WorldWideScience

Sample records for upland hardwood forest

  1. Assessing the feasibility and profitability of cable logging in southern upland hardwood forests

    Science.gov (United States)

    Chris B. LeDoux; Dennis M. May; Tony Johnson; Richard H. Widmann

    1995-01-01

    Procedures developed to assess available timber supplies from upland hardwood forest statistics reported by the USDA Forest Services' Forest Inventory and Analysis unit were modified to assess the feasibility and profitability of cable logging in southern upland hardwood forests. Depending on the harvest system and yarding distance used, cable logging can be...

  2. Reptile and amphibian response to season of burn in an upland hardwood forest

    Science.gov (United States)

    Cathryn H. Greenberg; Tyler Seiboldt; Tara L. Keyser; W. Henry McNab; Patrick Scott; Janis Bush; Christopher E. Moorman

    2018-01-01

    Growing-season burns are increasingly used in upland hardwood forest for multiple forest management goals. Many species of reptiles and amphibians are ground-dwelling, potentially increasing their vulnerability to prescribed fire, especially during the growing-season when they are most active. We used drift fences with pitfall traps to experimentally assess how...

  3. Stocking chart for upland central hardwoods

    Science.gov (United States)

    Martin E. Dale; Donald E. Hilt

    1989-01-01

    The upland hardwoods stocking chart, introduced by Gingrich in 1967, has become one of the forest manager's most useful tools. The chart allows you to determine the condition of the present stand in relation to a stocking standard. The stocking of a stand is extremely helpful in prescribing various silvicultural treatments such as intermediate thinnings,...

  4. Soil properties in 35 y old pine and hardwood plantations after conversion from mixed pine-hardwood forest

    Science.gov (United States)

    D. Andrew Scott; Michael G. Messina

    2009-01-01

    Past management practices have changed much of the native mixed pine-hardwood forests on upland alluvial terraces of the western Gulf Coastal Plain to either pine monocultures or hardwood (angiosperm) stands. Changes in dominant tree species can alter soil chemical, biological, and physical properties and processes, thereby changing soil attributes, and ultimately,...

  5. Upland hardwood habitat types in southwestern North Dakota

    Science.gov (United States)

    Michele M. Girard; Harold Goetz; Ardell J. Bjugstad

    1985-01-01

    The Daubenmire habitat type method was used to classify the upland hardwood draws of southwestern North Dakota. Preliminary data analysis indicates there are four upland habitat types: Fraxinus pennsylvanica/Prunus virginiana; F. pnnseanica-Ulmus americana/P. virginiana; Populus...

  6. Long-term changes in tree composition in a mesic old-growth upland forest in southern Illinois

    Science.gov (United States)

    James J. Zaczek; John W. Groninger; J.W. Van Sambeek

    1999-01-01

    The Kaskaskia Woods (Lat. 37.5 N, Long. 88.3 W), an old-growth hardwood forest in southern Illinois, has one of the oldest and best documented set of permanent plots with individual tree measurements in the Central Hardwood Region. In 1935, eight 0.101-ha plots were installed in a 7.4 ha upland area consisting of xeric oak-hickory and mesic mixed hardwoods communities...

  7. Applying group selection in upland hardwoods

    Science.gov (United States)

    Gary w. Miller; H. Clay Smith

    1991-01-01

    Interest in applying group selection in upland hardwoods has grown in recent years, primarily in response to public opposition to the aesthetic effects of clearcutting. Critics suggest that an uneven-aged silvicultural practice such as group selection might be a suitable compromise--drastically reducing negative visual effects of harvesting trees while continuing to...

  8. Introduction to natural disturbances and historic range of variation: type, frequency, severity, and post-disturbance structure in central hardwood forests

    Science.gov (United States)

    Katie Greenberg; Beverly S. Collins; Henry McNab; Douglas K. Miller; Gary R. Wein

    2015-01-01

    EXCERPT FROM: Natural Disturbances and Historic Range Variation 2015. Throughout the history of upland hardwood forests of the Central Hardwood Region, natural disturbances have been integral to shaping forest structure and composition, and essential in maintaining diverse biotic...

  9. Nesting Ecology of Wood Thrush (Turdidae: Passeriformes) in Hardwood Forests of South Carolina

    Science.gov (United States)

    Robert A. Sargent; John C. Kilgo; Brian R. Chapman; Karl V. Miller

    2003-01-01

    We studied nesting success of the Wood Thrush (Hylocichla mustelina) in bottomland and upland hardwood forests in South Carolina. Twenty-one of 26 nests (80.8%) were located in bottomland sites, and 76.2% of these nests were in narrow (

  10. Strip thinning young hardwood forests: multi-functional management for wood, wildlife, and bioenergy

    Science.gov (United States)

    Jamie Schuler; Ashlee Martin

    2016-01-01

    Upland hardwood forests dominate the Appalachian landscape. However, early successional forests are limited. In WV and PA, for example, only 8 percent of the timberland is classified as seedling and sapling-sized. Typically no management occurs in these forests due to the high cost of treatment and the lack of marketable products. If bioenergy markets come to fruition...

  11. Mapping upland hardwood site quality and productivity with GIS and FIA in the Blue Ridge of North Carolina

    Science.gov (United States)

    Claudia A. Cotton; Stephen R. Prisley; Thomas R. Fox

    2009-01-01

    The forested ecosystems of the southern Appalachians are some of the most diverse in North America due to the variability in climate, soils, and geologic parent material coupled with the complex topography found throughout the region. These same characteristics cause stands of upland hardwoods to be extremely variable with regard to site quality and productivity. Site...

  12. Researching effects of prescribed fire in hardwood forests

    Science.gov (United States)

    Stacy L. Clark; Kathleen E. Franzreb; Cathryn H. Greenberg; Tara Keyser; Susan C. Loeb; David L. Loftis; W. Henry McNab; Joy M. O' Keefe; Callie Jo Schweitzer; Martin Spetich

    2012-01-01

    The Upland Hardwood Ecology and Management Research Work Unit (RWU 4157) is a group of research teams located across the South, strategically placed to conduct research in physiographic sub-regions of the upland hardwood ecosystems including the southern Appalachian Mountains, the Cumberland Plateau, the Boston Mountains, and the Missouri Plateau. Our RWU is one of 16...

  13. Overstory tree status following thinning and burning treatments in mixed pine-hardwood stands on the William B. Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Jo Schweitzer; Yong Wang

    2013-01-01

    Prescribed burning and thinning are intermediate stand treatments whose consequences when applied in mixed pine-hardwood stands are unknown. The William B. Bankhead National Forest in northcentral Alabama has undertaken these two options to move unmanaged, 20- to 50-year-old loblolly pine (Pinus taeda L.) plantations towards upland hardwood-dominated...

  14. Cryptic Methane Emissions from Upland Forest Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Megonigal, Patrick [Smithsonian Institution, Washington, DC (United States); Pitz, Scott [Johns Hopkins Univ., Baltimore, MD (United States); Smithsonian Institution, Washington, DC (United States)

    2016-04-19

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) develop the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.

  15. Changes in faunal and vegetation communities along a soil calcium gradient in northern hardwood forests

    Science.gov (United States)

    Beier, Colin M.; Woods, Anne M.; Hotopp, Kenneth P.; Gibbs, James P.; Mitchell, Myron J.; Dovciak, Martin; Leopold, Donald J.; Lawrence, Gregory B.; Page, Blair D.

    2012-01-01

    Depletion of Ca from forest soils due to acidic deposition has had potentially pervasive effects on forest communities, but these impacts remain largely unknown. Because snails, salamanders, and plants play essential roles in the Ca cycle of northern hardwood forests, we hypothesized that their community diversity, abundance, and structure would vary with differences in biotic Ca availability. To test this hypothesis, we sampled 12 upland hardwood forests representing a soil Ca gradient in the Adirondack Mountains, New York (USA), where chronic deposition has resulted in acidified soils but where areas of well-buffered soils remain Ca rich due to parent materials. Along the gradient of increasing soil [Ca2+], we observed increasing trends in snail community richness and abundance, live biomass of redback salamanders (Plethodon cinereus (Green, 1818)), and canopy tree basal area. Salamander communities were dominated by mountain dusky salamanders (Desmognathus ochrophaeus Cope, 1859) at Ca-poor sites and changed continuously along the Ca gradient to become dominated by redback salamanders at the Ca-rich sites. Several known calciphilic species of snails and plants were found only at the highest-Ca sites. Our results indicated that Ca availability, which is shaped by geology and acidic deposition inputs, influences northern hardwood forest ecosystems at multiple trophic levels, although the underlying mechanisms require further study.

  16. Prescribed Burning and Erosion Potential in Mixed Hardwood Forests of Southern Illinois

    Directory of Open Access Journals (Sweden)

    Gurbir Singh

    2017-04-01

    Full Text Available Prescribed fire has several benefits for managing forest ecosystems including reduction of fuel loading and invasive species and enhanced regeneration of desirable tree species. Along with these benefits there are some limitations like nutrient and sediment loss which have not been studied extensively in mixed hardwood forests. The objective of our research was to quantify the amount of sediment movement occurring on a watershed scale due to prescribed fire in a southern Illinois mixed hardwood ecosystem. The research site was located at Trail of Tears State Forest in western Union county, IL, USA and included five watershed pairs. One watershed in each pair was randomly assigned the prescribed burn treatment and the other remained as control (i.e., unburned. The prescribed burn treatment significantly reduced the litter depth with 12.6%–31.5% litter remaining in the prescribed burn treatment watersheds. When data were combined across all watersheds, no significant differences were obtained between burn treatment and control watershed for total suspended solids and sediment concentrations or loads. The annual sediment losses varied from 1.41 to 90.54 kg·ha−1·year−1 in the four prescribed burn watersheds and 0.81 to 2.54 kg·ha−1·year−1 in the four control watersheds. Prescribed burn watershed 7 showed an average soil sediment loss of 4.2 mm, whereas control watershed 8 showed an average accumulation of sediments (9.9 mm, possibly due to steeper slopes. Prescribed burning did not cause a significant increase in soil erosion and sediment loss and can be considered acceptable in managing mixed hardwood forests of Ozark uplands and the Shawnee Hills physiographic regions of southern Illinois.

  17. FOREST DISTRIBUTION ON THE CENTRAL RUSSIAN UPLAND: HISTORICAL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Maria V. Arkhipova

    2014-01-01

    Full Text Available We studied the change of forestland in the Central Russian Upland within the deciduous forest, forest-steppe, and steppe zones using old maps (XVIII-XX cc. and current satellite images. The forest distribution within the Central Russian Upland has been relatively stable during the last 220 years. On average, the decrease in the forested area was small. However, we identified significant changes in certain regions. In the southern part of CRU, the significant increase of the forested land is caused by the forest protection of abatis woodland and afforestation. During the last 100 years, reforestation took place mainly in the Oka basin due to both afforestation and natural reforestation. New forests appeared generally in ravines within all zones. The analysis of the abatis forests changes from the XVIII to XX cc. allowed us to identify forested area within the Central Russian Upland prior to active development.

  18. Subfossil leaves reveal a new upland hardwood component of the pre-European Piedmont landscape,Lancaster County, Pennsylvania.

    Directory of Open Access Journals (Sweden)

    Sara J Elliott

    Full Text Available Widespread deforestation, agriculture, and construction of milldams by European settlers greatly influenced valley-bottom stream morphology and riparian vegetation in the northeastern USA. The former broad, tussock-sedge wetlands with small, anastomosing channels were converted into today's incised, meandering streams with unstable banks that support mostly weedy, invasive vegetation. Vast accumulations of fine-grained "legacy" sediments that blanket the regional valley-bottom Piedmont landscape now are being reworked from stream banks, significantly impairing the ecological health of downstream water bodies, most notably the Chesapeake Bay. However, potential restoration is impaired by lack of direct knowledge of the pre-settlement riparian and upslope floral ecosystems. We studied the subfossil leaf flora of Denlingers Mill, an obsolete (breached milldam site in southeastern Pennsylvania that exhibits a modern secondary forest growing atop thin soils, above bedrock outcrops immediately adjacent to a modified, incised stream channel. Presumably, an overhanging old-growth forest also existed on this substrate until the early 1700s and was responsible for depositing exceptionally preserved, minimally transported subfossil leaves into hydric soil strata, which immediately underlie post-European settlement legacy sediments. We interpret the eleven identified species of the subfossil assemblage to primarily represent a previously unknown, upland Red Oak-American Beech mixed hardwood forest. Some elements also appear to belong to a valley-margin Red Maple-Black Ash swamp forest, consistent with preliminary data from a nearby site. Thus, our results add significantly to a more complete understanding of the pre-European settlement landscape, especially of the hardwood tree flora. Compared with the modern forest, it is apparent that both lowland and upslope forests in the region have been modified significantly by historical activities. Our study

  19. Private forest owners of the Central Hardwood Forest

    Science.gov (United States)

    Thomas W. Birch

    1997-01-01

    A recently completed survey of woodland owners provides insight into the owners of private forest lands in the Central Hardwood Region. There is increasing parcelization of forested lands and an increase in the numbers of nonindustrial private forest-land owners. Over half of the private owners have harvested timber from their holdings at some time in the past, they...

  20. Reproduction of upland hardwood forests in the central states

    Science.gov (United States)

    Ivan L. Sander; F. Bryan Clark

    1971-01-01

    This handbook summarizes data from studies of central hardwood reproduction after harvest cuttings ranging from single-tree selection cutting to complete clearcutting. Regardless of how the stands were cut, natural reproduction was always adequate to produce acceptable new stands; but the heavier cuttings favored intolerant species and faster growth of all species....

  1. Proceedings 19th Central Hardwood Forest Conference

    Science.gov (United States)

    John W. Groninger; Eric J. Holzmueller; Clayton K. Nielsen; Daniel C., eds. Dey

    2014-01-01

    Proceedings from the 2014 Central Hardwood Forest Conference in Carbondale, IL. The published proceedings include 27 papers and 47 abstracts pertaining to research conducted on biofuels and bioenergy, forest biometrics, forest ecology and physiology, forest economics, forest health including invasive species, forest soils and hydrology, geographic information systems,...

  2. Proceedings, 15th central hardwood forest conference

    Science.gov (United States)

    David S. Buckley; Wayne K. Clatterbuck; [Editors

    2007-01-01

    Proceedings of the 15th central hardwood forest conference held February 27–March 1, 2006, in Knoxville, TN. Includes 86 papers and 30 posters pertaining to forest health and protection, ecology and forest dynamics, natural and artificial regeneration, forest products, wildlife, site classification, management and forest resources, mensuration and models, soil and...

  3. Responses of Isolated Wetland Herpetofauna to Upland Forest Management

    International Nuclear Information System (INIS)

    Russell, K.R.; Hanlin, H.G.; Wigley, T.B.; Guynn, D.C. Jr.

    2002-01-01

    Measurement of responses of herpetofauna at isolated wetlands in the Coastal Plain of South Carolina to disturbance of adjacent loblolly pine forest. Many species of isolated wetland herpetofauna in the Southeastern Coastal Plain may tolerate some disturbance in adjacent upland stands. Responses of isolated wetland herpetofauna to upland silviculture and the need for adjacent forested buffers likely depend on the specific landscape context in which the wetlands occur and composition of the resident herpetofaunal community

  4. Evaluation of site impacts associated with three silvicultural prescriptions in an upland hardwood stand in northern Alabama, USA

    Science.gov (United States)

    Emily A. Carter; Robert B. Rummer; Bryce J. Stokes

    2006-01-01

    Soil disturbance patterns and associated changes in soil physical status were measured in a study that evaluated the implementation of three alternative management prescriptions in an upland hardwood stand in northern Alabama, USA. Management prescriptions applied in this study consisted of a clear-cut, strip cut, and deferment cut that were compared to a non-harvested...

  5. Comparison the biodiversity of hardwood floodplain forests and black locust forests

    International Nuclear Information System (INIS)

    Bazalova, D.

    2015-01-01

    The introduction of non-native species starts in the context of global changes in the world. These nonnative species, that have come to our country, whether intentionally or unintentionally, are responsible for the loss of biodiversity, changes in trophic levels and in nutrient cycle, hydrology, hybridizations, and at last could have an impact on the economy. The species black locust (Robinia pseudoaccacia) was introduced to Europe in 1601, first for horticultural purposes, and later broke into forestry. However, due to its ability to effectively spread the vegetative and generative root sprouts seeds and without the presence of natural pest may be occurrence of black locust in European forests highly questionable. Primarily we tried to identify differences in species composition and biodiversity among indigenous hardwood floodplain forest and non-native black locust forest based on numerical methods. In the results we were able to demonstrate more biodiversity in hardwood floodplain forests. (authors)

  6. Songbird use of floodplain and upland forests along the Upper Mississippi River corridor during spring migration

    Science.gov (United States)

    Kirsch, Eileen M.; Heglund, Patricia J.; Gray, Brian R.; Mckann, Patrick

    2013-01-01

    The Upper Mississippi River is thought to provide important stopover habitat for migrating landbirds because of its north-south orientation and floodplain forests. The river flows through the Driftless Area of southwestern Wisconsin and southeastern Minnesota where forests are plentiful, yet forests of the floodplain and Driftless Area uplands differ greatly in landscape setting, tree species composition, and topography. We compared landbird assemblages in these upland and floodplain forests over three springs, 2005–2007, using line-transect surveys at randomly selected areas in and within 16 km of the floodplain. We found more species of both transient and locally breeding migrants per survey in floodplain than in upland forest. Detections of transient neotropical migrants did not differ statistically by habitat. Detections of locally breeding neotropical and temperate-zone migrants and transient temperate-zone migrants were greater in floodplain than in upland forest. Between floodplain and upland forest, assemblages of locally breeding species, including neotropical and temperate-zone migrants (of which some individuals were in transit), differed substantially, but assemblages of transients (including both neotropical and temperate-zone migrants) did not differ as much. Only two species of transient migrants had clear affinities for floodplain forest, and none had an affinity for upland forest, whereas most locally breeding migrants had an affinity for either upland or floodplain forest. Within each spring, however, detections of transient neotropical migrants shifted from being greater in floodplain to greater in upland forests. This intraseasonal shift may be related to the phenology of certain tree species.

  7. Manual herbicide application methods for managing vegetation in Appalachian hardwood forests

    Science.gov (United States)

    Jeffrey D. Kochenderfer; James N. Kochenderfer; Gary W. Miller

    2012-01-01

    Four manual herbicide application methods are described for use in Appalachian hardwood forests. Stem injection, basal spray, cut-stump, and foliar spray techniques can be used to control interfering vegetation and promote the development of desirable reproduction and valuable crop trees in hardwood forests. Guidelines are presented to help the user select the...

  8. Stand and individual tree growth response to treatments in young natural hardwoods

    Science.gov (United States)

    Daniel J. Robison; Tracy San Filipo; Charlie Lawrence III; Jamie L. Schuler; Bryan J. Berenguer

    2012-01-01

    Young even-aged upland Piedmont mixed hardwood and pine stands were treated with a variety of fertilizer and release (competition control) treatments. The sites studied are on the NC State University Hill Demonstration Forest in central North Carolina, and are characterized by formerly highly eroded agricultural sites (Richter et al. 2000) now in their third rotation...

  9. Harvesting systems for the northern forest hardwoods

    Science.gov (United States)

    Chris B. LeDoux

    2011-01-01

    This monograph is a summary of research results and environmental compliance measures for timber harvesting operations. Data are presented from the Northern Research Station's forest inventory and analysis of 20 states in the northern forest hardwoods. Harvesting systems available in the region today are summarized. Equations for estimating harvesting costs are...

  10. Long-term patterns of fruit production in five forest types of the South Carolina upper coastal plain

    International Nuclear Information System (INIS)

    Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles; Mccarty, John P.; Pearson, Scott F.

    2012-01-01

    Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995–2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly (Pinus taeda) and longleaf pine (P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual number of fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 ± 37,444 fruits; 12,009 ± 2,392 g/ha), upland hardwoods (60,769 ± 7,667 fruits; 5,079 ± 529 g/ha), and bottomland hardwoods (65,614 ± 8,351 fruits; 4,621 ± 677 g/ha), and lowest in longleaf pine (44,104 ± 8,301 fruits; 4,102 ± 877 g/ha) and loblolly (39,532 ± 5,034 fruits; 3,261 ± 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995–2003). Fruit availability was highest June–September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. As a result, land managers could enhance fruit

  11. Indicators of regenerative capacity for eastern hardwood forests

    Science.gov (United States)

    William H. McWilliams; Todd W. Bowersox; Patrick H. Brose; Daniel A. Devlin; James C. Finley; Steve Horsley; Kurt W. Gottschalk; Tonya W. Lister; Larry H. McCormick; Gary W. Miller; Kim C. Steiner; Susan L. Stout; James A. Westfall; Robert L. White

    2004-01-01

    Hardwood forests of the eastern United States are characterized by a complex mix of species associations that make it difficult to construct useful indicators of long-term sustainability, in terms of future forest composition and stocking levels. The Pennsylvania Regeneration Study examines regeneration adequacy in the state. The study uses the Forest Service's...

  12. Breeding birds in riparian and upland dry forests of the Cascade Range

    Science.gov (United States)

    John F. Lehmkuhl; E. Dorsey Burger; Emily K. Drew; John P. Lindsey; Maryellen Haggard; Kent Z. Woodruff

    2007-01-01

    We quantified breeding bird abundance, diversity, and indicator species in riparian and upland dry forests along six third- to fourth-order streams on the east slope of the Cascade Range, Washington, USA. Upland mesic forest on southerly aspects was dominated by open ponderosa pine (Pinus ponderosa) and dry Douglas-fir (Pseudotsuga menziesii...

  13. Status and trends of bottomland hardwood forests in the mid-Atlantic Region

    Science.gov (United States)

    Anita Rose; Steve Meadows

    2016-01-01

    Bottomland hardwood forests cover approximately 2.9 million acres of the Coastal Plain and Piedmont region of Virginia and North Carolina. As of 2014, 59 percent of bottomland hardwood forests were in the large-diameter stand-size class. Between 2002 and 2014, area of large-diameter sized stands increased, while that of medium- and small-diameter stands decreased,...

  14. Ghost forest creation and the conversion of uplands to wetlands

    Science.gov (United States)

    Kirwan, M. L.; Schieder, N. W.; Reay, W.

    2017-12-01

    Global sea level rise rates began accelerating sharply in the late 19th century, with an approximate tripling in sea level rise rates in many regions of the world. Some portions of the coastal landscape, such as marshes and barrier islands, survive relative sea level rise by natural eco-geomorphic processes that allow them to build elevation vertically and migrate landward. In contrast, adjacent uplands typically occupied by forests and agricultural fields have limited ability to resist the impacts of sea level rise. This portion of the coastal landscape consists of mostly salt intolerant plants, receives little mineral sediment deposition, and rarely builds elevation through the accumulation of soil organic matter. Thus, ghost forests- dead trees surrounded by marshland- are a prominent feature of many low-relief coastal landscapes, and represent a striking visual indicator of upland to wetland conversion. Here, we report preliminary results of several efforts designed to quantify rates and drivers of upland to wetland conversion in the mid-Atlantic region of the United States. Drone based canopy monitoring and ground-based seedling experiments suggest that ghost forests are created by episodic, storm-driven adult tree mortality paired with continuous seedling mortality. Preliminary comparisons between sediment cores and historical photographs from 5 sites in Maryland, Virginia, and North Carolina suggest that modern coastal forest retreat is 2-10 times faster than late-Holocene retreat rates, and that rates have accelerated in most decades since the 1930's. Finally, historical T-Sheet maps suggest that approximately 100,000 acres (400 km2) of uplands have converted to wetlands in the Chesapeake region, and that about 1/3 of all present-day marsh was created by upland drowning since the late 19th Century. Together, these observations indicate rapid coastal transgression, where low-relief, terrestrial portions of the coastal landscape are perhaps more sensitive to

  15. Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain.

    Science.gov (United States)

    Schäfer, Karina V R; Renninger, Heidi J; Carlo, Nicholas J; Vanderklein, Dirk W

    2014-01-01

    Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance.

  16. An Old-Growth Definition for Southern Mixed Hardwood Forests

    Science.gov (United States)

    William B. Batista; William J. Platt

    1997-01-01

    This report provides an old-growth definition for the southern mixed hardwood forests based on five exemplary stands that show no evidence of having undergone any natural catastrophe or clearcutting for at least 200 years. This forest type occurs in the U.S. southeastern Coastal Plain from the Carolinas to eastern Texas. The exemplary old-growth stands were restricted...

  17. Stand model for upland forests of Southern Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Mielke, D.L.; Shugart, H.H.; West, D.C.

    1978-06-01

    A forest stand growth and composition simulator (FORAR) was developed by modifying a stand growth model by Shugart and West (1977). FORAR is a functional stand model which used ecological parameters to relate individual tree growth to environment rather than using Markov probability matrices or differential equations to determine single tree or species replacement rates. FORAR simulated tree growth and species composition of upland forests of Union County, Ark., by considering 33 tree species on a /sup 1///sub 12/ ha circular plot.

  18. Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest

    Science.gov (United States)

    Julia Kirschman

    2014-01-01

    Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...

  19. Litterfall in the hardwood forest of a minor alluvial-floodplain

    Science.gov (United States)

    Calvin E. Meier; John A. Stanturf; Emile S. Gardiner

    2006-01-01

    within mature deciduous forests, annual development of foliar biomass is a major component of aboveground net primary production and nutrient demand. As litterfall, this same foliage becomes a dominant annual transfer of biomass and nutrients to the detritus pathway. We report litterfall transfers of a mature bottomland hardwood forest in a minor alluvial-floodplain...

  20. Timber, Browse, and Herbage on Selected Loblolly-Shortleaf Pine-Hardwood Forest Stands

    Science.gov (United States)

    Gale L. Wolters; Alton Martin; Warren P. Clary

    1977-01-01

    A thorough vegetation inventory was made on loblolly-shortleaf pine-hardwood stands scheduled by forest industry for clearcutting, site preparation, and planting to pine in north central Louisiana and southern Arkansas. Overstory timber, on the average, contained about equal proportions of softwood and hardwood basal area. Browse plants ranged from 5,500 to over 70,...

  1. Stand response of 16-year-old upland hardwood regeneration to crop-tree release on a medium quality site in the Southern Appalachians after 24 years

    Science.gov (United States)

    W. Henry. McNab

    2010-01-01

    A crop tree release was made in a 16-year-old upland hardwood stand on a medium-quality site using one of two treatments: mechanical or chemical. After 24 years there was no significant difference in stand response between the two treatments as measured by mean increase in stand diameter, basal area, total height, height to base of live...

  2. Canopy structure and tree condition of young, mature, and old-growth Douglas-fir/hardwood forests

    Science.gov (United States)

    B.B. Bingham; J.O. Sawyer

    1992-01-01

    Sixty-two Douglas-fir/hardwood stands ranging from 40 to 560 years old were used to characterize the density; diameter, and height class distributions of canopy hardwoods and conifers in young (40 -100 yr), mature (101 - 200 yr) and old-growth (>200 yr) forests. The crown, bole, disease, disturbance, and cavity conditions of canopy conifers and hardwoods were...

  3. The Hardwood Ecosystem Experiment: a framework for studying responses to forest management

    Science.gov (United States)

    Robert K. Swihart; Michael R. Saunders; Rebecca A. Kalb; G. Scott Haulton; Charles H., eds. Michler

    2013-01-01

    Conditions in forested ecosystems of southern Indiana are described before initiation of silvicultural treatments for the Hardwood Ecosystem Experiment (HEE). The HEE is a 100-year study begun in 2006 in Morgan-Monroe and Yellowwood State Forests to improve the sustainability of forest resources and quality of life of Indiana residents by understanding ecosystem and...

  4. Snag Condition and Woodpecker Foraging Ecology in a Bottomland Hardwood Forest

    Science.gov (United States)

    Richard N. Conner; Stanley D. Jones; Gretchen D. Jones

    1994-01-01

    We studied woodpecker foraging behavior, snag quality, and surrounding habitat in a bottomland hardwood forest in the Stephen F. Austin Experimental Forest from December 1984 through November 1986. The amount and location of woodpecker foraging excavations indicated that woodpeckers excavated mainly at the well-decayed tops and bases of snags. Woodpeckers preferred to...

  5. Influences of Herbivory and Canopy Opening Size on Forest Regeneration in a Southern Bottomland Hardwood Forest

    Science.gov (United States)

    Steven B. Castleberry; W. Mark Ford; Carl V. Miller; Winston P. Smith

    2000-01-01

    We examined the effects of white-tailed deer (Odocoileus virginianus) browsing and canopy opening size on relative abundance and diversity of woody and herbaceous regeneration in various sized forest openings in a southern, bottomland hardwood forest over three growing seasons (1995-1997). We created 36 canopy openings (gaps), ranging from 7 to 40m...

  6. Relationships between prescribed burning and wildfire occurrence and intensity in pine-hardwood forests in north Mississippi, USA

    Science.gov (United States)

    Stephen Brewer; Corey Rogers

    2006-01-01

    Using Geographic Information Systems and US Forest Service data, we examined relationships between prescribed burning (from 1979 to 2000) and the incidence, size, and intensity of wildfires (from 1995 to 2000) in a landscape containing formerly fire-suppressed, closed-canopy hardwood and pine-hardwood forests. Results of hazard (failure) analyses did not show an...

  7. Development of the selection system in northern hardwood forests of the Lake States: an 80-year silviculture research legacy

    Science.gov (United States)

    Christel Kern; Gus Erdmann; Laura Kenefic; Brian Palik; Terry. Strong

    2014-01-01

    The northern hardwood research program at the Dukes Experimental Forest in Michigan and Argonne Experimental Forest in Wisconsin has been adapting to changing management and social objectives for more than 80 years. In 1926, the first northern hardwood silviculture study was established in old-growth stands at the Dukes Experimental Forest. In response to social...

  8. Organic matter budget in a mixed-hardwood forest in north central Florida

    International Nuclear Information System (INIS)

    Lugo, A.E.; Gamble, J.F.; Ewel, K.C.

    1978-01-01

    Organic-matter flows through a mixed-hardwood forest were analyzed as part of a study of the unusual behavior of 137 Cs in Florida ecosystems. The data suggest that rates of organic-matter flow in the mixed-hardwood forest in north central Florida more closely approach those of similar systems in tropical areas than in temperate areas. Annual litterfall was 1069 g/m 2 ; litter turnover, 1.3/year; net daytime productivity of leaves and twigs, 12.4 g m -2 day -1 ; nighttime respiration, 5.1 g m -2 day -1 ; and stem respiration, 1.4 g m -2 day -1 . Constancy of litter storage (820 g/m 2 ) and leaf fall and lack of net wood deposition indicate that the forest is in steady state. It was concluded that 137 Cs accumulation in this forest is probably caused by intrinsic ecosystem processes, as previously suggested, rather than by buildup that might be expected in a successional ecosystem

  9. Litter and nutrient flows in tropical upland forest flooded by a hydropower plant in the Amazonian basin.

    Science.gov (United States)

    Pereira, Guilherme Henrique A; Jordão, Henos Carlos K; Silva, Vanessa Francieli V; Pereira, Marcos Gervasio

    2016-12-01

    Extensive areas in the Brazilian Amazon have been flooded for the construction of hydroelectric dams. However, the water regime of these areas affects the dynamics of igarapés (streams) in adjacent terra firme (upland forests). When the reservoirs are filled, the water levels of streams rise above the normal levels and upland bank forests are flooded. We investigated how this flooding affects the litterfall and nutrient input in the upland forests upstream of a hydroelectric dam reservoir in the Central Amazonia. When the reservoir was filled, the forests were flooded and produced more than twice the litter (8.80Mg·ha -1 yr -1 ), with three times more leaves (6.36Mg·ha -1 yr -1 ) than when they were not flooded (4.20 and 1.92Mg·ha -1 yr -1 , respectively). During flooding, the decomposition rate was four times lower in flooded forests (0.328g·g -1 yr -1 ) than in control forests (1.460g·g -1 yr -1 ). Despite this, the flooding did not favor litter or nutrient accumulation. Therefore, dam construction changes the organic matter and nutrient cycling in upland Amazon rainforests. This may influence the important role that they play in organic matter dynamics and could have consequences for the regional carbon balance and, ultimately, global climate. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. An economic assessment of implementing streamside management zones in central Appalachian hardwood forests

    Science.gov (United States)

    Yaoxiang Li; Chris B. LeDoux; Jingxin Wang

    2006-01-01

    The effects of variable width of streamside management zones (25, 50, 75, and 100 ft) (SMZs) and removal level of trees (10%, 30%, and 50% of basal area) on production and cost of implementing SMZs in central Appalachian hardwood forests were simulated by using a computer model. Harvesting operations were performed on an 80-year-old generated natural hardwood stand...

  11. Hardwoods for timber bridges : a national program emphasis by the USDA Forest Service

    Science.gov (United States)

    James P. Wacker; Ed Cesa

    2005-01-01

    This paper describes the joint efforts of the Forest Service and the FHWA to administer national programs including research, demonstration bridges, and technology transfer components. Summary information on a number of Forest Service-WIT demonstration bridges constructed with hardwoods is also provided.

  12. Fire in Eastern Hardwood Forests through 14,000 Years

    Science.gov (United States)

    Martin A. Spetich; Roger W. Perry; Craig A. Harper; Stacy L. Clark

    2011-01-01

    Fire helped shape the structure and species composition of hardwood forests of the eastern United States over the past 14,000 years. Periodic fires were common in much of this area prior to European settlement, and fire-resilient species proliferated. Early European settlers commonly adopted Native American techniques of applying fire to the landscape. As the demand...

  13. ABOVEGROUND BIOMASS DISTRIBUTION OF US EASTERN HARDWOOD FORESTS AND THE USE OF LARGE TREES AS AN INDICATOR OF FOREST DEVELOPMENT

    Science.gov (United States)

    Past clearing and harvesting of the deciduous hardwood forests of eastern USA released large amount of carbon dioxide into the atmosphere, but through recovery and regrowth these forests are now accumulating atmospheric carbon (C). This study examined quantities and distribution ...

  14. Encroachment Dynamics of Juniperus virginiana L. and Mesic Hardwood Species into Cross Timbers Forests of North-Central Oklahoma, USA

    Directory of Open Access Journals (Sweden)

    Daniel L. Hoff

    2018-02-01

    Full Text Available Cross Timbers forests, typically dominated by Quercus stellata Wangenh. and Q. marilandica Muenchh., are the transition zone between eastern deciduous forest and prairie in the southern Great Plains. Fire exclusion beginning in the mid-1900s has led to increasing stand density and encroachment of fire-intolerant Juniperus virginiana L. and mesic hardwood. We measured current forest structure and tree ages of 25 stands (130 plots in north-central Oklahoma to characterize the extent and dynamics of encroachment. The respective basal area and stand density of the overstory (diameter at breast height; dbh > 10 cm were 19.0 m2 ha−1 and 407 trees ha−1 with Q. stellata comprising 43% of basal area and 42% of stand density. Quercus marilandica represented only 3% of basal area and 4% of overstory density. Juniperus virginiana represented 7% of basal area and 14% of stand density while mesic hardwoods, e.g., Celtis spp., Ulmus spp., Carya spp., 33% of basal area and stand density. The sapling layer was dominated by mesic hardwoods (68% and J. virginiana (25% while the seedling layer was dominated by mesic hardwoods (74%. The majority of Quercus recruited into the overstory between 1910–1970, while recruitment of J. virginiana and mesic hardwoods began more recently (post 1950s. Growth rate, based on the relationship between age and dbh, was faster for mesic hardwoods than for J. virginiana and Q. stellata. These results indicate that removal of recurrent surface fire as a disturbance agent has significantly altered forest composition in the Cross Timbers region by allowing encroachment of J. virginiana and fire-intolerant, mesic hardwoods. This increases wildfire risk because J. virginiana is very flammable and will alter how these forests respond to future drought and other disturbance events.

  15. Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests

    Science.gov (United States)

    M.B. Adams; J.A. Burger; A.B. Jenkins; L. Zelazny

    2000-01-01

    The eastern hardwood forests of the US may be threatened by the changing atmospheric chemistry and by changes in harvesting levels. Many studies have documented accelerated base cation losses with intensive forest harvesting. Acidic deposition can also alter nutrient cycling in these forests. The combination of increased harvesting, shorter rotations, and more...

  16. Management and inventory of southern hardwoods

    Science.gov (United States)

    John A. Putnam; George M. Furnival; J.S. McKnight

    1960-01-01

    The valleys and uplands of the South outside the mountains and upper Piedmont have, since 1915, been responsible for about 45 percent of the national production of hardwood sawtimber. They are strong indications that this situation may continue indefinitely.

  17. Central hardwood forests: recent trends in a robust resource

    Science.gov (United States)

    T. W. Birch; D. A. Gansner; W. H. McWilliams

    1993-01-01

    Re-inventories completed for each of four Central Hardwood States (Kentucky, Ohio, Pennsylvania, and West Virginia) show that forest area is increasing and stocking hit new highs; there is 27 percent more growing-stock volume than a decade ago. Large increases in volume have been recorded for all but the smallest diameter classes. Volume in trees 15 inches in diameter...

  18. Use of Hardwood Tree Species by Birds Nesting in Ponderosa Pine Forests

    Science.gov (United States)

    Kathryn L. Purcell; Douglas A. Drynan

    2008-01-01

    We examined the use of hardwood tree species for nesting by bird species breeding in ponderosa pine (Pinus ponderosa) forests in the Sierra National Forest, California. From 1995 through 2002, we located 668 nests of 36 bird species nesting in trees and snags on four 60-ha study sites. Two-thirds of all species nesting in trees or snags used...

  19. Foraging behavior of three passerines in mature bottomland hardwood forests during summer.

    Energy Technology Data Exchange (ETDEWEB)

    Buffington, J., Matthew; Kilgo, John, C.; Sargent, Robert, A.; Miller, Karl, V.; Chapman, Brian, R.

    2001-08-01

    Attention has focused on forest management practices and the interactions between birds and their habitat, as a result of apparent declines in populations of many forest birds. Although avian diversity and abundance have been studied in various forest habitats, avian foraging behavior is less well known. Although there are published descriptions of avian foraging behaviors in the western United States descriptions from the southeastern United States are less common. This article reports on the foraging behavior of the White-eyed Vireo, Northern Parula, and Hooded Warbler in mature bottomland hardwood forests in South Carolina.

  20. Impacts of short-rotation early-growing season prescribed fire on a ground nesting bird in the central hardwoods region of North America

    Science.gov (United States)

    Pittman, H. Tyler; Krementz, David G.

    2016-01-01

    Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha). This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS) Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated) and units absent of prescribed fire (untreated). Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%). We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (20 cm DBH) but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5cm ground diameter) but did not select for small shrubs or large

  1. Impacts of Short-Rotation Early-Growing Season Prescribed Fire on a Ground Nesting Bird in the Central Hardwoods Region of North America.

    Directory of Open Access Journals (Sweden)

    H Tyler Pittman

    Full Text Available Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha. This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated and units absent of prescribed fire (untreated. Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%. We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (20 cm DBH but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5 cm ground diameter but did not select for small

  2. Impacts of Short-Rotation Early-Growing Season Prescribed Fire on a Ground Nesting Bird in the Central Hardwoods Region of North America.

    Science.gov (United States)

    Pittman, H Tyler; Krementz, David G

    2016-01-01

    Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha). This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS) Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated) and units absent of prescribed fire (untreated). Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%). We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (20 cm DBH) but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5 cm ground diameter) but did not select for small shrubs or

  3. Silviculture-ecology of forest-zone hardwoods in the Sierra Nevada

    Science.gov (United States)

    Philip M. McDonald; John C. Tappeiner

    1996-01-01

    Although the principal hardwood species in the forest zone of the Sierra Nevada (California black oak, tanoak, Pacific madrone, and canyon live oak) are key components of many ecosystems, they have received comparatively little study. Currently they are underutilized and unmanaged. This paper brings together what is known on the silviculture-ecology of these species...

  4. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks.

    Science.gov (United States)

    Mukul, Sharif A; Herbohn, John; Firn, Jennifer

    2016-03-08

    In the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines. We found significantly higher carbon in the aboveground total biomass and living woody biomass in old-growth forest, while coarse dead wood biomass carbon was higher in the new fallow sites. For young through to the oldest fallow secondary forests, there was a progressive recovery of biomass carbon evident. Multivariate analysis indicates patch size as an influential factor in explaining the variation in biomass carbon recovery in secondary forests after shifting cultivation. Our study indicates secondary forests after shifting cultivation are substantial carbon sinks and that this capacity to store carbon increases with abandonment age. Large trees contribute most to aboveground biomass. A better understanding of the relative contribution of different biomass sources in aboveground total forest biomass, however, is necessary to fully capture the value of such landscapes from forest management, restoration and conservation perspectives.

  5. A 3D stand generator for central Appalachian hardwood forests

    Science.gov (United States)

    Jingxin Wang; Yaoxiang Li; Gary W. Miller

    2002-01-01

    A 3-dimensional (3D) stand generator was developed for central Appalachian hardwood forests. It was designed for a harvesting simulator to examine the interactions of stand, harvest, and machine. The Component Object Model (COM) was used to design and implement the program. Input to the generator includes species composition, stand density, and spatial pattern. Output...

  6. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    Science.gov (United States)

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  7. A Forest Tent Caterpillar Outbreak Increased Resource Levels and Seedling Growth in a Northern Hardwood Forest.

    Directory of Open Access Journals (Sweden)

    Danaë M A Rozendaal

    Full Text Available In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008-2012. Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in

  8. A Forest Tent Caterpillar Outbreak Increased Resource Levels and Seedling Growth in a Northern Hardwood Forest.

    Science.gov (United States)

    Rozendaal, Danaë M A; Kobe, Richard K

    2016-01-01

    In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008-2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed

  9. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China

    International Nuclear Information System (INIS)

    Fu Xuewu; Feng Xinbin; Zhu Wanze; Rothenberg, S.; Yao Heng; Zhang Hui

    2010-01-01

    Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m -3 and 30.7 pg m -3 , respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 μg m -2 yr -1 . Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 μg m -2 yr -1 , respectively. - Upland forest ecosystem is a great sink of atmospheric mercury in southwest China.

