performance of deceleration parachutes depends on their drag area and deployment conditions, while gliding parachutes are configured to achieve stable flight with a high glide ratio. Gliding parachutes can be autonomously guided to a low risk landing area. Sizing the canopy is shown to be an effective method to reduce parachute sensitivity to wind. The reentry trajectory of a launcher upper stage is simulated for each parachute system configuration and the results are compared to the nominal reentry case.

  11. Discriminating low frequency components from long range persistent fluctuations in daily atmospheric temperature variability

    Directory of Open Access Journals (Sweden)

    V. Cuomo

    2009-07-01

    Full Text Available This study originated from recent results reported in literature, which support the existence of long-range (power-law persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.

  12. Stratospheric temperatures and tracer transport in a nudged 4-year middle atmosphere GCM simulation

    Science.gov (United States)

    van Aalst, M. K.; Lelieveld, J.; Steil, B.; Brühl, C.; Jöckel, P.; Giorgetta, M. A.; Roelofs, G.-J.

    2005-02-01

    We have performed a 4-year simulation with the Middle Atmosphere General Circulation Model MAECHAM5/MESSy, while slightly nudging the model's meteorology in the free troposphere (below 113 hPa) towards ECMWF analyses. We show that the nudging 5 technique, which leaves the middle atmosphere almost entirely free, enables comparisons with synoptic observations. The model successfully reproduces many specific features of the interannual variability, including details of the Antarctic vortex structure. In the Arctic, the model captures general features of the interannual variability, but falls short in reproducing the timing of sudden stratospheric warmings. A 10 detailed comparison of the nudged model simulations with ECMWF data shows that the model simulates realistic stratospheric temperature distributions and variabilities, including the temperature minima in the Antarctic vortex. Some small (a few K) model biases were also identified, including a summer cold bias at both poles, and a general cold bias in the lower stratosphere, most pronounced in midlatitudes. A comparison 15 of tracer distributions with HALOE observations shows that the model successfully reproduces specific aspects of the instantaneous circulation. The main tracer transport deficiencies occur in the polar lowermost stratosphere. These are related to the tropopause altitude as well as the tracer advection scheme and model resolution. The additional nudging of equatorial zonal winds, forcing the quasi-biennial oscillation, sig20 nificantly improves stratospheric temperatures and tracer distributions.

  13. Bombs and Flares at the Surface and Lower Atmosphere of the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Hansteen, V. H.; Pereira, T. M. D.; Carlsson, M.; Van der Voort, L. Rouppe [Institute of Theoretical Astrophysics, University of Oslo, Norway, PB 1029 Blindern, NO-0315 Oslo (Norway); Archontis, V. [School of Mathematics and Statistics, St. Andrews University, St. Andrews, KY169SS (United Kingdom); Leenaarts, J. [Institute for Solar Physics, Dept. of Astronomy, Stockholm University, Roslagstullbacken 21 SE-10691 Stockholm (Sweden)

    2017-04-10

    A spectacular manifestation of solar activity is the appearance of transient brightenings in the far wings of the H α line, known as Ellerman bombs (EBs). Recent observations obtained by the Interface Region Imaging Spectrograph have revealed another type of plasma “bombs” (UV bursts) with high temperatures of perhaps up to 8 × 10{sup 4} K within the cooler lower solar atmosphere. Realistic numerical modeling showing such events is needed to explain their nature. Here, we report on 3D radiative magnetohydrodynamic simulations of magnetic flux emergence in the solar atmosphere. We find that ubiquitous reconnection between emerging bipolar magnetic fields can trigger EBs in the photosphere, UV bursts in the mid/low chromosphere and small (nano-/micro-) flares (10{sup 6} K) in the upper chromosphere. These results provide new insights into the emergence and build up of the coronal magnetic field and the dynamics and heating of the solar surface and lower atmosphere.

  14. Attribution of atmospheric CO2 and temperature increases to regions: importance of preindustrial land use change

    International Nuclear Information System (INIS)

    Pongratz, Julia; Caldeira, Ken

    2012-01-01

    The historical contribution of each country to today’s observed atmospheric CO 2 excess and higher temperatures has become a basis for discussions around burden-sharing of greenhouse gas reduction commitments in political negotiations. However, the accounting methods have considered greenhouse gas emissions only during the industrial era, neglecting the fact that land use changes (LUC) have caused emissions long before the Industrial Revolution. Here, we hypothesize that considering preindustrial LUC affects the attribution because the geographic pattern of preindustrial LUC emissions differs significantly from that of industrial-era emissions and because preindustrial emissions have legacy effects on today’s atmospheric CO 2 concentrations and temperatures. We test this hypothesis by estimating CO 2 and temperature increases based on carbon cycle simulations of the last millennium. We find that accounting for preindustrial LUC emissions results in a shift of attribution of global temperature increase from the industrialized countries to less industrialized countries, in particular South Asia and China, by up to 2–3%, a level that may be relevant for political discussions. While further studies are needed to span the range of plausible quantifications, our study demonstrates the importance of including preindustrial emissions for the most scientifically defensible attribution. (letter)

  15. Bubble formation occurs in insulin pumps in response to changes in ambient temperature and atmospheric pressure but not as a result of vibration.

    Science.gov (United States)

    Lopez, Prudence E; King, Bruce R; Goss, Peter W; Chockalingam, Ganesh

    2014-01-01

    Bubble formation in insulin pump giving sets is a common problem. We studied change in temperature, change in atmospheric pressure, and vibration as potential mechanisms of bubble formation. 5 Animas 2020 pumps with 2 mL cartridges and Inset II infusion systems, 5 Medtronic Paradigm pumps with 1.8 mL cartridge and Quickset and 3 Roche Accu-chek pumps with 3.15 mL cartridges were used. Temperature study: insulin pumps were exposed to a temperature change from 4°C to 37°C. Pressure study: insulin pumps were taken to an altitude of 300 m. Vibration study: insulin pumps were vigorously shaken. All were observed for bubble formation. Bubble formation was observed with changes in temperature and atmospheric pressure. Bubble formation did not occur with vibration. Changes in insulin temperature and atmospheric pressure are common and may result in bubble formation. Vibration may distribute bubbles but does not cause bubble formation.

  16. Delaware River and Upper Bay Sediment Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The area of coverage consists of 192 square miles of benthic habitat mapped from 2005 to 2007 in the Delaware River and Upper Delaware Bay. The bottom sediment map...

  17. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere.

    Science.gov (United States)

    De Clercq, N; Vlaemynck, G; Van Pamel, E; Van Weyenberg, S; Herman, L; Devlieghere, F; De Meulenaer, B; Van Coillie, E

    2016-03-02

    Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in

  18. Comparative analysis of atmosphere temperature variability for Northern Eurasia based on the Reanalysis and in-situ observed data

    Science.gov (United States)

    Shulgina, T.; Genina, E.; Gordov, E.; Nikitchuk, K.

    2009-04-01

    At present numerous data archives which include meteorological observations as well as climate processes modeling data are available for Earth Science specialists. Methods of mathematical statistics are widely used for their processing and analysis. In many cases they represent the only way of quantitative assessment of the meteorological and climatic information. Unified set of analysis methods allows us to compare climatic characteristics calculated on the basis of different datasets with the purpose of performing more detailed analysis of climate dynamics for both regional and global levels. The report presents the results of comparative analysis of atmosphere temperature behavior for the Northern Eurasia territory for the period from 1979 to 2004 based on the NCEP/NCAR Reanalysis, NCEP/DOE Reanalysis AMIP II, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis data and observation data obtained from meteorological stations of the former Soviet Union. Statistical processing of atmosphere temperature data included analysis of time series homogeneity of climate indices approved by WMO, such as "Number of frost days", "Number of summer days", "Number of icing days", "Number of tropical nights", etc. by means of parametric methods of mathematical statistics (Fisher and Student tests). That allowed conducting comprehensive research of spatio-temporal features of the atmosphere temperature. Analysis of the atmosphere temperature dynamics revealed inhomogeneity of the data obtained for large observation intervals. Particularly, analysis performed for the period 1979 - 2004 showed the significant increase of the number of frost and icing days approximately by 1 day for every 2 years and decrease roughly by 1 day for 2 years for the number of summer days. Also it should be mentioned that the growth period mean temperature have increased by 1.5 - 2° C for the time period being considered. The usage of different Reanalysis datasets in conjunction with in-situ observed

  19. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea......, demonstrate that wind information from SAR is more appropriate when small scale local features are of interest, not resolved by scatterometers. Hourly satellite observations of the sea surface temperature, from a thermal infra-red sensor, are used to identify and quantify the daily variability of the sea...

  20. Modeling of plasma chemical processes in the artificial ionized layer in the upper atmosphere by the nanosecond corona discharge

    Science.gov (United States)

    Vikharev, A. L.; Gorbachev, A. M.; Ivanov, O. A.; Kolisko, A. L.; Litvak, A. G.

    1993-08-01

    The plasma chemical processes in the corona discharge formed in air by a series of high voltage pulses of nanosecond duration are investigated experimentally. The experimental conditions (reduced electric field, duration and repetition frequency of the pulses, gas pressure in the chamber) modeled the regime of creation of the artificial ionized layer (AIL) in the upper atmosphere by a nanosecond microwave discharge. It was found that in a nanosecond microwave discharge predominantly generation of ozone occurs, and that the production of nitrogen dioxide is not large. The energy expenditures for the generation of one O 3 molecule were about 15 eV. On the basis of the experimental results the prognosis of the efficiency of ozone generation in AIL was made.

  1. On the Linkage between Springtime Eurasian Snow Cover Retreat due to the Global Warming and Changes in Summertime Atmospheric Circulation over Japan and East Asia

    Science.gov (United States)

    Nozawa, T.; Fujiwara, S.

