Uplink Packet-Data Scheduling in DS-CDMA Systems
Choi, Young Woo; Kim, Seong-Lyun
In this letter, we consider the uplink packet scheduling for non-real-time data users in a DS-CDMA system. As an effort to jointly optimize throughput and fairness, we formulate a time-span minimization problem incorporating the time-multiplexing of different simultaneous transmission schemes. Based on simple rules, we propose efficient scheduling algorithms and compare them with the optimal solution obtained by linear programming.
Wireless-Uplinks-Based Energy-Efficient Scheduling in Mobile Cloud Computing
Directory of Open Access Journals (Sweden)
Xing Liu
2015-01-01
Full Text Available Mobile cloud computing (MCC combines cloud computing and mobile internet to improve the computational capabilities of resource-constrained mobile devices (MDs. In MCC, mobile users could not only improve the computational capability of MDs but also save operation consumption by offloading the mobile applications to the cloud. However, MCC faces the problem of energy efficiency because of time-varying channels when the offloading is being executed. In this paper, we address the issue of energy-efficient scheduling for wireless uplink in MCC. By introducing Lyapunov optimization, we first propose a scheduling algorithm that can dynamically choose channel to transmit data based on queue backlog and channel statistics. Then, we show that the proposed scheduling algorithm can make a tradeoff between queue backlog and energy consumption in a channel-aware MCC system. Simulation results show that the proposed scheduling algorithm can reduce the time average energy consumption for offloading compared to the existing algorithm.
Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching
Shen, Kaiming; Yu, Wei
2018-05-01
This two-part paper develops novel methodologies for using fractional programming (FP) techniques to design and optimize communication systems. Part I of this paper proposes a new quadratic transform for FP and treats its application for continuous optimization problems. In this Part II of the paper, we study discrete problems, such as those involving user scheduling, which are considerably more difficult to solve. Unlike the continuous problems, discrete or mixed discrete-continuous problems normally cannot be recast as convex problems. In contrast to the common heuristic of relaxing the discrete variables, this work reformulates the original problem in an FP form amenable to distributed combinatorial optimization. The paper illustrates this methodology by tackling the important and challenging problem of uplink coordinated multi-cell user scheduling in wireless cellular systems. Uplink scheduling is more challenging than downlink scheduling, because uplink user scheduling decisions significantly affect the interference pattern in nearby cells. Further, the discrete scheduling variable needs to be optimized jointly with continuous variables such as transmit power levels and beamformers. The main idea of the proposed FP approach is to decouple the interaction among the interfering links, thereby permitting a distributed and joint optimization of the discrete and continuous variables with provable convergence. The paper shows that the well-known weighted minimum mean-square-error (WMMSE) algorithm can also be derived from a particular use of FP; but our proposed FP-based method significantly outperforms WMMSE when discrete user scheduling variables are involved, both in term of run-time efficiency and optimizing results.
Uplink multi-cluster scheduling with MU-MIMO for LTE-advanced with carrier aggregation
DEFF Research Database (Denmark)
Wang, Hua; Nguyen, Hung Tuan; Rosa, Claudio
2012-01-01
-Advanced requirements and are being considered as part of LTE Release 10. In this paper, some of the physical layer enhancement techniques for LTE-Advanced have been studied including carrier aggregation (CA), uplink multi-cluster scheduling, and uplink multi-user multiple-input multiple-output (MU-MIMO) transmission....... A system-level simulation was conducted to investigate the performance gains that can be achieved in uplink CA with multi-cluster scheduling and MU-MIMO. Simulation results show that with proper separation between power-limited and non-power-limited LTE-A users, multi-cluster scheduling with CA has similar...
An Efficient Scheduling Scheme to Enhance the Capacity of VoIP Services in Evolved UTRA Uplink
Directory of Open Access Journals (Sweden)
Kim Yong-Seok
2008-01-01
Full Text Available An efficient scheduling scheme is proposed to increase the available capacity of VoIP services over evolved UTRA uplink. On top of the advantages of persistent scheduling, the proposed scheme adaptively share the resources of two VoIP users to get early-termination gain of dynamic scheduler. Through system-level simulations, the performance of the proposed algorithm is evaluated in terms of the capacity enhancement of VoIP services. Comparisons with the original persistent scheduling and the HSUPA scheduler reveal that the proposed scheme increases the capacity of VoIP services up to 20%.
A Framework for Uplink Intercell Interference Modeling with Channel-Based Scheduling
Tabassum, Hina
2012-12-29
This paper presents a novel framework for modeling the uplink intercell interference(ICI) in a multiuser cellular network. The proposed framework assists in quantifying the impact of various fading channel models and state-of-the-art scheduling schemes on the uplink ICI. Firstly, we derive a semianalytical expression for the distribution of the location of the scheduled user in a given cell considering a wide range of scheduling schemes. Based on this, we derive the distribution and moment generating function (MGF) of the uplink ICI considering a single interfering cell. Consequently, we determine the MGF of the cumulative ICI observed from all interfering cells and derive explicit MGF expressions for three typical fading models. Finally, we utilize the obtained expressions to evaluate important network performance metrics such as the outage probability, ergodic capacity, and average fairness numerically. Monte-Carlo simulation results are provided to demonstrate the efficacy of the derived analytical expressions.
Radio Resource Management for Uplink Carrier Aggregation in LTE-Advanced
DEFF Research Database (Denmark)
Wang, Hua; Rosa, Claudio; Pedersen, Klaus I.
2015-01-01
. On the other hand they will introduce additional power back-off for the power amplifier in the user equipment (UE) with non-contiguous resource allocation. Taking into account that the uplink is inherently limited by the maximum transmission power of the UE, the assignment of uplink CA and/or dual cluster...... scheduling algorithm is proposed for dual-cluster transmission, which tightly couples the bandwidth allocation and packet scheduling together to exploit the frequency domain diversity with low complexity. Simulation results show that with proper differentiation between power-limited and non-power-limited UEs......This paper investigates the uplink resource allocation problem in the context of LTE-Advanced systems with carrier aggregation (CA) and dual-cluster scheduling. On one hand these Rel’10 functionalities can increase the available transmission bandwidth and scheduling flexibility in uplink...
Scheduling strategies for LTE uplink with flow behaviour analysis
Dimitrova, D.C.; Berg, J.L. van den; Litjens, R.; Heijenk, G.
2010-01-01
Long Term Evolution (LTE) is a cellular technology developed to support diversity of data traffic at potentially high rates. It is foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and time dimension. In this paper we present a performance comparison of two distinct scheduling schemes for LTE uplink (fa...
A Framework for Uplink Intercell Interference Modeling with Channel-Based Scheduling
Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim
2012-01-01
This paper presents a novel framework for modeling the uplink intercell interference(ICI) in a multiuser cellular network. The proposed framework assists in quantifying the impact of various fading channel models and state-of-the-art scheduling
Search-Tree Based Uplink Channel Aware Packet Scheduling for UTRAN LTE
DEFF Research Database (Denmark)
Calabrese, Francesco Davide; Michaelsen, Per-Henrik; Rosa, Claudio
2008-01-01
UTRAN Long Term Evolution is currently under standardization within 3GPP with the aim of providing a spectral efficiency 2 to 4 times higher than its predecessor HSUPA/HSDPA. Single Carrier FDMA has been selected as multiple access for the uplink. This technology requires the subcarriers allocate...... distributions. It is shown that, despite measurement errors and high inter-cell interference variability, the proposed algorithm can increase the uplink capacity by more than 26%....
On the modeling of uplink inter-cell interference based on proportional fair scheduling
Tabassum, Hina
2012-10-03
We derive a semi-analytical expression for the uplink inter-cell interference (ICI) assuming proportional fair scheduling (with a maximum normalized signal-to-noise ratio (SNR) criterion) deployed in the cellular network. The derived expression can be customized for different models of channel statistics that can capture path loss, shadowing, and fading. Firstly, we derive an expression for the distribution of the locations of the allocated user in a given cell. Then, we derive the distribution and moment generating function of the uplink ICI from one interfering cell. Finally, we determine the moment generating function of the cumulative uplink ICI from all interfering cells. The derived expression is utilized to evaluate important network performance metrics such as outage probability and fairness among users. The accuracy of the derived expressions is verified by comparing the obtained results to Monte Carlo simulations. © 2012 IEEE.
On the modeling of uplink inter-cell interference based on proportional fair scheduling
Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim
2012-01-01
We derive a semi-analytical expression for the uplink inter-cell interference (ICI) assuming proportional fair scheduling (with a maximum normalized signal-to-noise ratio (SNR) criterion) deployed in the cellular network. The derived expression can be customized for different models of channel statistics that can capture path loss, shadowing, and fading. Firstly, we derive an expression for the distribution of the locations of the allocated user in a given cell. Then, we derive the distribution and moment generating function of the uplink ICI from one interfering cell. Finally, we determine the moment generating function of the cumulative uplink ICI from all interfering cells. The derived expression is utilized to evaluate important network performance metrics such as outage probability and fairness among users. The accuracy of the derived expressions is verified by comparing the obtained results to Monte Carlo simulations. © 2012 IEEE.
Weighted-SNR-based fair scheduling for uplink OFDMA
Ma, Yao
2009-11-01
In this paper, we study the sum rate maximization algorithms with long-term proportional rate fairness (PRF) for uplink orthogonal frequency division multiple access (OFDMA) systems. In contrast to the rate-maximization schemes which used short-term PRF in the literature, we propose to use a selective multiuser diversity (SMuD) scheme to achieve a long-term PRF and improved sum rate performance. This scheme implements weighted channel signal-to-noise ratio (w-SNR)-based ranking for user selection on each subchannel, and then uses either water-filling (WF) or equal power allocation (EPA) along the assigned channels of each user. Both offline and online methods to find the optimal SNR weight factors are designed to achieve the target proportional rates for different users. The offline optimization technique requires to know the channel distribution information (CDI) at the scheduler. The online method uses the weight adaption combined with individual user rate tracking, which avoids the need to know the CDI. Analytical throughput metrics for the proposed w-SNR scheme with WF and EPA over Rayleigh channels are derived, and verified by simulations. Simulation results show that the proposed w-SNR PRF scheme can achieve significantly higher sum rates than the frequency diversity-based short-term and long-term fairness schemes. Besides the improved performance, the proposed schemes have a low complexity which is linear to numbers of users and subchannels.
On the Modelling of the Mobile WiMAX (IEEE 802.16e Uplink Scheduler
Directory of Open Access Journals (Sweden)
Darmawaty Mohd Ali
2010-01-01
Full Text Available Packet scheduling has drawn a great deal of attention in the field of wireless networks as it plays an important role in distributing shared resources in a network. The process involves allocating the bandwidth among users and determining their transmission order. In this paper an uplink (UL scheduling algorithm for the Mobile Worldwide Interoperability for Microwave Access (WiMAX network based on the cyclic polling model is proposed. The model in this study consists of five queues (UGS, ertPS, rtPS, nrtPS, and BE visited by a single server. A threshold policy is imposed to the nrtPS queue to ensure that the delay constraint of real time traffic (UGS, ertPS, and rtPS is not violated making this approach original in comparison to the existing contributions. A mathematical model is formulated for the weighted sum of the mean waiting time of each individual queues based on the pseudo-conservation law. The results of the analysis are useful in obtaining or testing approximation for individual mean waiting time especially when queues are asymmetric (where each queue may have different stochastic characteristic such as arrival rate and service time distribution and when their number is large (more than 2 queues.
Uplink SDMA with Limited Feedback: Throughput Scaling
Directory of Open Access Journals (Sweden)
Jeffrey G. Andrews
2008-01-01
Full Text Available Combined space division multiple access (SDMA and scheduling exploit both spatial multiplexing and multiuser diversity, increasing throughput significantly. Both SDMA and scheduling require feedback of multiuser channel sate information (CSI. This paper focuses on uplink SDMA with limited feedback, which refers to efficient techniques for CSI quantization and feedback. To quantify the throughput of uplink SDMA and derive design guidelines, the throughput scaling with system parameters is analyzed. The specific parameters considered include the numbers of users, antennas, and feedback bits. Furthermore, different SNR regimes and beamforming methods are considered. The derived throughput scaling laws are observed to change for different SNR regimes. For instance, the throughput scales logarithmically with the number of users in the high SNR regime but double logarithmically in the low SNR regime. The analysis of throughput scaling suggests guidelines for scheduling in uplink SDMA. For example, to maximize throughput scaling, scheduling should use the criterion of minimum quantization errors for the high SNR regime and maximum channel power for the low SNR regime.
Shibli, Hussain J.
2013-06-01
Opportunistic schedulers rely on the feedback of all users in order to schedule a set of users with favorable channel conditions. While the downlink channels can be easily estimated at all user terminals via a single broadcast, several key challenges are faced during uplink transmission. First of all, the statistics of the noisy and fading feedback channels are unknown at the base station (BS) and channel training is usually required from all users. Secondly, the amount of network resources (air-time) required for feedback transmission grows linearly with the number of users. In this paper, we tackle the above challenges and propose a Bayesian based scheduling algorithm that 1) reduces the air-time required to identify the strong users, and 2) is agnostic to the statistics of the feedback channels and utilizes the a priori statistics of the additive noise to identify the strong users. Numerical results show that the proposed algorithm reduces the feedback air-time while improving detection in the presence of fading and noisy channels when compared to recent compressed sensing based algorithms. Furthermore, the proposed algorithm achieves a sum-rate throughput close to that obtained by noiseless dedicated feedback systems. © 2013 IEEE.
Downlink scheduling using non-orthogonal uplink beams
Eltayeb, Mohammed E.
2014-04-01
Opportunistic schedulers rely on the feedback of the channel state information of users in order to perform user selection and downlink scheduling. This feedback increases with the number of users, and can lead to inefficient use of network resources and scheduling delays. We tackle the problem of feedback design, and propose a novel class of nonorthogonal codes to feed back channel state information. Users with favorable channel conditions simultaneously transmit their channel state information via non-orthogonal beams to the base station. The proposed formulation allows the base station to identify the strong users via a simple correlation process. After deriving the minimum required code length and closed-form expressions for the feedback load and downlink capacity, we show that i) the proposed algorithm reduces the feedback load while matching the achievable rate of full feedback algorithms operating over a noiseless feedback channel, and ii) the proposed codes are superior to the Gaussian codes.
Downlink scheduling using non-orthogonal uplink beams
Eltayeb, Mohammed E.; Al-Naffouri, Tareq Y.; Bahrami, Hamid Reza Talesh
2014-01-01
Opportunistic schedulers rely on the feedback of the channel state information of users in order to perform user selection and downlink scheduling. This feedback increases with the number of users, and can lead to inefficient use of network resources and scheduling delays. We tackle the problem of feedback design, and propose a novel class of nonorthogonal codes to feed back channel state information. Users with favorable channel conditions simultaneously transmit their channel state information via non-orthogonal beams to the base station. The proposed formulation allows the base station to identify the strong users via a simple correlation process. After deriving the minimum required code length and closed-form expressions for the feedback load and downlink capacity, we show that i) the proposed algorithm reduces the feedback load while matching the achievable rate of full feedback algorithms operating over a noiseless feedback channel, and ii) the proposed codes are superior to the Gaussian codes.
A Statistical Model for Uplink Intercell Interference with Power Adaptation and Greedy Scheduling
Tabassum, Hina
2012-10-03
This paper deals with the statistical modeling of uplink inter-cell interference (ICI) considering greedy scheduling with power adaptation based on channel conditions. The derived model is implicitly generalized for any kind of shadowing and fading environments. More precisely, we develop a generic model for the distribution of ICI based on the locations of the allocated users and their transmit powers. The derived model is utilized to evaluate important network performance metrics such as ergodic capacity, average fairness and average power preservation numerically. Monte-Carlo simulation details are included to support the analysis and show the accuracy of the derived expressions. In parallel to the literature, we show that greedy scheduling with power adaptation reduces the ICI, average power consumption of users, and enhances the average fairness among users, compared to the case without power adaptation. © 2012 IEEE.
A Statistical Model for Uplink Intercell Interference with Power Adaptation and Greedy Scheduling
Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim
2012-01-01
This paper deals with the statistical modeling of uplink inter-cell interference (ICI) considering greedy scheduling with power adaptation based on channel conditions. The derived model is implicitly generalized for any kind of shadowing and fading environments. More precisely, we develop a generic model for the distribution of ICI based on the locations of the allocated users and their transmit powers. The derived model is utilized to evaluate important network performance metrics such as ergodic capacity, average fairness and average power preservation numerically. Monte-Carlo simulation details are included to support the analysis and show the accuracy of the derived expressions. In parallel to the literature, we show that greedy scheduling with power adaptation reduces the ICI, average power consumption of users, and enhances the average fairness among users, compared to the case without power adaptation. © 2012 IEEE.
Exploring the physical layer frontiers of cellular uplink: The Vienna LTE-A Uplink Simulator.
Zöchmann, Erich; Schwarz, Stefan; Pratschner, Stefan; Nagel, Lukas; Lerch, Martin; Rupp, Markus
Communication systems in practice are subject to many technical/technological constraints and restrictions. Multiple input, multiple output (MIMO) processing in current wireless communications, as an example, mostly employs codebook-based pre-coding to save computational complexity at the transmitters and receivers. In such cases, closed form expressions for capacity or bit-error probability are often unattainable; effects of realistic signal processing algorithms on the performance of practical communication systems rather have to be studied in simulation environments. The Vienna LTE-A Uplink Simulator is a 3GPP LTE-A standard compliant MATLAB-based link level simulator that is publicly available under an academic use license, facilitating reproducible evaluations of signal processing algorithms and transceiver designs in wireless communications. This paper reviews research results that have been obtained by means of the Vienna LTE-A Uplink Simulator, highlights the effects of single-carrier frequency-division multiplexing (as the distinguishing feature to LTE-A downlink), extends known link adaptation concepts to uplink transmission, shows the implications of the uplink pilot pattern for gathering channel state information at the receiver and completes with possible future research directions.
Uplink scheduling and adjacent-channel coupling loss analysis for TD-LTE deployment.
Yeo, Woon-Young; Moon, Sung Ho; Kim, Jae-Hoon
2014-01-01
TD-LTE, one of the two duplexing modes in LTE, operates in unpaired spectrum and has the advantages of TDD-based technologies. It is expected that TD-LTE will be more rapidly deployed in near future and most of WiMax operators will upgrade their networks to TD-LTE gradually. Before completely upgrading to TD-LTE, WiMax may coexist with TD-LTE in an adjacent frequency band. In addition, multiple TD-LTE operators may deploy their networks in adjacent bands. When more than one TDD network operates in adjacent frequency bands, severe interference may happen due to adjacent channel interference (ACI) and unsynchronized operations. In this paper, coexistence issues between TD-LTE and other systems are analyzed and coexistence requirements are provided. This paper has three research objectives. First, frame synchronization between TD-LTE and WiMax is discussed by investigating possible combinations of TD-LTE and WiMax configurations. Second, an uplink scheduling algorithm is proposed to utilize a leakage pattern of ACI in synchronized operations. Third, minimum requirements for coexistence in unsynchronized operations are analyzed by introducing a concept of adjacent-channel coupling loss. From the analysis and simulation results, we can see that coexistence of TD-LTE with other TDD systems is feasible if the two networks are synchronized. For the unsynchronized case, some special cell-site engineering techniques may be required to reduce the ACI.
An improved reconstruction algorithm based on multi-user detection for uplink grant-free NOMA
Directory of Open Access Journals (Sweden)
Hou Chengyan
2017-01-01
Full Text Available For the traditional orthogonal matching pursuit(OMP algorithm in multi-user detection(MUD for uplink grant-free NOMA, here is a poor BER performance, so in this paper we propose an temporal-correlation orthogonal matching pursuit algorithm(TOMP to realize muli-user detection. The core idea of the TOMP is to use the time correlation of the active user sets to achieve user activity and data detection in a number of continuous time slots. We use the estimated active user set in the current time slot as a priori information to estimate the active user sets for the next slot. By maintaining the active user set Tˆl of size K(K is the number of users, but modified in each iteration. Specifically, active user set is believed to be reliable in one iteration but shown error in another iteration, can be added to the set path delay Tˆl or removed from it. Theoretical analysis of the improved algorithm provide a guarantee that the multi-user can be successfully detected with a high probability. The simulation results show that the proposed scheme can achieve better bit error rate (BER performance in the uplink grant-free NOMA system.
Synchronization for the uplink of OFDMA-based System
DEFF Research Database (Denmark)
Nguyen, Huan Cong
2008-01-01
are designed for single-user system, and therefore are not able to correct multiple CFOs in the uplink. The aim of this thesis is to provide practical solutions for the synchronization issues occurring in the uplink of the OFDMA-based broadband wireless systems. Several data-aided CFO estimation algorithms...
Reducing LTE Uplink Transmission Energy by Allocating Resources
DEFF Research Database (Denmark)
Lauridsen, Mads; Jensen, Anders Riis; Mogensen, Preben
2011-01-01
The effect of physical resource block (PRB) allocation on an LTE modem's transmit power and total modem energy consumption is examined. In this paper the uplink resource blocks are scheduled in either a Frequency Division Multiple Access (FDMA) or Time Division Multiple Access (TDMA) manner......, to determine if low transmission power & long transmission time or high transmission power & short transmission time is most energy efficient. It is important to minimize the LTE modem's energy consumption caused by uplink transmission because it affects phone battery time, and because researchers rarely focus...
Scheduling algorithms for rapid imaging using agile Cubesat constellations
Nag, Sreeja; Li, Alan S.; Merrick, James H.
2018-02-01
Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, ∼40 kg in development) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging in the commercial market, Cubesats now have the ability to slew and capture images within short notice. We propose a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying, full-body orientation of agile Cubesats in a constellation such that they maximize the number of observed images and observation time, within the constraints of Cubesat hardware specifications. The attitude control strategy combines bang-bang and PD control, with constraints such as power consumption, response time, and stability factored into the optimality computations and a possible extension to PID control to account for disturbances. Schedule optimization is performed using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. The automated scheduler is expected to run on ground station resources and the resultant schedules uplinked to the satellites for execution, however it can be adapted for onboard scheduling, contingent on Cubesat hardware and software upgrades. The framework is generalizable over small steerable spacecraft, sensor specifications, imaging objectives and regions of interest, and is demonstrated using multiple 20 kg satellites in Low Earth Orbit for two case studies - rapid imaging of Landsat's land and coastal images and extended imaging of global, warm water coral reefs. The proposed algorithm captures up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-h simulation. Integer programming was able to verify that
Minimizing Sum-MSE Implies Identical Downlink and Dual Uplink Power Allocations
Tenenbaum, Adam J.; Adve, Raviraj S.
2009-01-01
In the multiuser downlink, power allocation for linear precoders that minimize the sum of mean squared errors under a sum power constraint is a non-convex problem. Many existing algorithms solve an equivalent convex problem in the virtual uplink and apply a transformation based on uplink-downlink duality to find a downlink solution. In this letter, we analyze the optimality criteria for the power allocation subproblem in the virtual uplink, and demonstrate that the optimal solution leads to i...
Joint Throughput Maximization and Fair Uplink Transmission Scheduling in CDMA Systems
Directory of Open Access Journals (Sweden)
Symeon Papavassiliou
2009-01-01
Full Text Available We study the fundamental problem of optimal transmission scheduling in a code-division multiple-access wireless system in order to maximize the uplink system throughput, while satisfying the users quality-of-service (QoS requirements and maintaining fairness among them. The corresponding problem is expressed as a weighted throughput maximization problem, under certain power and QoS constraints, where the weights are the control parameters reflecting the fairness constraints. With the introduction of the power index capacity, it is shown that this optimization problem can be converted into a binary knapsack problem, where all the corresponding constraints are replaced by the power index capacities at some certain system power index. A two-step approach is followed to obtain the optimal solution. First, a simple method is proposed to find the optimal set of users to receive service for a given fixed target system load, and then the optimal solution is obtained as a global search within a certain range. Furthermore, a stochastic approximation method is presented to effectively identify the required control parameters. The performance evaluation reveals the advantages of our proposed policy over other existing ones and confirms that it achieves very high throughput while maintains fairness among the users, under different channel conditions and requirements.
ULSGEN (Uplink Summary Generator)
Wang, Y.-F.; Schrock, M.; Reeve, T.; Nguyen, K.; Smith, B.
2014-01-01
Uplink is an important part of spacecraft operations. Ensuring the accuracy of uplink content is essential to mission success. Before commands are radiated to the spacecraft, the command and sequence must be reviewed and verified by various teams. In most cases, this process requires collecting the command data, reviewing the data during a command conference meeting, and providing physical signatures by designated members of various teams to signify approval of the data. If commands or sequences are disapproved for some reason, the whole process must be restarted. Recording data and decision history is important for traceability reasons. Given that many steps and people are involved in this process, an easily accessible software tool for managing the process is vital to reducing human error which could result in uplinking incorrect data to the spacecraft. An uplink summary generator called ULSGEN was developed to assist this uplink content approval process. ULSGEN generates a web-based summary of uplink file content and provides an online review process. Spacecraft operations personnel view this summary as a final check before actual radiation of the uplink data. .
Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee
2018-04-01
In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.
Aeon: Synthesizing Scheduling Algorithms from High-Level Models
Monette, Jean-Noël; Deville, Yves; van Hentenryck, Pascal
This paper describes the aeon system whose aim is to synthesize scheduling algorithms from high-level models. A eon, which is entirely written in comet, receives as input a high-level model for a scheduling application which is then analyzed to generate a dedicated scheduling algorithm exploiting the structure of the model. A eon provides a variety of synthesizers for generating complete or heuristic algorithms. Moreover, synthesizers are compositional, making it possible to generate complex hybrid algorithms naturally. Preliminary experimental results indicate that this approach may be competitive with state-of-the-art search algorithms.
Savin, Stephen C.
2005-01-01
The MER project includes two rovers working simultaneously on opposite sides of Mars each receiving commands only once a day. Creating this uplink is critical, since a failed uplink means a lost day and a waste of money. Examining the process of creating this uplink, I tracked the use of the system developed for requesting observations as well as the development, from stage to stage, in forming an activity plan. I found the system for requesting observations was commonly misused, if used at all. There are half a dozen reports to document the creation of the uplink plan and often there are discrepancies among them. Despite this, the uplink process worked very well and MER has been one of the most successful missions for NASA in recent memory. Still it is clear there is room for improvement.
Efficient scheduling request algorithm for opportunistic wireless access
Nam, Haewoon
2011-08-01
An efficient scheduling request algorithm for opportunistic wireless access based on user grouping is proposed in this paper. Similar to the well-known opportunistic splitting algorithm, the proposed algorithm initially adjusts (or lowers) the threshold during a guard period if no user sends a scheduling request. However, if multiple users make requests simultaneously and therefore a collision occurs, the proposed algorithm no longer updates the threshold but narrows down the user search space by splitting the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a request, it is shown that the proposed algorithm significantly alleviates the burden of the signaling for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots to make a user selection given a certain scheduling outage probability. © 2011 IEEE.
The serial message-passing schedule for LDPC decoding algorithms
Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue
2015-12-01
The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.
Cloud Service Scheduling Algorithm Research and Optimization
Directory of Open Access Journals (Sweden)
Hongyan Cui
2017-01-01
Full Text Available We propose a cloud service scheduling model that is referred to as the Task Scheduling System (TSS. In the user module, the process time of each task is in accordance with a general distribution. In the task scheduling module, we take a weighted sum of makespan and flowtime as the objective function and use an Ant Colony Optimization (ACO and a Genetic Algorithm (GA to solve the problem of cloud task scheduling. Simulation results show that the convergence speed and output performance of our Genetic Algorithm-Chaos Ant Colony Optimization (GA-CACO are optimal.
Cloud Computing Task Scheduling Based on Cultural Genetic Algorithm
Directory of Open Access Journals (Sweden)
Li Jian-Wen
2016-01-01
Full Text Available The task scheduling strategy based on cultural genetic algorithm(CGA is proposed in order to improve the efficiency of task scheduling in the cloud computing platform, which targets at minimizing the total time and cost of task scheduling. The improved genetic algorithm is used to construct the main population space and knowledge space under cultural framework which get independent parallel evolution, forming a mechanism of mutual promotion to dispatch the cloud task. Simultaneously, in order to prevent the defects of the genetic algorithm which is easy to fall into local optimum, the non-uniform mutation operator is introduced to improve the search performance of the algorithm. The experimental results show that CGA reduces the total time and lowers the cost of the scheduling, which is an effective algorithm for the cloud task scheduling.
A decentralized scheduling algorithm for time synchronized channel hopping
Directory of Open Access Journals (Sweden)
Andrew Tinka
2011-09-01
Full Text Available Time Synchronized Channel Hopping (TSCH is an existing Medium Access Control scheme which enables robust communication through channel hopping and high data rates through synchronization. It is based on a time-slotted architecture, and its correct functioning depends on a schedule which is typically computed by a central node. This paper presents, to our knowledge, the first scheduling algorithm for TSCH networks which both is distributed and which copes with mobile nodes. Two variations on scheduling algorithms are presented. Aloha-based scheduling allocates one channel for broadcasting advertisements for new neighbors. Reservation- based scheduling augments Aloha-based scheduling with a dedicated timeslot for targeted advertisements based on gossip information. A mobile ad hoc motorized sensor network with frequent connectivity changes is studied, and the performance of the two proposed algorithms is assessed. This performance analysis uses both simulation results and the results of a field deployment of floating wireless sensors in an estuarial canal environment. Reservation-based scheduling performs significantly better than Aloha-based scheduling, suggesting that the improved network reactivity is worth the increased algorithmic complexity and resource consumption.
Energy-efficient TDMA medium access control protocol scheduling
Havinga, Paul J.M.; Smit, Gerard J.M.
2000-01-01
In this paper we study the energy efficiency and channel efficiency of TDMA MAC protocol scheduling mechanisms. Most MAC protocols are based on phase grouping that basically has three phases in a frame: uplink, downlink and reservation. We propose a new mechanism in which we have multiple uplink and
Analyzing the impact of relay station characteristics on uplink performance in cellular network
Dimitrova, D.C.; van den Berg, Hans Leo; Heijenk, Geert
2009-01-01
Uplink users in cellular networks, such as UMTS/ HSPA, located at the edge of the cell generally suffer from poor channel conditions. Deploying intermediate relay nodes is seen as a promising approach towards extending cell coverage. This paper focuses on the role of packet scheduling in cellular
Iterative group splitting algorithm for opportunistic scheduling systems
Nam, Haewoon
2014-05-01
An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold during a guard period if no user sends a feedback. However, when a feedback collision occurs at any point of time, the proposed algorithm no longer updates the threshold but narrows down the user search space by dividing the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a feedback, it is shown that the proposed algorithm significantly alleviates the signaling overhead for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots than the opportunistic splitting algorithm to make a user selection with a given level of scheduling outage probability or provides a higher ergodic capacity given a certain number of mini-slots. © 2013 IEEE.
Scheduling theory, algorithms, and systems
Pinedo, Michael L
2016-01-01
This new edition of the well-established text Scheduling: Theory, Algorithms, and Systems provides an up-to-date coverage of important theoretical models in the scheduling literature as well as important scheduling problems that appear in the real world. The accompanying website includes supplementary material in the form of slide-shows from industry as well as movies that show actual implementations of scheduling systems. The main structure of the book, as per previous editions, consists of three parts. The first part focuses on deterministic scheduling and the related combinatorial problems. The second part covers probabilistic scheduling models; in this part it is assumed that processing times and other problem data are random and not known in advance. The third part deals with scheduling in practice; it covers heuristics that are popular with practitioners and discusses system design and implementation issues. All three parts of this new edition have been revamped, streamlined, and extended. The reference...
Car painting process scheduling with harmony search algorithm
Syahputra, M. F.; Maiyasya, A.; Purnamawati, S.; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.
2018-02-01
Automotive painting program in the process of painting the car body by using robot power, making efficiency in the production system. Production system will be more efficient if pay attention to scheduling of car order which will be done by considering painting body shape of car. Flow shop scheduling is a scheduling model in which the job-job to be processed entirely flows in the same product direction / path. Scheduling problems often arise if there are n jobs to be processed on the machine, which must be specified which must be done first and how to allocate jobs on the machine to obtain a scheduled production process. Harmony Search Algorithm is a metaheuristic optimization algorithm based on music. The algorithm is inspired by observations that lead to music in search of perfect harmony. This musical harmony is in line to find optimal in the optimization process. Based on the tests that have been done, obtained the optimal car sequence with minimum makespan value.
Multiagent scheduling models and algorithms
Agnetis, Alessandro; Gawiejnowicz, Stanisław; Pacciarelli, Dario; Soukhal, Ameur
2014-01-01
This book presents multi-agent scheduling models in which subsets of jobs sharing the same resources are evaluated by different criteria. It discusses complexity results, approximation schemes, heuristics and exact algorithms.
Algorithm comparison for schedule optimization in MR fingerprinting.
Cohen, Ouri; Rosen, Matthew S
2017-09-01
In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.
Sort-Mid tasks scheduling algorithm in grid computing.
Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M
2015-11-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.
Cross layer scheduling algorithm for LTE Downlink
DEFF Research Database (Denmark)
Popovska Avramova, Andrijana; Yan, Ying; Dittmann, Lars
2012-01-01
. This paper evaluates a cross layer scheduling algorithm that aims at minimizing the resource utilization. The algorithm makes decisions regarding the channel conditions and the size of transmission buffers and different QoS demands. The simulation results show that the new algorithm improves the resource...
Genetic algorithm to solve the problems of lectures and practicums scheduling
Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.
2018-02-01
Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.
Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm
T. Vigneswari; M. A. Maluk Mohamed
2015-01-01
Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Hete...
Uplink Cross-Layer Scheduling with Differential QoS Requirements in OFDMA Systems
Directory of Open Access Journals (Sweden)
Chen Wei
2010-01-01
Full Text Available Fair and efficient scheduling is a key issue in cross-layer design for wireless communication systems, such as 3GPP LTE and WiMAX. However, few works have considered the multiaccess of the traffic with differential QoS requirements in wireless systems. In this paper, we will consider an OFDMA-based wireless system with four types of traffic associated with differential QoS requirements, namely, minimum reserved rate, maximum sustainable rate, maximum latency, and tolerant jitter. Given these QoS requirements, the traffic scheduling will be formulated into a cross-layer optimization problem, which is convex fortunately. By separating the power allocation through the waterfilling algorithm in each user, this problem will further reduce to a kind of continuous quadratic knapsack problem in the base station which yields low complexity. It is then demonstrated that the proposed cross-layer method cannot only guarantee the application layer QoS requirements, but also minimizes the integrated residual workload in the MAC layer. To further enhance the ability of QoS assurance in heavily loaded scenario, a call admission control scheme will also be proposed. The simulation results show that the QoS requirements for the four types of traffic are guaranteed effectively by the proposed algorithms.
Interference management with partial uplink/downlink spectrum overlap
Randrianantenaina, Itsikiantsoa
2016-07-26
Simultaneous reuse of spectral resources by uplink and downlink, denoted as in-band full duplex (FD) communication, is promoted to double the spectral efficiency when compared to its half-duplex (HD) counterpart. Interference management, however, remains challenging in FD cellular networks, especially when high disparity between uplink and downlink transmission powers exists. The uplink performance can be particularly deteriorated when operating on channels that are simultaneously occupied with downlink transmission. This paper considers a cellular wireless system with partial spectrum overlap between the downlink and uplink. The performance of the system becomes, therefore, a function of the overlap fraction, as well as the power levels of both the uplink and downlink transmissions. The paper considers the problem of maximizing an overall network utility to find the uplink/downlink transmission powers and the spectrum overlap fraction between the uplink and downlink spectrum in each cell, and proposes solving the problem using interior point method. Simulations results confirm the vulnerability of the uplink performance to the FD operation, and show the superiority of the proposed scheme over the FD and HD schemes. The results further show that explicit uplink and downlink performance should be considered for efficient design of cellular networks with overlapping uplink/downlink resources. © 2016 IEEE.
An improved sheep flock heredity algorithm for job shop scheduling and flow shop scheduling problems
Directory of Open Access Journals (Sweden)
Chandramouli Anandaraman
2011-10-01
Full Text Available Job Shop Scheduling Problem (JSSP and Flow Shop Scheduling Problem (FSSP are strong NP-complete combinatorial optimization problems among class of typical production scheduling problems. An improved Sheep Flock Heredity Algorithm (ISFHA is proposed in this paper to find a schedule of operations that can minimize makespan. In ISFHA, the pairwise mutation operation is replaced by a single point mutation process with a probabilistic property which guarantees the feasibility of the solutions in the local search domain. A Robust-Replace (R-R heuristic is introduced in place of chromosomal crossover to enhance the global search and to improve the convergence. The R-R heuristic is found to enhance the exploring potential of the algorithm and enrich the diversity of neighborhoods. Experimental results reveal the effectiveness of the proposed algorithm, whose optimization performance is markedly superior to that of genetic algorithms and is comparable to the best results reported in the literature.
Iterative group splitting algorithm for opportunistic scheduling systems
Nam, Haewoon; Alouini, Mohamed-Slim
2014-01-01
An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold
Efficient scheduling request algorithm for opportunistic wireless access
Nam, Haewoon; Alouini, Mohamed-Slim
2011-01-01
An efficient scheduling request algorithm for opportunistic wireless access based on user grouping is proposed in this paper. Similar to the well-known opportunistic splitting algorithm, the proposed algorithm initially adjusts (or lowers
Sort-Mid tasks scheduling algorithm in grid computing
Directory of Open Access Journals (Sweden)
Naglaa M. Reda
2015-11-01
Full Text Available Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.
An Improved Recovery Algorithm for Decayed AES Key Schedule Images
Tsow, Alex
A practical algorithm that recovers AES key schedules from decayed memory images is presented. Halderman et al. [1] established this recovery capability, dubbed the cold-boot attack, as a serious vulnerability for several widespread software-based encryption packages. Our algorithm recovers AES-128 key schedules tens of millions of times faster than the original proof-of-concept release. In practice, it enables reliable recovery of key schedules at 70% decay, well over twice the decay capacity of previous methods. The algorithm is generalized to AES-256 and is empirically shown to recover 256-bit key schedules that have suffered 65% decay. When solutions are unique, the algorithm efficiently validates this property and outputs the solution for memory images decayed up to 60%.
Using a vision cognitive algorithm to schedule virtual machines
Directory of Open Access Journals (Sweden)
Zhao Jiaqi
2014-09-01
Full Text Available Scheduling virtual machines is a major research topic for cloud computing, because it directly influences the performance, the operation cost and the quality of services. A large cloud center is normally equipped with several hundred thousand physical machines. The mission of the scheduler is to select the best one to host a virtual machine. This is an NPhard global optimization problem with grand challenges for researchers. This work studies the Virtual Machine (VM scheduling problem on the cloud. Our primary concern with VM scheduling is the energy consumption, because the largest part of a cloud center operation cost goes to the kilowatts used. We designed a scheduling algorithm that allocates an incoming virtual machine instance on the host machine, which results in the lowest energy consumption of the entire system. More specifically, we developed a new algorithm, called vision cognition, to solve the global optimization problem. This algorithm is inspired by the observation of how human eyes see directly the smallest/largest item without comparing them pairwisely. We theoretically proved that the algorithm works correctly and converges fast. Practically, we validated the novel algorithm, together with the scheduling concept, using a simulation approach. The adopted cloud simulator models different cloud infrastructures with various properties and detailed runtime information that can usually not be acquired from real clouds. The experimental results demonstrate the benefit of our approach in terms of reducing the cloud center energy consumption
Directory of Open Access Journals (Sweden)
Imam Ahmad Ashari
2016-11-01
Full Text Available Scheduling problems at the university is a complex type of scheduling problems. The scheduling process should be carried out at every turn of the semester's. The core of the problem of scheduling courses at the university is that the number of components that need to be considered in making the schedule, some of the components was made up of students, lecturers, time and a room with due regard to the limits and certain conditions so that no collision in the schedule such as mashed room, mashed lecturer and others. To resolve a scheduling problem most appropriate technique used is the technique of optimization. Optimization techniques can give the best results desired. Metaheuristic algorithm is an algorithm that has a lot of ways to solve the problems to the very limit the optimal solution. In this paper, we use a genetic algorithm and ant colony optimization algorithm is an algorithm metaheuristic to solve the problem of course scheduling. The two algorithm will be tested and compared to get performance is the best. The algorithm was tested using data schedule courses of the university in Semarang. From the experimental results we conclude that the genetic algorithm has better performance than the ant colony optimization algorithm in solving the case of course scheduling.
A distributed scheduling algorithm for heterogeneous real-time systems
Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi
1991-01-01
Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.
ENHANCED HYBRID PSO – ACO ALGORITHM FOR GRID SCHEDULING
Directory of Open Access Journals (Sweden)
P. Mathiyalagan
2010-07-01
Full Text Available Grid computing is a high performance computing environment to solve larger scale computational demands. Grid computing contains resource management, task scheduling, security problems, information management and so on. Task scheduling is a fundamental issue in achieving high performance in grid computing systems. A computational GRID is typically heterogeneous in the sense that it combines clusters of varying sizes, and different clusters typically contains processing elements with different level of performance. In this, heuristic approaches based on particle swarm optimization and ant colony optimization algorithms are adopted for solving task scheduling problems in grid environment. Particle Swarm Optimization (PSO is one of the latest evolutionary optimization techniques by nature. It has the better ability of global searching and has been successfully applied to many areas such as, neural network training etc. Due to the linear decreasing of inertia weight in PSO the convergence rate becomes faster, which leads to the minimal makespan time when used for scheduling. To make the convergence rate faster, the PSO algorithm is improved by modifying the inertia parameter, such that it produces better performance and gives an optimized result. The ACO algorithm is improved by modifying the pheromone updating rule. ACO algorithm is hybridized with PSO algorithm for efficient result and better convergence in PSO algorithm.
GLOA: A New Job Scheduling Algorithm for Grid Computing
Directory of Open Access Journals (Sweden)
Zahra Pooranian
2013-03-01
Full Text Available The purpose of grid computing is to produce a virtual supercomputer by using free resources available through widespread networks such as the Internet. This resource distribution, changes in resource availability, and an unreliable communication infrastructure pose a major challenge for efficient resource allocation. Because of the geographical spread of resources and their distributed management, grid scheduling is considered to be a NP-complete problem. It has been shown that evolutionary algorithms offer good performance for grid scheduling. This article uses a new evaluation (distributed algorithm inspired by the effect of leaders in social groups, the group leaders' optimization algorithm (GLOA, to solve the problem of scheduling independent tasks in a grid computing system. Simulation results comparing GLOA with several other evaluation algorithms show that GLOA produces shorter makespans.
A meta-heuristic method for solving scheduling problem: crow search algorithm
Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi
2018-04-01
Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.
Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing
Suma, T.; Murugesan, R.
2018-04-01
The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.
Research and Applications of Shop Scheduling Based on Genetic Algorithms
Directory of Open Access Journals (Sweden)
Hang ZHAO
Full Text Available ABSTRACT Shop Scheduling is an important factor affecting the efficiency of production, efficient scheduling method and a research and application for optimization technology play an important role for manufacturing enterprises to improve production efficiency, reduce production costs and many other aspects. Existing studies have shown that improved genetic algorithm has solved the limitations that existed in the genetic algorithm, the objective function is able to meet customers' needs for shop scheduling, and the future research should focus on the combination of genetic algorithm with other optimized algorithms. In this paper, in order to overcome the shortcomings of early convergence of genetic algorithm and resolve local minimization problem in search process,aiming at mixed flow shop scheduling problem, an improved cyclic search genetic algorithm is put forward, and chromosome coding method and corresponding operation are given.The operation has the nature of inheriting the optimal individual ofthe previous generation and is able to avoid the emergence of local minimum, and cyclic and crossover operation and mutation operation can enhance the diversity of the population and then quickly get the optimal individual, and the effectiveness of the algorithm is validated. Experimental results show that the improved algorithm can well avoid the emergency of local minimum and is rapid in convergence.
Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization
Slongo, L. K.; Martínez, S. V.; Eiterer, B. V. B.; Pereira, T. G.; Bezerra, E. A.; Paiva, K. V.