  10. Increasing soil temperature in a northern hardwood forest: effects on elemental dynamics and primary productivity

    Science.gov (United States)

    Patrick J. McHale; Myron J. Mitchell; Dudley J. Raynal; Francis P. Bowles

    1996-01-01

    To investigate the effects of elevated soil temperatures on a forest ecosystem, heating cables were buried at a depth of 5 cm within the forest floor of a northern hardwood forest at the Huntington Wildlife Forest (Adirondack Mountains, New York). Temperature was elevated 2.5, 5.0 and 7.5?C above ambient, during May - September in both 1993 and 1994. Various aspects of...

  11. 1997 Hardwood Research Award Winner: "Automatic Color Sorting of Hardwood Edge-Glued Panel Parts"

    Science.gov (United States)

    D. Earl Kline; Richard Conners; Qiang Lu; Philip A. Araman

    1997-01-01

    The National Hardwood Lumber Association's 1997 Hardwood Research Award was presented to D. Earl Kline, Richard Conners, Qiang Lu and Philip Araman at the 25th Annual Hardwood Symposium for developing an automatic system for color sorting hardwood edge-glued panel parts. The researchers comprise a team from Virginia Tech University and the USDA Forest Service in...

  12. Climatic and pollution influences on ecosystem processes in northern hardwood forests

    Science.gov (United States)

    Kurt S. Pregitzer; David D. Reed; Glenn D. Mroz; Andrew J. Burton; John A. Witter; Donald A. Zak

    1996-01-01

    The Michigan gradient study was established in 1987 to examine the effects of climate and atmospheric deposition on forest productivity and ecosystem processes in the Great Lakes region. Four intensively-monitored northern hardwood study sites are located along a climatic and pollutant gradient extending from southern lower Michigan to northwestern upper Michigan. The...

  13. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.; Mattson, W., J.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifua and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.

  14. Forecasting Forest Type and Age Classes in the Appalachian-Cumberland Subregion of the Central Hardwood Region

    Science.gov (United States)

    David N. Wear; Robert Huggett

    2011-01-01

    This chapter describes how forest type and age distributions might be expected to change in the Appalachian-Cumberland portions of the Central Hardwood Region over the next 50 years. Forecasting forest conditions requires accounting for a number of biophysical and socioeconomic dynamics within an internally consistent modeling framework. We used the US Forest...

  15. Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts

    Directory of Open Access Journals (Sweden)

    S. D. Marks

    1997-01-01

    Full Text Available As identified by the detailed long-term monitoring networks at Plynlimon, increased sediment supply to upland fluvial systems is often associated with forestry land-use and practice. Literature is reviewed, in the light of recent results from Plynlimon sediment studies, to enable identification of the potential ecological impacts of fluvial particulate inputs to upland gravel bed rivers draining forested catchments similar to the headwaters of the River Severn. Both sediment transport and deposition can have significant impacts upon aquatic vertebrates, invertebrates and plants.

  16. Soil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests

    Science.gov (United States)

    Amy Concilio; Siyan Ma; Qinglin Li; James LeMoine; Jiquan Chen; Malcolm North; Daryl Moorhead; Randy Jensen

    2005-01-01

    The effects of management on soil carbon efflux in different ecosystems are still largely unknown yet crucial to both our understanding and management of global carbon flux. To compare the effects of common forest management practices on soil carbon cycling, we measured soil respiration rate (SRR) in a mixed-conifer and hardwood forest that had undergone various...

  17. A source of methane from upland forests in the Brazilian Amazon.

    Science.gov (United States)

    Janaina Braga do Carmo; Michael Keller; Jadson Dezincourt Dias; Plinio Barbosa de Camargo; Patrick Crill

    2006-01-01

    We sampled air in the canopy layer of undisturbed upland forests during wet and dry seasons at three sites in the Brazilian Amazon region and found that both methane(CH4) and carbon dioxide (CO2) mixing ratios increased at night. Such increases were consistent across sites and seasons. A canopy layer budget model based on measured soil-atmosphere fluxes of CO2 was...

  18. Is Eastern Hardwood Sawtimber Becoming Scarcer?

    Science.gov (United States)

    William G. Luppold; Gilbert P. Dempsey; Gilbert P. Dempsey

    1996-01-01

    In recent years the hardwood lumber industry has become increasingly concerned about the availability and quality of hardwood sawtimber. However, these concerns seem to contradict USDA Forest Service estimates of increased volume and quality of hardwood sawtimber. This paper examines changes in eastern hardwood sawtimber inventories and the apparent contradiction...

  19. Upland Forest Linkages to Seasonal Wetlands: Litter Flux, Processing, and Food Quality

    Science.gov (United States)

    Brian J. Palik; Darold P. Batzer; Christel Kern

    2005-01-01

    The flux of materials across ecosystem boundaries has significant effects on recipient systems. Because of edge effects, seasonal wetlands in upland forest are good systems to explore these linkages. The purpose of this study was to examine flux of coarse particulate organic matter as litter fall into seasonal wetlands in Minnesota, and the relationship of this flux to...

  20. Leaf fall, humus depth, and soil frost in a northern hardwood forest

    Science.gov (United States)

    George Hart; Raymond E. Leonard; Robert S. Pierce

    1962-01-01

    In the mound-and-depression microtopography of the northern hardwood forest, leaves are blown off the mounds and collect in the depressions. This influence of microtopography on leaf accumulation is responsible for much of the variation in humus depth; and this, in turn, affects the formation and depth of soil frost.

  1. Species diversity of polyporoid and corticioid fungi in northern hardwood forests with differing management histories

    Science.gov (United States)

    Daniel L. Lindner; Harold H., Jr. Burdsall; Glen R. Stanosz

    2006-01-01

    Effects of forest management on fungal diversity were investigated by sampling fruit bodies of polyporoid and corticioid fungi in forest stands that have different management histories. Fruit bodies were sampled in 15 northern hardwood stands in northern Wisconsin and the upper peninsula of Michigan. Sampling was conducted in five old-growth stands, five uneven-age...

  2. Changes in early-successional hardwood forest area in four bird conservation regions across four decades

    Science.gov (United States)

    Sonja N. Oswalt; Kathleen E. Franzreb; David A. Buehler

    2012-01-01

    Early successional hardwood forests constitute important breeding habitat for many migratory songbirds. Declines in populations of these species suggest changes in habitat availability either on the species’ wintering grounds or on their early successional breeding grounds. We used Forest Inventory and Analysis data from 11 states across four decades to examine changes...

  3. Proceedings of the tenth biennial southern silvicultural research conference

    Science.gov (United States)

    James D. Haywood; [Editor

    1999-01-01

    One hundred and twenty-two papers and three poster summaries address a range of issues affecting southern forests. Papers are grouped in 15 sessions that included upland hardwoods, intensive management of bottomland hardwoods, intermediate hardwood management, hardwood and bottomland regeneration, ecological relationships, water and soil hydrology, site preparation for...

  4. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland

    DEFF Research Database (Denmark)

    Helama, Samuli; Arentoft, Birgitte W.; Collin-Haubensak, Olivier

    2013-01-01

    Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L...

  5. Fertilizing Southern Hardwoods

    Science.gov (United States)

    W. M. Broadfoot; A. F. Ike

    1967-01-01

    If present trends continue, fertilizing may soon be economically feasible in southern hardwood stands. Demands for the wood are rising, and the acreage alloted for growing it is steadily shrinking. To supply anticipated requests for information, the U. S. Forest Service has established tree nutrition studies at the Southern Hardwoods Laboratory in Stoneville,...

  6. The vernal dam: Plant-microbe competition for nitrogen in northern hardwood forests

    International Nuclear Information System (INIS)

    Zak, D.R.; Groffman, P.M.; Pregitzer, K.S.; Tiedje, J.M.; Christensen, S.

    1990-01-01

    Nitrogen (N) uptake by spring ephemeral communities has been proposed as a mechanism that retains N within northern hardwood forests during the season of maximum loss. To understand better the importance of these plants in retaining N, the authors followed the movement of 15 NH 4 + and 15 NO 3 - into plant and microbial biomass. Two days following isotope addition, microbial biomass represented the largest labile pool of N and contained 8.5 times as much N as Allium tricoccum L. biomass. Microbial immobilization of 15 N was 10-20 times greater than uptake by A. tricoccum. Nitrification of 15 NH 4 + was five times lower in cores containing A. tricoccum compared to those without the spring ephemeral. Spring N retention within northern hardwood forests cannot be fully explained by plant uptake because microbial immobilization represented a significantly larger sink for N. Results suggest that plant and microbial uptake of NH 4 + may reduce the quantity of substrate available for nitrification and thereby lessen the potential for NO 3 - loss via denitrification and leaching

  7. Developing a Topographic Model to Predict the Northern Hardwood Forest Type within Carolina Northern Flying Squirrel (Glaucomys sabrinus coloratus Recovery Areas of the Southern Appalachians

    Directory of Open Access Journals (Sweden)

    Andrew Evans

    2014-01-01

    Full Text Available The northern hardwood forest type is an important habitat component for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus for den sites and corridor habitats between boreo-montane conifer patches foraging areas. Our study related terrain data to presence of northern hardwood forest type in the recovery areas of CNFS in the southern Appalachian Mountains of western North Carolina, eastern Tennessee, and southwestern Virginia. We recorded overstory species composition and terrain variables at 338 points, to construct a robust, spatially predictive model. Terrain variables analyzed included elevation, aspect, slope gradient, site curvature, and topographic exposure. We used an information-theoretic approach to assess seven models based on associations noted in existing literature as well as an inclusive global model. Our results indicate that, on a regional scale, elevation, aspect, and topographic exposure index (TEI are significant predictors of the presence of the northern hardwood forest type in the southern Appalachians. Our elevation + TEI model was the best approximating model (the lowest AICc score for predicting northern hardwood forest type correctly classifying approximately 78% of our sample points. We then used these data to create region-wide predictive maps of the distribution of the northern hardwood forest type within CNFS recovery areas.

  8. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests

    Science.gov (United States)

    Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman

    2004-01-01

    Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and 0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (~1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps...

  9. Facilitating Oak and Hickory Regeneration in Mature Central Hardwood Forests

    Directory of Open Access Journals (Sweden)

    Eric J. Holzmueller

    2014-12-01

    Full Text Available Advanced oak and hickory regeneration is often absent in mature oak-hickory forests in the Central Hardwood Region of the United States. Prescribed fire and thinning, alone and combined, are commonly prescribed silvicultural treatments that are recommended to initiate the regeneration process. This study examined the regeneration response in three mature oak stands following four treatments: (1 thin, (2 burn, (3 thinning and burning, or (4 no treatment (control. Ten years after initial treatment, results indicate that oak and hickory seedlings had greater height and diameter in the thinning and burning treatment compared to the control and that this treatment may help facilitate desirable regeneration in mature oak-hickory forests.

  10. Tree species composition and structure in an old bottomland hardwood forest in south-central Arkansas

    Science.gov (United States)

    Brian Roy Lockhart; James M. Guldin; Thomas Foti

    2010-01-01

    Tree species composition and structure was determined for an old bottomland hardwood forest located in the Moro Creek Bottoms Natural Area in south-central Arkansas. Diversity for this forest was high with species richness ranging from 33 for the overstory and sapling strata to 26 for the seedling stratum and Shannon-Weiner values of 2.54 to 1.02 for the overstory and...

  11. Proceedings of the 12th biennial southern silvicultural research conference

    Science.gov (United States)

    Kristina F. Connor; [Editor

    2004-01-01

    Ninety-two papers and thirty-six poster summaries address a range of issues affecting southern forests. Papers are grouped in 15 sessions that include wildlife ecology; fire ecology; natural pine management; forest health; growth and yield; upland hardwoods - natural regeneration; hardwood intermediate treatments; longleaf pine; pine plantation silviculture; site...

  12. Runoff water quality from a sierran upland forest, transition ecotone, and riparian wet meadow

    Science.gov (United States)

    High concentrations of inorganic N, P, and S have been reported in overland and litter interflow within forested uplands of the Tahoe basin and surrounding watersheds. In this study we compared runoff nutrient concentration and load as well as soil nutrient fluxes at three watershed locations; an up...

  13. The upland flooding experiment : assessing the impact of reservoir creation on the biogeochemical cycling of mercury in boreal forest uplands

    Energy Technology Data Exchange (ETDEWEB)

    Rolfhus, K.R. [Wisconsin Univ., Madison, WI (United States). Water Chemistry Program; Bodaly, R.A.; Fudge, R.J.P.; Huebert, D.; Paterson, M.J. [Department of Fisheries and Oceans, Ottawa, ON (Canada) Fresh Water Inst.; Hall, B.D.; St Louis, V.L. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; Krabbenhoft, D.P. [U.S. Geological Survey (United States); Hurley, J.P. [Wisconsin Univ., Madison, WI (United States). Water Resources Inst.; Peech, K. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Entomology

    2000-07-01

    One of the major environmental problems associated with boreal hydroelectric reservoirs such as those found in Canada and other northern countries is the elevated concentrations of mercury (Hg) in fish. A flooding experiment was conducted in northern Ontario to study methyl mercury (MeHg) production/bioaccumulation and greenhouse gas dynamics in impoundments with flooded upland forests of different soil carbon content, moisture and vegetation. The study, entitled Upland Flooding Experiment (FLUDEX) took place in June 1999 at the Experimental Lakes Area (ELA) where three impoundments of 0.7 ha were flooded to a depth of 1 m using oligotrophic lake water. The hydraulic residence time was 10-14 days. Responses to flooding were compared among treatment reservoirs and to previously flooded wetlands. The study included researchers from Canada and the United States who characterized mercury species fluxes from soils, the overall reservoir mass balance for total Hg and MeHg, inorganic Hg and MeHg concentration in zooplankton, benthic invertebrates, emerging insects and fish. Carbon decomposition was also examined. Preliminary results, one year after inundation, show significantly high levels of MeHg concentration compared to the feed water and that of surrounding natural lakes. Outflow samples from the dry forest areas showed the highest concentrations of Hg and MeHg, with lower concentrations from the moist forest. The lowest levels were observed from the outflow from the driest forest reservoir. A rapid pulse of inorganic Hg appears to have been released during the first 2 weeks of flooding. Soil leaching was found to be the main mechanism or inorganic Hg supply while MeHg appears to have been supplied by in situ microbial methylation. It was also shown that forage fish introduced into the reservoir had significantly elevated concentrations of MeHg compared to fish in natural lakes.

  14. Central Hardwoods ecosystem vulnerability assessment and synthesis: a report from the Central Hardwoods Climate Change Response Framework project

    Science.gov (United States)

    Leslie Brandt; Hong He; Louis Iverson; Frank R. Thompson; Patricia Butler; Stephen Handler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Matthew Albrecht; Richard Blume-Weaver; Paul Deizman; John DePuy; William D. Dijak; Gary Dinkel; Songlin Fei; D. Todd Jones-Farrand; Michael Leahy; Stephen Matthews; Paul Nelson; Brad Oberle; Judi Perez; Matthew Peters; Anantha Prasad; Jeffrey E. Schneiderman; John Shuey; Adam B. Smith; Charles Studyvin; John M. Tirpak; Jeffery W. Walk; Wen J. Wang; Laura Watts; Dale Weigel; Steve. Westin

    2014-01-01

    The forests in the Central Hardwoods Region will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of terrestrial ecosystems in the Central Hardwoods Region of Illinois, Indiana, and Missouri to a range of future climates. Information on current forest conditions, observed climate trends,...

  15. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    Science.gov (United States)

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  16. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest

    Science.gov (United States)

    John C. Kilgo

    2005-01-01

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging...

  17. A management guide for northern hardwoods in New England

    Science.gov (United States)

    Adrian M. Gilbert; Victor S. Jensen

    1958-01-01

    Northern hardwood forests occupy about 9 million acres of land in New England. In recent years, these hardwood forests have made increasing contributions to the economy of this region. Their future management should be even more rewarding.

  18. Assessing the opportunity cost of implementing streamside management zone guidelines in eastern hardwood forests

    Science.gov (United States)

    Chris B. LeDoux

    2006-01-01

    Forest landowners, managers, loggers, land-use planners, and other decision/policy makers need to understand the opportunity cost associated with different levels of allowable management and required/voluntary protection in streamside management zones (SMZs). Four different logging technologies, two mature hardwood stands, three levels of streamside zone protection,...

  19. Oak-Black Bear Relationships in Southeastern Uplands

    Science.gov (United States)

    Joseph D. Clark

    2004-01-01

    Bears (Ursus americanus) primarily occur in upland habitats in the Southeast because uplands were the last to be developed for agriculture and were more likely to become publicly owned. National parks and forests created in the early to mid-1900s served as sources to supply surrounding uplands with bears. Bears could not survive in southeastern...

  20. Historic range of variability for upland vegetation in the Medicine Bow National Forest, Wyoming

    Science.gov (United States)

    Gregory K. Dillon; Dennis H. Knight; Carolyn B. Meyer

    2005-01-01

    An approach for synthesizing the results of ecological research pertinent to land management is the analysis of the historic range of variability (HRV) for key ecosystem variables that are affected by management activities. This report provides an HRV analysis for the upland vegetation of the Medicine Bow National Forest in southeastern Wyoming. The variables include...

  1. Sources of the Indiana hardwood industry's competitiveness

    Science.gov (United States)

    Silas Tora; Eva Haviarova

    2008-01-01

    The estimated 1,600 forest products-related firms in Indiana employ more than 56,000 workers. Hardwood manufacturers are the largest segment, adding approximately $2 billion per year of raw product value. A recent report by BioCrossroads ranked the hardwood industry as the most important in the agricultural sector in Indiana. Like most of the other forest products...

  2. Effects of soil compaction on residual stand growth in central Appalachian hardwood forest: a preliminary case study

    Science.gov (United States)

    Jingxin Wang; Chris LeDoux; Michael Vanderberg; Li Yaoxiang

    2006-01-01

    A preliminary study that quantified the impacts of soil compaction on residual tree growth associated with ground-based skidding traffic intensity and turn payload size was investigated in the central Appalachian hardwood forest. The field study was carried out on a 20-acre tract of the West Virginia University Research Forest. Skid trails were laid out in 170' -...

  3. California's hardwood resource: history and reasons for lack of a sustained hardwood industry

    Science.gov (United States)

    Dean W. Huber; Philip M. McDonald

    1992-01-01

    Interest in utilizing California's forest-zone hardwoods for lumber and wood products has waxed and waned for more than 140 years. In spite of many unsuccessful ventures, strong interest is once again evident from landowners, processors, consumers, and policy makers. Their interest suggests a need to know past pitfalls, to recognize some realities of hardwood...

  4. Planting and care of fine hardwood seedlings: Planting hardwood seedlings in the Central Hardwood Region.

    Science.gov (United States)

    Paula M. Pijut

    2003-01-01

    Forest tree planting in the United States on public and private land exceeded 2.6 million acres in 1999. Of that total, approximately 1.3 million acres (48 percent) were planted by private individuals (AF & PA 2001). In the Central Hardwood Region forest tree planting by private landowners exceeded 100,000 acres in 1999. Trees are planted for various reasons...

  5. Rare Plants of Southeastern Hardwood Forests and the Role of Predictive Modeling

    International Nuclear Information System (INIS)

    Imm, D.W.; Shealy, H.E. Jr.; McLeod, K.W.; Collins, B.

    2001-01-01

    Habitat prediction models for rare plants can be useful when large areas must be surveyed or populations must be established. Investigators developed a habitat prediction model for four species of Southeastern hardwood forests. These four examples suggest that models based on resource and vegetation characteristics can accurately predict habitat, but only when plants are strongly associated with these variables and the scale of modeling coincides with habitat size

  6. California’s Hardwood Resource: Seeds, Seedlings, and Sprouts of Three Important Forest-Zone Species

    Science.gov (United States)

    Philip M. McDonald; John C. Tappeiner

    2002-01-01

    Although California black oak, tanoak, and Pacific madrone are the principal hardwood species in the forest zone of California and Oregon and are key components of many plant communities, their seed production, regeneration, and early growth requirements have received little study. Information is presented on seed production, storage, and germination, and on the...

  7. Photo guide for estimating risk to hardwood trees during prescribed burning operations in eastern oak forests

    Science.gov (United States)

    Patrick H. Brose

    2009-01-01

    A field guide of 40 photographs of common hardwood trees of eastern oak forests and fuel loadings surrounding their bases. The guide contains instructions on how to rapidly assess a tree's likelihood to be damaged or killed by prescribed burning.

  8. An Examination of Regional Hardwood Roundwood Markets in West Virginia

    Science.gov (United States)

    William Luppold; Delton Alderman; Delton Alderman

    2005-01-01

    West Virginia?s hardwood resource is large and diverse ranging from oak-hickory forests in the southern and western portions of the state to northern hardwood stands in the northeastern region. West Virginia also has a diverse group of primary hardwood- processing industries, including hardwood grade mills, industrial hardwood sawmills, engineered wood-product...

  9. Weight, Volume, and Physical Properties of Major Hardwood Species in the Upland-South

    Science.gov (United States)

    Alexander Clark; Douglas R. Phillips; Douglas J. Frederick

    1986-01-01

    The weight, volume, and physical properties oftrees1 to 20 inchesd.b.h.were determined for sweetgum, yellow-poplar, hickory, post oak, scarlet oak, southern red oak, and white oakin northern Alabama and Mississippi, eastern Arkansas, southern Kentucky and Tennessee. Hard hardwoods, soft hardwoods, and individual species equations are presented for predicting green and...

  10. Development of second-growth northern hardwoods on Bartlett Experimental Forest - a 25-year record

    Science.gov (United States)

    William B. Leak

    1961-01-01

    Second-growth timber occupies more than one-third of the commercial northern hardwood forest land in New England. The origin of these stands - clearcutting, or land abandonment with or without fire - determined their present characteristics; they are essentially even-aged, with a high proportion of intolerant and intermediate species and many stems of sprout origin (...

  11. Responses of upland herpetofauna to the restoration of Carolina Bays and thinning of forested Bay Margins.

    Energy Technology Data Exchange (ETDEWEB)

    Ledvina, Joseph A.

    2008-05-01

    Research on the effects of wetland restoration on reptiles and amphibians is becoming more common, but almost all of these studies have observed the colonization of recently disturbed habitats that were completely dry at the time of restoration. In a similar manner, investigations herpetofaunal responses to forest management have focused on clearcuts, and less intensive stand manipulations are not as well studied. To evaluate community and population responses of reptiles and amphibians to hydrology restoration and canopy removal in the interior of previously degraded Carolina bays, I monitored herpetofauna in the uplands adjacent to six historically degraded Carolina bays at the Savannah River Site (SRS) in South Carolina for four years after restoration. To evaluate the effects of forest thinning on upland herpetofauna, forests were thinned in the margins of three of these bays. I used repeated measures ANOVA to compare species richness and diversity and the abundance of selected species and guilds between these bays and with those at three reference bays that were not historically drained and three control bays that remained degraded. I also used Non-metric Multidimensional Scaling (NMDS) to look for community-level patterns based treatments.

  12. Thirteen Year Loblolly Pine Growth Following Machine Application of Cut-Stump Treament Herbicides For Hardwood Stump-Sprout Control

    Science.gov (United States)

    Clyde G. Vidrine; John C. Adams

    2002-01-01

    Thirteen year growth results of 1-0 out-planted loblolly pine seedlings on nonintensively prepared up-land mixed pine-hardwood sites receiving machine applied cut-stump treatment (CST) herbicides onto hardwood stumps at the time of harvesting is presented. Plantation pine growth shows significantly higher growth for pine in the CST treated plots compared to non-CST...

  13. Production and cost analysis of a feller-buncher in central Appalachian hardwood forest

    Science.gov (United States)

    Charlie Long; Jingxin Wang; Joe McNeel; John Baumgras; John Baumgras

    2002-01-01

    A time study was conducted to evaluate the productivity and cost of a feller-buncher operating in a Central Appalachian hardwood forest. The sites harvested during observation consisted of primarily red maple and black cherry. Trees felled in the study had an average diameter at breast height (DBH) of 16.1 in. and a total merchantable height of 16 ft. A Timbco 445C...

  14. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Science.gov (United States)

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  15. Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem

    Science.gov (United States)

    Pamela H. Templer; Andrew F. Schiller; Nathan W. Fuller; Anne M. Socci; John L. Campbell; John E. Drake; Thomas H. Kunz

    2012-01-01

    Projected changes in climate for the northeastern USA over the next 100 years include a reduction in the depth and duration of the winter snowpack, which could affect soil temperatures and frost regimes. We conducted a snow-removal experiment in a northern hardwood forest at the Hubbard Brook Experimental Forest in central New Hampshire over 2 years to induce soil...

  16. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests

    Science.gov (United States)

    Jingxin Wang; Charlie Long; Joe McNeel; John Baumgras; John Baumgras

    2004-01-01

    A field production study was conducted for a manual harvesting system using a chainsaw and cable skidder in a central Appalachian hardwood forest site. A partial cut was performed on a 50-acre tract with an average slope of 25 percent. Felling time pre tree was most affected by diameter at breast height and the distance between harvested trees while skidding cycle time...

  17. 75 FR 8107 - Bond Swamp National Wildlife Refuge, Bibb and Twiggs Counties, GA

    Science.gov (United States)

    2010-02-23

    ... impact. SUMMARY: We, the U.S. Fish and Wildlife Service (Service), announce the availability of our final comprehensive Conservation Plan (CCP) and finding of no significant impact (FONSI) for the environmental..., including upland mixed pine/hardwood, bottomland hardwood, and tupelo gum swamp forests. Creeks, beaver...

  18. Tree regeneration by seed in bottomland hardwood forests: A review

    Science.gov (United States)

    Kroschel, Whitney A.; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Bottomland hardwood forests (BLH) are found in temperate, humid regions of the southeastern US, primarily on alluvial floodplains adjacent to rivers. Altered hydrology in rivers and floodplains has caused changes in stand development and species composition of BLHs. We hypothesize that the driving mechanisms behind these changes are related to the regeneration process because of the complexity of recruitment and the vulnerability of species at that age in development. Here we review the state of our understanding regarding BLH regeneration, and identify potential bottlenecks throughout the stages of seed production, seed dispersal, germination, establishment, and survival. Our process-level understanding of regeneration by seed in BLHs is rudimentary, thus limiting our ability to predict the effects of hydrologic alterations on species composition. By focusing future research on the appropriate stages of regeneration, we can better understand the sources of forest-community transitions across the diverse range of BLH systems.

  19. Promoting and maintaining diversity in contemporary hardwood forests: Confronting contemporary drivers of change and the loss of ecological memory

    Science.gov (United States)

    Christopher R. Webster; Yvette L. Dickinson; Julia I. Burton; Lee E. Frelich; Michael A. Jenkins; Christel C. Kern; Patricia Raymond; Michael R. Saunders; Michael B. Walters; John L. Willis

    2018-01-01

    Declines in the diversity of herbaceous and woody plant species in the understory of eastern North American hardwood forests are increasingly common. Forest managers are tasked with maintaining and/or promoting species diversity and resilience; however, the success of these efforts depends on a robust understanding of past and future system dynamics and identification...

  20. The response of ground beetles (Coleoptera: Carabidae) to selection cutting in a South Carolina bottomland hardwood forest

    Science.gov (United States)

    Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman

    2005-01-01

    We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest...

  1. Technological advances in temperate hardwood tree improvement including breeding and molecular marker applications

    Science.gov (United States)

    Paula M. Pijut; Keith E. Woeste; G. Vengadesan

    2007-01-01

    Hardwood forests and plantations are an important economic resource for the forest products industry worldwide and to the international trade of lumber and logs. Hardwood trees are also planted for ecological reasons, for example, wildlife habitat, native woodland restoration, and riparian buffers. The demand for quality hardwood from tree plantations will continue to...

  2. Snag recruitment and mortality in a bottomland hardwood forest following partial harvesting: second-year results

    Science.gov (United States)

    Brian Roy Lockhart; Philip A. Tappe; David G. Peitz; Christopher A. Watt

    2010-01-01

    Snags are defined simply as standing dead trees. They function as an important component of wildlife habitat. Unfortunately, little information has been gathered regarding snags in bottomland forest ecosystems. We initiated a study to determine the effects of harvesting on the flora and fauna of a bottomland hardwood ecosystem adjacent the Mississippi River in...

  3. On Tour... Primary Hardwood Processing, Products and Recycling Unit

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt

    1995-01-01

    Housed within the Department of Wood Science and Forest Products at Virginia Polytechnic Institute is a three-person USDA Forest Service research work unit (with one vacancy) devoted to hardwood processing and recycling research. Phil Araman is the project leader of this truly unique and productive unit, titled ãPrimary Hardwood Processing, Products and Recycling.ä The...

  4. Vital statistics of the union of Myanmar, land use, forest and cover area, annual allowable cut of teak and other hardwoods

    International Nuclear Information System (INIS)

    Sein Maung Wint

    1993-01-01

    Statistical data of net area sown, fallow land, culturable wasteland, reserved forest and forest area (1) by category; (2) by state and division; (3) by forest type; (4) by forest function; (5) by working circle of the Union of Myanmar are shown. Statistical data showing annual allowable cut of teak and other hardwoods by state/division can also be seen. Myanmar forest and woodland area together with other 17 countries of the world are included for comparison

  5. Vital statistics of the union of Myanmar, land use, forest and cover area, annual allowable cut of teak and other hardwoods

    Energy Technology Data Exchange (ETDEWEB)

    Wint, Sein Maung

    1993-10-01

    Statistical data of net area sown, fallow land, culturable wasteland, reserved forest and forest area (1) by category; (2) by state and division; (3) by forest type; (4) by forest function; (5) by working circle of the Union of Myanmar are shown. Statistical data showing annual allowable cut of teak and other hardwoods by state/division can also be seen. Myanmar forest and woodland area together with other 17 countries of the world are included for comparison

  6. User's manual for FORAR: a stand model for composition and growth of upland forests of southern Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Mielke, D. L.; Shugart, H. H.; West, D. C.

    1977-04-01

    This report is a user's manual for FORAR, a computer model simulating stand growth and composition of upland forests of south central Arkansas. The model computes: the number and biomass of each tree species, and the dbh, age, and species of each individual tree on a 1/12-ha circular plot.

  7. Ten year regeneration of southern Appalachian hardwood clearcuts after controlling residual trees

    Science.gov (United States)

    P.M. Zaldivar-Garcia; D.T. Tew

    1991-01-01

    Two upland hardwood stands were clearcut in 1978 and three treatments to control the unmerchantable and/or cull trees were applied. The treatments applied to the residual trees were chainsaw felling, herbicide injection, and a control, where residual trees were left standing. Regeneration was sampled 10 years after the cutting.

  8. Future of forest gardens in the Uvan uplands of Sri Lanka

    Science.gov (United States)

    Nuberg, Ian K.; Evans, David G.; Senanayake, Ranil

    1994-11-01

    Forest gardens are traditional agroecosystems in the humid tropics that have evolved a forestlike structure and as such are commonly thought to be a good example of sustainable agriculture. While this may be true in the sense of soil protection and maintenance of biodiversity, they are not necessarily maintainable in the context of competing land use in the landscape. Such appears to be the case of forest gardens in the uplands of Uva Province of Sri Lanka. This paper reports an agroecological analysis of forest gardens and other forms of land use in Uva, and discusses how this understanding can be used to make use of the good properties of forest gardens. It shows that although they have very real environmental and social benefits, they are unable to satisfy the material needs of a rural population undergoing demographic and cultural changes. However, the alternative land-use systems, both private smallholder and state owned, have serious deficiencies with respect to long-term sustainability, and it is essential to develop appropriate alternatives. It should be possible to design a smallholder farming system that incorporates the high productivity of market gardens (i.e., the cultivation of seasonal crops such as vegetables) with, at least, the high stability and biophysical sustainability of the forest garden. Considerable work still needs to be done on the design of such a system as well as the agency for its development and promotion. The paper treats the forest gardens of Uva as a case study from which some general conclusions can be drawn with respect to the conscious development of forest garden systems elsewhere in the tropics.

  9. Ectomycorrhizal sporophore distributions in a southeastern Appalachian mixed hardwood/conifer forest with thickets of Rhododendron maximum

    Science.gov (United States)

    John F. Walker; Orson R. Jr. Miller

    2002-01-01

    Sporophore abundance of putatively ectomycorrhizal fungi was compared in a mature mixed hardwood/conifer forest inside of (1) versus outside of (2) Rhododendron maximum thickets (RmT). Experimental blocks (1/4 ha) were established inside of (3) and outside of (3) RmT at the Coweeta Hydrologic Laboratory in Macon County, North Carolina, USA. Litter...

  10. History of natural resource use and environmental impacts in an interfluvial upland forest area in western Amazonia

    Directory of Open Access Journals (Sweden)

    Anders Siren

    2014-03-01

    Full Text Available Much of the research done on environmental impacts by Amazonian indigenous peoples in the past focus on certain areas where archaeological remains are particularly abundant, such as the Amazon River estuary, the seasonally inundated floodplain of the lower Amazon, and various sites in the forest-savannah mosaic of the southern Amazon The environmental history of interfluvial upland areas has received less attention. This study reconstructed the history of human use of natural resources in an upland area of 1400 km2 surrounding the indigenous Kichwa community of Sarayaku in the Ecuadorian Amazon, based on oral history elicited from local elders as well as historical source documents and some modern scientific studies. Although data is scarce, one can conclude that the impacts of humans on the environment have varied in time and space in quite intricate ways. Hunting has affected, and continues affecting, basically the whole study area, but it is now more concentrated in space than what it has probably ever been before. Also forest clearing has become more concentrated in space but, in addition, it has gone from affecting only hilltops forests to affecting alluvial plains as well as hilltops and, lately, also the slopes of the hills.

  11. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    International Nuclear Information System (INIS)

    Jafarov, E E; Romanovsky, V E; Marchenko, S S; Genet, H; McGuire, A D

    2013-01-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ∼80 cm) and upland (with thin organic layers, ∼30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming. (letter)

  12. Principal forest dieback episodes in northern hardwoods: development of numeric indices of areal extent and severity

    International Nuclear Information System (INIS)

    Auclair, A.D.; Eglington, P.D.; Minnemeyer, S.L.

    1997-01-01

    The incidence of forest dieback in the Northern Hardwoods biome of Canada and the United States was determined for period from 1910 to 1990. Information from annual forest service pathology inventories in the two countries and other published literature was coded to estimate yearly the severity and areal extent of dieback on white/yellow birch and sugar maple from 1910 to 1990. Principal dieback episodes occurred as distinct waves coincident with maturation of the forest population in each of six regions. These episodes endured an average of 11 years. It is hypothesized that, once forest populations are mature, they are susceptible to extreme stresses such as freezing and drought which serve to synchronize the onset and subsidence of major dieback episodes. 38 refs., 5 figs., 5 tabs

  13. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Michael D. Ulyshen; James L. Hanula; Scott Horn; Christopher E. Moorman.

    2005-04-01

    ABSTRACT Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the abundance and species richness of insect herbivores were greater at the centers of young gaps than at the edge of young gaps or in the forest surrounding young gaps. There were no differences in abundance or species richness among old gap locations (i.e., centers, edges, and forest), and we collected significantly more insects in young gaps than old gaps. The insect communities in old gaps were more similar to the forests surrounding them than young gap communities were to their respective forest locations, but the insect communities in the two forests locations (surrounding young and old gaps) had the highest percent similarity of all. Although both abundance and richness increased in the centers of young gaps with increasing gap size, these differences were not significant.Weattribute the increased numbers of herbivorous insects to the greater abundance of herbaceous plants available in young gaps.

  14. Chapter 10:Hardwoods for timber bridges

    Science.gov (United States)

    James P. Wacker; Ed T. Cesa

    2005-01-01

    This chapter describes the joint efforts of the Forest Service and the FHWA to administer national programs including research, demonstration bridges, and technology transfer components. Summary information on a number of Forest Service-WIT demonstration bridges constructed with hardwoods is also provided.

  15. The Importance of Maintaining Upland Forest Habitat Surrounding Salamander Breeding Ponds: Case Study of the Eastern Tiger Salamander in New York, USA

    Directory of Open Access Journals (Sweden)

    Valorie Titus

    2014-12-01

    Full Text Available Most amphibians use both wetland and upland habitats, but the extent of their movement in forested habitats is poorly known. We used radiotelemetry to observe the movements of adult and juvenile eastern tiger salamanders over a 4-year period. Females tended to move farther from the breeding ponds into upland forested habitat than males, while the distance a juvenile moved appeared to be related to body size, with the largest individuals moving as far as the adult females. Individuals chose refugia in native pitch pine—oak forested habitat and avoided open fields, roads, and developed areas. We also observed a difference in potential predation pressures in relation to the distance an individual moved from the edge of the pond. Our results support delineating forested wetland buffer zones on a case-by-case basis to reduce the impacts of concentrated predation, to increase and protect the availability of pitch pine—oak forests near the breeding pond, and to focus primarily on the habitat needs of the adult females and larger juveniles, which in turn will encompass habitat needs of adult males and smaller juveniles.

  16. Guide to Regeneration of Bottomland Hardwoods

    Science.gov (United States)

    Martha R. McKevlin

    1992-01-01

    This guide will help landowners, consulting foresters, and public service foresters regenerate bottomland hardwoods. It discusses (1) interpretation of site characteristics, (2) selection of species, and (3) selection of regeneration methods. A dichotomous key for selection of appropriate regeneration methods under various conditions is presented.

  17. Forest diversity and disturbance: changing influences and the future of Virginia's Forests

    Science.gov (United States)

    Christine J. Small; James L. Chamberlain

    2015-01-01

    The Virginia landscape supports a remarkable diversity of forests, from maritime dunes, swamp forests, and pine savannas of the Atlantic coastal plain, to post-agricultural pine-hardwood forests of the piedmont, to mixed oak, mixed-mesophytic, northern hardwood, and high elevation conifer forests in Appalachian mountain provinces. Virginia’s forests also have been...

  18. Abundance and Size Distribution of Cavity Trees in Second-Growth and Old-Growth Central Hardwood Forests

    Science.gov (United States)

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson III; David R. Larsen

    2005-01-01

    In central hardwood forests, mean cavity-tree abundance increases with increasing standsize class (seedling/sapling, pole, sawtimber, old-growth). However, within a size class, the number of cavity trees is highly variable among 0.1-ha inventory plots. Plots in young stands are most likely to have no cavity trees, but some plots may have more than 50 cavity trees/ha....

  19. Abundance and size distribution of cavity trees in second-growth and old-growth central hardwood forests

    Science.gov (United States)

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson; David R. Larsen

    2005-01-01

    In central hardwood forests, mean cavity-tree abundance increases with increasing standsize class (seedling/sapling, pole, sawtimber, old-growth). However, within a size class, the number of cavity trees is highly variable among 0.1-ha inventory plots. Plots in young stands are most likely to have no cavity trees, but some plots may have more than 50 cavity trees/ha....

  20. Invasive earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern hardwood forest

    Science.gov (United States)

    Kit Resner; Kyungsoo Yoo; Stephen D. Sebestyen; Anthony Aufdenkampe; Cindy Hale; Amy Lyttle; Alex. Blum

    2015-01-01

    Hardwood forests of the Great Lakes Region have evolved without earthworms since the Last Glacial Maximum, but are now being invaded by exotic earthworms introduced through agriculture, fishing, and logging. These exotic earthworms are known to increase soil mixing, affect soil carbon storage, and dramatically alter soil morphology. Here we show, using an active...

  1. Soil Management for Hardwood Production

    Science.gov (United States)

    W. M. Broadfoot; B. G. Blackmon; J. B. Baker

    1971-01-01

    Soil management is the key to successful hardwood management because soil properties are probably the most important determinants of forest productivity. Because of the lack of soil uniformity, however, many foresters have become frustrated with attempts to relate soil to satisfactory growth. Since soil scientists have been unable to predict site quality for trees in...

  2. Point Counts of Birds in Bottomland Hardwood Forests of the Mississippi Alluvial Valley: Duration, Minimum Sample Size, and Points Versus Visits

    Science.gov (United States)

    Winston Paul Smith; Daniel J. Twedt; David A. Wiedenfeld; Paul B. Hamel; Robert P. Ford; Robert J. Cooper

    1993-01-01

    To compare efficacy of point count sampling in bottomland hardwood forests, duration of point count, number of point counts, number of visits to each point during a breeding season, and minimum sample size are examined.

  3. Automation for Primary Processing of Hardwoods

    Science.gov (United States)

    Daniel L. Schmoldt

    1992-01-01

    Hardwood sawmills critically need to incorporate automation and computer technology into their operations. Social constraints, forest biology constraints, forest product market changes, and financial necessity are forcing primary processors to boost their productivity and efficiency to higher levels. The locations, extent, and types of defects found in logs and on...

  4. Ecohydrological dynamics of peatlands and adjacent upland forests in the Rocky Mountains

    Science.gov (United States)

    Millar, D.; Parsekian, A.; Mercer, J.; Ewers, B. E.; Mackay, D. S.; Williams, D. G.; Cooper, D. J.; Ronayne, M. J.

    2017-12-01

    Mountain peatlands are susceptible to a changing climate via changes in the water cycle. Understanding the impacts of such changes requires knowledge of the hydrological processes within these peatlands and in the upland forests that supply them with water. We investigated hydrological processes in peatland catchments in the Rocky Mountains by developing empirical models of groundwater dynamics, and are working to improve subsurface water dynamics in a ecohydrological process model, the Terrestrial Regional Ecosystem Exchange Simulator (TREES). Results from empirical models showed major differences in water budget components between two peatlands with differing climate, vegetation, and hydrogeological settings. Several-fold higher rates of evapotranspiration from the saturated zone, and groundwater inflow were observed for a sloping fen in southern Wyoming than that of a basin fen in southwestern Colorado, where rainfall was two-fold higher due to stronger influence of the North American monsoon. We also present ongoing work coupling stable water isotope and borehole nuclear magnetic resonance analyses to test which soil water pools (bound or mobile) are used by dominant upland and peatland vegetation in two catchments in southern Wyoming. These data are being used to test whether the root hydraulic mechanisms in TREES can simulate water uptake from these two soil water pools, and sap flux measurements are being used to evaluate simulated transpiration. Preliminary results from this work suggest that upland vegetation utilize tightly-bound soil water pools, as these pools comprise the largest amount of subsurface water (> 80%) in the vadose zone long after snow melt. Conversely, it appears that herbaceous peatland hydrophytes may preferentially utilize mobile soil water pools, since their roots extend below the water table. The results of this work are expected to increase predictive understanding of hydrological processes in these important ecosystems.