    2017-12-01

    According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5), snow cover extent (SCE) over the northern hemisphere is greatly decreasing in spring. This change is expected to affect atmospheric circulation change via land-atmosphere interactions. In this study, we investigated relationships between spring SCE anomaly over the Eurasia and changes in atmospheric circulations, mainly analyzing the Japanese 55-year Reanalysis (JRA-55). Differences in composites of zonal winds at upper and middle levels between large and small SCE years over Western Siberia in spring show that, around Japan and East Asia, jet stream in small SCE years is shifted southward in April and June. We also analyzed surface temperature and soil moisture and find that, in small SCE years, surface temperature in Western Siberia and Central Asia is increased and soil moisture reduced significantly in June. The air temperature in the middle and low level atmosphere also significantly increased and have wave-like pattern in May. These results suggest that there are some linkages between the springtime Eurasian SCE reduction and changes in summertime jet stream over Japan and East Asia through land-atmosphere interactions.

  2. Atmospheric temperature and pressure influence the onset of spontaneous pneumothorax.

    Science.gov (United States)

    Motono, Nozomu; Maeda, Sumiko; Honda, Ryumon; Tanaka, Makoto; Machida, Yuichiro; Usuda, Katsuo; Sagawa, Motoyasu; Uramoto, Hidetaka

    2018-02-01

    The aim of the study was to examine the influence of the changes in the atmospheric temperature (ATemp) and the atmospheric pressure (APres) on the occurrence of a spontaneous pneumothorax (SP). From January 2000 to March 2014, 192 consecutive SP events were examined. The ATemp and APres data at the onset of SP, as well as those data at 12, 24, 36, 48, 60, and 72 h prior to the onset time, were analyzed. The frequencies of SP occurrence were not statistically different according to the months or seasons, but were statistically different according to the time period (P < .01) and SP events occurred most frequently from 12:00 to 18:00. SP events frequently occurred at an ATemp of 25 degrees Celsius or higher. There was a significantly negative correlation between the APres and the ATemp at the SP onset time. The values of change in the APres from 36 to 24 h prior to SP onset were significantly lower than the preceding values. In this study, we observed that a SP event was likely to occur in the time period from 12:00 to 18:00, at an ATemp of 25 degrees Celsius or higher, and at 24-36 h after a drop of APres. © 2016 John Wiley & Sons Ltd.

  3. A new procedure for estimating the cell temperature of a high concentrator photovoltaic grid connected system based on atmospheric parameters

    International Nuclear Information System (INIS)

    Fernández, Eduardo F.; Almonacid, Florencia

    2015-01-01

    Highlights: • Concentrating grid-connected systems are working at maximum power point. • The operating cell temperature is inherently lower than at open circuit. • Two novel methods for estimating the cell temperature are proposed. • Both predict the operating cell temperature from atmospheric parameters. • Experimental results show that both methods perform effectively. - Abstract: The working cell temperature of high concentrator photovoltaic systems is a crucial parameter when analysing their performance and reliability. At the same time, due to the special features of this technology, the direct measurement of the cell temperature is very complex and is usually obtained by using different indirect methods. High concentrator photovoltaic modules in a system are operating at maximum power since they are connected to an inverter. So that, their cell temperature is lower than the cell temperature of a module at open-circuit voltage since an important part of the light power density is converted into electricity. In this paper, a procedure for indirectly estimating the cell temperature of a high concentrator photovoltaic system from atmospheric parameters is addressed. Therefore, this new procedure has the advantage that is valid for estimating the cell temperature of a system at any location of interest if the atmospheric parameters are available. To achieve this goal, two different methods are proposed: one based on simple mathematical relationships and another based on artificial intelligent techniques. Results show that both methods predicts the cell temperature of a module connected to an inverter with a low margin of error with a normalised root mean square error lower or equal than 3.3%, an absolute root mean square error lower or equal than 2 °C, a mean absolute error lower or equal then 1.5 °C, and a mean bias error and a mean relative error almost equal to 0%

  4. The Temperature of the Dimethylhydrazine Drops Moving in the Atmosphere after Depressurization of the Fuel Tank Rockets

    Directory of Open Access Journals (Sweden)

    Bulba Elena

    2016-01-01

    Full Text Available This work includes the results of the numerical modeling of temperature changes process of the dimethylhydrazine (DMH drops, taking into account the radial temperature gradient in the air after the depressurization of the fuel compartments rockets at high altitude. There is formulated a mathematical model describing the process of DMH drops thermal state modifying when it's moving to the Earth's surface. There is the evaluation of the influence of the characteristic size of heptyl drops on the temperature distribution. It's established that the temperatures of the small size droplets practically completely coincide with the distribution of temperature in the atmosphere at altitudes of up to 40 kilometers.

  5. In-situ monitoring of etching of bovine serum albumin using low-temperature atmospheric plasma jet

    Science.gov (United States)

    Kousal, J.; Shelemin, A.; Kylián, O.; Slavínská, D.; Biederman, H.

    2017-01-01

    Bio-decontamination of surfaces by means of atmospheric pressure plasma is nowadays extensively studied as it represents promising alternative to commonly used sterilization/decontamination techniques. The non-equilibrium atmospheric pressure plasmas were already reported to be highly effective in removal of a wide range of biological residual from surfaces. Nevertheless the kinetics of removal of biological contamination from surfaces is still not well understood as the majority of performed studies were based on ex-situ evaluation of etching rates, which did not allow investigating details of plasma action on biomolecules. This study therefore presents a real-time, in-situ ellipsometric characterization of removal of bovine serum albumin (BSA) from surfaces by low-temperature atmospheric plasma jet operated in argon. Non-linear and at shorter distances between treated samples and nozzle of the plasma jet also non-monotonic dependence of the removal rate on the treatment duration was observed. According to additional measurements focused on the determination of chemical changes of treated BSA as well as temperature measurements, the observed behavior is most likely connected with two opposing effects: the formation of a thin layer on the top of BSA deposit enriched in inorganic compounds, whose presence causes a gradual decrease of removal efficiency, and slight heating of BSA that facilitates its degradation and volatilization induced by chemically active radicals produced by the plasma.

  6. Stratospheric Temperature Trends Observed by TIMED/SABER

    Science.gov (United States)

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  7. Evolution of the phases in Cu 18at.% Li alloy under different atmospheres as a function of temperature

    International Nuclear Information System (INIS)

    Cano, J.A; Lambri, O.A; Perez-Landazabal, J.J; Penaloza, A; Recarte, V; Campo, J; Worner, C.H

    2004-01-01

    The behavior of powders from an alloy of Cu 18at.% Li was studied, in temperatures ranging from room temperature to 973K, under four types of atmospheres. The test techniques used for this study were: Neutron Diffraction (ND) and Differential Scanning Calorimetry (DSC). After reaching 973K, the content of residual lithium in the alloy was 15 at.% and 13 at.% for the tests carried out with argon and vacuum, respectively. However, if the heating is done in air or nitrogen, the lithium content in solid solution in the alloy is very much reduced (3 at.%), generating a survival of the alloy in solid state at temperatures greater than 1273K. After heating in air, lithium peroxide is formed, which is explained by over oxidation. Additionally, the heating of these powders in nitrogen and in air at normal pressures, leads to the growth of lithium nitride, which was not expected. These characteristics are important in determining the temperature and atmospheric conditions for the sinterized treatment for the production of components for later technological applications (CW)

  8. Incoherent scatter studies of upper atmosphere dynamics and coding technique

    International Nuclear Information System (INIS)

    Haeggstroem, Ingemar.

    1990-09-01

    Observations by the EISCAT incoherent scatter radar are used to study the dynamics of the auroral upper atmosphere. The study describes some effects of the strong plasma convection occurring at these latitudes and a new coding technique for incoherent scatter radars. A technique to determine the thermospheric neutral wind from incoherent scatter measurements is described. Simultaneous Fabry-Perot interferometer measurements of the wind are compared with those derived from the radar data. F-region electron density depletions in the afternoon/evening sector of the auroral zone, identified as the main ionospheric trough, are investigated. In a statistical study, based on wide latitude scanning experiment made at solar minimum, the trough appearance at a given latitude is compared to the geomagnetic index K p , and an empirical model predicting the latitude of the trough is proposed. Detailed studies, using different experiment modes, show that the equatorward edge of the auroral oval is co-located of up to 1 degree poleward of the trough minimum, which in turn is co-located with the peak convective electric field, with its boundary 1 degree - 2 degree equatorward of the trough minimum. It is shown that the F-region ion composition changes from pure 0 + to molecular ion dominated (NO + /O 2 + ) as the trough moves into the region probed by the radar. In a special case, where a geomagnetic sudden impulse caused an expansion of the plasma convection pattern, the equatorward trough progression is studied together with ionosonde measurements. A new coding technique for incoherent scatter radar measurement is introduced and described. The method, called alternating codes, provides significantly more accurate estimates of the plasma parameters than can be obtained by frequency commutated multipulse measurements. Simple explanations of the method are given as well as a precise definition. Two examples of application of the alternating codes are presented, showing the high

  9. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Mamede, Anne-Sophie, E-mail: anne-sophie.mamede@ensc-lille.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Nuns, Nicolas, E-mail: nicolas.nuns@univ-lille1.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Cristol, Anne-Lise, E-mail: anne-lise.cristol@ec-lille.fr [University Lille, CNRS, Centrale Lille, Arts et Métiers Paris Tech, FRE 3723 – LML – Laboratoire de Mécanique de Lille, F-59000 Lille (France); Cantrel, Laurent, E-mail: laurent.cantrel@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); Souvi, Sidi, E-mail: sidi.souvi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); and others

    2016-04-30

    Graphical abstract: - Highlights: • Mutitechnique characterisation of oxidised 304L. • Oxidation at high temperature under steam and air conditions of 304L stainless steel. • Chromium and manganese oxides formed in the outer layer. • Oxide profiles differ in air or steam atmosphere. - Abstract: In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8–12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe{sub 2}O{sub 3} oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  10. Accounting for the effect of temperature in clarifying the response of foliar nitrogen isotope ratios to atmospheric nitrogen deposition.