2018-06-01
The number of tasks that a satellite may execute in orbit is strongly related to the amount of energy its Electrical Power System (EPS) is able to harvest and to store. The manner the stored energy is distributed within the satellite has also a great impact on the CubeSat's overall efficiency. Most CubeSat's EPS do not prioritize energy constraints in their formulation. Unlike that, this work proposes an innovative energy-driven scheduling algorithm based on energy harvesting maximization policy. The energy harvesting circuit is mathematically modeled and the solar panel I-V curves are presented for different temperature and irradiance levels. Considering the models and simulations, the scheduling algorithm is designed to keep solar panels working close to their maximum power point by triggering tasks in the appropriate form. Tasks execution affects battery voltage, which is coupled to the solar panels through a protection circuit. A software based Perturb and Observe strategy allows defining the tasks to be triggered. The scheduling algorithm is tested in FloripaSat, which is an 1U CubeSat. A test apparatus is proposed to emulate solar irradiance variation, considering the satellite movement around the Earth. Tests have been conducted to show that the scheduling algorithm improves the CubeSat energy harvesting capability by 4.48% in a three orbit experiment and up to 8.46% in a single orbit cycle in comparison with the CubeSat operating without the scheduling algorithm.
Hybrid and dependent task scheduling algorithm for on-board system software
Institute of Scientific and Technical Information of China (English)
魏振华; 洪炳熔; 乔永强; 蔡则苏; 彭俊杰
2003-01-01
In order to solve the hybrid and dependent task scheduling and critical source allocation problems, atask scheduling algorithm has been developed by first presenting the tasks, and then describing the hybrid anddependent scheduling algorithm and deriving the predictable schedulability condition. The performance of thisagorithm was evaluated through simulation, and it is concluded from the evaluation results that the hybrid taskscheduling subalgorithm based on the comparison factor can be used to solve the problem of aperiodic task beingblocked by periodic task in the traditional operating system for a very long time, which results in poor schedu-ling predictability; and the resource allocation subalgorithm based on schedulability analysis can be used tosolve the problems of critical section conflict, ceiling blocking and priority inversion; and the scheduling algo-rithm is nearest optimal when the abortable critical section is 0.6.
Overlap Algorithms in Flexible Job-shop Scheduling
Directory of Open Access Journals (Sweden)
Celia Gutierrez
2014-06-01
Full Text Available The flexible Job-shop Scheduling Problem (fJSP considers the execution of jobs by a set of candidate resources while satisfying time and technological constraints. This work, that follows the hierarchical architecture, is based on an algorithm where each objective (resource allocation, start-time assignment is solved by a genetic algorithm (GA that optimizes a particular fitness function, and enhances the results by the execution of a set of heuristics that evaluate and repair each scheduling constraint on each operation. The aim of this work is to analyze the impact of some algorithmic features of the overlap constraint heuristics, in order to achieve the objectives at a highest degree. To demonstrate the efficiency of this approach, experimentation has been performed and compared with similar cases, tuning the GA parameters correctly.
Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220
Discrete bat algorithm for optimal problem of permutation flow shop scheduling.
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.
An extended Intelligent Water Drops algorithm for workflow scheduling in cloud computing environment
Directory of Open Access Journals (Sweden)
Shaymaa Elsherbiny
2018-03-01
Full Text Available Cloud computing is emerging as a high performance computing environment with a large scale, heterogeneous collection of autonomous systems and flexible computational architecture. Many resource management methods may enhance the efficiency of the whole cloud computing system. The key part of cloud computing resource management is resource scheduling. Optimized scheduling of tasks on the cloud virtual machines is an NP-hard problem and many algorithms have been presented to solve it. The variations among these schedulers are due to the fact that the scheduling strategies of the schedulers are adapted to the changing environment and the types of tasks. The focus of this paper is on workflows scheduling in cloud computing, which is gaining a lot of attention recently because workflows have emerged as a paradigm to represent complex computing problems. We proposed a novel algorithm extending the natural-based Intelligent Water Drops (IWD algorithm that optimizes the scheduling of workflows on the cloud. The proposed algorithm is implemented and embedded within the workflows simulation toolkit and tested in different simulated cloud environments with different cost models. Our algorithm showed noticeable enhancements over the classical workflow scheduling algorithms. We made a comparison between the proposed IWD-based algorithm with other well-known scheduling algorithms, including MIN-MIN, MAX-MIN, Round Robin, FCFS, and MCT, PSO and C-PSO, where the proposed algorithm presented noticeable enhancements in the performance and cost in most situations.
LTE uplink scheduling - flow level analysis
Dimitrova, D.C.; van den Berg, J.L.; Heijenk, G.; Litjens, R.; Sacchi, Claudio; Bellalta, Boris; Vinel, Alexey; Schlegel, Christian; Granelli, Fabrizio; Zhang, Yan
Long Term Evolution (LTE) is a cellular technology foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and
LTE uplink scheduling - Flow level analysis
Dimitrova, D.C.; Berg, J.L. van den; Heijenk, G.; Litjens, R.
2011-01-01
Long Term Evolution (LTE) is a cellular technology foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and
Proportional fair scheduling algorithm based on traffic in satellite communication system
Pan, Cheng-Sheng; Sui, Shi-Long; Liu, Chun-ling; Shi, Yu-Xin
2018-02-01
In the satellite communication network system, in order to solve the problem of low system capacity and user fairness in multi-user access to satellite communication network in the downlink, combined with the characteristics of user data service, an algorithm study on throughput capacity and user fairness scheduling is proposed - Proportional Fairness Algorithm Based on Traffic(B-PF). The algorithm is improved on the basis of the proportional fairness algorithm in the wireless communication system, taking into account the user channel condition and caching traffic information. The user outgoing traffic is considered as the adjustment factor of the scheduling priority and presents the concept of traffic satisfaction. Firstly,the algorithm calculates the priority of the user according to the scheduling algorithm and dispatches the users with the highest priority. Secondly, when a scheduled user is the business satisfied user, the system dispatches the next priority user. The simulation results show that compared with the PF algorithm, B-PF can improve the system throughput, the business satisfaction and fairness.
Heuristic Scheduling Algorithm Oriented Dynamic Tasks for Imaging Satellites
Directory of Open Access Journals (Sweden)
Maocai Wang
2014-01-01
Full Text Available Imaging satellite scheduling is an NP-hard problem with many complex constraints. This paper researches the scheduling problem for dynamic tasks oriented to some emergency cases. After the dynamic properties of satellite scheduling were analyzed, the optimization model is proposed in this paper. Based on the model, two heuristic algorithms are proposed to solve the problem. The first heuristic algorithm arranges new tasks by inserting or deleting them, then inserting them repeatedly according to the priority from low to high, which is named IDI algorithm. The second one called ISDR adopts four steps: insert directly, insert by shifting, insert by deleting, and reinsert the tasks deleted. Moreover, two heuristic factors, congestion degree of a time window and the overlapping degree of a task, are employed to improve the algorithm’s performance. Finally, a case is given to test the algorithms. The results show that the IDI algorithm is better than ISDR from the running time point of view while ISDR algorithm with heuristic factors is more effective with regard to algorithm performance. Moreover, the results also show that our method has good performance for the larger size of the dynamic tasks in comparison with the other two methods.
An Improved Genetic Algorithm for Single-Machine Inverse Scheduling Problem
Directory of Open Access Journals (Sweden)
Jianhui Mou
2014-01-01
Full Text Available The goal of the scheduling is to arrange operations on suitable machines with optimal sequence for corresponding objectives. In order to meet market requirements, scheduling systems must own enough flexibility against uncertain events. These events can change production status or processing parameters, even causing the original schedule to no longer be optimal or even to be infeasible. Traditional scheduling strategies, however, cannot cope with these cases. Therefore, a new idea of scheduling called inverse scheduling has been proposed. In this paper, the inverse scheduling with weighted completion time (SMISP is considered in a single-machine shop environment. In this paper, an improved genetic algorithm (IGA with a local searching strategy is proposed. To improve the performance of IGA, efficient encoding scheme, fitness evaluation mechanism, feasible initialization methods, and a local search procedure have been employed in the paper. Because of the local improving method, the proposed IGA can balance its exploration ability and exploitation ability. We adopt 27 instances to verify the effectiveness of the proposed algorithm. The experimental results illustrated that the proposed algorithm can generate satisfactory solutions. This approach also has been applied to solve the scheduling problem in the real Chinese shipyard and can bring some benefits.
Performance comparison of some evolutionary algorithms on job shop scheduling problems
Mishra, S. K.; Rao, C. S. P.
2016-09-01
Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.
Continuity-Aware Scheduling Algorithm for Scalable Video Streaming
Directory of Open Access Journals (Sweden)
Atinat Palawan
2016-05-01
Full Text Available The consumer demand for retrieving and delivering visual content through consumer electronic devices has increased rapidly in recent years. The quality of video in packet networks is susceptible to certain traffic characteristics: average bandwidth availability, loss, delay and delay variation (jitter. This paper presents a scheduling algorithm that modifies the stream of scalable video to combat jitter. The algorithm provides unequal look-ahead by safeguarding the base layer (without the need for overhead of the scalable video. The results of the experiments show that our scheduling algorithm reduces the number of frames with a violated deadline and significantly improves the continuity of the video stream without compromising the average Y Peek Signal-to-Noise Ratio (PSNR.
ALGORITHMIC CONSTRUCTION SCHEDULES IN CONDITIONS OF TIMING CONSTRAINTS
Directory of Open Access Journals (Sweden)
Alexey S. Dobrynin
2014-01-01
Full Text Available Tasks of time-schedule construction (JSSP in various fields of human activities have an important theoretical and practical significance. The main feature of these tasks is a timing requirement, describing allowed planning time periods and periods of downtime. This article describes implementation variations of the work scheduling algorithm under timing requirements for the tasks of industrial time-schedules construction, and service activities.
Hybrid Genetic Algorithm with Multiparents Crossover for Job Shop Scheduling Problems
Directory of Open Access Journals (Sweden)
Noor Hasnah Moin
2015-01-01
Full Text Available The job shop scheduling problem (JSSP is one of the well-known hard combinatorial scheduling problems. This paper proposes a hybrid genetic algorithm with multiparents crossover for JSSP. The multiparents crossover operator known as extended precedence preservative crossover (EPPX is able to recombine more than two parents to generate a single new offspring distinguished from common crossover operators that recombine only two parents. This algorithm also embeds a schedule generation procedure to generate full-active schedule that satisfies precedence constraints in order to reduce the search space. Once a schedule is obtained, a neighborhood search is applied to exploit the search space for better solutions and to enhance the GA. This hybrid genetic algorithm is simulated on a set of benchmarks from the literatures and the results are compared with other approaches to ensure the sustainability of this algorithm in solving JSSP. The results suggest that the implementation of multiparents crossover produces competitive results.
A DIFFERENTIAL EVOLUTION ALGORITHM DEVELOPED FOR A NURSE SCHEDULING PROBLEM
Directory of Open Access Journals (Sweden)
Shahnazari-Shahrezaei, P.
2012-11-01
Full Text Available Nurse scheduling is a type of manpower allocation problem that tries to satisfy hospital managers objectives and nurses preferences as much as possible by generating fair shift schedules. This paper presents a nurse scheduling problem based on a real case study, and proposes two meta-heuristics a differential evolution algorithm (DE and a greedy randomised adaptive search procedure (GRASP to solve it. To investigate the efficiency of the proposed algorithms, two problems are solved. Furthermore, some comparison metrics are applied to examine the reliability of the proposed algorithms. The computational results in this paper show that the proposed DE outperforms the GRASP.
Algorithm of composing the schedule of construction and installation works
Nehaj, Rustam; Molotkov, Georgij; Rudchenko, Ivan; Grinev, Anatolij; Sekisov, Aleksandr
2017-10-01
An algorithm for scheduling works is developed, in which the priority of the work corresponds to the total weight of the subordinate works, the vertices of the graph, and it is proved that for graphs of the tree type the algorithm is optimal. An algorithm is synthesized to reduce the search for solutions when drawing up schedules of construction and installation works, allocating a subset with the optimal solution of the problem of the minimum power, which is determined by the structure of its initial data and numerical values. An algorithm for scheduling construction and installation work is developed, taking into account the schedule for the movement of brigades, which is characterized by the possibility to efficiently calculate the values of minimizing the time of work performance by the parameters of organizational and technological reliability through the use of the branch and boundary method. The program of the computational algorithm was compiled in the MatLAB-2008 program. For the initial data of the matrix, random numbers were taken, uniformly distributed in the range from 1 to 100. It takes 0.5; 2.5; 7.5; 27 minutes to solve the problem. Thus, the proposed method for estimating the lower boundary of the solution is sufficiently accurate and allows efficient solution of the minimax task of scheduling construction and installation works.
A new genetic algorithm for flexible job-shop scheduling problems
International Nuclear Information System (INIS)
Driss, Imen; Mouss, Kinza Nadia; Laggoun, Assia
2015-01-01
Flexible job-shop scheduling problem (FJSP), which is proved to be NP-hard, is an extension of the classical job-shop scheduling problem. In this paper, we propose a new genetic algorithm (NGA) to solve FJSP to minimize makespan. This new algorithm uses a new chromosome representation and adopts different strategies for crossover and mutation. The proposed algorithm is validated on a series of benchmark data sets and tested on data from a drug manufacturing company. Experimental results prove that the NGA is more efficient and competitive than some other existing algorithms.
A new genetic algorithm for flexible job-shop scheduling problems
Energy Technology Data Exchange (ETDEWEB)
Driss, Imen; Mouss, Kinza Nadia; Laggoun, Assia [University of Batna, Batna (Algeria)
2015-03-15
Flexible job-shop scheduling problem (FJSP), which is proved to be NP-hard, is an extension of the classical job-shop scheduling problem. In this paper, we propose a new genetic algorithm (NGA) to solve FJSP to minimize makespan. This new algorithm uses a new chromosome representation and adopts different strategies for crossover and mutation. The proposed algorithm is validated on a series of benchmark data sets and tested on data from a drug manufacturing company. Experimental results prove that the NGA is more efficient and competitive than some other existing algorithms.
Design Principles and Algorithms for Air Traffic Arrival Scheduling
Erzberger, Heinz; Itoh, Eri
2014-01-01
This report presents design principles and algorithms for building a real-time scheduler of arrival aircraft based on a first-come-first-served (FCFS) scheduling protocol. The algorithms provide the conceptual and computational foundation for the Traffic Management Advisor (TMA) of the Center/terminal radar approach control facilities (TRACON) automation system, which comprises a set of decision support tools for managing arrival traffic at major airports in the United States. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high-altitude airspace far away from the airport and low-altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time. This report is a revision of an earlier paper first presented as part of an Advisory Group for Aerospace Research and Development (AGARD) lecture series in September 1995. The authors, during vigorous discussions over the details of this paper, felt it was important to the air-trafficmanagement (ATM) community to revise and extend the original 1995 paper, providing more detail and clarity and thereby allowing future researchers to understand this foundational work as the basis for the TMA's scheduling algorithms.
A new scheduling algorithm for parallel sparse LU factorization with static pivoting
Energy Technology Data Exchange (ETDEWEB)
Grigori, Laura; Li, Xiaoye S.
2002-08-20
In this paper we present a static scheduling algorithm for parallel sparse LU factorization with static pivoting. The algorithm is divided into mapping and scheduling phases, using the symmetric pruned graphs of L' and U to represent dependencies. The scheduling algorithm is designed for driving the parallel execution of the factorization on a distributed-memory architecture. Experimental results and comparisons with SuperLU{_}DIST are reported after applying this algorithm on real world application matrices on an IBM SP RS/6000 distributed memory machine.
Cloud computing task scheduling strategy based on improved differential evolution algorithm
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
SOLVING FLOWSHOP SCHEDULING PROBLEMS USING A DISCRETE AFRICAN WILD DOG ALGORITHM
Directory of Open Access Journals (Sweden)
M. K. Marichelvam
2013-04-01
Full Text Available The problem of m-machine permutation flowshop scheduling is considered in this paper. The objective is to minimize the makespan. The flowshop scheduling problem is a typical combinatorial optimization problem and has been proved to be strongly NP-hard. Hence, several heuristics and meta-heuristics were addressed by the researchers. In this paper, a discrete African wild dog algorithm is applied for solving the flowshop scheduling problems. Computational results using benchmark problems show that the proposed algorithm outperforms many other algorithms addressed in the literature.
Mission Operations Planning and Scheduling System (MOPSS)
Wood, Terri; Hempel, Paul
2011-01-01
MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.
Application of cultural algorithm to generation scheduling of hydrothermal systems
International Nuclear Information System (INIS)
Yuan Xiaohui; Yuan Yanbin
2006-01-01
The daily generation scheduling of hydrothermal power systems plays an important role in the operation of electric power systems for economics and security, which is a large scale dynamic non-linear constrained optimization problem. It is difficult to solve using traditional optimization methods. This paper proposes a new cultural algorithm to solve the optimal daily generation scheduling of hydrothermal power systems. The approach takes the water transport delay time between connected reservoirs into consideration and can conveniently deal with the complicated hydraulic coupling simultaneously. An example is used to verify the correctness and effectiveness of the proposed cultural algorithm, comparing with both the Lagrange method and the genetic algorithm method. The simulation results demonstrate that the proposed algorithm has rapid convergence speed and higher solution precision. Thus, an effective method is provided to solve the optimal daily generation scheduling of hydrothermal systems
Institute of Scientific and Technical Information of China (English)
Zhou Yajian; Li Jiandong; Liu Kai
2002-01-01
A novel Multiple Access Control (MAC) protocol - User-dependent Perfect-scheduling Multiple Access (UPMA) protocol, which supports joint transmission of voice and data packets,is proposed. By this protocol, the bandwidth can be allocated dynamically to the uplink and downlink traffic with on-demand assignment and the transmission of Mobile Terminals (MTs)can be perfectly scheduled by means of polling. Meanwhile, a unique frame structure is designed to guarantee Quality of Service (QoS) in voice traffic supporting. An effective collision resolution algorithm is also proposed to guarantee rapid channel access for activated MTs. Finally, performance of UPMA protocol is evaluated by simulation and compared with MPRMA protocol.Simulation results show that UPMA protocol has better performance.
Algorithm for Public Electric Transport Schedule Control for Intelligent Embedded Devices
Alps, Ivars; Potapov, Andrey; Gorobetz, Mikhail; Levchenkov, Anatoly
2010-01-01
In this paper authors present heuristics algorithm for precise schedule fulfilment in city traffic conditions taking in account traffic lights. The algorithm is proposed for programmable controller. PLC is proposed to be installed in electric vehicle to control its motion speed and signals of traffic lights. Algorithm is tested using real controller connected to virtual devices and real functional models of real tram devices. Results of experiments show high precision of public transport schedule fulfilment using proposed algorithm.
A Novel Assembly Line Scheduling Algorithm Based on CE-PSO
Directory of Open Access Journals (Sweden)
Xiaomei Hu
2015-01-01
Full Text Available With the widespread application of assembly line in enterprises, assembly line scheduling is an important problem in the production since it directly affects the productivity of the whole manufacturing system. The mathematical model of assembly line scheduling problem is put forward and key data are confirmed. A double objective optimization model based on equipment utilization and delivery time loss is built, and optimization solution strategy is described. Based on the idea of solution strategy, assembly line scheduling algorithm based on CE-PSO is proposed to overcome the shortcomings of the standard PSO. Through the simulation experiments of two examples, the validity of the assembly line scheduling algorithm based on CE-PSO is proved.
Online Algorithms for Parallel Job Scheduling and Strip Packing
Hurink, Johann L.; Paulus, J.J.
We consider the online scheduling problem of parallel jobs on parallel machines, $P|online{−}list,m_j |C_{max}$. For this problem we present a 6.6623-competitive algorithm. This improves the best known 7-competitive algorithm for this problem. The presented algorithm also applies to the problem
Self-optimizing Uplink Outer Loop Power Control for WCDMA Network
Directory of Open Access Journals (Sweden)
A. G. Markoc
2015-06-01
Full Text Available The increasing demands for high data rates, drives the efforts for more efficient usage of the finite natural radio spectrum resources. Existing wideband code division multiple access (WCDMA uplink outer loop power control has difficulty to answer to the new load on air interface. The main reason is that the maximum allowed noise rise per single user is fixed value. In worst case uplink load can be so high that all services, including conversational service, could be blocked. In this paper investigation has been performed to present correlation of main system parameters, used by uplink outer loop power control, to uplink load. Simulation has been created and executed to present difference in current implementation of uplink outer loop power control against proposed changes. Proposed solution is self-optimizing uplink outer loop power control in a way that maximum allowed noise rise per single user would be dynamically changed based on current uplink load on cell.
Cultural-Based Genetic Tabu Algorithm for Multiobjective Job Shop Scheduling
Directory of Open Access Journals (Sweden)
Yuzhen Yang
2014-01-01
Full Text Available The job shop scheduling problem, which has been dealt with by various traditional optimization methods over the decades, has proved to be an NP-hard problem and difficult in solving, especially in the multiobjective field. In this paper, we have proposed a novel quadspace cultural genetic tabu algorithm (QSCGTA to solve such problem. This algorithm provides a different structure from the original cultural algorithm in containing double brief spaces and population spaces. These spaces deal with different levels of populations globally and locally by applying genetic and tabu searches separately and exchange information regularly to make the process more effective towards promising areas, along with modified multiobjective domination and transform functions. Moreover, we have presented a bidirectional shifting for the decoding process of job shop scheduling. The computational results we presented significantly prove the effectiveness and efficiency of the cultural-based genetic tabu algorithm for the multiobjective job shop scheduling problem.
Scheduling algorithms for saving energy and balancing load
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Antonios
2012-08-03
In this thesis we study problems of scheduling tasks in computing environments. We consider both the modern objective function of minimizing energy consumption, and the classical objective of balancing load across machines. We first investigate offline deadline-based scheduling in the setting of a single variable-speed processor that is equipped with a sleep state. The objective is that of minimizing the total energy consumption. Apart from settling the complexity of the problem by showing its NP-hardness, we provide a lower bound of 2 for general convex power functions, and a particular natural class of schedules called s{sub crit}-schedules. We also present an algorithmic framework for designing good approximation algorithms. For general convex power functions our framework improves the best known approximation-factor from 2 to 4/3. This factor can be reduced even further to 137/117 for a specific well-motivated class of power functions. Furthermore, we give tight bounds to show that our framework returns optimal s{sub crit}-schedules for the two aforementioned power-function classes. We then focus on the multiprocessor setting where each processor has the ability to vary its speed. Job migration is allowed, and we again consider classical deadline-based scheduling with the objective of energy minimization. We first study the offline problem and show that optimal schedules can be computed efficiently in polynomial time for any convex and non-decreasing power function. Our algorithm relies on repeated maximum flow computations. Regarding the online problem and power functions P(s) = s{sup {alpha}}, where s is the processor speed and {alpha} > 1 a constant, we extend the two well-known single-processor algorithms Optimal Available and Average Rate. We prove that Optimal Available is {alpha}{sup {alpha}}-competitive as in the single-processor case. For Average Rate we show a competitive factor of (2{alpha}){sup {alpha}}/2 + 1, i.e., compared to the single
Simulated Annealing Genetic Algorithm Based Schedule Risk Management of IT Outsourcing Project
Directory of Open Access Journals (Sweden)
Fuqiang Lu
2017-01-01
Full Text Available IT outsourcing is an effective way to enhance the core competitiveness for many enterprises. But the schedule risk of IT outsourcing project may cause enormous economic loss to enterprise. In this paper, the Distributed Decision Making (DDM theory and the principal-agent theory are used to build a model for schedule risk management of IT outsourcing project. In addition, a hybrid algorithm combining simulated annealing (SA and genetic algorithm (GA is designed, namely, simulated annealing genetic algorithm (SAGA. The effect of the proposed model on the schedule risk management problem is analyzed in the simulation experiment. Meanwhile, the simulation results of the three algorithms GA, SA, and SAGA show that SAGA is the most superior one to the other two algorithms in terms of stability and convergence. Consequently, this paper provides the scientific quantitative proposal for the decision maker who needs to manage the schedule risk of IT outsourcing project.
A Heuristic Task Scheduling Algorithm for Heterogeneous Virtual Clusters
Directory of Open Access Journals (Sweden)
Weiwei Lin
2016-01-01
Full Text Available Cloud computing provides on-demand computing and storage services with high performance and high scalability. However, the rising energy consumption of cloud data centers has become a prominent problem. In this paper, we first introduce an energy-aware framework for task scheduling in virtual clusters. The framework consists of a task resource requirements prediction module, an energy estimate module, and a scheduler with a task buffer. Secondly, based on this framework, we propose a virtual machine power efficiency-aware greedy scheduling algorithm (VPEGS. As a heuristic algorithm, VPEGS estimates task energy by considering factors including task resource demands, VM power efficiency, and server workload before scheduling tasks in a greedy manner. We simulated a heterogeneous VM cluster and conducted experiment to evaluate the effectiveness of VPEGS. Simulation results show that VPEGS effectively reduced total energy consumption by more than 20% without producing large scheduling overheads. With the similar heuristic ideology, it outperformed Min-Min and RASA with respect to energy saving by about 29% and 28%, respectively.
Algorithms for classical and modern scheduling problems
Ott, Sebastian
2016-01-01
Subject of this thesis is the design and the analysis of algorithms for scheduling problems. In the first part, we focus on energy-efficient scheduling, where one seeks to minimize the energy needed for processing certain jobs via dynamic adjustments of the processing speed (speed scaling). We consider variations and extensions of the standard model introduced by Yao, Demers, and Shenker in 1995 [79], including the addition of a sleep state, the avoidance of preemption, and variable speed lim...
Foronda, Augusto; Ohta, Chikara; Tamaki, Hisashi
Dirty paper coding (DPC) is a strategy to achieve the region capacity of multiple input multiple output (MIMO) downlink channels and a DPC scheduler is throughput optimal if users are selected according to their queue states and current rates. However, DPC is difficult to implement in practical systems. One solution, zero-forcing beamforming (ZFBF) strategy has been proposed to achieve the same asymptotic sum rate capacity as that of DPC with an exhaustive search over the entire user set. Some suboptimal user group selection schedulers with reduced complexity based on ZFBF strategy (ZFBF-SUS) and proportional fair (PF) scheduling algorithm (PF-ZFBF) have also been proposed to enhance the throughput and fairness among the users, respectively. However, they are not throughput optimal, fairness and throughput decrease if each user queue length is different due to different users channel quality. Therefore, we propose two different scheduling algorithms: a throughput optimal scheduling algorithm (ZFBF-TO) and a reduced complexity scheduling algorithm (ZFBF-RC). Both are based on ZFBF strategy and, at every time slot, the scheduling algorithms have to select some users based on user channel quality, user queue length and orthogonality among users. Moreover, the proposed algorithms have to produce the rate allocation and power allocation for the selected users based on a modified water filling method. We analyze the schedulers complexity and numerical results show that ZFBF-RC provides throughput and fairness improvements compared to the ZFBF-SUS and PF-ZFBF scheduling algorithms.
CQPSO scheduling algorithm for heterogeneous multi-core DAG task model
Zhai, Wenzheng; Hu, Yue-Li; Ran, Feng
2017-07-01
Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.
A Scheduling Algorithm for Minimizing the Packet Error Probability in Clusterized TDMA Networks
Directory of Open Access Journals (Sweden)
Arash T. Toyserkani
2009-01-01
Full Text Available We consider clustered wireless networks, where transceivers in a cluster use a time-slotted mechanism (TDMA to access a wireless channel that is shared among several clusters. An approximate expression for the packet-loss probability is derived for networks with one or more mutually interfering clusters in Rayleigh fading environments, and the approximation is shown to be good for relevant scenarios. We then present a scheduling algorithm, based on Lagrangian duality, that exploits the derived packet-loss model in an attempt to minimize the average packet-loss probability in the network. Computer simulations of the proposed scheduling algorithm show that a significant increase in network throughput can be achieved compared to uncoordinated scheduling. Empirical trials also indicate that the proposed optimization algorithm almost always converges to an optimal schedule with a reasonable number of iterations. Thus, the proposed algorithm can also be used for bench-marking suboptimal scheduling algorithms.
Resource allocation based uplink intercell interference model in multi-carrier networks
Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim
2013-01-01
Intercell interference (ICI) is a primary cause for performance limitation in emerging wireless cellular systems due to its highly indeterministic nature. In this paper, we derive an analytical statistical model for the uplink ICI in a multiuser multi-carrier cellular network considering the impact of various uncoordinated scheduling schemes on the locations and transmit powers of the interferers. The derived model applies to generic composite fading distributions and provides a useful computational tool to evaluate key performance metrics such as the network ergodic capacity. The derived model is extended to incorporate coordinated scheduling schemes. A study is then presented to quantify the potential performance gains of coordinated over uncoordinated scheduling schemes under various base station coordination scenarios. Numerical results demonstrate that different frequency allocation patterns significantly impact the network performance depending on the coordination among neighboring base stations. The accuracy of the derived analytical expressions is verified via Monte-Carlo simulations. © 2013 IEEE.
Resource allocation based uplink intercell interference model in multi-carrier networks
Tabassum, Hina
2013-06-01
Intercell interference (ICI) is a primary cause for performance limitation in emerging wireless cellular systems due to its highly indeterministic nature. In this paper, we derive an analytical statistical model for the uplink ICI in a multiuser multi-carrier cellular network considering the impact of various uncoordinated scheduling schemes on the locations and transmit powers of the interferers. The derived model applies to generic composite fading distributions and provides a useful computational tool to evaluate key performance metrics such as the network ergodic capacity. The derived model is extended to incorporate coordinated scheduling schemes. A study is then presented to quantify the potential performance gains of coordinated over uncoordinated scheduling schemes under various base station coordination scenarios. Numerical results demonstrate that different frequency allocation patterns significantly impact the network performance depending on the coordination among neighboring base stations. The accuracy of the derived analytical expressions is verified via Monte-Carlo simulations. © 2013 IEEE.
EFFICIENT MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR JOB SHOP SCHEDULING
Institute of Scientific and Technical Information of China (English)
Lei Deming; Wu Zhiming
2005-01-01
A new representation method is first presented based on priority rules. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict occurring in the corresponding machine is resolved by the corresponding priority rule. Then crowding-measure multi-objective evolutionary algorithm (CMOEA) is designed,in which both archive maintenance and fitness assignment use crowding measure. Finally the comparisons between CMOEA and SPEA in solving 15 scheduling problems demonstrate that CMOEA is suitable to job shop scheduling.
Adaptive Incremental Genetic Algorithm for Task Scheduling in Cloud Environments
Directory of Open Access Journals (Sweden)
Kairong Duan
2018-05-01
Full Text Available Cloud computing is a new commercial model that enables customers to acquire large amounts of virtual resources on demand. Resources including hardware and software can be delivered as services and measured by specific usage of storage, processing, bandwidth, etc. In Cloud computing, task scheduling is a process of mapping cloud tasks to Virtual Machines (VMs. When binding the tasks to VMs, the scheduling strategy has an important influence on the efficiency of datacenter and related energy consumption. Although many traditional scheduling algorithms have been applied in various platforms, they may not work efficiently due to the large number of user requests, the variety of computation resources and complexity of Cloud environment. In this paper, we tackle the task scheduling problem which aims to minimize makespan by Genetic Algorithm (GA. We propose an incremental GA which has adaptive probabilities of crossover and mutation. The mutation and crossover rates change according to generations and also vary between individuals. Large numbers of tasks are randomly generated to simulate various scales of task scheduling problem in Cloud environment. Based on the instance types of Amazon EC2, we implemented virtual machines with different computing capacity on CloudSim. We compared the performance of the adaptive incremental GA with that of Standard GA, Min-Min, Max-Min , Simulated Annealing and Artificial Bee Colony Algorithm in finding the optimal scheme. Experimental results show that the proposed algorithm can achieve feasible solutions which have acceptable makespan with less computation time.
Low-Energy Real-Time OS Using Voltage Scheduling Algorithm for Variable Voltage Processors
Okuma, Takanori; Yasuura, Hiroto
2001-01-01
This paper presents a real-time OS based on $ mu $ITRON using proposed voltage scheduling algorithm for variable voltage processors which can vary supply voltage dynamically. The proposed voltage scheduling algorithms assign voltage level for each task dynamically in order to minimize energy consumption under timing constraints. Using the presented real-time OS, running tasks with low supply voltage leads to drastic energy reduction. In addition, the presented voltage scheduling algorithm is ...
Directory of Open Access Journals (Sweden)
Behnam Barzegar
2012-01-01
Full Text Available Scheduled production system leads to avoiding stock accumulations, losses reduction, decreasing or even eliminating idol machines, and effort to better benefitting from machines for on time responding customer orders and supplying requested materials in suitable time. In flexible job-shop scheduling production systems, we could reduce time and costs by transferring and delivering operations on existing machines, that is, among NP-hard problems. The scheduling objective minimizes the maximal completion time of all the operations, which is denoted by Makespan. Different methods and algorithms have been presented for solving this problem. Having a reasonable scheduled production system has significant influence on improving effectiveness and attaining to organization goals. In this paper, new algorithm were proposed for flexible job-shop scheduling problem systems (FJSSP-GSPN that is based on gravitational search algorithm (GSA. In the proposed method, the flexible job-shop scheduling problem systems was modeled by color Petri net and CPN tool and then a scheduled job was programmed by GSA algorithm. The experimental results showed that the proposed method has reasonable performance in comparison with other algorithms.
Comparison of genetic algorithm and harmony search for generator maintenance scheduling
International Nuclear Information System (INIS)
Khan, L.; Mumtaz, S.; Khattak, A.
2012-01-01
GMS (Generator Maintenance Scheduling) ranks very high in decision making of power generation management. Generators maintenance schedule decides the time period of maintenance tasks and a reliable reserve margin is also maintained during this time period. In this paper, a comparison of GA (Genetic Algorithm) and US (Harmony Search) algorithm is presented to solve generators maintenance scheduling problem for WAPDA (Water And Power Development Authority) Pakistan. GA is a search procedure, which is used in search problems to compute exact and optimized solution. GA is considered as global search heuristic technique. HS algorithm is quite efficient, because the convergence rate of this algorithm is very fast. HS algorithm is based on the concept of music improvisation process of searching for a perfect state of harmony. The two algorithms generate feasible and optimal solutions and overcome the limitations of the conventional methods including extensive computational effort, which increases exponentially as the size of the problem increases. The proposed methods are tested, validated and compared on the WAPDA electric system. (author)
ComprehensiveBench: a Benchmark for the Extensive Evaluation of Global Scheduling Algorithms
Pilla, Laércio L.; Bozzetti, Tiago C.; Castro, Márcio; Navaux, Philippe O. A.; Méhaut, Jean-François
2015-10-01
Parallel applications that present tasks with imbalanced loads or complex communication behavior usually do not exploit the underlying resources of parallel platforms to their full potential. In order to mitigate this issue, global scheduling algorithms are employed. As finding the optimal task distribution is an NP-Hard problem, identifying the most suitable algorithm for a specific scenario and comparing algorithms are not trivial tasks. In this context, this paper presents ComprehensiveBench, a benchmark for global scheduling algorithms that enables the variation of a vast range of parameters that affect performance. ComprehensiveBench can be used to assist in the development and evaluation of new scheduling algorithms, to help choose a specific algorithm for an arbitrary application, to emulate other applications, and to enable statistical tests. We illustrate its use in this paper with an evaluation of Charm++ periodic load balancers that stresses their characteristics.
Algorithms for Scheduling and Network Problems
1991-09-01
time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and
Single Carrier Transmission for UTRA LTE Uplink
DEFF Research Database (Denmark)
Priyanto, Basuki Endah; Berardinelli, Gilberto; Sørensen, Troels Bundgaard
2009-01-01
In this chapter, we have presented the key techniques for LTE uplink as well as presented the baseline performance. Radio access technology is the key aspect in LTE uplink and two radio access schemes, SC-FDMA and OFDMA, are studied. The performance results are obtained from a detailed UTRA LTE...
A Generalized Ant Colony Algorithm for Job一shop Scheduling Problem
Directory of Open Access Journals (Sweden)
ZHANG Hong-Guo
2017-02-01
Full Text Available Aiming at the problem of ant colony algorithm for solving Job一shop scheduling problem. Considering the complexity of the algorithm that uses disjunctive graph to describe the relationship between workpiece processing. To solve the problem of optimal solution，a generalized ant colony algorithm is proposed. Under the premise of considering constrained relationship between equipment and process，the pheromone update mechanism is applied to solve Job-shop scheduling problem，so as to improve the quality of the solution. In order to improve the search efficiency，according to the state transition rules of ant colony algorithm，this paper makes a detailed study on the selection and improvement of the parameters in the algorithm，and designs the pheromone update strategy. Experimental results show that a generalized ant colony algorithm is more feasible and more effective. Compared with other algorithms in the literature，the results prove that the algorithm improves in computing the optimal solution and convergence speed.
Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen
2013-08-01
Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.
An Adaptive Power Efficient Packet Scheduling Algorithm for Wimax Networks
R Murali Prasad; P. Satish Kumar
2010-01-01
Admission control schemes and scheduling algorithms are designed to offer QoS services in 802.16/802.16e networks and a number of studies have investigated these issues. But the channel condition and priority of traffic classes are very rarely considered in the existing scheduling algorithms. Although a number of energy saving mechanisms have been proposed for the IEEE 802.16e, to minimize the power consumption of IEEE 802.16e mobile stations with multiple real-time connections has not yet be...
A new distributed systems scheduling algorithm: a swarm intelligence approach
Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi
2011-12-01
The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.
Directory of Open Access Journals (Sweden)
Aidin Delgoshaei
2016-09-01
Full Text Available Purpose: The issue resource over-allocating is a big concern for project engineers in the process of scheduling project activities. Resource over-allocating drawback is frequently seen after scheduling of a project in practice which causes a schedule to be useless. Modifying an over-allocated schedule is very complicated and needs a lot of efforts and time. In this paper, a new and fast tracking method is proposed to schedule large scale projects which can help project engineers to schedule the project rapidly and with more confidence. Design/methodology/approach: In this article, a forward approach for maximizing net present value (NPV in multi-mode resource constrained project scheduling problem while assuming discounted positive cash flows (MRCPSP-DCF is proposed. The progress payment method is used and all resources are considered as pre-emptible. The proposed approach maximizes NPV using unscheduled resources through resource calendar in forward mode. For this purpose, a Genetic Algorithm is applied to solve. Findings: The findings show that the proposed method is an effective way to maximize NPV in MRCPSP-DCF problems while activity splitting is allowed. The proposed algorithm is very fast and can schedule experimental cases with 1000 variables and 100 resources in few seconds. The results are then compared with branch and bound method and simulated annealing algorithm and it is found the proposed genetic algorithm can provide results with better quality. Then algorithm is then applied for scheduling a hospital in practice. Originality/value: The method can be used alone or as a macro in Microsoft Office Project® Software to schedule MRCPSP-DCF problems or to modify resource over-allocated activities after scheduling a project. This can help project engineers to schedule project activities rapidly with more accuracy in practice.
Directory of Open Access Journals (Sweden)
S. Selvi
2015-07-01
Full Text Available Grid computing solves high performance and high-throughput computing problems through sharing resources ranging from personal computers to super computers distributed around the world. As the grid environments facilitate distributed computation, the scheduling of grid jobs has become an important issue. In this paper, an investigation on implementing Multiobjective Variable Neighborhood Search (MVNS algorithm for scheduling independent jobs on computational grid is carried out. The performance of the proposed algorithm has been evaluated with Min–Min algorithm, Simulated Annealing (SA and Greedy Randomized Adaptive Search Procedure (GRASP algorithm. Simulation results show that MVNS algorithm generally performs better than other metaheuristics methods.
Genetic algorithm parameters tuning for resource-constrained project scheduling problem
Tian, Xingke; Yuan, Shengrui
2018-04-01
Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.
IMPACT OF BUFFER SIZE ON PQRS AND D-PQRS SCHEDULING ALGORITHMS
N. Narayanan Prasanth; Kannan Balasubramanian; R. Chithra Devi
2016-01-01
Most of the internet applications required high speed internet connectivity. Crosspoint Buffered Switches are widely used switching architectures and designing a scheduling algorithm is a major challenge. PQRS and D-PQRS are the two most successful schedulers used in Crosspoint Buffered Switches under unicast traffic. In this paper, we analysed the performance of PQRS and DPQRS algorithms by varying the crosspoint buffer size. Simulation result shows the delay performance of the switch increa...
Genetic algorithm and neural network hybrid approach for job-shop scheduling
Zhao, Kai; Yang, Shengxiang; Wang, Dingwei
1998-01-01
Copyright @ 1998 ACTA Press This paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and ...
Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Lvjiang Yin
2016-12-01
Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.
A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makespan
Rameshkumar, K.; Rajendran, C.
2018-02-01
In this work, a discrete version of PSO algorithm is proposed to minimize the makespan of a job-shop. A novel schedule builder has been utilized to generate active schedules. The discrete PSO is tested using well known benchmark problems available in the literature. The solution produced by the proposed algorithms is compared with best known solution published in the literature and also compared with hybrid particle swarm algorithm and variable neighborhood search PSO algorithm. The solution construction methodology adopted in this study is found to be effective in producing good quality solutions for the various benchmark job-shop scheduling problems.
Weighted-SNR-based fair scheduling for uplink OFDMA
Ma, Yao; Leith, Alex; Alouini, Mohamed-Slim; (Sherman) Shen X., Xuemin
2009-01-01
rates for different users. The offline optimization technique requires to know the channel distribution information (CDI) at the scheduler. The online method uses the weight adaption combined with individual user rate tracking, which avoids the need
Cooperated Bayesian algorithm for distributed scheduling problem
Institute of Scientific and Technical Information of China (English)
QIANG Lei; XIAO Tian-yuan
2006-01-01
This paper presents a new distributed Bayesian optimization algorithm (BOA) to overcome the efficiency problem when solving NP scheduling problems.The proposed approach integrates BOA into the co-evolutionary schema,which builds up a concurrent computing environment.A new search strategy is also introduced for local optimization process.It integrates the reinforcement learning(RL) mechanism into the BOA search processes,and then uses the mixed probability information from BOA (post-probability) and RL (pre-probability) to enhance the cooperation between different local controllers,which improves the optimization ability of the algorithm.The experiment shows that the new algorithm does better in both optimization (2.2%) and convergence (11.7%),compared with classic BOA.
Directory of Open Access Journals (Sweden)
Litian Duan
2016-11-01
Full Text Available In the multiple-reader environment (MRE of radio frequency identification (RFID system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.
Exact and Heuristic Algorithms for Runway Scheduling
Malik, Waqar A.; Jung, Yoon C.
2016-01-01
This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.
Performance Evaluation of New Joint EDF-RM Scheduling Algorithm for Real Time Distributed System
Directory of Open Access Journals (Sweden)
Rashmi Sharma
2014-01-01
Full Text Available In Real Time System, the achievement of deadline is the main target of every scheduling algorithm. Earliest Deadline First (EDF, Rate Monotonic (RM, and least Laxity First are some renowned algorithms that work well in their own context. As we know, there is a very common problem Domino's effect in EDF that is generated due to overloading condition (EDF is not working well in overloading situation. Similarly, performance of RM is degraded in underloading condition. We can say that both algorithms are complements of each other. Deadline missing in both events happens because of their utilization bounding strategy. Therefore, in this paper we are proposing a new scheduling algorithm that carries through the drawback of both existing algorithms. Joint EDF-RM scheduling algorithm is implemented in global scheduler that permits task migration mechanism in between processors in the system. In order to check the improved behavior of proposed algorithm we perform simulation. Results are achieved and evaluated in terms of Success Ratio (SR, Average CPU Utilization (ECU, Failure Ratio (FR, and Maximum Tardiness parameters. In the end, the results are compared with the existing (EDF, RM, and D_R_EDF algorithms. It has been shown that the proposed algorithm performs better during overloading condition as well in underloading condition.
Weighted-Bit-Flipping-Based Sequential Scheduling Decoding Algorithms for LDPC Codes
Directory of Open Access Journals (Sweden)
Qing Zhu
2013-01-01
Full Text Available Low-density parity-check (LDPC codes can be applied in a lot of different scenarios such as video broadcasting and satellite communications. LDPC codes are commonly decoded by an iterative algorithm called belief propagation (BP over the corresponding Tanner graph. The original BP updates all the variable-nodes simultaneously, followed by all the check-nodes simultaneously as well. We propose a sequential scheduling algorithm based on weighted bit-flipping (WBF algorithm for the sake of improving the convergence speed. Notoriously, WBF is a low-complexity and simple algorithm. We combine it with BP to obtain advantages of these two algorithms. Flipping function used in WBF is borrowed to determine the priority of scheduling. Simulation results show that it can provide a good tradeoff between FER performance and computation complexity for short-length LDPC codes.