  5. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Forest harvesting effects on soil temperature, moisture, and respiration in a bottomland hardwood forest

    International Nuclear Information System (INIS)

    Londo, A.J.; Messina, M.G.; Schoenholtz, S.H.

    1999-01-01

    The effect of forest disturbance on C cycling has become an issue, given concerns about escalating atmospheric C content. The authors examined the effects of harvest intensity on in situ and laboratory mineral soil respiration in an East Texas bottomland hardwood forest between 6 and 22 mo after harvesting. Treatments included a clearcut, a partial cut wherein approximately 58% of the basal area was removed, and an unharvested control. The soda-lime absorption technique was used for in situ respiration (CO 2 efflux) and the wet alkali method (NaOH) was used for laboratory mineral soil respiration. Soil temperature and moisture content were also measured. Harvesting significantly increased in situ respiration during most sampling periods. This effect was attributed to an increase in live root and microflora activity associated with postharvesting revegetation. In situ respiration increased exponentially (Q 10 relationship) as treatment soil temperatures increased, but followed a parabolic-type pattern through the range of soil moisture measured (mean range 10.4--31.5%). Mean rates of laboratory mineral soil respiration measured during the study were unaffected by cutting treatment for most sampling sessions. Overall, the mean rate of CO 2 efflux in the clearcuts was significantly higher than that in the partial cuts, which in turn was significantly higher than that in the controls. Mass balance estimates indicate that these treatment differences will have little or no long-term effect on C sequestration of these managed forests

  7. Technical assessment of forest road network using Backmund and surface distribution algorithm in a hardwood forest of Hyrcanian zone

    Energy Technology Data Exchange (ETDEWEB)

    Parsakhoo, P.

    2016-07-01

    Aim of study: Corrected Backmund and Surface Distribution Algorithms (SDA) for analysis of forest road network are introduced and presented in this study. Research was carried out to compare road network performance between two districts in a hardwood forest. Area of study: Shast Kalateh forests, Iran. Materials and methods: In uncorrected Backmund algorithm, skidding distance was determined by calculating road density and spacing and then it was designed as Potential Area for Skidding Operations (PASO) in ArcGIS software. To correct this procedure, the skidding constraint areas were taken using GPS and then removed from PASO. In SDA, shortest perpendicular distance from geometrical center of timber compartments to road was measured at both districts. Main results: In corrected Backmund, forest openness in district I and II were 70.3% and 69.5%, respectively. Therefore, there was little difference in forest openness in the districts based on the uncorrected Backmund. In SDA, the mean distance from geometrical center of timber compartments to the roads of districts I and II were 199.45 and 149.31 meters, respectively. Forest road network distribution in district II was better than that of district I relating to SDA. Research highlights: It was concluded that uncorrected Backmund was not precise enough to assess forest road network, while corrected Backmund could exhibit a real PASO by removing skidding constraints. According to presented algorithms, forest road network performance in district II was better than district I. (Author)

  8. A Canadian upland forest soil profile and carbon stocks database.

    Science.gov (United States)

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    "A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve

  9. Kentucky's forests, 2004

    Science.gov (United States)

    Jeffery A. Turner; Christopher M. Oswalt; James L. Chamberlain; Roger C. Conner; Tony G. Johnson; Sonja N. Oswalt; KaDonna C. Randolph

    2008-01-01

    Forest land area in the Commonwealth of Kentucky amounted to 11.97 million acres, including 11.6 million acres of timberland. Over 110 different species, mostly hardwoods, account for an estimated 21.2 billion cubic feet of all live tree volume. Hardwood forest types occupy 85 percent of Kentucky’s timberland, and oak-hickory is the dominant forest-type group...

  10. Woody browse production

    Science.gov (United States)

    Tom Crow; Forest Stearns

    1992-01-01

    Sugar maple has great potential as wildlife food, especially as good winter fare for deer in the northern Lake States. Deer will diligently seek out sugar maple browse in the hardwood forests along the edges of a winter yard or in isolated islands of upland forest within a yard.

  11. Host breadth and ovipositional behavior of adult Polydrusus sericeus and Phyllobius oblongus (Coleoptera: Curculionidae), nonindigenous inhabitants of northern hardwood forests

    Science.gov (United States)

    R. A. Pinski; W. J. Mattson; K. F. Raffa

    2005-01-01

    Polydrusus sericeus (Schaller) and Phyllobius oblongus (L.) are nonindigenous root-feeding weevils in northern hardwood forests of Wisconsin and Michigan. Detailed studies of adult host range, tree species preferences, and effects of food source on fecundity and longevity have not been conducted in North America P....

  12. Effects of Repeated Growing Season Prescribed Fire on the Structure and Composition of Pine–Hardwood Forests in the Southeastern Piedmont, USA

    Directory of Open Access Journals (Sweden)

    Matthew J. Reilly

    2016-12-01

    Full Text Available We examined the effects of repeated growing season prescribed fire on the structure and composition of mixed pine–hardwood forests in the southeastern Piedmont region, Georgia, USA. Plots were burned two to four times over an eight-year period with low intensity surface fires during one of four six-week long periods from early April to mid-September. Density of saplings (0.25–11.6 cm diameter at breast height was significantly reduced after one or two fires during the first four-year period. Sapling density declined with additional burning over the next four years, but density of mesic hardwoods including sweetgum (Liquidambar styraciflua and red maple (Acer rubrum remained relatively high (~865 stems ha−1. Repeated burning had little effect on density or basal area of trees (≥11.7 cm dbh and changes in overstory structure were limited to small increases in the quadratic mean diameter of all trees and pines. We found little evidence to suggest differential effects on structure or composition due to timing of burn within the growing season. Although repeated growing season burning alters midstory structure and composition, burning alone is unlikely to result in immediate shifts in overstory composition or structure in mixed pine–hardwood forests of the southeastern Piedmont region.

  13. Thinning results from a mixed upland hardwood stand after 35 years

    Science.gov (United States)

    Ronald J., Jr. Myers; Kenneth R. Roeder; W. Henry McNab

    2008-01-01

    A long-term study of precommercial thinning was installed in a 6-year-old oak-dominated stand regenerated by clearcutting in the southern Appalachian Mountains of North Carolina. Three levels of residual stand density were tested: control (no thinning), and 200, and 400 residual trees per acre (TPA). Objectives of the study were to determine the response of an upland...

  14. Hardwood lumber supply chain: current status and market opportunities

    Science.gov (United States)

    Urs Buehlmann; Matthew Bumgardner; Al Schuler; Mark Barford

    2007-01-01

    The membership of the Appalachian Hardwood Manufacturers Association was surveyed in 2005 to determine the current status of large Appalachian sawmills. The primary focus was to assess the impacts of globalization on primary manufacturing, but attention was also paid to general issues affecting the hardwood lumber supply chain-from concerns over forest health and log...

  15. History of natural resource use and environmental impacts in an interfluvial upland forest area in western Amazonia

    OpenAIRE

    Anders Siren

    2014-01-01

    Much of the research done on environmental impacts by Amazonian indigenous peoples in the past focus on certain areas where archaeological remains are particularly abundant, such as the Amazon River estuary, the seasonally inundated floodplain of the lower Amazon, and various sites in the forest-savannah mosaic of the southern Amazon The environmental history of interfluvial upland areas has received less attention. This study reconstructed the history of human use of natural resources in an ...

  16. Windthrow and salvage logging in an old-growth hemlock-northern hardwoods forest

    Science.gov (United States)

    Lang, K.D.; Schulte, L.A.; Guntenspergen, G.R.

    2009-01-01

    Although the initial response to salvage (also known as, post-disturbance or sanitary) logging is known to vary among system components, little is known about longer term forest recovery. We examine forest overstory, understory, soil, and microtopographic response 25 years after a 1977 severe wind disturbance on the Flambeau River State Forest in Wisconsin, USA, a portion of which was salvage logged. Within this former old-growth hemlock-northern hardwoods forest, tree dominance has shifted from Eastern hemlock (Tsuga canadensis) to broad-leaf deciduous species (Ulmus americana, Acer saccharum, Tilia americana, Populus tremuloides, and Betula alleghaniensis) in both the salvaged and unsalvaged areas. While the biological legacies of pre-disturbance seedlings, saplings, and mature trees were initially more abundant in the unsalvaged area, regeneration through root suckers and stump sprouts was common in both areas. After 25 years, tree basal area, sapling density, shrub layer density, and seedling cover had converged between unsalvaged and salvaged areas. In contrast, understory herb communities differed between salvaged and unsalvaged forest, with salvaged forest containing significantly higher understory herb richness and cover, and greater dominance of species benefiting from disturbance, especially Solidago species. Soil bulk density, pH, organic carbon content, and organic nitrogen content were also significantly higher in the salvaged area. The structural legacy of tip-up microtopography remains more pronounced in the unsalvaged area, with significantly taller tip-up mounds and deeper pits. Mosses and some forest herbs, including Athyrium filix-femina and Hydrophyllum virginianum, showed strong positive responses to this tip-up microrelief, highlighting the importance of these structural legacies for understory biodiversity. In sum, although the pathways of recovery differed, this forest appeared to be as resilient to the compound disturbances of windthrow

  17. Efficient silvicultural practices for eastern hardwood management

    Science.gov (United States)

    Gary W. Miller; John E. Baumgras

    1994-01-01

    Eastern hardwood forests are now managed to meet a wide range of objectives, resulting in the need for silvicultural alternatives that provide timber, wildlife, aesthetics, recreation, and other benefits. However, forest management practices must continue to be efficient in terms of profiting from current harvests, protecting the environment, and sustaining production...

  18. Timber harvesting patterns for major states in the central, northern, and mid-Atlantic hardwood regions

    Science.gov (United States)

    William G. Luppold; Matthew S. Bumgardner

    2018-01-01

    Timber harvesting is a major disturbance agent influencing the composition and structure of eastern hardwood forests. To better understand timber harvesting practices, we examined roundwood harvesting patterns in 13 eastern states in the Central, Mid-Atlantic, and Northern regions that contained high proportional volumes of hardwood in their forest inventories. Nearly...

  19. Composition and seasonal phenology of a nonindigenous root-feeding weevil (Coleoptera: Curculionidae) complex in northern hardwood forests in the Great Lakes Region

    Science.gov (United States)

    R. A. Pinski; W. J. Mattson; K. F. Raffa

    2005-01-01

    Phyllobius oblongus (L.), Polydrusus sericeus (Schaller), and Sciaphilus asperatus (Bonsdorff) comprise a complex of nonindigenous root-feeding weevils in northern hardwood forests of the Great Lakes region. Little is known about their detailed biology, seasonality, relative abundance, and distribution patterns....

  20. Stand conditions immediately following a restoration harvest in an old-growth pine-hardwood remnant

    Science.gov (United States)

    D. C. Bragg

    2010-01-01

    Portions of the Levi Wilcoxon Demonstration Forest (LWDF), a privately owned parcel of old-growth pine and hardwoods in Ashley County, Arkansas, were recently treated to restore conditions similar to some historic accounts of the virgin forest. Following a hardwood-only cut, a post-harvest inventory showed that the number of tree species in the sample area declined...

  1. Southern hardwood forestry group going strong after 50 years

    Science.gov (United States)

    Brian Roy Lockhart; Steve Meadows; Jeff Portwood

    2005-01-01

    On November 15,200 1, the Southern Hardwood Forestry Group (referred to as the Group) met at the U.S. Forest Service Southern Research Station's Southern Hardwoods Laboratory in Stoneville, hlississippi to celebrate the Group's 50th anniversary. About 130 members and guests attended to celebrate the 50th anniversary of the Group and to honor its charter...

  2. Selecting Tree Species with High Carbon Stock Potency from Tropical Upland Forest of Bedugul-Bali, Indonesia

    Directory of Open Access Journals (Sweden)

    Arief Priyadi

    2014-11-01

    Full Text Available Vegetation studies to reveal tree diversity and its contribution to carbon stock were conducted in three different sites of upland forest in Bali, Indonesia. The sites were located approximately 60 km north of the Bali Province capital city of Denpasar in an area named Bedugul. Those three sites were Mt. Mangu (forest area east of Beratan lake, forest area west of Buyan lake and forest area south of Tamblingan lake. There were 44, 29, and 21 tree species of 14, 19, 14 families with Shannon Diversity Index (H’ of 2.87, 2.64 and 1.69 respectively. Carbon stock average of above ground tree biomass from these sites were 214.2, 693.0 and 749.1 ton.ha-1 respectively. Tree species with top Summed Dominance Ratio (SDR in each of those sites were Platea latifolia in Mt. Mangu, Planchonella sp. in Buyan, and Tabernaemontana macrocarpa in Tamblingan. Average carbon content of these three species were 493.25, 12,876.26 and 40.35 kg.ha-1 respectively.

  3. Spatial and vertical distribution of mercury in upland forest soils across the northeastern United States

    International Nuclear Information System (INIS)

    Richardson, Justin B.; Friedland, Andrew J.; Engerbretson, Teresa R.; Kaste, James M.; Jackson, Brian P.

    2013-01-01

    Assessing current Hg pools in forest soils of the northeastern U.S. is important for monitoring changes in Hg cycling. The forest floor, upper and lower mineral horizons were sampled at 17 long-term upland forest sites across the northeastern U.S. in 2011. Forest floor Hg concentration was similar across the study region (274 ± 13 μg kg −1 ) while Hg amount at northern sites (39 ± 6 g ha −1 ) was significantly greater than at western sites (11 ± 4 g ha −1 ). Forest floor Hg was correlated with soil organic matter, soil pH, latitude and mean annual precipitation and these variables explained approximately 70% of the variability when multiple regressed. Mercury concentration and amount in the lower mineral soil was correlated with Fe, soil organic matter and latitude, corresponding with Bs horizons of Spodosols (Podzols). Our analysis shows the importance of regional and soil properties on Hg accumulation in forest soils. -- Highlights: •Mercury in the forest floor and mineral soil was quantified at 17 sites. •Concentrations and amounts were regressed with regional factors and soil properties. •Forest floor Hg was most explained by soil organic matter, pH, and precipitation. •Mineral soil Hg was explained by latitude, Fe concentration, and soil organic matter. •Mineral soil Hg was greatest in Bs horizons of Spodosols due to podzolization. -- Forest floor Hg was correlated with soil organic matter, pH, latitude, and mean annual precipitation. Mineral soil Hg was greatest in Bs horizons of Spodosols

  4. 78 FR 49878 - Endangered and Threatened Wildlife and Plants; Endangered Status for the Florida Leafwing and...

    Science.gov (United States)

    2013-08-15

    ... Caribbean Sea from the Atlantic Ocean) (Comstock 1961, p. 45; Brown and Heineman 1972, p. 124; Minno and... hardwood forest on upland sites in areas where limestone is very near the surface and often exposed. The forest floor is largely covered by leaf litter with varying amounts of exposed limestone and has few...

  5. Evaluating Forest Vegetation Simulator predictions for southern Appalachian upland hardwoods with a modified mortality model

    Science.gov (United States)

    Philip J. Radtke; Nathan D. Herring; David L. Loftis; Chad E. Keyser

    2012-01-01

    Prediction accuracy for projected basal area and trees per acre was assessed for the growth and yield model of the Forest Vegetation Simulator Southern Variant (FVS-Sn). Data for comparison with FVS-Sn predictions were compiled from a collection of n

  6. Spectral reflectance of five hardwood tree species in southern Indiana

    Science.gov (United States)

    Dale R. Weigel; J.C. Randolph

    2013-01-01

    The use of remote sensing to identify forest species has been ongoing since the launch of Landsat-1 using MSS imagery. The ability to separate hardwoods from conifers was accomplished by the 1980s. However, distinguishing individual hardwood species is more problematic due to similar spectral and phenological characteristics. With the launch of commercial satellites...

  7. Economic considerations of uneven-age hardwood management

    Science.gov (United States)

    H. Clay Smith; Gary W. Miller

    1987-01-01

    Uneven-age management or partial cutting methods as described in this paper allow foresters to manage eastern hardwood stands and harvest forest products without clearcutting. These methods can involve regular periodic harvests, at least for the short term, based on stand conditions and growing-site capabilities. We are not going to make the decision as to which is the...

  8. Saproxylic Hemiptera Habitat Associations

    Science.gov (United States)

    Michael D. Ulyshen; James L. Hanula; Robert L. Blinn; Gene. Kritsky

    2012-01-01

    Understanding the habitat requirements of organisms associated with dead wood is important in order to conserve them in managed forests. Unfortunately, many of the less diverse saproxylic taxa, including Hemiptera, remain largely unstudied. An effort to rear insects from dead wood taken from two forest types (an upland pine-dominated and a bottomland mixed hardwood),...

  9. Seeding and planting upland oaks

    Science.gov (United States)

    1989-01-01

    Oaks can be planted or seeded in uplands to: (1) afforest old fields, strip-mined areas, or other areas devoid of trees, and (2) supplement natural reproduction within existing forests. Planting is usually more successful than direct seeding. But even under good conditions survival and growth of planted oak has been considerably poorer than with conifers and other...

  10. Linking Forests and Fish: The Relationship Between Productivities of Salmonids and Forest Stands in Northern California

    Science.gov (United States)

    Wilzbach, P.; Frazey, S.

    2005-05-01

    Productivities of resident salmonid populations, upland, and riparian areas in 25 small watersheds of coastal northern California were estimated and compared to determine if: 1) upland site productivity predicted riparian site productivity; 2) either upland or riparian site productivity predicted salmonid productivity; and 3) other parameters explained more of the variance in salmonid productivity than upland or riparian site productivity. Salmonid productivity was indexed by total salmonid biomass, length of age 1 fish, and percent habitat saturation. Upland and riparian site productivities were estimated using site indices for redwood (Sequoia sempervirens) and red alder (Alnus rubra), respectively. Upland and riparian site indices were correlated, but neither factor contributed to the best approximating models of salmonid biomass or fish length at age one. Salmonid biomass was best described by a positive relationship with drainage area, and length at age was best described by a positive relationship with percent of riparian hardwoods. Percent habitat saturation was not well described by any of the models constructed. Lack of a relationship between upland conifer and salmonid productivity suggests that management of land for timber productivity and component streams for salmonid production in these sites will require separate, albeit integrated, strategies.

  11. Developing a unified monitoring and reporting system: a key to successful restoration of mixed-oak forests throughout the central hardwood region

    Science.gov (United States)

    Daniel A. Yaussy; Gregory J. Nowacki; Thomas M. Schuler; Daniel C. Dey

    2008-01-01

    Many national forests and grasslands in the Central Hardwoods region of the United States recently have undergone Land Management Plan revision, which include management areas that promote restoration through a variety of management activities. Monitoring is a vital component of adaptive management whereby the effects from a variety of treatments (including controls)...

  12. Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA

    Science.gov (United States)

    Yanai, Ruth D.; Driscoll, Charles T.; Montesdeoca, Mario; Smith, Kevin T.

    2018-01-01

    Mercury (Hg) is deposited from the atmosphere to remote areas such as forests, but the amount of Hg in trees is not well known. To determine the importance of Hg in trees, we analyzed foliage, bark and bole wood of eight tree species at four sites in the northeastern USA (Huntington Forest, NY; Sleepers River, VT; Hubbard Brook, NH; Bear Brook, ME). Foliar concentrations of Hg averaged 16.3 ng g-1 among the hardwood species, which was significantly lower than values in conifers, which averaged 28.6 ng g-1 (p < 0.001). Similarly, bark concentrations of Hg were lower (p < 0.001) in hardwoods (7.7 ng g-1) than conifers (22.5 ng g-1). For wood, concentrations of Hg were higher in yellow birch (2.1–2.8 ng g-1) and white pine (2.3 ng g-1) than in the other species, which averaged 1.4 ng g-1 (p < 0.0001). Sites differed significantly in Hg concentrations of foliage and bark (p = 0.02), which are directly exposed to the atmosphere, but the concentration of Hg in wood depended more on species (p < 0.001) than site (p = 0.60). The Hg contents of tree tissues in hardwood stands, estimated from modeled biomass and measured concentrations at each site, were higher in bark (mean of 0.10 g ha-1) and wood (0.16 g ha-1) than in foliage (0.06 g ha-1). In conifer stands, because foliar concentrations were higher, the foliar pool tended to be more important. Quantifying Hg in tree tissues is essential to understanding the pools and fluxes of Hg in forest ecosystems. PMID:29684081

  13. Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA.

    Science.gov (United States)

    Yang, Yang; Yanai, Ruth D; Driscoll, Charles T; Montesdeoca, Mario; Smith, Kevin T

    2018-01-01

    Mercury (Hg) is deposited from the atmosphere to remote areas such as forests, but the amount of Hg in trees is not well known. To determine the importance of Hg in trees, we analyzed foliage, bark and bole wood of eight tree species at four sites in the northeastern USA (Huntington Forest, NY; Sleepers River, VT; Hubbard Brook, NH; Bear Brook, ME). Foliar concentrations of Hg averaged 16.3 ng g-1 among the hardwood species, which was significantly lower than values in conifers, which averaged 28.6 ng g-1 (p < 0.001). Similarly, bark concentrations of Hg were lower (p < 0.001) in hardwoods (7.7 ng g-1) than conifers (22.5 ng g-1). For wood, concentrations of Hg were higher in yellow birch (2.1-2.8 ng g-1) and white pine (2.3 ng g-1) than in the other species, which averaged 1.4 ng g-1 (p < 0.0001). Sites differed significantly in Hg concentrations of foliage and bark (p = 0.02), which are directly exposed to the atmosphere, but the concentration of Hg in wood depended more on species (p < 0.001) than site (p = 0.60). The Hg contents of tree tissues in hardwood stands, estimated from modeled biomass and measured concentrations at each site, were higher in bark (mean of 0.10 g ha-1) and wood (0.16 g ha-1) than in foliage (0.06 g ha-1). In conifer stands, because foliar concentrations were higher, the foliar pool tended to be more important. Quantifying Hg in tree tissues is essential to understanding the pools and fluxes of Hg in forest ecosystems.

  14. Climate change and the future of natural disturbances in the central hardwood region

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Virginia H [ORNL; Hughes, M. Joseph [University of Tennessee (UT); Hayes, Daniel J [ORNL

    2015-01-01

    The spatial patterns and ecological processes of the southeastern upland hardwood forests have evolved to reflect past climatic conditions and natural disturbance regimes. Changes in climate can lead to disturbances that exceed their natural range of variation, and the impacts of these changes will depend on the vulnerability or resiliency of these ecosystems. Global Circulation Models generally project annual increases in temperature across the southeastern United States over the coming decades, but changes in precipitation are less consistent. Even more unclear is how climate change might affect future trends in the severity and frequency of natural disturbances, such as severe storms, fires, droughts, floods, and insect outbreaks. Here, we use a time-series satellite data record to map the spatial pattern and severity of broad classes of natural disturbances the southeast region. The data derived from this map allow analysis of regional-scale trends in natural and anthropogenic disturbances in the region over the last three decades. Throughout the region, between 5% and 25% of forest land is affected by some sort of disturbance each year since 1985. The time series reveals periodic droughts that themselves are widespread and of low severity but are associated with more localized, high-severity disturbances such as fire and insect outbreaks. The map also reveals extensive anthropogenic disturbance across the region in the form of forest conversion related to resource extraction and urban and residential development. We discuss how changes in climate and disturbance regimes might affect southeastern forests in the future via altering the exposure, sensitivity and adaptive capacity of these ecosystems. Changes in climate are highly likely to expose southeastern forests to more frequent and severe disturbances, but ultimately how vulnerable or resilient southeastern forests are to these changes will depend on their sensitivity and capacity to adapt to these novel

  15. Crop tree release options for young hardwood stands in North Carolina

    Science.gov (United States)

    Jamie L. Schuler; Daniel J. Robison

    2006-01-01

    Harvesting southern hardwood forests using even-aged reproduction methods commonly regenerate new stands with 20,000 to 50,000 stems per acre. Overstocking and an overabundance of non-commercial tree species are considered major constraints to growing productive and valuable hardwoods. Crop tree release practices have been promoted as an efficient way of thinning young...

  16. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.; Kilgo, John C.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  17. A Comparison of Market Needs to the Species and Quality Composition of the Eastern Hardwood

    Science.gov (United States)

    Robert J. Bush; Philip A. Araman

    1991-01-01

    Many markets for hardwood lumber have experienced growth in recent years. Eastern and Central hardwood lumber production reached an estimated 11.2 billion board feet in 1988, a twenty year high. Wood furniture, flooring, and exports have also experienced growth in the last ten years. During the same period, annual growth on eastern hardwood forests has exceeded annual...

  18. Quantifying flooding effects on hardwood seedling survival and growth for bottomland restoration

    Science.gov (United States)

    John M. Kabrick; Daniel C. Dey; J.W. Van Sambeek; Mark V. Coggeshall; Douglass F. Jacobs

    2012-01-01

    Growing interest worldwide in bottomland hardwood restoration necessitates improved ecological understanding of flooding effects on forest tree seedlings using methodology that accurately reflects field conditions. We examined hardwood seedling survival and growth in an outdoor laboratory where the timing, depth, duration, and flow rate of flood water can be carefully...

  19. Effects of repeated growing season prescribed fire on the structure and composition of pine-hardwood forests in the southeastern Piedmont, USA

    Science.gov (United States)

    Matthew Reilly; Kenneth Outcalt; Joseph O’Brien; Dale Wade

    2016-01-01

    We examined the effects of repeated growing season prescribed fire on the structure and composition of mixed pine–hardwood forests in the southeastern Piedmont region, Georgia, USA. Plots were burned two to four times over an eight-year period with low intensity surface fires during one of four six-week long periods from early April to mid-September. Density...

  20. Comparative study for hardwood and softwood forest biomass: chemical characterization, combustion phases and gas and particulate matter emissions.

    Science.gov (United States)

    Amaral, Simone Simões; de Carvalho, João Andrade; Costa, Maria Angélica Martins; Soares Neto, Turíbio Gomes; Dellani, Rafael; Leite, Luiz Henrique Scavacini

    2014-07-01

    Two different types of typical Brazilian forest biomass were burned in the laboratory in order to compare their combustion characteristics and pollutant emissions. Approximately 2 kg of Amazon biomass (hardwood) and 2 kg of Araucaria biomass (softwood) were burned. Gaseous emissions of CO2, CO, and NOx and particulate matter smaller than 2.5 μm (PM2.5) were evaluated in the flaming and smoldering combustion phases. Temperature, burn rate, modified combustion efficiency, emissions factor, and particle diameter and concentration were studied. A continuous analyzer was used to quantify gas concentrations. A DataRam4 and a Cascade Impactor were used to sample PM2.5. Araucaria biomass (softwood) had a lignin content of 34.9%, higher than the 23.3% of the Amazon biomass (hardwood). CO2 and CO emissions factors seem to be influenced by lignin content. Maximum concentrations of CO2, NOx and PM2.5 were observed in the flaming phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Mineral Soil Carbon in Managed Hardwood Forests of the Northeastern US

    Science.gov (United States)

    Vario, C.; Friedland, A.; Hornig, C.

    2013-12-01

    New England is characterized by extensive forest cover and large reservoirs of soil carbon (C). In northern hardwood forests, mineral soil C can account for up to 50% of total ecosystem C. There has been an increasing demand for forests to serve both as a C sink and a renewable energy source, and effective management of the ecosystem C balance relies on accurate modeling of each compartment of the ecosystem. However, the dynamics of soil C storage with respect to forest use are variable and poorly understood, particularly in mineral soils. For example, current regional models assume C pools after forest harvesting do not change, while some studies suggest that belowground mineral soil C pools can be affected by disturbances at the soil surface. We quantified mineral soil C pools in previously clear-cut stands in seven research or protected forests across New York, New Hampshire, Massachusetts, and Vermont. The ages of the sites sampled ranged from recently cleared to those with no disturbance history, with 21 forest stands represented in the study. Within each research forest studied, physical parameters such as soil type, forest type, slope and land-use history (aside from forest harvest) did not vary between the stands of different ages. Soil samples were collected to a depth of 60 cm below the mineral-organic boundary using a gas-powered augur and 9.5-cm diameter drill bit. Samples were collected in 10-cm increments in shallow mineral soil and 15-cm increments from 30-60 cm depth. Carbon, nitrogen (N), pH, texture and soil mineralogy were measured across the regional sites. At Bartlett Experimental Forest (BEF) in New Hampshire, mineral soil biogeochemistry in cut and uncut sites was studied at a finer scale. Measurements included soil temperature to 55 cm depth, carbon compound analyses using Py-GCMS and soil microbial messenger RNA extractions from mineral soil. Finally, we simulated C dynamics after harvesting by building a model in Stella, with a particular

  2. Effects of timber harvest on structural diversity and species composition in hardwood forests

    Directory of Open Access Journals (Sweden)

    FARZAM TAVANKAR

    2015-04-01

    Full Text Available Tavankar F, Bonyad AE. 2015. Effects of timber harvest on structural diversity and species composition in hardwood forests. Biodiversitas 16: 1-9. Forest management leads to changes in structure and species composition of stands. In this research vertical and horizontal structure and species composition were compared in two harvested and protected stands in the Caspian forest of Iran. The results indicated the tree and seedling density, total basal area and stand volume was significantly (P < 0.01 higher in the protected stand. The Fagus orientalis L. had the most density and basal area in the both stands. Species importance value (SIV of Fagus orientalis in the protected stand (92.5 was higher than in the harvested stand (88.5. While, the SIV of shade-intolerant tree species such as Acer insigne, Acer cappadocicum and Alnus subcordata was higher in the harvested stand. The density of trees and seedling of rare tree species, such as Ulmus glabra, Tilia begonifolia, Zelkova caprinifolia and Fraxinus coriarifolia, was also higher in the protected stand. The Shannon-Wiener diversity index in the protected stand (0.84 was significantly higher (P < 0.01 than in the harvested stand (0.72. The highest diversity value in the harvested stand was observed in DBH of 10-40 cm class, while DBH of 40-70 cm had the highest diversity value in the protected stand.

  3. Consumer ring count and grain texture preferences of selected eastern United States hardwoods

    Science.gov (United States)

    Delton Alderman; Matthew Bumgardner; Scott Bowe; David Brinberg

    2008-01-01

    Historically, eastern hardwoods have been a staple of forest products production. However, hardwood producers are now faced with serious challenges from substitutable products, such as imports of foreign species, utilization of foreign species in overseas manufacture (e.g., case goods, etc.), and composite-based materials that are imported or manufactured here in the...

  4. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    Science.gov (United States)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  5. First use of a compound-specific stable isotope (CSSI) technique to trace sediment transport in upland forest catchments of Chile.

    Science.gov (United States)

    Bravo-Linares, Claudio; Schuller, Paulina; Castillo, Alejandra; Ovando-Fuentealba, Luis; Muñoz-Arcos, Enrique; Alarcón, Oscar; de Los Santos-Villalobos, Sergio; Cardoso, Renan; Muniz, Marcelo; Meigikos Dos Anjos, Roberto; Bustamante-Ortega, Ramón; Dercon, Gerd

    2018-03-15

    Land degradation is a problem affecting the sustainability of commercial forest plantations. The identification of critical areas prone to erosion can assist this activity to better target soil conservation efforts. Here we present the first use of the carbon-13 signatures of fatty acids (C14 to C24) in soil samples for spatial and temporal tracing of sediment transport in river bodies of upland commercial forest catchments in Chile. This compound-specific stable isotope (CSSI) technique was tested as a fingerprinting approach to determine the degree of soil erosion in pre-harvested forest catchments with surface areas ranging from 12 to 40ha. For soil apportionment a mixing model based on a Bayesian inference framework was used (CSSIAR v.2.0). Approximately four potential sediment sources were used for the calculations of all of the selected catchments. Unpaved forestry roads were shown to be the main source of sediment deposited at the outlet of the catchments (30-75%). Furthermore, sampling along the stream channel demonstrated that sediments were mainly comprised of sediment coming from the unpaved roads in the upper part of the catchments (74-98%). From this it was possible to identify the location and type of primary land use contributing to the sediment delivered at the outlet of the catchments. The derived information will allow management to focus efforts to control or mitigate soil erosion by improving the runoff features of the forest roads. The use of this CSSI technique has a high potential to help forestry managers and decision makers to evaluate and mitigate sources of soil erosion in upland forest catchments. It is important to highlight that this technique can also be a good complement to other soil erosion assessment and geological fingerprinting techniques, especially when attempting to quantify (sediment loads) and differentiate which type of land use most contributes to sediment accumulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The application of single-tree selection compared to diameter-limit cutting in an upland oak-hickory forest on the Cumberland Plateau in Jackson County, Alabama

    Science.gov (United States)

    Callie Jo Schweitzer; Greg Janzen

    2012-01-01

    Cumberland Plateau region upland oak forests have undergone a myriad of disturbances (including periods of few and minor disturbances). Traditional timber harvesting practices such as diameter-limit cutting have negatively altered species composition and skewed stand structure, especially on medium-quality sites. We assessed the ability of single-tree selection to...

  7. Trends in the US hardwood lumber distribution industry: changing products, customers, and services

    Science.gov (United States)

    Urs Buehlmann; Omar Espinoza; Matthew Bumgardner; Bob. Smith

    2010-01-01

    Efficient and effective supply chains are the backbone of any industry, including the forest products industry. As the US secondary hardwood industry has undergone a profound transformation and large parts of the industry have moved offshore, the supply chain is adapting to these new realities. Remaining and new customers of US hardwood lumber distributors tend to be...

  8. Bottomland hardwood afforestation: State of the art

    Science.gov (United States)

    Emile S. Gardiner; D. Ramsey Russell; Mark Oliver; Lamar C. Dorris

    2000-01-01

    Over the past decade, land managers have implemented large-scale afforestation operations across the Southern United States to rehabilitate agricultural land historically converted from bottomland hardwood forest cover types. These afforestation efforts were initially concentrated on public land managed by State or Federal Government agencies, but have later shifted...

  9. Understory response to varying fire frequencies after 20 years of prescribed burning in an upland oak forest

    Science.gov (United States)

    Burton, J.A.; Hallgren, S.W.; Fuhlendorf, S.D.; Leslie, David M.

    2011-01-01

    Ecosystems in the eastern United States that were shaped by fire over thousands of years of anthropogenic burning recently have been subjected to fire suppression resulting in significant changes in vegetation composition and structure and encroachment by invasive species. Renewed interest in use of fire to manage such ecosystems will require knowledge of effects of fire regime on vegetation. We studied the effects of one aspect of the fire regime, fire frequency, on biomass, cover and diversity of understory vegetation in upland oak forests prescribe-burned for 20 years at different frequencies ranging from zero to five fires per decade. Overstory canopy closure ranged from 88 to 96% and was not affected by fire frequency indicating high tolerance of large trees for even the most frequent burning. Understory species richness and cover was dominated by woody reproduction followed in descending order by forbs, C3 graminoids, C4 grasses, and legumes. Woody plant understory cover did not change with fire frequency and increased 30% from one to three years after a burn. Both forbs and C3 graminoids showed a linear increase in species richness and cover as fire frequency increased. In contrast, C4 grasses and legumes did not show a response to fire frequency. The reduction of litter by fire may have encouraged regeneration of herbaceous plants and helped explain the positive response of forbs and C3 graminoids to increasing fire frequency. Our results showed that herbaceous biomass, cover, and diversity can be managed with long-term prescribed fire under the closed canopy of upland oak forests. ?? 2011 Springer Science+Business Media B.V.

  10. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania.

    Science.gov (United States)

    Gaines, Katie P; Stanley, Jane W; Meinzer, Frederick C; McCulloh, Katherine A; Woodruff, David R; Chen, Weile; Adams, Thomas S; Lin, Henry; Eissenstat, David M

    2016-04-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. © The Author 2015. Published by Oxford University Press.

  11. An Integrated Management Support and Production Control System for Hardwood Forest Products

    Science.gov (United States)

    Guillermo A. Mendoza; Roger J. Meimban; William Sprouse; William G. Luppold; Philip A. Araman

    1991-01-01

    Spreadsheet and simulation models are tools which enable users to analyze a large number of variables affecting hardwood material utilization and profit in a systematic fashion. This paper describes two spreadsheet models; SEASaw and SEAIn, and a hardwood sawmill simulator. SEASaw is designed to estimate the amount of conversion from timber to lumber, while SEAIn is a...

  12. Effects of the exotic Crustacean, .i.Armadillidium vulgare./i. (Isopoda), and other macrofauna on organic matter dynamics in soil microcosms in a hardwood forest in central Florida

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Lobinske, R.J.; Kalčík, Jiří; Ali, A.

    2008-01-01

    Roč. 91, č. 2 (2008), s. 328-331 ISSN 0015-4040 Institutional research plan: CEZ:AV0Z60660521; CEZ:AV0Z6066911 Keywords : Armadillidium vulgare * organic matter dynamics * hardwood forest Subject RIV: EH - Ecology, Behaviour Impact factor: 0.886, year: 2008

  13. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests

    Science.gov (United States)

    Linda T.A. van Diepen; Erik A. Lilleskov; Kurt S. Pregitzer; R. Michael Miller

    2010-01-01

    Increased nitrogen (N) deposition caused by human activities has altered ecosystem functioning and biodiversity. To understand the effects of altered N availability, we measured the abundance of arbuscular mycorrhizal fungi (AMF) and the microbial community in northern hardwood forests exposed to long-term (12 years) simulated N deposition (30 kg N ha-1...

  14. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests.

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, M., D.; Hanula, J., L.; Horn, S.; Kilgo, J., C.; Moorman, C., E.

    2004-05-13

    For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gaps than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.

  15. Automated hardwood lumber grading utilizing a multiple sensor machine vision technology

    Science.gov (United States)

    D. Earl Kline; Chris Surak; Philip A. Araman

    2003-01-01

    Over the last 10 years, scientists at the Thomas M. Brooks Forest Products Center, the Bradley Department of Electrical and Computer Engineering, and the USDA Forest Service have been working on lumber scanning systems that can accurately locate and identify defects in hardwood lumber. Current R&D efforts are targeted toward developing automated lumber grading...

  16. Application of Lidar remote sensing to the estimation of forest canopy and stand structure

    Science.gov (United States)

    Lefsky, Michael Andrew

    A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.

  17. Element cycling in upland/peatland watersheds Chapter 8.

    Science.gov (United States)

    Noel Urban; Elon S. Verry; Steven Eisenreich; David F. Grigal; Stephen D. Sebestyen

    2011-01-01

    Studies at the Marcell Experimental Forest (MEF) have measured the pools, cycling, and transport of a variety of elements in both the upland and peatland components of the landscape. Peatlands are important zones of element retention and biogeochemical reactions that greatly influence the chemistry of surface water. In this chapter, we summarize findings on nitrogen (N...

  18. The response of ground beetles (Coleoptera: Carabidae) to selection cutting in a South Carolina bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael, D.; Hanula, James L.; Horn, Scott; Kilgo, John, C.; Moorman, Christopher, E.

    2005-04-01

    We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest. Species richness was higher at the center of young gaps than in old gaps or in the forest, but there was no statistical difference in species richness between old gaps and the forests surrounding them. Carabid abundance followed the same trend, but only with the exclusion of Semiardistomis viridis (Say), a very abundant species that differed in its response to gap age compared to most other species. The carabid assemblage at the gap edge was very similar to that of the forest, and there appeared to be no distinct edge community. Species known to occur in open or disturbed habitats were more abundant at the center of young gaps than at any other location. Generalist species were relatively unaffected by the disturbance, but one species (Dicaelus dilatatus Say) was significantly less abundant at the centers of young gaps. Forest inhabiting species were less abundant at the centers of old gaps than in the forest, but not in the centers of young gaps. Comparison of community similarity at various trapping locations showed that communities at the centers of old and young gaps had the lowest similarity (46.5%). The community similarity between young gap centers and nearby forest (49.1%) and old gap centers and nearby forest (50.0%) was similarly low. These results show that while the abundance and richness of carabids in old gaps was similar to that of the surrounding forest, the species composition between the two sites differed greatly.

  19. Mapping Distinct Forest Types Improves Overall Forest Identification Based on Multi-Spectral Landsat Imagery for Myanmar’s Tanintharyi Region

    Directory of Open Access Journals (Sweden)

    Grant Connette

    2016-10-01

    Full Text Available We investigated the use of multi-spectral Landsat OLI imagery for delineating mangrove, lowland evergreen, upland evergreen and mixed deciduous forest types in Myanmar’s Tanintharyi Region and estimated the extent of degraded forest for each unique forest type. We mapped a total of 16 natural and human land use classes using both a Random Forest algorithm and a multivariate Gaussian model while considering scenarios with all natural forest classes grouped into a single intact or degraded category. Overall, classification accuracy increased for the multivariate Gaussian model with the partitioning of intact and degraded forest into separate forest cover classes but slightly decreased based on the Random Forest classifier. Natural forest cover was estimated to be 80.7% of total area in Tanintharyi. The most prevalent forest types are upland evergreen forest (42.3% of area and lowland evergreen forest (21.6%. However, while just 27.1% of upland evergreen forest was classified as degraded (on the basis of canopy cover <80%, 66.0% of mangrove forest and 47.5% of the region’s biologically-rich lowland evergreen forest were classified as degraded. This information on the current status of Tanintharyi’s unique forest ecosystems and patterns of human land use is critical to effective conservation strategies and land-use planning.

  20. Regeneration Responses to Management for Old-Growth Characteristics in Northern Hardwood-Conifer Forests

    Directory of Open Access Journals (Sweden)

    Aviva J. Gottesman

    2017-02-01

    Full Text Available Successful tree regeneration is essential for sustainable forest management, yet it can be limited by the interaction of harvesting effects and multiple ecological drivers. In northern hardwood forests, for example, there is uncertainty whether low-intensity selection harvesting techniques will result in adequate and desirable regeneration. Our research is part of a long-term study that tests the hypothesis that a silvicultural approach called “structural complexity enhancement” (SCE can accelerate the development of late-successional forest structure and functions. Our objective is to understand the regeneration dynamics following three uneven-aged forestry treatments with high levels of retention: single-tree selection, group selection, and SCE. Regeneration density and diversity can be limited by differing treatment effects on or interactions among light availability, competitive environment, substrate, and herbivory. To explore these relationships, manipulations and controls were replicated across 2 ha treatment units at two Vermont sites. Forest inventory data were collected pre-harvest and periodically over 13 years post-harvest. We used mixed effects models with repeated measures to evaluate the effect of treatment on seedling and sapling density and diversity (Shannon–Weiner H’. The treatments were all successful in recruiting a sapling class with significantly greater sapling densities compared to the controls. However, undesirable and prolific beech (Fagus americana sprouting dominates some patches in the understory of all the treatments, creating a high degree of spatial variability in the competitive environment for regeneration. Multivariate analyses suggest that while treatment had a dominant effect, other factors were influential in driving regeneration responses. These results indicate variants of uneven-aged systems that retain or enhance elements of stand structural complexity—including old-growth characteristics

  1. Public acceptability of forest management practices at Morgan-Monroe State Forest

    Science.gov (United States)

    Shannon C. Rogers; William L. Hoover; Shorna B. Allred

    2013-01-01

    Forest management practices on public forests are controversial with many organizational and individual stakeholders. Forest managers' understanding of the attitudes of stakeholders is necessary to honor statutory requirements and the social contract under which they operate. The human dimension component of the Hardwood Ecosystem Experiment (HEE) in Indiana...