    Science.gov (United States)

    Chen, Chongjuan; Li, Jiazhu; Wang, Guoan; Shi, Minrui

    2017-12-31

    Atmospheric nitrogen deposition affects nitrogen isotope composition (δ 15 N) in plants. However, both negative effect and positive effect have been reported. The effects of climate on plant δ 15 N have not been corrected for in previous studies, this has impeded discovery of a true effect of atmospheric N deposition on plant δ 15 N. To obtain a more reliable result, it is necessary to correct for the effects of climatic factors. Here, we measured δ 15 N and N contents of plants and soils in Baiwangshan and Mount Dongling, north China. Atmospheric N deposition in Baiwangshan was much higher than Mount Dongling. Generally, however, foliar N contents showed no difference between the two regions and foliar δ 15 N was significantly lower in Baiwangshan than Mount Dongling. The corrected foliar δ 15 N after accounting for a predicted value assumed to vary with temperature was obviously more negative in Baiwangshan than Mount Dongling. Thus, this suggested the necessity of temperature correction in revealing the effect of N deposition on foliar δ 15 N. Temperature, soil N sources and mycorrhizal fungi could not explain the difference in foliar δ 15 N between the two regions, this indicated that atmospheric N deposition had a negative effect on plant δ 15 N. Additionally, this study also showed that the corrected foliar δ 15 N of bulk data set increased with altitude above 1300m in Mount Dongling, this provided an another evidence for the conclusion that atmospheric N deposition could cause 15 N-depletion in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  12. THE FORMATION OF IRIS DIAGNOSTICS. II. THE FORMATION OF THE Mg II h and k LINES IN THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Leenaarts, J.; Pereira, T. M. D.; Carlsson, M.; De Pontieu, B. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Uitenbroek, H., E-mail: jorritl@astro.uio.no, E-mail: tiago.pereira@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: bdp@lmsal.com, E-mail: huitenbroek@nso.edu [NSO/Sacramento Peak P.O. Box 62 Sunspot, NM 88349-0062 (United States)

    2013-08-01

    NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h and k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h and k line formation from three-dimensional (3D) radiation-magnetohydrodynamic (RMHD) models. This paper is the second in a series where we undertake this modeling. We compute the vertically emergent h and k intensity from a snapshot of a dynamic 3D RMHD model of the solar atmosphere, and investigate which diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and k lines we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anti-correlated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the TR. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h and k lines are excellent probes of the very upper chromosphere just below the TR, a height regime that is impossible to probe with other spectral lines. They also provide decent temperature and velocity diagnostics of the middle

  13. Assessment of Effect on LBLOCA PCT for Change in Upper Head Nodalization

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Huh, Byung Gil; Yoo, Seung Hun; Bang, Youngseok; Seul, Kwangwon; Cho, Daehyung

    2014-01-01

    In this study, the best estimate plus uncertainty (BEPU) analysis of LBLOCA for original and modified nodalizations was performed, and the effect on LBLOCA PCT for change in upper head nodalization was assessed. In this study, the best estimate plus uncertainty (BEPU) analysis of LBLOCA for original and modified nodalizations was performed, and the effect on LBLOCA PCT for change in upper head nodalization was assessed. It is confirmed that modification of upper head nodalization influences PCT behavior, especially in the reflood phase. In conclusions, the modification of nodalization to reflect design characteristic of upper head temperature should be done to predict PCT behavior accurately in LBLOCA analysis. In the best estimate (BE) method with the uncertainty evaluation, the system nodalization is determined by the comparative studies of the experimental data. Up to now, it was assumed that the temperature of the upper dome in OPR-1000 was close to that of the cold leg. However, it was found that the temperature of the upper head/dome might be a little lower than or similar to that of the hot leg through the evaluation of the detailed design data. Since the higher upper head temperature affects blowdown quenching and peak cladding temperature in the reflood phase, the nodalization for upper head should be modified

  14. Atmosphere-Ionosphere Electrodynamic Coupling

    Science.gov (United States)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  15. On the Climate Impacts of Upper Tropospheric and Lower Stratospheric Ozone

    Science.gov (United States)

    Xia, Yan; Huang, Yi; Hu, Yongyun

    2018-01-01

    The global warming simulations of the general circulation models (GCMs) are generally performed with different ozone prescriptions. We find that the differences in ozone distribution, especially in the upper tropospheric and lower stratospheric (UTLS) region, account for important model discrepancies shown in the ozone-only historical experiment of the Coupled Model Intercomparison Project Phase 5 (CMIP5). These discrepancies include global high cloud fraction, stratospheric temperature, and stratospheric water vapor. Through a set of experiments conducted by an atmospheric GCM with contrasting UTLS ozone prescriptions, we verify that UTLS ozone not only directly radiatively heats the UTLS region and cools the upper parts of the stratosphere but also strongly influences the high clouds due to its impact on relative humidity and static stability in the UTLS region and the stratospheric water vapor due to its impact on the tropical tropopause temperature. These consequences strongly affect the global mean effective radiative forcing of ozone, as noted in previous studies. Our findings suggest that special attention should be paid to the UTLS ozone when evaluating the climate effects of ozone depletion in the 20th century and recovery in the 21st century. UTLS ozone difference may also be important for understanding the intermodel discrepancy in the climate projections of the CMIP6 GCMs in which either prescribed or interactive ozone is used.

  16. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    International Nuclear Information System (INIS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  17. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  18. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    International Nuclear Information System (INIS)

    Kaspi, Yohai; Showman, Adam P.

    2015-01-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate

  19. Low Power, Room Temperature Systems for the Detection and Identification of Radionuclides from Atmospheric Nuclear Test

    Science.gov (United States)

    2013-07-01

    DTRA-TR-13-48 Low Power, Room Temperature Systems for the Detection and Identification of Radionuclides from Atmospheric Nuclear Test Approved for...01-C-0071 Radionuclides from Atmospheric Nuclear Tests 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Muren Chu...I IIlIl4eI ilf "tt""f;lk~ l).t::l’e.do)- mllin:: in an n-t~’J𔃻f mlllril.: II!’ ,-kll ~".r’I::!, ..... ·hkh j,-, .:auI,,·d br thP . la-ek f.r ·;IIff

  20. Temperature dependence of carbon kinetic isotope effect for the oxidation reaction of ethane by OH radicals under atmospherically relevant conditions

    Science.gov (United States)

    Piansawan, Tammarat; Saccon, Marina; Laumer, Werner; Gensch, Iulia; Kiendler-Scharr, Astrid

    2015-04-01

    Modeling of the global distribution of atmospheric ethane sources and sinks by using the 13C isotopic composition requires accurate knowledge of the carbon kinetic isotope effect (KIE) of its atmospheric removal reactions. The quantum mechanical prediction implies the necessity to elucidate the temperature dependence of KIE within atmospherically relevant temperature range by experiment. In this study, the KIE and its temperature dependence for ethane oxidation by OH radicals was investigated at ambient pressure in a temperature range of 243 K to 303 K. The chemical reactions were carried out in a 15 L PFE reaction chamber, suspended in a thermally controlled oven. The isotope ratios of the gas phase components during the course of the reactions were measured by Thermal Desorption -- Gas Chromatography -- Isotope Ratio Mass Spectrometry (TD-GC-IRMS). For each temperature, the KIE was derived from the temporal evolution of the concentration and stable carbon isotope ratio (δ13C) of ethane using a method adapted from the relative reaction rate concept. The room temperature KIE of the ethane reaction with OH radicals was found to be 6.85 ± 0.32 ‰. This value is in agreement with the previously reported value of 8.57 ± 1.95 ‰ [Anderson et al. 2004] but has a substantially lower uncertainty. The experimental results will be discussed with the KIE temperature dependence predicted by quantum mechanical calculations. Reference: Rebecca S. Anderson, Lin Huang, Richard Iannone, Alexandra E. Thompson, and Jochen Rudolph (2004), Carbon Kinetic Isotope Effects in the Gas Phase Reactions of Light Alkanes and Ethene with the OH Radical at 296 ± 4 K, J. Phys. Chem. A, 108, 11537--11544

  1. Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    J. Y. Jia

    2014-11-01

    Full Text Available Absolute values of gravity wave momentum flux (GWMF deduced from satellite measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument and the High Resolution Dynamics Limb Sounder (HIRDLS are correlated with sea surface temperature (SST with the aim of identifying those oceanic regions for which convection is a major source of gravity waves (GWs. Our study identifies those latitude bands where high correlation coefficients indicate convective excitation with confidence. This is based on a global ray-tracing simulation, which is used to delineate the source and wind-filtering effects. Convective GWs are identified at the eastern coasts of the continents and over the warm water regions formed by the warm ocean currents, in particular the Gulf Stream and the Kuroshio. Potential contributions of tropical cyclones to the excitation of the GWs are discussed. Convective excitation can be identified well into the mid-mesosphere. In propagating upward, the centers of GWMF formed by convection shift poleward. Some indications of the main forcing regions are even shown for the upper mesosphere/lower thermosphere (MLT.