Directory of Open Access Journals (Sweden)
Bo Cheng
2016-08-01
Full Text Available Spatial data processing often requires massive datasets, and the task/data scheduling efficiency of these applications has an impact on the overall processing performance. Among the existing scheduling strategies, hypergraph-based algorithms capture the data sharing pattern in a global way and significantly reduce total communication volume. Due to heterogeneous processing platforms, however, single hypergraph partitioning for later scheduling may be not optimal. Moreover, these scheduling algorithms neglect the overlap between task execution and data transfer that could further decrease execution time. In order to address these problems, an extended hypergraph-based task-scheduling algorithm, named Hypergraph+, is proposed for massive spatial data processing. Hypergraph+ improves upon current hypergraph scheduling algorithms in two ways: (1 It takes platform heterogeneity into consideration offering a metric function to evaluate the partitioning quality in order to derive the best task/file schedule; and (2 It can maximize the overlap between communication and computation. The GridSim toolkit was used to evaluate Hypergraph+ in an IDW spatial interpolation application on heterogeneous master-slave platforms. Experiments illustrate that the proposed Hypergraph+ algorithm achieves on average a 43% smaller makespan than the original hypergraph scheduling algorithm but still preserves high scheduling efficiency.
A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem
Directory of Open Access Journals (Sweden)
Jian Gao
2011-08-01
Full Text Available Distributed Permutation Flowshop Scheduling Problem (DPFSP is a newly proposed scheduling problem, which is a generalization of classical permutation flow shop scheduling problem. The DPFSP is NP-hard in general. It is in the early stages of studies on algorithms for solving this problem. In this paper, we propose a GA-based algorithm, denoted by GA_LS, for solving this problem with objective to minimize the maximum completion time. In the proposed GA_LS, crossover and mutation operators are designed to make it suitable for the representation of DPFSP solutions, where the set of partial job sequences is employed. Furthermore, GA_LS utilizes an efficient local search method to explore neighboring solutions. The local search method uses three proposed rules that move jobs within a factory or between two factories. Intensive experiments on the benchmark instances, extended from Taillard instances, are carried out. The results indicate that the proposed hybrid genetic algorithm can obtain better solutions than all the existing algorithms for the DPFSP, since it obtains better relative percentage deviation and differences of the results are also statistically significant. It is also seen that best-known solutions for most instances are updated by our algorithm. Moreover, we also show the efficiency of the GA_LS by comparing with similar genetic algorithms with the existing local search methods.
Sohn, Illsoo; Lee, Byong Ok; Lee, Kwang Bok
Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular
Artificial immune algorithm for multi-depot vehicle scheduling problems
Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling
2008-10-01
In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.
Flow shop scheduling algorithm to optimize warehouse activities
Directory of Open Access Journals (Sweden)
P. Centobelli
2016-01-01
Full Text Available Successful flow-shop scheduling outlines a more rapid and efficient process of order fulfilment in warehouse activities. Indeed the way and the speed of order processing and, in particular, the operations concerning materials handling between the upper stocking area and a lower forward picking one must be optimized. The two activities, drops and pickings, have considerable impact on important performance parameters for Supply Chain wholesaler companies. In this paper, a new flow shop scheduling algorithm is formulated in order to process a greater number of orders by replacing the FIFO logic for the drops activities of a wholesaler company on a daily basis. The System Dynamics modelling and simulation have been used to simulate the actual scenario and the output solutions. Finally, a t-Student test validates the modelled algorithm, granting that it can be used for all wholesalers based on drop and picking activities.
Directory of Open Access Journals (Sweden)
Mohammad Hossein Sadeghi
2013-08-01
Full Text Available In this paper, two different sub-problems are considered to solve a resource constrained project scheduling problem (RCPSP, namely i assignment of modes to tasks and ii scheduling of these tasks in order to minimize the makespan of the project. The modified electromagnetism-like algorithm deals with the first problem to create an assignment of modes to activities. This list is used to generate a project schedule. When a new assignment is made, it is necessary to fix all mode dependent requirements of the project activities and to generate a random schedule with the serial SGS method. A local search will optimize the sequence of the activities. Also in this paper, a new penalty function has been proposed for solutions which are infeasible with respect to non-renewable resources. Performance of the proposed algorithm has been compared with the best algorithms published so far on the basis of CPU time and number of generated schedules stopping criteria. Reported results indicate excellent performance of the algorithm.
A Study on the Enhanced Best Performance Algorithm for the Just-in-Time Scheduling Problem
Directory of Open Access Journals (Sweden)
Sivashan Chetty
2015-01-01
Full Text Available The Just-In-Time (JIT scheduling problem is an important subject of study. It essentially constitutes the problem of scheduling critical business resources in an attempt to optimize given business objectives. This problem is NP-Hard in nature, hence requiring efficient solution techniques. To solve the JIT scheduling problem presented in this study, a new local search metaheuristic algorithm, namely, the enhanced Best Performance Algorithm (eBPA, is introduced. This is part of the initial study of the algorithm for scheduling problems. The current problem setting is the allocation of a large number of jobs required to be scheduled on multiple and identical machines which run in parallel. The due date of a job is characterized by a window frame of time, rather than a specific point in time. The performance of the eBPA is compared against Tabu Search (TS and Simulated Annealing (SA. SA and TS are well-known local search metaheuristic algorithms. The results show the potential of the eBPA as a metaheuristic algorithm.
Directory of Open Access Journals (Sweden)
Muhammad Farhan Ausaf
2015-12-01
Full Text Available Process planning and scheduling are two important components of a manufacturing setup. It is important to integrate them to achieve better global optimality and improved system performance. To find optimal solutions for integrated process planning and scheduling (IPPS problem, numerous algorithm-based approaches exist. Most of these approaches try to use existing meta-heuristic algorithms for solving the IPPS problem. Although these approaches have been shown to be effective in optimizing the IPPS problem, there is still room for improvement in terms of quality of solution and algorithm efficiency, especially for more complicated problems. Dispatching rules have been successfully utilized for solving complicated scheduling problems, but haven’t been considered extensively for the IPPS problem. This approach incorporates dispatching rules with the concept of prioritizing jobs, in an algorithm called priority-based heuristic algorithm (PBHA. PBHA tries to establish job and machine priority for selecting operations. Priority assignment and a set of dispatching rules are simultaneously used to generate both the process plans and schedules for all jobs and machines. The algorithm was tested for a series of benchmark problems. The proposed algorithm was able to achieve superior results for most complex problems presented in recent literature while utilizing lesser computational resources.
Directory of Open Access Journals (Sweden)
Chandramouli Anandaraman
2012-01-01
Full Text Available A new evolutionary computation algorithm, Superbug algorithm, which simulates evolution of bacteria in a culture, is proposed. The algorithm is developed for solving large scale optimization problems such as scheduling, transportation and assignment problems. In this work, the algorithm optimizes machine schedules in a Flexible Manufacturing System (FMS by minimizing makespan. The FMS comprises of four machines and two identical Automated Guided Vehicles (AGVs. AGVs are used for carrying jobs between the Load/Unload (L/U station and the machines. Experimental results indicate the efficiency of the proposed algorithm in its optimization performance in scheduling is noticeably superior to other evolutionary algorithms when compared to the best results reported in the literature for FMS Scheduling.
Distributed Scheduling in Time Dependent Environments: Algorithms and Analysis
Shmuel, Ori; Cohen, Asaf; Gurewitz, Omer
2017-01-01
Consider the problem of a multiple access channel in a time dependent environment with a large number of users. In such a system, mostly due to practical constraints (e.g., decoding complexity), not all users can be scheduled together, and usually only one user may transmit at any given time. Assuming a distributed, opportunistic scheduling algorithm, we analyse the system's properties, such as delay, QoS and capacity scaling laws. Specifically, we start with analyzing the performance while \\...
Multiobjective genetic algorithm approaches to project scheduling under risk
Kılıç, Murat; Kilic, Murat
2003-01-01
In this thesis, project scheduling under risk is chosen as the topic of research. Project scheduling under risk is defined as a biobjective decision problem and is formulated as a 0-1 integer mathematical programming model. In this biobjective formulation, one of the objectives is taken as the expected makespan minimization and the other is taken as the expected cost minimization. As the solution approach to this biobjective formulation genetic algorithm (GA) is chosen. After carefully invest...
A Novel LTE Scheduling Algorithm for Green Technology in Smart Grid
Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid
2015-01-01
Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application’s priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively. PMID:25830703
A novel LTE scheduling algorithm for green technology in smart grid.
Directory of Open Access Journals (Sweden)
Mohammad Nour Hindia
Full Text Available Smart grid (SG application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA, distributed energy system-storage (DER and electrical vehicle (EV, are investigated in order to study their suitability in Long Term Evolution (LTE network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application's priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule, modified-largest weighted delay first (M-LWDF and exponential/PF (EXP/PF, respectively.
A novel LTE scheduling algorithm for green technology in smart grid.
Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid
2015-01-01
Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application's priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.
A recursive economic dispatch algorithm for assessing the cost of thermal generator schedules
International Nuclear Information System (INIS)
Wong, K.P.; Doan, K.
1992-01-01
This paper develops an efficient, recursive algorithm for determining the economic power dispatch of thermal generators within the unit commitment environment. A method for incorporating the operation limits of all on-line generators and limits due to ramping generators is developed in the paper. The developed algorithm is amenable for computer implementation using the artificial intelligence programming language, Prolog. The performance of the developed algorithm is demonstrated through its application to evaluate the costs of dispatching 13 thermal generators within a generator schedule in a 24-hour schedule horizon
Directory of Open Access Journals (Sweden)
Bang Chul Jung
2017-07-01
Full Text Available We introduce a distributed protocol to achieve multiuser diversity in a multicell multiple-input multiple-output (MIMO uplink network, referred to as a MIMO interfering multiple-access channel (IMAC. Assuming both no information exchange among base stations (BS and local channel state information at the transmitters for the MIMO IMAC, we propose a joint beamforming and user scheduling protocol, and then show that the proposed protocol can achieve the optimal multiuser diversity gain, i.e., KMlog(SNRlog N, as long as the number of mobile stations (MSs in a cell, N, scales faster than SNR K M − L 1 − ϵ for a small constant ϵ > 0, where M, L, K, and SNR denote the number of receive antennas at each BS, the number of transmit antennas at each MS, the number of cells, and the signal-to-noise ratio, respectively. Our result indicates that multiuser diversity can be achieved in the presence of intra-cell and inter-cell interference even in a distributed fashion. As a result, vital information on how to design distributed algorithms in interference-limited cellular environments is provided.
Directory of Open Access Journals (Sweden)
Yongyi Shou
2014-01-01
Full Text Available A multiagent evolutionary algorithm is proposed to solve the resource-constrained project portfolio selection and scheduling problem. The proposed algorithm has a dual level structure. In the upper level a set of agents make decisions to select appropriate project portfolios. Each agent selects its project portfolio independently. The neighborhood competition operator and self-learning operator are designed to improve the agent’s energy, that is, the portfolio profit. In the lower level the selected projects are scheduled simultaneously and completion times are computed to estimate the expected portfolio profit. A priority rule-based heuristic is used by each agent to solve the multiproject scheduling problem. A set of instances were generated systematically from the widely used Patterson set. Computational experiments confirmed that the proposed evolutionary algorithm is effective for the resource-constrained project portfolio selection and scheduling problem.
Scheduling for the National Hockey League Using a Multi-objective Evolutionary Algorithm
Craig, Sam; While, Lyndon; Barone, Luigi
We describe a multi-objective evolutionary algorithm that derives schedules for the National Hockey League according to three objectives: minimising the teams' total travel, promoting equity in rest time between games, and minimising long streaks of home or away games. Experiments show that the system is able to derive schedules that beat the 2008-9 NHL schedule in all objectives simultaneously, and that it returns a set of schedules that offer a range of trade-offs across the objectives.
A multipopulation PSO based memetic algorithm for permutation flow shop scheduling.
Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang
2013-01-01
The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.
A Multipopulation PSO Based Memetic Algorithm for Permutation Flow Shop Scheduling
Directory of Open Access Journals (Sweden)
Ruochen Liu
2013-01-01
Full Text Available The permutation flow shop scheduling problem (PFSSP is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO based memetic algorithm (MPSOMA is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS and individual improvement scheme (IIS. Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA, on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.
A Scheduling Algorithm for Time Bounded Delivery of Packets on the Internet
I. Vaishnavi (Ishan)
2008-01-01
htmlabstractThis thesis aims to provide a better scheduling algorithm for Real-Time delivery of packets. A number of emerging applications such as VoIP, Tele-immersive environments, distributed media viewing and distributed gaming require real-time delivery of packets. Currently the scheduling
Reliable Uplink Communication through Double Association in Wireless Heterogeneous Networks
DEFF Research Database (Denmark)
Kim, Dong Min; Popovski, Petar
2016-01-01
We investigate methods for network association that improve the reliability of uplink transmissions in dense wireless heterogeneous networks. The stochastic geometry analysis shows that the double association, in which an uplink transmission is transmitted to a macro Base Station (BS) and small BS...
An optimal algorithm for preemptive on-line scheduling
Chen, B.; Vliet, van A.; Woeginger, G.J.
1995-01-01
We investigate the problem of on-line scheduling jobs on m identical parallel machines where preemption is allowed. The goal is to minimize the makespan. We derive an approximation algorithm with worst-case guarantee mm/(mm - (m - 1)m) for every m 2, which increasingly tends to e/(e - 1) ˜ 1.58 as m
Limits on the Capacity of In-Band Full Duplex Communication in Uplink Cellular Networks
Randrianantenaina, Itsikiantsoa
2016-02-26
Simultaneous co-channel transmission and reception, denoted as in-band full duplex (FD) communication, has been promoted as an attractive solution to improve the spectral efficiency of cellular networks. However, in addition to the selfinterference problem, cross-mode interference (i.e., between uplink and downlink) imposes a major obstacle for the deployment of FD communication in cellular networks. More specifically, the downlink to uplink interference represents the performance bottleneck for FD operation due to the uplink limited transmission power and venerable operation when compared to the downlink counterpart. While the positive impact of FD communication to the downlink performance has been proved in the literature, its effect on the uplink transmission has been neglected. This paper focuses on the effect of downlink interference on the uplink transmission in FD cellular networks in order to see whether FD communication is beneficial for the uplink transmission or not, and if yes for which type of network. To quantify the expected performance gains, we derive a closed form expression of the maximum achievable uplink capacity in FD cellular networks. In contrast to the downlink capacity which always improves with FD communication, our results show that the uplink performance may improves or degrades depending on the associated network parameters. Particularly, we show that the intensity of base stations (BSs) has a more prominent effect on the uplink performance than their transmission power.
Limits on the Capacity of In-Band Full Duplex Communication in Uplink Cellular Networks
Randrianantenaina, Itsikiantsoa; Elsawy, Hesham; Alouini, Mohamed-Slim
2016-01-01
Simultaneous co-channel transmission and reception, denoted as in-band full duplex (FD) communication, has been promoted as an attractive solution to improve the spectral efficiency of cellular networks. However, in addition to the selfinterference problem, cross-mode interference (i.e., between uplink and downlink) imposes a major obstacle for the deployment of FD communication in cellular networks. More specifically, the downlink to uplink interference represents the performance bottleneck for FD operation due to the uplink limited transmission power and venerable operation when compared to the downlink counterpart. While the positive impact of FD communication to the downlink performance has been proved in the literature, its effect on the uplink transmission has been neglected. This paper focuses on the effect of downlink interference on the uplink transmission in FD cellular networks in order to see whether FD communication is beneficial for the uplink transmission or not, and if yes for which type of network. To quantify the expected performance gains, we derive a closed form expression of the maximum achievable uplink capacity in FD cellular networks. In contrast to the downlink capacity which always improves with FD communication, our results show that the uplink performance may improves or degrades depending on the associated network parameters. Particularly, we show that the intensity of base stations (BSs) has a more prominent effect on the uplink performance than their transmission power.
An Online Scheduling Algorithm with Advance Reservation for Large-Scale Data Transfers
Energy Technology Data Exchange (ETDEWEB)
Balman, Mehmet; Kosar, Tevfik
2010-05-20
Scientific applications and experimental facilities generate massive data sets that need to be transferred to remote collaborating sites for sharing, processing, and long term storage. In order to support increasingly data-intensive science, next generation research networks have been deployed to provide high-speed on-demand data access between collaborating institutions. In this paper, we present a practical model for online data scheduling in which data movement operations are scheduled in advance for end-to-end high performance transfers. In our model, data scheduler interacts with reservation managers and data transfer nodes in order to reserve available bandwidth to guarantee completion of jobs that are accepted and confirmed to satisfy preferred time constraint given by the user. Our methodology improves current systems by allowing researchers and higher level meta-schedulers to use data placement as a service where theycan plan ahead and reserve the scheduler time in advance for their data movement operations. We have implemented our algorithm and examined possible techniques for incorporation into current reservation frameworks. Performance measurements confirm that the proposed algorithm is efficient and scalable.
Preventive maintenance scheduling by variable dimension evolutionary algorithms
International Nuclear Information System (INIS)
Limbourg, Philipp; Kochs, Hans-Dieter
2006-01-01
Black box optimization strategies have been proven to be useful tools for solving complex maintenance optimization problems. There has been a considerable amount of research on the right choice of optimization strategies for finding optimal preventive maintenance schedules. Much less attention is turned to the representation of the schedule to the algorithm. Either the search space is represented as a binary string leading to highly complex combinatorial problem or maintenance operations are defined by regular intervals which may restrict the search space to suboptimal solutions. An adequate representation however is vitally important for result quality. This work presents several nonstandard input representations and compares them to the standard binary representation. An evolutionary algorithm with extensions to handle variable length genomes is used for the comparison. The results demonstrate that two new representations perform better than the binary representation scheme. A second analysis shows that the performance may be even more increased using modified genetic operators. Thus, the choice of alternative representations leads to better results in the same amount of time and without any loss of accuracy
Directory of Open Access Journals (Sweden)
Gil Gye-Tae
2010-01-01
Full Text Available Packet scheduler plays the central role in determining the overall performance of the 3GPP long-term evolution (LTE based on packet-switching operation. In this paper, a novel minimum transmit power-based (MP packet-scheduling algorithm is proposed that can achieve power-efficient transmission to the UEs while providing both system throughput gain and fairness improvement. The proposed algorithm is based on a new scheduling metric focusing on the ratio of the transmit power per bit and allocates the physical resource block (PRB to the UE that requires the least ratio of the transmit power per bit. Through computer simulation, the performance of the proposed MP packet-scheduling algorithm is compared with the conventional packet-scheduling algorithms by two primary criteria: fairness and throughput. The simulation results show that the proposed algorithm outperforms the conventional algorithms in terms of the fairness and throughput.
Preemptive Online Scheduling: Optimal Algorithms for All Speeds
Czech Academy of Sciences Publication Activity Database
Ebenlendr, Tomáš; Jawor, W.; Sgall, Jiří
2009-01-01
Roč. 53, č. 4 (2009), s. 504-522 ISSN 0178-4617 R&D Projects: GA MŠk(CZ) 1M0545; GA ČR GA201/05/0124; GA AV ČR IAA1019401 Institutional research plan: CEZ:AV0Z10190503 Keywords : anline algorithms * scheduling Subject RIV: IN - Informatics, Computer Science Impact factor: 0.917, year: 2009
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.
A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems
Thammano, Arit; Teekeng, Wannaporn
2015-05-01
The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.
Multiuser Carrier Frequency Offset Estimation for OFDMA Uplink Based on Multi-Antenna
Zhang, Weile; Wang, Junsong; Yin, Qinye; Feng, Ang
In this letter, a novel method is proposed for carrier-frequency offset (CFO) estimation for multiple users in orthogonal frequency division multiple access (OFDMA) uplink with the generalized carrier assignment scheme (GCAS). The base station (BS) is equipped with multiple antennas, and each user's CFO can be estimated by the ESPRIT-like method that utilizes the rotation invariance of the space-domain snapshot matrix. The method is still effective even in fully loaded system with all subcarriers allocated to users. Simulation results illustrate the high performance of the proposed algorithm.
Diversity Controlling Genetic Algorithm for Order Acceptance and Scheduling Problem
Directory of Open Access Journals (Sweden)
Cheng Chen
2014-01-01
Full Text Available Selection and scheduling are an important topic in production systems. To tackle the order acceptance and scheduling problem on a single machine with release dates, tardiness penalty, and sequence-dependent setup times, in this paper a diversity controlling genetic algorithm (DCGA is proposed, in which a diversified population is maintained during the whole search process through survival selection considering both the fitness and the diversity of individuals. To measure the similarity between individuals, a modified Hamming distance without considering the unaccepted orders in the chromosome is adopted. The proposed DCGA was validated on 1500 benchmark instances with up to 100 orders. Compared with the state-of-the-art algorithms, the experimental results show that DCGA improves the solution quality obtained significantly, in terms of the deviation from upper bound.
Optimal power system generation scheduling by multi-objective genetic algorithms with preferences
International Nuclear Information System (INIS)
Zio, E.; Baraldi, P.; Pedroni, N.
2009-01-01
Power system generation scheduling is an important issue both from the economical and environmental safety viewpoints. The scheduling involves decisions with regards to the units start-up and shut-down times and to the assignment of the load demands to the committed generating units for minimizing the system operation costs and the emission of atmospheric pollutants. As many other real-world engineering problems, power system generation scheduling involves multiple, conflicting optimization criteria for which there exists no single best solution with respect to all criteria considered. Multi-objective optimization algorithms, based on the principle of Pareto optimality, can then be designed to search for the set of nondominated scheduling solutions from which the decision-maker (DM) must a posteriori choose the preferred alternative. On the other hand, often, information is available a priori regarding the preference values of the DM with respect to the objectives. When possible, it is important to exploit this information during the search so as to focus it on the region of preference of the Pareto-optimal set. In this paper, ways are explored to use this preference information for driving a multi-objective genetic algorithm towards the preferential region of the Pareto-optimal front. Two methods are considered: the first one extends the concept of Pareto dominance by biasing the chromosome replacement step of the algorithm by means of numerical weights that express the DM' s preferences; the second one drives the search algorithm by changing the shape of the dominance region according to linear trade-off functions specified by the DM. The effectiveness of the proposed approaches is first compared on a case study of literature. Then, a nonlinear, constrained, two-objective power generation scheduling problem is effectively tackled
A Simulated Annealing-Based Heuristic Algorithm for Job Shop Scheduling to Minimize Lateness
Directory of Open Access Journals (Sweden)
Rui Zhang
2013-04-01
Full Text Available A decomposition-based optimization algorithm is proposed for solving large job shop scheduling problems with the objective of minimizing the maximum lateness. First, we use the constraint propagation theory to derive the orientation of a portion of disjunctive arcs. Then we use a simulated annealing algorithm to find a decomposition policy which satisfies the maximum number of oriented disjunctive arcs. Subsequently, each subproblem (corresponding to a subset of operations as determined by the decomposition policy is successively solved with a simulated annealing algorithm, which leads to a feasible solution to the original job shop scheduling problem. Computational experiments are carried out for adapted benchmark problems, and the results show the proposed algorithm is effective and efficient in terms of solution quality and time performance.
Muñoz, Gonzalo; Espinoza, Daniel; Goycoolea, Marcos; Moreno, Eduardo; Queyranne, Maurice; Rivera, Orlando
2016-01-01
We study a Lagrangian decomposition algorithm recently proposed by Dan Bienstock and Mark Zuckerberg for solving the LP relaxation of a class of open pit mine project scheduling problems. In this study we show that the Bienstock-Zuckerberg (BZ) algorithm can be used to solve LP relaxations corresponding to a much broader class of scheduling problems, including the well-known Resource Constrained Project Scheduling Problem (RCPSP), and multi-modal variants of the RCPSP that consider batch proc...
Directory of Open Access Journals (Sweden)
Changyun Liu
2017-01-01
Full Text Available A multisensor scheduling algorithm based on the hybrid task decomposition and modified binary particle swarm optimization (MBPSO is proposed. Firstly, aiming at the complex relationship between sensor resources and tasks, a hybrid task decomposition method is presented, and the resource scheduling problem is decomposed into subtasks; then the sensor resource scheduling problem is changed into the match problem of sensors and subtasks. Secondly, the resource match optimization model based on the sensor resources and tasks is established, which considers several factors, such as the target priority, detecting benefit, handover times, and resource load. Finally, MBPSO algorithm is proposed to solve the match optimization model effectively, which is based on the improved updating means of particle’s velocity and position through the doubt factor and modified Sigmoid function. The experimental results show that the proposed algorithm is better in terms of convergence velocity, searching capability, solution accuracy, and efficiency.
Application of Tabu Search Algorithm in Job Shop Scheduling
Directory of Open Access Journals (Sweden)
Betrianis Betrianis
2010-10-01
Full Text Available Tabu Search is one of local search methods which is used to solve the combinatorial optimization problem. This method aimed is to make the searching process of the best solution in a complex combinatorial optimization problem(np hard, ex : job shop scheduling problem, became more effective, in a less computational time but with no guarantee to optimum solution.In this paper, tabu search is used to solve the job shop scheduling problem consists of 3 (three cases, which is ordering package of September, October and November with objective of minimizing makespan (Cmax. For each ordering package, there is a combination for initial solution and tabu list length. These result then compared with 4 (four other methods using basic dispatching rules such as Shortest Processing Time (SPT, Earliest Due Date (EDD, Most Work Remaining (MWKR dan First Come First Served (FCFS. Scheduling used Tabu Search Algorithm is sensitive for variables changes and gives makespan shorter than scheduling used by other four methods.
M-GCF: Multicolor-Green Conflict Free Scheduling Algorithm for WSN
DEFF Research Database (Denmark)
Pawar, Pranav M.; Nielsen, Rasmus Hjorth; Prasad, Neeli R.
2012-01-01
division multiple access (TDMA) scheduling algorithm, Multicolor-Green Conflict Free (M-GCF), for WSNs. The proposed algorithm finds multiple conflict free slots across a three-hop neighbor view. The algorithm shows better slot sharing with fewer conflicts along with good energy efficiency, throughput...... and delay as compared with state-of-the-art solutions. The results also include the performance of M-GCF with varying traffic rates, which also shows good energy efficiency, throughput and delay. The contribution of this paper and the main reason for the improved performance with varying number of nodes...
Evaluation of a Cross Layer Scheduling Algorithm for LTE Downlink
Directory of Open Access Journals (Sweden)
A. Popovska Avramova
2013-06-01
Full Text Available The LTE standard is a leading standard in the wireless broadband market. The Radio Resource Management at the base station plays a major role in satisfying users demand for high data rates and quality of service. This paper evaluates a cross layer scheduling algorithm that aims at minimizing the resource utilization. The algorithm makes decisions based on channel conditions, the size of transmission buffers and different quality of service demands. Simulation results show that the new algorithm improves the resource utilization and provides better guarantees for service quality.
International Nuclear Information System (INIS)
Lian Zhigang; Gu Xingsheng; Jiao Bin
2008-01-01
It is well known that the flow-shop scheduling problem (FSSP) is a branch of production scheduling and is NP-hard. Now, many different approaches have been applied for permutation flow-shop scheduling to minimize makespan, but current algorithms even for moderate size problems cannot be solved to guarantee optimality. Some literatures searching PSO for continuous optimization problems are reported, but papers searching PSO for discrete scheduling problems are few. In this paper, according to the discrete characteristic of FSSP, a novel particle swarm optimization (NPSO) algorithm is presented and successfully applied to permutation flow-shop scheduling to minimize makespan. Computation experiments of seven representative instances (Taillard) based on practical data were made, and comparing the NPSO with standard GA, we obtain that the NPSO is clearly more efficacious than standard GA for FSSP to minimize makespan
Multiple R&D projects scheduling optimization with improved particle swarm algorithm.
Liu, Mengqi; Shan, Miyuan; Wu, Juan
2014-01-01
For most enterprises, in order to win the initiative in the fierce competition of market, a key step is to improve their R&D ability to meet the various demands of customers more timely and less costly. This paper discusses the features of multiple R&D environments in large make-to-order enterprises under constrained human resource and budget, and puts forward a multi-project scheduling model during a certain period. Furthermore, we make some improvements to existed particle swarm algorithm and apply the one developed here to the resource-constrained multi-project scheduling model for a simulation experiment. Simultaneously, the feasibility of model and the validity of algorithm are proved in the experiment.
Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms
Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel
2017-01-01
With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies. PMID:29399237
Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms.
Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel
2014-01-01
With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies.
Mobility-Aware User Association in Uplink Cellular Networks
Arshad, Rabe; Elsawy, Hesham; Sorour, Sameh; Alouini, Mohamed-Slim; Al-Naffouri, Tareq Y.
2017-01-01
This letter studies the mobility aware user-to-BS association policies, within a stochastic geometry framework, in two tier uplink cellular networks with fractional channel inversion power control. Particularly, we model the base stations’ locations using the widely accepted poisson point process and obtain the coverage probability and handover cost expressions for the coupled and decoupled uplink and downlink associations. To this end, we compute the average throughput for the mobile users and study the merits and demerits of each association strategy.
Mobility-Aware User Association in Uplink Cellular Networks
Arshad, Rabe
2017-07-20
This letter studies the mobility aware user-to-BS association policies, within a stochastic geometry framework, in two tier uplink cellular networks with fractional channel inversion power control. Particularly, we model the base stations’ locations using the widely accepted poisson point process and obtain the coverage probability and handover cost expressions for the coupled and decoupled uplink and downlink associations. To this end, we compute the average throughput for the mobile users and study the merits and demerits of each association strategy.
Scheduling strategies for LTE uplink with flow behaviour analysis
Dimitrova, D.C.; Berg, J.L. van den; Litjens, R.; Heijenk, G.
2010-01-01
Long Term Evolution (LTE) is a cellular technology developed to support diversity of data traffic at potentially high rates. It is foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which
Scheduling strategies for LTE uplink with flow behaviour analysis
Dimitrova, D.C.; van den Berg, Hans Leo; Litjens, R.; Brogle, Marc; Osipov, Evgeny; Heijenk, Gerhard J.
Long Term Evolution (LTE) is a cellular technology developed to support diversity of data traffic at potentially high rates. It is foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which
Nuclear power plant maintenance scheduling dilemma: a genetic algorithm approach
International Nuclear Information System (INIS)
Mahdavi, M.H.; Modarres, M.
2004-01-01
There are huge numbers of components scheduled for maintenance when a nuclear power plant is shut down. Among these components, a number of them are safety related which their operability as well as reliability when plant becomes up is main concerns. Not performing proper maintenance on this class of components/system would impose substantial risk on operating the NPP. In this paper a new approach based on genetic algorithms is presented to optimize the NPP maintenance schedule during shutdown. following this approach the cost incurred by maintenance activities for each schedule is balanced with the risk imposed by the maintenance scheduling plan to the plant operation status when it is up. The risk model implemented in the GA scheduler as its evaluation function is developed on the basis of the probabilistic risk assessment methodology. the Ga optimizers itself is shown to be superior compared to other optimization methods such as the monte carlo technique
Flexible job-shop scheduling based on genetic algorithm and simulation validation
Directory of Open Access Journals (Sweden)
Zhou Erming
2017-01-01
Full Text Available This paper selects flexible job-shop scheduling problem as the research object, and Constructs mathematical model aimed at minimizing the maximum makespan. Taking the transmission reverse gear production line of a transmission corporation as an example, genetic algorithm is applied for flexible jobshop scheduling problem to get the specific optimal scheduling results with MATLAB. DELMIA/QUEST based on 3D discrete event simulation is applied to construct the physical model of the production workshop. On the basis of the optimal scheduling results, the logical link of the physical model for the production workshop is established, besides, importing the appropriate process parameters to make virtual simulation on the production workshop. Finally, through analyzing the simulated results, it shows that the scheduling results are effective and reasonable.
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
A Hierarchical Algorithm for Integrated Scheduling and Control With Applications to Power Systems
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Dinesen, Peter Juhler; Jørgensen, John Bagterp
2016-01-01
The contribution of this paper is a hierarchical algorithm for integrated scheduling and control via model predictive control of hybrid systems. The controlled system is a linear system composed of continuous control, state, and output variables. Binary variables occur as scheduling decisions in ...
Performance of Fast AMC in E-UTRAN Uplink
DEFF Research Database (Denmark)
Rosa, Claudio; López Villa, Dimas; Úbeda Castellanos, Carlos
2008-01-01
Evolved (E-) UTRA is currently being standardized as a long term evolution (LTE) of the 3GPP radio access technology. One of the goals of E-UTRA is to achieve 2-4 times the spectral efficiency and user throughputs compared to HSUPA/HSDPA [1]. Support for fast link adaptation based on adaptive...... and interference conditions. It is shown that despite measurement errors and the high variability of uplink inter-cell interference, fast AMC can boost the capacity of E-UTRA uplink by approximately 20% to 25%....
Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.
Reusable rocket engine preventive maintenance scheduling using genetic algorithm
International Nuclear Information System (INIS)
Chen, Tao; Li, Jiawen; Jin, Ping; Cai, Guobiao
2013-01-01
This paper deals with the preventive maintenance (PM) scheduling problem of reusable rocket engine (RRE), which is different from the ordinary repairable systems, by genetic algorithm. Three types of PM activities for RRE are considered and modeled by introducing the concept of effective age. The impacts of PM on all subsystems' aging processes are evaluated based on improvement factor model. Then the reliability of engine is formulated by considering the accumulated time effect. After that, optimization model subjected to reliability constraint is developed for RRE PM scheduling at fixed interval. The optimal PM combination is obtained by minimizing the total cost in the whole life cycle for a supposed engine. Numerical investigations indicate that the subsystem's intrinsic reliability characteristic and the improvement factor of maintain operations are the most important parameters in RRE's PM scheduling management
Directory of Open Access Journals (Sweden)
Xinli Xu
2013-01-01
Full Text Available A two-level batch chromosome coding scheme is proposed to solve the lot splitting problem with equipment capacity constraints in flexible job shop scheduling, which includes a lot splitting chromosome and a lot scheduling chromosome. To balance global search and local exploration of the differential evolution algorithm, a hybrid discrete differential evolution algorithm (HDDE is presented, in which the local strategy with dynamic random searching based on the critical path and a random mutation operator is developed. The performance of HDDE was experimented with 14 benchmark problems and the practical dye vat scheduling problem. The simulation results showed that the proposed algorithm has the strong global search capability and can effectively solve the practical lot splitting problems with equipment capacity constraints.
EPOXI Uplink Array Experiment of June 27, 2008
Vilnrotter, V.; Tsao, P. C.; Lee, D. K.; Cornish, T. P.; Paal, L.; Jamnejad, V.
2008-08-01
Uplink array technology is currently being developed for NASA's Deep Space Network (DSN) to provide greater range and data throughput for future NASA missions, including manned missions to Mars and exploratory missions to the outer planets, the Kuiper Belt, and beyond. The DSN uplink arrays employ N microwave antennas transmitting at 7.2 GHz (X-band) to produce signals that add coherently at the spacecraft, hence providing a power gain of N^2 over a single antenna. This gain can be traded off directly for an N^2 higher data rate at a given distance such as Mars, providing, for example, high-definition video broadcast from Earth to a future human mission, or it can provide a given data rate for commands and software uploads at a distance N times greater than would be possible with a single antenna. The uplink arraying concept has been recently demonstrated using the three operational 34-m antennas of the Apollo Complex at the Goldstone Deep Space Communications Complex in California, which transmitted arrayed signals to the EPOXI spacecraft (an acronym formed from EPOCh and DIXI: Extrasolar Planetary Observation and Characterization and Deep Impact Extended Investigation). Both two-element and three-element uplink arrays were configured, and the theoretical array gains of 6 dB and 9.5 dB, respectively, were demonstrated experimentally. This required initial phasing of the array elements, the generation of accurate frequency predicts to maintain phase from each antenna despite relative velocity components due to Earth rotation and spacecraft trajectory, and monitoring of the ground-system phase for possible drifts caused by thermal effects over the 16-km fiber-optic signal distribution network. This article provides a description of the equipment and techniques used to demonstrate the uplink arraying concept in a relevant operational environment. Data collected from the EPOXI spacecraft are also analyzed to verify array calibration, array gain, and system stability
In-Band Full-Duplex Communications for Cellular Networks with Partial Uplink/Downlink Overlap
Alammouri, Ahmad; Elsawy, Hesham; Amin, Osama; Alouini, Mohamed-Slim
2015-01-01
In-band full-duplex (FD) communications have been optimistically promoted to improve the spectrum utilization in cellular networks. However, the explicit impact of spatial interference, imposed by FD communications, on uplink and downlink transmissions has been overlooked in the literature. This paper presents an extensive study of the explicit effect of FD communications on the uplink and downlink performances. For the sake of rigorous analysis, we develop a tractable framework based on stochastic geometry toolset. The developed model accounts for uplink truncated channel inversion power control in FD cellular networks. The study shows that FD communications improve the downlink throughput at the expense of significant degradation in the uplink throughput. Therefore, we propose a novel fine-grained duplexing scheme, denoted as α-duplex scheme, which allows a partial overlap between uplink and downlink frequency bands. To this end, we show that the amount of the overlap can be optimized via adjusting α to achieve a certain design objective.
In-Band Full-Duplex Communications for Cellular Networks with Partial Uplink/Downlink Overlap
AlAmmouri, Ahmad
2015-12-06
In-band full-duplex (FD) communications have been optimistically promoted to improve the spectrum utilization in cellular networks. However, the explicit impact of spatial interference, imposed by FD communications, on uplink and downlink transmissions has been overlooked in the literature. This paper presents an extensive study of the explicit effect of FD communications on the uplink and downlink performances. For the sake of rigorous analysis, we develop a tractable framework based on stochastic geometry toolset. The developed model accounts for uplink truncated channel inversion power control in FD cellular networks. The study shows that FD communications improve the downlink throughput at the expense of significant degradation in the uplink throughput. Therefore, we propose a novel fine-grained duplexing scheme, denoted as α-duplex scheme, which allows a partial overlap between uplink and downlink frequency bands. To this end, we show that the amount of the overlap can be optimized via adjusting α to achieve a certain design objective.
An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints
Yunqing Rao; Dezhong Qi; Jinling Li
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better ...
Day-ahead distributed energy resource scheduling using differential search algorithm
DEFF Research Database (Denmark)
Soares, J.; Lobo, C.; Silva, M.
2015-01-01
The number of dispersed energy resources is growing every day, such as the use of more distributed generators. This paper deals with energy resource scheduling model in future smart grids. The methodology can be used by virtual power players (VPPs) considering day-ahead time horizon. This method...... considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. This paper presents an application of differential search algorithm (DSA) for solving the day-ahead scheduling...
Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.
Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239
International Nuclear Information System (INIS)
Cox, R.G.
1984-01-01
Much controversy surrounds government regulation of routing and scheduling of Hazardous Materials Transportation (HMT). Increases in operating costs must be balanced against expected benefits from local HMT bans and curfews when promulgating or preempting HMT regulations. Algorithmic approaches for evaluating HMT routing and scheduling regulatory policy are described. A review of current US HMT regulatory policy is presented to provide a context for the analysis. Next, a multiobjective shortest path algorithm to find the set of efficient routes under conflicting objectives is presented. This algorithm generates all efficient routes under any partial ordering in a single pass through the network. Also, scheduling algorithms are presented to estimate the travel time delay due to HMT curfews along a route. Algorithms are presented assuming either deterministic or stochastic travel times between curfew cities and also possible rerouting to avoid such cities. These algorithms are applied to the case study of US highway transport of spent nuclear fuel from reactors to permanent repositories. Two data sets were used. One data set included the US Interstate Highway System (IHS) network with reactor locations, possible repository sites, and 150 heavily populated areas (HPAs). The other data set contained estimates of the population residing with 0.5 miles of the IHS and the Eastern US. Curfew delay is dramatically reduced by optimally scheduling departure times unless inter-HPA travel times are highly uncertain. Rerouting shipments to avoid HPAs is a less efficient approach to reducing delay
Ozmutlu, H. Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204
Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.
Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array
Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.
2011-01-01
A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.
On the Meta Distribution of Coverage Probability in Uplink Cellular Networks
Elsawy, Hesham
2017-04-07
This letter studies the meta distribution of coverage probability (CP), within a stochastic geometry framework, for cellular uplink transmission with fractional path-loss inversion power control. Using the widely accepted Poisson point process (PPP) for modeling the spatial locations of base stations (BSs), we obtain the percentiles of users that achieve a target uplink CP over an arbitrary, but fixed, realization of the PPP. To this end, the effect of the users activity factor (p) and the path-loss compensation factor () on the uplink performance are analyzed. The results show that decreasing p and/or increasing reduce the CP variation around the spatially averaged value.
Directory of Open Access Journals (Sweden)
Yahong Zheng
2014-05-01
Full Text Available Purpose: This paper focuses on a classic optimization problem in operations research, the flexible job shop scheduling problem (FJSP, to discuss the method to deal with uncertainty in a manufacturing system.Design/methodology/approach: In this paper, condition based maintenance (CBM, a kind of preventive maintenance, is suggested to reduce unavailability of machines. Different to the simultaneous scheduling algorithm (SSA used in the previous article (Neale & Cameron,1979, an inserting algorithm (IA is applied, in which firstly a pre-schedule is obtained through heuristic algorithm and then maintenance tasks are inserted into the pre-schedule scheme.Findings: It is encouraging that a new better solution for an instance in benchmark of FJSP is obtained in this research. Moreover, factually SSA used in literature for solving normal FJSPPM (FJSP with PM is not suitable for the dynamic FJSPPM. Through application in the benchmark of normal FJSPPM, it is found that although IA obtains inferior results compared to SSA used in literature, it performs much better in executing speed.Originality/value: Different to traditional scheduling of FJSP, uncertainty of machines is taken into account, which increases the complexity of the problem. An inserting algorithm (IA is proposed to solve the dynamic scheduling problem. It is stated that the quality of the final result depends much on the quality of the pre-schedule obtained during the procedure of solving a normal FJSP. In order to find the best solution of FJSP, a comparative study of three heuristics is carried out, the integrated GA, ACO and ABC. In the comparative study, we find that GA performs best in the three heuristic algorithms. Meanwhile, a new better solution for an instance in benchmark of FJSP is obtained in this research.
Hard Real-Time Task Scheduling in Cloud Computing Using an Adaptive Genetic Algorithm
Directory of Open Access Journals (Sweden)
Amjad Mahmood
2017-04-01
Full Text Available In the Infrastructure-as-a-Service cloud computing model, virtualized computing resources in the form of virtual machines are provided over the Internet. A user can rent an arbitrary number of computing resources to meet their requirements, making cloud computing an attractive choice for executing real-time tasks. Economical task allocation and scheduling on a set of leased virtual machines is an important problem in the cloud computing environment. This paper proposes a greedy and a genetic algorithm with an adaptive selection of suitable crossover and mutation operations (named as AGA to allocate and schedule real-time tasks with precedence constraint on heterogamous virtual machines. A comprehensive simulation study has been done to evaluate the performance of the proposed algorithms in terms of their solution quality and efficiency. The simulation results show that AGA outperforms the greedy algorithm and non-adaptive genetic algorithm in terms of solution quality.
Two parameter-tuned metaheuristic algorithms for the multi-level lot sizing and scheduling problem
Directory of Open Access Journals (Sweden)
S.M.T. Fatemi Ghomi
2012-10-01
Full Text Available This paper addresses the problem of lot sizing and scheduling problem for n-products and m-machines in flow shop environment where setups among machines are sequence-dependent and can be carried over. Many products must be produced under capacity constraints and allowing backorders. Since lot sizing and scheduling problems are well-known strongly NP-hard, much attention has been given to heuristics and metaheuristics methods. This paper presents two metaheuristics algorithms namely, Genetic Algorithm (GA and Imperialist Competitive Algorithm (ICA. Moreover, Taguchi robust design methodology is employed to calibrate the parameters of the algorithms for different size problems. In addition, the parameter-tuned algorithms are compared against a presented lower bound on randomly generated problems. At the end, comprehensive numerical examples are presented to demonstrate the effectiveness of the proposed algorithms. The results showed that the performance of both GA and ICA are very promising and ICA outperforms GA statistically.