  2. Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery

    Science.gov (United States)

    Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  3. Bats of the hardwood ecosystem experiment before timber harvest: assessment and prognosis

    Science.gov (United States)

    Jeremy J. Sheets; John O. Whitaker; Virgil Jr. Brack; Dale W. Sparks

    2013-01-01

    Before experimental harvest of the Yellowwood (YW) and Morgan-Monroe (MM) State Forests (Indiana) as part of the Hardwood Ecosystem Experiment, bats were sampled using mist nets at four locations in MM and five locations in YW during each summer 2006 through 2008. Netting locations were adjacent to forest stands scheduled for experimental manipulations following...

  4. Hardwood log grades and lumber grade yields for factory lumber logs

    Science.gov (United States)

    Leland F. Hanks; Glenn L. Gammon; Robert L. Brisbin; Everette D. Rast

    1980-01-01

    The USDA Forest Service Standard Grades for Hardwood Factory Lumber Logs are described, and lumber grade yields for 16 species and 2 species groups are presented by log grade and log diameter. The grades enable foresters, log buyers, and log sellers to select and grade those log suitable for conversion into standard factory grade lumber. By using the apropriate lumber...

  5. The Landscape Ecological Impact of Afforestation on the British Uplands and Some Initiatives to Restore Native Woodland Cover

    Directory of Open Access Journals (Sweden)

    Bunce Robert G. H.

    2014-11-01

    Full Text Available The majority of forest cover in the British Uplands had been lost by the beginning of the Nineteenth Century, because of felling followed by overgrazing by sheep and deer. The situation remained unchanged until a government policy of afforestation, mainly by exotic conifers, after the First World War up to the present day. This paper analyses the distribution of these predominantly coniferous plantations, and shows how they occupy specific parts of upland landscapes in different zones throughout Britain Whilst some landscapes are dominated by these new forests, elsewhere the blocks of trees are more localised. Although these forests virtually eliminate native ground vegetation, except in rides and unplanted land, the major negative impacts are at the landscape level. For example, drainage systems are altered and ancient cultural landscape patterns are destroyed. These impacts are summarised and possible ways of amelioration are discussed. By contrast, in recent years, a series of projects have been set up to restore native forest cover, as opposed to the extensive plantations of exotic species. Accordingly, the paper then provides three examples of such initiatives designed to restore native forests to otherwise bare landscapes, as well as setting them into a policy context. Whilst such projects cover a limited proportion of the British Uplands they nevertheless restore forest to landscapes at a local level.

  6. The role of tolerant genotypes and plant nutrients in the management of acid soil infertility in upland rice

    International Nuclear Information System (INIS)

    Sahrawat, K.L.; Jones, M.P.; Diatta, S.

    2000-01-01

    As in other parts of the humid tropics, acid-related problems are the major constraint to crop production on low-activity clay soils in the humid and sub-humid zones of West Africa. The upland ecosystem of West Africa is very important to rice production. About 70% of upland rice is grown in the humid zone of the sub-region. To increase and stabilize rice productivity of the acid uplands at reasonable levels, a strategy is needed that integrates the use of tolerant cultivars with soil and plant-nutrient management. Research conducted on Alfisols and Ultisols of the humid-forest and savannah zones in West Africa showed that upland rice is a robust crop, possessing a wide range of tolerance to acid-soil conditions. Recent research at WARDA showed also that acid-soil tolerance can be enhanced through interspecific Oryza sativa x O. glaberrima progenies, which not only possess increased tolerance of acid-soil conditions, but also have superior overall adaptability to diverse upland environments in the sub-region. Our research on the diagnosis of acid-soil infertility problems on the Ultisols and Alfisols of the humid savannah and forest zones indicates that P deficiency is the most important nutrient disorder for upland rice. In the forest zone, response to N depended on the application of P. In the savannah and forest-savannah transition zones, N deficiency was more important than P deficiency. Among other plant nutrients, the application of Ca and Mg (as plant nutrients) did not appear initially to improve the performance of acid-tolerant upland rice cultivars. The results from a long-term study on an Ultisol with four acid-tolerant rice cultivars, revealed that they differed in agronomic and physiological P efficiencies, and the efficiencies were higher at lower rates of P. The amounts of total P removed in three successive crops were similar for all four cultivars although P-harvest index was 10 to 12% higher in the P-efficient than the inefficient cultivars. The

  7. Foraging behavior of pileated woodpeckers in partial cut and uncut bottomland hardwood forest

    Science.gov (United States)

    Newell, P.; King, Sammy L.; Kaller, Michael D.

    2009-01-01

    In bottomland hardwood forests, partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife like Louisiana black bear (Ursus americanus luteolus), white-tailed deer (Odocoileus virginianus), and Neotropical migrants. Although partial cutting may be beneficial to some species, those that use dead wood may be negatively affected since large diameter and poor quality trees (deformed, moribund, or dead) are rare, but normally targeted for removal. On the other hand, partial cutting can create dead wood if logging slash is left on-site. We studied foraging behavior of pileated woodpeckers (Dryocopus pileatus) in one- and two-year-old partial cuts designed to benefit priority species and in uncut forest during winter, spring, and summer of 2006 and 2007 in Louisiana. Males and females did not differ in their use of tree species, dbh class, decay class, foraging height, use of foraging tactics or substrate types; however, males foraged on larger substrates than females. In both partial cut and uncut forest, standing live trees were most frequently used (83% compared to 14% for standing dead trees and 3% for coarse woody debris); however, dead trees were selected (i.e. used out of proportion to availability). Overcup oak (Quercus lyrata) and bitter pecan (Carya aquatica) were also selected and sugarberry (Celtis laevigata) avoided. Pileated woodpeckers selected trees >= 50 cm dbh and avoided trees in smaller dbh classes (10-20 cm). Density of selected foraging substrates was the same in partial cut and uncut forest. Of the foraging substrates, woodpeckers spent 54% of foraging time on live branches and boles, 37% on dead branches and boles, and 9% on vines. Of the foraging tactics, the highest proportion of foraging time was spent excavating (58%), followed by pecking (14%), gleaning (14%), scaling (7%), berry-eating (4%), and probing (3%). Woodpecker use of foraging tactics and substrates, and foraging height and substrate

  8. Synergy of agroforestry and bottomland hardwood afforestation

    Science.gov (United States)

    Twedt, D.J.; Portwood, J.; Clason, Terry R.

    2003-01-01

    Afforestation of bottomland hardwood forests has historically emphasized planting heavy-seeded tree species such as oak (Quercus spp.) and pecan (Caryaillinoensis) with little or no silvicultural management during stand development. Slow growth of these tree species, herbivory, competing vegetation, and limited seed dispersal, often result in restored sites that are slow to develop vertical vegetation structure and have limited tree diversity. Where soils and hydrology permit, agroforestry can provide transitional management that mitigates these historical limitations on converting cropland to forests. Planting short-rotation woody crops and intercropping using wide alleyways are two agroforestry practices that are well suited for transitional management. Weed control associated with agroforestry systems benefits planted trees by reducing competition. The resultant decrease in herbaceous cover suppresses small mammal populations and associated herbivory of trees and seeds. As a result, rapid vertical growth is possible that can 'train' under-planted, slower-growing, species and provide favorable environmental conditions for naturally invading trees. Finally, annual cropping of alleyways or rotational pulpwood harvest of woody crops provides income more rapidly than reliance on future revenue from traditional silviculture. Because of increased forest diversity, enhanced growth and development, and improved economic returns, we believe that using agroforestry as a transitional management strategy during afforestation provides greater benefits to landowners and to the environment than does traditional bottomland hardwood afforestation.

  9. Flood tolerance of oak seedlings from bottomland and upland sites

    Science.gov (United States)

    Michael P. Walsh; Jerry Van Sambeek; Mark Coggeshall; David. Gwaze

    2009-01-01

    Artificial regeneration of oak species in floodplains presents numerous challenges because of the seasonal flooding associated with these areas. Utilizing not only flood-tolerant oak species, but also flood tolerant seed sources of the oak species, may serve to enhance seedling survival and growth rates. Despite the importance of these factors to hardwood forest...

  10. Western hardwoods : value-added research and demonstration program

    Science.gov (United States)

    D. W. Green; W. W. Von Segen; S. A. Willits

    1995-01-01

    Research results from the value-added research and demonstration program for western hardwoods are summarized in this report. The intent of the program was to enhance the economy of the Pacific Northwest by helping local communities and forest industries produce wood products more efficiently. Emphasis was given to value-added products and barriers to increased...

  11. Biomass models to estimate carbon stocks for hardwood tree species

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Montero, G.; Rio, M. del

    2012-11-01

    To estimate forest carbon pools from forest inventories it is necessary to have biomass models or biomass expansion factors. In this study, tree biomass models were developed for the main hardwood forest species in Spain: Alnus glutinosa, Castanea sativa, Ceratonia siliqua, Eucalyptus globulus, Fagus sylvatica, Fraxinus angustifolia, Olea europaea var. sylvestris, Populus x euramericana, Quercus canariensis, Quercus faginea, Quercus ilex, Quercus pyrenaica and Quercus suber. Different tree biomass components were considered: stem with bark, branches of different sizes, above and belowground biomass. For each species, a system of equations was fitted using seemingly unrelated regression, fulfilling the additivity property between biomass components. Diameter and total height were explored as independent variables. All models included tree diameter whereas for the majority of species, total height was only considered in the stem biomass models and in some of the branch models. The comparison of the new biomass models with previous models fitted separately for each tree component indicated an improvement in the accuracy of the models. A mean reduction of 20% in the root mean square error and a mean increase in the model efficiency of 7% in comparison with recently published models. So, the fitted models allow estimating more accurately the biomass stock in hardwood species from the Spanish National Forest Inventory data. (Author) 45 refs.

  12. Modeling the Effects of Harvest Alternatives on Mitigating Oak Decline in a Central Hardwood Forest Landscape.

    Directory of Open Access Journals (Sweden)

    Wen J Wang

    Full Text Available Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest vulnerability to oak decline by removing susceptible species and declining trees. However, the long-term, landscape-scale effects of these different harvest alternatives are not well studied because of the limited availability of experimental data. In this study, we applied a forest landscape model in combination with field studies to evaluate the effects of the three harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape. Results showed that the potential oak decline in high risk sites decreased strongly in the next five decades irrespective of harvest alternatives. This is because oak decline is a natural process and forest succession (e.g., high tree mortality resulting from intense competition would eventually lead to the decrease in oak decline in this area. However, forest harvesting did play a role in mitigating oak decline and the effectiveness varied among the three harvest alternatives. The group selection and clearcutting alternatives were most effective in mitigating oak decline in the short and medium terms, respectively. The long-term effects of the three harvest alternatives on mitigating oak decline became less discernible as the role of succession increased. The thinning alternative had the highest biomass retention over time, followed by the group selection and clearcutting alternatives. The group selection alternative that balanced treatment effects and retaining biomass was the most viable alternative for managing oak decline. Insights from this study may be useful in developing effective and informed forest harvesting plans for managing oak

  13. Computer Vision Systems for Hardwood Logs and Lumber

    Science.gov (United States)

    Philip A. Araman; Tai-Hoon Cho; D. Zhu; R. Conners

    1991-01-01

    Computer vision systems being developed at Virginia Tech University with the support and cooperation from the U.S. Forest Service are presented. Researchers at Michigan State University, West Virginia University, and Mississippi State University are also members of the research team working on various parts of this research. Our goals are to help U.S. hardwood...

  14. A logging residue "yield" table for Appalachian hardwoods

    Science.gov (United States)

    A. Jeff Martin

    1976-01-01

    An equation for predicting logging-residue volume per acre for Appalachian hardwoods was developed from data collected on 20 timber sales in national forests in West Virginia and Virginia. The independent variables of type-of-cut, products removed, basal area per acre, and stand age explained 95 percent of the variation in residue volume per acre. A "yield"...

  15. Effects of intermediate-severity disturbance on composition and structure in mixed Pinus-hardwood stands

    Science.gov (United States)

    Benjamin Trammell; Justin Hart; Callie Schweitzer; Daniel C. Dey; Michael Steinberg

    2017-01-01

    Increasingly, forest managers intend to create or maintain mixed Pinus-hardwood stands. This stand assemblage may be driven by a variety of objectives but is often motivated by the desire to enhance native forest diversity and promote resilience to perturbations. Documenting the effects of natural disturbances on species composition and stand...

  16. Placing our northern hardwood woodlots under management

    Science.gov (United States)

    Russell J. Hutnik

    1956-01-01

    Do you own a woodlot? Does it contain mostly northern hardwoods - that is, beech, birch, maple, and ash, with some hemlock and spruce? If the answers to these two questions are "yes," then you may be interested in the work that is carried on at the Bartlett Experimental Forest in New Hampshire. This is one of the field laboratories established by the U. S....

  17. Silica uptake and release in live and decaying biomass in a northern hardwood forest.

    Science.gov (United States)

    Clymans, Wim; Conley, Daniel J; Battles, John J; Frings, Patrick J; Koppers, Mary Margaret; Likens, Gene E; Johnson, Chris E

    2016-11-01

    In terrestrial ecosystems, a large portion (20-80%) of the dissolved Si (DSi) in soil solution has passed through vegetation. While the importance of this "terrestrial Si filter" is generally accepted, few data exist on the pools and fluxes of Si in forest vegetation and the rate of release of Si from decomposing plant tissues. We quantified the pools and fluxes of Si through vegetation and coarse woody debris (CWD) in a northern hardwood forest ecosystem (Watershed 6, W6) at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA. Previous work suggested that the decomposition of CWD may have significantly contributed to an excess of DSi reported in stream-waters following experimental deforestation of Watershed 2 (W2) at the HBEF. We found that woody biomass (wood + bark) and foliage account for approximately 65% and 31%, respectively, of the total Si in biomass at the HBEF. During the decay of American beech (Fagus grandifolia) boles, Si loss tracked the whole-bole mass loss, while yellow birch (Betula alleghaniensis) and sugar maple (Acer saccharum) decomposition resulted in a preferential Si retention of up to 30% after 16 yr. A power-law model for the changes in wood and bark Si concentrations during decomposition, in combination with an exponential model for whole-bole mass loss, successfully reproduced Si dynamics in decaying boles. Our data suggest that a minimum of 50% of the DSi annually produced in the soil of a biogeochemical reference watershed (W6) derives from biogenic Si (BSi) dissolution. The major source is fresh litter, whereas only ~2% comes from the decay of CWD. Decay of tree boles could only account for 9% of the excess DSi release observed following the experimental deforestation of W2. Therefore, elevated DSi concentrations after forest disturbance are largely derived from other sources (e.g., dissolution of BSi from forest floor soils and/or mineral weathering). © 2016 The Authors. Ecology, published by Wiley Periodicals

  18. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    John Kilgo

    2005-04-20

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did not differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.

  19. Competition and climate affects US hardwood-forest tree mortality

    Science.gov (United States)

    Daniel A. Yaussy; Louis R. Iverson; Stephen N. Matthews

    2013-01-01

    Individual-tree measurements have been collected periodically on sites established in Kentucky, New York, Ohio, and Pennsylvania to investigate the effects of thinning on the growth and yield of valuable hardwood species. These plots were installed between 1959 and 1985. The long-term characteristics of this data set of 47,853 trees allowed us to investigate potential...

  20. Bat activity following restoration prescribed burning in the central Appalachian Upland and riparian habitats

    Science.gov (United States)

    Austin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Muthersbaugh, Michael; Powers, Karen E.

    2018-01-01

    After decades of fire suppression in eastern North America, land managers now are prioritizing prescribed fire as a management tool to restore or maintain fire-adapted vegetation communities. However, in long—fire-suppressed landscapes, such as the central and southern Appalachians, it is unknown how bats will respond to prescribed fire in both riparian and upland forest habitats. To address these concerns, we conducted zero-crossing acoustic surveys of bat activity in burned, unburned, riparian, and non-riparian areas in the central Appalachians, Virginia, USA. Burn and riparian variables had model support (ΔAICc fire differently between upland and riparian forest habitats, but overall, large landscape-level prescribed fire has a slightly positive to neutral impact on all bats species identified at our study site post—fire application.

  1. Machine Vision Systems for Processing Hardwood Lumber and Logs

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt; Tai-Hoon Cho; Dongping Zhu; Richard W. Conners; D. Earl Kline

    1992-01-01

    Machine vision and automated processing systems are under development at Virginia Tech University with support and cooperation from the USDA Forest Service. Our goals are to help U.S. hardwood producers automate, reduce costs, increase product volume and value recovery, and market higher value, more accurately graded and described products. Any vision system is...

  2. Century-scale Variations in Plant and Soil Nitrogen Pools and Isotopic Composition in Northern Hardwood Forests

    Science.gov (United States)

    Goodale, C. L.; Fuss, C. B.; Lang, A.; Ollinger, S. V.; Ouimette, A.; Vadeboncoeur, M. A.; Zhou, Z.; Lovett, G. M.

    2017-12-01

    The mineral soil may act as both a source and a sink of nitrogen to plants over decadal to centennial timescales. However, the enormous size and spatial heterogeneity of mineral soil N regularly impede study of its role over the course of forest succession. Here, we measured tree and soil stocks of C, N and 15N to 50 cm depth in and near Hubbard Brook, New Hampshire, across eight forest stands of varying time since harvest (two stands each of 20, 40, and 100 years post-harvest, and old-growth forest). Measurements show that tree biomass and N stocks increased with stand age to an average of 145 t C/ha and 556 kg N/ha in old-growth forests, as cumulative net growth and N increment rates decreased from young (20 and 40-year old) to mature (100-year) to old-growth stands. Plant %N varied more by site than species, while plant 15N varied more by tree species than by site. Of the most common species, Acer saccharum (sugar maple) had consistently lighter 15N in all tissues (bark, leaf, wood) than Betula alleghaniensis (yellow birch). Soil organic matter stocks are very large, averaging 154 t C/ha and 8.1 tN/ha to 50 cm depth. Neither C nor N stock varied regularly with stand age, but old-growth stands had lower C:N ratios and higher 15N values than the successional stands. Ongoing analysis will predict the effects of harvest, regrowth, and N inputs and losses on expected and observed 15N changes over succession. These observations support the great capacity of the mineral soil to store and potentially supply N to northern hardwood forests.

  3. Tree-ring chronologies and stable carbon isotopic composition reveal impacts of hydro-climate change on bottomland hardwood forests of South-Central Texas

    Science.gov (United States)

    Deshpande, A. G.; Lafon, C. W.; Hyodo, A.; Boutton, T. W.; Moore, G. W.

    2017-12-01

    Over the last three decades, South-Central Texas has experienced an increase in frequency and intensity of hydro-climatic anomalies such as extreme droughts and floods. These extreme events can have negative impacts on forest health and can strongly alter a wide range of ecosystem processes. Tree increment growth in bottomland hardwood forests is influenced by droughts and floods, which affects the carbon isotope values (δ13C) in tree-ring cellulose. This study aims to assess the impacts of hydro-climate change on the growth and physiological response of bottomland hardwood forests by investigating variations in radial growth and tree-ring carbon isotopic composition. Annual ring-width chronologies for 41 years (1975-2016) were developed from 24 water oak (Quercus nigra) trees at 4 sites along a 25 km transect located in the San Bernard River watershed. The δ13C values in cellulose were measured from 4-year ring composites including years with anomalously high and low precipitation. Dendroclimatology analysis involved correlating ring-width index with precipitation records and Palmer Drought Sensitivity Index (PDSI). Radial growth was more closely associated with spring-summer (Feb-Aug) precipitation (R2 = 0.42, pstress, as indicated by narrower growth rings and increased cellulose δ13C. However, the inter-site variation in δ13C indicated large hydro-climatic variation between sites (2.79-4.24‰ for wet years and 0.53-1.50‰ for drought years). δ13C values showed an increase of 0.78‰ and 2.40‰ from the wettest (1991-1994) to the driest period (2008-2011) at two of our sites, possibly due to drought-induced moisture-deficit-stress. However, at the other two sites, the δ13C values of tree rings from the same periods decreased by 0.65‰ and 1.19‰, possibly emanating from flooding-induced stress caused by waterlogging. This study provides insights on how hydro-climatic variations affect riparian forest health in the region and acts as a baseline for

  4. Chemical characteristics and acidity of soluble organic substances from a northern hardwood forest floor, central Maine, USA

    International Nuclear Information System (INIS)

    Vance, G.F.; David, M.B.

    1991-01-01

    The authors understanding of the chemistry, structure, and reactions of organic substances in forest floor leachates is limited and incomplete. Therefore, the authors examined the organic and inorganic chemistry of forest floor leachates collected from a hardwood forest in central Maine over a two-year period (1987-1989), including detailed study of dissolved organic carbon (DOC). Seasonal variations in NH 4 + , NO 3 - , K + , and total Al were believed due to organic matter decomposition and release. Leaching of other base cations closely followed that of NO 3 - . Total DOC ranged from 2,228 to 7,193 μmol L -1 with an average of 4,835 μmol L -1 . Monosaccharides and polyphenols constituted 3.9% (range of 3.4 to 4.4%) and 3.0% (2.2 to 3.7%) of the DOC, respectively, which suggests DOC may contain partially oxidized products that are possibly of a lignocellulose nature. Fractionation of the forest floor DOC indicated high organic acid contents (hydrophobic and hydrophilic acids) that averaged 92% of the total DOC. Organic acids were isolated and analyzed for elemental content (C, H, N, and S), and determination of UV absorptivity (E 4 /E 6 ) ratios, CuO oxidation products, FT-IR and 13 C-NMR spectra, and acidity by potentiometric titration. Their FT-IR and 13 C-NMR spectra suggest they are primarily carboxylic acids, with aliphatic and aromatic structure. An organic charge contribution model was developed using titration data, DOC fractionation percentages, and the total DOC in the forest floor leachates. Application of the model to all solutions accounted for 97% of the charge balance deficits

  5. Whole-island carbon stocks in the tropical Pacific: implications for mangrove conservation and upland restoration.

    Science.gov (United States)

    Donato, D C; Kauffman, J B; Mackenzie, R A; Ainsworth, A; Pfleeger, A Z

    2012-04-30

    Management of forest carbon (C) stocks is an increasingly prominent land-use issue. Knowledge of carbon storage in tropical forests is improving, but regional variations are still poorly understood, and this constrains forest management and conservation efforts associated with carbon valuation mechanisms (e.g., carbon markets). This deficiency is especially pronounced in tropical islands and low-lying coastal areas where climate change impacts are expected to be among the most severe. This study presents the first field estimate of island-wide carbon storage in ecosystems of Oceania, with special attention to the regional role of coastal mangroves, which occur on islands and coastal zones throughout the tropics. On two island groups of Micronesia (Yap and Palau), we sampled all above- and belowground C pools, including soil and vegetation, in 24 sites distributed evenly among the three major vegetation structural types: mangroves, upland forests, and open savannas (generally on degraded lands formerly forested). Total C stocks were estimated to be 3.9 and 15.2 Tg C on Yap and Palau, respectively. Mangroves contained by far the largest per-hectare C pools (830-1218 Mg C ha(-1)), with deep organic-rich soils alone storing more C (631-754 Mg C ha(-1)) than all pools combined in upland systems. Despite covering just 12-13% of land area, mangroves accounted for 24-34% of total island C stocks. Savannas (156-203 Mg C ha(-1)) contained significantly lower C stocks than upland forests (375-437 Mg C ha(-1)), suggesting that reforesting savannas where appropriate has high potential for carbon-based funding to aid restoration objectives. For mangroves, these results demonstrate the key role of these systems within the broader context of C storage in island and coastal landscapes. Sustainable management of mangrove forests and their large C stocks is of high importance at the regional scale, and climate change mitigation programs such as REDD+ could play a large role in

  6. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture radar data

    Science.gov (United States)

    Sader, Steven A.

    1987-01-01

    The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.

  7. LBA-ECO CD-10 Forest Litter Data for km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a single text file which reports litter type and mass in the old-growth upland forest at the Para Western (Santarem) - km 67, Primary Forest...

  8. Construction of Open Burning Facility Moody Air Force Base, Georgia Environmental Assessment and Finding of No Significant Impact

    Science.gov (United States)

    2009-01-01

    are smaller and more leathery, and the leaf canopy is less dense. The trees commonly found in the southeastern United States are pines ( Pinus spp...during periods of extreme drought . These periodic fires maintained the pine subclimax forest by controlling hardwood competition, encouraged the growth...cinnamomea), chain fern (Woodwardia virginica), and greenbrier (Smilax spp). In the transition areas from wetlands to uplands, pond pine ( Pinus serotina

  9. Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in northeastern China.

    Science.gov (United States)

    Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin

    2014-01-01

    The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species.

  10. Resistance of eastern hardwood stems to fire injury and damage

    Science.gov (United States)

    Kevin T. Smith; Elaine Kennedy Sutherland

    2006-01-01

    This paper reviews the protective features and defensive responses of eastern hardwood species exposed to fire. Trees survive fire through protective features such as thick bark and the induced defenses of compartmentalization. Dissection of trees exposed to prescribed fire in an oak forest in southern Ohio highlights the need to distinguish between bark scorch, stem...

  11. Controls of Net Ecosystem Exchange at an Old Field, a Pine Plantation, and a Hardwood Forest under Identical Climatic and Edaphic Conditions-Isotopic Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chanton, J. P.; Mortazavi, B.

    2004-11-04

    During the past year we have submitted two manuscripts. 1. Mortazavi, B., J. Chanton, J.L. Prater, A.C. Oishi, R. Oren and G. Katul. Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions (in Press). Oecologia 2. Mortazavi, B. and J. P. Chanton. Use of Keeling plots for determining sources of dissolved organic carbon in nearshore and open ocean systems (Published in Limnology and Oceanography (2004) Vol 49 pages 102-108). 3. Mortazavi, B., J. L. Prater, and J. P. Chanton (2004). A field-based method for simultaneous measurements of the 18O and 13C of soil CO2 efflux. Biogeosciences Vol 1:1-16 Most recent products delivered: Mortazavi, B. and J. P. Chanton. Abiotic and biotic controls on the 13C of respired CO2 in the southeastern US forest mosaics and a new technique for measuring the of soil CO2 efflux. Joint Biosphere Stable Isotope Network (US) and Stable Isotopes in Biosphere Atmosphere Exchange (EU) 2004 Meeting, Interlaken, Switzerland, March 31-April 4, 2004. Mortazavi, B., J. Chanton, J.L. Prater, A.C. Oishi, R. Oren and G. Katul. Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions. American Geophysical Union Fall Meeting, San Francisco, USA, December 8-12, 2003. Prater, J., Mortazavi, B. and J. P. Chanton. Measurement of discrimination against 13C during photosynthesis and quantification of the short-term variability of 13C over a diurnal cycle. American Geophysical Union Fall Meeting, San Francisco, USA, December 8-12, 2003.

  12. Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA

    Directory of Open Access Journals (Sweden)

    Kerry D. Woods

    2014-09-01

    Full Text Available Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009, combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360–450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study. Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis.CWD pools measured in 2007 averaged 151 m3/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated; snags constituted 10–50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9–3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer

  13. Development of a Computer Vision Technology for the Forest Products Manufacturing Industry

    Science.gov (United States)

    D. Earl Kline; Richard Conners; Philip A. Araman

    1992-01-01

    The goal of this research is to create an automated processing/grading system for hardwood lumber that will be of use to the forest products industry. The objective of creating a full scale machine vision prototype for inspecting hardwood lumber will become a reality in calendar year 1992. Space for the full scale prototype has been created at the Brooks Forest...

  14. Species-specific Mechanisms Contributing to the Mesophication of Upland Oak Stands in the Absence of Fire

    Science.gov (United States)

    Babl, E. K.; Alexander, H. D.; Siegert, C. M.; Willis, J. L.; Berry, A. I.

    2017-12-01

    Upland oak forests of the eastern United States are shifting dominance towards shade-tolerant, fire-intolerant species. This shift is hypothesized to be driven by anthropogenic fire suppression and lead to mesophication, a positive feedback loop where shade-tolerant, fire-sensitive species (i.e. mesophytes) create a cool, moist understory, reducing forest flammability and promoting their own proliferation at the expense of pyrophytic, shade-intolerant species such as oaks. There have been few empirical studies identifying mechanisms of mesophication, and these studies have yet to extensively explore potential mesophytes other than red maple (Acer rubrum). To address this issue, we sampled four hypothesized mesophytes (A. rubrum, A. saccharum, Carya glabra, and Fagus grandifolia) and two upland oak species (Quercus alba and Q. montana) across a gradient of sizes (20-60 cm DBH) in western Kentucky. We quantified canopy, bark, and leaf litter traits among upland oaks and mesophytes that may lead to differences in forest flammability. Preliminary results show that mesophytes had thinner and smoother bark than upland oaks and an increased canopy volume (normalized to stem volume), traits known to influence water movement through the canopy and understory microclimate. Maple leaf litter also decomposed faster, which could decrease fuel loads; after 6 months, red and sugar maple leaf litter lost 37% of original mass compared to 32%, 22%, and 14% mass loss in hickory, oak, and American beech litter, respectively. Furthermore, volumetric soil moisture of the soil organic layer beneath the canopies of mesophytes was 62% moister two days following a rainfall event compared to oaks. These differences in soil organic layer water retention after rainfall could lead to fuel discontinuity. These findings suggest that mesophytes may alter future forest flammability through their bark, canopy, and leaf litter traits which may modify fuel moisture, loads, and continuity and that a

  15. Field testing a soil site field guide for Allegheny hardwoods

    Science.gov (United States)

    S.B. Jones

    1991-01-01

    A site quality evaluation decision model, developed for Allegheny hardwoods on the non-glaciated Allegheny Plateau of Pennsylvania and New York, was field tested by International Paper (IP) foresters and the author, on sites within the region of derivation and on glaciated sites north and west of the Wisconsin drift line. Results from the field testing are presented...

  16. Using low-grade hardwoods for CLT production: a yield analysis

    Science.gov (United States)

    R. Edward Thomas; Urs. Buehlmann

    2017-01-01

    Low-grade hardwood logs are the by-product of logging operations and, more frequently today, urban tree removals. The market prices for these logs is low, as is the value recovered from their logs when producing traditional forest products such as pallet parts, railroad ties, landscaping mulch, or chips for pulp. However, the emergence of cross-laminated timber (CLT)...

  17. Assessing the feasibility and profitability of cut-to-length harvests in eastern hardwoods

    Science.gov (United States)

    Chris B. LoDoux

    2002-01-01

    Cut-to-length (CTL) logging applications are becoming more popular in hardwood forests. CTL harvesting causes much less damage to the residual stand than conventional harvesting because logs and trees are not pulled through the stand and trees can be felled directionally.

  18. Influence of hardwood midstory and pine species on pine bole arthropods

    Science.gov (United States)

    Christopher S. Collins; Richard N. Conner; Daniel Saenz

    2002-01-01

    Arthropod density on the boles of loblolly pines (Pinus taeda) was compared between a stand with and stand without hardwood midstory and between a stand of loblolly and shortleaf pines (P. echinata) in the Stephen E Austin Experimental Forest, Nacogdoches Co., Texas, USA from September 1993 through July 1994. Arthropod density was...

  19. Hardwood supply chain and the role of log brokers in 2012

    Science.gov (United States)

    Iris Montague; Adrienn Andersch; Jan Wiedenbeck; Urs. Buehlmann

    2013-01-01

    The recent economic crisis has greatly affected how companies conduct business. To be competitive, companies had to make changes to their product lines, distribution channels, marketing, and overall business strategies. This study was conducted to describe and analyze the log supply component of the hardwood forest products distribution chain and to investigate changes...

  20. Utilization of the Eastern Hardwood Resource by the Hardwood Sawmilling Industry

    Science.gov (United States)

    William Luppold; John Baumgras; John Baumgras

    2001-01-01

    The eastern hardwood resource contains numerous species that differ in grain, color, texture, and workability. Because the value of hardwoods is derived from appearance, these variations in physical attributes can cause the price for identical grades of hardwood lumber to vary by as much as 600% between species. As a result, there is incentive for primary processors to...

  1. Predicting Impacts of Climate Change on the Aboveground Carbon Sequestration Rate of a Temperate Forest in Northeastern China

    Science.gov (United States)

    Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin

    2014-01-01

    The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species. PMID:24763409

  2. Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in northeastern China.

    Directory of Open Access Journals (Sweden)

    Jun Ma

    Full Text Available The aboveground carbon sequestration rate (ACSR reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0 was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species.

  3. Regeneration response to midstory control following long-term single tree selection management of Southern Appalachian hardwoods

    Science.gov (United States)

    Jason R. Lewis; John W. Groninger; David L. Loftis

    2006-01-01

    Sustainability of the single tree selection system in the mixed hardwood forests of the southern Appalachians is compromised by insufficient recruitment of oak species. In 1986, portions of a stand at Bent Creek Experimental Forest that have been under single tree selection management since 1945 were subjected to a midstory herbicide treatment in an effort to improve...

  4. Evaluation of sampling methods to quantify abundance of hardwoods and snags within conifer-dominated riparian zones

    Science.gov (United States)

    Theresa Marquardt; Hailemariam Temesgen; Paul D. Anderson; Bianca. Eskelson

    2012-01-01

    Six sampling alternatives were examined for their ability to quantify selected attributes of snags and hardwoods in conifer-dominated riparian areas of managed headwater forests in western Oregon. Each alternative was simulated 500 times at eight headwater forest locations based on a 0.52-ha square stem map. The alternatives were evaluated based on how well they...

  5. Vulnerability of the boreal forest to climate change: are managed forests more susceptible?

    International Nuclear Information System (INIS)

    Leduc, A.; Gauthier, S.

    2004-01-01

    This paper postulates that forests dominated by younger seral stages are less vulnerable to climate change that those composed of mature and overmature stands. To support this analysis, an overview of expected changes in climate conditions was provided. Expected changes include higher maximum temperatures, higher minimum temperatures and a decrease in periods of intense cold and fewer frost days; reduction in the diurnal temperature range; an increase in the apparent heat index; greater numbers of intense precipitation; and, increased risk of drought associated with air mass movements. A comparison between conditions in a managed forest mosaic and natural forests was made, with managed forests differing due to efforts to regulate the age structure. The inversion in the age structure of forest mosaics creates significant changes in structural characteristics and composition, including greater hardwood components and more even-aged stands. It was concluded that in Canada, managed boreal forests are younger and have less black spruce and more hardwoods and fir, making younger forests less vulnerable to fire and more amenable to fire control due to increased accessibility. It was also noted that because of their relative youth, managed forests are more vulnerable to regeneration failure and that managed forests with more balsam fir and trembling aspen are at greater risk for insect outbreaks. In addition, wind throw, a threat to older forests, is not significant in managed forests. 15 refs., 1 tab., 2 figs

  6. The Number of Hardwood Sawmills Continues to Decrease - Is that Bad?

    Science.gov (United States)

    William G. Luppold; William G. Luppold

    2005-01-01

    The following Guest Editorial, "The Number of Hardwood Sawmills Continues to Decrease - Is that Bad?" is presented by William G. Luppold, Ph.D., of the USDA Forest Service Northeastern Research Station - Forestry Sciences Laboratory. In this article, Dr. Luppold examines many of the key issues surrounding the size and loss of sawmills, which has influenced...

  7. Boreal Forests of Kamchatka: Structure and Composition

    Directory of Open Access Journals (Sweden)

    Markus P. Eichhorn

    2010-09-01

    Full Text Available Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-dominant B. ermanii forests. Basal area ranged from 7.8–38.1 m2/ha and average tree height from 8.3–24.7 m, both being greater in lowland forests. Size distributions varied considerably among plots, though they were consistently more even for L. cajanderi than B. platyphylla. Upland sites also contained a dense subcanopy of Pinus pumila averaging 38% of ground area. Soil characteristics differed among plots, with upland soils being of lower pH and containing more carbon. Comparisons are drawn with boreal forests elsewhere and the main current threats assessed. These forests provide a potential baseline to contrast with more disturbed regions elsewhere in the world and therefore may be used as a target for restoration efforts or to assess the effects of climate change independent of human impacts.

  8. Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain.

    Science.gov (United States)

    Carlo, Nicholas J; Renninger, Heidi J; Clark, Kenneth L; Schäfer, Karina V R

    2016-08-01

    A comparative analysis of the impacts of prescribed fire on three upland forest stands in the Northeastern Atlantic Plain, NJ, USA, was conducted. Effects of prescribed fire on water use and gas exchange of overstory pines were estimated via sap-flux rates and photosynthetic measurements on Pinus rigida Mill. Each study site had two sap-flux plots, one experiencing prescribed fire and one control (unburned) plot for comparison before and after the fire. We found that photosynthetic capacity in terms of Rubisco-limited carboxylation rate and intrinsic water-use efficiency was unaffected, while light compensation point and dark respiration rate were significantly lower in the burned vs control plots post-fire. Furthermore, quantum yield in pines in the pine-dominated stands was less affected than pines in the mixed oak/pine stand, as there was an increase in quantum yield in the oak/pine stand post-fire compared with the control (unburned) plot. We attribute this to an effect of forest type but not fire per se. Average daily sap-flux rates of the pine trees increased compared with control (unburned) plots in pine-dominated stands and decreased in the oak/pine stand compared with control (unburned) plots, potentially due to differences in fuel consumption and pre-fire sap-flux rates. Finally, when reference canopy stomatal conductance was analyzed, pines in the pine-dominated stands were more sensitive to changes in vapor pressure deficit (VPD), while stomatal responses of pines in the oak/pine stand were less affected by VPD. Therefore, prescribed fire affects physiological functioning and water use of pines, but the effects may be modulated by forest stand type and fuel consumption pattern, which suggests that these factors may need to be taken into account for forest management in fire-dominated systems. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Tree diameter a poor indicator of age in West Virginia hardwoods

    Science.gov (United States)

    Carter B. Gibbs

    1963-01-01

    Foresters generally recognize that diameter growth, height growth, sprouting vigor, and seed production are partially related to age; so age often has an important bearing upon silvicultural decisions. But unless past stand histories are fully known, the ages of hardwood trees can be determined only by increment borings, which not only require excessive time but also...

  10. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.)

    Science.gov (United States)

    Louis R. Iverson; Martin E. Dale; Charles T. Scott; Anantha Prasad; Anantha Prasad

    1997-01-01

    A geographic information system (GIS) approach was used in conjunction with forest-plot data to develop an integrated moisture index (IMI), which was then used to predict forest productivity (site index) and species composition for forests in Ohio. In this region, typical of eastern hardwoods across the Midwest and southern Appalachians, topographic aspect and position...

  11. Relationships between growth, quality, and stocking within managed old-growth northern hardwoods

    Science.gov (United States)

    Chris Gronewold; Anthony W. D' Amato; Brian J. Palik

    2012-01-01

    An understanding of long-term growth dynamics is central to the development of sustainable uneven-aged silvicultural systems for northern hardwood forests in eastern North America. Of particular importance are quantitative assessments of the relationships between stocking control and long-term growth and quality development. This study examined these relationships in a...

  12. Seasonal Belowground Ecosystem and Eco-enzymatic Responses to Soil pH and Phosphorus Availability in Temperate Hardwood Forests

    Science.gov (United States)

    Smemo, K. A.; Deforest, J. L.; Petersen, S. L.; Burke, D.; Hewins, C.; Kluber, L. A.; Kyker, S. R.

    2013-12-01

    Atmospheric acid deposition can increase phosphorus (P) limitation in temperate hardwood forests by increasing N availability, and therefore P demand, and/or by decreasing pH and occluding inorganic P. However, only recently have studies demonstrated that P limitation can occur in temperate forests and very little is known about the temporal aspects of P dynamics in acidic forest soils and how seasonal shifts in nutrient availability and demand influence microbial investment in extracellular enzymes. The objectives of this study were to investigate how P availability and soil pH influence seasonal patterns of nutrient cycling and soil microbial activity in hardwood forests that experience chronic acid deposition. We experimentally manipulated soil pH, P, or both for three years and examined soil treatment responses in fall, winter, spring, early summer, and late summer. We found that site (glaciated versus unglaciated) and treatment had the most significant influence on nutrient pools and cycling. In general, nutrient pools were higher in glaciated soils than unglaciated for measured nutrients, including total C and N (2-3 times higher), extractable inorganic nitrogen, and readily available P. Treatment had no impact on total C and N pools in either region, but did affect other measured nutrients such as ammonium, which was greatest in the elevated pH treatment for both sites. As expected, readily available P pools were highest in the elevated P treatments (3 fold increase in both sites), but raising pH decreased available P pools in the glaciated site. Raising soil pH increased both net N mineralization rates and net P mineralization rates, regardless of site. Nitrification responses were complex, but we observed an overall significant nitrification increase under elevated pH, particularly in the growing season. Extracellular enzyme activity showed more seasonal patterns than site and treatment effects, exhibiting significant growing season activity reductions for

  13. Biodiversity and human activities in the Udzungwa Mountain forests ...

    African Journals Online (AJOL)

    It was established that local communities around the forest highly depend on the natural forests for forest products. Most human uses were for traditional medicine, fuelwood and building materials. Quality hardwoods Khaya anthotheca, Afzelia quanzensis, Milicia excelsa and Ocotea usambarensis were noted. To reduce ...

  14. Effects of edge contrast on redback salamander distribution in even-aged northern hardwoods

    Science.gov (United States)

    Richard M. DeGraaf; Mariko. Yamasaki

    2002-01-01

    Terrestrial salamanders are sensitive to forest disturbance associated with even-aged management. We studied the distribution of redback salamanders (Plethodon cinereus) for 4 yr at edges between even-aged northern hardwood stands along three replicate transects in each of three edge contrast types: regeneration/mature, sapling/mature, and...