  2. Variations in water temperature and implications for trout populations in the Upper Schoharie Creek and West Kill, New York, USA

    Science.gov (United States)

    George, Scott D.; Baldigo, Barry P.; Smith, Martyn J.; Mckeown, Donald M; Faulringer, Jason

    2016-01-01

    Water temperature is a key component of aquatic ecosystems because it plays a pivotal role in determining the suitability of stream and river habitat to most freshwater fish species. Continuous temperature loggers and airborne thermal infrared (TIR) remote sensing were used to assess temporal and spatial temperature patterns on the Upper Schoharie Creek and West Kill in the Catskill Mountains, New York, USA. Specific objectives were to characterize (1) contemporary thermal conditions, (2) temporal and spatial variations in stressful water temperatures, and (3) the availability of thermal refuges. In-stream loggers collected data from October 2010 to October 2012 and showed summer water temperatures exceeded the 1-day and 7-day thermal tolerance limits for trout survival at five of the seven study sites during both summers. Results of the 7 August 2012 TIR indicated there was little thermal refuge at the time of the flight. About 690,170 m2 of water surface area were mapped on the Upper Schoharie, yet only 0.009% (59 m2) was more than 1.0 °C below the median water surface temperature (BMT) at the thalweg and no areas were more than 2.0 °C BMT. On the West Kill, 79,098 m2 were mapped and 0.085% (67 m2) and 0.018% (14 m2) were BMT by 1 and 2 °C, respectively. These results indicate that summer temperatures in the majority of the study area are stressful for trout and may adversely affect growth and survival. Validation studies are needed to confirm the expectation that resident trout are in poor condition or absent from the downstream portion of the study area during warm-water periods.

  3. Joint inversion of shear wave travel time residuals and geoid and depth anomalies for long-wavelength variations in upper mantle temperature and composition along the Mid-Atlantic Ridge

    Science.gov (United States)

    Sheehan, Anne F.; Solomon, Sean C.

    1991-01-01

    Measurements were carried out for SS-S differential travel time residuals for nearly 500 paths crossing the northern Mid-Atlantic Ridge, assuming that the residuals are dominated by contributions from the upper mantle near the surface bounce point of the reflected phase SS. Results indicate that the SS-S travel time residuals decrease linearly with square root of age, to an age of 80-100 Ma, in general agreement with the plate cooling model. A joint inversion was formulated of travel time residuals and geoid and bathymetric anomalies for lateral variation in the upper mantle temperature and composition. The preferred inversion solutions were found to have variations in upper mantle temperature along the Mid-Atlantic Ridge of about 100 K. It was calculated that, for a constant bulk composition, such a temperature variation would produce about a 7-km variation in crustal thickness, larger than is generally observed.

  4. Temperature and atmospheric pressure may be considered as predictors for the occurrence of bacillary dysentery in Guangzhou, Southern China

    Directory of Open Access Journals (Sweden)

    Tiegang Li

    2014-06-01

    Full Text Available Introduction The control of bacillary dysentery (BD remains a big challenge for China. Methods Negative binomial multivariable regression was used to study relationships between meteorological variables and the occurrence of BD during the period of 2006-2012. Results Each 1°C rise of temperature corresponded to an increase of 3.60% (95%CI, 3.03% to 4.18% in the monthly number of BD cases, whereas a 1 hPa rise in atmospheric pressure corresponded to a decrease in the number of BD cases by 2.85% (95%CI = 3.34% to 2.37% decrease. Conclusions Temperature and atmospheric pressure may be considered as predictors for the occurrence of BD in Guangzhou.

  5. O2 atmospheric band measurements with WINDII: Performance of a narrow band filter/wide angle Michelson combination in space

    International Nuclear Information System (INIS)

    Ward, W.E.; Hersom, C.H.; Tai, C.C.; Gault, W.A.; Shepherd, G.G.; Solheim, B.H.

    1994-01-01

    Among the emissions viewed by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0-0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide-angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique will be outlined and the on-orbit behavior since launch summarized

  6. The benchmark halo giant HD 122563: CNO abundances revisited with three-dimensional hydrodynamic model stellar atmospheres

    DEFF Research Database (Denmark)

    Collet, R.; Nordlund, Ã.; Asplund, M.

    2018-01-01

    We present an abundance analysis of the low-metallicity benchmark red giant star HD 122563 based on realistic, state-of-the-art, high-resolution, three-dimensional (3D) model stellar atmospheres including non-grey radiative transfer through opacity binning with 4, 12, and 48 bins. The 48-bin 3D...... simulation reaches temperatures lower by ˜300-500 K than the corresponding 1D model in the upper atmosphere. Small variations in the opacity binning, adopted line opacities, or chemical mixture can cool the photospheric layers by a further ˜100-300 K and alter the effective temperature by ˜100 K. A 3D local...... molecular bands and lines in the ultraviolet, visible, and infrared. We find a small positive 3D-1D abundance correction for carbon (+0.03 dex) and negative ones for nitrogen (-0.07 dex) and oxygen (-0.34 dex). From the analysis of the [O I] line at 6300.3 Å, we derive a significantly higher oxygen...

  7. Para hydrogen equilibration in the atmospheres of the outer planets

    International Nuclear Information System (INIS)

    Conrath, B.J.

    1986-01-01

    The thermodynamic behavior of the atmospheres of the Jovian planets is strongly dependent on the extent to which local thermal equilibration of the ortho and para states of molecular hydrogen is achieved. Voyager IRIS data from Jupiter imply substantial departures of the para hydrogen fraction from equilibrium in the upper troposphere at low latitudes, but with values approaching equilibrium at higher latitudes. Data from Saturn are less sensitive to the orth-para ratio, but suggest para hydrogen fractions near the equilibrium value. Above approximately the 200 K temperature level, para hydrogen conversion can enhance the efficiency of convection, resulting in a substantial increase in overturning times on all of the outer planets. Currently available data cannot definitively establish the ortho-para ratios in the atmospheres of Uranus and Neptune, but suggest values closer to local equilibrium than to the 3.1 normal ratio. Modeling of sub-millimeter wavelength measurements of these planets suggest thermal structures with frozen equilibrium lapse rates in their convective regions

  8. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

    Science.gov (United States)

    Fahey, D. W.; Gao, R.-S.; Möhler, O.; Saathoff, H.; Schiller, C.; Ebert, V.; Krämer, M.; Peter, T.; Amarouche, N.; Avallone, L. M.; Bauer, R.; Bozóki, Z.; Christensen, L. E.; Davis, S. M.; Durry, G.; Dyroff, C.; Herman, R. L.; Hunsmann, S.; Khaykin, S. M.; Mackrodt, P.; Meyer, J.; Smith, J. B.; Spelten, N.; Troy, R. F.; Vömel, H.; Wagner, S.; Wienhold, F. G.

    2014-09-01

    The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques was conducted at the aerosol and cloud simulation chamber AIDA (Aerosol Interaction and Dynamics in the Atmosphere) at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere, where water vapor reaches its lowest atmospheric values (less than 10 ppm). With the AIDA chamber volume of 84 m3, multiple instruments analyzed air with a common water vapor mixing ratio, by extracting air into instrument flow systems, by locating instruments inside the chamber, or by sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm). In the absence of an accepted reference instrument, the absolute accuracy of the instruments was not established. To evaluate the intercomparison, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ). In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ). The upper limit of precision was also derived for each instrument from the reported data. The implication for atmospheric measurements is that the

  9. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Pt. 1: a diurnally forced OGCM

    Energy Technology Data Exchange (ETDEWEB)

    Bernie, D.J. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom); Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Met Office Hadley Centre, Exeter, EX1 3PB (United Kingdom); Guilyardi, E. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom); Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Madec, G. [Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Slingo, J.M.; Woolnough, S.J. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom)

    2007-11-15

    The diurnal cycle is a fundamental time scale in the climate system, at which the upper ocean and atmosphere are routinely observed to vary. Current climate models, however, are not configured to resolve the diurnal cycle in the upper ocean or the interaction of the ocean and atmosphere on these time scales. This study examines the diurnal cycle of the tropical upper ocean and its climate impacts. In the present paper, the first of two, a high vertical resolution ocean general circulation model (OGCM), with modified physics, is developed which is able to resolve the diurnal cycle of sea surface temperature (SST) and current variability in the upper ocean. It is then validated against a satellite derived parameterization of diurnal SST variability and in-situ current observations. The model is then used to assess rectification of the intraseasonal SST response to the Madden-Julian oscillation (MJO) by the diurnal cycle of SST. Across the equatorial Indo-Pacific it is found that the diurnal cycle increases the intraseasonal SST response to the MJO by around 20%. In the Pacific, the diurnal cycle also modifies the exchange of momentum between equatorially divergent Ekman currents and the meridionally convergent geostrophic currents beneath, resulting in a 10% increase in the strength of the Ekman cells and equatorial upwelling. How the thermodynamic and dynamical impacts of the diurnal cycle effect the mean state, and variability, of the climate system cannot be fully investigated in the constrained design of ocean-only experiments presented here. The second part of this study, published separately, addresses the climate impacts of the diurnal cycle in the coupled system by coupling the OGCM developed here to an atmosphere general circulation model. (orig.)

  10. Gone with the Wind: Three Years of MAVEN Measurements of Atmospheric Loss at Mars

    Science.gov (United States)

    Brain, David; MAVEN Team

    2017-10-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is making measurements of the Martian upper atmosphere and near space environment, and their interactions with energy inputs from the Sun. A major goal of the mission is to evaluate the loss of atmospheric gases to space in the present epoch, and over Martian history. MAVEN is equipped with instruments that measure both the neutral and charged upper atmospheric system (thermosphere, ionosphere, exosphere, and magnetosphere), inputs from the Sun (extreme ultraviolet flux, solar wind and solar energetic particles, and interplanetary magnetic field), and escaping atmospheric particles. The MAVEN instruments, coupled with models, allow us to more completely understand the physical processes that control atmospheric loss and the particle reservoirs for loss.Here, we provide an overview of the significant results from MAVEN over approximately 1.5 Mars years (nearly three Earth years) of observation, from November 2014 to present. We argue that the MAVEN measurements tell us that the loss of atmospheric gases to space was significant over Martian history, and present the seasonal behavior of the upper atmosphere and magnetosphere. We also discuss the influence of extreme events such as solar storms, and a variety of new discoveries and observations of the Martian system made by MAVEN.

  11. Atmospheric CO2 and climate: Importance of the transient response

    International Nuclear Information System (INIS)

    Schneider, S.H.; Thompson, S.L.