SPORT: An Algorithm for Divisible Load Scheduling with Result Collection on Heterogeneous Systems
Ghatpande, Abhay; Nakazato, Hidenori; Beaumont, Olivier; Watanabe, Hiroshi
Divisible Load Theory (DLT) is an established mathematical framework to study Divisible Load Scheduling (DLS). However, traditional DLT does not address the scheduling of results back to source (i. e., result collection), nor does it comprehensively deal with system heterogeneity. In this paper, the DLSRCHETS (DLS with Result Collection on HET-erogeneous Systems) problem is addressed. The few papers to date that have dealt with DLSRCHETS, proposed simplistic LIFO (Last In, First Out) and FIFO (First In, First Out) type of schedules as solutions to DLSRCHETS. In this paper, a new polynomial time heuristic algorithm, SPORT (System Parameters based Optimized Result Transfer), is proposed as a solution to the DLSRCHETS problem. With the help of simulations, it is proved that the performance of SPORT is significantly better than existing algorithms. The other major contributions of this paper include, for the first time ever, (a) the derivation of the condition to identify the presence of idle time in a FIFO schedule for two processors, (b) the identification of the limiting condition for the optimality of FIFO and LIFO schedules for two processors, and (c) the introduction of the concept of equivalent processor in DLS for heterogeneous systems with result collection.
Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags
ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu
2017-05-01
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
Interference Cancelation Schemes for Uplink Transmission in Femtocells
DEFF Research Database (Denmark)
Thai, Chan; Popovski, Petar
2010-01-01
We present techniques that solve the near-far problems in femtocell networks. When a co-channel configuration is used, a transmission in the macrocell may cause interference to a femtocell. We introduce methods to cancel the interference caused by the macrocell to a femtocell by using the high......-rate link between the macrocell base station (BS) and the femtocell BS. In such a way, the interference from macrocell transmitters is completely cancelled when uplink transmission is used in the femtocell. Therefore, the allocation of time slots for uplink/downlink in a femtocell can be done by trying only...
Xu, Zhenzhen; Zou, Yongxing; Kong, Xiangjie
2015-01-01
To our knowledge, this paper investigates the first application of meta-heuristic algorithms to tackle the parallel machines scheduling problem with weighted late work criterion and common due date ([Formula: see text]). Late work criterion is one of the performance measures of scheduling problems which considers the length of late parts of particular jobs when evaluating the quality of scheduling. Since this problem is known to be NP-hard, three meta-heuristic algorithms, namely ant colony system, genetic algorithm, and simulated annealing are designed and implemented, respectively. We also propose a novel algorithm named LDF (largest density first) which is improved from LPT (longest processing time first). The computational experiments compared these meta-heuristic algorithms with LDF, LPT and LS (list scheduling), and the experimental results show that SA performs the best in most cases. However, LDF is better than SA in some conditions, moreover, the running time of LDF is much shorter than SA.
Advertisement scheduling on commercial radio station using genetics algorithm
Purnamawati, S.; Nababan, E. B.; Tsani, B.; Taqyuddin, R.; Rahmat, R. F.
2018-03-01
On the commercial radio station, the advertising schedule is done manually, which resulted in ineffectiveness of ads schedule. Playback time consists of two types such as prime time and regular time. Radio Ads scheduling will be discussed in this research is based on ad playback schedule between 5am until 12am which rules every 15 minutes. It provides 3 slots ads with playback duration per ads maximum is 1 minute. If the radio broadcast time per day is 12 hours, then the maximum number of ads per day which can be aired is 76 ads. The other is the enactment of rules of prime time, namely the hours where the common people (listeners) have the greatest opportunity to listen to the radio, namely between the hours and hours of 4 am - 8 am, 6 pm - 10 pm. The number of screenings of the same ads on one day are limited to prime time ie 5 times, while for regular time is 8 times. Radio scheduling process is done using genetic algorithms which are composed of processes initialization chromosomes, selection, crossover and mutation. Study on chromosome 3 genes, each chromosome will be evaluated based on the value of fitness calculated based on the number of infractions that occurred on each individual chromosome. Where rule 1 is the number of screenings per ads must not be more than 5 times per day and rule 2 is there should never be two or more scheduling ads delivered on the same day and time. After fitness value of each chromosome is acquired, then the do the selection, crossover and mutation. From this research result, the optimal advertising schedule with schedule a whole day and ads data playback time ads with this level of accuracy: the average percentage was 83.79%.
DEFF Research Database (Denmark)
Sanchez-Moya, Fernando; Villalba-Espinosa, Juan; Garcia, Luis Guilherme Uzeda
2011-01-01
argumentation by including uplink information into the component carrier selection process. We assess and discuss the uplink performance of two proposed variants of ACCS via extensive system level simulations. The striking conclusion based on the results is that the mere addition of uplink information, which...
Directory of Open Access Journals (Sweden)
M. Frutos
2013-01-01
Full Text Available Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.
基于ISM的动态优先级调度算法%Dynamic Priority Schedule Algorithm Based on ISM
Institute of Scientific and Technical Information of China (English)
余祖峰; 蔡启先; 刘明
2011-01-01
The EDF schedule algorithm, one of main real-time schedule algorithms of the embedded Linux operating system, can not solve the overload schedule.For this, the paper introduces SLAD algorithm and BACKSLASH algorithm, which have good performance of system load.According to thinking of ISM algorithm, it puts forward a kind of dynamic priority schedule algorithm.According to case of overloads within some time, the algorithm can adjust EDF algorithm and SLAD algorithm neatly, thus improves schedule efficiency of system in usual load and overload cases.Test results for real-time tasks Deadline Miss Ratio(DMR) show its improvement effect.%在嵌入式Linux操作系统的实时调度算法中,EDF调度算法不能解决负载过载问题.为此,引进对系统负载有着良好表现的SLAD算法和BACKSLASH算法.基于ISM算法思路,提出一种动态优先级调度算法.该算法能根据一段时间内负载过载的情况,灵活地调度EDF算法和SLAD算法,从面提高系统在正常负载和过载情况下的调度效率.对实时任务截止期错失率DMR指标的测试结果证明了其改进效果.
A Heuristic Scheduling Algorithm for Minimizing Makespan and Idle Time in a Nagare Cell
Directory of Open Access Journals (Sweden)
M. Muthukumaran
2012-01-01
Full Text Available Adopting a focused factory is a powerful approach for today manufacturing enterprise. This paper introduces the basic manufacturing concept for a struggling manufacturer with limited conventional resources, providing an alternative solution to cell scheduling by implementing the technique of Nagare cell. Nagare cell is a Japanese concept with more objectives than cellular manufacturing system. It is a combination of manual and semiautomatic machine layout as cells, which gives maximum output flexibility for all kind of low-to-medium- and medium-to-high- volume productions. The solution adopted is to create a dedicated group of conventional machines, all but one of which are already available on the shop floor. This paper focuses on the development of heuristic scheduling algorithm in step-by-step method. The algorithm states that the summation of processing time of all products on each machine is calculated first and then the sum of processing time is sorted by the shortest processing time rule to get the assignment schedule. Based on the assignment schedule Nagare cell layout is arranged for processing the product. In addition, this algorithm provides steps to determine the product ready time, machine idle time, and product idle time. And also the Gantt chart, the experimental analysis, and the comparative results are illustrated with five (1×8 to 5×8 scheduling problems. Finally, the objective of minimizing makespan and idle time with greater customer satisfaction is studied through.
An Extended Genetic Algorithm for Distributed Integration of Fuzzy Process Planning and Scheduling
Directory of Open Access Journals (Sweden)
Shuai Zhang
2016-01-01
Full Text Available The distributed integration of process planning and scheduling (DIPPS aims to simultaneously arrange the two most important manufacturing stages, process planning and scheduling, in a distributed manufacturing environment. Meanwhile, considering its advantage corresponding to actual situation, the triangle fuzzy number (TFN is adopted in DIPPS to represent the machine processing and transportation time. In order to solve this problem and obtain the optimal or near-optimal solution, an extended genetic algorithm (EGA with innovative three-class encoding method, improved crossover, and mutation strategies is proposed. Furthermore, a local enhancement strategy featuring machine replacement and order exchange is also added to strengthen the local search capability on the basic process of genetic algorithm. Through the verification of experiment, EGA achieves satisfactory results all in a very short period of time and demonstrates its powerful performance in dealing with the distributed integration of fuzzy process planning and scheduling (DIFPPS.
Vectorization of a penalty function algorithm for well scheduling
Absar, I.
1984-01-01
In petroleum engineering, the oil production profiles of a reservoir can be simulated by using a finite gridded model. This profile is affected by the number and choice of wells which in turn is a result of various production limits and constraints including, for example, the economic minimum well spacing, the number of drilling rigs available and the time required to drill and complete a well. After a well is available it may be shut in because of excessive water or gas productions. In order to optimize the field performance a penalty function algorithm was developed for scheduling wells. For an example with some 343 wells and 15 different constraints, the scheduling routine vectorized for the CYBER 205 averaged 560 times faster performance than the scalar version.
Options for Parallelizing a Planning and Scheduling Algorithm
Clement, Bradley J.; Estlin, Tara A.; Bornstein, Benjamin D.
2011-01-01
Space missions have a growing interest in putting multi-core processors onboard spacecraft. For many missions processing power significantly slows operations. We investigate how continual planning and scheduling algorithms can exploit multi-core processing and outline different potential design decisions for a parallelized planning architecture. This organization of choices and challenges helps us with an initial design for parallelizing the CASPER planning system for a mesh multi-core processor. This work extends that presented at another workshop with some preliminary results.
A hybrid algorithm for flexible job-shop scheduling problem with setup times
Directory of Open Access Journals (Sweden)
Ameni Azzouz
2017-01-01
Full Text Available Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to be processed according to a given order. The Flexible Job Shop problem (FJSP is a generalization of the above-mentioned problem, where each operation can be processed by a set of resources and has a processing time depending on the resource used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem. This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic algorithm (GA and variable neighbourhood search (VNS to solve this problem. To evaluate the performance of our algorithm, we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against the available ones in terms of solution quality.
Kawai, Hiroyuki; Morimoto, Akihito; Higuchi, Kenichi; Sawahashi, Mamoru
This paper investigates the gain of inter-Node B macro diversity for a scheduled-based shared channel using single-carrier FDMA radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) uplink based on system-level simulations. More specifically, we clarify the gain of inter-Node B soft handover (SHO) with selection combining at the radio frame length level (=10msec) compared to that for hard handover (HHO) for a scheduled-based shared data channel, considering the gains of key packet-specific techniques including channel-dependent scheduling, adaptive modulation and coding (AMC), hybrid automatic repeat request (ARQ) with packet combining, and slow transmission power control (TPC). Simulation results show that the inter-Node B SHO increases the user throughput at the cell edge by approximately 10% for a short cell radius such as 100-300m due to the diversity gain from a sudden change in other-cell interference, which is a feature specific to full scheduled-based packet access. However, it is also shown that the gain of inter-Node B SHO compared to that for HHO is small in a macrocell environment when the cell radius is longer than approximately 500m due to the gains from hybrid ARQ with packet combining, slow TPC, and proportional fairness based channel-dependent scheduling.
International Nuclear Information System (INIS)
Setiawan, A; Wangsaputra, R; Halim, A H; Martawirya, Y Y
2016-01-01
This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule. (paper)
Minimum BER Receiver Filters with Block Memory for Uplink DS-CDMA Systems
Directory of Open Access Journals (Sweden)
Debbah Mérouane
2008-01-01
Full Text Available Abstract The problem of synchronous multiuser receiver design in the case of direct-sequence single-antenna code division multiple access (DS-CDMA uplink networks is studied over frequency selective fading channels. An exact expression for the bit error rate (BER is derived in the case of BPSK signaling. Moreover, an algorithm is proposed for finding the finite impulse response (FIR receiver filters with block memory such that the exact BER of the active users is minimized. Several properties of the minimum BER FIR filters with block memory are identified. The algorithm performance is found for scenarios with different channel qualities, spreading code lengths, receiver block memory size, near-far effects, and channel mismatch. For the BPSK constellation, the proposed FIR receiver structure with block memory has significant better BER with respect to and near-far resistance than the corresponding minimum mean square error (MMSE filters with block memory.
Clustering and Genetic Algorithm Based Hybrid Flowshop Scheduling with Multiple Operations
Directory of Open Access Journals (Sweden)
Yingfeng Zhang
2014-01-01
Full Text Available This research is motivated by a flowshop scheduling problem of our collaborative manufacturing company for aeronautic products. The heat-treatment stage (HTS and precision forging stage (PFS of the case are selected as a two-stage hybrid flowshop system. In HTS, there are four parallel machines and each machine can process a batch of jobs simultaneously. In PFS, there are two machines. Each machine can install any module of the four modules for processing the workpeices with different sizes. The problem is characterized by many constraints, such as batching operation, blocking environment, and setup time and working time limitations of modules, and so forth. In order to deal with the above special characteristics, the clustering and genetic algorithm is used to calculate the good solution for the two-stage hybrid flowshop problem. The clustering is used to group the jobs according to the processing ranges of the different modules of PFS. The genetic algorithm is used to schedule the optimal sequence of the grouped jobs for the HTS and PFS. Finally, a case study is used to demonstrate the efficiency and effectiveness of the designed genetic algorithm.
Directory of Open Access Journals (Sweden)
G.Subashini
2010-07-01
Full Text Available To meet the increasing computational demands, geographically distributed resources need to be logically coupled to make them work as a unified resource. In analyzing the performance of such distributed heterogeneous computing systems scheduling a set of tasks to the available set of resources for execution is highly important. Task scheduling being an NP-complete problem, use of metaheuristics is more appropriate in obtaining optimal solutions. Schedules thus obtained can be evaluated using several criteria that may conflict with one another which require multi objective problem formulation. This paper investigates the application of an elitist Nondominated Sorting Genetic Algorithm (NSGA-II, to efficiently schedule a set of independent tasks in a heterogeneous distributed computing system. The objectives considered in this paper include minimizing makespan and average flowtime simultaneously. The implementation of NSGA-II algorithm and Weighted-Sum Genetic Algorithm (WSGA has been tested on benchmark instances for distributed heterogeneous systems. As NSGA-II generates a set of Pareto optimal solutions, to verify the effectiveness of NSGA-II over WSGA a fuzzy based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set.
Optimal Intermittent Dose Schedules for Chemotherapy Using Genetic Algorithm
Directory of Open Access Journals (Sweden)
Nadia ALAM
2013-08-01
Full Text Available In this paper, a design method for optimal cancer chemotherapy schedules via genetic algorithm (GA is presented. The design targets the key objective of chemotherapy to minimize the size of cancer tumor after a predefined time with keeping toxic side effects in limit. This is a difficult target to achieve using conventional clinical methods due to poor therapeutic indices of existing anti-cancer drugs. Moreover, there are clinical limitations in treatment administration to maintain continuous treatment. Besides, carefully decided rest periods are recommended to for patient’s comfort. Three intermittent drug scheduling schemes are presented in this paper where GA is used to optimize the dose quantities and timings by satisfying several treatment constraints. All three schemes are found to be effective in total elimination of cancer tumor after an agreed treatment length. The number of cancer cells is found zero at the end of the treatment for all three cases with tolerable toxicity. Finally, two of the schemes, “Fixed interval variable dose (FIVD and “Periodic dose” that are periodic in characteristic have been emphasized due to their additional simplicity in administration along with friendliness to patients. responses to the designed treatment schedules. Therefore the proposed design method is capable of planning effective, simple, patient friendly and acceptable chemotherapy schedules.
Proposed algorithm to improve job shop production scheduling using ant colony optimization method
Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari
2017-12-01
This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.
Directory of Open Access Journals (Sweden)
Hajara Idris
Full Text Available The Grid scheduler, schedules user jobs on the best available resource in terms of resource characteristics by optimizing job execution time. Resource failure in Grid is no longer an exception but a regular occurring event as resources are increasingly being used by the scientific community to solve computationally intensive problems which typically run for days or even months. It is therefore absolutely essential that these long-running applications are able to tolerate failures and avoid re-computations from scratch after resource failure has occurred, to satisfy the user's Quality of Service (QoS requirement. Job Scheduling with Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure that jobs are executed successfully even when resource failure has occurred. The technique employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll back recovery strategy. Check-pointing aims at reducing the amount of work that is lost upon failure of the system by immediately saving the state of the system. A comparison of the proposed approach with an existing Ant Colony Optimization (ACO algorithm is discussed. The experimental results of the implemented Fault Tolerance scheduling algorithm show that there is an improvement in the user's QoS requirement over the existing ACO algorithm, which has no fault tolerance integrated in it. The performance evaluation of the two algorithms was measured in terms of the three main scheduling performance metrics: makespan, throughput and average turnaround time.
A Magnetic-Balanced Inductive Link for the Simultaneous Uplink Data and Power Telemetry.
Gong, Chen; Liu, Dake; Miao, Zhidong; Li, Min
2017-08-02
When using the conventional two-coil inductive link for the simultaneous wireless power and data transmissions in implantable biomedical sensor devices, the strong power carrier could overwhelm the uplink data signal and even saturate the external uplink receiver. To address this problem, we propose a new magnetic-balanced inductive link for our implantable glaucoma treatment device. In this inductive link, an extra coil is specially added for the uplink receiving. The strong power carrier interference is minimized to approach zero by balanced canceling of the magnetic field of the external power coil. The implant coil is shared by the wireless power harvesting and the uplink data transmitting. Two carriers (i.e., 2-MHz power carrier and 500-kHz uplink carrier) are used for the wireless power transmission and the uplink data transmission separately. In the experiments, the prototype of this link achieves as high as 65.72 dB improvement of the signal-to-interference ratio (SIR) compared with the conventional two-coil inductive link. Benefiting from the significant improvement of SIR, the implant transmitter costs only 0.2 mW of power carrying 50 kbps of binary phase shift keying data and gets a bit error rate of 1 × 10 - 7 , even though the coupling coefficient is as low as 0.005. At the same time, 5 mW is delivered to the load with maximum power transfer efficiency of 58.8%. This magnetic-balanced inductive link is useful for small-sized biomedical sensor devices, which require transmitting data and power simultaneously under ultra-weak coupling.
A Magnetic-Balanced Inductive Link for the Simultaneous Uplink Data and Power Telemetry
Directory of Open Access Journals (Sweden)
Chen Gong
2017-08-01
Full Text Available When using the conventional two-coil inductive link for the simultaneous wireless power and data transmissions in implantable biomedical sensor devices, the strong power carrier could overwhelm the uplink data signal and even saturate the external uplink receiver. To address this problem, we propose a new magnetic-balanced inductive link for our implantable glaucoma treatment device. In this inductive link, an extra coil is specially added for the uplink receiving. The strong power carrier interference is minimized to approach zero by balanced canceling of the magnetic field of the external power coil. The implant coil is shared by the wireless power harvesting and the uplink data transmitting. Two carriers (i.e., 2-MHz power carrier and 500-kHz uplink carrier are used for the wireless power transmission and the uplink data transmission separately. In the experiments, the prototype of this link achieves as high as 65.72 dB improvement of the signal-to-interference ratio (SIR compared with the conventional two-coil inductive link. Benefiting from the significant improvement of SIR, the implant transmitter costs only 0.2 mW of power carrying 50 kbps of binary phase shift keying data and gets a bit error rate of 1 × 10 − 7 , even though the coupling coefficient is as low as 0.005. At the same time, 5 mW is delivered to the load with maximum power transfer efficiency of 58.8%. This magnetic-balanced inductive link is useful for small-sized biomedical sensor devices, which require transmitting data and power simultaneously under ultra-weak coupling.
Directory of Open Access Journals (Sweden)
Hamed Piroozfard
2016-01-01
Full Text Available Scheduling is considered as an important topic in production management and combinatorial optimization in which it ubiquitously exists in most of the real-world applications. The attempts of finding optimal or near optimal solutions for the job shop scheduling problems are deemed important, because they are characterized as highly complex and NP-hard problems. This paper describes the development of a hybrid genetic algorithm for solving the nonpreemptive job shop scheduling problems with the objective of minimizing makespan. In order to solve the presented problem more effectively, an operation-based representation was used to enable the construction of feasible schedules. In addition, a new knowledge-based operator was designed based on the problem’s characteristics in order to use machines’ idle times to improve the solution quality, and it was developed in the context of function evaluation. A machine based precedence preserving order-based crossover was proposed to generate the offspring. Furthermore, a simulated annealing based neighborhood search technique was used to improve the local exploitation ability of the algorithm and to increase its population diversity. In order to prove the efficiency and effectiveness of the proposed algorithm, numerous benchmarked instances were collected from the Operations Research Library. Computational results of the proposed hybrid genetic algorithm demonstrate its effectiveness.
Directory of Open Access Journals (Sweden)
M. Fera
2018-09-01
Full Text Available Additive Manufacturing (AM is a process of joining materials to make objects from 3D model data, usually layer by layer, as opposed to subtractive manufacturing methodologies. Selective Laser Melting, commercially known as Direct Metal Laser Sintering (DMLS®, is the most diffused additive process in today’s manufacturing industry. Introduction of a DMLS® machine in a production department has remarkable effects not only on industrial design but also on production planning, for example, on machine scheduling. Scheduling for a traditional single machine can employ consolidated models. Scheduling of an AM machine presents new issues because it must consider the capability of producing different geometries, simultaneously. The aim of this paper is to provide a mathematical model for an AM/SLM machine scheduling. The complexity of the model is NP-HARD, so possible solutions must be found by metaheuristic algorithms, e.g., Genetic Algorithms. Genetic Algorithms solve sequential optimization problems by handling vectors; in the present paper, we must modify them to handle a matrix. The effectiveness of the proposed algorithms will be tested on a test case formed by a 30 Part Number production plan with a high variability in complexity, distinct due dates and low production volumes.
Rash, James
2014-01-01
NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial
Morrell, R. A.; Odoherty, R. J.; Ramsey, H. R.; Reynolds, C. C.; Willoughby, J. K.; Working, R. D.
1975-01-01
Data and analyses related to a variety of algorithms for solving typical large-scale scheduling and resource allocation problems are presented. The capabilities and deficiencies of various alternative problem solving strategies are discussed from the viewpoint of computer system design.
Directory of Open Access Journals (Sweden)
Chunfeng Liu
2013-01-01
Full Text Available The paper presents a novel hybrid genetic algorithm (HGA for a deterministic scheduling problem where multiple jobs with arbitrary precedence constraints are processed on multiple unrelated parallel machines. The objective is to minimize total tardiness, since delays of the jobs may lead to punishment cost or cancellation of orders by the clients in many situations. A priority rule-based heuristic algorithm, which schedules a prior job on a prior machine according to the priority rule at each iteration, is suggested and embedded to the HGA for initial feasible schedules that can be improved in further stages. Computational experiments are conducted to show that the proposed HGA performs well with respect to accuracy and efficiency of solution for small-sized problems and gets better results than the conventional genetic algorithm within the same runtime for large-sized problems.
International Nuclear Information System (INIS)
Kim, Dong Yun; Seong, Poong Hyun
1996-01-01
In this study, we proposed a fuzzy gain scheduler with intelligent learning algorithm for a reactor control. In the proposed algorithm, we used the gradient descent method to learn the rule bases of a fuzzy algorithm. These rule bases are learned toward minimizing an objective function, which is called a performance cost function. The objective of fuzzy gain scheduler with intelligent learning algorithm is the generation of adequate gains, which minimize the error of system. The condition of every plant is generally changed as time gose. That is, the initial gains obtained through the analysis of system are no longer suitable for the changed plant. And we need to set new gains, which minimize the error stemmed from changing the condition of a plant. In this paper, we applied this strategy for reactor control of nuclear power plant (NPP), and the results were compared with those of a simple PI controller, which has fixed gains. As a result, it was shown that the proposed algorithm was superior to the simple PI controller
Directory of Open Access Journals (Sweden)
Yao-Liang Chung
2016-11-01
Full Text Available The simultaneous aggregation of multiple component carriers (CCs for use by a base station constitutes one of the more promising strategies for providing substantially enhanced bandwidths for packet transmissions in 4th and 5th generation cellular systems. To the best of our knowledge, however, few previous studies have undertaken a thorough investigation of various performance aspects of the use of a simple yet effective packet scheduling algorithm in which multiple CCs are aggregated for transmission in such systems. Consequently, the present study presents an efficient packet scheduling algorithm designed on the basis of the proportional fair criterion for use in multiple-CC systems for downlink transmission. The proposed algorithm includes a focus on providing simultaneous transmission support for both real-time (RT and non-RT traffic. This algorithm can, when applied with sufficiently efficient designs, provide adequate utilization of spectrum resources for the purposes of transmissions, while also improving energy efficiency to some extent. According to simulation results, the performance of the proposed algorithm in terms of system throughput, mean delay, and fairness constitute substantial improvements over those of an algorithm in which the CCs are used independently instead of being aggregated.
Directory of Open Access Journals (Sweden)
Alexandr Victorovich Budylskiy
2014-06-01
Full Text Available This article considers the multicriteria optimization approach using the modified genetic algorithm to solve the project-scheduling problem under duration and cost constraints. The work contains the list of choices for solving this problem. The multicriteria optimization approach is justified here. The study describes the Pareto principles, which are used in the modified genetic algorithm. We identify the mathematical model of the project-scheduling problem. We introduced the modified genetic algorithm, the ranking strategies, the elitism approaches. The article includes the example.
An Efficient Randomized Algorithm for Real-Time Process Scheduling in PicOS Operating System
Helmy*, Tarek; Fatai, Anifowose; Sallam, El-Sayed
PicOS is an event-driven operating environment designed for use with embedded networked sensors. More specifically, it is designed to support the concurrency in intensive operations required by networked sensors with minimal hardware requirements. Existing process scheduling algorithms of PicOS; a commercial tiny, low-footprint, real-time operating system; have their associated drawbacks. An efficient, alternative algorithm, based on a randomized selection policy, has been proposed, demonstrated, confirmed for efficiency and fairness, on the average, and has been recommended for implementation in PicOS. Simulations were carried out and performance measures such as Average Waiting Time (AWT) and Average Turn-around Time (ATT) were used to assess the efficiency of the proposed randomized version over the existing ones. The results prove that Randomized algorithm is the best and most attractive for implementation in PicOS, since it is most fair and has the least AWT and ATT on average over the other non-preemptive scheduling algorithms implemented in this paper.
Recent Research Trends in Genetic Algorithm Based Flexible Job Shop Scheduling Problems
Amjad, Muhammad Kamal; Butt, Shahid Ikramullah; Kousar, Rubeena; Ahmad, Riaz; Agha, Mujtaba Hassan; Faping, Zhang; Anjum, Naveed; Asgher, Umer
2018-01-01
Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the classical Job Shop Scheduling Problem (JSSP). The FJSSP is known to be NP-hard problem with regard to optimization and it is very difficult to find reasonably accurate solutions of the problem instances in a rational time. Extensive research has been carried out in this area especially over the span of the last 20 years in which the hybrid approaches involving Genetic Algorithm (GA) have gained the most popularity. Keeping in...
A Heuristics Approach for Classroom Scheduling Using Genetic Algorithm Technique
Ahmad, Izah R.; Sufahani, Suliadi; Ali, Maselan; Razali, Siti N. A. M.
2018-04-01
Reshuffling and arranging classroom based on the capacity of the audience, complete facilities, lecturing time and many more may lead to a complexity of classroom scheduling. While trying to enhance the productivity in classroom planning, this paper proposes a heuristic approach for timetabling optimization. A new algorithm was produced to take care of the timetabling problem in a university. The proposed of heuristics approach will prompt a superior utilization of the accessible classroom space for a given time table of courses at the university. Genetic Algorithm through Java programming languages were used in this study and aims at reducing the conflicts and optimizes the fitness. The algorithm considered the quantity of students in each class, class time, class size, time accessibility in each class and lecturer who in charge of the classes.
Directory of Open Access Journals (Sweden)
Stanimirović Ivan
2009-01-01
Full Text Available We introduce a heuristic method for the single resource constrained project scheduling problem, based on the dynamic programming solution of the knapsack problem. This method schedules projects with one type of resources, in the non-preemptive case: once started an activity is not interrupted and runs to completion. We compare the implementation of this method with well-known heuristic scheduling method, called Minimum Slack First (known also as Gray-Kidd algorithm, as well as with Microsoft Project.
Minimum BER Receiver Filters with Block Memory for Uplink DS-CDMA Systems
Directory of Open Access Journals (Sweden)
Mérouane Debbah
2008-05-01
Full Text Available The problem of synchronous multiuser receiver design in the case of direct-sequence single-antenna code division multiple access (DS-CDMA uplink networks is studied over frequency selective fading channels. An exact expression for the bit error rate (BER is derived in the case of BPSK signaling. Moreover, an algorithm is proposed for finding the finite impulse response (FIR receiver filters with block memory such that the exact BER of the active users is minimized. Several properties of the minimum BER FIR filters with block memory are identified. The algorithm performance is found for scenarios with different channel qualities, spreading code lengths, receiver block memory size, near-far effects, and channel mismatch. For the BPSK constellation, the proposed FIR receiver structure with block memory has significant better BER with respect to Eb/N0 and near-far resistance than the corresponding minimum mean square error (MMSE filters with block memory.
Paksi, A. B. N.; Ma'ruf, A.
2016-02-01
In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.
Directory of Open Access Journals (Sweden)
Suresh K. Damodaran
2018-02-01
Full Text Available Hydro-thermal-wind generation scheduling (HTWGS with economic and environmental factors is a multi-objective complex nonlinear power system optimization problem with many equality and inequality constraints. The objective of the problem is to generate an hour-by-hour optimum schedule of hydro-thermal-wind power plants to attain the least emission of pollutants from thermal plants and a reduced generation cost of thermal and wind plants for a 24-h period, satisfying the system constraints. The paper presents a detailed framework of the HTWGS problem and proposes a modified particle swarm optimization (MPSO algorithm for evolving a solution. The competency of selected heuristic algorithms, representing different heuristic groups, viz. the binary coded genetic algorithm (BCGA, particle swarm optimization (PSO, improved harmony search (IHS, and JAYA algorithm, for searching for an optimal solution to HTWGS considering economic and environmental factors was investigated in a trial system consisting of a multi-stream cascaded system with four reservoirs, three thermal plants, and two wind plants. Appropriate mathematical models were used for representing the water discharge, generation cost, and pollutant emission of respective power plants incorporated in the system. Statistical analysis was performed to check the consistency and reliability of the proposed algorithm. The simulation results indicated that the proposed MPSO algorithm provided a better solution to the problem of HTWGS, with a reduced generation cost and the least emission, when compared with the other heuristic algorithms considered.
Xi, Songnan; Zoltowski, Michael D.
2008-04-01
Multiuser multiple-input multiple-output (MIMO) systems are considered in this paper. We continue our research on uplink transmit beamforming design for multiple users under the assumption that the full multiuser channel state information, which is the collection of the channel state information between each of the users and the base station, is known not only to the receiver but also to all the transmitters. We propose an algorithm for designing optimal beamforming weights in terms of maximizing the signal-to-interference-plus-noise ratio (SINR). Through statistical modeling, we decouple the original mathematically intractable optimization problem and achieved a closed-form solution. As in our previous work, the minimum mean-squared error (MMSE) receiver with successive interference cancellation (SIC) is adopted for multiuser detection. The proposed scheme is compared with an existing jointly optimized transceiver design, referred to as the joint transceiver in this paper, and our previously proposed eigen-beamforming algorithm. Simulation results demonstrate that our algorithm, with much less computational burden, accomplishes almost the same performance as the joint transceiver for spatially independent MIMO channel and even better performance for spatially correlated MIMO channels. And it always works better than our previously proposed eigen beamforming algorithm.
Directory of Open Access Journals (Sweden)
Chunhua Ju
2012-01-01
Full Text Available Managing multiple project is a complex task involving the unrelenting pressures of time and cost. Many studies have proposed various tools and techniques for single-project scheduling; however, the literature further considering multimode or multiproject issues occurring in the real world is rather scarce. In this paper, design structure matrix (DSM and an improved artificial immune network algorithm (aiNet are developed to solve a multi-mode resource-constrained scheduling problem. Firstly, the DSM is used to simplify the mathematic model of multi-project scheduling problem. Subsequently, aiNet algorithm comprised of clonal selection, negative selection, and network suppression is adopted to realize the local searching and global searching, which will assure that it has a powerful searching ability and also avoids the possible combinatorial explosion. Finally, the approach is tested on a set of randomly cases generated from ProGen. The computational results validate the effectiveness of the proposed algorithm comparing with other famous metaheuristic algorithms such as genetic algorithm (GA, simulated annealing algorithm (SA, and ant colony optimization (ACO.
A Local Search Algorithm for the Flow Shop Scheduling Problem with Release Dates
Directory of Open Access Journals (Sweden)
Tao Ren
2015-01-01
Full Text Available This paper discusses the flow shop scheduling problem to minimize the makespan with release dates. By resequencing the jobs, a modified heuristic algorithm is obtained for handling large-sized problems. Moreover, based on some properties, a local search scheme is provided to improve the heuristic to gain high-quality solution for moderate-sized problems. A sequence-independent lower bound is presented to evaluate the performance of the algorithms. A series of simulation results demonstrate the effectiveness of the proposed algorithms.
Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu
2015-12-01
For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
International Nuclear Information System (INIS)
Haroon, S.S.; Malik, T.N.
2017-01-01
Due to the increasing environmental concerns, the demand of clean and green energy and concern of atmospheric pollution is increasing. Hence, the power utilities are forced to limit their emissions within the prescribed limits. Therefore, the minimization of fuel cost as well as exhaust gas emissions is becoming an important and challenging task in the short-term scheduling of hydro-thermal energy systems. This paper proposes a novel algorithm known as WCA-ER (Water Cycle Algorithm with Evaporation Rate) to inspect the short term EEPSHES (Economic Emission Power Scheduling of Hydrothermal Energy Systems). WCA has its ancestries from the natural hydrologic cycle i.e. the raining process forms streams and these streams start flowing towards the rivers which finally flow towards the sea. The worth of WCA-ER has been tested on the standard economic emission power scheduling of hydrothermal energy test system consisting of four hydropower and three thermal plants. The problem has been investigated for the three case studies (i) ECS (Economic Cost Scheduling), (ii) ES (Economic Emission Scheduling) and (iii) ECES (Economic Cost and Emission Scheduling). The results obtained show that WCA-ER is superior to many other methods in the literature in bringing lower fuel cost and emissions. (author)
Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.
2017-08-01
This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.
DEFF Research Database (Denmark)
Muller, Laurent Flindt
2009-01-01
We present an application of an Adaptive Large Neighborhood Search (ALNS) algorithm to the Resource-constrained Project Scheduling Problem (RCPSP). The ALNS framework was first proposed by Pisinger and Røpke [19] and can be described as a large neighborhood search algorithm with an adaptive layer......, where a set of destroy/repair neighborhoods compete to modify the current solution in each iteration of the algorithm. Experiments are performed on the wellknown J30, J60 and J120 benchmark instances, which show that the proposed algorithm is competitive and confirms the strength of the ALNS framework...
Optimal Scheduling for Retrieval Jobs in Double-Deep AS/RS by Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Kuo-Yang Wu
2013-01-01
Full Text Available We investigate the optimal scheduling of retrieval jobs for double-deep type Automated Storage and Retrieval Systems (AS/RS in the Flexible Manufacturing System (FMS used in modern industrial production. Three types of evolutionary algorithms, the Genetic Algorithm (GA, the Immune Genetic Algorithm (IGA, and the Particle Swarm Optimization (PSO algorithm, are implemented to obtain the optimal assignments. The objective is to minimize the working distance, that is, the shortest retrieval time travelled by the Storage and Retrieval (S/R machine. Simulation results and comparisons show the advantages and feasibility of the proposed methods.
A genetic algorithm-based job scheduling model for big data analytics.
Lu, Qinghua; Li, Shanshan; Zhang, Weishan; Zhang, Lei
Big data analytics (BDA) applications are a new category of software applications that process large amounts of data using scalable parallel processing infrastructure to obtain hidden value. Hadoop is the most mature open-source big data analytics framework, which implements the MapReduce programming model to process big data with MapReduce jobs. Big data analytics jobs are often continuous and not mutually separated. The existing work mainly focuses on executing jobs in sequence, which are often inefficient and consume high energy. In this paper, we propose a genetic algorithm-based job scheduling model for big data analytics applications to improve the efficiency of big data analytics. To implement the job scheduling model, we leverage an estimation module to predict the performance of clusters when executing analytics jobs. We have evaluated the proposed job scheduling model in terms of feasibility and accuracy.
Joint User Scheduling and MU-MIMO Hybrid Beamforming Algorithm for mmWave FDMA Massive MIMO System
Directory of Open Access Journals (Sweden)
Jing Jiang
2016-01-01
Full Text Available The large bandwidth and multipath in millimeter wave (mmWave cellular system assure the existence of frequency selective channels; it is necessary that mmWave system remains with frequency division multiple access (FDMA and user scheduling. But for the hybrid beamforming system, the analog beamforming is implemented by the same phase shifts in the entire frequency band, and the wideband phase shifts may not be harmonious with all users scheduled in frequency resources. This paper proposes a joint user scheduling and multiuser hybrid beamforming algorithm for downlink massive multiple input multiple output (MIMO orthogonal frequency division multiple access (OFDMA systems. In the first step of user scheduling, the users with identical optimal beams form an OFDMA user group and multiplex the entire frequency resource. Then base station (BS allocates the frequency resources for each member of OFDMA user group. An OFDMA user group can be regarded as a virtual user; thus it can support arbitrary MU-MIMO user selection and beamforming algorithms. Further, the analog beamforming vectors employ the best beam of each selected MU-MIMO user and the digital beamforming algorithm is solved by weight MMSE to acquire the best performance gain and mitigate the interuser inference. Simulation results show that hybrid beamforming together with user scheduling can greatly improve the performance of mmWave OFDMA massive MU-MIMO system.
Directory of Open Access Journals (Sweden)
Maryam Mousavi
Full Text Available Flexible manufacturing system (FMS enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs. An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA, particle swarm optimization (PSO, and hybrid GA-PSO to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
Mousavi, Maryam; Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
Optimization of Task Scheduling Algorithm through QoS Parameters for Cloud Computing
Directory of Open Access Journals (Sweden)
Monika
2016-01-01
Full Text Available Cloud computing is an incipient innovation which broadly spreads among analysts. It furnishes clients with foundation, stage and programming as enhancement which is easily available by means of web. A cloud is a sort of parallel and conveyed framework comprising of a gathering of virtualized PCs that are utilized to execute various tasks to accomplish good execution time, accomplish due date and usage of its assets. The scheduling issue can be seen as the finding an ideal task of assignments over the accessible arrangement of assets with the goal that we can accomplish the wanted objectives for tasks. This paper presents an optimal algorithm for scheduling tasks to get their waiting time as a QoS parameter. The algorithm is simulated using Cloudsim simulator and experiments are carried out to help clients to make sense of the bottleneck of utilizing no. of virtual machine parallely.
A Multistage Decision-Feedback Receiver Design for LTE Uplink in Mobile Time-Variant Environments
Directory of Open Access Journals (Sweden)
Juinn-Horng Deng
2012-01-01
Full Text Available Single-carrier-frequency division multiple access (SC-FDMA has recently become the preferred uplink transmission scheme in long-term evolution (LTE systems. Similar to orthogonal frequency division multiple access (OFDMA, SC-FDMA is highly sensitive to frequency offsets caused by oscillator inaccuracies and Doppler spread, which lead to intercarrier interference (ICI. This work proposes a multistage decision-feedback structure to mitigate the ICI effect and enhance system performance in time-variant environments. Based on the block-type pilot arrangement of the LTE uplink type 1 frame structure, the time-domain least squares (TDLS method and polynomial-based curve-fitting algorithm are employed for channel estimation. Instead of using a conventional equalizer, this work uses a group frequency-domain equalizer (GFDE to reduce computational complexity. Furthermore, this work utilizes a dual iterative structure of group parallel interference cancellation (GPIC and frequency-domain group parallel interference cancellation (FPIC to mitigate the ICI effect. Finally, to optimize system performance, this work applies a novel error-correction scheme. Simulation results demonstrate the bit error rate (BER performance is markedly superior to that of the conventional full-size receiver based on minimum mean square error (MMSE. This structure performs well and is a flexible choice in mobile environments using the SC-FDMA scheme.
A coalition formation game for transmitter cooperation in OFDMA uplink communications
Chelli, Ali
2014-12-01
The SC-FDMA (single-carrier frequency division multiple access) is the access scheme that has been adopted by 3GPP (3rd generation partnership project) for the LTE (long term evolution) uplink. The SC-FDMA is an attractive alternative to OFDMA (orthogonal frequency-division multiple access) especially on the uplink owing to its low peak-to-average power ratio. This fact increases the power efficiency and reduces the cost of the power amplifiers at the mobile terminals. The use of SC-FDMA on the uplink implies that for highly loaded cells the base station allocates a single subcarrier to each user. This results in the limitation of the achievable rate on the uplink. In this work, we propose a coalition game between mobile terminals that allows them to improve their performance by sharing their subcarriers without creating any interference to each other. The proposed scheme allows a fair use of the subcarriers and leads to a significant capacity gain for each user. The cooperation between the nodes is modelled using coalitional game theory. In this game, each coalition tries to maximize its utility in terms of rate. In the absence of cooperation cost, it can be shown that the grand coalition is sum-rate optimal and stable, i.e., the mobile terminals have no incentive to leave the grand coalition.
Directory of Open Access Journals (Sweden)
Laxmi A. Bewoor
2017-10-01
Full Text Available The no-wait flow shop is a flowshop in which the scheduling of jobs is continuous and simultaneous through all machines without waiting for any consecutive machines. The scheduling of a no-wait flow shop requires finding an appropriate sequence of jobs for scheduling, which in turn reduces total processing time. The classical brute force method for finding the probabilities of scheduling for improving the utilization of resources may become trapped in local optima, and this problem can hence be observed as a typical NP-hard combinatorial optimization problem that requires finding a near optimal solution with heuristic and metaheuristic techniques. This paper proposes an effective hybrid Particle Swarm Optimization (PSO metaheuristic algorithm for solving no-wait flow shop scheduling problems with the objective of minimizing the total flow time of jobs. This Proposed Hybrid Particle Swarm Optimization (PHPSO algorithm presents a solution by the random key representation rule for converting the continuous position information values of particles to a discrete job permutation. The proposed algorithm initializes population efficiently with the Nawaz-Enscore-Ham (NEH heuristic technique and uses an evolutionary search guided by the mechanism of PSO, as well as simulated annealing based on a local neighborhood search to avoid getting stuck in local optima and to provide the appropriate balance of global exploration and local exploitation. Extensive computational experiments are carried out based on Taillard’s benchmark suite. Computational results and comparisons with existing metaheuristics show that the PHPSO algorithm outperforms the existing methods in terms of quality search and robustness for the problem considered. The improvement in solution quality is confirmed by statistical tests of significance.
Interference management with partial uplink/downlink spectrum overlap
Randrianantenaina, Itsikiantsoa; Elsawy, Hesham; Dahrouj, Hayssam; Alouini, Mohamed-Slim
2016-01-01
Simultaneous reuse of spectral resources by uplink and downlink, denoted as in-band full duplex (FD) communication, is promoted to double the spectral efficiency when compared to its half-duplex (HD) counterpart. Interference management, however
A Reputation-based Distributed District Scheduling Algorithm for Smart Grids
Directory of Open Access Journals (Sweden)
D. Borra
2015-05-01
Full Text Available In this paper we develop and test a distributed algorithm providing Energy Consumption Schedules (ECS in smart grids for a residential district. The goal is to achieve a given aggregate load prole. The NP-hard constrained optimization problem reduces to a distributed unconstrained formulation by means of Lagrangian Relaxation technique, and a meta-heuristic algorithm based on a Quantum inspired Particle Swarm with Levy flights. A centralized iterative reputation-reward mechanism is proposed for end-users to cooperate to avoid power peaks and reduce global overload, based on random distributions simulating human behaviors and penalties on the eective ECS diering from the suggested ECS. Numerical results show the protocols eectiveness.
Buddala, Raviteja; Mahapatra, Siba Sankar
2017-11-01
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.