  15. Methane production potential and microbial community structure for different forest soils

    Science.gov (United States)

    Matsumoto, Y.; Ueyama, M.; Kominami, Y.; Endo, R.; Tokumoto, H.; Hirano, T.; Takagi, K.; Takahashi, Y.; Iwata, H.; Harazono, Y.

    2017-12-01

    Forest soils are often considered as a methane (CH4) sink, but anaerobic microsites potentially decrease the sink at the ecosystem scale. In this study, we measured biological CH4 production potential of soils at various ecosystems, including upland forests, a lowland forest, and a bog, and analyzed microbial community structure using 16S ribosomal RNA (rRNA) genes. Three different types of soil samples (upland, bank of the stream, and center of the stream) were collected from Yamashiro forest meteorology research site (YMS) at Kyoto, Japan, on 11 May 2017. The soils were incubated at dark and anaerobic conditions under three different temperatures (37°C, 25°C, and 10°C) from 9 June 2017. The upland soils emitted CH4 with largest yields among the three soils at 37°C and 25°C, although no CH4 emission was observed at 10°C. For all temperature ranges, the emission started to increase with a 14- to 20-days lag after the start of the incubation. The lag indicates a slow transition to anaerobic conditions; as dissolved oxygen in water decreased, the number and/or activity of anaerobic bacteria like methanogens increased. The soils at the bank and center of the stream emitted CH4 with smaller yields than the upland soils in the three temperature ranges. The microbial community analyses indicate that methanogenic archaea presented at the three soils including the aerobic upland soil, but compositions of methanogenic archaea were different among the soils. In upland soils, hydrogenotrophic methanogens, such as Methanobacterium and Methanothermobacter, consisted almost all of the total methanogen detected. In the bank and center of the stream, soils contained approximately 10-25% of acetoclastic methanogens, such as Methanosarcina and Methanosaeta, among the total methanogen detected. Methanotrophs, a genus of Methanobacteriaceae, was appeared in the all types of soils. We will present results from same incubation and 16S rRNA analyses for other ecosystems, including

  16. Avian species richness in relation to intensive forest management practices in early seral tree plantations.

    Science.gov (United States)

    Jones, Jay E; Kroll, Andrew J; Giovanini, Jack; Duke, Steven D; Ellis, Tana M; Betts, Matthew G

    2012-01-01

    Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations. We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35-80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness. Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with

  17. Survey studies how to reach primary hardwood producers with new information

    Science.gov (United States)

    Philip Araman; Robert Smith; Matthew Winn

    2009-01-01

    It is important for the timber industry to obtain new knowledge in order to stay competitive, increase productivity, or to produce new products from a sometime changing resource. We sought to understand how new knowledge— innovative techniques, improved technology, and marketing information—reach our primary forest industries in the United States. We surveyed hardwood...

  18. Forest structure, stand composition, and climate-growth response in montane forests of Jiuzhaigou National Nature Reserve, China.

    Directory of Open Access Journals (Sweden)

    Mark W Schwartz

    Full Text Available Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1 whether the forest appears in transition toward increased hardwood composition; 2 if conifers appear stressed by recent climate change relative to hardwoods; and 3 how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20(th century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth.

  19. A Quantitative Assessment of the Structure and Functions of a Mature Bottomland Hardwood Community: The Iatt Creek Ecosystem Site

    Science.gov (United States)

    Calvin E. Meier; John A. Stanturf; Emile S. Gardiner; Paul B. Hamel; Melvin L. Warren

    1999-01-01

    We report our efforts, initiated in 1995, to quantify ecological processes and functions in a relatively undisturbed, mature hardwood forest. The 320-ha site is located in central Louisiana on the upper reaches of Iatt Creek, an anastomosing minor stream bottom. The forest is a mature sweetgum (Liquidambar styraciflua L.)-cherrybark oak (

  20. Hypholoma lateritium isolated from coarse woody debris, the forest floor, and mineral soil in a deciduous forest in New Hampshire

    Science.gov (United States)

    Therese A. Thompson; R. Greg Thorn; Kevin T. Smith

    2012-01-01

    Fungi in the Agaricomycetes (Basidiomycota) are the primary decomposers in temperate forests of dead wood on and in the forest soil. Through the use of isolation techniques selective for saprotrophic Agaricomycetes, a variety of wood decay fungi were isolated from a northern hardwood stand in the Bartlett Experimental Forest, New Hampshire, USA. In particular,

  1. Avian response to bottomland hardwood reforestation: the first 10 years

    Science.gov (United States)

    Twedt, D.J.; Wilson, R.R.; Henne-Kerr, J.L.; Grosshuesch, D.A.

    2002-01-01

    Bttomland hardwood forests were planted on agricultural fields in Mississippi and Louisiana using either predominantly Quercus species (oaks) or Populus deltoides (eastern cottonwood). We assessed avian colonization of these reforested sites between 2 and 10 years after planting. Rapid vertical growth of cottonwoods (circa 2 - 3 m / yr) resulted in sites with forest structure that supported greater species richness of breeding birds, increased Shannon diversity indices, and supported greater territory densities than on sites planted with slower-growing oak species. Grassland birds (Spiza americana [Dickcissel], and Sturnella magna [Eastern Meadowlark]) were indicative of species breeding on oak-dominated reforestation # 10 years old. Agelaius phoeniceus (Red-winged Blackbird) and Colinus virginianus (Northern Bobwhite) characterized cottonwood reforestation # 4 years old, whereas 14 species of shrub-scrub birds (e.g., Passerina cyanea [Indigo Bunting]) and early-successional forest birds (e.g., Vireo gilvus [Warbling Vireo]) typified cottonwood reforestation 5 to 9 years after planting. Rates of daily nest survival did not differ between reforestation strategies. Nest parasitism increased markedly in older cottonwood stands, but was overwhelmed by predation as a cause of nest failure. Based on Partners in Flight prioritization scores and territory densities, the value of cottonwood reforestation for avian conservation was significantly greater than that of oak reforestation during their first 10 years. Because of benefits conferred on breeding birds, we recommend reforestation of bottomland hardwoods include a high proportion of fast-growing, early successional species such as cottonwood.

  2. Estimation of In-canopy Flux Distributions of Reactive Nitrogen and Sulfur within a Mixed Hardwood Forest in Southern Appalachia

    Science.gov (United States)

    Wu, Z.; Walker, J. T.; Chen, X.; Oishi, A. C.; Duman, T.

    2017-12-01

    Estimating the source/sink distribution and vertical fluxes of air pollutants within and above forested canopies is critical for understanding biological, physical, and chemical processes influencing the soil-vegetation-atmosphere exchange. The vertical source-sink profiles of reactive nitrogen and sulfur were examined using multiple inverse modeling methods in a mixed hardwood forest in the southern Appalachian Mountains where the ecosystem is highly sensitive to loads of pollutant from atmospheric depositions. Measurements of the vertical concentration profiles of ammonia (NH3), nitric acid (HNO3), sulfur dioxide (SO2), and ammonium (NH4+), nitrate (NO3-), and sulfate (SO42-) in PM2.5 were measured during five study periods between May 2015 and August 2016. The mean concentration of NH3 decreased with height in the upper canopy and increased below the understory toward the forest floor, indicating that the canopy was a sink for NH3 but the forest floor was a source. All other species exhibited patterns of monotonically decreasing concentration from above the canopy to the forest floor. Using the measured concentration profiles, we simulated the within-canopy flow fields and estimated the vertical source-sink flux profiles using three inverse approaches: a Eulerian high-order closure model (EUL), a Lagrangian localized near-field (LNF) model, and a new full Lagrangian stochastic model (LSM). The models were evaluated using the within- and above-canopy eddy covariance flux measurements of heat, CO2 and H2O. Differences between models were analyzed and the flux profiles were used to investigate the origin and fate of reactive nitrogen and sulfur compounds within the canopy. The knowledge gained in this study will benefit the development of soil-vegetation-atmosphere models capable of partitioning canopy-scale deposition of nitrogen and sulfur to specific ecosystem compartments.

  3. Response of avian bark foragers and cavity nesters to regeneration treatments in the oak-hickory forest of Northern Alabama

    Science.gov (United States)

    Wang Yong; Callie Jo Schweitzer; Adrian A. Lesak

    2006-01-01

    We examined bark-foraging and cavity-nesting birds’ use of upland hardwood habitat altered through a shelterwood regeneration experiment on the mid-Cumberland Plateau of northern Alabama. The five regeneration treatments were 0, 25, 50, 75, and 100 percent basal area retention. The 75 percent retention treatment was accomplished by stem-injecting herbicide into mostly...

  4. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest.

    Science.gov (United States)

    Burke, David J

    2015-06-01

    Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Long-term flow dynamics of three coastal experimental forested watersheds

    Science.gov (United States)

    Devendra M. Amatya; Artur Radecki-Pawlik

    2005-01-01

    Three 1st2nd, and 3rd order experimental forested watersheds located within Francis Marion National Forest in Coastal South Carolina were monitored for rainfall and stream outflows. These watersheds were WS80, a pine-hardwood forest (206 ha); WS79 a predominantly pine forest (500 ha); and WS78, a...

  6. Mercury and Organic Carbon Relationships in Streams Draining Forested Upland/Peatland Watersheds

    Science.gov (United States)

    R. K. Kolka; D. F. Grigal; E. S. Verry; E. A. Nater

    1999-01-01

    We determined the fluxes of total mecury (HgT), total organic carbon (TOC), and dissolved organic carbon (DOC) from five upland/peatland watersheds at the watershed outlet. The difference between TOC and DOC was defined as particulate OC (POC). Concentrations of HgT showed moderate to strong relationships with POC (R2 = 0.77) when all watersheds...

  7. Breeding season concerns and response to forest management: Can forest management produce more breeding birds? Ornitologia Neotropical

    Science.gov (United States)

    J.L. Larkin; P.B. Wood; T.J. Boves; J. Sheehan; D.A. Buehler

    2012-01-01

    Cerulean Warblers (Setophaga cerulea), one of the fastest declining avian species in North America, are associated with heterogeneous canopies in mature hardwood forests. However, the age of most second and third-growth forests in eastern North American is not sufficient for natural tree mortality to maintain structurally diverse canopies. Previous research suggests...

  8. Effects of winter flooding on mass and gross energy of bottomland hardwood acorns

    Science.gov (United States)

    Alan G. Leach; Jacob N. Straub; Richard M. Kaminski; Andrew W. Ezell; Tracy S. Hawkins; Theodor D. Leininger

    2012-01-01

    Decomposition of red oak acorns (Quercus spp.; Section Erythrobalanus) could decrease forage biomass and gross energy (GE) available to wintering ducks from acorns. We estimated changes in mass and GE for 3 species of red oak acorns in flooded and non-flooded bottomland hardwood forests in Mississippi during winter 2009–2010. Mass...

  9. The lack of adequate quality assurance/quality control data hinders the assessment of potential forest degradation in a national forest inventory

    Science.gov (United States)

    Thomas Brandeis; Stanley Zarnoch; Christopher Oswalt; Jeffery Stringer

    2017-01-01

    Hardwood lumber harvested from the temperate broadleaf and mixed broadleaf/conifer forests of the east-central United States is an important economic resource. Forest industry stakeholders in this region have a growing need for accurate, reliable estimates of high-quality wood volume. While lower-graded timber has an increasingly wide array of uses, the forest products...

  10. Contrasting responses to drought of forest floor CO2 efflux in a loblolly pine plantation and a nearby Oak-Hickory forest

    Science.gov (United States)

    S. Palmroth; Chris A. Maier; Heather R. McCarthy; A. C. Oishi; H. S. Kim; Kurt H. Johnsen; Gabrial G. Katul; Ram Oren

    2005-01-01

    Forest floor C02 efflux (Fff) depends on vegetation type, climate, and soil physical properties. We assessed the effects of biological factors on Fff by comparing a maturing pine plantation (PP) and a nearby mature Oak-Hickory-type hardwood forest (HW). Fff was measured...

  11. California's hardwood resource: managing for wildlife, water, pleasing scenery, and wood products

    Science.gov (United States)

    Philip M. McDonald; Dean W. Huber

    1995-01-01

    A new management perspective that emphasizes a variety of amenities and commodities is needed for California’s forest-zone hardwoods. For the near future and perhaps more on public than on private land, these "yields" are wildlife, water, esthetics, and wood products. Each is presented first as an individual yield and then as part of a combined yield. As an...

  12. Modeling and simulating two cut-to-length harvesting systems in central Appalachian hardwoods

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux; Yaoxiang Li

    2003-01-01

    The production rates and costs of two cut-to-length harvesting systems was simulated using a modular ground-based simulation model and stand yield data from fully stocked, second growth even aged central Appalachian hardwood forests. The two harvesters simulated were a modified John Deere 988 tracked excavator with a model RP 1600 single grip sawhead and an excavator...

  13. Effect of long-term understory prescribed burning on standing and down dead woody material in dry upland oak forests

    Science.gov (United States)

    Polo, John A.; Hallgren, S.W.; Leslie,, David M.

    2013-01-01

    Dead woody material, long ignored or viewed as a nuisance for forest management, has gained appreciation for its many roles in the forest including wildlife habitat, nutrient storage and cycling, energy for trophic webs, protection of soil, fuel for fire and carbon storage. The growing interest in managing dead woody material has created strong demand for greater understanding of factors controlling amounts and turnover. Prescribed burning, an important management tool, may have strong effects of dead woody material given fire’s capacity to create and consume dead woody material. We determined effects of long-term understory prescribed burning on standing and down woody material in upland oak forests in south-central North America. We hypothesized that as frequency of fire increased in these stands the amount of deadwood would decrease and the fine woody material would decrease more rapidly than coarse woody material. The study was conducted in forests dominated by post oak (Quercus stellata) and blackjack oak (Quercus marilandica) in wildlife management areas where understory prescribed burning had been practiced for over 20 years and the range of burn frequencies was 0 (unburned) fires per decade (FPD) to 4.6 FPD. The amount of deadwood was low compared with more productive forests in southeastern North America. The biomass (24.7 Mg ha-1) and carbon stocks (11.7 Mg ha-1) were distributed among standing dead (22%), coarse woody debris (CWD, dia. > 7.5 cm., 12%), fine woody debris (FWD, dia. prescribed burning influenced the amount and size distribution of standing and down dead woody material. There were two explanations for the lack of a detectable effect. First, a high incidence of severe weather including ice storms and strong winds that produce large amounts of deadwood intermittently in an irregular pattern across the landscape may preclude detecting a strong effect of understory prescribed burning. Second, fire suppression during the first one-half of the

  14. Effects of rhododendron removal on the water use of hardwood species following eastern hemlock mortality

    Science.gov (United States)

    Hawthorne, S. N.; Miniat, C.; Elliott, K.

    2017-12-01

    Forest disturbance that alters vegetation species composition can affect ecosystem productivity and function. The loss of eastern hemlock (Tsuga canadensis) to hemlock woolly adelgid infestations in southern Appalachian Mountains has resulted in more than a two-fold increase in growth of co-occurring rhododendron (Rhododendron maximum) understory, evergreen shrubs. In contrast, the growth of hardwood species increased by 1.2 fold during the same 5 year period following infestation. This study examines the effects of mechanically removing the rhododendron shrub layer on water use and growth of hardwood species. The treatment—hypothesized to speed ecosystem recovery of structure and function—involved cutting, spreading and burning rhododendron stems to remove both rhododendron and soil O-horizon. Sap flow, soil moisture and micro-climate (humidity, temperature) were measured in a pair of reference and treated plots. Preliminary results from the relatively dry summer/fall 2016 have shown that the mean daily transpiration (Et) of the treated plot was 24% greater than the mean daily Et of hardwood trees in the reference plot (t-test, p treatment plots compared to the reference plots. This suggests that the removal of the shrub layer reduced competition for resources for the canopy and seedling trees, which may increase tree growth and recruitment. Thus, in the wake of hemlock loss, recovery of riparian forest structure and function may be aided with shrub layer removal.

  15. Phytosociological characteristics of forest vegetation NPR Dubnik

    International Nuclear Information System (INIS)

    Hrabovsky, A.; Balkovic, J.; Kollar, J.

    2010-01-01

    National Wildlife (NPR) Dubnik represents a unique fragment of natural forest vegetation in the region of Nitra loess upland. Status of oak and oak-hornbeam forests in this book was last documented in 1965. The aim of the contribution is to assess the current status of forest vegetation in the NPR Dubnik by modern methods of phytosociology in accordance with current thinking on the classification of oak and oak-hornbeam forests.

  16. Long-term management impacts on carbon storage in Lake States forests

    Science.gov (United States)

    Matthew Powers; Randall Kolka; Brian Palik; Rachel McDonald; Martin. Jurgensen

    2011-01-01

    We examined carbon storage following 50+ years of forest management in two long-term silvicultural studies in red pine and northern hardwood ecosystems of North America’s Great Lakes region. The studies contrasted various thinning intensities (red pine) or selection cuttings, shelterwoods, and diameter-limit cuttings (northern hardwoods) to unmanaged controls of...

  17. Maximum size-density relationships for mixed-hardwood forest stands in New England

    Science.gov (United States)

    Dale S. Solomon; Lianjun Zhang

    2000-01-01

    Maximum size-density relationships were investigated for two mixed-hardwood ecological types (sugar maple-ash and beech-red maple) in New England. Plots meeting type criteria and undergoing self-thinning were selected for each habitat. Using reduced major axis regression, no differences were found between the two ecological types. Pure species plots (the species basal...

  18. STRUCTURE AND FUTURE POTENTIAL OF USE OF THE NATURAL REGENERATION IN UPLAND FLOODPLAIN FOREST IN AFUÁ COUNTY, PARÁ STATE

    Directory of Open Access Journals (Sweden)

    João Ricardo Vasconcellos Gama

    2010-08-01

    Full Text Available The aim of this paper was to analyze the structure and describe the future potential of use of the natural regeneration in an non-exploited upland floodplain forest located at EMAPA forestlands, Afuá County (0° 09’ 24” S and 50° 23’ 12” W, North of Pará State. The sample consisted of 29 sub-plots of 100 m2. In each sub-plot, all trees and palms with height (h ³ 0.30 m and diameter at 1.30 m above ground level (DBH < 15 cm were identified and measured. All trees with h ³ 3.0 m and DBH < 15.0 cm were measured too. The total density was 30,969 individuals/ha distributed into 70 species, 57 genera and 25 botanical families, with a Shannon Index (H’ of 2.68. The most important species were: Virola surinamensis, Euterpe oleracea, Astrocaryum murumuru, Geonoma laxiflora e Guarea guidonia. There are many species used for the local fauna as feeding, and many that also provide timber and non-timber forest products; some of them function as an addition to the diet of the riverine people, such as: Eschweilera coriacea, Gustavia augusta, Inga Alba, Nectandra cf. risi e Protium spruceanum.

  19. A Review of Techniques for Minimizing Beaver and White-Tailed Deer Damage in Southern Hardwoods

    Science.gov (United States)

    Edward P. Hill; Douglas N. Lasher; R. Blake. Roper

    1978-01-01

    Methods of reducing beaver and deer damage to hardwood forest resources are reviewed. Beaver controls considered were poisons, chemosterilants, predators, and trapping. Population reduction through trapping with 330 conibear traps for two weeks during two successive years effectively eliminates beaver from small watersheds and shows greater promise for control than...

  20. The Hardwood Tree Improvement and Regeneration Center: its strategic plans for sustaining the hardwood resource

    Science.gov (United States)

    Charles H. Michler; Michael J. Bosela; Paula M. Pijut; Keith E. Woeste

    2003-01-01

    A regional center for hardwood tree improvement, genomics, and regeneration research, development and technology transfer will focus on black walnut, black cherry, northern red oak and, in the future, on other fine hardwoods as the effort is expanded. The Hardwood Tree Improvement and Regeneration Center (HTIRC) will use molecular genetics and genomics along with...

  1. Telemetry location error in a forested habitat

    Science.gov (United States)

    Chu, D.S.; Hoover, B.A.; Fuller, M.R.; Geissler, P.H.; Amlaner, Charles J.

    1989-01-01

    The error associated with locations estimated by radio-telemetry triangulation can be large and variable in a hardwood forest. We assessed the magnitude and cause of telemetry location errors in a mature hardwood forest by using a 4-element Yagi antenna and compass bearings toward four transmitters, from 21 receiving sites. The distance error from the azimuth intersection to known transmitter locations ranged from 0 to 9251 meters. Ninety-five percent of the estimated locations were within 16 to 1963 meters, and 50% were within 99 to 416 meters of actual locations. Angles with 20o of parallel had larger distance errors than other angles. While angle appeared most important, greater distances and the amount of vegetation between receivers and transmitters also contributed to distance error.

  2. Silviculture's role in managing boreal forests

    Science.gov (United States)

    Russell T. Graham; Theresa B. Jain

    1998-01-01

    Boreal forests, which are often undeveloped, are a major source of raw materials for many countries. They are circumpolar in extent and occupy a belt to a width of 1000 km in certain regions. Various conifer and hardwood species ranging from true firs to poplars grow in boreal forests. These species exhibit a wide range of shade tolerance and growth characteristics,...

  3. Environmental parameters regulating sulfur retention in a variety of forest soils

    International Nuclear Information System (INIS)

    Watwood, M.E.

    1987-01-01

    Field incubations utilizing 35 S-labelled sulfate were conducted in a white pine and a hardwood forest. The A horizon soil formed approximately 3.0 nmol of organic S g -1 dry weight, which did not differ significantly from results obtained in similarly designed laboratory incubations. Total intrinsic S in this horizon contained substantial amounts of sulfonate S and ester sulfate, and organic 35 S fractions in several linkage groups were found to predominate following field incubation. Capacities for sulfate adsorption, organic S formation and organic S mineralization were assayed for 01/02, A1, E2 and Bh horizons of a coastal pine forest. A1 horizon soil from various locations within New Mexico National Forests adsorbed 1.2 to 4.9 nmol g -1 of added sulfate and formed between 1.6 and 4.8 nmol g -1 of added sulfate and formed between 1.6 and 4.8 nmol g -1 of organic S during 48h. Methionine mineralization and the fate of both mineralization-derived and added sulfate were examined in hardwood forest soils which had been suction dried to contain between 2 and 80% moisture. Incubation of 35 S-methionine with organic matter extracted from the 02 litter layer of a hardwood forest, resulted in the formation of 35 S-methionine-labelled organic component

  4. LBA-ECO CD-10 Forest Litter Data for km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains a single text file which reports litter type and mass in the old-growth upland forest at the Para Western (Santarem) - km 67,...

  5. Herbicide options for hardwood management

    Science.gov (United States)

    Andrew W. Ezell; A. Brady Self

    2016-01-01

    The use of herbicides in hardwood management presents special problems in that many of the most effective herbicides are either designed to control hardwoods or the product is not labeled for such applications. Numerous studies involving herbicide application in hardwoods have been completed at Mississippi State University. This paper is a compilation of results from...

  6. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.

    Science.gov (United States)

    Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian

    2016-06-01

    Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods

  7. Long-term effects of single prescribed fires on hardwood regeneration in oak shelterwood stands

    Science.gov (United States)

    Patrick H. Brose

    2010-01-01

    One of the arguments against using prescribed fire to regenerate oak (Quercus spp.) forests is that the improvement in species composition of the hardwood regeneration pool is temporary and multiple burns are necessary to achieve and maintain oak dominance. To explore this concern, I re-inventoried a prescribed fire study conducted in the mid-1990s...

  8. Upscaling of greenhouse gas emissions in upland forestry following clearfell

    Science.gov (United States)

    Toet, Sylvia; Keane, Ben; Yamulki, Sirwan; Blei, Emanuel; Gibson-Poole, Simon; Xenakis, Georgios; Perks, Mike; Morison, James; Ineson, Phil

    2016-04-01

    Data on greenhouse gas (GHG) emissions caused by forest management activities are limited. Management such as clearfelling may, however, have major impacts on the GHG balance of forests through effects of soil disturbance, increased water table, and brash and root inputs. Besides carbon dioxide (CO2), the biogenic GHGs nitrous oxide (N2O) and methane (CH4) may also contribute to GHG emissions from managed forests. Accurate flux estimates of all three GHGs are therefore necessary, but, since GHG emissions usually show large spatial and temporal variability, in particular CH4 and N2O fluxes, high-frequency GHG flux measurements and better understanding of their controls are central to improve process-based flux models and GHG budgets at multiple scales. In this study, we determined CO2, CH4 and N2O emissions following felling in a mature Sitka spruce (Picea sitchensis) stand in an upland forest in northern England. High-frequency measurements were made along a transect using a novel, automated GHG chamber flux system ('SkyLine') developed at the University of York. The replicated, linear experiment aimed (1) to quantify GHG emissions from three main topographical features at the clearfell site, i.e. the ridges on which trees had been planted, the hollows in between and the drainage ditches, and (2) to determine the effects of the green-needle component of the discarded brash. We also measured abiotic soil and climatic factors alongside the 'SkyLine' GHG flux measurements to identify drivers of the observed GHG emissions. All three topographic features were overall sources of GHG emissions (in CO2 equivalents), and, although drainage ditches are often not included in studies, GHG emissions per unit area were highest from ditches, followed by ridges and lowest in hollows. The CO2 emissions were most important in the GHG balance of ridges and hollows, but CH4 emissions were very high from the drainage ditches, contributing to over 50% of their overall net GHG emissions

  9. Avian response to microclimate in canopy gaps in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Champlin, Tracey B.; Kilgo, John C.; Gumpertz, Marcia L.; Moorman, Christopher E.

    2009-04-01

    Abstract - Microclimate may infl uence use of early successional habitat by birds. We assessed the relationships between avian habitat use and microclimate (temperature, light intensity, and relative humidity) in experimentally created canopy gaps in a bottomland hardwood forest on the Savannah River Site, SC. Gaps were 2- to 3-year-old group-selection timber harvest openings of three sizes (0.13, 0.26, 0.50 ha). Our study was conducted from spring through fall, encompassing four bird-use periods (spring migration, breeding, post-breeding, and fall migration), in 2002 and 2003. We used mist netting and simultaneously recorded microclimate variables to determine the influence of microclimate on bird habitat use. Microclimate was strongly affected by net location within canopy gaps in both years. Temperature generally was higher on the west side of gaps, light intensity was greater in gap centers, and relative humidity was higher on the east side of gaps. However, we found few relationships between bird captures and the microclimate variables. Bird captures were inversely correlated with temperature during the breeding and postbreeding periods in 2002 and positively correlated with temperature during spring 2003. Captures were high where humidity was high during post-breeding 2002, and captures were low where humidity was high during spring 2003. We conclude that variations in the local microclimate had minor infl uence on avian habitat use within gaps. Instead, habitat selection in relatively mild regions like the southeastern US is based primarily on vegetation structure, while other factors, including microclimate, are less important.

  10. Forest structure of oak plantations after silvicultural treatment to enhance habitat for wildlife

    Science.gov (United States)

    Twedt, Daniel J.; Phillip, Cherrie-Lee P.; Guilfoyle, Michael P.; Wilson, R. Randy; Schweitzer, Callie Jo; Clatterbuck, Wayne K.; Oswalt, Christopher M.

    2016-01-01

    During the past 30 years, thousands of hectares of oak-dominated bottomland hardwood plantations have been planted on agricultural fields in the Mississippi Alluvial Valley. Many of these plantations now have closed canopies and sparse understories. Silvicultural treatments could create a more heterogeneous forest structure, with canopy gaps and increased understory vegetation for wildlife. Lack of volume sufficient for commercial harvest in hardwood plantations has impeded treatments, but demand for woody biomass for energy production may provide a viable means to introduce disturbance beneficial for wildlife. We assessed forest structure in response to prescribed pre-commercial perturbations in hardwood plantations resulting from silvicultural treatments: 1) row thinning by felling every fourth planted row; 2) multiple patch cuts with canopy gaps of gaps appear likely to be filled by regenerating saplings.

  11. A comparison of soil-moisture loss from forested and clearcut areas in West Virginia

    Science.gov (United States)

    Charles A. Troendle

    1970-01-01

    Soil-moisture losses from forested and clearcut areas were compared on the Fernow Experimental Forest. As expected, hardwood forest soils lost most moisture while revegetated clearcuttings, clearcuttings, and barren areas lost less, in that order. Soil-moisture losses from forested soils also correlated well with evapotranspiration and streamflow.

  12. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    Science.gov (United States)

    Mueller-Niggemann, Cornelia; Rahayu Utami, Sri; Marxen, Anika; Mangelsdorf, Kai; Bauersachs, Thorsten; Schwark, Lorenz

    2016-03-01

    Rice paddies constitute almost a fifth of global cropland and provide more than half of the world's population with staple food. At the same time, they are a major source of methane and therewith significantly contribute to the current warming of Earth's atmosphere. Despite their apparent importance in the cycling of carbon and other elements, however, the microorganisms thriving in rice paddies are insufficiently characterized with respect to their biomolecules. Hardly any information exists on human-induced alteration of biomolecules from natural microbial communities in paddy soils through varying management types (affecting, e.g., soil or water redox conditions, cultivated plants). Here, we determined the influence of different land use types on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs), which serve as molecular indicators for microbial community structures, in rice paddy (periodically flooded) and adjacent upland (non-flooded) soils and, for further comparison, forest, bushland and marsh soils. To differentiate local effects on GDGT distribution patterns, we collected soil samples in locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general, upland soil had higher crenarchaeol contents than paddy soil, which by contrast was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio, indicating the enhanced presence of methanogenic archaea, was 3-27 times higher in paddy soils compared to other soils and increased with the number of rice cultivation cycles per year. The index of tetraethers consisting of 86 carbons (TEX86) values were 1.3 times higher in upland, bushland and forest soils than in paddy soils, potentially due to differences in soil temperature. In all soils br

  13. Decreasing soil water Ca2+ reduces DOC adsorption in mineral soils: implications for long-term DOC trends in an upland forested catchment in southern Ontario, Canada.

    Science.gov (United States)

    Kerr, Jason Grainger; Eimers, M Catherine

    2012-06-15

    Positive trends in dissolved organic carbon (DOC) concentration have been observed in surface waters throughout North America and northern Europe. Although adsorption in mineral soils is an important driver of DOC in upland streams, little is known about the potential for changes in DOC adsorption to contribute to these trends. We hypothesized that long-term declines in soil water Ca(2+) levels, in response to declining acid deposition, might influence DOC adsorption and that this could contribute to long-term DOC trends in an upland forested catchment in south-central Ontario, Canada. Between 1987 and 2009, DOC concentrations increased significantly (pDOC concentration (DOC(np)), which is a measure of the soil water DOC concentration at equilibrium with the soil, ranged from 1.27 to 3.75 mg L(-1) in B horizon soils. This was similar to the mean DOC concentrations of B horizon soil water (2.04-6.30 mg L(-1)) and stream water (2.20 mg L(-1)), indicating that soil and stream water DOC concentrations are controlled by equilibrium processes at the soil-water interface. Adsorption experiments using variable Ca(2+) concentrations demonstrated that as Ca(2+) decreased the DOC(np) increased (1.96 to 4.74 mg L(-1)), which was consistent with the observed negative correlation between DOC and Ca(2+) in B horizon soil water (pDOC adsorption (p>0.05), indicating that changes in DOC adsorption might be related to cation bridging. We conclude that declines in soil water Ca(2+) concentration can contribute to increasing DOC trends in upland streams by reducing DOC adsorption in mineral soils. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Effect of hydrological conditions on nitrous oxide, methane, and carbon dioxide dynamics in a bottomland hardwood forest and its implication for soil carbon sequestration

    Science.gov (United States)

    Yu, K.; Faulkner, S.P.; Baldwin, M.J.

    2008-01-01

    This study was conducted at three locations in a bottomland hardwood forest with a distinct elevation and hydrological gradient: ridge (high, dry), transition, and swamp (low, wet). At each location, concentrations of soil greenhouse gases (N2O, CH4 , and CO2), their fluxes to the atmosphere, and soil redox potential (Eh) were measured bimonthly, while the water table was monitored every day. Results show that soil Eh was significantly (P transition > ridge location. The ratio CO2/CH4 production in soil is a critical factor for evaluating the overall benefit of soil C sequestration, which can be greatly offset by CH4 production and emission. ?? Journal compilation ?? 2008 Blackwell Publishing.

  15. Let the market help prescribe forest management practices

    Science.gov (United States)

    Gary W. Zinn; Edward Pepke

    1989-01-01

    To obtain the best economic returns from a hardwood forest, you must consider markets. Management decisions made now will affect a stand's future character and value, whether or not the decision results in immediate timber sales. Progressive forest landowners will have a management plan for their woodlots. Typically, such plans are largely land- and resource-...

  16. Spatial ecology and behavior of eastern box turtles on the hardwood ecosystem experiment: pre-treatment results

    Science.gov (United States)

    Andrea F. Currylow; Brian J. MacGowan; Rod N. Williams

    2013-01-01

    To understand better how eastern box turtles (Terrapene carolina carolina) are affected by forest management practices, we monitored movements of box turtles prior to silvicultural treatments within the Hardwood Ecosystem Experiment (HEE) in Indiana. During 2007 and 2008, we tracked 23-28 turtles on six units of the HEE. Estimated minimum convex...

  17. Planting and care of fine hardwood seedlings: Nursery production of hardwood seedlings

    Science.gov (United States)

    Douglass F. Jacobs

    2003-01-01

    Access to quality tree seedlings is an essential component of a successful hardwood reforestation project. Hardwood plantations may be established by sowing seed directly to a field site, but the success of direct seeding operations has been inconsistent for many species, which indicates that more research is needed before this practice can be recommended. For...

  18. Research efforts on fuels, fuel models, and fire behavior in eastern hardwood forests

    Science.gov (United States)

    Thomas A. Waldrop; Lucy Brudnak; Ross J. Phillips; Patrick H. Brose

    2006-01-01

    Although fire was historically important to most eastern hardwood systems, its reintroduction by prescribed burning programs has been slow. As a result, less information is available on these systems to fire managers. Recent research and nationwide programs are beginning to produce usable products to predict fuel accumulation and fire behavior. We introduce some of...

  19. Gate-to-Gate Life-Cycle Inventory on Hardwood Sawmills in the Northeastern Region of the United States

    Science.gov (United States)

    Richard D. Bergman

    2007-01-01

    Using sustainable building materials is gaining a significant presence in the United States therefore proving sustainability claims are becoming increasingly more important. Certifying wood products as green building materials is vital for the long-term productivity of the wood building industry and for forest management. This study examined hardwood lumber...

  20. Stiffness and Density Analysis of Rotary Veneer Recovered from Six Species of Australian Plantation Hardwoods

    Directory of Open Access Journals (Sweden)

    Robert Lee McGavin

    2015-08-01

    Full Text Available Commercial interest in Australian hardwood plantations is increasing. The timber industry is investigating alternative supplies of forest resources, and the plantation growing industry is eager to explore alternative markets to maximize financial returns. Identifying suitable processing strategies and high-value products that suit young, plantation-grown hardwoods have proven challenging; however, recent veneer processing trials using simple veneer technology have demonstrated more acceptable recoveries of marketable products. The recovered veneers have visual qualities that are suitable for structurally-based products; however, the mechanical properties of the veneer are largely unknown. Veneers resulting from processing trials of six commercially important Australian hardwood species were used to determine key wood properties (i.e., density, dynamic modulus of elasticity (MoE, and specific MoE. The study revealed that a wide variation of properties existed between species and also within species. Simple mathematical modeling, using sigmoidal curves, was demonstrated to be an effective method to model the evolution of key wood properties across the billet radius and along the resulting veneer ribbon with benefits for tree breeders and processors.

  1. Throughfall and stemflow chemistry in a northern hardwood forest

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, J S; Likens, G E; Bormann, F H

    1973-01-01

    The contribution of throughfall and stemflow as pathways of the intrasystem nutrient cycle within the forested Hubbard Brook ecosystem was investigated. Nutrients followed were Ca, Mg, K, Na, NO/sub 3/, SO/sub 4/, NH/sub 4/, Fl, PO/sub 4/, H, organic N, and organic matter. Variation in throughfall and stemflow chemistry were determined under American beech, sugar maple, and yellow birch, the three major species comprising the forest studied. Nutrients generally recognized as being associated with organic molecules (e.g. P, N) moved more slowly from the forest canopy to the forest floor. These nutrients moved out of the canopy primarily via litterfall. Nutrients more commonly found in an ionic form (e.g. K) were found to move very rapidly from the forest canopy to the available nutrient pool in throughfall and stemflow. A comparison is made between the amount of each nutrient present in the forest canopy and the amount of these nutrients found in the throughfall and stemflow. The importance of hydrogen ion exchange in the removal of cations from the forest canopy is shown. Precipitation of low pH probably acts to accelerate the intrasystem cycling of nutrients within forested ecosystems. Total nutrient removal from the forest canopy by throughfall and stemflow is presented along with a comparison with the removal by litterfall.

  2. Long-Term Soil Chemistry Changes in Aggrading Forest Ecosystems

    Science.gov (United States)

    Jennifer D. Knoepp; Wayne T. Swank

    1994-01-01

    Assessing potential long-term forest productivity requires identification of the processes regulating chemical changes in forest soils. We resampled the litter layer and upper two mineral soil horizons, A and AB/BA, in two aggrading southern Appalachian watersheds 20 yr after an earlier sampling. Soils from a mixed-hardwood watershed exhibited a small but significant...

  3. Contesting State Forests in Post-Suharto Indonesia: Authority Formation, State Forest Land Dispute, and Power in Upland Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Anu Lounela

    2012-01-01

    Full Text Available This article explores the ongoing conflict over state forest land between the local population and the State Forestry Corporation (SFC in a village in upland Central Java with regard to authority formation. It looks at how different agents draw on different sources of authority in the course of the conflict and its negotiations. The principal questions are to what kind of sources of authority villagers refer to and how the formation of authority informs the relations between the state and society in the land dispute. The article is based on 11 months of ethnographic fieldwork and focuses on the central figure of Pak Wahid who took a leading position in the forest land dispute and in mobilising peasants in the village. The article argues that in post-Suharto Java, leadership in the struggle for state forest land at the village level is embedded in the interaction of Javanese ideas of power and authority as well as administrative authority. Due to political and institutional reforms, new sources of authority could be invoked while there are no real changes in the power relations within the village or between the SFC and the villagers. ----- Dieser Artikel untersucht den anhaltenden Konflikt um staatliche Waldflächen zwischen der lokalen Bevölkerung und der State Forestry Corporation (SFC in einem Dorf im Hochland von Zentral- Java in Bezug auf die Entwicklung von Autorität. Es wird untersucht, wie sich unterschiedliche AkteurInnen im Rahmen des Konflikts und dessen Verhandlung auf unterschiedliche Bezugsquellen von Autorität beziehen. Die zentralen Forschungsfragen in diesem Zusammenhang sind, auf welche Bezugsquellen von Autorität sich DorfbewohnerInnen beziehen und wie die Entwicklung von Autorität die Beziehungen zwischen Staat und Gesellschaft im Rahmen des Landkonflikts beeinflusst. Der Artikel basiert auf einer 11-monatigen ethnografischen Feldforschung und fokussiert auf die Person von Pak Wahid, der eine Schlüsselrolle im Konflikt

  4. Ecophysiological behaviour of hardwood species in renaturalization processes of coniferous plantations [Campania

    International Nuclear Information System (INIS)

    Borghetti, M.; Saracino, A.; D'Alessandro, C.M.

    2005-01-01

    Coniferous plantations may play a nurse effect for natural regeneration of native hardwood species, which would otherwise be conditioned by intraspecific competition due to trees of the upper layers or be prevented by high radiation load of open environments. Regulation of canopy cover by means of thinning generates temporary or permanent variations of levels of irradiance in lower forest layers. These affect the capability of recruitment and establishment and the ecophysiological behaviour of natural regeneration. Here we present a review of the notions on effects of relative irradiance variations on ecophysiological behaviour of native tree species in lower layers of mesophile and meso-xerophile forests, giving some specific examples produced during the national project PRIN 2003 FOR BIO [it

  5. [Contribution of tropical upland forests to carbon storage in Colombia].

    Science.gov (United States)

    Yepes, Adriana; Herrera, Johana; Phillips, Juan; Galindo, Gustavo; Granados, Edwin; Duque, Alvaro; Barbosa, Adriana; Olarte, Claudia; Cardona, María

    2015-03-01

    The tropical montane forests in the Colombian Andean region are located above 1500 m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to (i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, (ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and (iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25 ha plots were randomly distributed in the forests and all trees with D > or =10 cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (approximatly = 700-1800 m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical

  6. Bat habitat use in White Mountain National Forest

    Science.gov (United States)

    Rachel A. Krusic; Mariko Yamasaki; Christopher D. Neefus; Peter J. Pekins

    1996-01-01

    In 1992 and 1993, we surveyed the foraging and feeding activity of bat species with broadband bat detectors at 2 foliage heights in 4 age classes of northern hardwood and spruce/fir forest stands in White Mountain National Forest, New Hampshire and Maine. The association of bat activity with trails and water bodies and the effect of elevation were measured. Mist nets,...

  7. Low-grade hardwood lumber production, markets, and issues

    Science.gov (United States)

    Dan Cumbo; Robert Smith; Philip A. Araman

    2003-01-01

    Due to recent downturn in the economy and changes in traditional hardwood markets. U.S. hardwood manufacturers are facing significant difficulties. In particular, markets for low-grade lumber have been diminishing, while increased levels of the material are being produced at hardwood sawmills in the United States. A nationwide survey of hardwood lumber manufacturers...

  8. Survival of Hardwood Regeneration During Prescribed Fires: The Importance of Root Development and Root Collar Location

    Science.gov (United States)

    Patrick Brose; David Van Lear

    2004-01-01

    Fire ecology studies in eastern hardwood forests usually use plot-based inventory methods and focus on sprouting stems to detect changes in vegetative composition and structure. Rarely are individual stems studied and stems that fail to sprout are usually ignored. In this study, an individual stem mortality approach was employed. Four hundred fifty stems of eight...

  9. Intermediate Cutting in Mixed Upland Oak Stands on the Western Highland Rim, Tennessee, After a Quarter of a Century

    Science.gov (United States)

    Adrienne N. Hall; John C. Rennie; Glendon W. Smalley

    2004-01-01

    In 1973 and 1974, a study was established at Stewart State Forest (SSF) and Lewis State Forest (LSF) to evaluate Roach and Gingrich’s “Even-Aged Silviculture for Upland Central Oaks” on the Western Highland Rim. Harvesting to the “B-level” of the stocking guide primarily removed cull and low-quality stems. Basal area was reduced from 110 to 80 square feet per acre at...