    1981-01-01

    Preliminary studies suggest that the thermal inertia of the upper layers of the oceans, combined with vertical mixing of deeper oceanic waters, could delay the response of the globally averaged surface temperature to an increasing atmospheric CO 2 concentration by a decade or so relative to equilibrium calculations. This study extends the global analysis of the transient response to zonal averages, using a hierarchy of simple energy balance models and vertical mixing assumptions for water exchange between upper and deeper oceanic layers. It is found that because of the latitudinal dependence of both thermal inertia and radiative and dynamic energy exchange mechanisms, the approach toward equilibrium of the surface temperature of various regions of the earth will be significantly different from the global average approach. This suggests that the actual time evolution of the horizontal surface temperature gradients--and any associated regional climatic anomalies-may well be significantly different from that suggested by equilibrium climatic modeling simulations (or those computed with a highly unrealistic geographic distribution of ocean thermal capacity). Also, the transient response as a function of latitude is significantly different between globally equivalent CO 2 and solar constant focusing runs. It is suggested that the nature of the transient response is a major uncertainty in characterizing the CO 2 problem and that study of this topic should become a major priority for future research. An appendix puts this issue in the context of the overall CO 2 problem

  12. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  13. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    Science.gov (United States)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  14. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Directory of Open Access Journals (Sweden)

    S. T. Akhil Raj

    2018-01-01

    Full Text Available We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993–2005, Aura Microwave Limb Sounder (MLS, 2004–2015, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002–2015 on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics observations covering the period 1993–2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E and New Delhi (28° N, 77° E, covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E, for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (−1.71 ± 0.49 K decade−1 and New Delhi (−1.15 ± 0.55 K decade−1. The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998–2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (∼ 10 hPa and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  15. Profile vertical of temperature in an atmosphere semi-gray with a layer of clouds

    International Nuclear Information System (INIS)

    Pelkowski, Joaquin; Anduckia Avila, Juan Carlos

    2000-01-01

    We extend earlier models of planetary layers in radioactive equilibrium by including scattering within a homogeneous cloud layer in a single direction. The atmospheric layers above and below the cloud layer are taken to be in radioactive equilibrium, whose temperature profiles may be calculated. Though the resulting profile, being discontinuous, is unrealistic, the model adds to the effects of the earlier models a cloud albedo, resulting from the scattering of short-wave radiation

  16. Krypton and xenon in the atmosphere of Venus

    Science.gov (United States)

    Donahue, T. M.; Hoffman, J. H.; Hodges, R. R., Jr.

    1981-01-01

    The paper reports a determination by the Pioneer Venus large probe neutral mass spectrometer of upper limits to the concentration of krypton and xenon along with most of their isotopes in the atmosphere of Venus. The upper limit to the krypton mixing ratio is estimated at 47 ppb, with a very conservative estimate at 69 ppb. The probable upper limit to the sum of the mixing ratios of the isotopes Xe-128, Xe-129, Xe-130, Xe-131, and Xe-132 is 40 ppb by volume, with a very conservative upper limit three times this large.

  17. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere

  18. Land Surface Temperature and Emissivity Separation from Cross-Track Infrared Sounder Data with Atmospheric Reanalysis Data and ISSTES Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-Ze Zhang

    2017-01-01

    Full Text Available The Cross-track Infrared Sounder (CrIS is one of the most advanced hyperspectral instruments and has been used for various atmospheric applications such as atmospheric retrievals and weather forecast modeling. However, because of the specific design purpose of CrIS, little attention has been paid to retrieving land surface parameters from CrIS data. To take full advantage of the rich spectral information in CrIS data to improve the land surface retrievals, particularly the acquisition of a continuous Land Surface Emissivity (LSE spectrum, this paper attempts to simultaneously retrieve a continuous LSE spectrum and the Land Surface Temperature (LST from CrIS data with the atmospheric reanalysis data and the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES algorithm. The results show that the accuracy of the retrieved LSEs and LST is comparable with the current land products. The overall differences of the LST and LSE retrievals are approximately 1.3 K and 1.48%, respectively. However, the LSEs in our study can be provided as a continuum spectrum instead of the single-channel values in traditional products. The retrieved LST and LSEs now can be better used to further analyze the surface properties or improve the retrieval of atmospheric parameters.

  19. Interpretation of biomass gasification yields regarding temperature intervals under nitrogen-steam atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469 Maslak, Istanbul (Turkey)

    2007-04-15

    Gasification of some agricultural waste biomass samples (sunflower shell, pine cone, cotton refuse, and olive refuse) and colza seed was performed using a thermogravimetric analyzer at temperatures up to 1273 K with a constant heating rate of 20 K/min under a dynamic nitrogen-steam atmosphere. Derivative thermogravimetric analysis profiles of the samples were derived from the non-isothermal thermogravimetric analysis data. Gasification yields of the biomass samples at temperature intervals of 473-553 K, 553-653 K, 653-773 K, 773-973 K, and 973-1173 K were investigated considering the successive stages of ''evolution of carbon oxides'', ''start of hydrocarbon evolution'', ''evolution of hydrocarbons'', ''dissociation'', and ''evolution of hydrogen'', respectively. Although, there were some interactions between these stages, some evident relations were observed between the gasification yields in a given stage and the chemical properties of the parent biomass materials. (author)

  20. Temperature structure and emergent flux of the Jovian planets

    Science.gov (United States)

    Silvaggio, P.; Sagan, C.

    1978-01-01

    Long path, low temperature, moderate resolution spectra of methane and ammonia, broadened by hydrogen and helium, are used to calculate non-gray model atmospheres for the four Jovian planets. The fundamental and first overtone of hydrogen contributes enough absorption to create a thermal inversion for each of the planets. The suite of emergent spectral fluxes and representative limb darkenings and brightenings are calculated for comparison with the Voyager infrared spectra. The temperature differences between Jovian belts and zones corresponds to a difference in the ammonia cirrus particle radii (1 to 3 micron in zones; 10 micron in belts). The Jovian tropopause is approximately at the 0.1 bar level. A thin ammonia cirrus haze should be distributed throughout the Saturnian troposphere; and NH3 gas must be slightly supersaturated or ammonia ice particles are carried upwards convectively in the upper troposphere of Saturn. Substantial methane clouds exist on both Uranus and Neptune. There is some evidence for almost isothermal structures in the deep atmospheres of these two planets.

  1. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Hinson, D. P.; Peter, K.; Tyler, G. L.

    2017-12-01

    Atmospheric waves play a crucial role in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and for the coupling of the different atmospheric regions on Mars. Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, gravity waves, etc...). Atmospheric waves are also known to exist in the middle atmosphere of Mars ( 70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars. Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to 40-50 km) and electron density profiles in the ionosphere of Mars. Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement. A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations. The MaRS experiment is funded by DLR under grant 50QM1401.

  2. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  3. Low temperature measurement of the vapor pressures of planetary molecules

    Science.gov (United States)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  4. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    Directory of Open Access Journals (Sweden)

    Matthias Augustin

    2015-01-01

    Full Text Available Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx+ oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

  5. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)

    2017-02-20

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  6. Development of data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector

    International Nuclear Information System (INIS)

    Sahu, S.; Sahu, P.K.; Bhuyan, M.R.; Biswas, S.; Mohanty, B.

    2014-01-01

    At IoP-NISER an initiative has been taken to build and test micro-pattern gas detector such as Gas Electron Multiplier (GEM) for several upcoming High-Energy Physics (HEP) experiment projects. Temperature (t), atmospheric pressure (p) and relative humidity (RH) monitor and recording is very important for gas filled detector development. A data logger to monitor and record the ambient parameters such as temperature, relative humidity and pressure has been developed. With this data logger continuous recording of t, p, RH and time stamp can be done with a programmable sampling interval. This data is necessary to correct the gain of a gas filled detector

  7. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    International Nuclear Information System (INIS)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui

    2012-01-01

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  8. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    Science.gov (United States)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  9. Improvement in simulation of Eurasian winter climate variability with a realistic Arctic sea ice condition in an atmospheric GCM

    International Nuclear Information System (INIS)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988–2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to ∼0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated. (letter)

  10. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    Science.gov (United States)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  11. Structure of the middle atmosphere of Venus and future observation with PFS on Venus Express.

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Ignatiev, N. I.; Khatountsev, I. A.

    Investigation of the middle atmosphere of Venus (55 -- 100 km) will allow to advance our knowledge about the most puzzling phenomena of the Venus dynamics -- its superrotation. More than 70% of all absorbed by Venus Solar energy is deposited there, results in the thermal tides generation and giving energy to support the superrotation. The importance of the tides in the middle atmosphere is manifested by the tidal character of the local time variation of the structure of the thermal field, zonal wind field (especially, behavior of the wind speed in the mid latitude jet), upper clouds, with amplitudes depending on the altitude and latitude. Investigation of the middle atmosphere is a scientific goal of the long wavelength channel of PFS on Venus Express, as well as of its short wavelength channel (the latter on the day side). The 3D temperature, aerosol, thermal wind and SO2 abundance fields, spatial distribution of abundance of H2O (possibly vertical profile), CO, HCl, HF will be obtained.

  12. Wind and turbulence measurements by the Middle and Upper Atmosphere Radar (MUR: comparison of techniques

    Directory of Open Access Journals (Sweden)

    A. A. Praskovsky

    2004-11-01

    Full Text Available The structure-function-based method (referred to as UCAR-STARS, a technique for estimating mean horizontal winds, variances of three turbulent velocity components and horizontal momentum flux was applied to the Middle and Upper atmosphere Radar (MUR operating in spaced antenna (SA profiling mode. The method is discussed and compared with the Holloway and Doviak (HAD correlation-function-based technique. Mean horizontal winds are estimated with the STARS and HAD techniques; the Doppler Beam Swinging (DBS method is used as a reference for evaluating the SA techniques. Reasonable agreement between SA and DBS techniques is found at heights from 5km to approximately 11km, where signal-to-noise ratio was rather high. The STARS and HAD produced variances of vertical turbulent velocity are found to be in fair agreement. They are affected by beam-broadening in a different way than the DBS-produced spectral width, and to a much lesser degree. Variances of horizontal turbulent velocity components and horizontal momentum flux are estimated with the STARS method, and strong anisotropy of turbulence is found. These characteristics cannot be estimated with correlation-function-based SA methods, which could make UCAR-STARS a useful alternative to traditional SA techniques.