Expert System and Heuristics Algorithm for Cloud Resource Scheduling
Directory of Open Access Journals (Sweden)
Mamatha E
2017-03-01
Full Text Available Rule-based scheduling algorithms have been widely used on cloud computing systems and there is still plenty of room to improve their performance. This paper proposes to develop an expert system to allocate resources in cloud by using Rule based Algorithm, thereby measuring the performance of the system by letting the system adapt new rules based on the feedback. Here performance of the action helps to make better allocation of the resources to improve quality of services, scalability and flexibility. The performance measure is based on how the allocation of the resources is dynamically optimized and how the resources are utilized properly. It aims to maximize the utilization of the resources. The data and resource are given to the algorithm which allocates the data to resources and an output is obtained based on the action occurred. Once the action is completed, the performance of every action is measured that contains how the resources are allocated and how efficiently it worked. In addition to performance, resource allocation in cloud environment is also considered.
Semi-online preemptive scheduling: one algorithm for all variants
Czech Academy of Sciences Publication Activity Database
Ebenlendr, Tomáš; Sgall, J.
2011-01-01
Roč. 48, č. 3 (2011), s. 577-613 ISSN 1432-4350. [26th International Symposium on Theoretical Aspects of Computer Science. Freiburg, 26.02.2009-28.02.2009] R&D Projects: GA AV ČR IAA100190902; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : online algorithms * scheduling * preemption * linear program Subject RIV: BA - General Mathematics Impact factor: 0.442, year: 2011 http://www.springerlink.com/content/k66u6tv1l7731654/
Rolling scheduling of electric power system with wind power based on improved NNIA algorithm
Xu, Q. S.; Luo, C. J.; Yang, D. J.; Fan, Y. H.; Sang, Z. X.; Lei, H.
2017-11-01
This paper puts forth a rolling modification strategy for day-ahead scheduling of electric power system with wind power, which takes the operation cost increment of unit and curtailed wind power of power grid as double modification functions. Additionally, an improved Nondominated Neighbor Immune Algorithm (NNIA) is proposed for solution. The proposed rolling scheduling model has further improved the operation cost of system in the intra-day generation process, enhanced the system’s accommodation capacity of wind power, and modified the key transmission section power flow in a rolling manner to satisfy the security constraint of power grid. The improved NNIA algorithm has defined an antibody preference relation model based on equal incremental rate, regulation deviation constraints and maximum & minimum technical outputs of units. The model can noticeably guide the direction of antibody evolution, and significantly speed up the process of algorithm convergence to final solution, and enhance the local search capability.
Directory of Open Access Journals (Sweden)
He Chuan
2012-01-01
Full Text Available The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA. Then, a novel swarm intelligence algorithm named propagation algorithm (PA is combined with the key node search algorithm (KNSA to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible.
Scheduling Diet for Diabetes Mellitus Patients using Genetic Algorithm
Syahputra, M. F.; Felicia, V.; Rahmat, R. F.; Budiarto, R.
2017-01-01
Diabetes Melitus (DM) is one of metabolic diseases which affects on productivity and lowers the human resources quality. This disease can be controlled by maintaining and regulating balanced and healthy lifestyle especially for daily diet. However, nowadays, there is no system able to help DM patient to get any information of proper diet. Therefore, an approach is required to provide scheduling diet every day in a week with appropriate nutrition for DM patients to help them regulate their daily diet for healing this disease. In this research, we calculate the number of caloric needs using Harris-Benedict equation and propose genetic algorithm for scheduling diet for DM patient. The results show that the greater the number of individuals, the greater the more the possibility of changes in fitness score approaches the best fitness score. Moreover, the greater the created generation, the more the opportunites to obtain best individual with fitness score approaching 0 or equal to 0.
An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints
Directory of Open Access Journals (Sweden)
Yunqing Rao
2013-01-01
Full Text Available For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.
An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.
Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm
Lingna He; Qingshui Li; Linan Zhu
2012-01-01
In order to replace the traditional Internet software usage patterns and enterprise management mode, this paper proposes a new business calculation mode- cloud computing, resources scheduling strategy is the key technology in cloud computing, Based on the study of cloud computing system structure and the mode of operation, The key research for cloud computing the process of the work scheduling and resource allocation problems based on ant colony algorithm , Detailed analysis and design of the...
An Algorithm for the Weighted Earliness-Tardiness Unconstrained Project Scheduling Problem
Afshar Nadjafi, Behrouz; Shadrokh, Shahram
This research considers a project scheduling problem with the object of minimizing weighted earliness-tardiness penalty costs, taking into account a deadline for the project and precedence relations among the activities. An exact recursive method has been proposed for solving the basic form of this problem. We present a new depth-first branch and bound algorithm for extended form of the problem, which time value of money is taken into account by discounting the cash flows. The algorithm is extended with two bounding rules in order to reduce the size of the branch and bound tree. Finally, some test problems are solved and computational results are reported.
Optimization of operating schedule of machines in granite industry using evolutionary algorithms
International Nuclear Information System (INIS)
Loganthurai, P.; Rajasekaran, V.; Gnanambal, K.
2014-01-01
Highlights: • Operating time of machines in granite industries was studied. • Operating time has been optimized using evolutionary algorithms such as PSO, DE. • The maximum demand has been reduced. • Hence the electricity cost of the industry and feeder stress have been reduced. - Abstract: Electrical energy consumption cost plays an important role in the production cost of any industry. The electrical energy consumption cost is calculated as two part tariff, the first part is maximum demand cost and the second part is energy consumption cost or unit cost (kW h). The maximum demand cost can be reduced without affecting the production. This paper focuses on the reduction of maximum demand by proper operating schedule of major equipments. For this analysis, various granite industries are considered. The major equipments in granite industries are cutting machine, polishing machine and compressor. To reduce the maximum demand, the operating time of polishing machine is rescheduled by optimization techniques such as Differential Evolution (DE) and particle swarm optimization (PSO). The maximum demand costs are calculated before and after rescheduling. The results show that if the machines are optimally operated, the cost is reduced. Both DE and PSO algorithms reduce the maximum demand cost at the same rate for all the granite industries. However, the optimum scheduling obtained by DE reduces the feeder power flow than the PSO scheduling
Comparison of a constraint directed search to a genetic algorithm in a scheduling application
International Nuclear Information System (INIS)
Abbott, L.
1993-01-01
Scheduling plutonium containers for blending is a time-intensive operation. Several constraints must be taken into account; including the number of containers in a dissolver run, the size of each dissolver run, and the size and target purity of the blended mixture formed from these runs. Two types of algorithms have been used to solve this problem: a constraint directed search and a genetic algorithm. This paper discusses the implementation of these two different approaches to the problem and the strengths and weaknesses of each algorithm
Generator scheduling under competitive environment using Memory Management Algorithm
Directory of Open Access Journals (Sweden)
A. Amudha
2013-09-01
Full Text Available This paper presents a new approach for Real-Time Application of Profit Based Unit Commitment using Memory Management Algorithm. The main objective of the restructured system is to maximize its own profit without the responsibility of satisfying the forecasted demand. The Profit Based Unit Commitment (PBUC is solved by Memory Management Algorithm (MMA in Real-Time Application. MMA approach is introduced in this paper considering power and reserve generation. The proposed method MMA uses Best Fit and Worst Fit allocation for generator scheduling in order to receive the maximum profit by considering the softer demand. Also, this method gives an idea regarding how much power and reserve should be sold in markets. The proposed approach has been tested on a power system with 2, 3, and 10 generating units. Simulation results of the proposed approach have been compared with the existing methods.
Shibli, Hussain J.; Eltayeb, Mohammed E.; Al-Naffouri, Tareq Y.
2013-01-01
challenges are faced during uplink transmission. First of all, the statistics of the noisy and fading feedback channels are unknown at the base station (BS) and channel training is usually required from all users. Secondly, the amount of network resources
Research on Arrival/Departure Scheduling of Flights on Multirunways Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Hang Zhou
2014-01-01
Full Text Available Aiming at the phenomenon of a large number of flight delays in the terminal area makes a reasonable scheduling for the approach and departure flights, which will minimize flight delay losses and improve runway utilization. This paper considered factors such as operating conditions and safety interval of multi runways; the maximum throughput and minimum flight delay losses as well as robustness were taken as objective functions; the model of optimization scheduling of approach and departure flights was established. Finally, the genetic algorithm was introduced to solve the model. The results showed that, in the program whose advance is not counted as a loss, its runway throughput is improved by 18.4%, the delay losses are reduced by 85.8%, and the robustness is increased by 20% compared with the results of FCFS (first come first served algorithm, while, compared with the program whose advance is counted as a loss, the runway throughput is improved by 15.16%, flight delay losses are decreased by 75.64%, and the robustness is also increased by 20%. The algorithm can improve the efficiency and reduce delay losses effectively and reduce the workload of controllers, thereby improving economic results.
Constraint-based job shop scheduling with ILOG SCHEDULER
Nuijten, W.P.M.; Le Pape, C.
1998-01-01
We introduce constraint-based scheduling and discuss its main principles. An approximation algorithm based on tree search is developed for the job shop scheduling problem using ILOG SCHEDULER. A new way of calculating lower bounds on the makespan of the job shop scheduling problem is presented and
Directory of Open Access Journals (Sweden)
Julien Maheut
2013-07-01
Full Text Available Purpose: The purpose of this paper is to present an algorithm that solves the supply network configuration and operations scheduling problem in a mass customization company that faces alternative operations for one specific tool machine order in a multiplant context. Design/methodology/approach: To achieve this objective, the supply chain network configuration and operations scheduling problem is presented. A model based on stroke graphs allows the design of an algorithm that enumerates all the feasible solutions. The algorithm considers the arrival of a new customized order proposal which has to be inserted into a scheduled program. A selection function is then used to choose the solutions to be simulated in a specific simulation tool implemented in a Decision Support System. Findings and Originality/value: The algorithm itself proves efficient to find all feasible solutions when alternative operations must be considered. The stroke structure is successfully used to schedule operations when considering more than one manufacturing and supply option in each step. Research limitations/implications: This paper includes only the algorithm structure for a one-by-one, sequenced introduction of new products into the list of units to be manufactured. Therefore, the lotsizing process is done on a lot-per-lot basis. Moreover, the validation analysis is done through a case study and no generalization can be done without risk. Practical implications: The result of this research would help stakeholders to determine all the feasible and practical solutions for their problem. It would also allow to assessing the total costs and delivery times of each solution. Moreover, the Decision Support System proves useful to assess alternative solutions. Originality/value: This research offers a simple algorithm that helps solve the supply network configuration problem and, simultaneously, the scheduling problem by considering alternative operations. The proposed system
Scheduling Two-Sided Transformations Using Tile Algorithms on Multicore Architectures
Directory of Open Access Journals (Sweden)
Hatem Ltaief
2010-01-01
Full Text Available The objective of this paper is to describe, in the context of multicore architectures, three different scheduler implementations for the two-sided linear algebra transformations, in particular the Hessenberg and Bidiagonal reductions which are the first steps for the standard eigenvalue problems and the singular value decompositions respectively. State-of-the-art dense linear algebra softwares, such as the LAPACK and ScaLAPACK libraries, suffer performance losses on multicore processors due to their inability to fully exploit thread-level parallelism. At the same time the fine-grain dataflow model gains popularity as a paradigm for programming multicore architectures. Buttari et al. (Parellel Comput. Syst. Appl. 35 (2009, 38–53 introduced the concept of tile algorithms in which parallelism is no longer hidden inside Basic Linear Algebra Subprograms but is brought to the fore to yield much better performance. Along with efficient scheduling mechanisms for data-driven execution, these tile two-sided reductions achieve high performance computing by reaching up to 75% of the DGEMM peak on a 12000×12000 matrix with 16 Intel Tigerton 2.4 GHz processors. The main drawback of the tile algorithms approach for two-sided transformations is that the full reduction cannot be obtained in one stage. Other methods have to be considered to further reduce the band matrices to the required forms.
Performance Evaluation of Bidding-Based Multi-Agent Scheduling Algorithms for Manufacturing Systems
Directory of Open Access Journals (Sweden)
Antonio Gordillo
2014-10-01
Full Text Available Artificial Intelligence techniques have being applied to many problems in manufacturing systems in recent years. In the specific field of manufacturing scheduling many studies have been published trying to cope with the complexity of the manufacturing environment. One of the most utilized approaches is (multi agent-based scheduling. Nevertheless, despite the large list of studies reported in this field, there is no resource or scientific study on the performance measure of this type of approach under very common and critical execution situations. This paper focuses on multi-agent systems (MAS based algorithms for task allocation, particularly in manufacturing applications. The goal is to provide a mechanism to measure the performance of agent-based scheduling approaches for manufacturing systems under key critical situations such as: dynamic environment, rescheduling, and priority change. With this mechanism it will be possible to simulate critical situations and to stress the system in order to measure the performance of a given agent-based scheduling method. The proposed mechanism is a pioneering approach for performance evaluation of bidding-based MAS approaches for manufacturing scheduling. The proposed method and evaluation methodology can be used to run tests in different manufacturing floors since it is independent of the workshop configuration. Moreover, the evaluation results presented in this paper show the key factors and scenarios that most affect the market-like MAS approaches for manufacturing scheduling.
Codebook-based interference alignment for uplink MIMO interference channels
Lee, Hyun Ho; Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim
2014-01-01
In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multipleoutput (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base
A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.
Li, Bin-Bin; Wang, Ling
2007-06-01
This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.
An Optimal Scheduling Algorithm with a Competitive Factor for Real-Time Systems
1991-07-29
real - time systems in which the value of a task is proportional to its computation time. The system obtains the value of a given task if the task completes by its deadline. Otherwise, the system obtains no value for the task. When such a system is underloaded (i.e. there exists a schedule for which all tasks meet their deadlines), Dertouzos [6] showed that the earliest deadline first algorithm will achieve 100% of the possible value. We consider the case of a possibly overloaded system and present an algorithm which: 1. behaves like the earliest deadline first
Decoupling algorithms from schedules for easy optimization of image processing pipelines
Adams, Andrew; Paris, Sylvain; Levoy, Marc; Ragan-Kelley, Jonathan Millar; Amarasinghe, Saman P.; Durand, Fredo
2012-01-01
Using existing programming tools, writing high-performance image processing code requires sacrificing readability, portability, and modularity. We argue that this is a consequence of conflating what computations define the algorithm, with decisions about storage and the order of computation. We refer to these latter two concerns as the schedule, including choices of tiling, fusion, recomputation vs. storage, vectorization, and parallelism. We propose a representation for feed-forward imagi...
Directory of Open Access Journals (Sweden)
Qianwang Deng
2017-01-01
Full Text Available Flexible job-shop scheduling problem (FJSP is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II for multiobjective FJSP (MO-FJSP with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.
Deng, Qianwang; Gong, Guiliang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua
2017-01-01
Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N , in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.
Elsawy, Hesham
2014-08-01
Using stochastic geometry, we develop a tractable uplink modeling paradigm for outage probability and spectral efficiency in both single and multi-tier cellular wireless networks. The analysis accounts for per user equipment (UE) power control as well as the maximum power limitations for UEs. More specifically, for interference mitigation and robust uplink communication, each UE is required to control its transmit power such that the average received signal power at its serving base station (BS) is equal to a certain threshold ρo. Due to the limited transmit power, the UEs employ a truncated channel inversion power control policy with a cutoff threshold of ρo. We show that there exists a transfer point in the uplink system performance that depends on the following tuple: BS intensity λ, maximum transmit power of UEs Pu, and ρo. That is, when Pu is a tight operational constraint with respect to (w.r.t.) λ and ρo, the uplink outage probability and spectral efficiency highly depend on the values of λ and ρo. In this case, there exists an optimal cutoff threshold ρ*o, which depends on the system parameters, that minimizes the outage probability. On the other hand, when Pu is not a binding operational constraint w.r.t. λ and ρo, the uplink outage probability and spectral efficiency become independent of λ and ρo. We obtain approximate yet accurate simple expressions for outage probability and spectral efficiency, which reduce to closed forms in some special cases. © 2002-2012 IEEE.
Research on Scheduling Algorithm for Multi-satellite and Point Target Task on Swinging Mode
Wang, M.; Dai, G.; Peng, L.; Song, Z.; Chen, G.
2012-12-01
and negative swinging angle and the computation of time window are analyzed and discussed. And many strategies to improve the efficiency of this model are also put forward. In order to solve the model, we bring forward the conception of activity sequence map. By using the activity sequence map, the activity choice and the start time of the activity can be divided. We also bring forward three neighborhood operators to search the result space. The front movement remaining time and the back movement remaining time are used to analyze the feasibility to generate solution from neighborhood operators. Lastly, the algorithm to solve the problem and model is put forward based genetic algorithm. Population initialization, crossover operator, mutation operator, individual evaluation, collision decrease operator, select operator and collision elimination operator is designed in the paper. Finally, the scheduling result and the simulation for a practical example on 5 satellites and 100 point targets with swinging mode is given, and the scheduling performances are also analyzed while the swinging angle in 0, 5, 10, 15, 25. It can be shown by the result that the model and the algorithm are more effective than those ones without swinging mode.
Li, Wenhao
2011-01-01
Distributed workflow technology has been widely used in modern education and e-business systems. Distributed web applications have shown cross-domain and cooperative characteristics to meet the need of current distributed workflow applications. In this paper, the author proposes a dynamic and adaptive scheduling algorithm PCSA (Pre-Calculated…
Replacing the CCSDS Telecommand Protocol with the Next Generation Uplink (NGU)
Kazz, Greg J.; Greenberg, Ed; Burleigh, Scott C.
2012-01-01
The current CCSDS Telecommand (TC) Recommendations 1-3 have essentially been in use since the early 1960s. The purpose of this paper is to propose a successor protocol to TC. The current CCSDS recommendations can only accommodate telecommand rates up to approximately 1 mbit/s. However today's spacecraft are storehouses for software including software for Field Programmable Gate Arrays (FPGA) which are rapidly replacing unique hardware systems. Changes to flight software occasionally require uplinks to deliver very large volumes of data. In the opposite direction, high rate downlink missions that use acknowledged CCSDS File Delivery Protocol (CFDP)4 will increase the uplink data rate requirements. It is calculated that a 5 mbits/s downlink could saturate a 4 kbits/s uplink with CFDP downlink responses: negative acknowledgements (NAKs), FINISHs, End-of-File (EOF), Acknowledgements (ACKs). Moreover, it is anticipated that uplink rates of 10 to 20 mbits/s will be required to support manned missions. The current TC recommendations cannot meet these new demands. Specifically, they are very tightly coupled to the Bose-Chaudhuri-Hocquenghem (BCH) code in Ref. 2. This protocol requires that an uncorrectable BCH codeword delimit the TC frame and terminate the randomization process. This method greatly limits telecom performance since only the BCH code can support the protocol. More modern techniques such as the CCSDS Low Density Parity Check (LDPC)5 codes can provide a minimum performance gain of up to 6 times higher command data rates as long as sufficient power is available in the data. This paper will describe the proposed protocol format, trade-offs, and advantages offered, along with a discussion of how reliable communications takes place at higher nominal rates.
A Practical Framework to Study Low-Power Scheduling Algorithms on Real-Time and Embedded Systems
Directory of Open Access Journals (Sweden)
Jian (Denny Lin
2014-05-01
Full Text Available With the advanced technology used to design VLSI (Very Large Scale Integration circuits, low-power and energy-efficiency have played important roles for hardware and software implementation. Real-time scheduling is one of the fields that has attracted extensive attention to design low-power, embedded/real-time systems. The dynamic voltage scaling (DVS and CPU shut-down are the two most popular techniques used to design the algorithms. In this paper, we firstly review the fundamental advances in the research of energy-efficient, real-time scheduling. Then, a unified framework with a real Intel PXA255 Xscale processor, namely real-energy, is designed, which can be used to measure the real performance of the algorithms. We conduct a case study to evaluate several classical algorithms by using the framework. The energy efficiency and the quantitative difference in their performance, as well as the practical issues found in the implementation of these algorithms are discussed. Our experiments show a gap between the theoretical and real results. Our framework not only gives researchers a tool to evaluate their system designs, but also helps them to bridge this gap in their future works.
Energy Technology Data Exchange (ETDEWEB)
Yadav, Parikshit; Kumar, Rajesh; Panda, S.K.; Chang, C.S. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)
2011-02-15
Harmony Search (HS) algorithm is music based meta-heuristic optimization method which is analogous with the music improvisation process where musician continue to polish the pitches in order to obtain better harmony. The paper focuses on the optimal scheduling of the generators to reduce the fuel consumption in the oil rig platform. The accurate modeling of the specific fuel consumption is significant in this optimization. The specific fuel consumption has been modeled using cubic spline interpolation. The SFC curve is non-linear and discrete in nature, hence conventional methods fail to give optimal solution. HS algorithm has been used for optimal scheduling of the generators of both equal and unequal rating. Furthermore an Improved Harmony Search (IHS) method for generating new solution vectors that enhances accuracy and convergence rate of HS has been employed. The paper also focuses on the impacts of constant parameters on Harmony Search algorithm. Numerical results show that the IHS method has good convergence property. Moreover, the fuel consumption for IHS algorithm is lower when compared to HS and other heuristic or deterministic methods and is a powerful search algorithm for various engineering optimization problems. (author)
International Nuclear Information System (INIS)
Yadav, Parikshit; Kumar, Rajesh; Panda, S.K.; Chang, C.S.
2011-01-01
Harmony Search (HS) algorithm is music based meta-heuristic optimization method which is analogous with the music improvisation process where musician continue to polish the pitches in order to obtain better harmony. The paper focuses on the optimal scheduling of the generators to reduce the fuel consumption in the oil rig platform. The accurate modeling of the specific fuel consumption is significant in this optimization. The specific fuel consumption has been modeled using cubic spline interpolation. The SFC curve is non-linear and discrete in nature, hence conventional methods fail to give optimal solution. HS algorithm has been used for optimal scheduling of the generators of both equal and unequal rating. Furthermore an Improved Harmony Search (IHS) method for generating new solution vectors that enhances accuracy and convergence rate of HS has been employed. The paper also focuses on the impacts of constant parameters on Harmony Search algorithm. Numerical results show that the IHS method has good convergence property. Moreover, the fuel consumption for IHS algorithm is lower when compared to HS and other heuristic or deterministic methods and is a powerful search algorithm for various engineering optimization problems.
Scheduling language and algorithm development study. Appendix: Study approach and activity summary
1974-01-01
The approach and organization of the study to develop a high level computer programming language and a program library are presented. The algorithm and problem modeling analyses are summarized. The approach used to identify and specify the capabilities required in the basic language is described. Results of the analyses used to define specifications for the scheduling module library are presented.
Directory of Open Access Journals (Sweden)
Khaled Alhamad
2015-01-01
Full Text Available This paper describes a method developed to schedule the preventive maintenance tasks of the generation and desalination units in separate and linked cogeneration plants provided that all the necessary maintenance and production constraints are satisfied. The proposed methodology is used to generate two preventing maintenance schedules, one for electricity and the other for distiller. Two types of crossover operators were adopted, 2-point and 4-point. The objective function of the model is to maximize the available number of operational units in each plant. The results obtained were satisfying the problem parameters. However, 4-point slightly produce better solution than 2-point ones for both electricity and water distiller. The performance as well as the effectiveness of the genetic algorithm in solving preventive maintenance scheduling is applied and tested on a real system of 21 units for electricity and 21 units for water. The results presented here show a great potential for utility applications for effective energy management over a time horizon of 52 weeks. The model presented is an effective decision tool that optimizes the solution of the maintenance scheduling problem for cogeneration plants under maintenance and production constraints.
Chen, Jung-Chieh
This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.
Nicolaou, M; Doufexi, A; Armour, SMD; Sun, Y
2011-01-01
The joint use of opportunistic scheduling and orthogonal frequency division multiple access (OFDMA) provide significant gains in environments of low mobility and scatter for which channel variations are low. The downside of opportunistic scheduling in multicarrier systems such as OFDMA, lies in the substantial uplink overhead required to feed back by the mobile stations (MSs) describing users' instantaneous link conditions. This study presents a novel approach towards multicarrier opportunist...
International Nuclear Information System (INIS)
Dong Yun Kim; Poong Hyun Seong; .
1997-01-01
In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate gains, which minimize the error of system. The proposed algorithm can reduce the time and effort required for obtaining the fuzzy rules through the intelligent learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller. (author)
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Directory of Open Access Journals (Sweden)
Mohammed Abdullahi
Full Text Available Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS has been shown to perform competitively with Particle Swarm Optimization (PSO. The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA based SOS (SASOS in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Directory of Open Access Journals (Sweden)
VARUN JEOTI
2011-12-01
Full Text Available High peak-to-average power ratio (PAPR reduction is one of the major challenges in orthogonal frequency division multiple access (OFDMA systems since last decades. High PAPR increases the complexity of analogue-to-digital (A/D and digital-to-analogue (D/A convertors and also reduces the efficiency of RF high-power-amplifier (HPA. In this paper, we present a new Discrete- Hartley transform (DHT precoding based interleaved-OFDMA uplink system for PAPR reduction in the upcoming 4G cellular networks. Extensive computer simulations have been performed to analyze the PAPR of the proposed system with root-raised-cosine (RRC pulse shaping. We also compare simulation results of the proposed system with the conventional interleaved-OFDMA uplink systems and the Walsh-Hadamard transform (WHT precoding based interleaved-OFDMA uplink systems. It is concluded from the computer simulations that the proposed system has low PAPR as compared to the conventional interleaved-OFDMA uplink systems and the WHT precoded interleaved-OFDMA uplink systems.
An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks
Directory of Open Access Journals (Sweden)
Joseph Oyewale
2013-06-01
Full Text Available With high speed access network technology like WIMAX, there is the need for efficient management of radio resources where the throughput and Qos requirements for Multicasting Broadcasting Services (MBS for example TV are to be met. An enhanced feedback-base downlink Packet scheduling algorithm that can be used in IEEE 802.16d/e networks for mobile TV “one way traffic”(MBS is needed to support many users utilizing multiuser diversity of the broadband of WIMAX systems where a group of users(good/worst channels share allocated resources (bandwidth. This paper proposes a WIMAX framework feedback-base (like a channel-awareness downlink packet scheduling algorithm for Mobile TV traffics in IEEE806.16, in which network Physical Timing Slots (PSs resource blocks are allocated in a dynamic way to mobile TV subscribers based on the Channel State information (CSI feedback, and then considering users with worst channels with the aim of improving system throughput while system coverage is being guaranteed. The algorithm was examined by changing the PSs bandwidth allocation of the users and different number of users of a cell. Simulation results show our proposed algorithm performed better than other algorithms (blind algorithms in terms of improvement in system throughput performance. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso
Directory of Open Access Journals (Sweden)
Tao Ren
2014-01-01
Full Text Available We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.
Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang
2014-01-01
We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.
A branch-and-price algorithm for the long-term home care scheduling problem
DEFF Research Database (Denmark)
Gamst, Mette; Jensen, Thomas Sejr
2012-01-01
In several countries, home care is provided for certain citizens living at home. The long-term home care scheduling problem is to generate work plans such that a high quality of service is maintained, the work hours of the employees are respected, and the overall cost is kept as low as possible. We...... propose a branchand-price algorithm for the long-term home care scheduling problem. The pricing problem generates a one-day plan for an employee, and the master problem merges the plans with respect to regularity constraints. The method is capable of generating plans with up to 44 visits during one week....
Directory of Open Access Journals (Sweden)
Weizhe Zhang
2014-01-01
Full Text Available Energy consumption in computer systems has become a more and more important issue. High energy consumption has already damaged the environment to some extent, especially in heterogeneous multiprocessors. In this paper, we first formulate and describe the energy-aware real-time task scheduling problem in heterogeneous multiprocessors. Then we propose a particle swarm optimization (PSO based algorithm, which can successfully reduce the energy cost and the time for searching feasible solutions. Experimental results show that the PSO-based energy-aware metaheuristic uses 40%–50% less energy than the GA-based and SFLA-based algorithms and spends 10% less time than the SFLA-based algorithm in finding the solutions. Besides, it can also find 19% more feasible solutions than the SFLA-based algorithm.
Directory of Open Access Journals (Sweden)
Jinwei Gu
2015-01-01
Full Text Available A mutualism quantum genetic algorithm (MQGA is proposed for an integrated supply chain scheduling with the materials pickup, flow shop scheduling, and the finished products delivery. The objective is to minimize the makespan, that is, the arrival time of the last finished product to the customer. In MQGA, a new symbiosis strategy named mutualism is proposed to adjust the size of each population dynamically by regarding the mutual influence relation of the two subpopulations. A hybrid Q-bit coding method and a local speeding-up method are designed to increase the diversity of genes, and a checking routine is carried out to ensure the feasibility of each solution; that is, the total physical space of each delivery batch could not exceed the capacity of the vehicle. Compared with the modified genetic algorithm (MGA and the quantum-inspired genetic algorithm (QGA, the effectiveness and efficiency of the MQGA are validated by numerical experiments.
Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao
2016-01-01
Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.
Zhou, Ji; Qiao, Yaojun
2015-09-01
In this Letter, we propose a discrete Hartley transform (DHT)-spread asymmetrically clipped optical orthogonal frequency-division multiplexing (DHT-S-ACO-OFDM) uplink transmission scheme in which the multiplexing/demultiplexing process also uses the DHT algorithm. By designing a simple encoding structure, the computational complexity of the transmitter can be reduced from O(Nlog(2)(N)) to O(N). At the probability of 10(-3), the peak-to-average power ratio (PAPR) of 2-ary pulse amplitude modulation (2-PAM)-modulated DHT-S-ACO-OFDM is approximately 9.7 dB lower than that of 2-PAM-modulated conventional ACO-OFDM. To verify the feasibility of the proposed scheme, a 4-Gbit/s DHT-S-ACO-OFDM uplink transmission scheme with a 1∶64 way split has been experimentally implemented using 100-km standard single-mode fiber (SSMF) for a long-reach passive optical network (LR-PON).
Suchacka, Grazyna
2005-02-01
The paper concerns a new research area that is Quality of Web Service (QoWS). The need for QoWS is motivated by a still growing number of Internet users, by a steady development and diversification of Web services, and especially by popularization of e-commerce applications. The goal of the paper is a critical analysis of the literature concerning scheduling algorithms for e-commerce Web servers. The paper characterizes factors affecting the load of the Web servers and discusses ways of improving their efficiency. Crucial QoWS requirements of the business Web server are identified: serving requests before their individual deadlines, supporting user session integrity, supporting different classes of users and minimizing a number of rejected requests. It is justified that meeting these requirements and implementing them in an admission control (AC) and scheduling algorithm for the business Web server is crucial to the functioning of e-commerce Web sites and revenue generated by them. The paper presents results of the literature analysis and discusses algorithms that implement these important QoWS requirements. The analysis showed that very few algorithms take into consideration the above mentioned factors and that there is a need for designing an algorithm implementing them.
Directory of Open Access Journals (Sweden)
Guanlong Deng
2016-01-01
Full Text Available This paper presents an enhanced discrete artificial bee colony algorithm for minimizing the total flow time in the flow shop scheduling problem with buffer capacity. First, the solution in the algorithm is represented as discrete job permutation to directly convert to active schedule. Then, we present a simple and effective scheme called best insertion for the employed bee and onlooker bee and introduce a combined local search exploring both insertion and swap neighborhood. To validate the performance of the presented algorithm, a computational campaign is carried out on the Taillard benchmark instances, and computations and comparisons show that the proposed algorithm is not only capable of solving the benchmark set better than the existing discrete differential evolution algorithm and iterated greedy algorithm, but also capable of performing better than two recently proposed discrete artificial bee colony algorithms.
Directory of Open Access Journals (Sweden)
Yi Han
2013-01-01
Full Text Available This paper presents a shuffled frog leaping algorithm (SFLA for the single-mode resource-constrained project scheduling problem where activities can be divided into equant units and interrupted during processing. Each activity consumes 0–3 types of resources which are renewable and temporarily not available due to resource vacations in each period. The presence of scarce resources and precedence relations between activities makes project scheduling a difficult and important task in project management. A recent popular metaheuristic shuffled frog leaping algorithm, which is enlightened by the predatory habit of frog group in a small pond, is adopted to investigate the project makespan improvement on Patterson benchmark sets which is composed of different small and medium size projects. Computational results demonstrate the effectiveness and efficiency of SFLA in reducing project makespan and minimizing activity splitting number within an average CPU runtime, 0.521 second. This paper exposes all the scheduling sequences for each project and shows that of the 23 best known solutions have been improved.
Mathematical Model and Algorithm for the Reefer Mechanic Scheduling Problem at Seaports
Directory of Open Access Journals (Sweden)
Jiantong Zhang
2017-01-01
Full Text Available With the development of seaborne logistics, the international trade of goods transported in refrigerated containers is growing fast. Refrigerated containers, also known as reefers, are used in transportation of temperature sensitive cargo, such as perishable fruits. This trend brings new challenges to terminal managers, that is, how to efficiently arrange mechanics to plug and unplug power for the reefers (i.e., tasks at yards. This work investigates the reefer mechanics scheduling problem at container ports. To minimize the sum of the total tardiness of all tasks and the total working distance of all mechanics, we formulate a mathematical model. For the resolution of this problem, we propose a DE algorithm which is combined with efficient heuristics, local search strategies, and parameter adaption scheme. The proposed algorithm is tested and validated through numerical experiments. Computational results demonstrate the effectiveness and efficiency of the proposed algorithm.
Jafari, Hamed; Salmasi, Nasser
2015-09-01
The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital's demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses' preferences for working shifts and weekends off by considering several important factors such as hospital's policies, labor laws, governmental regulations, and the status of nurses at the end of the previous planning horizon in one of the largest hospitals in Iran i.e., Milad Hospital. Due to the shortage of available nurses, at first, the minimum total number of required nurses is determined. Then, a mathematical programming model is proposed to solve the problem optimally. Since the proposed research problem is NP-hard, a meta-heuristic algorithm based on simulated annealing (SA) is applied to heuristically solve the problem in a reasonable time. An initial feasible solution generator and several novel neighborhood structures are applied to enhance performance of the SA algorithm. Inspired from our observations in Milad hospital, random test problems are generated to evaluate the performance of the SA algorithm. The results of computational experiments indicate that the applied SA algorithm provides solutions with average percentage gap of 5.49 % compared to the upper bounds obtained from the mathematical model. Moreover, the applied SA algorithm provides significantly better solutions in a reasonable time than the schedules provided by the head nurses.
International Nuclear Information System (INIS)
Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang
2013-01-01
Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.
Simulated Annealing-Based Ant Colony Algorithm for Tugboat Scheduling Optimization
Directory of Open Access Journals (Sweden)
Qi Xu
2012-01-01
Full Text Available As the “first service station” for ships in the whole port logistics system, the tugboat operation system is one of the most important systems in port logistics. This paper formulated the tugboat scheduling problem as a multiprocessor task scheduling problem (MTSP after analyzing the characteristics of tugboat operation. The model considers factors of multianchorage bases, different operation modes, and three stages of operations (berthing/shifting-berth/unberthing. The objective is to minimize the total operation times for all tugboats in a port. A hybrid simulated annealing-based ant colony algorithm is proposed to solve the addressed problem. By the numerical experiments without the shifting-berth operation, the effectiveness was verified, and the fact that more effective sailing may be possible if tugboats return to the anchorage base timely was pointed out; by the experiments with the shifting-berth operation, one can see that the objective is most sensitive to the proportion of the shifting-berth operation, influenced slightly by the tugboat deployment scheme, and not sensitive to the handling operation times.
Directory of Open Access Journals (Sweden)
Rui Zhang
2012-01-01
Full Text Available Most existing research on the job shop scheduling problem has been focused on the minimization of makespan (i.e., the completion time of the last job. However, in the fiercely competitive market nowadays, delivery punctuality is more important for maintaining a high service reputation. So in this paper, we aim at solving job shop scheduling problems with the total weighted tardiness objective. Several dispatching rules are adopted in the Giffler-Thompson algorithm for constructing active schedules. It is noticeable that the rule selections for scheduling consecutive operations are not mutually independent but actually interrelated. Under such circumstances, a probabilistic model-building genetic algorithm (PMBGA is proposed to optimize the sequence of selected rules. First, we use Bayesian networks to model the distribution characteristics of high-quality solutions in the population. Then, the new generation of individuals is produced by sampling the established Bayesian network. Finally, some elitist individuals are further improved by a special local search module based on parameter perturbation. The superiority of the proposed approach is verified by extensive computational experiments and comparisons.
Performance Evaluation of an Enhanced Uplink 3.5G System for Mobile Healthcare Applications
Directory of Open Access Journals (Sweden)
Dimitris Komnakos
2008-01-01
Full Text Available The present paper studies the prospective and the performance of a forthcoming high-speed third generation (3.5G networking technology, called enhanced uplink, for delivering mobile health (m-health applications. The performance of 3.5G networks is a critical factor for successful development of m-health services perceived by end users. In this paper, we propose a methodology for performance assessment based on the joint uplink transmission of voice, real-time video, biological data (such as electrocardiogram, vital signals, and heart sounds, and healthcare records file transfer. Various scenarios were concerned in terms of real-time, nonreal-time, and emergency applications in random locations, where no other system but 3.5G is available. The accomplishment of quality of service (QoS was explored through a step-by-step improvement of enhanced uplink system's parameters, attributing the network system for the best performance in the context of the desired m-health services.
Performance Evaluation of an Enhanced Uplink 3.5G System for Mobile Healthcare Applications.
Komnakos, Dimitris; Vouyioukas, Demosthenes; Maglogiannis, Ilias; Constantinou, Philip
2008-01-01
The present paper studies the prospective and the performance of a forthcoming high-speed third generation (3.5G) networking technology, called enhanced uplink, for delivering mobile health (m-health) applications. The performance of 3.5G networks is a critical factor for successful development of m-health services perceived by end users. In this paper, we propose a methodology for performance assessment based on the joint uplink transmission of voice, real-time video, biological data (such as electrocardiogram, vital signals, and heart sounds), and healthcare records file transfer. Various scenarios were concerned in terms of real-time, nonreal-time, and emergency applications in random locations, where no other system but 3.5G is available. The accomplishment of quality of service (QoS) was explored through a step-by-step improvement of enhanced uplink system's parameters, attributing the network system for the best performance in the context of the desired m-health services.
International Nuclear Information System (INIS)
Kim, Dong Yun
1997-02-01
In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate adequate gains, which minimize the error of system. The proposed algorithm can reduce the time and efforts required for obtaining the fuzzy rules through the intelligent learning function. The evolutionary programming algorithm is modified and adopted as the method in order to find the optimal gains which are used as the initial gains of FGS with learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller
DEFF Research Database (Denmark)
Yu, Hao; Ruepp, Sarah Renée; Berger, Michael Stübert
2011-01-01
This study focuses on the multicast scheduling for M × N input-queued switches. An enhanced first-in-first-out -based round-robin multicast scheduling algorithm is proposed with a function of searching deeper into queues to reduce the head-of-line (HOL) blocking problem and thereby the multicast...... out on the decision matrix to reduce the number of transmission for each cell. To reduce the HOL blocking problem, a complement matrix is constructed based on the traffic matrix and the decision matrix, and a process of searching deeper into the queues is carried out to find cells that can be sent...... to the idle outputs. Simulation results show that the proposed function of searching deeper into the queues can alleviate the HOL blocking and as a result reduce the multicast latency significantly. Under both balanced and unbalanced multicast traffic, the proposed algorithm is able to maintain a stable...
International Nuclear Information System (INIS)
Lu Youlin; Zhou Jianzhong; Qin Hui; Wang Ying; Zhang Yongchuan
2011-01-01
Research highlights: → Multi-objective optimization model of short-term environmental/economic hydrothermal scheduling. → A hybrid multi-objective cultural algorithm (HMOCA) is presented. → New heuristic constraint handling methods are proposed. → Better quality solutions by reducing fuel cost and emission effects simultaneously are obtained. -- Abstract: The short-term environmental/economic hydrothermal scheduling (SEEHS) with the consideration of multiple objectives is a complicated non-linear constrained optimization problem with non-smooth and non-convex characteristics. In this paper, a multi-objective optimization model of SEEHS is proposed to consider the minimal of fuel cost and emission effects synthetically, and the transmission loss, the water transport delays between connected reservoirs as well as the valve-point effects of thermal plants are taken into consideration to formulate the problem precisely. Meanwhile, a hybrid multi-objective cultural algorithm (HMOCA) is presented to deal with SEEHS problem by optimizing both two objectives simultaneously. The proposed method integrated differential evolution (DE) algorithm into the framework of cultural algorithm model to implement the evolution of population space, and two knowledge structures in belief space are redefined according to the characteristics of DE and SEEHS problem to avoid premature convergence effectively. Moreover, in order to deal with the complicated constraints effectively, new heuristic constraint handling methods without any penalty factor settings are proposed in this paper. The feasibility and effectiveness of the proposed HMOCA method are demonstrated by two case studies of a hydrothermal power system. The simulation results reveal that, compared with other methods established recently, HMOCA can get better quality solutions by reducing fuel cost and emission effects simultaneously.
Directory of Open Access Journals (Sweden)
Thien T. T. Le
2016-12-01
Full Text Available Currently, wireless body area networks (WBANs are effectively used for health monitoring services. However, in cases where WBANs are densely deployed, interference among WBANs can cause serious degradation of network performance and reliability. Inter-WBAN interference can be reduced by scheduling the communication links of interfering WBANs. In this paper, we propose an interference-aware traffic-priority-based link scheduling (ITLS algorithm to overcome inter-WBAN interference in densely deployed WBANs. First, we model a network with multiple WBANs as an interference graph where node-level interference and traffic priority are taken into account. Second, we formulate link scheduling for multiple WBANs as an optimization model where the objective is to maximize the throughput of the entire network while ensuring the traffic priority of sensor nodes. Finally, we propose the ITLS algorithm for multiple WBANs on the basis of the optimization model. High spatial reuse is also achieved in the proposed ITLS algorithm. The proposed ITLS achieves high spatial reuse while considering traffic priority, packet length, and the number of interfered sensor nodes. Our simulation results show that the proposed ITLS significantly increases spatial reuse and network throughput with lower delay by mitigating inter-WBAN interference.
Performance of Uplink Fractional Power Control in UTRAN LTE
DEFF Research Database (Denmark)
Úbeda Castellanos, Carlos; López Villa, Dimas; Rosa, Claudio
2008-01-01
UTRAN Long Term Evolution is currently being standardized in 3GPP with the aim of more than double capacity over High-Speed Packet Access. The chosen multiple access for uplink is Single Carrier FDMA, which avoids the intra-cell interference typical for CDMA systems, but it is still sensitive to ...
Directory of Open Access Journals (Sweden)
Johan Soewanda
2007-01-01
Full Text Available This paper discusses the application of Robust Hybrid Genetic Algorithm to solve a flow-shop scheduling problem. The proposed algorithm attempted to reach minimum makespan. PT. FSCM Manufacturing Indonesia Plant 4's case was used as a test case to evaluate the performance of the proposed algorithm. The proposed algorithm was compared to Ant Colony, Genetic-Tabu, Hybrid Genetic Algorithm, and the company's algorithm. We found that Robust Hybrid Genetic produces statistically better result than the company's, but the same as Ant Colony, Genetic-Tabu, and Hybrid Genetic. In addition, Robust Hybrid Genetic Algorithm required less computational time than Hybrid Genetic Algorithm
Directory of Open Access Journals (Sweden)
Yifei Tong
2016-02-01
Full Text Available Energy efficiency is a buzzword of the 21st century. With the ever growing need for energy efficient and low-carbon production, it is a big challenge for high energy-consumption enterprises to reduce their energy consumption. To this aim, a forging enterprise, DVR (the abbreviation of a forging enterprise, is researched. Firstly, an investigation into the production processes of DVR is given as well as an analysis of forging production. Then, the energy-saving forging scheduling is decomposed into two sub-problems. One is for cutting and machining scheduling, which is similar to traditional machining scheduling. The other one is for forging and heat treatment scheduling. Thirdly, former forging production scheduling is presented and solved based on an improved genetic algorithm. Fourthly, the latter is discussed in detail, followed by proposed dynamic clustering and stacking combination optimization. The proposed stacking optimization requires making the gross weight of forgings as close to the maximum batch capacity as possible. The above research can help reduce the heating times, and increase furnace utilization with high energy efficiency and low carbon emissions.