  10. Forest management and the diversity of wood-inhabiting fungi

    Science.gov (United States)

    Daniel L. Lindner Czederpiltz; Glen R. Stanosz; Harold H. Burdsall

    1999-01-01

    Since the summer of 1996, a project has been underway at the University of Wisconsin-Madison,Dept. of Plant Pathology, to determine how different forest management regimes can affect the diversity of fungi found in northern hardwood forests. This report is an introduction to this project's goals, objectives and methods. A particular group of fungi, the wood-...

  11. Upland log volumes and conifer establishment patterns in two northern, upland old-growth redwood forests, a brief synopsis

    Science.gov (United States)

    Daniel J. Porter; John O. Sawyer

    2007-01-01

    We characterized the volume, weight and top surface area of naturally fallen logs in an old-growth redwood forest, and quantified conifer recruit densities on these logs and on the surrounding forest floor. We report significantly greater conifer recruit densities on log substrates as compared to the forest floor. Log substrate availability was calculated on a per...

  12. The state of hardwood lumber markets

    Science.gov (United States)

    Gilbert P. Dempsey; William G. Luppold

    1992-01-01

    Although the 1990-91 recession has temporarily dampened the demand for hardwood lumber, the decade of the 1980s was a period of strong growth in the hardwood market. After experiencing a flat market in 1980 and a decline in 1982, the demand for hardwood lumber by both the domestic industry and the export market increased strongly—from 8 billion board feet in 1982 to 11...

  13. DISTRIBUTION OF METALS IN PARTICLE SIZE FRACTIONS IN SOILS OF TWO FORESTED CATENAS (SMOLENSK-MOSCOW UPLAND

    Directory of Open Access Journals (Sweden)

    Olga Samonova

    2013-01-01

    Full Text Available The concentrations and distribution of Fe, Ti, Zr, Mn, Cu. Ni, Co, Cr, Pb, and Zn associated with various particle size fractions have been analyzed in soils of two forested catenas located in the middle Protva River basin on the Smolensk-Moscow Upland. The results showed that concentration of metals in a particular size fraction was defined by a complex of factors: element chemical properties, soil type, genesis of a soil horizon, and position in the catena. A clearly defined relationship between the fraction size and metal concentrations was found for Ti and Zr. The highest levels of Ti were found in coarse and medium silt, while Zr had its highest values only in coarse silt and, in some cases, in fine sand. Such metals as Fe, Mn, Co, Cu and Pb had high concentrations in sand, fine silt, and clay fractions depending on a soil type and a genetic horizon. The maximum load of Cr, Zn, and Ni (in the majority of cases was found in clay fraction. The minimum loads of Fe, Mn, Co, Cu, and Ni were found in the coarse silt fraction. Variation in concentrations of heavy metals differed depending on particle size. For most metals, the variations were decreasing from coarser to finer fractions.Key words: soils, heavy metals, grain-size fractionation, vertical and lateral distribution patterns

  14. On the vertical distribution of bees in a temperate deciduous forest

    Science.gov (United States)

    Michael Ulyshen; Villa Soon; James Hanula

    2010-01-01

    1. Despite a growing interest in forest canopy biology, very few studies have examined the vertical distribution of forest bees. In this study, bees were sampled using 12 pairs of flight-intercept traps suspended in the canopy (‡15 m) and near the ground (0.5 m) in a bottomland hardwood forest in the southeastern United States. 2. In total, 6653 bees from 5 families...

  15. Futures project anticipates changes and challenges facing forests of the northern United States

    Science.gov (United States)

    Stephen R. Shifley; W. Keith Moser; Michael E. Goerndt; Nianfu Song; Mark D. Nelson; David J. Nowak; Patrick D. Miles; Brett J. Butler; Ryan D. DeSantis; Francisco X. Aguilar; Brian G. Tavernia

    2014-01-01

    The Northern Forest Futures Project aims to reveal how today's trends and choices are likely to change the future forest landscape in the northeastern and midwestern United States. The research is focused on the 20-state quadrant bounded by Maine, Maryland, Missouri, and Minnesota. This area, which encompasses most of the Central Hardwood Forest region, is the...

  16. Strategic plans for the Hardwood Tree Improvement and Regeneration Center

    Science.gov (United States)

    Charles H. Michler; Keith E. Woeste

    2002-01-01

    The mission of the Hardwood Tree Improvement and Regeneration Center (HTIRC) at Purdue University is to advance the science of hardwood tree improvement and genomics in the central hardwood region of the United States by: developing and disseminating knowledge on improving the genetic quality of hardwood tree species; conserving fine hardwood germplasm; developing...

  17. Harvesting costs and utilization of hardwood plantations

    Science.gov (United States)

    Tim P. McDonald; Bryce J. Stokes

    1994-01-01

    The use of short rotation, intensive culture (SRIC) practices in hardwoods to meet fiber supply needs is becoming increasingly widespread. Total plated area of short rotation hardwood fiber plantations is currently about 22,000 ha (McDonald and Stokes 1993). That figure should certainly to grow in response to public concerns over loss of natural hardwood stands. With...

  18. Asian longhorned beetle (Coleoptera: Cerambycidae), an introduced pest of maple and other hardwood trees in North America and Europe

    Science.gov (United States)

    P.S. Meng; K. Hoover; M.A. Keena

    2015-01-01

    The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), threatens urban and forest hardwood trees both where introduced and in parts of its native range. Native to Asia, this beetle has hitchhiked several times in infested wood packaging used in international trade, and has established breeding populations in five U.S. states, Canada,...

  19. Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin

    Science.gov (United States)

    Bing Xu; Yude Pan; Alain F. Plante; Arthur Johnson; Jason Cole; Richard Birdsey

    2016-01-01

    Quantifying forest biomass carbon (C) stock change is important for understanding forest dynamics and their feedbacks with climate change. Forests in the northeastern U.S. have been a net carbon sink in recent decades, but C accumulation in some northern hardwood forests has been halted due to the impact of emerging stresses such as invasive pests, land use change and...

  20. Hardwood supply in the Pacific Northwest-a policy perspective.

    Science.gov (United States)

    Terry L. Raettig; Kent P. Connaughton; Glenn R. Ahrens

    1995-01-01

    The policy framework for the hardwood resource and hardwood industry in western Oregon and Washington is examined. Harvesting trends, harvesting behavior of public and private landowners, and harvesting regulation are presented to complete the analysis of factors affecting short-run hardwood supply. In the short term, the supply of hardwoods is generally favorable, but...

  1. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps

    Science.gov (United States)

    Christopher E. Moorman; Liessa T. Woen; John C. Kilgo; James L. Hanula; Scott Horn; Michael D. Ulyshen

    2012-01-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and...

  2. The long-term water balance (1972–2004 of upland forestry and grassland at Plynlimon, mid-Wales

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available This paper reviews research into the hydrological impacts of UK upland forestry and updates the water balance of the Plynlimon research catchments for the period 1972–2004. Comparison of this network of densely instrumented coniferous forest and grassland catchments builds upon previously reported differences in annual evaporation of the two land uses and, most crucially, provides evidence of systematic, age-related, variations in forest evaporation losses over a managed plantation forest cycle. In comparison with the grassland catchment, the additional water use of the 70% forested catchment fell from 250 to 150 mm yr−1 because of increasing forest age; this is equivalent to a decline from 370 mm to 210 mm extra evaporation from a complete forest cover. At present, with up to half of the forest area felled or only recently replanted, the difference in evaporation between the forest and grass catchments is negligible. Knowledge of the period of maximum tree water use may be critically important for the future management of multi-use forests. This is also being investigated by micro-meteorological measurements at the scale of the forest stand using eddy covariance, in conjunction with the long-term catchment monitoring.

  3. Gap characteristics of southeastern Ohio second-growth forests

    Science.gov (United States)

    David M. Hix; Katherine K. Helfrich

    2003-01-01

    Transect sampling was used to assess the features of 30 gaps encountered in upland oak stands on the Wayne National Forest. Tip-ups caused the most canopy gaps (52 percent), two-thirds of which were small (

  4. Evidence for deep sub-surface flow routing in forested upland Wales: implications for contaminant transport and stream flow generation

    Directory of Open Access Journals (Sweden)

    A. H. Haria

    2004-01-01

    Full Text Available Upland streamflow generation has traditionally been modelled as a simple rainfall-runoff mechanism. However, recent hydrochemical studies conducted in upland Wales have highlighted the potentially important role of bedrock groundwater in streamflow generation processes. To investigate these processes, a detailed and novel field study was established in the riparian zone and lower hillslopes of the Hafren catchment at Plynlimon, mid-Wales. Results from this study showed groundwater near the river behaving in a complex and most likely confined manner within depth-specific horizons. Rapid responses to rainfall in all boreholes at the study site indicated rapid recharge pathways further upslope. The different flow pathways and travel times influenced the chemical character of groundwaters with depth. Groundwaters were shown to discharge into the stream from the fractured bedrock. A lateral rapid flow horizon was also identified as a fast flow pathway immediately below the soils. This highlighted a mechanism whereby rising groundwater may pick up chemical constituents from the lower soils and transfer them quickly to the stream channel. Restrictions in this horizon resulted in groundwater upwelling into the soils at some locations indicating soil water to be sourced from both rising groundwater and rainfall. The role of bedrock groundwater in upland streamflow generation is far more complicated than previously considered, particularly with respect to residence times and flow pathways. Hence, water quality models in upland catchments that do not take account of the bedrock geology and the groundwater interactions therein will be seriously flawed. Keywords: bedrock, groundwater, Hafren, hillslope hydrology, Plynlimon, recharge, soil water, streamflow generation

  5. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    International Nuclear Information System (INIS)

    Stauffer, R.E.; Wittchen, B.D.

    1991-01-01

    The authors use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) US. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. The authors attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by So 4 because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m -2 yr -1 ) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks

  6. Restoration of three forest herbs in the Liliaceae family by manipulating deer herbivory and overstorey and understorey vegetation

    Science.gov (United States)

    Cynthia D. Huebner; Kurt W. Gottschalk; Gary W. Miller; Patrick H. Brose

    2010-01-01

    Research on herbaceous vegetation restoration in forests characterised by overstorey tree harvests, excessive deer herbivory, and a dominant fern understorey is lacking. Most of the plant diversity found in Eastern hardwood forests in the United States is found in the herbaceous understorey layer. Loss of forest herbaceous species is an indicator of declining forest...

  7. The population dynamics of goldenseal by habitat type on the Hoosier National Forest

    Science.gov (United States)

    S. P. Meyer; G. R. Parker

    2003-01-01

    Goldenseal (Hydrastis canadensis L.) is an herbaceous species found throughout the central hardwood forest ecosystem that is harvested from the wild for the medicinal herb trade. A total of 147 goldenseal populations were classified according to the Ecological Classification Guide developed for the Hoosier National Forest, and change in population...

  8. Grapevine dynamics after manual tending of juvenile stands on the Hoosier National Forest, Indiana

    Science.gov (United States)

    Robert C. Morrissey; Martin-Michel Gauthier; John A., Jr. Kershaw; Douglass F. Jacobs; Burnell C. Fischer; John R. Siefert

    2008-01-01

    Large woody vines, most notably grapevines, are a source of great concern for forest and wildlife managers in many parts of the Central Hardwood Forest Region of the United States. We examined grapevine dynamics in stands aged 21 - 35 years. The plots, located in regenerated clearcuts in the Hoosier National Forest (HNF), were evaluated for vine control, site, and tree...

  9. Forest management guidelines for controlling wild grapevines

    Science.gov (United States)

    H. Clay Smith

    1984-01-01

    Grapevines (Vitis spp.) are becoming a major problem to forest managers in the Appalachians, especially when clearcutting is done on highly productive hardwood sites. Where present, grapevines can reduce tree quality and growth, and eventually kill the tree. Silvical characteristics of grapevines are discussed as background for grapevine control....

  10. Effect of Group-Selection Opening Size on Breeding Bird Habitat Use in a Bottomland Forest

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, C.E.; D.C. Guynn, Jr.

    2001-12-01

    Research on the effects of creating group-selection openings of various sizes on breeding birds habitat use in a bottomland hardwood forest of the Upper Coastal Plain of South Carolina. Creation of 0.5-ha group selection openings in southern bottomland forests should provide breeding habitat for some field-edge species in gaps and habitat for forest-interior species and canopy-dwelling forest-edge species between gaps provided that enough mature forest is made available.

  11. Exotic Invasive Shrub Glossy Buckthorn Reduces Restoration Potential for Native Forest Herbs

    Directory of Open Access Journals (Sweden)

    Caroline Hamelin

    2017-02-01

    Full Text Available Invasive glossy buckthorn could reduce restoration potential for understory native forest herbs by compromising their growth and biodiversity. Few studies of glossy buckthorn’s effects on forest herbs exist, and none were done in early-successional, partially open hardwood forests. This study was conducted in a mature hybrid poplar plantation invaded by buckthorn, located in southeastern Québec. We tested the effect of buckthorn removal on the growth of three forest herb species, whether this effect varied among species, and if canopy type (two poplar clones influenced this effect. Forest herbs were planted in herbicide (buckthorn removed and control treatments in the plantation understory, an environment similar to that of early-successional hardwood forests. Over the first two growing seasons, species showed specific reactions to buckthorn cover. Mean relative growth rate (RGR for Asarum canadense and Polygonatum pubescens was increased in the herbicide treatment (48% and 33%, respectively and decreased in the control treatment (−35% and −33%, respectively. Sanguinaria canadensis growth was the highest among species, with no difference between treatments. No effects of canopy type were detected. Results suggest that planting forest herbs for restoration purposes may be unsuccessful if buckthorn is present. Important changes in understory flora biodiversity are likely to occur over the long term in forests invaded by buckthorn.

  12. Managing carbon sequestration and storage in northern hardwood forests

    Science.gov (United States)

    Eunice A. Padley; Deahn M. Donner; Karin S. Fassnacht; Ronald S. Zalesny; Bruce Birr; Karl J. Martin

    2011-01-01

    Carbon has an important role in sustainable forest management, contributing to functions that maintain site productivity, nutrient cycling, and soil physical properties. Forest management practices can alter ecosystem carbon allocation as well as the amount of total site carbon.

  13. Study of landscape change under forest harvesting and climate warming-induced fire disturbance

    Science.gov (United States)

    S. He Hong; David J. Mladenoff; Eric J. Gustafson

    2002-01-01

    We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by...

  14. Growth and shifts in eastern hardwood lumber production

    Science.gov (United States)

    William G. Luppold; Gilbert P. Dempsey

    1993-01-01

    An analysis of recent trends in eastern U.S. hardwood lumber production indicates that total output increased sharply between 1977 and 1991. The increase, however, was much more pronounced in the East's northern tier of states than in the southern. This paper first examines recent hardwood lumber usage trends and historic hardwood lumber production trends. Changes...

  15. ROOT BIOMASS ALLOCATION IN THE WORLD'S UPLAND FORESTS

    Science.gov (United States)

    Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard meth...

  16. User group attitudes toward forest management treatments on the Shawnee National Forest: application of a photo-evaluation technique

    Science.gov (United States)

    Jonathan M. Cohen; Jean C. Mangun; Mae A. Davenport; Andrew D. Carver

    2008-01-01

    Diverse public opinions, competing management goals, and polarized interest groups combine with problems of scale to create a complex management arena for managers in the Central Hardwood Forest region. A mixed-methods approach that incorporated quantitative analysis of data from a photo evaluation-attitude scale survey instrument was used to assess attitudes toward...

  17. Effects of riparian buffer width on wood loading in headwater streams after repeated forest thinning

    Science.gov (United States)

    Julia I. Burton; Deanna H. Olson; Klaus J. Puettmann

    2016-01-01

    Forested riparian buffer zones are used in conjunction with upland forest management, in part, to provide for the recruitment for large wood to streams. Small headwater streams account for the majority of stream networks in many forested regions. Yet, our understanding of how riparian buffer width influences wood dynamics in headwater streams is relatively less...

  18. How old is upland catchment water?

    Science.gov (United States)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe; Gilfedder, Benjamin

    2014-05-01

    Understanding the dynamics of water supply catchments is an essential part of water management. Upland catchments provide a continuous, reliable source of high quality water not only for some of the world's biggest cities, but also for agriculture and industry. Headwater streams control river flow in lowland agricultural basins as the majority of river discharge emerges from upland catchments. Many rivers are perennial and flow throughout the year, even during droughts. However, it is still unclear how reliable and continuous upland catchment water resources really are. Despite many efforts in upland catchment research, there is still little known about where the water is stored and how long it takes to travel through upper catchments. Resolving these questions is crucial to ensure that this resource is protected from changing land use and to estimate potential impacts from a changing climate. Previous research in this important area has been limited by existing measurement techniques. Knowledge to date has relied heavily on the use of variation in stable isotope signals to estimate the age and origin of water from upland catchments. The problem with relying on these measures is that as the water residence time increases, the variation in the stable isotope signal decreases. After a maximum period of four years, no variation can be detected This means that to date, the residence time in upland catchments is likely to have been vastly underestimated. Consequently, the proportion of water flow out of upland river catchments to the total river flow is also underestimated. Tritium (3H) combines directly with water molecules and enters the flow paths with the infiltrating water. Its half-life (12.32 years) makes it ideal to describe residence times in upper catchment reservoirs as it can theoretically measure water up to about 150 years old. The bomb pulse peak in the southern hemisphere was several orders of magnitude lower than in the northern hemisphere. Hence the

  19. Establishing Pine Monocultures and Mixed Pine-Hardwood Stands on Reclaimed Surface Mined Land in Eastern Kentucky: Implications for Forest Resilience in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Geoffrey Bell

    2017-10-01

    Full Text Available Surface mining and mine reclamation practices have caused significant forest loss and forest fragmentation in Appalachia. Shortleaf pine (Pinus echinata is threatened by a variety of stresses, including diseases, pests, poor management, altered fire regimes, and climate change, and the species is the subject of a widescale restoration effort. Surface mines may present opportunity for shortleaf pine restoration; however, the survival and growth of shortleaf pine on these harsh sites has not been critically evaluated. This paper presents first-year survival and growth of native shortleaf pine planted on a reclaimed surface mine, compared to non-native loblolly pine (Pinus taeda, which has been highly successful in previous mined land reclamation plantings. Pine monoculture plots are also compared to pine-hardwood polyculture plots to evaluate effects of planting mix on tree growth and survival, as well as soil health. Initial survival of shortleaf pine is low (42%, but height growth is similar to that of loblolly pine. No differences in survival or growth were observed between monoculture and polyculture treatments. Additional surveys in coming years will address longer-term growth and survival patterns of these species, as well as changes to relevant soil health endpoints, such as soil carbon.

  20. Resilience of Alaska's Boreal Forest to Climatic Change

    Science.gov (United States)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; hide

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  1. Evidence that soil aluminum enforces site fidelity of southern New England forest trees

    Science.gov (United States)

    S. W. Bigelow; C. D. Canham

    2010-01-01

    Tree species composition of hardwood forests of the northeastern United States corresponds with soil chemistry, and differential performance along soil calcium (Ca) gradients has been proposed as a mechanism for enforcing this fidelity of species to site. We conducted studies in a southern New England forest to test if surface-soil Ca is more important than other...

  2. Future forest aboveground carbon dynamics in the central United States: the importance of forest demographic processes

    Science.gov (United States)

    Wenchi Jin; Hong S. He; Frank R. Thompson; Wen J. Wang; Jacob S. Fraser; Stephen R. Shifley; Brice B. Hanberry; William D. Dijak

    2017-01-01

    The Central Hardwood Forest (CHF) in the United States is currently a major carbon sink, there are uncertainties in how long the current carbon sink will persist and if the CHF will eventually become a carbon source. We used a multi-model ensemble to investigate aboveground carbon density of the CHF from 2010 to 2300 under current climate. Simulations were done using...

  3. Intentional systems management: managing forests for biodiversity.

    Science.gov (United States)

    A.B. Carey; B.R. Lippke; J. Sessions

    1999-01-01

    Conservation of biodiversity provides for economic, social, and environmental sustainability. Intentional management is designed to manage conflicts among groups with conflicting interests. Our goal was to ascertain if intentional management and principles of conservation of biodiversity could be combined into upland and riparian forest management strategies that would...

  4. 40 years of hardwood lumber comsumption: 1963 to 2002

    Science.gov (United States)

    William Luppold; Matthew Bumgardner

    2008-01-01

    An analysis of hardwood lumber consumption found that demand has changed dramatically over the past four decades as a result of material substitution, changes in construction and remodeling products markets, and globalization. In 1963 furniture producers consumed 36 percent of the hardwood products lumber used by domestic manufacturers. Producers of hardwood...

  5. Early successional forest habitats and water resources

    Science.gov (United States)

    James Vose; Chelcy Ford

    2011-01-01

    Tree harvests that create early successional habitats have direct and indirect impacts on water resources in forests of the Central Hardwood Region. Streamflow increases substantially immediately after timber harvest, but increases decline as leaf area recovers and biomass aggrades. Post-harvest increases in stormflow of 10–20%, generally do not contribute to...

  6. On the potential of Kriging for forest management planning

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, F

    1997-12-31

    Forest management planning aims at fulfilling the overall goals for the forest owner. The economic optimal scheduling of treatments in spatially discrete forest stands, the time dimension, has been thoroughly investigated in research. The spatial dimension is less investigated. Normally, spatially discrete stands are defined as treatment units. These are inventoried using subjective methods with unknown precision. As an alternative to this conventional way to describe the forest, the present investigation used kriging for estimating forest characteristics spatially continuously using georeferenced sample plots. Using stratification by age, several variables interesting for forest management planning displayed spatial autocorrelation, even though the estate was thoroughly managed. No hardwood variables displayed the autocorrelation necessary for using kriging. 20 refs, 6 figs, 2 tabs

  7. Statistical data on forest fund of Russia and changing of forest productivity in the second half of XX century

    Science.gov (United States)

    Alexeyev V.A.; Markov M.V.; R.A. Birdsey; Birdsey R.A.

    2004-01-01

    Contains statistical data on area and growing-stock volume of forest lands in Oblasts, Krays and Republics of Russian Federation, for the period 1961-1998. Positive dynamics of average growing stock for coniferous, deciduous hardwood and deciduous softwood tree stands by stand-age groups were disclosed. The impact of main anthropogenic and natural factors, including...

  8. Are there regional differences in US hardwood product exports?

    Science.gov (United States)

    Matt Bumgardner; Scott Bowe; William Luppold

    2016-01-01

    Exporting is a critical component of the product mix for many domestic hardwood firms. Previous research has identified factors associated with hardwood lumber exporting behavior, but less is known about the advantages and disadvantages to exporting associated with the region within which a firm is located, or about exporting of secondary hardwood products. A procedure...

  9. Silvicultural systems for southern bottomland hardwood forests

    Science.gov (United States)

    James S. Meadows; John A. Stanturf

    1997-01-01

    Silvicultural systems integrate both regeneration and intermediate operations in an orderly process for managing forest stands. The clearcutting method of regeneration favors the development of species that are moderately intolerant to intolerant of shade. In fact, clearcutting is the most proven and widely used method of successfully regenerating bottomland oak...

  10. U.S. Hardwood Imports Grow as World Supplies Expand

    Science.gov (United States)

    William C. Siegel; Clark Row

    1965-01-01

    Rapidly increasing imports have captured a significant share of America's hardwood markets. Total imports of hardwood raw materials and building products are now four times as large as exports. Before World War II the U. S. was a net exporter of hardwoods, and imports were limited to high-quality mahogany and specialty logs and lumber. Availability of large...

  11. Resilience of Alaska’s boreal forest to climatic change

    Science.gov (United States)

    Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.

    2010-01-01

    This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  12. Impact of Market-Based Disturbance on the Composition of West Virginia's Forest Resource

    Science.gov (United States)

    William G. Luppold; John E. Baumgras; John E. Baumgras

    2000-01-01

    The eastern hardwood resource has been shaped by a combination of human and natural disturbances. This impact on the forest resources of West Virginia has been especially dramatic. This resource has changed from a virgin forest dominated white oak, chestnut, spruce, white pine, and hemlock in the late 19th century, to one dominated by red oak in the 1950's, to...

  13. Successes and failures in controlling weeds in hardwood seedbeds at the Arkansas Forestry Commission Baucum Forest Nursery

    Science.gov (United States)

    Allan Murray

    2009-01-01

    Fumigation with methyl bromide is essential in the production of hardwood seedlings in nurseries in the southern United States. However, the proposed rules under the 2008 U.S. Environmental Protection Agency (EPA) Risk Mitigation will further restrict the use of methyl bromide for nursery use.

  14. Production of nitrous oxide and consumption of methane by forest soils

    Science.gov (United States)

    Keller, M.; Wofsy, S. C.; Kaplan, W. A.; Mcelroy, M. B.; Goreau, T. J.

    1983-01-01

    Soils in an Amazonian rainforest are observed to release N2O at a rate larger than the global mean by about a factor of 20. Emissions from a New England hardwood forest are approximately 30 times smaller then Brazilian values. Atmospheric methane is consumed by soils in both systems. Tropical forests would provide a major source of atmospheric N2O if the Brazilian results are representative.

  15. Gluing of Eastern Hardwoods: A Review

    Science.gov (United States)

    Terry Sellers; James R. McSween; William T. Nearn

    1988-01-01

    Over a period of years, inrreasing demand for softwoods in the Eastern United States has led to an increase in the growth of hardwoods on cut-over softwood sites. Unfortunately these hardwood trees are often of a size and shape unsuitable for the production of high-grade lumber and veneer. They do, however, represent a viable, economic soures of raw material for...

  16. Remote Assessment of Forest Ecosystem Stress (RAFES): Development of a Real Time Decision Support Tool for the Eastern U.S

    Science.gov (United States)

    Clinton, B.; Vose, J.; Novick, K.; Liu, Y.

    2011-12-01

    Drier and warmer conditions predicted with climate change models are likely to significantly impact forest ecosystems over the next several decades. The U.S. has experienced significant droughts over the past several years that have increased the susceptibility of forests to insect outbreaks, disease, and wildfire. Weather data collected with traditional approaches provide an indirect measure of drought or temperature stress; however, the significance of short-term or prolonged climate-related stress varies considerably across the landscape as topography, elevations, edaphic condition and antecedent conditions vary. This limits the capacity of land managers to anticipate and initiate management activities that could offset the impacts of climate-related forest stress. Decision support tools are needed that allow fine scale monitoring of stress conditions in forest ecosystems in real time to help land managers evaluate response strategies. To assist land managers in managing the impacts of climate change, we are developing a stress monitoring and decision support system across multiple sites in the eastern U.S. that (1) provides remote data capture of environmental parameters that quantify climate-related forest stress, (2) links remotely captured data with physiologically-based indices of tree water stress, and (3) provides a PC-based analytical tool for land managers to monitor and assess the severity of climate-related stress. Currently the network represents southern coastal plain pine plantation, Atlantic coastal flatwoods mixed pine-hardwood, southern piedmont upland mixed pine-hardwood, southern Appalachian dry ridge and mesic riparian, southern Arkansas managed mature pine, and northern Minnesota mature aspen. The strategy for selecting additional sites for the network will be a focus on at-risk ecosystems deemed particularly vulnerable to the affects of predicted climate change such as those in ecotonal transition regions, or those at the fringes of their

  17. Amazonian forest restoration: an innovative system for native species selection based on phenological data and performance indices

    Science.gov (United States)

    Oliver H. Knowles; John A. Parrotta

    1995-01-01

    One hundred and sixty taxa of upland moist forest trees were studied with reference to their suitability for forest restoration on bauxite mined Iands in western Para State, Brazil. Over a 14-year period, field observations in native primary forests, nursery studies, and evaluations of over 600 ha of mixed-species reforestation areas were used to characterize fruiting...

  18. Boreal Forests of Kamchatka: Structure and Composition

    OpenAIRE

    Eichhorn, Markus P.

    2010-01-01

    Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-domi...

  19. Bird species diversity and nesting success in mature, clearcut and shelterwood forest in northern New Hampshire, USA

    Science.gov (United States)

    David I. King; Richard M. DeGraaf

    2000-01-01

    Bird species distribution and predation rates on natural and artificial nests were compared among unmanaged mature, shelterwood, and clearcut northern hardwoods forest to evaluate the effect of these practices on bird populations. Twenty-three of the 48 bird species detected during the study differed significantly in abundance among unmanaged mature forest,...

  20. 77 FR 71017 - Hardwood Plywood From China

    Science.gov (United States)

    2012-11-28

    ...)] Hardwood Plywood From China Determinations On the basis of the record \\1\\ developed in the subject... plywood from China that are allegedly subsidized and sold in the United States at less than fair value... and subsidized imports of hardwood plywood from China. Accordingly, effective September 27, 2012, the...

  1. Forest nutrient and carbon pools at Walker Branch watershed: changes during a 21-year period

    Science.gov (United States)

    Carl C. Trettin; D.W. Johnson; D.E. Todd

    1999-01-01

    A 21-yr perspective on changes in nutrient and C pools on undisturbed upland forest sites is provided. Plots originally representing four cover types have been sampled three times. On each plot, forest biomass, forest floor, and soil, to a depth of 60 cm, were measured, sampled, and analyzed for Ca, Mg, C, N, and P. Exchangeable soil Ca and Mg have declined in most...

  2. Effect of vertical integration on the utilization of hardwood resources

    Science.gov (United States)

    Jan Wiedenbeck

    2002-01-01

    The effectiveness of vertical integration in promoting the efficient utilization of the hardwood resource in the eastern United States was assessed during a series of interviews with vertically integrated hardwood manufacturers in the Appalachian region. Data from 19 companies that responded to the 1996 phone survey indicate that: 1) vertically integrated hardwood...

  3. Causes and Remedies for Errors in International Forest Products Trade Data: Examples from the Hardwood Trade Statistics

    Science.gov (United States)

    William G. Luppold; William G. Luppold

    1995-01-01

    The quality of data concerning international hardwood products trade declined in the 1980s because of several problems associated with the collection and processing of individual export transaction records. This note examines the source, impact, and remedies for data problems caused by data screening procedures, nonreporting, recording errors, and alternative...

  4. Groundwater connectivity of upland-embedded wetlands in the Prairie Pothole Region

    Science.gov (United States)

    Neff, Brian; Rosenberry, Donald O.

    2018-01-01

    Groundwater connections from upland-embedded wetlands to downstream waterbodies remain poorly understood. In principle, water from upland-embedded wetlands situated high in a landscape should flow via groundwater to waterbodies situated lower in the landscape. However, the degree of groundwater connectivity varies across systems due to factors such as geologic setting, hydrologic conditions, and topography. We use numerical models to evaluate the conditions suitable for groundwater connectivity between upland-embedded wetlands and downstream waterbodies in the prairie pothole region of North Dakota (USA). Results show groundwater connectivity between upland-embedded wetlands and other waterbodies is restricted when these wetlands are surrounded by a mounding water table. However, connectivity exists among adjacent upland-embedded wetlands where water–table mounds do not form. In addition, the presence of sand layers greatly facilitates groundwater connectivity of upland-embedded wetlands. Anisotropy can facilitate connectivity via groundwater flow, but only if it becomes unrealistically large. These findings help consolidate previously divergent views on the significance of local and regional groundwater flow in the prairie pothole region.

  5. Marketing low-grade hardwoods for furniture stock - a new approach

    Science.gov (United States)

    Hugh W. Reynolds; Charles J. Gatchell

    1979-01-01

    A hardwood shortage of high-grade lumber exists while there is a surplus of low-grade hardwood timber. Two things are needed for the surplus to correct the shortage: a new manufacturing system and a new marketing technique. Utilization research at the Princeton Forestry Sciences Laboratory has developed the new system for converting low-grade hardwood for furniture use...

  6. Simulated Nitrogen Deposition has Minor Effects on Ecosystem Pools and Fluxes of Energy, Elements, and Biochemicals in a Northern Hardwoods Forest

    Science.gov (United States)

    Talhelm, A. F.; Pregitzer, K. S.; Burton, A. J.; Xia, M.; Zak, D. R.

    2017-12-01

    The elemental and biochemical composition of plant tissues is an important influence on primary productivity, decomposition, and other aspects of biogeochemistry. Human activity has greatly altered biogeochemical cycles in ecosystems downwind of industrialized regions through atmospheric nitrogen deposition, but most research on these effects focuses on individual elements or steps in biogeochemical cycles. Here, we quantified pools and fluxes of biomass, the four major organic elements (carbon, oxygen, hydrogen, nitrogen), four biochemical fractions (lignin, structural carbohydrates, cell walls, and soluble material), and energy in a mature northern hardwoods forest in Michigan. We sampled the organic and mineral soil, fine and coarse roots, leaf litter, green leaves, and wood for chemical analyses. We then combined these data with previously published and archival information on pools and fluxes within this forest, which included replicated plots receiving either ambient deposition or simulated nitrogen deposition (3 g N m-2 yr-1 for 18 years). Live wood was the largest pool of energy and all elements and biochemical fractions. However, the production of wood, leaf litter, and fine roots represented similar fluxes of carbon, hydrogen, oxygen, cell wall material, and energy, while nitrogen fluxes were dominated by leaf litter and fine roots. Notably, the flux of lignin via fine roots was 70% higher than any other flux. Experimental nitrogen deposition had relatively few significant effects, increasing foliar nitrogen, increasing the concentration of lignin in the soil organic horizon and decreasing pools of all elements and biochemical fractions in the soil organic horizon except nitrogen, lignin, and structural carbohydrates. Overall, we found that differences in tissue chemistry concentrations were important determinants of ecosystem-level pools and fluxes, but that nitrogen deposition had little effect on concentrations, pools, or fluxes in this mature forest

  7. Effects of past logging and grazing on understory plant communities in a montane Colorado forest

    Science.gov (United States)

    Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stohlgren, T.J.

    2009-01-01

    Throughout Pinus ponderosa-Pseudotsuga menziesii forests of the southern Colorado Front Range, USA, intense logging and domestic grazing began at the time of Euro-American settlement in the late 1800s and continued until the early 1900s. We investigated the long-term impacts of these settlement-era activities on understory plant communities by comparing understory composition at a historically logged and grazed site to that of an environmentally similar site which was protected from past use. We found that species richness and cover within functional groups rarely differed between sites in either upland or riparian areas. Multivariate analyses revealed little difference in species composition between sites on uplands, though compositional differences were apparent in riparian zones. Our findings suggest that settlement-era logging and grazing have had only minor long-term impacts on understories of upland Front Range P. ponderosa-P. menziesii forests, though they have had a greater long-term influence on riparian understories, where these activities were likely the most intense. ?? 2008 Springer Science+Business Media B.V.

  8. Automatic Edging and Trimming of Hardwood Lumber

    Science.gov (United States)

    D. Earl Kline; Eugene M. Wengert; Philip A. Araman

    1990-01-01

    Studies have shown that there is a potential to increase hardwood lumber value by more than 20 percent through optimum edging and trimming. Even a small portion of this percentage can boost the profitability of hardwood lumber manufacturers substantially. The objective of this research project is to develop an automated system which would assist in correct edging and...

  9. The pallet industry: a changing hardwood market

    Science.gov (United States)

    G.P. Dempsey; D.G. Martens

    1991-01-01

    From its inception during World War II, the wooden pallet industry has grown to become the Nation's largest industrial consumer of hardwood lumber products. Since most of the raw material in wooden pallets is lower grade lumber, the pallet industry's growth, efficiency, and changing raw material inputs must be of concern to the grade hardwood lumber industry...

  10. Organotin compounds in precipitation, fog and soils of a forested ecosystem in Germany

    International Nuclear Information System (INIS)

    Huang, J.-H.; Schwesig, David; Matzner, Egbert

    2004-01-01

    Organotin compounds (OTC) are highly toxic pollutants and have been mostly investigated so far in aquatic systems and sediments. The concentrations and fluxes of different organotin compounds, including methyl-, butyl-, and octyltin species in precipitation and fog were investigated in a forested catchment in NE Bavaria, Germany. Contents, along with the vertical distribution and storages in two upland and two wetland soils were determined. During the 1-year monitoring, the OTC concentrations in bulk deposition, throughfall and fog ranged from 1 ng Sn l -1 to several ten ng Sn l -1 , but never over 200 ng Sn l -1 . The OTC concentrations in fog were generally higher than in throughfall and bulk deposition. Mono-substituted species were the dominant Sn species in precipitation (up to 190 ng Sn l -1 ) equaling a flux of up to 70 mg Sn ha -1 a -1 . In upland soils, OTC contents peaked in the forest floor (up to 30 ng Sn g -1 ) and decreased sharply with the depth. In wetland soils, OTC had slightly higher contents in the upper horizons. The dominance of mono-substituted species in precipitation is well reflected in the contents and storages of OTC in both upland and wetland soils. The ratios of OTC soil storages to the annual throughfall flux ranged from 20 to 600 years. These high ratios are probably due to high stability and low mobility of OTC in soils. No evidence was found for methylation of tin in the wetland soils. In comparison with sediments, concentrations and contents of organotin in forest soils are considerably lower, and the dominant species are less toxic. It is concluded that forested soils may act as sinks for OTC deposited from the atmosphere. - Forested soils may act as sinks for atmospherically deposited organotin compounds

  11. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont.

    Science.gov (United States)

    Beckage, Brian; Osborne, Ben; Gavin, Daniel G; Pucko, Carolyn; Siccama, Thomas; Perkins, Timothy

    2008-03-18

    Detecting latitudinal range shifts of forest trees in response to recent climate change is difficult because of slow demographic rates and limited dispersal but may be facilitated by spatially compressed climatic zones along elevation gradients in montane environments. We resurveyed forest plots established in 1964 along elevation transects in the Green Mountains (Vermont) to examine whether a shift had occurred in the location of the northern hardwood-boreal forest ecotone (NBE) from 1964 to 2004. We found a 19% increase in dominance of northern hardwoods from 70% in 1964 to 89% in 2004 in the lower half of the NBE. This shift was driven by a decrease (up to 76%) in boreal and increase (up to 16%) in northern hardwood basal area within the lower portions of the ecotone. We used aerial photographs and satellite imagery to estimate a 91- to 119-m upslope shift in the upper limits of the NBE from 1962 to 2005. The upward shift is consistent with regional climatic change during the same period; interpolating climate data to the NBE showed a 1.1 degrees C increase in annual temperature, which would predict a 208-m upslope movement of the ecotone, along with a 34% increase in precipitation. The rapid upward movement of the NBE indicates little inertia to climatically induced range shifts in montane forests; the upslope shift may have been accelerated by high turnover in canopy trees that provided opportunities for ingrowth of lower elevation species. Our results indicate that high-elevation forests may be jeopardized by climate change sooner than anticipated.

  12. Using Florida Keys Reference Sites As a Standard for Restoration of Forest Structure in Everglades Tree Islands

    International Nuclear Information System (INIS)

    Ross, M.S.; Sah, J.P.; Ruiz, P.L.; Ross, M.S.; Ogurcak, D.E.

    2010-01-01

    In south Florida, tropical hardwood forests (hammocks) occur in Everglades tree islands and as more extensive forests in coastal settings in the nearby Florida Keys. Keys hammocks have been less disturbed by humans, and many qualify as old-growth, while Everglades hammocks have received much heavier use. With improvement of tree island condition an important element in Everglades restoration efforts, we examined stand structure in 23 Keys hammocks and 69 Everglades tree islands. Based on Stand Density Index and tree diameter distributions, many Everglades hammocks were characterized by low stocking and under-representation in the smaller size classes. In contrast, most Keys forests had the dense canopies and open under stories usually associated with old-growth hardwood hammocks. Subject to the same caveats that apply to off-site references elsewhere, structural information from mature Keys hammocks can be helpful in planning and implementing forest restoration in Everglades tree islands. In many of these islands, such restoration might involve supplementing tree stocking by planting native trees to produce more complete site utilization and a more open under story.

  13. The emergence densities of annual cicadas (Hemiptera: Cicadidae) increase with sapling density and are greater near edges in a bottomland hardwood forest.

    Science.gov (United States)

    Chiavacci, Scott J; Bednarz, James C; McKay, Tanja

    2014-08-01

    The emergence densities of cicadas tend to be patchy at multiple spatial scales. While studies have identified habitat conditions related to these patchy distributions, their interpretation has been based primarily on periodical cicada species; habitat factors associated with densities of nonperiodical (i.e., annual) cicadas have remained under studied. This is despite their widespread distribution, diversity, and role as an important trophic resource for many other organisms, particularly within riparian areas. We studied habitat factors associated with the emergence densities of Tibicen spp. in a bottomland hardwood forest in east-central Arkansas. We found emergence densities were greatest in areas of high sapling densities and increased toward forest edges, although sapling density was a much stronger predictor of emergence density. Emergence densities also differed among sample areas within our study system. The habitat features predicting nymph densities were likely driven by a combination of factors affecting female selection of oviposition sites and the effects of habitat conditions on nymph survival. The differences in nymph densities between areas of our system were likely a result of the differential effects of flooding in these areas. Interestingly, our findings were similar to observations of periodical species, suggesting that both types of cicadas select similar habitat characteristics for ovipositing or are under comparable selective pressures during development. Our findings also imply that changes in habitat characteristics because of anthropogenically altered disturbance regimes (e.g., flooding) have the potential to negatively impact both periodical and annual species, which could have dramatic consequences for organisms at numerous trophic levels.

  14. Initial observations on tree mortality following a severe drought in 2012 in two Indiana state forests and implications for long-term compositional dynamics

    Science.gov (United States)

    Andrew R. Meier; Mike R. Saunders

    2014-01-01

    Compositional and structural changes in response to silvicultural treatments in forest stands are well documented (e.g., Saunders and Wagner 2008), but the stochastic nature of natural disturbance events often precludes direct observation of their impacts on stand dynamics. Though the current dominance of oak-hickory forest types in the Central Hardwoods Forest region...

  15. Sixth-Year Results Following Partial Cutting For Timber and Wildlife Habitat in a Mixed Oak-Sweetgum-Pine Stand on a Minor Creek Terrace in Southeast Louisiana

    Science.gov (United States)

    Brian Roy Lockhart; Norwin E. Linnartz

    2002-01-01

    Hardwood management has primarily focused on highly productive river bottom and upland sites. Less is known about hardwood growth and development on terrace sites. Such sites are usually converted to other uses, especially pine plantations. The objectives of this study, implemented in a minor creek terrace in southeast Louisiana, were to describe changes in stand...