  13. Atmospheric phenomena deduced from radiosonde and GPS ...

    Indian Academy of Sciences (India)

    The tropopause height and tropopause temperature are sensitive to temperature changes in troposphere and stratosphere. These are the measures of global climatic variability. Atmospheric profiles of temperature, refractivity and water vapour are always needed for communication, navigation and atmospheric modeling ...

  14. The effects of re-firing process under oxidizing atmosphere and temperatures on the properties of strontium aluminate phosphors

    International Nuclear Information System (INIS)

    Karacaoglu, Erkul; Karasu, Bekir

    2013-01-01

    Graphical abstract: The comparative emission spectra of standard and re-fired Phosphor A under oxidizing atmosphere at various temperatures. The colour of Phosphor A re-fired at higher temperatures above 900 °C shifted from yellowish-green to bluish-green in the dark. But, the bluish-green emission could only be seen when it was exposed to UV and disappeared as soon as the light source was removed. Moreover, the emission intensities decreased as the re-firing temperatures increased. This could be attributed to the oxidation of Eu 2+ during the re-firing process. It is well known fact from the literature that the reduction of Eu 3+ to Eu 2+ in appropriate host materials needs an annealing process in a reducing atmosphere such as H 2 , H 2 /N 2 mixture or CO. Up to now, the reduction phenomena of Eu 3+ → Eu 2+ in air have been found in phosphates (Ba 3 (PO 4 ) 2 :Eu), sulphates (BaSO 4 :Eu), borates (SrB 4 O 7 :Eu, SrB 6 O 10 :Eu and BaB 8 O 13 :Eu) and aluminates (Sr 4 Al 14 O 25 :Eu). Interestingly, an apparent blue shift in the phosphorescence spectrum was observed in the samples re-fired at 1000 °C and above, indicating a minimal effect on the oxidation state or the electronic energy levels of the co-doped Dy 3+ ions, which were thought to act as long-lived hole traps resulting in long afterglow. - Highlights: • This study examines the effects re-firing at oxidizing atmosphere of photoluminescence of three different commercial SrAl 2 O 4 :Eu 2+ ,Dy 3+ -phosphors. • All the commercial SrAl 2 O 4 :Eu 2+ ,Dy 3+ -phosphors completely lost their phosphorescence after being re-fired at 1300 °C. • Oxidizing environment and re-firing temperature naturally affecting the valance of Eu 2+ may cause the basic lattice structure to be modified and also limit their applications at higher temperatures, such as third firing vetrosa décor or glaze applications in ceramic industry. • It was thought that this kind of study may be promising to provide many outcome

  15. How Many Convective Zones Are There in the Atmosphere of Venus?

    Science.gov (United States)

    Moroz, V. I.; Rodin, A. V.

    2002-11-01

    The qualitative characteristics of the vertical structure of the atmospheres of Venus and the Earth essentially differ. For instance, there are at least two, instead of one, zones with normal (thermal) convection on Venus. The first one is near the surface (a boundary layer); the second is at the altitudes of the lower part of the main cloud layer between 49 and 55 km. Contrary to the hypotheses proposed by Izakov (2001, 2002), the upper convective zone prevents energy transfer from the upper clouds to the subcloud atmosphere by ``anomalous turbulent heat conductivity.'' It is possible, however, that the anomalous turbulent heat conductivity takes part in the redistribution of the heat fluxes within the lower (subcloud) atmosphere.

  16. Ultra-violet recombination continuum electron temperature measurements in a non-equilibrium atmospheric argon plasma

    International Nuclear Information System (INIS)

    Gordon, M.H.; Kruger, C.H.

    1991-01-01

    Emission measurements of temperature and electron density have been made downstream of a 50 kW induction plasma torch at temperatures and electron densities ranging between 6000 K and 8500 K and 10 to the 20th and 10 to the 21st/cu cm, respectively. Absolute and relative atomic line intensities, and absolute recombination continuum in both the visible and the UV were separately interpreted in order to characterize a recombining atmospheric argon plasma. Continuum measurements made in the UV at 270 nm were used to directly determine the kinetic electron temperature, independent of a Boltzmann equilibrium, assuming only that the electron velocity distribution is Maxwellian. The data indicate that a nonequilibrium condition exists in which the bound-excited and free electrons are nearly in mutual equilibrium down to the 4P level for electron densities as low as 2 x 10 to the 20th/cu m but that both are overpopulated with respect to the ground state due to finite recombination rates. 13 refs

  17. The Variability of Atmospheric Deuterium Brightness at Mars: Evidence for Seasonal Dependence

    Science.gov (United States)

    Mayyasi, Majd; Clarke, John; Bhattacharyya, Dolon; Deighan, Justin; Jain, Sonal; Chaffin, Michael; Thiemann, Edward; Schneider, Nick; Jakosky, Bruce

    2017-10-01

    The enhanced ratio of deuterium to hydrogen on Mars has been widely interpreted as indicating the loss of a large column of water into space, and the hydrogen content of the upper atmosphere is now known to be highly variable. The variation in the properties of both deuterium and hydrogen in the upper atmosphere of Mars is indicative of the dynamical processes that produce these species and propagate them to altitudes where they can escape the planet. Understanding the seasonal variability of D is key to understanding the variability of the escape rate of water from Mars. Data from a 15 month observing campaign, made by the Mars Atmosphere and Volatile Evolution Imaging Ultraviolet Spectrograph high-resolution echelle channel, are used to determine the brightness of deuterium as observed at the limb of Mars. The D emission is highly variable, with a peak in brightness just after southern summer solstice. The trends of D brightness are examined against extrinsic as well as intrinsic sources. It is found that the fluctuations in deuterium brightness in the upper atmosphere of Mars (up to 400 km), corrected for periodic solar variations, vary on timescales that are similar to those of water vapor fluctuations lower in the atmosphere (20-80 km). The observed variability in deuterium may be attributed to seasonal factors such as regional dust storm activity and subsequent circulation lower in the atmosphere.

  18. Atmospheric stability and atmospheric circulation in Athens, Greece

    International Nuclear Information System (INIS)

    Synodinou, B.M.; Petrakis, M.; Kassomenos, P.; Lykoudis, S.

    1996-01-01

    In the evaluation and study of atmospheric pollution reference is always made to the stability criteria. These criteria, usually represented as functions of different meteorological data such as wind speed and direction, temperature, solar radiation, etc., play a very important role in the investigation of different parameters that affect the build up of pollution episodes mainly in urban areas. In this paper an attempt is made to evaluate the atmospheric stability criteria based on measurements obtained from two locations in and nearby Athens. The atmospheric stability is then examined along with the other meteorological parameters

  19. Global structure and composition of the martian atmosphere with SPICAM on Mars express

    Science.gov (United States)

    Bertaux, Jean-Loup; Korablev, O.; Fonteyn, D.; Guibert, S.; Chassefière, E.; Lefèvre, F.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quémerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) Light, a light-weight (4.7 kg) UV-IR instrument to be flown on Mars Express orbiter, is dedicated to the study of the atmosphere and ionosphere of Mars. A UV spectrometer (118-320 nm, resolution 0.8 nm) is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation (3.8 kg). It addresses key issues about ozone, its coupling with H2O, aerosols, atmospheric vertical temperature structure and ionospheric studies. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO+, and CO2+, and its direct interaction with the solar wind. An IR spectrometer (1.0-1.7 μm, resolution 0.5-1.2 nm) is dedicated primarily to nadir measurements of H2O abundances simultaneously with ozone measured in the UV, and to vertical profiling during solar occultation of H2O, CO2, and aerosols. The SPICAM Light near-IR sensor employs a pioneering technology acousto-optical tunable filter (AOTF), leading to a compact and light design. Overall, SPICAM Light is an ideal candidate for future orbiter studies of Mars, after Mars Express, in order to study the interannual variability of martian atmospheric processes. The potential contribution to a Mars International Reference Atmosphere is clear.

  20. Carbon dioxide, temperature, salinity, and atmospheric pressure from surface underway survey in the North Pacific from January 1998 to January 2004 (NODC Accession 0045502)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface pCO2, sea surface temperature, sea surface salinity, and atmospheric pressure measurements collected in the North Pacific as part of the NOAA Office of...

  1. Atmospheres of Brown Dwarfs

    Science.gov (United States)

    Wang, Ruoyan; Seay, Christopher

    2018-01-01

    We construct a grid of brown dwarf model atmospheres spanning a wide range of atmospheric metallicity (0.3x ≤ met ≤ 100x), C/O ratios (0.25x ≤ C/O ≤ 2.5x), and cloud properties, encompassing atmospheres of effective temperatures 200 ≤ Teff ≤ 2400 K and gravities 2.5 ≤ log g ≤ 5.5. We produce the expected temperature-pressure profiles and emergent spectra from an atmosphere in radiative-convective equilibrium. We can then compare our predicted spectra to observations and retrieval results to aid in their predictions and influence future missions and telescopic observations. In our poster we briefly describe our modeling methodology and present our progress on model grid construction, spanning solar and subsolar C/O and metallicity.

  2. Eulerian velocity reconstruction in ideal atmospheric dynamics using potential vorticity and potential temperature

    Science.gov (United States)

    Blender, R.