Wang, Chun; Ji, Zhicheng; Wang, Yan
2017-07-01
In this paper, multi-objective flexible job shop scheduling problem (MOFJSP) was studied with the objects to minimize makespan, total workload and critical workload. A variable neighborhood evolutionary algorithm (VNEA) was proposed to obtain a set of Pareto optimal solutions. First, two novel crowded operators in terms of the decision space and object space were proposed, and they were respectively used in mating selection and environmental selection. Then, two well-designed neighborhood structures were used in local search, which consider the problem characteristics and can hold fast convergence. Finally, extensive comparison was carried out with the state-of-the-art methods specially presented for solving MOFJSP on well-known benchmark instances. The results show that the proposed VNEA is more effective than other algorithms in solving MOFJSP.
Interference Management in Full-Duplex Cellular Networks with Partial Spectrum Overlap
Randrianantenaina, Itsikiantsoa
2017-03-31
Full-duplex (FD) communication is promoted to double the spectral efficiency when compared to the halfduplex (HD) counterpart. In the context of cellular networks, however, FD communication exacerbates the aggregate uplink and downlink interference, which diminishes the foreseen FD gains. This paper considers a flexible duplex system, denoted by -duplex (-D) system, wherein a fine-grained bandwidth control for each uplink/downlink channel pair in each base station (BS) is allowed, which also leads to partial spectrum overlap between the uplink and downlink channels. The paper addresses the resulting interference management problem by maximizing a network-wide rate-based utility function subject to uplink/downlink power constraints, so as to determine userto- BS association, user-to-channel scheduling, the UL and DL transmit powers, and the fraction of spectrum overlap between UL and DL for every user, under the assumption that the number of available channels and users are equal. The paper solves such a non-convex mixed-integer optimization problem in an iterative way by decoupling the problem into several subproblems. Particularly, the user-to-BS association problem is solved using a matching algorithm that is a generalization of the stable marriage problem. The scheduling problem is solved by iterative Hungarian algorithm. The power and spectrum overlap problem is solved by successive convex approximation. The proposed iterative strategy guarantees an efficient one-toone user to BS and channel assignment. It further provides optimized flexible duplexing and power allocation schemes for all transceivers. Simulations results show appreciable gains when comparing the proposed solution to different schemes from the literature.
Interference Management in Full-Duplex Cellular Networks with Partial Spectrum Overlap
Randrianantenaina, Itsikiantsoa; Dahrouj, Hayssam; Elsawy, Hesham; Alouini, Mohamed-Slim
2017-01-01
Full-duplex (FD) communication is promoted to double the spectral efficiency when compared to the halfduplex (HD) counterpart. In the context of cellular networks, however, FD communication exacerbates the aggregate uplink and downlink interference, which diminishes the foreseen FD gains. This paper considers a flexible duplex system, denoted by -duplex (-D) system, wherein a fine-grained bandwidth control for each uplink/downlink channel pair in each base station (BS) is allowed, which also leads to partial spectrum overlap between the uplink and downlink channels. The paper addresses the resulting interference management problem by maximizing a network-wide rate-based utility function subject to uplink/downlink power constraints, so as to determine userto- BS association, user-to-channel scheduling, the UL and DL transmit powers, and the fraction of spectrum overlap between UL and DL for every user, under the assumption that the number of available channels and users are equal. The paper solves such a non-convex mixed-integer optimization problem in an iterative way by decoupling the problem into several subproblems. Particularly, the user-to-BS association problem is solved using a matching algorithm that is a generalization of the stable marriage problem. The scheduling problem is solved by iterative Hungarian algorithm. The power and spectrum overlap problem is solved by successive convex approximation. The proposed iterative strategy guarantees an efficient one-toone user to BS and channel assignment. It further provides optimized flexible duplexing and power allocation schemes for all transceivers. Simulations results show appreciable gains when comparing the proposed solution to different schemes from the literature.
An improved scheduling algorithm for linear networks
Bader, Ahmed; Alouini, Mohamed-Slim; Ayadi, Yassin
2017-01-01
In accordance with the present disclosure, embodiments of an exemplary scheduling controller module or device implement an improved scheduling process such that the targeted reduction in schedule length can be achieve while incurring minimal energy penalty by allowing for a large rate (or duration) selection alphabet.
An improved scheduling algorithm for linear networks
Bader, Ahmed
2017-02-09
In accordance with the present disclosure, embodiments of an exemplary scheduling controller module or device implement an improved scheduling process such that the targeted reduction in schedule length can be achieve while incurring minimal energy penalty by allowing for a large rate (or duration) selection alphabet.
On the Meta Distribution of Coverage Probability in Uplink Cellular Networks
Elsawy, Hesham; Alouini, Mohamed-Slim
2017-01-01
This letter studies the meta distribution of coverage probability (CP), within a stochastic geometry framework, for cellular uplink transmission with fractional path-loss inversion power control. Using the widely accepted Poisson point process (PPP
DEFF Research Database (Denmark)
Neumann, Frank; Witt, Carsten
2015-01-01
combinatorial optimization problem, namely makespan scheduling. We study the model of a strong adversary which is allowed to change one job at regular intervals. Furthermore, we investigate the setting of random changes. Our results show that randomized local search and a simple evolutionary algorithm are very...
A generic interference model for uplink OFDMA networks with fractional frequency reuse
Tabassum, Hina
2014-03-01
Fractional frequency reuse (FFR) has emerged as a viable solution to coordinate and mitigate cochannel interference (CCI) in orthogonal frequency-division multiple-access (OFDMA)-based wireless cellular networks. The incurred CCI in cellular networks with FFR is highly uncertain and varies as a function of various design parameters that include the user scheduling schemes, the transmit power distribution among multiple allocated subcarriers, the partitioning of the cellular region into cell-edge and cell-center zones, the allocation of spectrum within each zone, and the channel reuse factors. To this end, this paper derives a generic analytical model for uplink CCI in multicarrier OFDMA networks with FFR. The derived expressions capture several network design parameters and are applicable to any composite fading-channel models. The accuracy of the derivations is verified via Monte Carlo simulations. Moreover, their usefulness is demonstrated by obtaining closed-form expressions for the Rayleigh fading-channel model and by evaluating important network performance metrics such as ergodic capacity. Numerical results provide useful system design guidelines and highlight the trade-offs associated with the deployment of FFR schemes in OFDMA-based networks. © 2013 IEEE.
A generic interference model for uplink OFDMA networks with fractional frequency reuse
Tabassum, Hina; Dawy, Zaher; Alouini, Mohamed-Slim; Yilmaz, Ferkan
2014-01-01
Fractional frequency reuse (FFR) has emerged as a viable solution to coordinate and mitigate cochannel interference (CCI) in orthogonal frequency-division multiple-access (OFDMA)-based wireless cellular networks. The incurred CCI in cellular networks with FFR is highly uncertain and varies as a function of various design parameters that include the user scheduling schemes, the transmit power distribution among multiple allocated subcarriers, the partitioning of the cellular region into cell-edge and cell-center zones, the allocation of spectrum within each zone, and the channel reuse factors. To this end, this paper derives a generic analytical model for uplink CCI in multicarrier OFDMA networks with FFR. The derived expressions capture several network design parameters and are applicable to any composite fading-channel models. The accuracy of the derivations is verified via Monte Carlo simulations. Moreover, their usefulness is demonstrated by obtaining closed-form expressions for the Rayleigh fading-channel model and by evaluating important network performance metrics such as ergodic capacity. Numerical results provide useful system design guidelines and highlight the trade-offs associated with the deployment of FFR schemes in OFDMA-based networks. © 2013 IEEE.
Recent Research Trends in Genetic Algorithm Based Flexible Job Shop Scheduling Problems
Directory of Open Access Journals (Sweden)
Muhammad Kamal Amjad
2018-01-01
Full Text Available Flexible Job Shop Scheduling Problem (FJSSP is an extension of the classical Job Shop Scheduling Problem (JSSP. The FJSSP is known to be NP-hard problem with regard to optimization and it is very difficult to find reasonably accurate solutions of the problem instances in a rational time. Extensive research has been carried out in this area especially over the span of the last 20 years in which the hybrid approaches involving Genetic Algorithm (GA have gained the most popularity. Keeping in view this aspect, this article presents a comprehensive literature review of the FJSSPs solved using the GA. The survey is further extended by the inclusion of the hybrid GA (hGA techniques used in the solution of the problem. This review will give readers an insight into use of certain parameters in their future research along with future research directions.
Czech Academy of Sciences Publication Activity Database
Šůcha, P.; Hanzálek, Z.; Heřmánek, Antonín; Schier, Jan
2007-01-01
Roč. 46, č. 1 (2007), s. 35-53 ISSN 0922-5773 R&D Projects: GA AV ČR(CZ) 1ET300750402; GA MŠk(CZ) 1M0567; GA MPO(CZ) FD-K3/082 Institutional research plan: CEZ:AV0Z10750506 Keywords : high-level synthesis * cyclic scheduling * iterative algorithms * imperfectly nested loops * integer linear programming * FPGA * VLSI design * blind equalization * implementation Subject RIV: BA - General Mathematics Impact factor: 0.449, year: 2007 http://www.springerlink.com/content/t217kg0822538014/fulltext.pdf
New Mathematical Model and Algorithm for Economic Lot Scheduling Problem in Flexible Flow Shop
Directory of Open Access Journals (Sweden)
H. Zohali
2018-03-01
Full Text Available This paper addresses the lot sizing and scheduling problem for a number of products in flexible flow shop with identical parallel machines. The production stages are in series, while separated by finite intermediate buffers. The objective is to minimize the sum of setup and inventory holding costs per unit of time. The available mathematical model of this problem in the literature suffers from huge complexity in terms of size and computation. In this paper, a new mixed integer linear program is developed for delay with the huge dimentions of the problem. Also, a new meta heuristic algorithm is developed for the problem. The results of the numerical experiments represent a significant advantage of the proposed model and algorithm compared with the available models and algorithms in the literature.
Sum rate maximization in the uplink of multi-cell OFDMA networks
Tabassum, Hina; Alouini, Mohamed-Slim; Dawy, Zaher
2012-01-01
of each cell, while ignoring the significant effect of inter-cell interference. This paper investigates the problem of resource allocation (i.e., subcarriers and powers) in the uplink of a multi-cell OFDMA network. The problem has a non
DEFF Research Database (Denmark)
Nguyen, Huan Cong; Carvalho, Elisabeth De; Prasad, Ramjee
2006-01-01
(ICI) and degrade the system performance considerably. In this paper, we propose a novel Multi-User Interference (MUI) cancellation scheme for uplink OFDMA, which utilizes multiple OFDM-demodulators architecture to correct and then compensate the negative effects of multiple CFOs at the receiver's side......We consider the uplink of an Orthogonal Frequency Division Multiple Access (OFDMA)-based system, where each Mobile Station (MS) experiences a different Carrier Frequency Offset (CFO). Uncorrected CFO destroy the orthogonality among subcarriers, which could cause severe Inter-Carrier Interference...
Czech Academy of Sciences Publication Activity Database
Ebenlendr, Tomáš; Sgall, J.
2015-01-01
Roč. 56, č. 1 (2015), s. 73-81 ISSN 1432-4350 R&D Projects: GA ČR GBP202/12/G061; GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : online algorithms * scheduling * makespan Subject RIV: IN - Informatics, Computer Science Impact factor: 0.719, year: 2015 http://link.springer.com/article/10.1007%2Fs00224-013-9451-6
A Service Differentiated MAC Protocol for OFDM/TDMA Wireless Systems
Institute of Scientific and Technical Information of China (English)
WANG Ying; ZHANG Ping
2005-01-01
This paper proposes a Service Differentiated-Dynamic Slotted Multiple Access (SD-DSMA) protocol with QoS guarantee. The Media Access Control (MAC) frame format is variable according to the traffic of uplink and downlink and the traffic of control and data. In addition, the services are divided into two categories, Guaranteed Bandwidth (GB) and Best Effort (BE). Uplink control message slots are designed for the GB users to reduce contention. Taking into consideration the techniques in physical layer, a two-Dimensional Radio Resource Allocation (2-D RRA) method is proposed. The 2-D RRA is an efficient way to allocate radio resources for multi-cell, multi-user OFDM/TDMA system as it takes into consideration both the channel condition and the co-channel interference. The piggyback mechanism and fair scheduling algorithm are adopted for GB services, and the max C/I scheduling algorithm is used for BE services. The simulation results show that the proposed MAC protocol has better performance in terms of delay, probability of successful access request.
International Nuclear Information System (INIS)
He Yaoyao; Zhou Jianzhong; Xiang Xiuqiao; Chen Heng; Qin Hui
2009-01-01
The goal of this paper is to present a novel chaotic particle swarm optimization (CPSO) algorithm and compares the efficiency of three one-dimensional chaotic maps within symmetrical region for long-term cascaded hydroelectric system scheduling. The introduced chaotic maps improve the global optimal capability of CPSO algorithm. Moreover, a piecewise linear interpolation function is employed to transform all constraints into restrict upriver water level for implementing the maximum of objective function. Numerical results and comparisons demonstrate the effect and speed of different algorithms on a practical hydro-system.
Directory of Open Access Journals (Sweden)
S. Sofana Reka
2016-06-01
Full Text Available In this paper, demand response modeling scheme is proposed for residential consumers using game theory algorithm as Generalized Tit for Tat (GTFT Dominant Game based Energy Scheduler. The methodology is established as a work flow domain model between the utility and the user considering the smart grid framework. It exhibits an algorithm which schedules load usage by creating several possible tariffs for consumers such that demand is never raised. This can be done both individually and among multiple users of a community. The uniqueness behind the demand response proposed is that, the tariff is calculated for all hours and the load during the peak hours which can be rescheduled is shifted based on the Peak Average Ratio. To enable the vitality of the work simulation results of a general case of three domestic consumers are modeled extended to a comparative performance and evaluation with other algorithms and inference is analyzed.
Using Improved Ant Colony Algorithm to Investigate EMU Circulation Scheduling Problem
Directory of Open Access Journals (Sweden)
Yu Zhou
2014-01-01
Full Text Available High-speed railway is one of the most important ways to solve the long-standing travel difficulty problem in China. However, due to the high acquisition and maintenance cost, it is impossible for decision-making departments to purchase enough EMUs to satisfy the explosive travel demand. Therefore, there is an urgent need to study how to utilize EMU more efficiently and reduce costs in the case of completing a given task in train diagram. In this paper, an EMU circulation scheduling model is built based on train diagram constraints, maintenance constraints, and so forth; in the model solving process, an improved ACA algorithm has been designed. A case study is conducted to verify the feasibility of the model. Moreover, contrast tests have been carried out to compare the efficiency between the improved ACA and the traditional approaches. The results reveal that improved ACA method can solve the model with less time and the quality of each representative index is much better, which means that efficiency of the improved ACA method is higher and better scheduling scheme can be obtained.
E-Token Energy-Aware Proportionate Sharing Scheduling Algorithm for Multiprocessor Systems
Directory of Open Access Journals (Sweden)
Pasupuleti Ramesh
2017-01-01
Full Text Available WSN plays vital role from small range healthcare surveillance systems to largescale environmental monitoring. Its design for energy constrained applications is a challenging issue. Sensors in WSNs are projected to run separately for longer periods. It is of excessive cost to substitute exhausted batteries which is not even possible in antagonistic situations. Multiprocessors are used in WSNs for high performance scientific computing, where each processor is assigned the same or different workload. When the computational demands of the system increase then the energy efficient approaches play an important role to increase system lifetime. Energy efficiency is commonly carried out by using proportionate fair scheduler. This introduces abnormal overloading effect. In order to overcome the existing problems E-token Energy-Aware Proportionate Sharing (EEAPS scheduling is proposed here. The power consumption for each thread/task is calculated and the tasks are allotted to the multiple processors through the auctioning mechanism. The algorithm is simulated by using the real-time simulator (RTSIM and the results are tested.
Parallel genetic algorithms with migration for the hybrid flow shop scheduling problem
Directory of Open Access Journals (Sweden)
K. Belkadi
2006-01-01
Full Text Available This paper addresses scheduling problems in hybrid flow shop-like systems with a migration parallel genetic algorithm (PGA_MIG. This parallel genetic algorithm model allows genetic diversity by the application of selection and reproduction mechanisms nearer to nature. The space structure of the population is modified by dividing it into disjoined subpopulations. From time to time, individuals are exchanged between the different subpopulations (migration. Influence of parameters and dedicated strategies are studied. These parameters are the number of independent subpopulations, the interconnection topology between subpopulations, the choice/replacement strategy of the migrant individuals, and the migration frequency. A comparison between the sequential and parallel version of genetic algorithm (GA is provided. This comparison relates to the quality of the solution and the execution time of the two versions. The efficiency of the parallel model highly depends on the parameters and especially on the migration frequency. In the same way this parallel model gives a significant improvement of computational time if it is implemented on a parallel architecture which offers an acceptable number of processors (as many processors as subpopulations.
Directory of Open Access Journals (Sweden)
Chun Wang
2017-01-01
Full Text Available A novel multiobjective memetic algorithm based on decomposition (MOMAD is proposed to solve multiobjective flexible job shop scheduling problem (MOFJSP, which simultaneously minimizes makespan, total workload, and critical workload. Firstly, a population is initialized by employing an integration of different machine assignment and operation sequencing strategies. Secondly, multiobjective memetic algorithm based on decomposition is presented by introducing a local search to MOEA/D. The Tchebycheff approach of MOEA/D converts the three-objective optimization problem to several single-objective optimization subproblems, and the weight vectors are grouped by K-means clustering. Some good individuals corresponding to different weight vectors are selected by the tournament mechanism of a local search. In the experiments, the influence of three different aggregation functions is first studied. Moreover, the effect of the proposed local search is investigated. Finally, MOMAD is compared with eight state-of-the-art algorithms on a series of well-known benchmark instances and the experimental results show that the proposed algorithm outperforms or at least has comparative performance to the other algorithms.
Modeling and Characterization of the Uplink and Downlink Exposure in Wireless Networks
Directory of Open Access Journals (Sweden)
Anis Krayni
2017-01-01
Full Text Available This paper deals with a new methodology to assess the exposure induced by both uplink and downlink of a cellular network using 3D electromagnetic simulations. It aims to analyze together the exposure induced by a personal device (uplink exposure and that induced by a base station (downlink exposure. The study involved the major parameters contributing to variability and uncertainty in exposure assessment, such as the user’s posture, the type of wireless device, and the propagation environment. Our approach is relying basically on the modeling of the power radiated by the personal device and the ambient electric field, while taking into account the effects of human body shadowing and the propagation channel fluctuations. The exposure assessment as well as the human-wave interactions has been simulated using the finite difference in time domain method (FDTD. In uplink scenarios, four FDTD simulations were performed with a child model, used in two postures (sitting and standing and in two usage scenarios (voice and data, which aimed to examine the exposure induced by a mobile phone and a tablet emitting, respectively, at 900 MHz and 1940 MHz. In the downlink scenario, a series of FDTD simulations of an exposure to a single plane wave and multiplane waves have been conducted, and an efficient metamodeling of the exposure using the Polynomial Chaos approach has been developed.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A novel Multiple Access Control(MAC) protocol-User-dependent Perfect-scheduling Multiple Access(UPMA) protocol,which supports joint transmission of voice and data packets,is proposed.By this protocol,the bandwidth can be allocated dynamically to the uplink and downlink traffic with on-demand assignment and the transmission of Mobile Terminals(MTs) can be perfectly scheduled by means of polling.Meanwhile.a unique frame stucture is designed to guarantee Quality of Service(QoS) in voice traffic supporting.An effective colision resolution algorthm is also proposed to guarantee rapid channel access for activated MTs.Finally,performance of UPMA protocol is evaluated by simulation and compared with MPRMA protocol.Simulation results show that UPMA protocol has better performance.
Independent tasks scheduling in cloud computing via improved estimation of distribution algorithm
Sun, Haisheng; Xu, Rui; Chen, Huaping
2018-04-01
To minimize makespan for scheduling independent tasks in cloud computing, an improved estimation of distribution algorithm (IEDA) is proposed to tackle the investigated problem in this paper. Considering that the problem is concerned with multi-dimensional discrete problems, an improved population-based incremental learning (PBIL) algorithm is applied, which the parameter for each component is independent with other components in PBIL. In order to improve the performance of PBIL, on the one hand, the integer encoding scheme is used and the method of probability calculation of PBIL is improved by using the task average processing time; on the other hand, an effective adaptive learning rate function that related to the number of iterations is constructed to trade off the exploration and exploitation of IEDA. In addition, both enhanced Max-Min and Min-Min algorithms are properly introduced to form two initial individuals. In the proposed IEDA, an improved genetic algorithm (IGA) is applied to generate partial initial population by evolving two initial individuals and the rest of initial individuals are generated at random. Finally, the sampling process is divided into two parts including sampling by probabilistic model and IGA respectively. The experiment results show that the proposed IEDA not only gets better solution, but also has faster convergence speed.
Processing time tolerance-based ACO algorithm for solving job-shop scheduling problem
Luo, Yabo; Waden, Yongo P.
2017-06-01
Ordinarily, Job Shop Scheduling Problem (JSSP) is known as NP-hard problem which has uncertainty and complexity that cannot be handled by a linear method. Thus, currently studies on JSSP are concentrated mainly on applying different methods of improving the heuristics for optimizing the JSSP. However, there still exist many problems for efficient optimization in the JSSP, namely, low efficiency and poor reliability, which can easily trap the optimization process of JSSP into local optima. Therefore, to solve this problem, a study on Ant Colony Optimization (ACO) algorithm combined with constraint handling tactics is carried out in this paper. Further, the problem is subdivided into three parts: (1) Analysis of processing time tolerance-based constraint features in the JSSP which is performed by the constraint satisfying model; (2) Satisfying the constraints by considering the consistency technology and the constraint spreading algorithm in order to improve the performance of ACO algorithm. Hence, the JSSP model based on the improved ACO algorithm is constructed; (3) The effectiveness of the proposed method based on reliability and efficiency is shown through comparative experiments which are performed on benchmark problems. Consequently, the results obtained by the proposed method are better, and the applied technique can be used in optimizing JSSP.
Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.; Krenczyk, D.
2016-08-01
In the paper a survey of predictive and reactive scheduling methods is done in order to evaluate how the ability of prediction of reliability characteristics influences over robustness criteria. The most important reliability characteristics are: Mean Time to Failure, Mean Time of Repair. Survey analysis is done for a job shop scheduling problem. The paper answers the question: what method generates robust schedules in the case of a bottleneck failure occurrence before, at the beginning of planned maintenance actions or after planned maintenance actions? Efficiency of predictive schedules is evaluated using criteria: makespan, total tardiness, flow time, idle time. Efficiency of reactive schedules is evaluated using: solution robustness criterion and quality robustness criterion. This paper is the continuation of the research conducted in the paper [1], where the survey of predictive and reactive scheduling methods is done only for small size scheduling problems.
Seol, Ye-In; Kim, Young-Kuk
2014-01-01
Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10-80% over the existing algorithms.
Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke
2018-06-01
In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.
Scheduling nursing personnel on a microcomputer.
Liao, C J; Kao, C Y
1997-01-01
Suggests that with the shortage of nursing personnel, hospital administrators have to pay more attention to the needs of nurses to retain and recruit them. Also asserts that improving nurses' schedules is one of the most economic ways for the hospital administration to create a better working environment for nurses. Develops an algorithm for scheduling nursing personnel. Contrary to the current hospital approach, which schedules nurses on a person-by-person basis, the proposed algorithm constructs schedules on a day-by-day basis. The algorithm has inherent flexibility in handling a variety of possible constraints and goals, similar to other non-cyclical approaches. But, unlike most other non-cyclical approaches, it can also generate a quality schedule in a short time on a microcomputer. The algorithm was coded in C language and run on a microcomputer. The developed software is currently implemented at a leading hospital in Taiwan. The response to the initial implementation is quite promising.
Energy Technology Data Exchange (ETDEWEB)
Magalhaes, Marcus V.; Fraga, Eder T. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Shah, Nilay [Imperial College, London (United Kingdom)
2004-07-01
This work addresses the refinery scheduling problem using mathematical programming techniques. The solution adopted was to decompose the entire refinery model into a crude oil scheduling and a product scheduling problem. The envelope for the crude oil scheduling problem is composed of a terminal, a pipeline and the crude area of a refinery, including the crude distillation units. The solution method adopted includes a decomposition technique based on the topology of the system. The envelope for the product scheduling comprises all tanks, process units and products found in a refinery. Once crude scheduling decisions are Also available the product scheduling is solved using a rolling horizon algorithm. All models were tested with real data from PETROBRAS' REFAP refinery, located in Canoas, Southern Brazil. (author)
A HYBRID HEURISTIC ALGORITHM FOR SOLVING THE RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM (RCPSP
Directory of Open Access Journals (Sweden)
Juan Carlos Rivera
Full Text Available The Resource Constrained Project Scheduling Problem (RCPSP is a problem of great interest for the scientific community because it belongs to the class of NP-Hard problems and no methods are known that can solve it accurately in polynomial processing times. For this reason heuristic methods are used to solve it in an efficient way though there is no guarantee that an optimal solution can be obtained. This research presents a hybrid heuristic search algorithm to solve the RCPSP efficiently, combining elements of the heuristic Greedy Randomized Adaptive Search Procedure (GRASP, Scatter Search and Justification. The efficiency obtained is measured taking into account the presence of the new elements added to the GRASP algorithm taken as base: Justification and Scatter Search. The algorithms are evaluated using three data bases of instances of the problem: 480 instances of 30 activities, 480 of 60, and 600 of 120 activities respectively, taken from the library PSPLIB available online. The solutions obtained by the developed algorithm for the instances of 30, 60 and 120 are compared with results obtained by other researchers at international level, where a prominent place is obtained, according to Chen (2011.
X. Zhang (Xiandong)
2010-01-01
textabstractScheduling is essential when activities need to be allocated to scarce resources over time. Motivated by the problem of scheduling barges along container terminals in the Port of Rotterdam, this thesis designs and analyzes algorithms for various on-line and off-line scheduling problems
Thiruvenkadam, T; Karthikeyani, V
2014-01-01
Mapping the virtual machines to the physical machines cluster is called the VM placement. Placing the VM in the appropriate host is necessary for ensuring the effective resource utilization and minimizing the datacenter cost as well as power. Here we present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines in a cluster of Physical hosts. We developed the algorithm based on two different methods, first initial VM packing is done by...
An imperialist competitive algorithm for solving the production scheduling problem in open pit mine
Directory of Open Access Journals (Sweden)
Mojtaba Mokhtarian Asl
2016-06-01
Full Text Available Production scheduling (planning of an open-pit mine is the procedure during which the rock blocks are assigned to different production periods in a way that the highest net present value of the project achieved subject to operational constraints. The paper introduces a new and computationally less expensive meta-heuristic technique known as imperialist competitive algorithm (ICA for long-term production planning of open pit mines. The proposed algorithm modifies the original rules of the assimilation process. The ICA performance for different levels of the control factors has been studied and the results are presented. The result showed that ICA could be efficiently applied on mine production planning problem.
Load-aware modeling for uplink cellular networks in a multi-channel environment
Alammouri, Ahmad; Elsawy, Hesham; Alouini, Mohamed-Slim
2014-01-01
We exploit tools from stochastic geometry to develop a tractable analytical approach for modeling uplink cellular networks. The developed model is load aware and accounts for per-user power control as well as the limited transmit power constraint
A Novel Algorithm of Quantum Random Walk in Server Traffic Control and Task Scheduling
Directory of Open Access Journals (Sweden)
Dong Yumin
2014-01-01
Full Text Available A quantum random walk optimization model and algorithm in network cluster server traffic control and task scheduling is proposed. In order to solve the problem of server load balancing, we research and discuss the distribution theory of energy field in quantum mechanics and apply it to data clustering. We introduce the method of random walk and illuminate what the quantum random walk is. Here, we mainly research the standard model of one-dimensional quantum random walk. For the data clustering problem of high dimensional space, we can decompose one m-dimensional quantum random walk into m one-dimensional quantum random walk. In the end of the paper, we compare the quantum random walk optimization method with GA (genetic algorithm, ACO (ant colony optimization, and SAA (simulated annealing algorithm. In the same time, we prove its validity and rationality by the experiment of analog and simulation.
Directory of Open Access Journals (Sweden)
Hui Lu
2014-01-01
Full Text Available Test task scheduling problem (TTSP is a complex optimization problem and has many local optima. In this paper, a hybrid chaotic multiobjective evolutionary algorithm based on decomposition (CMOEA/D is presented to avoid becoming trapped in local optima and to obtain high quality solutions. First, we propose an improving integrated encoding scheme (IES to increase the efficiency. Then ten chaotic maps are applied into the multiobjective evolutionary algorithm based on decomposition (MOEA/D in three phases, that is, initial population and crossover and mutation operators. To identify a good approach for hybrid MOEA/D and chaos and indicate the effectiveness of the improving IES several experiments are performed. The Pareto front and the statistical results demonstrate that different chaotic maps in different phases have different effects for solving the TTSP especially the circle map and ICMIC map. The similarity degree of distribution between chaotic maps and the problem is a very essential factor for the application of chaotic maps. In addition, the experiments of comparisons of CMOEA/D and variable neighborhood MOEA/D (VNM indicate that our algorithm has the best performance in solving the TTSP.
Multi-kW Uplink Fiber-Laser Beacon with Agile Signal Format, Phase II
National Aeronautics and Space Administration — Laser beacons with scalable powers are needed for ground to deep-space optical communication uplinks. They serve as absolute reference for tracking of spacecraft...
Multi-kW Uplink Fiber-Laser Beacon with Agile Signal Format, Phase I
National Aeronautics and Space Administration — Uplink Laser Beacons for deep-space communication, can benefit greatly from migration to the 1010-1030nm wavelengths, via use of Silicon-APDs on the spacecraft...
A Hybrid Differential Evolution and Tree Search Algorithm for the Job Shop Scheduling Problem
Directory of Open Access Journals (Sweden)
Rui Zhang
2011-01-01
Full Text Available The job shop scheduling problem (JSSP is a notoriously difficult problem in combinatorial optimization. In terms of the objective function, most existing research has been focused on the makespan criterion. However, in contemporary manufacturing systems, due-date-related performances are more important because they are essential for maintaining a high service reputation. Therefore, in this study we aim at minimizing the total weighted tardiness in JSSP. Considering the high complexity, a hybrid differential evolution (DE algorithm is proposed for the problem. To enhance the overall search efficiency, a neighborhood property of the problem is discovered, and then a tree search procedure is designed and embedded into the DE framework. According to the extensive computational experiments, the proposed approach is efficient in solving the job shop scheduling problem with total weighted tardiness objective.
Improving SC-FDMA performance by Turbo Equalization in UTRA LTE Uplink
DEFF Research Database (Denmark)
Berardinelli, Gilberto; Priyanto, Basuki Endah; Sørensen, Troels Bundgaard
2008-01-01
of UTRA Long Term Evolution (LTE) Uplink. The performance is evaluated for 1x2 Single Input Multiple Output (SIMO) antenna configuration in a 6 paths Typical Urban (TU-06) channel profile. For assessment purpose, the results are compared with SC-FDMA MMSE and OFDMA schemes. Simulation results show...
Jin, Junchen
2016-01-01
The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998
Directory of Open Access Journals (Sweden)
Jiaxi Wang
2016-01-01
Full Text Available The shunting schedule of electric multiple units depot (SSED is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality.
Automatic Loss Adjustment for CDMA2000 and 1xEV-DO Standard for Downlink and Uplink
Directory of Open Access Journals (Sweden)
Jiri Kominek
2014-01-01
Full Text Available The functional and thermal testing of the mobile phone is always performed under various conditions that vary in terms of the connection between the DUT (Device Under Test and the measuring instrument. To achieve repeatable measurements under such conditions, it is necessary to adjust uplink and downlink loss using the instrument's external attenuation. While for GSM, WCDMA and LTE this is a relatively easy task, CDMA2000 and 1xEV-DO make automation of the adjustment process somewhat challenging due to the nature of the CDMA standard. An especially forward link is more complicated as those tests are run in signaling mode and not all instruments provide an FER value measured by an MS. This paper describes the algorithm for forward link loss adjustment and its implementation using Rohde & Schwarz CMW500.
A spatiotemporal model for the LTE uplink: Spatially interacting tandem queues approach
Gharbieh, Mohammad; Elsawy, Hesham; Bader, Ahmed; Alouini, Mohamed-Slim
2017-01-01
With the proliferation of the Internet-of-things (IoT), there is an undeniable consensus that cellular LTE networks will have to support a dramatically larger number of uplink connections. This is true since most of the devices to be added incur
Zhang, Y.; Chatterjea, Supriyo; Havinga, Paul J.M.
2007-01-01
We report our experiences with implementing a distributed and self-organizing scheduling algorithm designed for energy-efficient data gathering on a 25-node multihop wireless sensor network (WSN). The algorithm takes advantage of spatial correlations that exist in readings of adjacent sensor nodes
Directory of Open Access Journals (Sweden)
Jianhua Wang
2014-10-01
Full Text Available Purpose: The stable relationship of one-supplier-one-customer is replaced by a dynamic relationship of multi-supplier-multi-customer in current market gradually, and efficient scheduling techniques are important tools of the dynamic supply chain relationship establishing process. This paper studies the optimization of the integrated planning and scheduling problem of a two-stage supply chain with multiple manufacturers and multiple retailers to obtain a minimum supply chain operating cost, whose manufacturers have different production capacities, holding and producing cost rates, transportation costs to retailers.Design/methodology/approach: As a complex task allocation and scheduling problem, this paper sets up an INLP model for it and designs a Unit Cost Adjusting (UCA heuristic algorithm that adjust the suppliers’ supplying quantity according to their unit costs step by step to solve the model.Findings: Relying on the contrasting analysis between the UCA and the Lingo solvers for optimizing many numerical experiments, results show that the INLP model and the UCA algorithm can obtain its near optimal solution of the two-stage supply chain’s planning and scheduling problem within very short CPU time.Research limitations/implications: The proposed UCA heuristic can easily help managers to optimizing the two-stage supply chain scheduling problems which doesn’t include the delivery time and batch of orders. For two-stage supply chains are the most common form of actual commercial relationships, so to make some modification and study on the UCA heuristic should be able to optimize the integrated planning and scheduling problems of a supply chain with more reality constraints.Originality/value: This research proposes an innovative UCA heuristic for optimizing the integrated planning and scheduling problem of two-stage supply chains with the constraints of suppliers’ production capacity and the orders’ delivering time, and has a great
Shao, Zhongshi; Pi, Dechang; Shao, Weishi
2017-11-01
This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.
Development and evaluation of a scheduling algorithm for parallel hardware tests at CERN
Galetzka, Michael
This thesis aims at describing the problem of scheduling, evaluating different scheduling algorithms and comparing them with each other as well as with the current prototype solution. The implementation of the final solution will be delineated, as will the design considerations that led to it. The CERN Large Hadron Collider (LHC) has to deal with unprecedented stored energy, both in its particle beams and its superconducting magnet circuits. This energy could result in major equipment damage and downtime if it is not properly extracted from the machine. Before commissioning the machine with the particle beam, several thousands of tests have to be executed, analyzed and tracked to assess the proper functioning of the equipment and protection systems. These tests access the accelerator's equipment in order to verify the correct behavior of all systems, such as magnets, power converters and interlock controllers. A test could, for example, ramp the magnet to a certain energy level and then provoke an emergency...
A genetic algorithm approach for open-pit mine production scheduling
Directory of Open Access Journals (Sweden)
Aref Alipour
2017-06-01
Full Text Available In an Open-Pit Production Scheduling (OPPS problem, the goal is to determine the mining sequence of an orebody as a block model. In this article, linear programing formulation is used to aim this goal. OPPS problem is known as an NP-hard problem, so an exact mathematical model cannot be applied to solve in the real state. Genetic Algorithm (GA is a well-known member of evolutionary algorithms that widely are utilized to solve NP-hard problems. Herein, GA is implemented in a hypothetical Two-Dimensional (2D copper orebody model. The orebody is featured as two-dimensional (2D array of blocks. Likewise, counterpart 2D GA array was used to represent the OPPS problem’s solution space. Thereupon, the fitness function is defined according to the OPPS problem’s objective function to assess the solution domain. Also, new normalization method was used for the handling of block sequencing constraint. A numerical study is performed to compare the solutions of the exact and GA-based methods. It is shown that the gap between GA and the optimal solution by the exact method is less than % 5; hereupon GA is found to be efficiently in solving OPPS problem.
Directory of Open Access Journals (Sweden)
Bogna MRÓWCZYŃSKA
2011-01-01
Full Text Available This paper describes an application of an evolutionary algorithm and an artificial immune systems to solve a problem of scheduling an optimal route for waste disposal garbage trucks in its daily operation. Problem of an optimisation is formulated and solved using both methods. The results are presented for an area in one of the Polish cities.
Nonmyopic Sensor Scheduling and its Efficient Implementation for Target Tracking Applications
Directory of Open Access Journals (Sweden)
Morrell Darryl
2006-01-01
Full Text Available We propose two nonmyopic sensor scheduling algorithms for target tracking applications. We consider a scenario where a bearing-only sensor is constrained to move in a finite number of directions to track a target in a two-dimensional plane. Both algorithms provide the best sensor sequence by minimizing a predicted expected scheduler cost over a finite time-horizon. The first algorithm approximately computes the scheduler costs based on the predicted covariance matrix of the tracker error. The second algorithm uses the unscented transform in conjunction with a particle filter to approximate covariance-based costs or information-theoretic costs. We also propose the use of two branch-and-bound-based optimal pruning algorithms for efficient implementation of the scheduling algorithms. We design the first pruning algorithm by combining branch-and-bound with a breadth-first search and a greedy-search; the second pruning algorithm combines branch-and-bound with a uniform-cost search. Simulation results demonstrate the advantage of nonmyopic scheduling over myopic scheduling and the significant savings in computational and memory resources when using the pruning algorithms.
Experimental evaluation of open-loop UpLink Power Control using ACTS
Dissanayake, Asoka
1995-01-01
The present investigation deals with the implementation of open-loop up-link power control using a beacon signal in the down-link frequency band as the control parameter. A power control system was developed and tested using the ACTS satellite. ACTS carries beacon signals in both up- and down-link bands with which the relationship between the up- and down-link fading can be established. A power controlled carrier was transmitted to the ACTS satellite from a NASA operated ground station and the transponded signal was received at COMSAT Laboratories using a terminal that was routinely used to monitor the two ACTS beacon signals. The experiment ran for a period of approximately six months and the collected data were used to evaluate the performance of the power control system. A brief review of propagation factors involved in estimating the up-link fade using a beacon signal in the down-link band are presented. The power controller design and the experiment configuration are discussed. Results of the experiment are discussed.
A genetic algorithm for preemptive scheduling of a single machine
Directory of Open Access Journals (Sweden)
Amir-Mohammad Golmohammadi
2016-09-01
Full Text Available This paper presents a mathematical model for scheduling of a single machine when there are preemptions in jobs. The primary objective of the study is to minimize different objectives such as earliness, tardiness and work in process. The proposed mathematical problem is considered as NP-Hard and the optimal solution is available for small scale problems. Therefore, a genetic algorithm (GA is developed to solve the problem for large-scale problems. The implementation of the proposed model is compared with GA for problems with up to 50 jobs using three methods of roulette wheel sampling, random sampling and competition sampling. The results have indicated that competition sampling has reached optimal solutions for small scale problems and it could obtain better near-optimal solutions in relatively lower running time compared with other sampling methods.
Job shop scheduling problem with late work criterion
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.
The influence of the uplink noise on the performance of satellite data transmission systems
Dewal, Vrinda P.
The problem of transmission of binary phase shift keying (BPSK) modulated digital data through a bandlimited nonlinear satellite channel in the presence of uplink, downlink Gaussian noise and intersymbol interface is examined. The satellite transponder is represented by a zero memory bandpass nonlinearity, with AM/AM conversion. The proposed optimum linear receiver structure consists of tapped-delay lines followed by a decision device. The linear receiver is designed to minimize the mean square error that is a function of the intersymbol interface, the uplink and the downlink noise. The minimum mean square error equalizer (MMSE) is derived using the Wiener-Kolmogorov theory. In this receiver, the decision about the transmitted signal is made by taking into account the received sequence of present sample, and the interfering past and future samples, which represent the intersymbol interference (ISI). Illustrative examples of the receiver structures are considered for the nonlinear channels with a symmetrical and asymmetrical frequency responses of the transmitter filter. The transponder nonlinearity is simulated by a polynomial using only the first and the third orders terms. A computer simulation determines the tap gain coefficients of the MMSE equalizer that adapt to the various uplink and downlink noise levels. The performance of the MMSE equalizer is evaluated in terms of an estimate of the average probability of error.
Directory of Open Access Journals (Sweden)
L. de Haro-Ariet
2003-09-01
Full Text Available The uplink capacity and the interference statistics of the sectorsof a long groove-shaped road W-CDMA microcell are studied. A model of 9microcells in a groove-shaped road is used to analyze the uplink. Ahybrid model for the propagation is used in the analysis. The capacityand the interference statistics of the cell are studied for differentsector ranges, different specific attenuation factors, differentantenna side lobe levels and different bend losses.
National Research Council Canada - National Science Library
Fried, David L
2008-01-01
...(s) of the effect of turbulence on optical propagation. This method has been applied to the evaluation of Up-Link performance delivery of laser power from a simple ground transmitter to a satellite...
An Artificial Bee Colony Algorithm for the Job Shop Scheduling Problem with Random Processing Times
Directory of Open Access Journals (Sweden)
Rui Zhang
2011-09-01
Full Text Available Due to the influence of unpredictable random events, the processing time of each operation should be treated as random variables if we aim at a robust production schedule. However, compared with the extensive research on the deterministic model, the stochastic job shop scheduling problem (SJSSP has not received sufficient attention. In this paper, we propose an artificial bee colony (ABC algorithm for SJSSP with the objective of minimizing the maximum lateness (which is an index of service quality. First, we propose a performance estimate for preliminary screening of the candidate solutions. Then, the K-armed bandit model is utilized for reducing the computational burden in the exact evaluation (through Monte Carlo simulation process. Finally, the computational results on different-scale test problems validate the effectiveness and efficiency of the proposed approach.
Optimization of Hierarchically Scheduled Heterogeneous Embedded Systems
DEFF Research Database (Denmark)
Pop, Traian; Pop, Paul; Eles, Petru
2005-01-01
We present an approach to the analysis and optimization of heterogeneous distributed embedded systems. The systems are heterogeneous not only in terms of hardware components, but also in terms of communication protocols and scheduling policies. When several scheduling policies share a resource......, they are organized in a hierarchy. In this paper, we address design problems that are characteristic to such hierarchically scheduled systems: assignment of scheduling policies to tasks, mapping of tasks to hardware components, and the scheduling of the activities. We present algorithms for solving these problems....... Our heuristics are able to find schedulable implementations under limited resources, achieving an efficient utilization of the system. The developed algorithms are evaluated using extensive experiments and a real-life example....
Directory of Open Access Journals (Sweden)
Weidong Lei
2017-01-01
Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.
Uplink capacity of multi-class IEEE 802.16j relay networks with adaptive modulation and coding
DEFF Research Database (Denmark)
Wang, Hua; Xiong, C; Iversen, Villy Bæk
2009-01-01
The emerging IEEE 802.16j mobile multi-hop relay (MMR) network is currently being developed to increase the user throughput and extend the service coverage as an enhancement of existing 802.16e standard. In 802.16j, the intermediate relay stations (RSs) help the base station (BS) communicate...... with those mobile stations (MSs) that are either too far away from the BS or placed in an area where direct communication with BS experiences unsatisfactory level of service. In this paper, we investigate the uplink Erlang capacity of a two-hop 802.16j relay system supporting both voice and data traffics...... with adaptive modulation and coding (AMC) scheme applied in the physical layer. We first develop analytical models to calculate the blocking probability in the access zone and the outage probability in the relay zone, respectively. Then a joint algorithm is proposed to determine the bandwidth distribution...
Enhanced round robin CPU scheduling with burst time based time quantum
Indusree, J. R.; Prabadevi, B.