  16. Short-Term Response of Native Flora to the Removal of Non-Native Shrubs in Mixed-Hardwood Forests of Indiana, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Shields

    2015-05-01

    Full Text Available While negative impacts of invasive species on native communities are well documented, less is known about how these communities respond to the removal of established populations of invasive species. With regard to invasive shrubs, studies examining native community response to removal at scales greater than experimental plots are lacking. We examined short-term effects of removing Lonicera maackii (Amur honeysuckle and other non-native shrubs on native plant taxa in six mixed-hardwood forests. Each study site contained two 0.64 ha sample areas—an area where all non-native shrubs were removed and a reference area where no treatment was implemented. We sampled vegetation in the spring and summer before and after non-native shrubs were removed. Cover and diversity of native species, and densities of native woody seedlings, increased after shrub removal. However, we also observed significant increases in L. maackii seedling densities and Alliaria petiolata (garlic mustard cover in removal areas. Changes in reference areas were less pronounced and mostly non-significant. Our results suggest that removing non-native shrubs allows short-term recovery of native communities across a range of invasion intensities. However, successful restoration will likely depend on renewed competition with invasive species that re-colonize treatment areas, the influence of herbivores, and subsequent control efforts.

  17. Environmental Factors that Influence Physiological Functioning of Eight Bottomland Hardwood Species

    Science.gov (United States)

    Kassahun, Z.; Renninger, H. J.

    2017-12-01

    With increases in extreme precipitation, flooding, and prolonged drought events in the southeastern United States, bottomland hardwood forests are expected to experience a drastic shift in their productivity and composition. As environmental conditions shift, certain tree species may experience an increase in productivity or could be more negatively affected over more resilient species, leading to a shift in species composition, water use, and carbon uptake. The goals of this research were to use sap flow measurements, leaf phenology, and photosynthetic rates to study species-specific responses to environmental drivers. Sap flow of eight co-occurring hardwood species as well as soil moisture and vapor pressure deficit were measured continuously over the course of a calendar year that included drought conditions and extended saturated soil conditions. We found that cherrybark oak used the most water during the growing season, about 20% more water than the next highest consumer, swamp chestnut oak. Given low, ample or saturated soil moisture conditions, we found that sap flow of winged elm, American elm, cherrybark oak, and shagbark hickory exhibited varying relationships with vapor pressure deficit under the different soil moisture conditions. While the relationship between sap flow and vapor pressure deficit did not differ depending on soil moisture in willow oak, swamp chestnut oak, and green ash. This suggests that winged elm, American elm, cherrybark oak, and shagbark hickory may be more negatively affected by drought conditions while willow oak, swamp chestnut oak, and green ash are more drought tolerant. Regarding leaf phenology, willow oak, cherrybark oak, and shagbark hickory were the first to experience leaf abscission at the end of the growing season when extended drought conditions occurred. In terms of leaf gas exchange, green ash exhibited the highest photosynthesis and transpiration rates, resulting in the lowest water-use efficiency compared with

  18. Decision Criteria for German Hardwood Lumber Buyers: Market Needs and Purchase

    Science.gov (United States)

    Thomas G. Ponzurick; Robert J. Bush; Dieter Schaupp; Philip A. Araman

    1993-01-01

    The purpose of this study was to develop a better understanding of hardwood exports to the German market. A mail survey was conducted which resulted in a 47.8 percent rate of response. Of those German hardwood buyers responding to the survey, 71 percent purchased hardwood lumber directly from North America.

  19. Spatial variation in population dynamics of Sitka mice in floodplain forests.

    Science.gov (United States)

    T.A. Hanley; J.C. Barnard

    1999-01-01

    Population dynamics and demography of the Sitka mouse, Peromyscus keeni sitkensis, were studied by mark-recapture live-trapping over a 4-year period in four floodplain and upland forest habitats: old-growth Sitka spruce (Picea sitchensis) floodplain; red alder (Alnus rubra) floodplain; beaver-pond...

  20. Incidence and impact of damage and mortality trends to South Carolina's timber, 1986

    Science.gov (United States)

    Robert L. Anderson; Noel D. Cost; William H. Hoffard; Clair Redmond; Joe Glover

    1990-01-01

    On South Carolina's 12.2 million acres of timberland, 186 million cubic feet of timber were lost annually to mortality and cull between 1978 and 1986. The estimated annual monetary loss was $97.3 million. Among broad management types. natural pine, planted pine, upland hardwoods, and bottomland hardwoods - the greatest loss occurred in natural pine stands. About...

  1. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest.

    Science.gov (United States)

    Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K

    2014-09-01

    Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG-CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle.

  2. Do region and gender influence hardwood product selection?

    Science.gov (United States)

    Delton Alderman

    2013-01-01

    Consumer preference is a fundamental focus of marketing research as it is used in developing marketing strategy and the positioning of products against competitors. This study evaluated consumer hardwood preferences of consumers from three United States geographical regions, which included six different metropolitan areas. Seven hardwood species and three laminate...

  3. Nondestructive evaluation of incipient decay in hardwood logs

    Science.gov (United States)

    Xiping Wang; Jan Wiedenbeck; Robert J. Ross; John W. Forsman; John R. Erickson; Crystal Pilon; Brian K. Brashaw

    2005-01-01

    Decay can cause significant damage to high-value hardwood timber. New nondestructive evaluation (NDE) technologies are urgently needed to effectively detect incipient decay in hardwood timber at the earliest possible stage. Currently, the primary means of inspecting timber relies on visual assessment criteria. When visual inspections are used exclusively, they provide...

  4. Influence of markets and forest composition on lumber production in Pennsylvania

    Science.gov (United States)

    William G. Luppold; Matthew S. Bumgardner

    2006-01-01

    In this study, we examine regional differences in the hardwood timber resources of Pennsylvania and how the combined changes in inventory volume, forest composition, and lumber prices have influenced regional lumber production. Isolation of these relationships is important because shifts in lumber production reflect changes in harvesting activity. In turn, harvesting...

  5. Consequences of landscape patterns on the genetic composition of remnant hardwood stands in the Southeast: A pilot study.

    Energy Technology Data Exchange (ETDEWEB)

    Godt, Mary Jo, W.; Hamrick, J., L.

    2003-01-01

    Report of a pilot study intended to generate genetic data for a tree species in fragmented hardwood stands. It was anticipated that this data would permit assessment of the feasibility of long-term genetic research for which external funding support could be generated. A second objective was to initiate studies that addressed fundamental questions of how landscape structure, in conjunction with the population dynamics and reproductive characteristics of the tree species, influences genetic structure and long-term viability of hardwood forest stands on the Savannah River Site and in similar southeastern landscapes. Fragmentation of plant habitats can result in small, genetically isolated populations. Spatial isolation and small population size may have several consequences, including reduced reproduction, increased inbreeding and the stochastic loss of genetic variability. Such losses of genetic and genotypic diversity can reduce plant fitness and may diminish population viability. Deleterious genetic effects resulting from small population sizes can be ameliorated by gene flow via pollen and seed into fragmented populations.

  6. Canadian forest service. Science and sustainable development directorate: Arnews: Annual report 1992. Information report No. 7

    Energy Technology Data Exchange (ETDEWEB)

    Van Sickle, J.P.; Hall, J.P.

    1993-01-01

    ARNEWS is a program managed by FIDS (Forest Insect and Disease Survey). It has been in place since 1984 to detect early signs of damage to Canadian forests. ARNEWS (Acid Rain National Early Warning System) is a long-term biomonitoring program designed to detect changes in forest vegetation and soils. ARNEWS consists of 103 permanent sample plots located in all 10 provinces. The health of 18 conifer and 9 hardwood species is described. This document presents methods used, the health of Canada's forests, discussion and conclusions.

  7. An econometric model of the hardwood lumber market

    Science.gov (United States)

    William G. Luppold

    1982-01-01

    A recursive econometric model with causal flow originating from the demand relationship is used to analyze the effects of exogenous variables on quantity and price of hardwood lumber. Wage rates, interest rates, stumpage price, lumber exports, and price of lumber demanders' output were the major factors influencing quantities demanded and supplied and hardwood...

  8. Match Your Hardwood Lumber to Current Market Needs

    Science.gov (United States)

    Robert J. Bush; Steven A. Sinclair; Philip A. Araman

    1990-01-01

    This article explains how hardwood lumber producers can best market their product. The study included four segments of the market for hardwood lumber. These segments were: furniture, cabinet, dimension and flooring, and molding/millwork manufacturers. The article explains how the study was conducted and the characteristics of companies (i.e., potential customers) that...

  9. Variation in wood anatomy of species with a distribution covering both rain forest and savanna areas of the Ivory Coast, West-Africa

    NARCIS (Netherlands)

    Outer, den R.W.; Veenendaal, van W.L.H.

    1976-01-01

    The variation in wood anatomy within 30 hardwood species, each with a distribution covering both rain forest and savanna areas of the Ivory Coast, Africa, has been studied. Compared to specimens from the rain forest, material from the savanna tends to have more wood ray tissue (rays are higher,

  10. Structure and resilience of fungal communities in Alaskan boreal forest soils

    Science.gov (United States)

    D. Lee Taylor; Ian C. Herriott; Kelsie E. Stone; Jack W. McFarland; Michael G. Booth; Mary Beth Leigh

    2010-01-01

    This paper outlines molecular analyses of soil fungi within the Bonanza Creek Long Term Ecological Research program. We examined community structure in three studies in mixed upland, black spruce (Picea mariana (Mill.) BSP), and white spruce (Picea glauca (Moench) Voss) forests and examined taxa involved in cellulose...

  11. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  12. Adoption Study Of Seed Priming Technology In Upland Rice ...

    African Journals Online (AJOL)

    Adoption study was carried out during 2003 cropping season on randomly selected 83 farmers out of the 300 that participated in the upland rice seed priming technology transfer between year 2000 – 2002 to determine the impact of the technology on upland rice production in five States of Nigeria, through the use of ...

  13. Silvicultural guide for northern hardwoods in the northeast

    Science.gov (United States)

    William B. Leak; Mariko Yamasaki; Robbo. Holleran

    2014-01-01

    This revision of the 1987 silvicultural guide includes updated and expanded silvicultural information on northern hardwoods as well as additional information on wildlife habitat and the management of mixed-wood and northern hardwood-oak stands. The prescription methodology is simpler and more field-oriented. This guide also includes an appendix of familiar tables and...

  14. A new tree classification system for southern hardwoods

    Science.gov (United States)

    James S. Meadows; Daniel A. Jr. Skojac

    2008-01-01

    A new tree classification system for southern hardwoods is described. The new system is based on the Putnam tree classification system, originally developed by Putnam et al., 1960, Management ond inventory of southern hardwoods, Agriculture Handbook 181, US For. Sew., Washington, DC, which consists of four tree classes: (1) preferred growing stock, (2) reserve growing...

  15. Comparison of snag densities among regeneration treatments in mixed pine-hardwood forests

    Science.gov (United States)

    Roger W. Perry; Ronald E. Thill

    2013-01-01

    Standing dead trees (snags) are an important component of forest ecosystems, providing foraging, nesting, and roosting substrate for a variety of vertebrates. We examined the effects of four forest regeneration treatments on residual snag density and compared those with densities found in unharvested, naturally regenerated forests (controls) during the second, fourth,...

  16. Wetland forest statistics for the South Atlantic States

    Science.gov (United States)

    Mark J. Brown; Greg M. Smith; Joseph McCollum

    2001-01-01

    Twenty-one percent, or 17.6 million acres, of the timberland in the South Atlantic States was classified as wetland timberland. Sixty percent of the region’s wetland timberland was under nonindustrial private forest ownership. Forty-eight percent of the region’s wetland timberland was classified as sawtimber-sized stands. Lowland hardwood types made up 62 percent of...

  17. Evaluation of Sugar Maple Dieback in the Upper Great Lakes Region and Development of a Forest Health Youth Education Program

    Science.gov (United States)

    Bal, Tara L.

    2013-01-01

    Sugar Maple, "Acer saccharum" Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as…

  18. Floristic conservation value, nested understory floras, and the development of second-growth forest.

    Science.gov (United States)

    Spyreas, Greg; Matthews, Jeffrey W

    2006-08-01

    Nestedness analysis can reveal patterns of plant composition and diversity among forest patches. For nested floral assemblages, the plants occupying any one patch are a nested subset of the plants present in successively more speciose patches. Elimination of sensitive understory plants with human disturbance is one of several mechanisms hypothesized to generate nonrandom, nested floral distributions. Hypotheses explaining distributions of understory plants remain unsubstantiated across broad landscapes of varying forest types and disturbance histories. We sampled the vegetation of 51 floodplain and 55 upland forests across Illinois (USA) to examine how the diversity, composition, and nestedness of understory floras related to their overstory growth and structure (basal area), and their overall floristic conservation value (mean C). We found that plant assemblages were nested with respect to site species richness, such that rare plants indicated diverse forests. Floras were also nested with respect to site mean C and basal area (BA). However, in an opposite pattern from what we had expected, floras of high-BA stands were nested subsets of those of low-BA stands. A set of early-successional plants restricted to low-BA stands, and more importantly, the absence of a set of true forest plants in high-BA stands, accounted for this pattern. Additionally, we observed a decrease in species richness with increasing BA. These results are consistent with the hypothesis that recovery of true forest plants does not occur concurrently with overstory regeneration following massive anthropogenic disturbance. Nestedness by site mean C indicates that high conservation value (conservative) plants co-occur in highly diverse stands; these forests are assumed to be less disturbed historically. Because site mean C was uncorrelated with BA, BA-neutral disturbances such as livestock usage are suggested as accounting for between-site differences in mean C. When considered individually

  19. Foliar free polyamine and inorganic ion content in relation to soil and soil solution chemistry in two fertilized forest stands at the Harvard Forest, Massachusetts

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long; Alison H. Magill; John Aber; William H. McDowell

    2000-01-01

    Polyamines (putrescine, spermidine, and spermine) are low molecular weight, open-chained, organic polycations which are found in all organisms and have been linked with stress responses in plants. The objectives of our study were to investigate the effects of chronic N additions to pine and hardwood stands at Harvard Forest, Petersham, MA on foliar polyamine and...

  20. Forest pest conditions in the maritimes in 1992. Information report No. M-X-183E. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Magasi, L.P.; Cormier, J.R.

    1993-01-01

    Review of the status of forest insects and diseases in the Maritimes Region in 1992, along with forecast conditions for 1993 when appropriate. Describes pests and problems of conifers, hardwoods, and high value areas such as nurseries, seed orchards, plantations, and Christmas tree areas and summarizes control operations against spruce budworm and Sirococcus shoot blight. A chapter on forest health monitoring brings together the various aspects of work dealing with changes in forest conditions. Forest insect monitoring systems, such as pheromones and light traps, are briefly described. A list of reports and publications relating to forest pest conditions is included.

  1. Evaluating the spatial variation of total mercury in young-of-year yellow perch (Perca flavescens), surface water and upland soil for watershed-lake systems within the southern Boreal Shield

    Science.gov (United States)

    Mark C. Gabriel; Randy Kolka; Trent Wickman; Ed Nater; Laurel. Woodruff

    2009-01-01

    The primary objective of this research is to investigate relationships between mercury in upland soil, lake water and fish tissue and explore the cause for the observed spatial variation of THg in age one yellow perch (Perca flavescens) for ten lakes within the Superior National Forest. Spatial relationships between yellow perch THg tissue...

  2. Modeling the hydrologic impacts of forest harvesting on Florida flatwoods

    Science.gov (United States)

    Ge Sun; Hans Rierkerk; Nicholas B. Comerford

    1998-01-01

    The great temporal and spatial variability of pine flatwoods hydrology suggests traditional short-term field methods may not be effective in evaluating the hydrologic effects of forest management. The flatwoods model was developed, calibrated and validated specifically for the cypress wetland-pine upland landscape. The model was applied to two typical flatwoods sites...

  3. Development of radiation processes wood-polymer composites based on tropical hardwoods

    International Nuclear Information System (INIS)

    Iya, V.K.; Majali, A.B.

    1978-01-01

    The wood-polymer composites based on tropical hardwoods were prepared with three monomer systems. Use of chlorinated paraffin oil as an additive imparted fire resistance to the composites and also brought down the gamma dose requirement for total polymerisation. A number of tropical hardwoods can be upgraded by radiation curing, but for cost optimisation, hardwoods with high improvement per unit polymer should be selected. (author)

  4. Examination of worldwide hardwood lumber production, trade, and apparent consumption: 1995-2013

    Science.gov (United States)

    William G. Luppold; Matthew S. Bumgardner

    2015-01-01

    Worldwide hardwood lumber production fluctuated between 1995 and 2013 and changed considerably with respect to regional market shares. Similarly, worldwide hardwood lumber imports and exports have been constantly changing. Understanding these changes is important because collectively, they define the hardwood lumber consumption of a region or country. In 1995, North...

  5. The future of forests and orangutans (Pongo abelii) in Sumatra: predicting impacts of oil palm plantations, road construction, and mechanisms for reducing carbon emissions from deforestation

    Science.gov (United States)

    Gaveau, David L. A.; Wich, Serge; Epting, Justin; Juhn, Daniel; Kanninen, Markku; Leader-Williams, Nigel

    2009-09-01

    Payments for reduced carbon emissions from deforestation (RED) are now attracting attention as a way to halt tropical deforestation. Northern Sumatra comprises an area of 65 000 km2 that is both the site of Indonesia's first planned RED initiative, and the stronghold of 92% of remaining Sumatran orangutans. Under current plans, this RED initiative will be implemented in a defined geographic area, essentially a newly established, 7500 km2 protected area (PA) comprising mostly upland forest, where guards will be recruited to enforce forest protection. Meanwhile, new roads are currently under construction, while companies are converting lowland forests into oil palm plantations. This case study predicts the effectiveness of RED in reducing deforestation and conserving orangutans for two distinct scenarios: the current plan of implementing RED within the specific boundary of a new upland PA, and an alternative scenario of implementing RED across landscapes outside PAs. Our satellite-based spatially explicit deforestation model predicts that 1313 km2 of forest would be saved from deforestation by 2030, while forest cover present in 2006 would shrink by 22% (7913 km2) across landscapes outside PAs if RED were only to be implemented in the upland PA. Meanwhile, orangutan habitat would reduce by 16% (1137 km2), resulting in the conservative loss of 1384 orangutans, or 25% of the current total population with or without RED intervention. By contrast, an estimated 7824 km2 of forest could be saved from deforestation, with maximum benefit for orangutan conservation, if RED were to be implemented across all remaining forest landscapes outside PAs. Here, RED payments would compensate land users for their opportunity costs in not converting unprotected forests into oil palm, while the construction of new roads to service the marketing of oil palm would be halted. Our predictions suggest that Indonesia's first RED initiative in an upland PA may not significantly reduce

  6. The future of forests and orangutans (Pongo abelii) in Sumatra: predicting impacts of oil palm plantations, road construction, and mechanisms for reducing carbon emissions from deforestation

    International Nuclear Information System (INIS)

    Gaveau, David L A; Leader-Williams, Nigel; Wich, Serge; Epting, Justin; Juhn, Daniel; Kanninen, Markku

    2009-01-01

    Payments for reduced carbon emissions from deforestation (RED) are now attracting attention as a way to halt tropical deforestation. Northern Sumatra comprises an area of 65 000 km 2 that is both the site of Indonesia's first planned RED initiative, and the stronghold of 92% of remaining Sumatran orangutans. Under current plans, this RED initiative will be implemented in a defined geographic area, essentially a newly established, 7500 km 2 protected area (PA) comprising mostly upland forest, where guards will be recruited to enforce forest protection. Meanwhile, new roads are currently under construction, while companies are converting lowland forests into oil palm plantations. This case study predicts the effectiveness of RED in reducing deforestation and conserving orangutans for two distinct scenarios: the current plan of implementing RED within the specific boundary of a new upland PA, and an alternative scenario of implementing RED across landscapes outside PAs. Our satellite-based spatially explicit deforestation model predicts that 1313 km 2 of forest would be saved from deforestation by 2030, while forest cover present in 2006 would shrink by 22% (7913 km 2 ) across landscapes outside PAs if RED were only to be implemented in the upland PA. Meanwhile, orangutan habitat would reduce by 16% (1137 km 2 ), resulting in the conservative loss of 1384 orangutans, or 25% of the current total population with or without RED intervention. By contrast, an estimated 7824 km 2 of forest could be saved from deforestation, with maximum benefit for orangutan conservation, if RED were to be implemented across all remaining forest landscapes outside PAs. Here, RED payments would compensate land users for their opportunity costs in not converting unprotected forests into oil palm, while the construction of new roads to service the marketing of oil palm would be halted. Our predictions suggest that Indonesia's first RED initiative in an upland PA may not significantly reduce

  7. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  8. Factors affecting regional changes in hardwood lumber production

    Science.gov (United States)

    William G. Luppold; Gilbert P. Dempsey; Gilbert P. Dempsey

    1994-01-01

    Hardwood lumber production increased by nearly 1.8 billion board feet between 1986 and 1990 and decreased sharply in 1991. However, not all areas of the country experienced the same growth in hardwood lumber production during the 1980s. While lumber production in inland regions of the eastern United States and the west increased during the 1980s, lumber output in...

  9. Evaluation of Upland Rice Genotypes for Efficient Uptake of Nitrogen and Phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Zaharah, A. R.; Hanafi, M. M. [Universiti Putra Malaysia, Serdang, Selangor (Malaysia)

    2013-11-15

    Upland rice grown by subsistence farmers in the tropics and subtropics is known to produce very low yields due to it being planted on low fertility soils and under drought-prone conditions. Little information is available on upland rice cultivar differences in response to N and P fertilization in Asia, thus screening for P (PUE) and N use efficiency (NUE) of upland rice genotypes is a necessary first step. The objectives of the study were: (i) to identify upland rice genotypes with root characteristics favorable for efficient N and P uptake and utilization, (ii) to evaluate the selected genotypes for their grain yield, and (iii) to assess the variability of N and P use efficiency in upland rice genotypes grown under field conditions. Several laboratory, glasshouse and field experiments were carried out from 2007 to 2011 at Universiti Putra Malaysia to achieve the above objectives. Fifteen local and 15 upland rice genotypes from WARDA were identified to have long roots, and it was observed that some of the WARDA lines showed longer root length than the local landraces. This is a good trait since it is known that longer root length will enhance the absorption of easily mobile nutrients such as nitrate and potassium. Glasshouse and field evaluation of N use efficiency by these upland rice genotypes showed that high N is utilized (40-80% of applied N), with good grain yield, and P use efficiency is similar to other crops (4-8%). (author)

  10. Cost, energy use and GHG emissions for forest biomass harvesting operations

    International Nuclear Information System (INIS)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang; Yu, Chunxia

    2016-01-01

    For forest-based biomass to become a significant contribution to the United States' energy portfolio, harvesting operations must be physically feasible and economically viable. An assessment of cost, energy and greenhouse gas (GHG) emissions of forest biomass harvesting was conducted. The assessment differentiates harvesting systems by cut-to-length and whole tree; harvest types of 30%, 70%, and 100% cut; and forest types of hardwoods, softwoods, mixed hardwood/softwood, and softwood plantations. Harvesting cost models were developed for economic assessment and life cycle energy and emission assessment was applied to calculate energy and emissions for different harvesting scenarios, considering material and energy inputs (machinery, diesel, etc.) and outputs (GHG emissions) for each harvesting process (felling, forwarding/skidding, etc.). The developed harvesting cost models and the life cycle energy and emission assessment method were applied in Michigan, U.S. using information collected from different sources. A sensitivity analysis was performed for selected input variables for the harvesting operations in order to explore their relative importance. The results indicated that productivity had the largest impact on harvesting cost followed by machinery purchase price, yearly scheduled hours, and expected utilization. Productivity and fuel use, as well as fuel factors, are the most influential environmental impacts of harvesting operations. - Highlights: • Life cycle energy and emissions for forest biomass harvesting operations. • Harvesting cost models were developed for economic assessment. • Productivity had the largest impact on harvesting cost. • Fuel use contributes the most emissions while lubricants contribute the least.

  11. Identifying forest lands in urban areas in the Central Hardwood Region

    Science.gov (United States)

    Thomas W. Birch; Rachel Riemann Hershey; Philip Kern

    1997-01-01

    Forests in urban areas are an important component of urban and suburban environments. They provide places for recreation and environmental education, wildlife habitat for species adapted to living near humans, contribute to general human physical and psychological health. Knowing how much and what type of forest exists in urban areas provides critical baseline data for...

  12. Relating P-band AIRSAR backscatter to forest stand parameters

    Science.gov (United States)

    Wang, Yong; Melack, John M.; Davis, Frank W.; Kasischke, Eric S.; Christensen, Norman L., Jr.

    1993-01-01

    As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and collaborating research teams have conducted multi-season airborne synthetic aperture radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest (Duke, Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest, Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station, Michigan). The major research goals were to improve understanding of the relationships between radar backscatter and phenological variables (e.g. stand density, tree size, etc.), to improve radar backscatter models of tree canopy properties, and to develop a radar-based scheme for monitoring forest phenological changes. In September 1989, AIRSAR backscatter data were acquired over the Duke Forest. As the aboveground biomass of the loblolly pine forest stands at Duke Forest increased, the SAR backscatter at C-, L-, and P-bands increased and saturated at different biomass levels for the C-band, L-band, and P-band data. We only use the P-band backscatter data and ground measurements here to study the relationships between the backscatter and stand density, the backscatter and mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and stand basal area.

  13. Variable temperature sensitivity of soil organic carbon in North American forests

    Science.gov (United States)

    Cinzia Fissore; Christian P. Giardina; Christopher W. Swanston; Gary M. King; Randall K. Kolka

    2009-01-01

    We investigated mean residence time (MRT) for soil organic carbon (SOC) sampled from paired hardwood and pine forests located along a 22 °C mean annual temperature (MAT) gradient in North America. We used acid hydrolysis fractionation, radiocarbon analyses, long-term laboratory incubations (525-d), and a three-pool model to describe the size and kinetics of...

  14. Nursery stock quality as an indicator of bottomland hardwood forest restoration success in the Lower Mississippi River Alluvial Valley

    Science.gov (United States)

    Douglass F. Jacobs; Rosa C. Goodman; Emile S. Gardiner; K Frances Salifu; Ronald P. Overton; George Hernandez

    2012-01-01

    Seedling morphological quality standards are lacking for bottomland hardwood restoration plantings in the Lower Mississippi River Alluvial Valley, USA, which may contribute toward variable restoration success. We measured initial seedling morphology (shoot height, root collar diameter, number of first order lateral roots, fresh mass, and root volume), second year field...

  15. Upland Trees Contribute to Exchange of Nitrous Oxide (N2O) in Forest Ecosystems

    Science.gov (United States)

    Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Machacova, K.; Maier, M.; Halmeenmäki, E.; Svobodova, K.; Lang, F.; Pihlatie, M.; Urban, O.

    2017-12-01

    The increase in atmospheric nitrous oxide (N2O) concentration contributes to the acceleration of the greenhouse effect. However, the role of trees in the N2O exchange of forest ecosystems is still an open question. While the soils of temperate and boreal forests were shown to be a natural source of N2O, trees have been so far overlooked in the forest N2O inventories. We determined N2O fluxes in common tree species of boreal and temperate forests: Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch (Betula pubescens, B. pendula), and European beech (Fagus sylvatica). We investigated (1) whether these tree species exchange N2O with the atmosphere under natural field conditions, (2) how the tree N2O fluxes contribute to the forest N2O balance, and (3) whether these fluxes show seasonal dynamics. The studies were performed in a boreal forest (SMEAR II station, Finland; June 2014 - May 2015) and two temperate mountain forests (White Carpathians, Czech Republic; Black Forest, Germany; June and July 2015). Fluxes of N2O in mature tree stems and forest floor were measured using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. Pine, spruce and birch trees were identified as net annual N2O sources. Spruce was found the strongest emitter (0.27 mg ha-1 h-1) amounting thus up to 2.5% of forest floor N2O emissions. All tree species showed a substantial seasonality in stem N2O flux that was related to their physiological activity and climatic variables. In contrast, stems of beech trees growing at soils consuming N2O may act as a substantial sink of N2O from the atmosphere. Consistent N2O consumption by tree stems ranging between -12.1 and -35.2 mg ha-1 h-1 and contributing by up to 3.4% to the forest floor N2O uptake is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with

  16. Cooking quality of upland and lowland rice characterized by different methods

    Directory of Open Access Journals (Sweden)

    Diva Mendonça Garcia

    2011-06-01

    Full Text Available Rice cooking quality is usually evaluated by texture and stickiness characteristics using many different methods. Gelatinization temperature, amylose content, viscosity (Brookfield viscometer and Rapid Visco Analyzer, and sensory analysis were performed to characterize culinary quality of rice grains produced under two cropping systems and submitted to different technologies. All samples from the upland cropping system and two from the irrigated cropping system presented intermediate amylose content. Regarding stickiness, BRS Primavera, BRS Sertaneja, and BRS Tropical showed loose cooked grains. Irrigated cultivars presented less viscosity and were softer than upland cultivars. Upland grain samples had similar profile on the viscoamylografic curve, but the highest viscosity peaks were observed for BRS Alvorada, IRGA 417, and SCS BRS Piracema among the irrigated cropping system samples. In general, distinct grain characteristics were observed between upland and irrigated samples by cluster analysis. The majority of the upland cultivars showed soft and loose grains with adequate cooking quality confirmed by sensory tests. Most of the irrigated cultivars, however, presented soft and sticky grains. Different methodologies allowed to improve the construction of the culinary profile of the varieties studied.

  17. Geomorphological impacts of a tornado disturbance in a subtropical forest

    Science.gov (United States)

    Jonathan Phillips; Daniel A. Marion; Chad Yocum; Stephanie H. Mehlhope; Jeff W. Olson

    2015-01-01

    We studied tree uprooting associated with an EF2 tornado that touched down in portions of the Ouachita Mountains in western Arkansas in 2009. In the severe blowdown areas all trees in the mixed shortleaf pine–hardwood forest were uprooted or broken, with no relationship between tree species or size and whether uprooting or breakage occurred. There was also no...

  18. Operational restoration of the Pen Branch bottomland hardwood and swamp wetlands - the research setting

    International Nuclear Information System (INIS)

    Nelson, E.A.

    2000-01-01

    The Savannah River Swamp is a 3020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy's Savannah River Site (SRS) near Aiken, SC. Historically the swamp consisted of approximately 50 percent bald cypress-water tupelo stands, 40 percent mixed bottomland hardwood stands, and 10 percent shrub, marsh, and open water. Creek corridors were typical of Southeastern bottomland hardwood forests. The hydrology was controlled by flooding of the Savannah River and by flow from four creeks that drain into the swamp prior to flow into the Savannah River. Upstream dams have caused some alteration of the water levels and timing of flooding within the floodplain. Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950's. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. Flow in one of the tributaries, Pen Branch, was typically 0.3 m3 s-1 (10-20) cfs prior to reactor pumping and 11.0 m3 s-1 (400 cfs) during pumping. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 65 degrees C. The nearly continuous flooding of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. In the years since pumping was reduced, early succession has begun in some affected areas. Most of this has been herbs, grasses, and shrubs. Areas that have seedlings are generally willow

  19. Exploring research priorities for the North American hardwood industry

    Science.gov (United States)

    David Brinberg; Earl Kline; Delton Alderman; Philip Araman; Ed Cesa; Steve Milauskas; Tom Walthousen; Jan Wiedenbeck

    2008-01-01

    With the increase of globalization, the North American hardwood industry is facing many challenges to remain competitive and sustainable, facing drastic changes in the areas of labor, land, manufacturing, markets and marketing, and supply chain. The hardwood industry is especially vulnerable, with the influx of foreign manufacturers and suppliers with greater natural...

  20. Market Definition For Hardwood Timber in the Southern Appalachians

    Science.gov (United States)

    Jeffrey P. Prestemon; John M. Pye; Karen Lee Abt; David N. Wear

    1999-01-01

    Direct estimation of aggregate hardwood supply is seriously complicated by the diversity of prices, species, and site conditions in hardwood stands. An alternative approach is to aggregate regional supply based on stumpage values of individual stands, arguably the real driver of harvest decisions. Complicating this approach is that species-specific prices are only...

  1. Community organization of tree species along soil gradients in a north-eastern USA forest

    NARCIS (Netherlands)

    Bigalow, S.W.; Canham, C.D.

    2002-01-01

    1 A study was carried out in oak-northern hardwood forest in NW Connecticut USA involving measurements of growth, light and soil environment of saplings of six canopy trees that are strongly associated with particular soil types as adults. The objectives were to determine patterns of growth response

  2. Hardwood genetics and tree improvement - A Midwest USA perspective

    Science.gov (United States)

    C. H. Michler; R. Meilan; K. E. Woeste; P. M. Pijut; D. Jacobs; P. Aldrich; J. Glaubitz

    2005-01-01

    Fine hardwood trees in the Central Hardwoods region of the United States are an important resource for the furniture, cabinetry, flooring, modular home, and paneling manufacturing industries. Consumers find wood from these trees to be very desirable because of quality factors such as grain, strength and color. To enhance wood production, tree improvement programs can...

  3. Forest pest conditions in the maritimes in 1991. Information report No. M-X-181E. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Magasi, L.P.

    1992-01-01

    This report reviews the status of forest insects and diseases in the Maritimes region in 1991 and forecasts conditions for 1992, when appropriate. Pests and problems of conifers, hardwoods, and high-value areas, such as nurseries, seed orchards, plantations, and Christmas tree areas, are described as observed in 1991. Control operations against spruce budworm, hemlock looper, and Sirococcus shoot blight are summarized. A section on forest health monitoring brings together the various aspects of work dealing with changes in forest conditions, some of which are still unexplained. Forest insect monitoring systems, pheromones, and light traps are briefly described. A list of reports and publications relating to forest pest conditions is included.

  4. Effects of tree species on soil properties in a forest of the Northeastern United States

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2001-01-01

    Large differences in soil pH and available Ca in the surface soil exist among tree species growing in a mixed hardwood forest in northwestern Connecticut. The observed association between tree species and specific soil chemical properties within mixed-species stands implies that changes in

  5. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    Science.gov (United States)

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Notes on the Diet of Reproductively Active Male Rafinesque's Big Eared Bats

    International Nuclear Information System (INIS)

    Menzel, M.A.; Carter, T.C.; Menzel, J.M.; Edwards, J.W.; Ford, W.M.

    2002-01-01

    Diet examination through the use of fecal samples, of five reproductively active male Rafinesque's big-eared bats from the Upper Coastal Plain of South Carolina during August and September 1999. Diets of these individuals in upland pine stands were similar to diets of Rafinesque's big-eared bats in bottomland and upland hardwood habitats. Although fecal samples had three insect orders, the diet consisted primarily of lepidopterans

  7. Planting and care of fine hardwood seedlings: diseases in hardwood tree plantings

    Science.gov (United States)

    Paula M. Pijut

    2006-01-01

    Hardwood trees planted for timber production, wildlife habitat, riparian buffers, native woodland restoration, windbreaks, watershed protection, erosion control, and conservation are susceptible to damage or even death by various native and exotic fungal or bacterial diseases. Establishment, growth, and the quality of the trees produced can be affected by these disease...

  8. Co-benefits of biodiversity and carbon from regenerating secondary forests after shifting cultivation in the upland Philippines: implications for forest landscape restoration

    Science.gov (United States)

    Mukul, S. A.; Herbohn, J.; Firn, J.; Gregorio, N.

    2017-12-01

    Shifting cultivation is a widespread practice in tropical forest agriculture frontiers that policy makers often regard as the major driver of forest loss and degradation. Secondary forests regrowing after shifting cultivation are generally not viewed as suitable option for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration benefits in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co-benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.

  9. Planting and care of fine hardwood seedlings: Diagnosing and controlling wildlife damage in hardwood plantations.

    Science.gov (United States)

    James McKenna; Keith Woeste

    2004-01-01

    Once trees are planted and begin growing, damage from wildlife can threaten their quality. In this publication we discuss how to identify and manage injury to hardwoods from wildlife to minimize losses.

  10. Regeneration response to tornado and salvage harvesting in a bottomland forest

    Science.gov (United States)

    John L. Nelson; John W. Groninger; Loretta L. Battaglia; Charles M. Ruffner

    2010-01-01

    A direct hit from an F4 tornado on May 2003, followed by a partial salvage logging operation at Mermet Lake State Conservation Area on the Ohio River bottoms of southern IL have provided a rare opportunity to assess the responses of a bottomland hardwood forest to severe wind and soil disturbances. The study area encompasses 700 acres and is representative of many...

  11. Notes on Some Old-Growth Forests in Ohio, Indiana, and Illinois

    Science.gov (United States)

    John T. Auten

    1941-01-01

    The disturbing increase in acreage of abandoned land in the Central States has heightened interest in the region's few remnants of old-growth hardwood forest. Studies are being made to determine what kinds of trees originally grew on different kinds of soil, what was the original character of the soil, how many trees grew on an acre, and how large the trees were...

  12. Developing Inventory Projection Models Using Empirical Net Forest Growth and Growing-Stock Density Relationships Across U.S. Regions and Species Group

    Science.gov (United States)

    Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang

    2012-01-01

    This paper describes a set of empirical net forest growth models based on forest growing-stock density relationships for three U.S. regions (North, South, and West) and two species groups (softwoods and hardwoods) at the regional aggregate level. The growth models accurately predict historical U.S. timber inventory trends when we incorporate historical timber harvests...

  13. Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland

    International Nuclear Information System (INIS)

    Porvari, Petri; Verta, Matti

    2003-01-01

    Peatlands have higher methyl mercury output than uplands. - Total mercury (TotHg) and methyl mercury (MeHg) concentrations were studied in runoff from eight small (0.02-1.3 km 2 ) boreal forest catchments (mineral soil and peatland) during 1990-1995. Runoff waters were extremely humic (TOC 7-70 mg l -1 ). TotHg concentrations varied between 0.84 and 24 ng l -1 and MeHg between 0.03 and 3.8 ng l -1 . TotHg fluxes from catchments ranged from 0.92 to 1.8 g km -2 a -1 , and MeHg fluxes from 0.03 to 0.33 g km -2 a -1 . TotHg concentrations and output fluxes measured in runoff water from small forest catchments in Finland were comparable with those measured in other boreal regions. By contrast, MeHg concentrations were generally higher. Estimates for MeHg output fluxes in this study were comparable at sites with forests and wetlands in Sweden and North America, but clearly higher than those measured at upland or agricultural sites in other studies. Peatland catchments released more MeHg than pure mineral soil or mineral soil catchments with minor area of peatland

  14. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    Energy Technology Data Exchange (ETDEWEB)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-06-08

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these

  15. The future of forests and orangutans (Pongo abelii) in Sumatra: predicting impacts of oil palm plantations, road construction, and mechanisms for reducing carbon emissions from deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Gaveau, David L A; Leader-Williams, Nigel [Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent CT2 7NR (United Kingdom); Wich, Serge [Great Apes Trust of Iowa, 4200 SE 44th Avenue, Des Moines, IA 50320 (United States); Epting, Justin; Juhn, Daniel [Center for Applied Biodiversity Science, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA 22202 (United States); Kanninen, Markku, E-mail: dgaveau@yahoo.co.u, E-mail: swich@greatapetrust.or, E-mail: justep22@myfastmail.co, E-mail: d.juhn@conservation.or, E-mail: m.kanninen@cgiar.or, E-mail: n.leader-williams@kent.ac.u [Center for International Forestry Research, Jalan CIFOR, Situ Gede, Sidang Barang, Bogor, West Java (Indonesia)

    2009-09-15

    Payments for reduced carbon emissions from deforestation (RED) are now attracting attention as a way to halt tropical deforestation. Northern Sumatra comprises an area of 65 000 km{sup 2} that is both the site of Indonesia's first planned RED initiative, and the stronghold of 92% of remaining Sumatran orangutans. Under current plans, this RED initiative will be implemented in a defined geographic area, essentially a newly established, 7500 km{sup 2} protected area (PA) comprising mostly upland forest, where guards will be recruited to enforce forest protection. Meanwhile, new roads are currently under construction, while companies are converting lowland forests into oil palm plantations. This case study predicts the effectiveness of RED in reducing deforestation and conserving orangutans for two distinct scenarios: the current plan of implementing RED within the specific boundary of a new upland PA, and an alternative scenario of implementing RED across landscapes outside PAs. Our satellite-based spatially explicit deforestation model predicts that 1313 km{sup 2} of forest would be saved from deforestation by 2030, while forest cover present in 2006 would shrink by 22% (7913 km{sup 2}) across landscapes outside PAs if RED were only to be implemented in the upland PA. Meanwhile, orangutan habitat would reduce by 16% (1137 km{sup 2}), resulting in the conservative loss of 1384 orangutans, or 25% of the current total population with or without RED intervention. By contrast, an estimated 7824 km{sup 2} of forest could be saved from deforestation, with maximum benefit for orangutan conservation, if RED were to be implemented across all remaining forest landscapes outside PAs. Here, RED payments would compensate land users for their opportunity costs in not converting unprotected forests into oil palm, while the construction of new roads to service the marketing of oil palm would be halted. Our predictions suggest that Indonesia's first RED initiative in an

  16. Forest Succession and Maternity Day roost selection by Myotis septentrionalis in a mesophytic hardwood forest

    Science.gov (United States)

    Silvis, Alexander; Ford, W. Mark; Eric R. Britzke,; Nathan R. Beane,; Joshua B. Johnson,

    2012-01-01

    Conservation of summer maternity roosts is considered critical for bat management in North America, yet many aspects of the physical and environmental factors that drive roost selection are poorly understood. We tracked 58 female northern bats (Myotis septentrionalis) to 105 roost trees of 21 species on the Fort Knox military reservation in north-central Kentucky during the summer of 2011. Sassafras (Sassafras albidum) was used as a day roost more than expected based on forest stand-level availability and accounted for 48.6% of all observed day roosts. Using logistic regression and an information theoretic approach, we were unable to reliably differentiate between sassafras and other roost species or between day roosts used during different maternity periods using models representative of individual tree metrics, site metrics, topographic location, or combinations of these factors. For northern bats, we suggest that day-roost selection is not a function of differences between individual tree species per se, but rather of forest successional patterns, stand and tree structure. Present successional trajectories may not provide this particular selected structure again without management intervention, thereby suggesting that resource managers take a relatively long retrospective view to manage current and future forest conditions for bats.