    2009-04-01

    An approach for the reconstruction of atmospheric flow is presented which uses space- and time-dependent fields of density ?, potential vorticity Q and potential temperature Î& cedil;[J. Phys. A, 38, 6419 (2005)]. The method is based on the fundamental equations without approximation. The basic idea is to consider the time-dependent continuity equation as a condition for zero divergence of momentum in four dimensions (time and space, with unit velocity in time). This continuity equation is solved by an ansatz for the four-dimensional momentum using three conserved stream functions, the potential vorticity, potential temperature and a third field, denoted as ?-potential. In zonal flows, the ?-potential identifies the initial longitude of particles, whereas potential vorticity and potential temperature identify mainly meridional and vertical positions. Since the Lagrangian tracers Q, Î&,cedil; and ? determine the Eulerian velocity field, the reconstruction combines the Eulerian and the Lagrangian view of hydrodynamics. In stationary flows, the ?-potential is related to the Bernoulli function. The approach requires that the gradients of the potential vorticity and potential temperature do not vanish when the velocity remains finite. This behavior indicates a possible interrelation with stability conditions. Examples with analytical solutions are presented for a Rossby wave and zonal and rotational shear flows.

  3. Chemistry and evolution of Titan's atmosphere

    International Nuclear Information System (INIS)

    Strobel, D.F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere is reviewed in the light of the scientific findings from the Voyager mission. It is argued that the present N 2 atmosphere may be Titan's initial atmosphere rather than photochemically derived from an original NH 3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH 4 is irreversibly converted to less hydrogen rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of approximately 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N 2 into hot, escaping N atoms to remove approximately 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar e.u.v. energy deposition in Titan's atmosphere by an order of magnitude and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region. (author)

  4. Atmospheric Radiation Measurement program facilities newsletter, April 2002.; TOPICAL

    International Nuclear Information System (INIS)

    Holdridge, D. J.

    2002-01-01

    The National Oceanic and Atmospheric Administration (NOAA) recently announced the development of El Nino conditions in the tropical Pacific Ocean near the South American coastline. Scientists detected a 4 F increase in the sea-surface temperatures during February. Conrad C. Lautenbacher, NOAA administrator and Under Secretary of Commerce for Oceans and Atmosphere, indicated that this warming is a sign that the Pacific Ocean is heading toward an El Nino condition. Although it is too early to predict how strong the El Nino will become or the conditions it will bring to the United States, Lautenbacher said that the country is likely to feel the effects as soon as midsummer (Figure 1). During the last El Nino in 1997-1998, the United States experienced strong weather impacts. Even though researchers don't understand what causes the onset of El Nino, they do recognize what to expect once development has begun. Scientists can monitor the development of El Nino through NOAA's advanced global climate monitoring system of polar-orbiting satellites and 72 ocean buoys moored across the equator in the Pacific Ocean. The resulting measurements of surface meteorological parameters and upper ocean temperatures are made available to scientists on a real-time basis, allowing for timely monitoring and predictions. This complex monitoring array enabled NOAA to predict the 1997-1998 El Nino six months in advance

  5. Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization

    DEFF Research Database (Denmark)

    Norgaard, Asger W.; Kofoed-Sorensen, Vivi; Svensmark, Bo

    2013-01-01

    A low temperature plasma (LTP) ionization interface between a gas chromatograph (GC) and an atmospheric pressure inlet mass spectrometer, was constructed. This enabled time-of-flight mass spectrometric detection of GC-eluting compounds. The performance of the setup was evaluated by injection...

  6. Atmospheric particle formation in spatially and temporally varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lauros, J.

    2011-07-01

    Atmospheric particles affect the radiation balance of the Earth and thus the climate. New particle formation from nucleation has been observed in diverse atmospheric conditions but the actual formation path is still unknown. The prevailing conditions can be exploited to evaluate proposed formation mechanisms. This study aims to improve our understanding of new particle formation from the view of atmospheric conditions. The role of atmospheric conditions on particle formation was studied by atmospheric measurements, theoretical model simulations and simulations based on observations. Two separate column models were further developed for aerosol and chemical simulations. Model simulations allowed us to expand the study from local conditions to varying conditions in the atmospheric boundary layer, while the long-term measurements described especially characteristic mean conditions associated with new particle formation. The observations show statistically significant difference in meteorological and back-ground aerosol conditions between observed event and non-event days. New particle formation above boreal forest is associated with strong convective activity, low humidity and low condensation sink. The probability of a particle formation event is predicted by an equation formulated for upper boundary layer conditions. The model simulations call into question if kinetic sulphuric acid induced nucleation is the primary particle formation mechanism in the presence of organic vapours. Simultaneously the simulations show that ignoring spatial and temporal variation in new particle formation studies may lead to faulty conclusions. On the other hand, the theoretical simulations indicate that short-scale variations in temperature and humidity unlikely have a significant effect on mean binary water sulphuric acid nucleation rate. The study emphasizes the significance of mixing and fluxes in particle formation studies, especially in the atmospheric boundary layer. The further

  7. Assessment of Mars Atmospheric Temperature Retrievals from the Thermal Emission Spectrometer Radiances

    Science.gov (United States)

    Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Deborah; Uymin, Gennady; Moncet, Jean-Luc

    2012-01-01

    Motivated by the needs of Mars data assimilation. particularly quantification of measurement errors and generation of averaging kernels. we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study; (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS ) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples. errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and Ml R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori statistics prevents

  8. Ionization rates and profiles of electron concentration in Martian atmosphere

    International Nuclear Information System (INIS)

    Komitov, B.; Spasov, S.; Gogoshev, M.

    1981-01-01

    The ionization and vertical profiles of electron concentration in the Martian atmosphere are calculated as functions of the solar zenith angles varying from O deg to 90 deg. A neutral atmospheric model based on direct mass-spectometric measurements from the Viking-1 landing modul is employed in the calculation. The Earth data of the ionization solar flux at the same level of the solar activity and for the month of the Viking-1 measurements reduced for the Mars orbit are used. The numerical result for the photoionization rates and quasi-equilibrium electron-concentration profiles in the upper Martian atmosphere at different solar zenith angles from 0 deg to 100 deg are presented. It is shown that the maxima of both quantities decrease and move towards the upper atmosphere regions. The calculated electron density at the zenith solar angle of 40 deg are compared to Viking-1 experimental data and a good agreement is achieved

  9. Infra-red photon release from cosmic dust entering into the earth's atmosphere

    International Nuclear Information System (INIS)

    Kobayashi, Koichi

    1975-01-01

    Cosmic dust brings considerably high intensity of energy flux to the upper atmosphere of the earth. Most of this energy can be converted to infra-red radiation. It can be concluded that the infra-red background radiation in the sky of its wavelength of less than about 10μ may considerably originate in the cosmic dust which has entered the earth's atmosphere, or that the upper limit to the flux of cosmic dust is about 10 5 tons/earth year. (author)

  10. Atmospheric and climatic consequences of a major nuclear war: Results of recent research

    International Nuclear Information System (INIS)

    Golitsyn, G.S.; MacCracken, M.C.

    1987-09-01

    During the last several years, comprehensive three-dimensional atmospheric circulation models, including detailed parametric formulations of a wide range of climatologically significant processes, have been applied to study the potential consequences of a major nuclear war involving the injection of smoke which could result from the large-scale fires ignited by such an exchange. For plausible smoke injections during the warm season of the year, all model calculations suggest that a significant climatic perturbation would result. In the lower range of smoke injection scenarios (producing of order 10 Tg of highly carbonaceous smoke), smoke would act primarily to inhibit convection and rainfall, especially over land areas, including possibly some disruption of the summer monsoon. The upper range of smoke scenarios (of order 100 Tg of highly carbonaceous smoke) would cause not only rapid and sharp decreases in land temperature and precipitation (a mid-latitude average land-temperature drop of the order of 20 0 C, up to perhaps twice this amount in continental interiors), but also seems likely to leave enough smoke in the atmosphere to persist into the following warm season, inducing a cooling of several degrees

  11. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  12. On the relationship between the early spring Indian Ocean's sea surface temperature (SST) and the Tibetan Plateau atmospheric heat source in summer

    Science.gov (United States)

    Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Li, Yu; Jiang, Tingchen; San Liang, X.

    2018-05-01

    In this study, we evaluated the effects of springtime Indian Ocean's sea surface temperature (SST) on the Tibetan Plateau's role as atmospheric heat source (AHS) in summer. The SST data of the National Oceanic and Atmospheric Administration (NOAA), European Centre for Medium-Range Weather Forecasts (ECMWF) and the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) and the reanalysis data of the National Center for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) for 33 years (from 1979 to 2011) were used to analyze the relationship between the Indian Ocean SST and the Tibetan Plateau's AHS in summer, using the approaches that include correlation analysis, and lead-lag analysis. Our results show that some certain strong oceanic SSTs affect the summer plateau heat, specially finding that the early spring SSTs of the Indian Ocean significantly affect the plateau's ability to serve as a heat source in summer. Moreover, the anomalous atmospheric circulation and transport of water vapor are related to the Plateau heat variation.

  13. Decadal atmosphere-ocean variations in the Pacific

    Science.gov (United States)

    Trenberth, Kevin E.; Hurrell, James W.