2017-11-01
Process scheduling is a very important functionality of Operating system. The main-known process-scheduling algorithms are First Come First Serve (FCFS) algorithm, Round Robin (RR) algorithm, Priority scheduling algorithm and Shortest Job First (SJF) algorithm. Compared to its peers, Round Robin (RR) algorithm has the advantage that it gives fair share of CPU to the processes which are already in the ready-queue. The effectiveness of the RR algorithm greatly depends on chosen time quantum value. Through this research paper, we are proposing an enhanced algorithm called Enhanced Round Robin with Burst-time based Time Quantum (ERRBTQ) process scheduling algorithm which calculates time quantum as per the burst-time of processes already in ready queue. The experimental results and analysis of ERRBTQ algorithm clearly indicates the improved performance when compared with conventional RR and its variants.
Directory of Open Access Journals (Sweden)
Daniela Saturnino
2008-10-01
Full Text Available The issue of adaptive and distributed cross-layer resource allocation for energy efficiency in uplink code-division multiple-access (CDMA wireless data networks is addressed. The resource allocation problems are formulated as noncooperative games wherein each terminal seeks to maximize its own energy efficiency, namely, the number of reliably transmitted information symbols per unit of energy used for transmission. The focus of this paper is on the issue of adaptive and distributed implementation of policies arising from this approach, that is, it is assumed that only readily available measurements, such as the received data, are available at the receiver in order to play the considered games. Both single-cell and multicell networks are considered. Stochastic implementations of noncooperative games for power allocation, spreading code allocation, and choice of the uplink (linear receiver are thus proposed, and analytical results describing the convergence properties of selected stochastic algorithms are also given. Extensive simulation results show that, in many instances of practical interest, the proposed stochastic algorithms approach with satisfactory accuracy the performance of nonadaptive games, whose implementation requires much more prior information.
Scheduler-dependent inter-cell interference and its impact on LTE uplink performance at flow level
Dimitrova, D.C.; Heijenk, G.; Berg, J.L. van den; Yankov, S.
2011-01-01
The Long Term Evolution (LTE) cellular technology is expected to extend the capacity and improve the performance of current 3G cellular networks. Among the key mechanisms in LTE responsible for traffic management is the packet scheduler, which handles the allocation of resources to active flows in
Hannan, M A; Akhtar, Mahmuda; Begum, R A; Basri, H; Hussain, A; Scavino, Edgar
2018-01-01
Waste collection widely depends on the route optimization problem that involves a large amount of expenditure in terms of capital, labor, and variable operational costs. Thus, the more waste collection route is optimized, the more reduction in different costs and environmental effect will be. This study proposes a modified particle swarm optimization (PSO) algorithm in a capacitated vehicle-routing problem (CVRP) model to determine the best waste collection and route optimization solutions. In this study, threshold waste level (TWL) and scheduling concepts are applied in the PSO-based CVRP model under different datasets. The obtained results from different datasets show that the proposed algorithmic CVRP model provides the best waste collection and route optimization in terms of travel distance, total waste, waste collection efficiency, and tightness at 70-75% of TWL. The obtained results for 1 week scheduling show that 70% of TWL performs better than all node consideration in terms of collected waste, distance, tightness, efficiency, fuel consumption, and cost. The proposed optimized model can serve as a valuable tool for waste collection and route optimization toward reducing socioeconomic and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation optimization based ant colony algorithm for the uncertain quay crane scheduling problem
Directory of Open Access Journals (Sweden)
Naoufal Rouky
2019-01-01
Full Text Available This work is devoted to the study of the Uncertain Quay Crane Scheduling Problem (QCSP, where the loading /unloading times of containers and travel time of quay cranes are considered uncertain. The problem is solved with a Simulation Optimization approach which takes advantage of the great possibilities offered by the simulation to model the real details of the problem and the capacity of the optimization to find solutions with good quality. An Ant Colony Optimization (ACO meta-heuristic hybridized with a Variable Neighborhood Descent (VND local search is proposed to determine the assignments of tasks to quay cranes and the sequences of executions of tasks on each crane. Simulation is used inside the optimization algorithm to generate scenarios in agreement with the probabilities of the distributions of the uncertain parameters, thus, we carry out stochastic evaluations of the solutions found by each ant. The proposed optimization algorithm is tested first for the deterministic case on several well-known benchmark instances. Then, in the stochastic case, since no other work studied exactly the same problem with the same assumptions, the Simulation Optimization approach is compared with the deterministic version. The experimental results show that the optimization algorithm is competitive as compared to the existing methods and that the solutions found by the Simulation Optimization approach are more robust than those found by the optimization algorithm.
de Bildt, Annelies; Sytema, Sjoerd; Meffert, Harma; Bastiaansen, Jojanneke A. C. J.
2016-01-01
This study examined the discriminative ability of the revised Autism Diagnostic Observation Schedule module 4 algorithm (Hus and Lord in "J Autism Dev Disord" 44(8):1996-2012, 2014) in 93 Dutch males with Autism Spectrum Disorder (ASD), schizophrenia, psychopathy or controls. Discriminative ability of the revised algorithm ASD cut-off…
Directory of Open Access Journals (Sweden)
Zhigang Lian
2010-01-01
Full Text Available The Job-shop scheduling problem (JSSP is a branch of production scheduling, which is among the hardest combinatorial optimization problems. Many different approaches have been applied to optimize JSSP, but for some JSSP even with moderate size cannot be solved to guarantee optimality. The original particle swarm optimization algorithm (OPSOA, generally, is used to solve continuous problems, and rarely to optimize discrete problems such as JSSP. In OPSOA, through research I find that it has a tendency to get stuck in a near optimal solution especially for middle and large size problems. The local and global search combine particle swarm optimization algorithm (LGSCPSOA is used to solve JSSP, where particle-updating mechanism benefits from the searching experience of one particle itself, the best of all particles in the swarm, and the best of particles in neighborhood population. The new coding method is used in LGSCPSOA to optimize JSSP, and it gets all sequences are feasible solutions. Three representative instances are made computational experiment, and simulation shows that the LGSCPSOA is efficacious for JSSP to minimize makespan.
Elsawy, Hesham; Hossain, Ekram
2014-01-01
Using stochastic geometry, we develop a tractable uplink modeling paradigm for outage probability and spectral efficiency in both single and multi-tier cellular wireless networks. The analysis accounts for per user equipment (UE) power control
Scheduler-dependent inter-cell interference and its impact on LTE uplink performance at flow level
Dimitrova, D.C.; Heijenk, Geert; van den Berg, Hans Leo; Yankov, S.; Masip Bruin, Xavier; Verchere, Dominique; Tsaoussidis, Vassilis; Yannuzzi, Marcelo
The Long Term Evolution (LTE) cellular technology is ex- pected to extend the capacity and improve the performance of current 3G cellular networks. Among the key mechanisms in LTE responsible for traffic management is the packet scheduler, which handles the al- location of resources to active flows
Knowledge-based scheduling of arrival aircraft
Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.
1995-01-01
A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.
Optimal Algorithms and a PTAS for Cost-Aware Scheduling
L. Chen; N. Megow; R. Rischke; L. Stougie (Leen); J. Verschae
2015-01-01
htmlabstractWe consider a natural generalization of classical scheduling problems in which using a time unit for processing a job causes some time-dependent cost which must be paid in addition to the standard scheduling cost. We study the scheduling objectives of minimizing the makespan and the
International Nuclear Information System (INIS)
Jiang Chuanwen; Bompard, Etorre
2005-01-01
This paper proposes a short term hydroelectric plant dispatch model based on the rule of maximizing the benefit. For the optimal dispatch model, which is a large scale nonlinear planning problem with multi-constraints and multi-variables, this paper proposes a novel self-adaptive chaotic particle swarm optimization algorithm to solve the short term generation scheduling of a hydro-system better in a deregulated environment. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed approach introduces chaos mapping and an adaptive scaling term into the particle swarm optimization algorithm, which increases its convergence rate and resulting precision. The new method has been examined and tested on a practical hydro-system. The results are promising and show the effectiveness and robustness of the proposed approach in comparison with the traditional particle swarm optimization algorithm
A QoS-Based Dynamic Queue Length Scheduling Algorithm in Multiantenna Heterogeneous Systems
Directory of Open Access Journals (Sweden)
Verikoukis Christos
2010-01-01
Full Text Available The use of real-time delay-sensitive applications in wireless systems has significantly grown during the last years. Therefore the designers of wireless systems have faced a challenging issue to guarantee the required Quality of Service (QoS. On the other hand, the recent advances and the extensive use of multiple antennas have already been included in several commercial standards, where the multibeam opportunistic transmission beamforming strategies have been proposed to improve the performance of the wireless systems. A cross-layer-based dynamically tuned queue length scheduler is presented in this paper, for the Downlink of multiuser and multiantenna WLAN systems with heterogeneous traffic requirements. To align with modern wireless systems transmission strategies, an opportunistic scheduling algorithm is employed, while a priority to the different traffic classes is applied. A tradeoff between the maximization of the throughput of the system and the guarantee of the maximum allowed delay is obtained. Therefore, the length of the queue is dynamically adjusted to select the appropriate conditions based on the operator requirements.
Directory of Open Access Journals (Sweden)
Lianfei Yu
2017-01-01
Full Text Available Efficient scheduling for the supporting operations of aircrafts in flight deck is critical to the aircraft carrier, and even several seconds’ improvement may lead to totally converse outcome of a battle. In the paper, we ameliorate the supporting operations of carrier-based aircrafts and investigate three simultaneous operation relationships during the supporting process, including precedence constraints, parallel operations, and sequence flexibility. Furthermore, multifunctional aircrafts have to take off synergistically and participate in a combat cooperatively. However, their takeoff order must be restrictively prioritized during the scheduling period accorded by certain operational regulations. To efficiently prioritize the takeoff order while minimizing the total time budget on the whole takeoff duration, we propose a novel mixed integer liner programming formulation (MILP for the flight deck scheduling problem. Motivated by the hardness of MILP, we design an improved differential evolution algorithm combined with typical local search strategies to improve computational efficiency. We numerically compare the performance of our algorithm with the classical genetic algorithm and normal differential evolution algorithm and the results show that our algorithm obtains better scheduling schemes that can meet both the operational relations and the takeoff priority requirements.
Directory of Open Access Journals (Sweden)
Xiaohao Wen
2018-03-01
Full Text Available Long-term scheduling of large cascade hydropower stations (LSLCHS is a complex problem of high dimension, nonlinearity, coupling and complex constraint. In view of the above problem, we present an improved differential evolution (iLSHADE algorithm based on LSHADE, a state-of-the-art evolutionary algorithm. iLSHADE uses new mutation strategies “current to pbest/2-rand” to obtain wider search range and accelerate convergence with the preventing individual repeated failure evolution (PIRFE strategy. The handling of complicated constraints strategy of ε-constrained method is presented to handle outflow, water level and output constraints in the cascade reservoir operation. Numerical experiments of 10 benchmark functions have been done, showing that iLSHADE has stable convergence and high efficiency. Furthermore, we demonstrate the performance of the iLSHADE algorithm by comparing it with other improved differential evolution algorithms for LSLCHS in four large hydropower stations of the Jinsha River. With the applications of iLSHADE in reservoir operation, LSLCHS can obtain more power generation benefit than other alternatives in dry, normal, and wet years. The results of numerical experiments and case studies show that the iLSHADE has a distinct optimization effect and good stability, and it is a valid and reliable tool to solve LSLCHS problem.
Scheduling for energy and reliability management on multiprocessor real-time systems
Qi, Xuan
Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.
Future aircraft networks and schedules
Shu, Yan
2011-07-01
Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents
Nan, Zhufen; Chi, Xuefen
2016-12-20
The IEEE 802.15.7 protocol suggests that it could coordinate the channel access process based on the competitive method of carrier sensing. However, the directionality of light and randomness of diffuse reflection would give rise to a serious imperfect carrier sense (ICS) problem [e.g., hidden node (HN) problem and exposed node (EN) problem], which brings great challenges in realizing the optical carrier sense multiple access (CSMA) mechanism. In this paper, the carrier sense process implemented by diffuse reflection light is modeled as the choice of independent sets. We establish an ICS model with the presence of ENs and HNs for the multi-point to multi-point visible light communication (VLC) uplink communications system. Considering the severe optical ICS problem, an optical hard core point process (OHCPP) is developed, which characterizes the optical CSMA for the indoor VLC uplink communications system. Due to the limited coverage of the transmitted optical signal, in our OHCPP, the ENs within the transmitters' carrier sense region could be retained provided that they could not corrupt the ongoing communications. Moreover, because of the directionality of both light emitting diode (LED) transmitters and receivers, theoretical analysis of the HN problem becomes difficult. In this paper, we derive the closed-form expression for approximating the outage probability and transmission capacity of VLC networks with the presence of HNs and ENs. Simulation results validate the analysis and also show the existence of an optimal physical carrier-sensing threshold that maximizes the transmission capacity for a given emission angle of LED.
Directory of Open Access Journals (Sweden)
Rui Zhang
2017-09-01
Full Text Available The dyeing of textile materials is the most critical process in cloth production because of the strict technological requirements. In addition to the technical aspect, there have been increasing concerns over how to minimize the negative environmental impact of the dyeing industry. The emissions of pollutants are mainly caused by frequent cleaning operations which are necessary for initializing the dyeing equipment, as well as idled production capacity which leads to discharge of unconsumed chemicals. Motivated by these facts, we propose a methodology to reduce the pollutant emissions by means of systematic production scheduling. Firstly, we build a three-objective scheduling model that incorporates both the traditional tardiness objective and the environmentally-related objectives. A mixed-integer programming formulation is also provided to accurately define the problem. Then, we present a novel solution method for the sustainable scheduling problem, namely, a multi-objective genetic algorithm with tabu-enhanced iterated greedy local search strategy (MOGA-TIG. Finally, we conduct extensive computational experiments to investigate the actual performance of the MOGA-TIG. Based on a fair comparison with two state-of-the-art multi-objective optimizers, it is concluded that the MOGA-TIG is able to achieve satisfactory solution quality within tight computational time budget for the studied scheduling problem.
Directory of Open Access Journals (Sweden)
Ada Che
2008-01-01
Full Text Available Modern automated production lines usually use one or multiple computer-controlled robots or hoists for material handling between workstations. A typical application of such lines is an automated electroplating line for processing printed circuit boards (PCBs. In these systems, cyclic production policy is widely used due to large lot size and simplicity of implementation. This paper addresses cyclic scheduling of a multihoist electroplating line with constant processing times. The objective is to minimize the cycle time, or equivalently to maximize the production throughput, for a given number of hoists. We propose a mathematical model and a polynomial algorithm for this scheduling problem. Computational results on randomly generated instances are reported.
Direct block scheduling technology: Analysis of Avidity
Directory of Open Access Journals (Sweden)
Felipe Ribeiro Souza
Full Text Available Abstract This study is focused on Direct Block Scheduling testing (Direct Multi-Period Scheduling methodology which schedules mine production considering the correct discount factor of each mining block, resulting in the final pit. Each block is analyzed individually in order to define the best target period. This methodology presents an improvement of the classical methodology derived from Lerchs-Grossmann's initial proposition improved by Whittle. This paper presents the differences between these methodologies, specially focused on the algorithms' avidity. Avidity is classically defined by the voracious search algorithms, whereupon some of the most famous greedy algorithms are Branch and Bound, Brutal Force and Randomized. Strategies based on heuristics can accentuate the voracity of the optimizer system. The applied algorithm use simulated annealing combined with Tabu Search. The most avid algorithm can select the most profitable blocks in early periods, leading to higher present value in the first periods of mine operation. The application of discount factors to blocks on the Lerchs-Grossmann's final pit has an accentuated effect with time, and this effect may make blocks scheduled for the end of the mine life unfeasible, representing a trend to a decrease in reported reserves.
Efficient Uplink Modeling for Dynamic System-Level Simulations of Cellular and Mobile Networks
Directory of Open Access Journals (Sweden)
Lobinger Andreas
2010-01-01
Full Text Available A novel theoretical framework for uplink simulations is proposed. It allows investigations which have to cover a very long (real- time and which at the same time require a certain level of accuracy in terms of radio resource management, quality of service, and mobility. This is of particular importance for simulations of self-organizing networks. For this purpose, conventional system level simulators are not suitable due to slow simulation speeds far beyond real-time. Simpler, snapshot-based tools are lacking the aforementioned accuracy. The runtime improvements are achieved by deriving abstract theoretical models for the MAC layer behavior. The focus in this work is long term evolution, and the most important uplink effects such as fluctuating interference, power control, power limitation, adaptive transmission bandwidth, and control channel limitations are considered. Limitations of the abstract models will be discussed as well. Exemplary results are given at the end to demonstrate the capability of the derived framework.
The triangle scheduling problem
Dürr, Christoph; Hanzálek, Zdeněk; Konrad, Christian; Seddik, Yasmina; Sitters, R.A.; Vásquez, Óscar C.; Woeginger, Gerhard
2017-01-01
This paper introduces a novel scheduling problem, where jobs occupy a triangular shape on the time line. This problem is motivated by scheduling jobs with different criticality levels. A measure is introduced, namely the binary tree ratio. It is shown that the Greedy algorithm solves the problem to
Resource allocation via sum-rate maximization in the uplink of multi-cell OFDMA networks
Tabassum, Hina; Alouini, Mohamed-Slim; Dawy, Zaher
2012-01-01
In this paper, we consider maximizing the sum rate in the uplink of a multi-cell orthogonal frequency-division multiple access network. The problem has a non-convex combinatorial structure and is known to be NP-hard. Because of the inherent
Heuristic and Exact Algorithms for the Two-Machine Just in Time Job Shop Scheduling Problem
Directory of Open Access Journals (Sweden)
Mohammed Al-Salem
2016-01-01
Full Text Available The problem addressed in this paper is the two-machine job shop scheduling problem when the objective is to minimize the total earliness and tardiness from a common due date (CDD for a set of jobs when their weights equal 1 (unweighted problem. This objective became very significant after the introduction of the Just in Time manufacturing approach. A procedure to determine whether the CDD is restricted or unrestricted is developed and a semirestricted CDD is defined. Algorithms are introduced to find the optimal solution when the CDD is unrestricted and semirestricted. When the CDD is restricted, which is a much harder problem, a heuristic algorithm is proposed to find approximate solutions. Through computational experiments, the heuristic algorithms’ performance is evaluated with problems up to 500 jobs.
Dynamic Scheduling for Cloud Reliability using Transportation Problem
P. Balasubramanie; S. K. Senthil Kumar
2012-01-01
Problem statement: Cloud is purely a dynamic environment and the existing task scheduling algorithms are mostly static and considered various parameters like time, cost, make span, speed, scalability, throughput, resource utilization, scheduling success rate and so on. Available scheduling algorithms are mostly heuristic in nature and more complex, time consuming and does not consider reliability and availability of the cloud computing environment. Therefore there is a need to implement a sch...
Performance Analysis of Simple Channel Feedback Schemes for a Practical OFDMA System
DEFF Research Database (Denmark)
Pedersen, Klaus, I.; Kolding, Troels; Kovacs, Istvan
2009-01-01
In this paper, we evaluate the tradeoff between the amount of uplink channel feedback information and the orthogonal frequency-division multiple access (OFDMA) downlink performance with opportunistic frequency-domain packet scheduling. Three candidate channel feedback schemes are investigated......, including practical aspects, such as the effects of terminal measurement errors, bandwidth measurement granularity, quantization, and uplink signaling delays. The performance is evaluated by means of system-level simulations with detailed modeling of various radio resource-management algorithms, etc. Our...... results show that the optimal tradeoff between the channel feedback and the downlink OFDMA system performance depends on the radio channel frequency coherence bandwidth. We conclude that the so-called average best-M scheme is the most attractive channel feedback solution, where only the average channel...
Endrayanto, A.I.; van den Berg, Hans Leo; Boucherie, Richardus J.
2003-01-01
This paper models and analyzes downlink and uplink power assignment in Code Division Multiple Access (CDMA) mobile networks. By discretizing the area into small segments, the power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a
Endrayanto, A.I.; van den Berg, Hans Leo; Boucherie, Richardus J.
2005-01-01
This paper models and analyzes downlink and uplink power assignment in code division multiple access (CDMA) mobile networks. By discretizing the area into small segments, the power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a
Directory of Open Access Journals (Sweden)
Farahmand-Mehr Mohammad
2014-01-01
Full Text Available In this paper, a hybrid flow shop scheduling problem with a new approach considering time lags and sequence-dependent setup time in realistic situations is presented. Since few works have been implemented in this field, the necessity of finding better solutions is a motivation to extend heuristic or meta-heuristic algorithms. This type of production system is found in industries such as food processing, chemical, textile, metallurgical, printed circuit board, and automobile manufacturing. A mixed integer linear programming (MILP model is proposed to minimize the makespan. Since this problem is known as NP-Hard class, a meta-heuristic algorithm, named Genetic Algorithm (GA, and three heuristic algorithms (Johnson, SPTCH and Palmer are proposed. Numerical experiments of different sizes are implemented to evaluate the performance of presented mathematical programming model and the designed GA in compare to heuristic algorithms and a benchmark algorithm. Computational results indicate that the designed GA can produce near optimal solutions in a short computational time for different size problems.
Scheduling Parallel Jobs Using Migration and Consolidation in the Cloud
Directory of Open Access Journals (Sweden)
Xiaocheng Liu
2012-01-01
Full Text Available An increasing number of high performance computing parallel applications leverages the power of the cloud for parallel processing. How to schedule the parallel applications to improve the quality of service is the key to the successful host of parallel applications in the cloud. The large scale of the cloud makes the parallel job scheduling more complicated as even simple parallel job scheduling problem is NP-complete. In this paper, we propose a parallel job scheduling algorithm named MEASY. MEASY adopts migration and consolidation to enhance the most popular EASY scheduling algorithm. Our extensive experiments on well-known workloads show that our algorithm takes very good care of the quality of service. For two common parallel job scheduling objectives, our algorithm produces an up to 41.1% and an average of 23.1% improvement on the average response time; an up to 82.9% and an average of 69.3% improvement on the average slowdown. Our algorithm is robust even in terms that it allows inaccurate CPU usage estimation and high migration cost. Our approach involves trivial modification on EASY and requires no additional technique; it is practical and effective in the cloud environment.
MEDICAL STAFF SCHEDULING USING SIMULATED ANNEALING
Directory of Open Access Journals (Sweden)
Ladislav Rosocha
2015-07-01
Full Text Available Purpose: The efficiency of medical staff is a fundamental feature of healthcare facilities quality. Therefore the better implementation of their preferences into the scheduling problem might not only rise the work-life balance of doctors and nurses, but also may result into better patient care. This paper focuses on optimization of medical staff preferences considering the scheduling problem.Methodology/Approach: We propose a medical staff scheduling algorithm based on simulated annealing, a well-known method from statistical thermodynamics. We define hard constraints, which are linked to legal and working regulations, and minimize the violations of soft constraints, which are related to the quality of work, psychic, and work-life balance of staff.Findings: On a sample of 60 physicians and nurses from gynecology department we generated monthly schedules and optimized their preferences in terms of soft constraints. Our results indicate that the final value of objective function optimized by proposed algorithm is more than 18-times better in violations of soft constraints than initially generated random schedule that satisfied hard constraints.Research Limitation/implication: Even though the global optimality of final outcome is not guaranteed, desirable solutionwas obtained in reasonable time. Originality/Value of paper: We show that designed algorithm is able to successfully generate schedules regarding hard and soft constraints. Moreover, presented method is significantly faster than standard schedule generation and is able to effectively reschedule due to the local neighborhood search characteristics of simulated annealing.
Mixed Criticality Scheduling for Industrial Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Xi Jin
2016-08-01
Full Text Available Wireless sensor networks (WSNs have been widely used in industrial systems. Their real-time performance and reliability are fundamental to industrial production. Many works have studied the two aspects, but only focus on single criticality WSNs. Mixed criticality requirements exist in many advanced applications in which different data flows have different levels of importance (or criticality. In this paper, first, we propose a scheduling algorithm, which guarantees the real-time performance and reliability requirements of data flows with different levels of criticality. The algorithm supports centralized optimization and adaptive adjustment. It is able to improve both the scheduling performance and flexibility. Then, we provide the schedulability test through rigorous theoretical analysis. We conduct extensive simulations, and the results demonstrate that the proposed scheduling algorithm and analysis significantly outperform existing ones.
Using a vision cognitive algorithm to schedule virtual machines
Zhao Jiaqi; Mhedheb Yousri; Tao Jie; Jrad Foued; Liu Qinghuai; Streit Achim
2014-01-01
Scheduling virtual machines is a major research topic for cloud computing, because it directly influences the performance, the operation cost and the quality of services. A large cloud center is normally equipped with several hundred thousand physical machines. The mission of the scheduler is to select the best one to host a virtual machine. This is an NPhard global optimization problem with grand challenges for researchers. This work studies the Virtual Machine (VM) scheduling problem on the...
Shakir, Muhammad
2014-06-01
Heterogeneous networks (HetNets) are envisioned to enable next-generation cellular networks by providing higher spectral and energy efficiency. A HetNet is typically composed of multiple radio access technologies where several low-power low-cost operators or user-deployed small-cell base stations (SBSs) complement the macrocell network. In this paper, we consider a two-tier HetNet where the SBSs are arranged around the edge of the reference macrocell such that the resultant configuration is referred to as cell-on-edge (COE). Each mobile user in a small cell is considered capable of adapting its uplink transmit power according to a location-based slow power control mechanism. The COE configuration is observed to increase the uplink area spectral efficiency (ASE) and energy efficiency while reducing the cochannel interference power. A moment-generating-function (MGF)-based approach has been exploited to derive the analytical bounds on the uplink ASE of the COE configuration. The derived expressions are generalized for any composite fading distribution, and closed-form expressions are presented for the generalized- K fading channels. Simulation results are included to support the analysis and to show the efficacy of the COE configuration. A comparative performance analysis is also provided to demonstrate the improvements in the performance of cell-edge users of the COE configuration compared with that of macro-only networks (MoNets) and other unplanned deployment strategies. © 2013 IEEE.
Shao, Zhongshi; Pi, Dechang; Shao, Weishi
2018-05-01
This article presents an effective estimation of distribution algorithm, named P-EDA, to solve the blocking flow-shop scheduling problem (BFSP) with the makespan criterion. In the P-EDA, a Nawaz-Enscore-Ham (NEH)-based heuristic and the random method are combined to generate the initial population. Based on several superior individuals provided by a modified linear rank selection, a probabilistic model is constructed to describe the probabilistic distribution of the promising solution space. The path relinking technique is incorporated into EDA to avoid blindness of the search and improve the convergence property. A modified referenced local search is designed to enhance the local exploitation. Moreover, a diversity-maintaining scheme is introduced into EDA to avoid deterioration of the population. Finally, the parameters of the proposed P-EDA are calibrated using a design of experiments approach. Simulation results and comparisons with some well-performing algorithms demonstrate the effectiveness of the P-EDA for solving BFSP.
Effective Task Scheduling and IP Mapping Algorithm for Heterogeneous NoC-Based MPSoC
Directory of Open Access Journals (Sweden)
Peng-Fei Yang
2014-01-01
Full Text Available Quality of task scheduling is critical to define the network communication efficiency and the performance of the entire NoC- (Network-on-Chip- based MPSoC (multiprocessor System-on-Chip. In this paper, the NoC-based MPSoC design process is favorably divided into two steps, that is, scheduling subtasks to processing elements (PEs of appropriate type and quantity and then mapping these PEs onto the switching nodes of NoC topology. When the task model is improved so that it reflects better the real intertask relations, optimized particle swarm optimization (PSO is utilized to achieve the first step with expected less task running and transfer cost as well as the least task execution time. By referring to the topology of NoC and the resultant communication diagram of the first step, the second step is done with the minimal expected network transmission delay as well as less resource consumption and even power consumption. The comparative experiments have shown the preferable resource and power consumption of the algorithm when it is actually adopted in a system design.
Directory of Open Access Journals (Sweden)
Aylin Yener
2007-12-01
Full Text Available We consider the joint optimization problem of cell sectorization, transmit power control and multiuser detection for a CDMA cell. Given the number of sectors and user locations, the cell is appropriately sectorized such that the total transmit power, as well as the receiver filters, is optimized. We formulate the corresponding joint optimization problems for both the uplink and the downlink and observe that in general, the resulting optimum transmit and receive beamwidth values for the directional antennas at the base station are different. We present the optimum solution under a general setting with arbitrary signature sets, multipath channels, realistic directional antenna responses and identify its complexity. We propose a low-complexity sectorization algorithm that performs near optimum and compare its performance with that of optimum solution. The results suggest that by intelligently combining adaptive cell sectorization, power control, and linear multiuser detection, we are able to increase the user capacity of the cell. Numerical results also indicate robustness of optimum sectorization against Gaussian channel estimation error.
Directory of Open Access Journals (Sweden)
Oh Changyoon
2007-01-01
Full Text Available We consider the joint optimization problem of cell sectorization, transmit power control and multiuser detection for a CDMA cell. Given the number of sectors and user locations, the cell is appropriately sectorized such that the total transmit power, as well as the receiver filters, is optimized. We formulate the corresponding joint optimization problems for both the uplink and the downlink and observe that in general, the resulting optimum transmit and receive beamwidth values for the directional antennas at the base station are different. We present the optimum solution under a general setting with arbitrary signature sets, multipath channels, realistic directional antenna responses and identify its complexity. We propose a low-complexity sectorization algorithm that performs near optimum and compare its performance with that of optimum solution. The results suggest that by intelligently combining adaptive cell sectorization, power control, and linear multiuser detection, we are able to increase the user capacity of the cell. Numerical results also indicate robustness of optimum sectorization against Gaussian channel estimation error.
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter
Directory of Open Access Journals (Sweden)
Shyamala Loganathan
2015-01-01
Full Text Available Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.
On program restructuring, scheduling, and communication for parallel processor systems
Energy Technology Data Exchange (ETDEWEB)
Polychronopoulos, Constantine D. [Univ. of Illinois, Urbana, IL (United States)
1986-08-01
This dissertation discusses several software and hardware aspects of program execution on large-scale, high-performance parallel processor systems. The issues covered are program restructuring, partitioning, scheduling and interprocessor communication, synchronization, and hardware design issues of specialized units. All this work was performed focusing on a single goal: to maximize program speedup, or equivalently, to minimize parallel execution time. Parafrase, a Fortran restructuring compiler was used to transform programs in a parallel form and conduct experiments. Two new program restructuring techniques are presented, loop coalescing and subscript blocking. Compile-time and run-time scheduling schemes are covered extensively. Depending on the program construct, these algorithms generate optimal or near-optimal schedules. For the case of arbitrarily nested hybrid loops, two optimal scheduling algorithms for dynamic and static scheduling are presented. Simulation results are given for a new dynamic scheduling algorithm. The performance of this algorithm is compared to that of self-scheduling. Techniques for program partitioning and minimization of interprocessor communication for idealized program models and for real Fortran programs are also discussed. The close relationship between scheduling, interprocessor communication, and synchronization becomes apparent at several points in this work. Finally, the impact of various types of overhead on program speedup and experimental results are presented.
Non preemptive soft real time scheduler: High deadline meeting rate on overload
Khalib, Zahereel Ishwar Abdul; Ahmad, R. Badlishah; El-Shaikh, Mohamed
2015-05-01
While preemptive scheduling has gain more attention among researchers, current work in non preemptive scheduling had shown promising result in soft real time jobs scheduling. In this paper we present a non preemptive scheduling algorithm meant for soft real time applications, which is capable of producing better performance during overload while maintaining excellent performance during normal load. The approach taken by this algorithm has shown more promising results compared to other algorithms including its immediate predecessor. We will present the analysis made prior to inception of the algorithm as well as simulation results comparing our algorithm named gutEDF with EDF and gEDF. We are convinced that grouping jobs utilizing pure dynamic parameters would produce better performance.
How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss
Meyer-Scott, Evan; Yan, Zhizhong; MacDonald, Allison; Bourgoin, Jean-Philippe; Hübel, Hannes; Jennewein, Thomas
2011-12-01
Quantum key distribution (QKD) takes advantage of fundamental properties of quantum physics to allow two distant parties to share a secret key; however, QKD is hampered by a distance limitation of a few hundred kilometers on Earth. The most immediate solution for global coverage is to use a satellite, which can receive separate QKD transmissions from two or more ground stations and act as a trusted node to link these ground stations. In this article we report on a system capable of performing QKD in the high loss regime expected in an uplink to a satellite using weak coherent pulses and decoy states. Such a scenario profits from the simplicity of its receiver payload, but has so far been considered to be infeasible due to very high transmission losses (40-50 dB). The high loss is overcome by implementing an innovative photon source and advanced timing analysis. Our system handles up to 57 dB photon loss in the infinite key limit, confirming the viability of the satellite uplink scenario. We emphasize that while this system was designed with a satellite uplink in mind, it could just as easily overcome high losses on any free space QKD link.
How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss
International Nuclear Information System (INIS)
Meyer-Scott, Evan; Yan, Zhizhong; MacDonald, Allison; Bourgoin, Jean-Philippe; Huebel, Hannes; Jennewein, Thomas
2011-01-01
Quantum key distribution (QKD) takes advantage of fundamental properties of quantum physics to allow two distant parties to share a secret key; however, QKD is hampered by a distance limitation of a few hundred kilometers on Earth. The most immediate solution for global coverage is to use a satellite, which can receive separate QKD transmissions from two or more ground stations and act as a trusted node to link these ground stations. In this article we report on a system capable of performing QKD in the high loss regime expected in an uplink to a satellite using weak coherent pulses and decoy states. Such a scenario profits from the simplicity of its receiver payload, but has so far been considered to be infeasible due to very high transmission losses (40-50 dB). The high loss is overcome by implementing an innovative photon source and advanced timing analysis. Our system handles up to 57 dB photon loss in the infinite key limit, confirming the viability of the satellite uplink scenario. We emphasize that while this system was designed with a satellite uplink in mind, it could just as easily overcome high losses on any free space QKD link.
International Nuclear Information System (INIS)
Li, Chunlong; Zhou, Jianzhong; Lu, Peng; Wang, Chao
2015-01-01
Highlights: • Improved multi-objective gravitational search algorithm. • An elite archive set is proposed to guide evolutionary process. • Neighborhood searching mechanism to improve local search ability. • Adopt chaotic mutation for avoiding premature convergence. • Propose feasible space method to handle hydro plant constrains. - Abstract: With growing concerns about energy and environment, short-term economic environmental hydrothermal scheduling (SEEHS) plays a more and more important role in power system. Because of the two objectives and various constraints, SEEHS is a complex multi-objective optimization problem (MOOP). In order to solve the problem, we propose an improved multi-objective gravitational search algorithm (IMOGSA) in this paper. In IMOGSA, the mass of the agent is redefined by multiple objectives to make it suitable for MOOP. An elite archive set is proposed to keep Pareto optimal solutions and guide evolutionary process. For balancing exploration and exploitation, a neighborhood searching mechanism is presented to cooperate with chaotic mutation. Moreover, a novel method based on feasible space is proposed to handle hydro plant constraints during SEEHS, and a violation adjustment method is adopted to handle power balance constraint. For verifying its effectiveness, the proposed IMOGSA is applied to a hydrothermal system in two different case studies. The simulation results show that IMOGSA has a competitive performance in SEEHS when compared with other established algorithms
Optimal OFDMA Downlink Scheduling Under a Control Signaling Cost Constraint
Larsson, Erik G.
2010-01-01
This paper proposes a new algorithm for downlink scheduling in OFDMA systems. The method maximizes the throughput, taking into account the amount of signaling needed to transmit scheduling maps to the users. A combinatorial problem is formulated and solved via a dynamic programming approach reminiscent of the Viterbi algorithm. The total computational complexity of the algorithm is upper boundedby O(K^4N) where K is the number of users that are being considered for scheduling in a frame and N...
Directory of Open Access Journals (Sweden)
Lei Wang
2017-01-01
Full Text Available In real-world manufacturing systems, production scheduling systems are often implemented under random or dynamic events like machine failure, unexpected processing times, stochastic arrival of the urgent orders, cancellation of the orders, and so on. These dynamic events will lead the initial scheduling scheme to be nonoptimal and/or infeasible. Hence, appropriate dynamic rescheduling approaches are needed to overcome the dynamic events. In this paper, we propose a dynamic rescheduling method based on variable interval rescheduling strategy (VIRS to deal with the dynamic flexible job shop scheduling problem considering machine failure, urgent job arrival, and job damage as disruptions. On the other hand, an improved genetic algorithm (GA is proposed for minimizing makespan. In our improved GA, a mix of random initialization population by combining initialization machine and initialization operation with random initialization is designed for generating high-quality initial population. In addition, the elitist strategy (ES and improved population diversity strategy (IPDS are used to avoid falling into the local optimal solution. Experimental results for static and several dynamic events in the FJSP show that our method is feasible and effective.
Directory of Open Access Journals (Sweden)
Zahedi Zahedi
2016-06-01
Full Text Available This paper discusses integrated model of batch production scheduling and machine maintenance scheduling. Batch production scheduling uses minimize total actual flow time criteria and machine maintenance scheduling uses the probability of machine failure based on Weibull distribution. The model assumed no nonconforming parts in a planning horizon. The model shows an increase in the number of the batch (length of production run up to a certain limit will minimize the total actual flow time. Meanwhile, an increase in the length of production run will implicate an increase in the number of PM. An example was given to show how the model and algorithm work.
A spatiotemporal model for the LTE uplink: Spatially interacting tandem queues approach
Gharbieh, Mohammad
2017-07-31
With the proliferation of the Internet-of-things (IoT), there is an undeniable consensus that cellular LTE networks will have to support a dramatically larger number of uplink connections. This is true since most of the devices to be added incur machine-type communications which is dominantly upstream. Can current LTE network withstand this challenge? To answer this question, the joint performance of random access process and the uplink data transmission should be investigated. These two problems have been classically treated in the literature in a disjoint fashion. In this paper, they are jointly analyzed as an inseparable couple. To do that, a tandem queuing model is adopted whereby devices are represented as spatially interacting queues. The interaction between queues is governed by the mutual inter-cell and intra-cell interference. To that end, a joint stochastic geometry and queueing theory model is exploited to study this problem and a spatiotemporal analytical model is developed accordingly. Network stability and scalability are two prime performance criteria for performance assessment. In light of these two criteria, the developed model is poised to offer valuable insights into efficient access and resource allocation strategies.
Directory of Open Access Journals (Sweden)
SOUVIK PAL
2016-09-01
Full Text Available Cloud computing is an emerging paradigm of Internet-centric business computing where Cloud Service Providers (CSPs are providing services to the customer according to their needs. The key perception behind cloud computing is on-demand sharing of resources available in the resource pool provided by CSP, which implies new emerging business model. The resources are provisioned when jobs arrive. The job scheduling and minimization of waiting time are the challenging issue in cloud computing. When a large number of jobs are requested, they have to wait for getting allocated to the servers which in turn may increase the queue length and also waiting time. This paper includes system design for implementation which is concerned with Johnson Scheduling Algorithm that provides the optimal sequence. With that sequence, service times can be obtained. The waiting time and queue length can be reduced using queuing model with multi-server and finite capacity which improves the job scheduling model.
Directory of Open Access Journals (Sweden)
Imran Khan
2018-01-01
Full Text Available Uplink and Downlink channel estimation in massive Multiple Input Multiple Output (MIMO systems is an intricate issue because of the increasing channel matrix dimensions. The channel feedback overhead using traditional codebook schemes is very large, which consumes more bandwidth and decreases the overall system efficiency. The purpose of this paper is to decrease the channel estimation overhead by taking the advantage of sparse attributes and also to optimize the Energy Efficiency (EE of the system. To cope with this issue, we propose a novel approach by using Compressed-Sensing (CS, Block Iterative-Support-Detection (Block-ISD, Angle-of-Departure (AoD and Structured Compressive Sampling Matching Pursuit (S-CoSaMP algorithms to reduce the channel estimation overhead and compare them with the traditional algorithms. The CS uses temporal-correlation of time-varying channels to produce Differential-Channel Impulse Response (DCIR among two CIRs that are adjacent in time-slots. DCIR has greater sparsity than the conventional CIRs as it can be easily compressed. The Block-ISD uses spatial-correlation of the channels to obtain the block-sparsity which results in lower pilot-overhead. AoD quantizes the channels whose path-AoDs variation is slower than path-gains and such information is utilized for reducing the overhead. S-CoSaMP deploys structured-sparsity to obtain reliable Channel-State-Information (CSI. MATLAB simulation results show that the proposed CS based algorithms reduce the feedback and pilot-overhead by a significant percentage and also improve the system capacity as compared with the traditional algorithms. Moreover, the EE level increases with increasing Base Station (BS density, UE density and lowering hardware impairments level.
Institute of Scientific and Technical Information of China (English)
赵洪涛; 程婷; 何子述
2011-01-01
针对数字阵列雷达波束驻留调度问题,研究了基于调度间隔分析的调度算法.该算法综合分析了1个调度间隔内申请执行的波束驻留任务,且调度过程中进行了脉冲交错.调度准则充分考虑了任务的工作方式优先级和截止期,并以任务丢失率、实现价值率、系统时间利用率作为评估指标.仿真结果表明修正截止期准则主要强调任务的紧迫性,修正工作方式优先级主要强调任务的重要性,而截止期--工作方式优先级和工作方式--截止期调度准则可以在二者间更好地折中,在总体性能上要优于其他调度准则.%Aiming at the problem of beam-dwell scheduling for digital array radar, the algorithm based on analyzing scheduling interval was studied. This algorithm analyzed the dwells applied to be executed in one scheduling interval and introduced pulse interleaving. The scheduling criterion took both priorities and deadlines into account fully, with the Task Drop Ratio, Hit Value Ratio, Time Utilization Ratio as evaluation indexes. The simulation results showed that the modified deadline criterion mainly emphasized the urgency of tasks, while the modified priority criterion mainly emphasized the importance of tasks; the deadline-priority and priority-deadline scheduling criterions could make good balance between urgency and importance. thus superior to other criterions in overall performances.
Nohara, Mitsuo; Takeuchi, Yoshio; Takahata, Fumio
Up-link power control (UPC) is one of the essential technologies to provide efficient satellite communication systems operated at frequency bands above 10 GHz. A simple and cost-effective UPC scheme applicable to a demand assignment international business satellite communications system has been developed. This paper presents the UPC scheme, including the hardware implementation and its performance.
Project Robust Scheduling Based on the Scattered Buffer Technology
Directory of Open Access Journals (Sweden)
Nansheng Pang
2018-04-01
Full Text Available The research object in this paper is the sub network formed by the predecessor’s affect on the solution activity. This paper is to study three types of influencing factors from the predecessors that lead to the delay of starting time of the solution activity on the longest path, and to analyze the influence degree on the delay of the solution activity’s starting time from different types of factors. On this basis, through the comprehensive analysis of various factors that influence the solution activity, this paper proposes a metric that is used to evaluate the solution robustness of the project scheduling, and this metric is taken as the optimization goal. This paper also adopts the iterative process to design a scattered buffer heuristics algorithm based on the robust scheduling of the time buffer. At the same time, the resource flow network is introduced in this algorithm, using the tabu search algorithm to solve baseline scheduling. For the generation of resource flow network in the baseline scheduling, this algorithm designs a resource allocation algorithm with the maximum use of the precedence relations. Finally, the algorithm proposed in this paper and some other algorithms in previous literature are taken into the simulation experiment; under the comparative analysis, the experimental results show that the algorithm proposed in this paper is reasonable and feasible.
Baniamerian, Ali; Bashiri, Mahdi; Zabihi, Fahime
2018-03-01
Cross-docking is a new warehousing policy in logistics which is widely used all over the world and attracts many researchers attention to study about in last decade. In the literature, economic aspects has been often studied, while one of the most significant factors for being successful in the competitive global market is improving quality of customer servicing and focusing on customer satisfaction. In this paper, we introduce a vehicle routing and scheduling problem with cross-docking and time windows in a three-echelon supply chain that considers customer satisfaction. A set of homogeneous vehicles collect products from suppliers and after consolidation process in the cross-dock, immediately deliver them to customers. A mixed integer linear programming model is presented for this problem to minimize transportation cost and early/tardy deliveries with scheduling of inbound and outbound vehicles to increase customer satisfaction. A two phase genetic algorithm (GA) is developed for the problem. For investigating the performance of the algorithm, it was compared with exact and lower bound solutions in small and large-size instances, respectively. Results show that there are at least 86.6% customer satisfaction by the proposed method, whereas customer satisfaction in the classical model is at most 33.3%. Numerical examples results show that the proposed two phase algorithm could achieve optimal solutions in small-size instances. Also in large-size instances, the proposed two phase algorithm could achieve better solutions with less gap from the lower bound in less computational time in comparison with the classic GA.