    1994-03-01

    Considerable evidence has emerged of a substantial decade-long change in the north Pacific atmosphere and ocean lasting from about 1976 to 1988. Observed significant changes in the atmospheric circulation throughout the troposphere revealed a deeper and eastward shifted Aleutian low pressure system in the winter half year which advected warmer and moister air along the west coast of North America and into Alaska and colder air over the north Pacific. Consequently, there were increases in temperatures and sea surface temperatures (SSTs) along the west coast of North America and Alaska but decreases in SSTs over the central north Pacific, as well as changes in coastal rainfall and streamflow, and decreases in sea ice in the Bering Sea. Associated changes occurred in the surface wind stress, and, by inference, in the Sverdrup transport in the north Pacific Ocean. Changes in the monthly mean flow were accompanied by a southward shift in the storm tracks and associated synoptic eddy activity and in the surface ocean sensible and latent heat fluxes. In addition to the changes in the physical environment, the deeper Aleutian low increased the nutrient supply as seen through increases in total chlorophyll in the water column, phytoplankton and zooplankton. These changes, along with the altered ocean currents and temperatures, changed the migration patterns and increased the stock of many fish species. A north Pacific (NP) index is defined to measure the decadal variations, and the temporal variability of the index is explored on daily, annual, interannual and decadal time scales. The dominant atmosphere-ocean relation in the north Pacific is one where atmospheric changes lead SSTs by one to two months. However, strong ties are revealed with events in the tropical Pacific, with changes in tropical Pacific SSTs leading SSTs in the north Pacific by three months. Changes in the storm tracks in the north Pacific help to reinforce and maintain the anomalous circulation in the

  14. Local time variations of the middle atmosphere of Venus: Solar-related structures

    Science.gov (United States)

    Zasova, L.; Khatountsev, I. V.; Ignatiev, N. I.; Moroz, V. I.

    Three-dimensional fields (latitude — altitude — local time) of temperature and aerosol in the upper clouds, obtained from the Venera-15 IR spectrometry data, were studied to search for the solar-related structures. The temperature variation at the isobaric levels vs. solar longitude was presented as a superposition of the cosines with periods of 1, 1/2, 1/3 and 1/4 Venusian days. At low latitudes the diurnal tidal component reaches a maximum above 0.2 mb (92km) level. At high latitudes it dominates at P> 50 mb (68 km) in the cold collar, being roughly twice as much as the semidiurnal one and passing through the maximum of 13 K at 400 mb (57 km). The semidiurnal tidal amplitude exceeds the diurnal one below 90 km (where its maximum locates near 83 km), and also in the upper clouds, above 58 km. At low latitudes the 1/3 days component predominates at 10 - 50 mb (68-76 km). In the upper clouds, where most of the solar energy, absorbed in the middle atmosphere, deposits, all four tidal components, including wavenumbers 3 and 4, have significant amplitudes. A position of the upper boundary of the clouds depends on local time in such a way that the lowest height of the clouds is observed in the morning at all selected latitude ranges. At low latitudes the highest position of the upper boundary of the clouds (at 1218 cm -1) is found at 8 - 9 PM, whereas the lowest one is near the morning terminator. At high latitudes the lowest position of the upper boundary of the clouds shifts towards the dayside being at 10:30 AM at 75° in the cold collar and the highest one shifts to 4 PM. The zonal mean altitude of the upper boundary of the clouds decreases from 69 km at 15° to 59 km at 75°. The diurnal tidal component has the highest amplitude in the cold collar (1.5 km). At low latitudes both amplitudes, diurnal and semidiurnal, reach the values 0.8 - 1 km.

  15. Atmospheric water vapor: Distribution and Empirical estimation in the atmosphere of Thailand

    Science.gov (United States)

    Phokate, S.

    2017-09-01

    Atmospheric water vapor is a crucial component of the Earth’s atmosphere, which is shown by precipitable water vapor. It is calculated from the upper air data. In Thailand, the data were collected from four measuring stations located in Chiang Mai, Ubon Ratchathani, Bangkok, and Songkhla during the years 1998-2013. The precipitable water vapor obtained from this investigation were used to define an empirical model associated with the vapor pressure, which is a surface data at the same stations. The result shows that the relationship has a relatively high level of reliability. The precipitable water vapor obtained from the upper air data is nearly equal to the value from the model. The model was used to calculate the precipitable water vapor from the surface data 85 stations across the country. The result shows that seasonal change of the precipitable water vapor was low in the dry season (November-April) and high in the rainy season (May-October). In addition, precipitable water vapor varies along the latitudes of the stations. The high value obtains for low latitudes, but it is low for high latitudes.

  16. Remote SST Forcing and Local Land-Atmosphere Moisture Coupling as Drivers of Amazon Temperature and Carbon Cycle Variability

    Science.gov (United States)

    Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.

    2017-12-01

    Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes

  17. Atmospheric Boundary Layer temperature and humidity from new-generation Raman lidar

    Science.gov (United States)

    Froidevaux, Martin; Higgins, Chad; Simeonov, Valentin; Pardyjak, Eric R.; Parlange, Marc B.

    2010-05-01

    Mixing ratio and temperature data, obtained with EPFL Raman lidar during the TABLE-08 experiment are presented. The processing methods will be discussed along with fundamental physics. An independent calibration is performed at different distances along the laser beam, demonstrating that the multi-telescopes design of the lidar system is reliable for field application. The maximum achievable distance as a function of time and/or space averaging will also be discussed. During the TABLE-08 experiment, different type of lidar measurements have been obtained including: horizontal and vertical time series, as well as boundary layer "cuts", during day and night. The high resolution data, 1s in time and 1.25 m in space, are used to understand the response of the atmosphere to variations in surface variability.

  18. Nitric acid particles in cold thick ice clouds observed at global scale: Link with lightning, temperature, and upper tropospheric water vapor

    Science.gov (United States)

    Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; RivièRe, E. D.

    2007-03-01

    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the tropics (9 to 20% of clouds with T < 202.5 K). Higher occurrences were found in the rare midlatitudes very cold clouds. NAP occurrence increases as cloud temperature decreases, and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning seems to be the main source of the NOx, which forms NAP in cold clouds over continents. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP may play a role in the dehydration of the upper troposphere when the tropopause is colder than 195 K.

  19. Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin, USA

    Science.gov (United States)

    Lievens, H.; Verhoest, N. E. C.; Martens, B.; VanDenBerg, M. J.; Bitar, A. Al; Tomer, S. Kumar; Merlin, O.; Cabot, F.; Kerr, Y.; DeLannoy, G. J. M.; hide

    2014-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission is routinely providing global multi-angular observations of brightness temperature (TB) at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational flood forecasts through an improved estimation of soil moisture (SM). To accommodate for the direct assimilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as a forward operator for the simulation of multi-angular and multi-polarization top of atmosphere TBs. This study investigates the use of the Variable Infiltration Capacity (VIC) LSM coupled with the Community Microwave Emission Modelling platform (CMEM) for simulating SMOS TB observations over the Upper Mississippi basin, USA. For a period of 2 years (2010-2011), a comparison between SMOS TBs and simulations with literature-based RTM parameters reveals a basin averaged bias of 30K. Therefore, time series of SMOS TB observations are used to investigate ways for mitigating these large biases. Specifically, the study demonstrates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After CDF matching the SM climatology of the LSM to SMOS retrievals, the average bias decreases from 30K to less than 5K. Further improvements can be made through calibration of RTM parameters related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory step for data assimilation.

  20. Behavior of UO2 and FISSIUM in sodium vapor atmosphere at temperatures up to 28000C

    International Nuclear Information System (INIS)

    Feuerstein, H.; Oschinski, J.

    1986-11-01

    In case of a HCDA a rubble bed of fuel debris may form under a sodium pool and reach high temperatures. An experimental technique was developed to study the behavior of fuel and fission products in out-of-pile tests in a sodium vapor atmosphere. Evaporation rates of UO 2 were measured up to 2800 0 C. The evaporation was found to be a complex process, depending on temperature and the 'active' surface. Evaporation restructures the surface of the samples, however no new 'active' surface is formed. UO 2 forms sometimes well shaped crystals and curious erosion products. The efficiency of the used condenser/filter lines was higher than 99.99%. In case of a HCDA all the evaporated substances will condense in the soidum pool. Thermal reduction of the UO 2 reduces the oxygen potential of the system. The final composition at 2500 0 C was found to be UO 1.95 . The only influence of the sodium vapor was found for the diffusion of UO 2 into the thoria of the crucible. Compared with experiments in an atmosphere of pure argon, the diffusion rate was reduced. (orig.) [de

  1. Simultaneous observations of SAO and QBO in winds, temperature and ozone in the tropical middle atmosphere over Thumba (8.5 N, 77 E)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Karanam Kishore; Swain, Debadatta; John, Sherine Rachel; Ramkumar, Geetha [Vikram Sarabhai Space Center, Space Physics Laboratory, Thiruvananthapuram (India)

    2011-11-15

    Owing to the importance of middle atmosphere, recently, a Middle Atmospheric Dynamics (MIDAS) program was carried out during the period 2002-2007 at Thumba (8.5 N, 77 E). The measurements under this program, involving regular radiosonde/rocket flights as well as atmospheric radars, provided long period observations of winds and temperature in the middle atmospheric region from which waves and oscillations as well as their forcing mechanisms particularly in the low-latitude middle atmosphere could be analyzed. However, a detailed analysis of the forcing mechanisms remains incomplete due to the lack of important measurements like ozone which is a significant contributor to atmospheric dynamics. Presently, profiles of ozone are available from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broad Emission Radiometry) satellite globally from about 15 to 100 km, over multiple years since 2002. In this regard, a comprehensive study has been carried out on ozone and its variability at Quasi Biennial Oscillation (QBO) and Semiannual Oscillation (SAO) scales using TIMED/SABER ozone observations during the MIDAS campaign period. Before using the TIMED/SABER ozone measurements, an inter-comparison has been carried out with in situ measurements of ozone obtained under the Southern Hemisphere Additional Ozonesondes (SHADOZ) campaign for the year 2007 at few stations. The inter-comparison showed very good agreement between SABER and ozonesonde derived ozone profiles. After validating the SABER observations, ozone profiles are used extensively to study the QBO and SAO along with temperature and winds in the 20-100 km height region. It is known that the SAO in mesosphere and stratosphere are in opposite phases, but the present study for the first time reports the aspect of opposite phases in the mesosphere itself. Thus, the present work attempts to study the long-period oscillations in stratosphere and mesosphere in ozone

  2. The influence of atmospheric circulation on the air pollution concentration and temperature inversion in Sosnowiec. Case study

    Directory of Open Access Journals (Sweden)

    Widawski Artur

    2015-06-01

    Full Text Available Sosnowiec is loc