Scheduling job shop - A case study
Abas, M.; Abbas, A.; Khan, W. A.
2016-08-01
The scheduling in job shop is important for efficient utilization of machines in the manufacturing industry. There are number of algorithms available for scheduling of jobs which depend on machines tools, indirect consumables and jobs which are to be processed. In this paper a case study is presented for scheduling of jobs when parts are treated on available machines. Through time and motion study setup time and operation time are measured as total processing time for variety of products having different manufacturing processes. Based on due dates different level of priority are assigned to the jobs and the jobs are scheduled on the basis of priority. In view of the measured processing time, the times for processing of some new jobs are estimated and for efficient utilization of the machines available an algorithm is proposed and validated.
Li, Dongni; Guo, Rongtao; Zhan, Rongxin; Yin, Yong
2018-06-01
In this article, an innovative artificial bee colony (IABC) algorithm is proposed, which incorporates two mechanisms. On the one hand, to provide the evolutionary process with a higher starting level, genetic programming (GP) is used to generate heuristic rules by exploiting the elements that constitute the problem. On the other hand, to achieve a better balance between exploration and exploitation, a leading mechanism is proposed to attract individuals towards a promising region. To evaluate the performance of IABC in solving practical and complex problems, it is applied to the intercell scheduling problem with limited transportation capacity. It is observed that the GP-generated rules incorporate the elements of the most competing human-designed rules, and they are more effective than the human-designed ones. Regarding the leading mechanism, the strategies of the ageing leader and multiple challengers make the algorithm less likely to be trapped in local optima.
A Review Of Fault Tolerant Scheduling In Multicore Systems
Directory of Open Access Journals (Sweden)
Shefali Malhotra
2015-05-01
Full Text Available Abstract In this paper we have discussed about various fault tolerant task scheduling algorithm for multi core system based on hardware and software. Hardware based algorithm which is blend of Triple Modulo Redundancy and Double Modulo Redundancy in which Agricultural Vulnerability Factor is considered while deciding the scheduling other than EDF and LLF scheduling algorithms. In most of the real time system the dominant part is shared memory.Low overhead software based fault tolerance approach can be implemented at user-space level so that it does not require any changes at application level. Here redundant multi-threaded processes are used. Using those processes we can detect soft errors and recover from them. This method gives low overhead fast error detection and recovery mechanism. The overhead incurred by this method ranges from 0 to 18 for selected benchmarks. Hybrid Scheduling Method is another scheduling approach for real time systems. Dynamic fault tolerant scheduling gives high feasibility rate whereas task criticality is used to select the type of fault recovery method in order to tolerate the maximum number of faults.
WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations
Directory of Open Access Journals (Sweden)
Grace D
2008-01-01
Full Text Available Abstract We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.
Interactive Anticipatory Scheduling for Two Military Applications
National Research Council Canada - National Science Library
Howe, Adele
2003-01-01
...; these models partially explain what makes some job shop scheduling problems difficult. For the second, several algorithms for Air Force Satellite Control Network scheduling have been compared on historical and recent data...
Nam, Haewoon
2015-05-21
In cognitive radio networks, secondary users (SUs) can share spectrum with primary users (PUs) under the condition that no interference is caused to the PUs. To evaluate the interference imposed to the PUs, the cognitive systems discussed in the literature usually assume that the channel state information (CSI) of the link from a secondary transmitter to a primary receiver (interference link) is known at the secondary transmitter. However, this assumption may often be impractical in cognitive radio systems, since the PUs need to be oblivious to the presence of the SUs. The authors first discuss PU localisation and then introduce an uplink resource allocation algorithm for orthogonal frequency division multiple access-based cognitive radio systems, where relative location information between primary and SUs is used instead of CSI of the interference link to estimate the interference. Numerical and simulation results show that it is indeed effective to use location information as a part of resource allocation and thus a near-optimal capacity is achieved. © The Institution of Engineering and Technology 2015.
Parallel-Machine Scheduling with Time-Dependent and Machine Availability Constraints
Directory of Open Access Journals (Sweden)
Cuixia Miao
2015-01-01
Full Text Available We consider the parallel-machine scheduling problem in which the machines have availability constraints and the processing time of each job is simple linear increasing function of its starting times. For the makespan minimization problem, which is NP-hard in the strong sense, we discuss the Longest Deteriorating Rate algorithm and List Scheduling algorithm; we also provide a lower bound of any optimal schedule. For the total completion time minimization problem, we analyze the strong NP-hardness, and we present a dynamic programming algorithm and a fully polynomial time approximation scheme for the two-machine problem. Furthermore, we extended the dynamic programming algorithm to the total weighted completion time minimization problem.
Integrated Job Scheduling and Network Routing
DEFF Research Database (Denmark)
Gamst, Mette; Pisinger, David
2013-01-01
We consider an integrated job scheduling and network routing problem which appears in Grid Computing and production planning. The problem is to schedule a number of jobs at a finite set of machines, such that the overall profit of the executed jobs is maximized. Each job demands a number of resou...... indicate that the algorithm can be used as an actual scheduling algorithm in the Grid or as a tool for analyzing Grid performance when adding extra machines or jobs. © 2012 Wiley Periodicals, Inc.......We consider an integrated job scheduling and network routing problem which appears in Grid Computing and production planning. The problem is to schedule a number of jobs at a finite set of machines, such that the overall profit of the executed jobs is maximized. Each job demands a number...... of resources which must be sent to the executing machine through a network with limited capacity. A job cannot start before all of its resources have arrived at the machine. The scheduling problem is formulated as a Mixed Integer Program (MIP) and proved to be NP-hard. An exact solution approach using Dantzig...
Duality-based algorithms for scheduling on unrelated parallel machines
van de Velde, S.L.; van de Velde, S.L.
1993-01-01
We consider the following parallel machine scheduling problem. Each of n independent jobs has to be scheduled on one of m unrelated parallel machines. The processing of job J[sub l] on machine Mi requires an uninterrupted period of positive length p[sub lj]. The objective is to find an assignment of
Opportunistic splitting for scheduling using a score-based approach
Rashid, Faraan
2012-06-01
We consider the problem of scheduling a user in a multi-user wireless environment in a distributed manner. The opportunistic splitting algorithm is applied to find the best group of users without reporting the channel state information to the centralized scheduler. The users find the best among themselves while requiring just a ternary feedback from the common receiver at the end of each mini-slot. The original splitting algorithm is modified to handle users with asymmetric channel conditions. We use a score-based approach with the splitting algorithm to introduce time and throughput fairness while exploiting the multi-user diversity of the network. Analytical and simulation results are given to show that the modified score-based splitting algorithm works well as a fair scheduling scheme with good spectral efficiency and reduced feedback. © 2012 IEEE.
Global Optimization of Nonlinear Blend-Scheduling Problems
Directory of Open Access Journals (Sweden)
Pedro A. Castillo Castillo
2017-04-01
Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.
On the statistics of uplink inter-cell interference with greedy resource allocation
Tabassum, Hina
2012-10-03
In this paper, we introduce a new methodology to model the uplink inter-cell interference (ICI) in wireless cellular networks. The model takes into account both the effect of channel statistics (i.e., path loss, shadowing, fading) and the resource allocation scheme in the interfering cells. Firstly, we derive a semi-analytical expression for the distribution of the locations of the allocated user in a given cell considering greedy resource allocation with maximum signal-to-noise ratio (SNR) criterion. Based on this, we derive the distribution of the uplink ICI from one neighboring cell. Next, we compute the moment generating function (MGF) of the cumulative ICI observed from all neighboring cells and discuss some examples. Finally, we utilize the derived expressions to evaluate the outage probability in the network. In order to validate the accuracy of the developed semi-analytical expressions, we present comparison results with Monte Carlo simulations. The major benefit of the proposed mechanism is that it helps in estimating the distribution of ICI without the knowledge of instantaneous resource allocations in the neighbor cells. The proposed methodology applies to any shadowing and fading distributions. Moreover, it can be used to evaluate important network performance metrics numerically without the need for time-consuming Monte Carlo simulations. © 2011 IEEE.
On the statistics of uplink inter-cell interference with greedy resource allocation
Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim
2012-01-01
In this paper, we introduce a new methodology to model the uplink inter-cell interference (ICI) in wireless cellular networks. The model takes into account both the effect of channel statistics (i.e., path loss, shadowing, fading) and the resource allocation scheme in the interfering cells. Firstly, we derive a semi-analytical expression for the distribution of the locations of the allocated user in a given cell considering greedy resource allocation with maximum signal-to-noise ratio (SNR) criterion. Based on this, we derive the distribution of the uplink ICI from one neighboring cell. Next, we compute the moment generating function (MGF) of the cumulative ICI observed from all neighboring cells and discuss some examples. Finally, we utilize the derived expressions to evaluate the outage probability in the network. In order to validate the accuracy of the developed semi-analytical expressions, we present comparison results with Monte Carlo simulations. The major benefit of the proposed mechanism is that it helps in estimating the distribution of ICI without the knowledge of instantaneous resource allocations in the neighbor cells. The proposed methodology applies to any shadowing and fading distributions. Moreover, it can be used to evaluate important network performance metrics numerically without the need for time-consuming Monte Carlo simulations. © 2011 IEEE.
Distributed interference alignment iterative algorithms in symmetric wireless network
Directory of Open Access Journals (Sweden)
YANG Jingwen
2015-02-01
Full Text Available Interference alignment is a novel interference alignment way,which is widely noted all of the world.Interference alignment overlaps interference in the same signal space at receiving terminal by precoding so as to thoroughly eliminate the influence of interference impacted on expected signals,thus making the desire user achieve the maximum degree of freedom.In this paper we research three typical algorithms for realizing interference alignment,including minimizing the leakage interference,maximizing Signal to Interference plus Noise Ratio (SINR and minimizing mean square error(MSE.All of these algorithms utilize the reciprocity of wireless network,and iterate the precoders between original network and the reverse network so as to achieve interference alignment.We use the uplink transmit rate to analyze the performance of these three algorithms.Numerical simulation results show the advantages of these algorithms.which is the foundation for the further study in the future.The feasibility and future of interference alignment are also discussed at last.
Constraint-based scheduling applying constraint programming to scheduling problems
Baptiste, Philippe; Nuijten, Wim
2001-01-01
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsibl...
Effect of threshold quantization in opportunistic splitting algorithm
Nam, Haewoon; Alouini, Mohamed-Slim
2011-01-01
This paper discusses algorithms to find the optimal threshold and also investigates the impact of threshold quantization on the scheduling outage performance of the opportunistic splitting scheduling algorithm. Since this algorithm aims at finding
The power of reordering for online minimum makespan scheduling
Englert, Matthias; Özmen, Deniz; Westermann, Matthias
2014-01-01
In the classic minimum makespan scheduling problem, we are given an input sequence of jobs with processing times. A scheduling algorithm has to assign the jobs to m parallel machines. The objective is to minimize the makespan, which is the time it takes until all jobs are processed. In this paper, we consider online scheduling algorithms without preemption. However, we do not require that each arriving job has to be assigned immediately to one of the machines. A reordering buffer with limited...
Directory of Open Access Journals (Sweden)
A. Baskar
2016-04-01
Full Text Available Permutation flow shop scheduling problems have been an interesting area of research for over six decades. Out of the several parameters, minimization of makespan has been studied much over the years. The problems are widely regarded as NP-Complete if the number of machines is more than three. As the computation time grows exponentially with respect to the problem size, heuristics and meta-heuristics have been proposed by many authors that give reasonably accurate and acceptable results. The NEH algorithm proposed in 1983 is still considered as one of the best simple, constructive heuristics for the minimization of makespan. This paper analyses the powerful job insertion technique used by NEH algorithm and proposes seven new variants, the complexity level remains same. 120 numbers of problem instances proposed by Taillard have been used for the purpose of validating the algorithms. Out of the seven, three produce better results than the original NEH algorithm.
Scheduling multimedia services in cloud computing environment
Liu, Yunchang; Li, Chunlin; Luo, Youlong; Shao, Yanling; Zhang, Jing
2018-02-01
Currently, security is a critical factor for multimedia services running in the cloud computing environment. As an effective mechanism, trust can improve security level and mitigate attacks within cloud computing environments. Unfortunately, existing scheduling strategy for multimedia service in the cloud computing environment do not integrate trust mechanism when making scheduling decisions. In this paper, we propose a scheduling scheme for multimedia services in multi clouds. At first, a novel scheduling architecture is presented. Then, We build a trust model including both subjective trust and objective trust to evaluate the trust degree of multimedia service providers. By employing Bayesian theory, the subjective trust degree between multimedia service providers and users is obtained. According to the attributes of QoS, the objective trust degree of multimedia service providers is calculated. Finally, a scheduling algorithm integrating trust of entities is proposed by considering the deadline, cost and trust requirements of multimedia services. The scheduling algorithm heuristically hunts for reasonable resource allocations and satisfies the requirement of trust and meets deadlines for the multimedia services. Detailed simulated experiments demonstrate the effectiveness and feasibility of the proposed trust scheduling scheme.
The Planning and Scheduling of HST: Improvements and Enhancements since Launch
Taylor, D. K.; Chance, D. R.; Jordan, I. J. E.; Patterson, A. P.; Stanley, M.; Taylor, D. C.
2001-12-01
The planning and scheduling (P&S) systems used in operating the Hubble Space Telescope (HST) have undergone such substantial and pervasive re-engineering that today they dimly resemble those used when HST was launched. Processes (i.e., software, procedures, networking, etc.) which allow program implementation, the generation of a Long Range Plan (LRP), and the scheduling of science and mission activities have improved drastically in nearly 12 years, resulting in a consistently high observing efficiency, a stable LRP that principal investigators can use, exceptionally clean command loads uplinked to the spacecraft, and the capability of a very fast response time due to onboard anomalies or targets of opportunity. In this presentation we describe many of the systems which comprise the P&S ("front-end") system for HST, how and why they were improved, and what benefits have been realized by either the HST user community or the STScI staff. The systems include the Guide Star System, the Remote Proposal Submission System - 2 (RPS2), Artificial Intelligence (AI) planning tools such as Spike, and the science and mission scheduling software. We also describe how using modern software languages such as Python and better development practices allow STScI staff to do more with HST (e.g., to handle much more science data when ACS is installed) without increasing the cost to HST operations.
Group Elevator Peak Scheduling Based on Robust Optimization Model
Directory of Open Access Journals (Sweden)
ZHANG, J.
2013-08-01
Full Text Available Scheduling of Elevator Group Control System (EGCS is a typical combinatorial optimization problem. Uncertain group scheduling under peak traffic flows has become a research focus and difficulty recently. RO (Robust Optimization method is a novel and effective way to deal with uncertain scheduling problem. In this paper, a peak scheduling method based on RO model for multi-elevator system is proposed. The method is immune to the uncertainty of peak traffic flows, optimal scheduling is realized without getting exact numbers of each calling floor's waiting passengers. Specifically, energy-saving oriented multi-objective scheduling price is proposed, RO uncertain peak scheduling model is built to minimize the price. Because RO uncertain model could not be solved directly, RO uncertain model is transformed to RO certain model by elevator scheduling robust counterparts. Because solution space of elevator scheduling is enormous, to solve RO certain model in short time, ant colony solving algorithm for elevator scheduling is proposed. Based on the algorithm, optimal scheduling solutions are found quickly, and group elevators are scheduled according to the solutions. Simulation results show the method could improve scheduling performances effectively in peak pattern. Group elevators' efficient operation is realized by the RO scheduling method.
Distributed Research Project Scheduling Based on Multi-Agent Methods
Directory of Open Access Journals (Sweden)
Constanta Nicoleta Bodea
2011-01-01
Full Text Available Different project planning and scheduling approaches have been developed. The Operational Research (OR provides two major planning techniques: CPM (Critical Path Method and PERT (Program Evaluation and Review Technique. Due to projects complexity and difficulty to use classical methods, new approaches were developed. Artificial Intelligence (AI initially promoted the automatic planner concept, but model-based planning and scheduling methods emerged later on. The paper adresses the project scheduling optimization problem, when projects are seen as Complex Adaptive Systems (CAS. Taken into consideration two different approaches for project scheduling optimization: TCPSP (Time- Constrained Project Scheduling and RCPSP (Resource-Constrained Project Scheduling, the paper focuses on a multiagent implementation in MATLAB for TCSP. Using the research project as a case study, the paper includes a comparison between two multi-agent methods: Genetic Algorithm (GA and Ant Colony Algorithm (ACO.
WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations
Directory of Open Access Journals (Sweden)
A. Mohammed
2008-06-01
Full Text Available We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3Ã¢Â€Â“6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.
Energy Technology Data Exchange (ETDEWEB)
Vydyanathan, Naga; Krishnamoorthy, Sriram; Sabin, Gerald M.; Catalyurek, Umit V.; Kurc, Tahsin; Sadayappan, Ponnuswamy; Saltz, Joel H.
2009-08-01
Complex parallel applications can often be modeled as directed acyclic graphs of coarse-grained application-tasks with dependences. These applications exhibit both task- and data-parallelism, and combining these two (also called mixedparallelism), has been shown to be an effective model for their execution. In this paper, we present an algorithm to compute the appropriate mix of task- and data-parallelism required to minimize the parallel completion time (makespan) of these applications. In other words, our algorithm determines the set of tasks that should be run concurrently and the number of processors to be allocated to each task. The processor allocation and scheduling decisions are made in an integrated manner and are based on several factors such as the structure of the taskgraph, the runtime estimates and scalability characteristics of the tasks and the inter-task data communication volumes. A locality conscious scheduling strategy is used to improve inter-task data reuse. Evaluation through simulations and actual executions of task graphs derived from real applications as well as synthetic graphs shows that our algorithm consistently generates schedules with lower makespan as compared to CPR and CPA, two previously proposed scheduling algorithms. Our algorithm also produces schedules that have lower makespan than pure taskand data-parallel schedules. For task graphs with known optimal schedules or lower bounds on the makespan, our algorithm generates schedules that are closer to the optima than other scheduling approaches.
Job shop scheduling by local search
Aarts, E.H.L.; Lenstra, J.K.; Laarhoven, van P.J.M.; Ulder, N.L.J.
1992-01-01
We present a computational performance analysis of local search algorithms for job shop scheduling. The algorithms under investigation are iterative improvement, simulated annealing, threshold accepting and genetic local search. Our study shows that simulated annealing performs best in the sense
Traffic Scheduling in WDM Passive Optical Network with Delay Guarantee
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
WDM passive optical network becomes more favorable as the required bandwidth increases, but currently few media access control algorithms adapted to WDM access network. This paper presented a new scheduling algorithm for bandwidth sharing in WDM passive optical networks, which provides per-flow delay guarantee and supports variable-length packets scheduling. Through theoretical analysis and simulation, the end-to-end delay bound and throughput fairness of the algorithm was demonstrated.
Adaptive scheduling with postexamining user selection under nonidentical fading
Gaaloul, Fakhreddine
2012-11-01
This paper investigates an adaptive scheduling algorithm for multiuser environments with statistically independent but nonidentically distributed (i.n.d.) channel conditions. The algorithm aims to reduce feedback load by sequentially and arbitrarily examining the user channels. It also provides improved performance by realizing postexamining best user selection. The first part of the paper presents new formulations for the statistics of the signal-to-noise ratio (SNR) of the scheduled user under i.n.d. channel conditions. The second part capitalizes on the findings in the first part and presents various performance and processing complexity measures for adaptive discrete-time transmission. The results are then extended to investigate the effect of outdated channel estimates on the statistics of the scheduled user SNR, as well as some performance measures. Numerical results are provided to clarify the usefulness of the scheduling algorithm under perfect or outdated channel estimates. © 1967-2012 IEEE.
Real-Time Scheduling for Preventing Information Leakage with Preemption Overheads
Directory of Open Access Journals (Sweden)
BAEK, H.
2017-05-01
Full Text Available Real-time systems (RTS are characterized by tasks executing in a timely manner to meet its deadlines as a real-time constraint. Most studies of RTS have focused on these criteria as primary design points. However, recent increases in security threats to various real-time systems have shown that enhanced security support must be included as an important design point, retro-fitting such support to existing systems as necessary. In this paper, we propose a new pre-flush technique referred to as flush task reservation for FP scheduling (FTR-FP to conditionally sanitize the state of resources shared by real-time tasks by invoking a flush task (FT in order to mitigate information leakage/corruption of real-time systems. FTR-FP extends existing works exploiting FTs to be applicable more general scheduling algorithms and security model. We also propose modifications to existing real-time scheduling algorithms to implement a pre-flush technique as a security constraint, and analysis technique to verify schedulability of the real-time scheduling. For better analytic capability, our analysis technique provides a count of the precise number of preemptions that a task experiences offline. Our evaluation results demonstrate that our proposed schedulability analysis improves the performance of existing scheduling algorithms in terms of schedulability and preemption cost.
Upper Bound for Queue length in Regulated Burst Service Scheduling
Directory of Open Access Journals (Sweden)
Mahmood Daneshvar Farzanegan
2016-01-01
Full Text Available Quality of Service (QoS provisioning is very important in next computer/communication networks because of increasing multimedia services. Hence, very investigations are performed in this area. Scheduling algorithms effect QoS provisioning. Lately, a scheduling algorithm called Regulated Burst Service Scheduling (RBSS suggested by author in [1] to provide a better service to bursty and delay sensitive services such as video. One of the most significant feature in RBSS is considering burstiness of arrival traffic in scheduling algorithm. In this paper, an upper bound of queue length or buffer size and service curve are calculated by Network Calculus analysis for RBSS. Because in RBSS queue length is a parameter that is considered in scheduling arbitrator, analysis results a differential inequality to obtain service curve. To simplify, arrival traffic is assumed to be linear that is defined in the paper clearly. This paper help to analysis delay in RBSS for different traffic with different specifications. Therefore, QoS provisioning will be evaluated.
Multiprocessor Global Scheduling on Frame-Based DVFS Systems
Berten, Vandy; Goossens, Joël
2008-01-01
International audience; In this work, we are interested in multiprocessor energy efficient systems where task durations are not known in advance but are known stochastically. More precisely we consider global scheduling algorithms for frame-based multiprocessor stochastic DVFS (Dynamic Voltage and Frequency Scaling) systems. Moreover we consider processors with a discrete set of available frequencies. We provide a global scheduling algorithm, and formally show that no deadline will ever be mi...
Channel Asymmetry in Cellular OFDMA-TDD Networks
Directory of Open Access Journals (Sweden)
Agyapong Patrick
2008-01-01
Full Text Available Abstract This paper studies time division duplex- (TDD- specific interference issues in orthogonal frequency division multiple access- (OFDMA- TDD cellular networks arising from various uplink (UL/downlink (DL traffic asymmetries, considering both line-of-sight (LOS and non-LOS (NLOS conditions among base stations (BSs. The study explores aspects both of channel allocation and user scheduling. In particular, a comparison is drawn between the fixed slot allocation (FSA technique and a dynamic channel allocation (DCA technique for different UL/DL loads. For the latter, random time slot opposing (RTSO is assumed due to its simplicity and its low signaling overhead. Both channel allocation techniques do not obviate the need for user scheduling algorithms, therefore, a greedy and a fair scheduling approach are applied to both the RTSO and the FSA. The systems are evaluated based on spectral efficiency, subcarrier utilization, and user outage. The results show that RTSO networks with DL-favored traffic asymmetries outperform FSA networks for all considered metrics and are robust to LOS between BSs. In addition, it is demonstrated that the greedy scheduling algorithm only offers a marginal increase in spectral efficiency as compared to the fair scheduling algorithm, while the latter exhibits up to 20% lower outage.
Directory of Open Access Journals (Sweden)
Yu Zhang
2014-01-01
Full Text Available We consider an ad hoc Floyd-A∗ algorithm to determine the a priori least-time itinerary from an origin to a destination given an initial time in an urban scheduled public transport (USPT network. The network is bimodal (i.e., USPT lines and walking and time dependent. The modified USPT network model results in more reasonable itinerary results. An itinerary is connected through a sequence of time-label arcs. The proposed Floyd-A∗ algorithm is composed of two procedures designated as Itinerary Finder and Cost Estimator. The A∗-based Itinerary Finder determines the time-dependent, least-time itinerary in real time, aided by the heuristic information precomputed by the Floyd-based Cost Estimator, where a strategy is formed to preestimate the time-dependent arc travel time as an associated static lower bound. The Floyd-A∗ algorithm is proven to guarantee optimality in theory and, demonstrated through a real-world example in Shenyang City USPT network to be more efficient than previous procedures. The computational experiments also reveal the time-dependent nature of the least-time itinerary. In the premise that lines run punctually, “just boarding” and “just missing” cases are identified.
Realistic Scheduling Mechanism for Smart Homes
Directory of Open Access Journals (Sweden)
Danish Mahmood
2016-03-01
Full Text Available In this work, we propose a Realistic Scheduling Mechanism (RSM to reduce user frustration and enhance appliance utility by classifying appliances with respective constraints and their time of use effectively. Algorithms are proposed regarding functioning of home appliances. A 24 hour time slot is divided into four logical sub-time slots, each composed of 360 min or 6 h. In these sub-time slots, only desired appliances (with respect to appliance classification are scheduled to raise appliance utility, restricting power consumption by a dynamically modelled power usage limiter that does not only take the electricity consumer into account but also the electricity supplier. Once appliance, time and power usage limiter modelling is done, we use a nature-inspired heuristic algorithm, Binary Particle Swarm Optimization (BPSO, optimally to form schedules with given constraints representing each sub-time slot. These schedules tend to achieve an equilibrium amongst appliance utility and cost effectiveness. For validation of the proposed RSM, we provide a comparative analysis amongst unscheduled electrical load usage, scheduled directly by BPSO and RSM, reflecting user comfort, which is based upon cost effectiveness and appliance utility.
An Experimental Evaluation of Real-Time DVFS Scheduling Algorithms
Saha, Sonal
2011-01-01
Dynamic voltage and frequency scaling (DVFS) is an extensively studied energy manage- ment technique, which aims to reduce the energy consumption of computing platforms by dynamically scaling the CPU frequency. Real-Time DVFS (RT-DVFS) is a branch of DVFS, which reduces CPU energy consumption through DVFS, while at the same time ensures that task time constraints are satisfied by constructing appropriate real-time task schedules. The literature presents numerous RT-DVFS schedul...
A Heuristic Task Scheduling Algorithm for Heterogeneous Virtual Clusters
Weiwei Lin; Wentai Wu; James Z. Wang
2016-01-01
Cloud computing provides on-demand computing and storage services with high performance and high scalability. However, the rising energy consumption of cloud data centers has become a prominent problem. In this paper, we first introduce an energy-aware framework for task scheduling in virtual clusters. The framework consists of a task resource requirements prediction module, an energy estimate module, and a scheduler with a task buffer. Secondly, based on this framework, we propose a virtual ...
Directory of Open Access Journals (Sweden)
Chen Ming
2017-01-01
Full Text Available To solve the Flexible Job-shop Scheduling Problem (FJSP with different varieties and small batches, a modified meta-heuristic algorithm based on Genetic Algorithm (GA is proposed in which gene encoding is divided into process encoding and machine encoding, and according to the encoding mode, the machine gene fragment is connected with the process gene fragment and can be changed with the alteration of process genes. In order to get the global optimal solutions, the crossover and mutation operation of the process gene fragment and machine gene fragment are carried out respectively. In the initialization operation, the machines with shorter manufacturing time are more likely to be chosen to accelerate the convergence speed and then the tournament selection strategy is applied due to the minimum optimization objective. Meanwhile, a judgment condition of the crossover point quantity is introduced to speed up the population evolution and as an important interaction bridge between the current machine and alternative machines in the incidence matrix, a novel mutation operation of machine genes is proposed to achieve the replacement of manufacturing machines. The benchmark test shows the correctness of proposed algorithm and the case simulation proves the proposed algorithm has better performance compared with existing algorithms.
Microcomputer-based workforce scheduling for hospital porters.
Lin, C K
1999-01-01
This paper focuses on labour scheduling for hospital porters who are the major workforce providing routine cleansing of wards, transportation and messenger services. Generating an equitable monthly roster for porters while meeting the daily minimum demand is a tedious task scheduled manually by a supervisor. In considering a variety of constraints and goals, a manual schedule was usually produced in seven to ten days. To be in line with the strategic goal of scientific management of an acute care regional hospital in Hong Kong, a microcomputer-based algorithm was developed to schedule the monthly roster. The algorithm, coded in Digital Visual Fortran 5.0 Professional, could generate a monthly roster in seconds. Implementation has been carried out since September 1998 and the results proved to be useful to hospital administrators and porters. This paper discusses both the technical and human issues involved during the computerization process.
Directory of Open Access Journals (Sweden)
Shangchia Liu
2015-01-01
Full Text Available In the field of distributed decision making, different agents share a common processing resource, and each agent wants to minimize a cost function depending on its jobs only. These issues arise in different application contexts, including real-time systems, integrated service networks, industrial districts, and telecommunication systems. Motivated by its importance on practical applications, we consider two-agent scheduling on a single machine where the objective is to minimize the total completion time of the jobs of the first agent with the restriction that an upper bound is allowed the total completion time of the jobs for the second agent. For solving the proposed problem, a branch-and-bound and three simulated annealing algorithms are developed for the optimal solution, respectively. In addition, the extensive computational experiments are also conducted to test the performance of the algorithms.
A Decision Support System Based on Genetic Algorithm (Case Study: Scheduling in Supply Chain
Directory of Open Access Journals (Sweden)
Mohammad Ali Beheheshtinia
2016-10-01
Full Text Available Nowadays, the application of effective and efficient decisions on complex issues require the use of decision support systems. This Paper provided a decision support system based on the genetic algorithm for production and transportation scheduling problem in a supply chain. It is assumed that there are number of orders that should be produced by suppliers and should be transported to the plant by a transportation fleet. The aim is to assign orders to the suppliers, specify the order of their production, allocate processed orders to the vehicles for transport and to arrange them in a way that minimizes the total delivery time. It has been shown that the complexity of the problem was related to Np-hard and there was no possibility of using accurate methods to solve the problem in a reasonable time. So, the genetic algorithm was used in this paper to solve the problem. By using this decision support system, a new approach to supply chain management was proposed. The analysis of the approach proposed in this study compared to the conventional approaches by the decision support system indicated the preference of our proposed approach
Liang, Faming
2014-04-03
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to use this much CPU time. This article proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors. Supplementary materials for this article are available online.
International Nuclear Information System (INIS)
Lapa, Celso M. Franklin; Pereira, Claudio M.N.A.; Mol, Antonio C. de Abreu
1999-01-01
This paper presents a solution based on genetic algorithm and probabilistic safety analysis that can be applied in the optimization of the preventive maintenance politic of nuclear power plant safety systems. The goal of this approach is to improve the average availability of the system through the optimization of the preventive maintenance scheduling politic. The auxiliary feed water system of a two loops pressurized water reactor is used as a sample case, in order to demonstrate the effectiveness of the proposed method. The results, when compared to those obtained by some standard maintenance politics, reveal quantitative gains and operational safety levels. (author)
Electricity usage scheduling in smart building environments using smart devices.
Lee, Eunji; Bahn, Hyokyung
2013-01-01
With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.
Diverse task scheduling for individualized requirements in cloud manufacturing
Zhou, Longfei; Zhang, Lin; Zhao, Chun; Laili, Yuanjun; Xu, Lida
2018-03-01
Cloud manufacturing (CMfg) has emerged as a new manufacturing paradigm that provides ubiquitous, on-demand manufacturing services to customers through network and CMfg platforms. In CMfg system, task scheduling as an important means of finding suitable services for specific manufacturing tasks plays a key role in enhancing the system performance. Customers' requirements in CMfg are highly individualized, which leads to diverse manufacturing tasks in terms of execution flows and users' preferences. We focus on diverse manufacturing tasks and aim to address their scheduling issue in CMfg. First of all, a mathematical model of task scheduling is built based on analysis of the scheduling process in CMfg. To solve this scheduling problem, we propose a scheduling method aiming for diverse tasks, which enables each service demander to obtain desired manufacturing services. The candidate service sets are generated according to subtask directed graphs. An improved genetic algorithm is applied to searching for optimal task scheduling solutions. The effectiveness of the scheduling method proposed is verified by a case study with individualized customers' requirements. The results indicate that the proposed task scheduling method is able to achieve better performance than some usual algorithms such as simulated annealing and pattern search.
Mathematical model and algorithm of operation scheduling for monitoring situation in local waters
Directory of Open Access Journals (Sweden)
Sokolov Boris
2017-01-01
Full Text Available A multiple-model approach to description and investigation of control processes in regional maritime security system is presented. The processes considered in this paper were qualified as control processes of computing operations providing monitoring of the situation adding in the local water area and connected to relocation of different ships classes (further the active mobile objects (AMO. Previously developed concept of active moving object (AMO is used. The models describe operation of AMO automated monitoring and control system (AMCS elements as well as their interaction with objects-in-service that are sources or recipients of information being processed. The unified description of various control processes allows synthesizing simultaneously both technical and functional structures of AMO AMCS. The algorithm for solving the scheduling problem is described in terms of the classical theory of optimal automatic control.
LEARNING SCHEDULER PARAMETERS FOR ADAPTIVE PREEMPTION
Prakhar Ojha; Siddhartha R Thota; Vani M; Mohit P Tahilianni
2015-01-01
An operating system scheduler is expected to not allow processor stay idle if there is any process ready or waiting for its execution. This problem gains more importance as the numbers of processes always outnumber the processors by large margins. It is in this regard that schedulers are provided with the ability to preempt a running process, by following any scheduling algorithm, and give us an illusion of simultaneous running of several processes. A process which is allowed t...
Tabassum, Hina; Dawy, Zaher; Hossain, Ekram; Alouini, Mohamed-Slim
2014-01-01
This paper presents a novel framework to derive the statistics of the interference considering dedicated and shared spectrum access for uplink transmission in two-tier small cell networks such as the macrocell-femtocell networks. The framework
Directory of Open Access Journals (Sweden)
Mohd Usama
2017-11-01
Full Text Available At present, big data is very popular, because it has proved to be much successful in many fields such as social media, E-commerce transactions, etc. Big data describes the tools and technologies needed to capture, manage, store, distribute, and analyze petabyte or larger-sized datasets having different structures with high speed. Big data can be structured, unstructured, or semi structured. Hadoop is an open source framework that is used to process large amounts of data in an inexpensive and efficient way, and job scheduling is a key factor for achieving high performance in big data processing. This paper gives an overview of big data and highlights the problems and challenges in big data. It then highlights Hadoop Distributed File System (HDFS, Hadoop MapReduce, and various parameters that affect the performance of job scheduling algorithms in big data such as Job Tracker, Task Tracker, Name Node, Data Node, etc. The primary purpose of this paper is to present a comparative study of job scheduling algorithms along with their experimental results in Hadoop environment. In addition, this paper describes the advantages, disadvantages, features, and drawbacks of various Hadoop job schedulers such as FIFO, Fair, capacity, Deadline Constraints, Delay, LATE, Resource Aware, etc, and provides a comparative study among these schedulers.
Cost-efficient scheduling of FAST observations
Luo, Qi; Zhao, Laiping; Yu, Ce; Xiao, Jian; Sun, Jizhou; Zhu, Ming; Zhong, Yi
2018-03-01
A cost-efficient schedule for the Five-hundred-meter Aperture Spherical radio Telescope (FAST) requires to maximize the number of observable proposals and the overall scientific priority, and minimize the overall slew-cost generated by telescope shifting, while taking into account the constraints including the astronomical objects visibility, user-defined observable times, avoiding Radio Frequency Interference (RFI). In this contribution, first we solve the problem of maximizing the number of observable proposals and scientific priority by modeling it as a Minimum Cost Maximum Flow (MCMF) problem. The optimal schedule can be found by any MCMF solution algorithm. Then, for minimizing the slew-cost of the generated schedule, we devise a maximally-matchable edges detection-based method to reduce the problem size, and propose a backtracking algorithm to find the perfect matching with minimum slew-cost. Experiments on a real dataset from NASA/IPAC Extragalactic Database (NED) show that, the proposed scheduler can increase the usage of available times with high scientific priority and reduce the slew-cost significantly in a very short time.
A review of metaheuristic scheduling techniques in cloud computing
Directory of Open Access Journals (Sweden)
Mala Kalra
2015-11-01
Full Text Available Cloud computing has become a buzzword in the area of high performance distributed computing as it provides on-demand access to shared pool of resources over Internet in a self-service, dynamically scalable and metered manner. Cloud computing is still in its infancy, so to reap its full benefits, much research is required across a broad array of topics. One of the important research issues which need to be focused for its efficient performance is scheduling. The goal of scheduling is to map tasks to appropriate resources that optimize one or more objectives. Scheduling in cloud computing belongs to a category of problems known as NP-hard problem due to large solution space and thus it takes a long time to find an optimal solution. There are no algorithms which may produce optimal solution within polynomial time to solve these problems. In cloud environment, it is preferable to find suboptimal solution, but in short period of time. Metaheuristic based techniques have been proved to achieve near optimal solutions within reasonable time for such problems. In this paper, we provide an extensive survey and comparative analysis of various scheduling algorithms for cloud and grid environments based on three popular metaheuristic techniques: Ant Colony Optimization (ACO, Genetic Algorithm (GA and Particle Swarm Optimization (PSO, and two novel techniques: League Championship Algorithm (LCA and BAT algorithm.
Job scheduling in a heterogenous grid environment
Energy Technology Data Exchange (ETDEWEB)
Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Smith, Warren
2004-02-11
Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.
Directory of Open Access Journals (Sweden)
Ridwan
2016-03-01
Full Text Available Mobile telecommunications technology gradually evolved to support better services such as voice, data, and video to users of telecommunications services. LTE (Long Term Evolution is a network based on Internet Protocol (IP standardized by 3rd Generation Partnership Project (3GPP. To support it, LTE requires a mechanism that can support. One of them by applying methods of scheduling packets in each service. Scheduling is a different treatment to packets that come in accordance with the priorities of the scheduling algorithm. In this research, to analyze the performance of LTE with paramater delay, packet loss ratio, throughput and fairness index uses a scheduling algorithms Frame Level Schedule (FLS and Log Rule on LTE-Simulator with scenarios using Voip traffic, Video and Best Effort (BE. The results is scheduling algorithms FLS is better than log rule in term of throughput values, while of scheduling algorithms log rule is better than FLS in terms of delay based on the number and speed of the users. This indicates that both scheduling algorithms suitable for use in LTE networks within conditions of traffic real time services, but not for non real time services such as BE.
Time-critical multirate scheduling using contemporary real-time operating system services
Eckhardt, D. E., Jr.
1983-01-01
Although real-time operating systems provide many of the task control services necessary to process time-critical applications (i.e., applications with fixed, invariant deadlines), it may still be necessary to provide a scheduling algorithm at a level above the operating system in order to coordinate a set of synchronized, time-critical tasks executing at different cyclic rates. The scheduling requirements for such applications and develops scheduling algorithms using services provided by contemporary real-time operating systems.
A Hybrid Scheduler for Many Task Computing in Big Data Systems
Directory of Open Access Journals (Sweden)
Vasiliu Laura
2017-06-01
Full Text Available With the rapid evolution of the distributed computing world in the last few years, the amount of data created and processed has fast increased to petabytes or even exabytes scale. Such huge data sets need data-intensive computing applications and impose performance requirements to the infrastructures that support them, such as high scalability, storage, fault tolerance but also efficient scheduling algorithms. This paper focuses on providing a hybrid scheduling algorithm for many task computing that addresses big data environments with few penalties, taking into consideration the deadlines and satisfying a data dependent task model. The hybrid solution consists of several heuristics and algorithms (min-min, min-max and earliest deadline first combined in order to provide a scheduling algorithm that matches our problem. The experimental results are conducted by simulation and prove that the proposed hybrid algorithm behaves very well in terms of meeting deadlines.
Model Justified Search Algorithms for Scheduling Under Uncertainty
National Research Council Canada - National Science Library
Howe, Adele; Whitley, L. D
2008-01-01
.... We also identified plateaus as a significant barrier to superb performance of local search on scheduling and have studied several canonical discrete optimization problems to discover and model the nature of plateaus...
Harmonious personnel scheduling
Fijn van Draat, Laurens; Post, Gerhard F.; Veltman, Bart; Winkelhuijzen, Wessel
2006-01-01
The area of personnel scheduling is very broad. Here we focus on the ‘shift assignment problem’. Our aim is to discuss how ORTEC HARMONY handles this planning problem. In particular we go into the structure of the optimization engine in ORTEC HARMONY, which uses techniques from genetic algorithms,
Dynamic Appliances Scheduling in Collaborative MicroGrids System
Bilil, Hasnae; Aniba, Ghassane; Gharavi, Hamid
2017-01-01
In this paper a new approach which is based on a collaborative system of MicroGrids (MG’s), is proposed to enable household appliance scheduling. To achieve this, appliances are categorized into flexible and non-flexible Deferrable Loads (DL’s), according to their electrical components. We propose a dynamic scheduling algorithm where users can systematically manage the operation of their electric appliances. The main challenge is to develop a flattening function calculus (reshaping) for both flexible and non-flexible DL’s. In addition, implementation of the proposed algorithm would require dynamically analyzing two successive multi-objective optimization (MOO) problems. The first targets the activation schedule of non-flexible DL’s and the second deals with the power profiles of flexible DL’s. The MOO problems are resolved by using a fast and elitist multi-objective genetic algorithm (NSGA-II). Finally, in order to show the efficiency of the proposed approach, a case study of a collaborative system that consists of 40 MG’s registered in the load curve for the flattening program has been developed. The results verify that the load curve can indeed become very flat by applying the proposed scheduling approach. PMID:28824226
In-Band Interference Effects on UTRA LTE Uplink Resource Block Allocation
DEFF Research Database (Denmark)
Priyanto, Basuki Endah; Sørensen, Troels Bundgaard; Jensen, Ole Kiel
2008-01-01
In this paper we investigate the impact of in-band interference on the uplink multiple access of UMTS Terrestrial Radio Access, long term evolution (UTRA LTE). In- band and out-of-band interference arise as a result of transmitter imperfections. Out-of- band, or adjacent channel, interference can......, and when the interfering signal is received at higher power spectral density (PSD). The effect of frequency offset and different PSD level from the UE interferers to a victim UE is studied. The impact on different UE resource block size allocation is also investigated. The results are obtained from an LTE...
A System for Automatically Generating Scheduling Heuristics
Morris, Robert
1996-01-01
The goal of this research is to improve the performance of automated schedulers by designing and implementing an algorithm by automatically generating heuristics by selecting a schedule. The particular application selected by applying this method solves the problem of scheduling telescope observations, and is called the Associate Principal Astronomer. The input to the APA scheduler is a set of observation requests submitted by one or more astronomers. Each observation request specifies an observation program as well as scheduling constraints and preferences associated with the program. The scheduler employs greedy heuristic search to synthesize a schedule that satisfies all hard constraints of the domain and achieves a good score with respect to soft constraints expressed as an objective function established by an astronomer-user.
Robust and Flexible Scheduling with Evolutionary Computation
DEFF Research Database (Denmark)
Jensen, Mikkel T.
Over the last ten years, there have been numerous applications of evolutionary algorithms to a variety of scheduling problems. Like most other research on heuristic scheduling, the primary aim of the research has been on deterministic formulations of the problems. This is in contrast to real world...... scheduling problems which are usually not deterministic. Usually at the time the schedule is made some information about the problem and processing environment is available, but this information is uncertain and likely to change during schedule execution. Changes frequently encountered in scheduling...... environments include machine breakdowns, uncertain processing times, workers getting sick, materials being delayed and the appearance of new jobs. These possible environmental changes mean that a schedule which was optimal for the information available at the time of scheduling can end up being highly...
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors
Directory of Open Access Journals (Sweden)
Youngmin Kim
2016-07-01
Full Text Available Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM. Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.