  17. Vertical distribution of earwigs (Dermaptera: Forficulidae) in a temperate lowland forest, based on sampling with a mobile aerial lift platform

    Czech Academy of Sciences Publication Activity Database

    Kirstová, M.; Pyszko, P.; Šipoš, Jan; Drozd, P.; Kočárek, P.

    2017-01-01

    Roč. 20, č. 1 (2017), s. 57-64 ISSN 1343-8786 Institutional support: RVO:67985939 Keywords : Apterygida media * Palearctic region * riparian hardwood forest Subject RIV: EH - Ecology, Behaviour OBOR OECD: Entomology Impact factor: 1.262, year: 2016

  18. Improved Wood Properties Through Genetic Manipulation: Engineering of Syringyl Lignin in Softwood Species Through Xylem-Specific Expression of Hardwood Syringyl Monolignol Pathway Genes

    Energy Technology Data Exchange (ETDEWEB)

    Chandrashekhar P. Joshi; Vincent L. Chiang

    2009-01-29

    Project Objective: Our long-term goal is to genetically engineer higher value raw materials with desirable wood properties to promote energy efficiency, international competitiveness, and environmental responsiveness of the U.S. forest products industry. The immediate goal of this project was to produce the first higher value softwood raw materials engineered with a wide range of syringyl lignin quantities. Summary: The most important wood property affecting directly the levels of energy, chemical and bleaching requirements for kraft pulp production is lignin. Softwoods contain almost exclusively chemically resistant guaiacyl (G) lignin, whereas hardwoods have more reactive or easily degradable lignins of the guaiacyl (G)-syringyl (S) type. It is also well established that the reactive S lignin component is the key factor that permits much lower effective alkali and temperature, shorter pulping time and less bleaching stages for processing hardwoods than for softwoods. Furthermore, our pulping kinetic study explicitly demonstrated that every increase in one unit of the lignin S/G ratio would roughly double the rate of lignin removal. These are clear evidence that softwoods genetically engineered with S lignin are keys to revolutionizing the energy efficiency and enhancing the environmental performance of this industry. Softwoods and hardwoods share the same genetic mechanisms for the biosynthesis of G lignin. However, in hardwoods, three additional genes branch out from the G-lignin pathway and become specifically engaged in regulating S lignin biosynthesis. In this research, we simultaneously transferred aspen S-specific genes into a model softwood, black spruce, to engineer S lignin.

  19. The changing structure of the hardwood lumber industry with implications on technology adaptation

    Science.gov (United States)

    William Luppold; John Baumgras; John Baumgras

    2000-01-01

    The hardwood sawmilling industry has been changing over the last 50 years as a result of changes in hardwood sawtimber inventory and in the demand for hardwood lumber. In 1950 the industry was composed of numerous individual mills, few of which produced more than 3 million board feet of lumber annually. During this time the furniture industry was the major user of...

  20. Sensitivity of pine flatwoods hydrology to climate change and forest management in Florida, USA

    Science.gov (United States)

    Jianbiao Lu; Ge Sun; Steven G. McNulty; Nicholas B. Comerford

    2009-01-01

    Pine flatwoods (a mixture of cypress wetlands and managed pine uplands) is an important ecosystem in the southeastern U.S. However, long-term hydrologic impacts of forest management and climate change on this heterogeneous landscape are not well understood. Therefore, this study examined the sensitivity of cypress-pine flatwoods...

  1. Automatic Color Sorting System for Hardwood Edge-Glued Panel Parts

    Science.gov (United States)

    Richard W. Conners; D.Earl Kline; Philip A. Araman

    1996-01-01

    The color sorting of edge-glued panel parts is becoming more important in the manufacture of hardwood products. Consumers, while admiring the natural appearance of hardwoods, do not like excessive color variation across product surfaces. Color uniformity is particularly important today because of the popularity of lightly stained products. Unfortunately, color sorting...

  2. Notes on the Diet of Reproductively Active Male Rafinesque's Big Eared Bats

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, M.A.; Carter, T.C.; Menzel, J.M.; Edwards, J.W.; Ford, W.M.

    2002-01-01

    Diet examination through the use of fecal samples, of five reproductively active male Rafinesque's big-eared bats from the Upper Coastal Plain of South Carolina during August and September 1999. Diets of these individuals in upland pine stands were similar to diets of Rafinesque's big-eared bats in bottomland and upland hardwood habitats. Although fecal samples had three insect orders, the diet consisted primarily of lepidopterans.

  3. Restoring bottomland hardwood forests: A comparison of four techniques

    Science.gov (United States)

    John A. Stanturf; Emile S. Cardiner; James P. Shepard; Callie J. Schweitzer; C. Jeffrey Portwood; Lamar Dorris

    2004-01-01

    Large-scale afforestation of former agricultural lands in the Lower Mississippi Alluvial Valley (LMAV) is one of the largest forest restoration efforts in the world and continues to attract interest from landowners, policy makers, scientists, and managers. The decision by many landowners to afforest these lands has been aided in part by the increased availability of...

  4. Nitrogen biogeochemistry in the Adirondack Mountains of New York: hardwood ecosystems and associated surface waters

    International Nuclear Information System (INIS)

    Mitchell, Myron J.; Driscoll, Charles T.; Inamdar, Shreeram; McGee, Greg G.; Mbila, Monday O.; Raynal, Dudley J.

    2003-01-01

    Factors that regulate the fate of atmospherically deposited nitrogen to hardwood forests and subsequent transport to surface waters in the Adirondack region of New York are described. - Studies on the nitrogen (N) biogeochemistry in Adirondack northern hardwood ecosystems were summarized. Specific focus was placed on results at the Huntington Forest (HFS), Pancake-Hall Creek (PHC), Woods Lake (WL), Ampersand (AMO), Catlin Lake (CLO) and Hennessy Mountain (HM). Nitrogen deposition generally decreased from west to east in the Adirondacks, and there have been no marked temporal changes in N deposition from 1978 through 1998. Second-growth western sites (WL, PHC) had higher soil solution NO 3 - concentrations and fluxes than the HFS site in the central Adirondacks. Of the two old-growth sites (AMO and CLO), AMO had substantially higher NO 3 - concentrations due to the relative dominance of sugar maple that produced litter with high N mineralization and nitrification rates. The importance of vegetation in affecting N losses was also shown for N-fixing alders in wetlands. The Adirondack Manipulation and Modeling Project (AMMP) included separate experimental N additions of (NH 4 ) 2 SO 4 at WL, PHC and HFS and HNO 3 at WL and HFS. Patterns of N loss varied with site and form of N addition and most of the N input was retained. For 16 lake/watersheds no consistent changes in NO 3 - concentrations were found from 1982 to 1997. Simulations suggested that marked NO 3 - loss will only be manifested over extended periods. Studies at the Arbutus Watershed provided information on the role of biogeochemical and hydrological factors in affecting the spatial and temporal patterns of NO 3 - concentrations. The heterogeneous topography in the Adirondacks has generated diverse landscape features and patterns of connectivity that are especially important in regulating the temporal and spatial patterns of NO 3 - concentrations in surface waters

  5. Fifty years of watershed research on the Fernow Experimental Forest, WV: effects of forest management and air pollution on hardwood forests

    Science.gov (United States)

    M.B. Adams; P.J. Edwards; J.N. Kochenderfer; F. Wood

    2004-01-01

    In 1951, stream gaging was begun on five small headwater catchments on the Fernow Experimental Forest in West Virginia, to study the effects of forest management activities, particularly timber harvesting, on water yield and quality. Results from these watersheds, and others gaged more recently, have shown that annual water yields increase in proportion to the basal...

  6. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.

    Science.gov (United States)

    Dunn, Allison L; Wofsy, Steven C; v H Bright, Alfram

    2009-03-01

    We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands.

  7. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    Energy Technology Data Exchange (ETDEWEB)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  8. The Role of Social Constructions and Biophysical Attributes of the Environment in Decision-Making in the Context of Biofuels and Rubber Production Partnership Regimes in Upland Philippines

    Science.gov (United States)

    Montefrio, M. F.

    2012-12-01

    Burgeoning attention in biofuels and natural rubber has spurred interest among governments and private companies in integrating marginalized communities into global commodity markets. Upland farmers from diverse cultural backgrounds and biophysical settings today are deciding whether to agree with partnership proposals from governments and private firms to grow biofuels and natural rubber. In this paper, I examine whether upland farmers' socio-environmental constructions (evaluative beliefs, place satisfaction, and ecological worldviews) and the actual biophysical attributes (land cover and soil types) of upland environments, respectively, function as significant predictors of the intent and decisions of indigenous and non-indigenous farmers to cooperate with government and private actors to establish certain biofuel crops and natural rubber production systems in Palawan, Philippines. Drawing from ethnography and statistical analysis of household surveys, I propose that social constructions and the biophysical attributes of the environment are closely related with each other and in turn both influence individual decision-making behavior in resource-based production partnership regimes. This has significant implications on the resilience of socio-ecological systems, particularly agro-ecosystems, as certain upland farmers prefer to engage in intensive, monocrop production of biofuels and natural rubber on relatively more biodiverse areas, such as secondary forests and traditional shifting cultivation lands. The study aims to advance new institutional theories of resource management, particularly Ostrom's Institutional Analysis and Development and Socio-Ecological Systems frameworks, and scholarship on environmental decision-making in the context of collective action.

  9. Assessing forest mortality patterns using climate and FIA data at multiple scales

    Science.gov (United States)

    Michael K. Crosby; Zhaofei Fan; Xingang Fan; Theodor D. Leininger; Martin A. Spetich

    2012-01-01

    Forest Inventory and Analysis (FIA) and PRISM climate data from 1991-2000 were obtained for 10 states in the southeastern United States. Mortality was calculated for each plot, and annual values for precipitation and maximum and minimum temperature were extracted from the PRISM data. Data were then stratified by upland/bottomland for red oak species, and classification...

  10. Effect Of Shade Organic Materials And Varieties On Growth And Production Of Upland Rice

    Directory of Open Access Journals (Sweden)

    Jonatan Ginting

    2015-01-01

    Full Text Available Abstract There is a shade factor and low organic matter content of the soil is a problem that needs to be addressed in the development of upland rice cultivation as intercrops in the plantation area. Based on these considerations then one study that needs to be done is to conduct experiments on the effect of shade factor combined with the the provision of the organic material to the some varieties of upland rice that has been recommended nationally. The objective of experiment is to study the influence of shade organic materials and varieties on the growth and production of upland rice. This research using experimental design of Split - Split Plot Design with 3 treatment factors and 3 replications or blocks. The first factor is the treatment of shade with 3 levels shade percentage 0 20 and 40. The second factor is the dosage of organic material consists of 3 levels 0 g polybag 25 g polybag 50 g polybag and 75 g polybag. The third factor is the treatment of varieties consists of 4 types of upland rice varieties Si Kembiri Situ Patengggang Situ Bagendit and Tuwoti. The research results showed that the effect of shade on upland rice varieties decrease number of tillers number of panicles number of productive grains grain production per hill of uplnd rice plants and total sugar content of upland rice plants. Effect of organic matter increases number of panicles number of productive grains grain production per hill of upland rice plants and total sugar content of upland rice plants. It is known that the the variety of Situ Patenggang provides better growth and production compared with three other varieties Si Kembiri Situ Bagendit and Tuwoti in shaded conditions.

  11. Beetle-killed stands in the South Carolina piedmont: from fuel hazards to regenerating oak forests

    Science.gov (United States)

    Aaron D. Stottlemyer; G. Geoff Wang; Thomas A. Waldrop

    2012-01-01

    Impacts of spring prescribed fire, mechanical mastication, and no-treatment (control) on fuels and natural hardwood tree regeneration were examined in beetle-killed stands in the South Carolina Piedmont. Mechanical mastication ground the down and standing dead trees and live vegetation into mulch and deposited it onto the forest floor. The masticated debris layer had...

  12. Bottomland Hardwood Planting: Example Contract Specifications

    National Research Council Canada - National Science Library

    Humprey, Monica

    2002-01-01

    This technical note provides an example of contract specifications that can be used as a template by USACE biologists, engineers, or contracting officers for contracting the planting of bottomland hardwood (BLH) seedlings...

  13. Relevance of ruminants in upland mixed-farming systems in East Java, Indonesia

    NARCIS (Netherlands)

    Ifar, S.

    1996-01-01

    In Indonesia, upland agriculture is associated with resource-poor farmers, land degradation, and low agricultural production. The common premise is that cattle productivity in upland areas is low and that this is mainly caused by a shortage of feed. The area chosen to carry out this study on the

  14. Factors influencing changes in U.S. hardwood log and lumber exports from 1990 to 2011. BioResources

    Science.gov (United States)

    William G. Luppold; Matthew S. Bumgardner

    2013-01-01

    Domestic consumption of hardwood products in the United States since 2000 has trended downward, making exports the single most important market for higher grade hardwood lumber and a major market for higher value hardwood logs. Between 1990 and 2011, hardwood lumber exports increased by 46%. During most of this period, Canada was the largest export market for U.S....

  15. Anthracnose Diseases of Eastern Hardwoods

    Science.gov (United States)

    Frederick H. Berry

    1985-01-01

    Anthracnose diseases of hardwood trees are widespread throughout the Eastern United States. The most common symptom of these diseases is dead areas or blotches on the leaves. Because of the brown and black, scorched appearance of the leaves, the diseases are sometimes called leaf blight.

  16. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing.

    Directory of Open Access Journals (Sweden)

    Margaret Staton

    Full Text Available Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence.

  17. Responses of upland rice to fertilizer

    International Nuclear Information System (INIS)

    Nashriyah Mat; Abdul Khalik Wood; Khairuddin Abdul Rahim; Zaini Hamzah

    1996-01-01

    The concentration and uptake of macro nutrients, micro nutrients and toxic elements were compared to dry matter yield, biomass components and primary and secondary tillering. Plant tissue analysis of N, P, K, Ca, Mg, Cl, Fe, Mn, Na, Ca, Al, Cr, As, Th and Ce were carried out using chemical and neutron activation analysis. N and K were found to accumulate in the green vegetative biomass whereas P, Ca, Mg, Fe and Zn were bound in the dead-plus-senesced component. Compared to control, urea fertilization increased the dry matter yield and uptakes of N, P, Ca, Mg, Fe, Mn, Na, Al, Th and Ce by upland rice. In addition to similar increases; cattle manuring also increased the green vegetative biomass, secondary tillering and uptake of K, Cl, Co, Cr and As. With the exception of Th uptake, upland rice Oryza Sativa var. Seri Pelanduk subjected to cattle manuring responded better to the uptake of various elements and produced more secondary tillers

  18. Arthropod prey for riparian associated birds in headwater forests of the Oregon Coast Range

    Science.gov (United States)

    Hagar, Joan C.; Li, Judith; Sobota, Janel; Jenkins, Stephanie

    2012-01-01

    Headwater riparian areas occupy a large proportion of the land base in Pacific Northwest forests, and thus are ecologically and economically important. Although a primary goal of management along small headwater streams is the protection of aquatic resources, streamside habitat also is important for many terrestrial wildlife species. However, mechanisms underlying the riparian associations of some terrestrial species have not been well studied, particularly for headwater drainages. We investigated the diets of and food availability for four bird species associated with riparian habitats in montane coastal forests of western Oregon, USA. We examined variation in the availability of arthropod prey as a function of distance from stream. Specifically, we tested the hypotheses that (1) emergent aquatic insects were a food source for insectivorous birds in headwater riparian areas, and (2) the abundances of aquatic and terrestrial arthropod prey did not differ between streamside and upland areas during the bird breeding season. We found that although adult aquatic insects were available for consumption throughout the study period, they represented a relatively small proportion of available prey abundance and biomass and were present in only 1% of the diet samples from only one of the four riparian-associated bird species. Nonetheless, arthropod prey, comprised primarily of insects of terrestrial origin, was more abundant in streamside than upland samples. We conclude that food resources for birds in headwater riparian areas are primarily associated with terrestrial vegetation, and that bird distributions along the gradient from streamside to upland may be related to variation in arthropod prey availability. Because distinct vegetation may distinguish riparian from upland habitats for riparian-associated birds and their terrestrial arthropod prey, we suggest that understory communities be considered when defining management zones for riparian habitat.

  19. Leaf area and foliar biomass relationships in northern hardwood forests located along an 800 km acid deposition gradient

    International Nuclear Information System (INIS)

    Burton, A.J.; Pregitzer, K.S.; Reed, D.D.

    1991-01-01

    The canopies of northern hardwood forests dominated by sugar maple (Acer saccharum Marsh.) were examined at five locations spanning 800 km along an acid deposition and climatic gradient in the Great Lakes region. Leaf area index (LAI) calculated from litterfall ranged from 6.0 to 8.0 in 1988, from 4.9 to 7.9 in 1989, and from 5.3 to 7.8 in 1990. The data suggest that maximum LAI for the sites is between 7 and 8. Insect defoliation and the allocation of assimilates to reproductive parts in large seed years reduced LAI by up to 34%. Allometric equations for leaf area and foliar biomass were not significantly different among sites. They predicted higher LAI values than were estimated from litterfall and could not account for the influences of defoliation and seed production. Canopy transmittance was a viable alternative for estimating LAI. Extinction coefficients (K) of 0.49 to 0.65 were appropriate for solar elevations of 63 degree to 41 degree. Patterns of specific leaf area (SLA) were similar for the sites. Average sugar maple SLA increased from 147 cm 2 g -1 in the upper 5 m of the canopy to 389 cm 2 g -1 in the seeding layer. Litterfall SLA averaged 196 cm 2 g -1 for all species and 192 cm 2 g -1 for sugar maple. Similarity among the sites in allometric relationships, maximum LAI, canopy transmittance, and patterns of SLA suggests these characteristics were controlled primarily by the similar nutrient and moisture availability at the sites. A general increasing trend in litter production along the gradient could not be attributed to N deposition or length of growing season due to year to year variability resulting from insect defoliation and seed production

  20. Genetic improvement of hardwood fiber production in the north-central region: potentials and breeding alternatives

    Science.gov (United States)

    R.E., Jr. Farmer

    1973-01-01

    In the Lake States, aspens are now growing towards senility Faster than they are being harvested (Groff 1966). In the Central States, wood processing residues have recently supplied about one-half of the area's hardwood fiber requirement (Blyth 1970), thus allowing hardwood growing stock to continue its recuperation. In fact, the national hardwood fiber supply...

  1. Financiamiento público y privado para la investigación forestal en el sur de Estados Unidos durante el período 1920-2000

    Science.gov (United States)

    John A. Stanturf; Robert Kellison; F.S. Broerman; Stephen Jones; Alan Lucier

    2002-01-01

    Public and Private Funding of Forestry Research in the Southern United States, 1929-2999. Forest management in the southern United States intensified over the last 80 years and the pine forests of the Coastal Plain can be regarded as in the early stage of crop domestication. In 1997, 57 % of the softwood and 52 % of the hardwood timber produced in the country came from...

  2. Hydrology and water quality of two first order forested watersheds in coastal South Carolina

    Science.gov (United States)

    D.M. Amatya; M. Miwa; C.A. Harrison; C.C. Trettin; G. Sun

    2006-01-01

    Two first-order forested watersheds (WS 80 and WS 77) on poorly drained pine-hardwood stands in the South Carolina Coastal Plain have been monitored since mid-1960s to characterize the hydrology, water quality and vegetation dynamics. This study examines the flow and nutrient dynamics of these two watersheds using 13 years (1 969-76 and 1977-81) of data prior to...

  3. CRSMP Potential Coastal and Upland Borrow Sites 2012

    Data.gov (United States)

    California Natural Resource Agency — Upland debris basins and coastal borrow sites as identified originally in the California Shoreline Database compiled by Noble Consultants (Jon Moore). Later updates...

  4. Impacts of changing hardwood lumber consumption and price on stumpage and sawlog prices in Ohio

    Science.gov (United States)

    William Luppold; Matthew Bumgardner; T. Eric. McConnell

    2014-01-01

    In the early 2000s, increasing US furniture imports preceded declining US hardwood lumber demand and price. In the summer of 2002, however, hardwood lumber prices started to increase as demand by construction industries increased. By the mid-2000s, hardwood lumber prices hit all-time highs. Lumber prices hit all-time highs for red oak (Quercus spp...

  5. Database for estimating tree responses of walnut and other hardwoods to ground cover management practices

    Science.gov (United States)

    J.W. Van Sambeek

    2010-01-01

    The ground cover in plantings of walnut and other hardwoods can substantially affect tree growth and seed production. The number of alternative ground covers that have been suggested for establishment in tree plantings far exceeds the number that have already been tested with walnut and other temperate hardwoods. Knowing how other hardwood species respond to ground...

  6. Dynamic of radionuclides behaviour in forest soils

    International Nuclear Information System (INIS)

    Ruehm, W.; Steiner, M.; Wirth, E.; Dvornik, A.; Zhuchenko, T.A.; Kliashtorin, A.; Rafferty, B.; Shaw, G.; Kuchma, N.

    1996-01-01

    Within the research project ECP-5, the dynamics of radionuclides in automorphic forest soils within the 30-km-zone of Chernobyl and of hydromorphic forest soils in Belarus have been investigated. In upland forest soils, the lower layers of the organic horizons are characterized by the highest residence times for radiocesium and represent the largest pool for all radionuclides investigated. According to a preliminary estimate, radiocesium is more mobile compared to 125 Sb, which in turn migrates faster than 60 Co, 144 Ce, and 154 Eu. 106 Ru shows the lowest mobility. With regard to radiocesium, hydromorphic soils exhibit migration rates and transfer factors from soil to trees, which by far exceed those in automorphic soils. Based on a two-component quasi-diffusional model the average bias of 137 Cs in mesotrophic swamp soils was predicted. The activity concentrations of U, Pu, and Cs suggest that U and Pu were originally deposited as hot particles and that U is naturally accumulated in organic horizons

  7. Biomass availability in forests, poplar plantations and hedges for various timber uses. National assessment based on the national forest inventory data and wood consumption statistics

    International Nuclear Information System (INIS)

    Ginisty, Christian; Vallet, Patrick; Chevalier, Helene; COLIN, Antoine

    2011-01-01

    This article provides an assessment of the quantities of potentially exploitable timber in French forests, poplar plantations and hedges for the period 2007 to 2020. The first step consisted in computing the gross available quantities of timber, prior to deduction of the various current consumptions. This was done applying the reference silvicultural scenarios to all the plots in the French national forest inventory, on the basis of their features (species, structure, fertility, age, observed per hectare volume). Current consumption was then subtracted from these quantities. It was estimated using the annual sectoral 'forest exploitation' survey in industry and an estimation of fuelwood consumption by households. The outcome is an excess availability of more than 28 million cubic metres of timber per year for bio-energy or pulp uses, and nearly 15 million cubic metres of workable timber, essentially hardwoods. (authors)

  8. Consumptive use of upland rice as estimated by different methods

    International Nuclear Information System (INIS)

    Chhabda, P.R.; Varade, S.B.

    1985-01-01

    The consumptive use of upland rice (Oryza sativa Linn.) grown during the wet season (kharif) as estimated by modified Penman, radiation, pan-evaporation and Hargreaves methods showed a variation from computed consumptive use estimated by the gravimetric method. The variability increased with an increase in the irrigation interval, and decreased with an increase in the level of N applied. The average variability was less in pan-evaporation method, which could reliably be used for estimating water requirement of upland rice if percolation losses are considered

  9. Fragmentation, topography, and forest age modulate impacts of drought on a tropical forested landscape in eastern Puerto Rico

    Science.gov (United States)

    Uriarte, M.; Schwartz, N.; Budsock, A.

    2017-12-01

    Naturally regenerating second-growth forests account for ca. 50% of tropical forest cover and provide key ecosystem services. Understanding climate impacts on these ecosystems is critical for developing effective mitigation programs. Differences in environmental conditions and landscape context from old-growth forests may exacerbate climate impacts on second-growth stands. Nearly 70% of forest regeneration is occurring in hilly, upland, or mountain regions; a large proportion of second-growth forests are also fragmented. The effects of drought at the landscape scale, however, and the factors that modulate landscape heterogeneity in drought impacts remain understudied. Heterogeneity in soil moisture, light, and temperature in fragmented, topographically complex landscapes is likely to influence climate impacts on these forests. We examine impacts of a severe drought in 2015 on a forested landscape in Puerto Rico using two anomalies in vegetation indices. The study landscape is fragmented and topographically complex and includes old- and second-growth forests. We consider how topography (slope, aspect), fragmentation (distance to forest edge, patch size), and forest age (old- vs second-growth) modulate landscape heterogeneity of drought impacts and recovery from drought. Drought impacts were more severe in second-growth forests than in old-growth stands. Both topography and forest fragmentation influences the magnitude of drought impacts. Forest growing in steep areas, south facing slopes, small patches, and closer to forest edges exhibited more marked responses to drought. Forest recovery from drought was greater in second-growth forests and south facing slopes but slower in small patches and closer to forest edges. These findings are congruent with studies of drought impacts on tree growth in the study region. Together these results demonstrate the need for a multi-scalar approach to the study of drought impacts on tropical forests.

  10. Multi-scale habitat use of male ruffed grouse in the Black Hills National Forest

    Science.gov (United States)

    Cassandra L. Mehls; Kent C. Jensen; Mark A. Rumble; Michael C. Wimberly

    2014-01-01

    Ruffed grouse (Bonasa umbellus) are native upland game birds and a management indicator species (MIS) for aspen (Populus tremuloides) in the Black Hills National Forest (Black Hills). Our objective was to assess resource selection of male ruffed grouse to identify the most appropriate scale to manage for aspen and ruffed grouse in the Black Hills. During spring 2007...

  11. Bottomland Hardwood Ecosystem Management Project

    Science.gov (United States)

    John A. Stanturf; Calvin E. Meier

    1994-01-01

    Federal agency approaches to land management are undergoing a shift from parcel-specific concerns toward a more holistic, ecosystem management approach. Southern bottomland hardwood ecosystems provide important environmental services and commodity goods (Wharton et al. 1982), yet much of our knowledge of these systems comes from anecdotal information. The Bottomland...

  12. Variation of Annual ET Determined from Water Budgets Across Rural Southeastern Basins Differing in Forest Types

    Science.gov (United States)

    Younger, S. E.; Jackson, C. R.

    2017-12-01

    In the Southeastern United States, evapotranspiration (ET) typically accounts for 60-70% of precipitation. Watershed and plot scale experiments show that evergreen forests have higher ET rates than hardwood forests and pastures. However, some plot experiments indicate that certain hardwood species have higher ET than paired evergreens. The complexity of factors influencing ET in mixed land cover watersheds makes identifying the relative influences difficult. Previous watershed scale studies have relied on regression to understand the influences or low flow analysis to indicate growing season differences among watersheds. Existing studies in the southeast investigating ET rates for watersheds with multiple forest cover types have failed to identify a significant forest type effect, but these studies acknowledge small sample sizes. Trends of decreasing streamflow have been recognized in the region and are generally attributed to five key factors, 1.) influences from multiple droughts, 2.) changes in distribution of precipitation, 3.) reforestation of agricultural land, 4.) increasing consumptive uses, or 5.) a combination of these and other factors. This study attempts to address the influence of forest type on long term average annual streamflow and on stream low flows. Long term annual ET rates were calculated as ET = P-Q for 46 USGS gaged basins with daily data for the 1982 - 2014 water years, >40% forest cover, and no large reservoirs. Land cover data was regressed against ET to describe the relationship between each of the forest types in the National Land Cover Database. Regression analysis indicates evergreen land cover has a positive relationship with ET while deciduous and total forest have a negative relationship with ET. Low flow analysis indicates low flows tend to be lower in watersheds with more evergreen cover, and that low flows increase with increasing deciduous cover, although these relationships are noisy. This work suggests considering forest

  13. Field trip on the Kellogg Forest of Michigan State University near Augusta, Michigan

    Science.gov (United States)

    Jonathan W. Wright; Walter Lemmien

    1966-01-01

    When the Kellogg Forest was established in 1932, 90 percent of the farmland in the locality was idle. The original tree cover had been oak-hickory on the upland areas and basswood, white ash, American elm, and black cherry on the lower, more fertile areas. Agricultural activities had begun between 1830 and 1850. Since then, continued cropping had resulted in severe...

  14. Assessing changes in the U.S. hardwood sawmill industry with a focus on markets and distribution

    Science.gov (United States)

    Omar Espinoza; Urs Buehlmann; Matthew Bumgardner; Bob. Smith

    2011-01-01

    The U.S. hardwood sawmilling industry has experienced significant changes over the past decade. A slowing housing industry, competition from imported products, higher transportation costs, and high stumpage prices have changed the business of manufacturing and marketing hardwood lumber. Also, hardwood lumber buyers are changing their business practices by shortening...

  15. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    Directory of Open Access Journals (Sweden)

    Hui Xia

    Full Text Available The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP technique. Great alterations (52.9~54.3% of total individual-locus combinations of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187 was detected on the highly divergent epiloci (HDE. The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  16. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    Science.gov (United States)

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  17. Streamwater chemistry and nutrient budgets for forested watersheds in New England: variability and management implications

    Science.gov (United States)

    J.W. Hornbeck; S.W. Bailey; D.C. Buso; J.B. Shanley

    1997-01-01

    Chemistry of precipitation and streamwater and resulting input-output budgets for nutrient ions were determined concurrently for three years on three upland, forested watersheds located within an 80 km radius in central New England. Chemistry of precipitation and inputs of nutrients via wet deposition were similar among the three watersheds and were generally typical...

  18. Prioritizing bird conservation actions in the Prairie Hardwood transition of the Midwestern United States

    Science.gov (United States)

    Thogmartin, Wayne E.; Crimmins, Shawn M.; Pearce, Jennie

    2014-01-01

    Large-scale planning for the conservation of species is often hindered by a poor understanding of factors limiting populations. In regions with declining wildlife populations, it is critical that objective metrics of conservation success are developed to ensure that conservation actions achieve desired results. Using spatially explicit estimates of bird abundance, we evaluated several management alternatives for conserving bird populations in the Prairie Hardwood Transition of the United States. We designed landscapes conserving species at 50% of their current predicted abundance as well as landscapes attempting to achieve species population targets (which often required the doubling of current abundance). Conserving species at reduced (half of current) abundance led to few conservation conflicts. However, because of extensive modification of the landscape to suit human use, strategies for achieving regional population targets for forest bird species would be difficult under even ideal circumstances, and even more so if maintenance of grassland bird populations is also desired. Our results indicated that large-scale restoration of agricultural lands to native grassland and forest habitats may be the most productive conservation action for increasing bird population sizes but the level of landscape transition required to approach target bird population sizes may be societally unacceptable.

  19. International trade of U.S. hardwood lumber and logs, 1990-2013

    Science.gov (United States)

    William G. Luppold; Matthew S. Bumgardner

    2014-01-01

    United States (U.S.) hardwood log and lumber exports surged in the early- and mid-1970s in response to the adoption of floating exchange rates. However, assessing these changes in international trade became difficult in the 1980s due to increased underreporting of hardwood lumber and log shipments between the U.S. and Canada. By 1990, these data problems were rectified...

  20. Proceedings of the 14th biennial southern silvicultural research conference

    Science.gov (United States)

    John A. Stanturf

    2010-01-01

    A range of issues affecting southern forests are addressed in 113 papers. Papers are grouped into 12 sessions that include carbon; pine silviculture; invasive species; site preparation; hardwood artificial regeneration; longleaf pine; forest health and fire; growth and yield; hardwood intermediate treatments; hardwood natural regeneration; wildlife; and posters.

  1. DOE Research Set-Aside Areas of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.E.; Janecek, L.L.

    1997-08-31

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  2. DOE Research Set-Aside Areas of the Savannah River Site

    International Nuclear Information System (INIS)

    Davis, C.E.; Janecek, L.L.

    1997-01-01

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site's total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside

  3. Snowpack-atmosphere gas exchanges of carbon dioxide, ozone, and nitrogen oxides at a hardwood forest site in northern Michigan

    Directory of Open Access Journals (Sweden)

    Brian Seok

    2015-03-01

    Full Text Available Abstract Snowpack-atmosphere gas exchanges of CO2, O3, and NOx (NO + NO2 were investigated at the University of Michigan Biological Station (UMBS, a mid-latitude, low elevation hardwood forest site, during the 2007–2008 winter season. An automated trace gas sampling system was used to determine trace gas concentrations in the snowpack at multiple depths continuously throughout the snow-covered period from two adjacent plots. One natural plot and one with the soil covered by a Tedlar sheet were setup for investigating whether the primary source of measured trace gases was biogenic (i.e., from the soil or non-biogenic (i.e., from the snowpack. The results were compared with the “White on Green” study conducted at the Niwot Ridge (NWT Long Term Ecological Research site in Colorado. The average winter CO2 flux ± s.e. from the soil at UMBS was 0.54 ± 0.037 µmol m-2 s-1 using the gradient diffusion method and 0.71 ± 0.012 µmol m-2 s-1 using the eddy covariance method, and in a similar range as found for NWT. Observed snowpack-O3 exchange was also similar to NWT. However, nitrogen oxides (NOx fluxes from snow at UMBS were 10 times smaller than those at NWT, and fluxes were bi-directional with the direction of the flux dependent on NOx concentrations in ambient air. The compensation point for the change in the direction of NOx flux was estimated to be 0.92 nmol mol-1. NOx in snow also showed diurnal dependency on incident radiation. These NOx dynamics in the snow at UMBS were notably different compared to NWT, and primarily determined by snow-atmosphere interactions rather than by soil NOx emissions.

  4. Calcium constrains plant control over forest ecosystem nitrogen cycling.

    Science.gov (United States)

    Groffman, Peter M; Fisk, Melany C

    2011-11-01

    Forest ecosystem nitrogen (N) cycling is a critical controller of the ability of forests to prevent the movement of reactive N to receiving waters and the atmosphere and to sequester elevated levels of atmospheric carbon dioxide (CO2). Here we show that calcium (Ca) constrains the ability of northern hardwood forest trees to control the availability and loss of nitrogen. We evaluated soil N-cycling response to Ca additions in the presence and absence of plants and observed that when plants were present, Ca additions "tightened" the ecosystem N cycle, with decreases in inorganic N levels, potential net N mineralization rates, microbial biomass N content, and denitrification potential. In the absence of plants, Ca additions induced marked increases in nitrification (the key process controlling ecosystem N losses) and inorganic N levels. The observed "tightening" of the N cycle when Ca was added in the presence of plants suggests that the capacity of forests to absorb elevated levels of atmospheric N and CO2 is fundamentally constrained by base cations, which have been depleted in many areas of the globe by acid rain and forest harvesting.

  5. The Wood and Bark of Hardwoods Growing on Southern Pine Sites - A Pictorial Atlas

    Science.gov (United States)

    Charles W. McMillin; Floyd G. Manwiller

    1980-01-01

    Provides a pictorial description of the structure and appearance of 23 pine-site hardwoods, an overview of hardwood anatomy, and data on the resource and certain important physical properties of stemwood and bark.

  6. Fine Root Growth Phenology, Production, and Turnover in a Northern Hardwood Forest Ecosystem

    Science.gov (United States)

    Dudley J. Raynal

    1994-01-01

    A large part of the nutrient flux in deciduous forests is through fine root turnover, yet this process is seldom measured. As part of a nutrient cycling study, fine root dynamics were studied for two years at Huntington Forest in the Adirondack Mountain region of New York, USA. Root growth phenology was characterized using field rhizotrons, three methods were used to...

  7. Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty

    Science.gov (United States)

    Katharine White; Jennifer Pontius; Paul Schaberg

    2014-01-01

    Current remote sensing studies of phenology have been limited to coarse spatial or temporal resolution and often lack a direct link to field measurements. To address this gap, we compared remote sensing methodologies using Landsat Thematic Mapper (TM) imagery to extensive field measurements in a mixed northern hardwood forest. Five vegetation indices, five mathematical...

  8. Influence of disturbance on temperate forest productivity

    Science.gov (United States)

    Peters, Emily B.; Wythers, Kirk R.; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Climate, tree species traits, and soil fertility are key controls on forest productivity. However, in most forest ecosystems, natural and human disturbances, such as wind throw, fire, and harvest, can also exert important and lasting direct and indirect influence over productivity. We used an ecosystem model, PnET-CN, to examine how disturbance type, intensity, and frequency influence net primary production (NPP) across a range of forest types from Minnesota and Wisconsin, USA. We assessed the importance of past disturbances on NPP, net N mineralization, foliar N, and leaf area index at 107 forest stands of differing types (aspen, jack pine, northern hardwood, black spruce) and disturbance history (fire, harvest) by comparing model simulations with observations. The model reasonably predicted differences among forest types in productivity, foliar N, leaf area index, and net N mineralization. Model simulations that included past disturbances minimally improved predictions compared to simulations without disturbance, suggesting the legacy of past disturbances played a minor role in influencing current forest productivity rates. Modeled NPP was more sensitive to the intensity of soil removal during a disturbance than the fraction of stand mortality or wood removal. Increasing crown fire frequency resulted in lower NPP, particularly for conifer forest types with longer leaf life spans and longer recovery times. These findings suggest that, over long time periods, moderate frequency disturbances are a relatively less important control on productivity than climate, soil, and species traits.

  9. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA)

    Science.gov (United States)

    Caputo, Jesse PhD.; Beier, Colin M.; Sullivan, Timothy J.; Lawrence, Gregory B.

    2016-01-01

    Sugar maple (Acer saccharum) is among the most ecologically and economically important tree species in North America, and its growth and regeneration is often the focus of silvicultural practices in northern hardwood forests. A key stressor for sugar maple (SM) is acid rain, which depletes base cations from poorly-buffered forest soils and has been associated with much lower SM vigor, growth, and recruitment. However, the potential interactions between forest management and soil acidification – and their implications for the sustainability of SM and its economic and cultural benefits – have not been investigated. In this study, we simulated the development of 50 extant SM stands in the western Adirondack region of NY (USA) for 100 years under different soil chemical conditions and silvicultural prescriptions. We found that interactions between management prescription and soil base saturation will strongly shape the ability to maintain SM in managed forests. Below 12% base saturation, SM did not regenerate sufficiently after harvest and was replaced mainly by red maple (Acer rubrum) and American beech (Fagus grandifolia). Loss of SM on acid-impaired sites was predicted regardless of whether the shelterwood or diameter-limit prescriptions were used. On soils with sufficient base saturation, models predicted that SM will regenerate after harvest and be sustained for future rotations. We then estimated how these different post-harvest outcomes, mediated by acid impairment of forest soils, would affect the potential monetary value of ecosystem services provided by SM forests. Model simulations indicated that a management strategy focused on syrup production – although not feasible across the vast areas where acid impairment has occurred – may generate the greatest economic return. Although pollution from acid rain is declining, its long-term legacy in forest soils will shape future options for sustainable forestry and ecosystem stewardship in the northern

  10. Phosphorus Use Efficiency by Brazilian Upland Rice Genotypes Evaluated by the {sup 32}P Dilution Technique

    Energy Technology Data Exchange (ETDEWEB)

    Franzini, V. I.; Mendes, F. L. [Brazilian Agricultural Research Corporation, EMBRAPA-Amazonia Oriental, Belem, PA (Brazil); Muraoka, T.; Da Silva, E. C. [Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP (Brazil); Adu-Gyamfi, J. J. [Soil and Water Management and Crop Nutrition Laboratory, International Atomic Energy Agency, Vienna (Austria)

    2013-11-15

    The objectives of this work were to identify the most efficient upland rice genotypes in phosphorus (P) utilization, and to verify if P from the seed affects the classification of upland rice genotypes on P uptake efficiency. The experiment was conducted in a greenhouse of the Center for Nuclear Energy in Agriculture (CENA/USP), Piracicaba, Sao Paulo, Brazil, using the {sup 32}P isotope technique, and plants were grown in pots with samples of dystrophic Typic Haplustox (Oxisol). The experimental design was completely randomized with four replications. The treatments consisted of 47 upland rice genotypes and two standard plant species, efficient or inefficient in P uptake. The results were assessed through correlation and cluster analysis (multivariate). The Carisma upland rice genotype was the most efficient in P uptake, and Caripuna was the most efficient on P utilization. The P derived from seed does not influence the identification of upland rice genotypes in P uptake efficiency. (author)

  11. Effects of group-selection timber harvest in bottomland hardwoods on fall migrant birds

    Science.gov (United States)

    John C. Kilgo; Karl V. Miller; Winston P. Smith

    1999-01-01

    Due to projected demands for hardwood timber, development of silvicultural practices that provide for adequate regeneration in southeastern bottomland hardwoods without causing undue harm to wildlife resources is critical. Group-selection silviculture involves harvesting a small group of trees, which creates a canopy gap (usually

  12. Effects of watershed experiments on water chemistry at the Marcell Experimental Forest. Chapter 14.

    Science.gov (United States)

    Stephen D. Sebestyen; Elon S. Verry

    2011-01-01

    The Marcell Experimental Forest (MEF) was established during the 1960s to study the hydrology and ecology of lowland watersheds where upland mineral soils drain to central peatlands (Boelter and Verry 1977). The effects of seven large-scale manipulations on water chemistry have been studied on the MEF watersheds and the data now span up to four decades. In this chapter...

  13. Marketing Hardwoods to Furniture Producers

    Science.gov (United States)

    Steven A. Sinclair; Robert J. Bush; Philip A. Araman

    1989-01-01

    This paper discusses some of the many problems in developing marketing programs for small wood products manufacturers. It examines the problems of using price as a dominant means for getting and attracting customers. The marketing of hardwood lumber to furniture producers is then used as an example. Data from 36 furniture lumber buyers is presented to illustrate...

  14. Burrow characteristics and habitat associations of armadillos in Brazil and the United States of America

    Directory of Open Access Journals (Sweden)

    Colleen M. McDonough

    2000-03-01

    Full Text Available We censused and measured armadillo burrows in ten 10 m x 40 m plots in each of four habitat types at a study site in northern Florida and one in the Atlantic coastal rainforest of Brazil. The nine-banded armadillo (Dasypus novemcinctus was the only species of armadillo found in Florida, but several additional species were present in Brazil. Burrows were more numerous but smaller in Brazil than in the U. S., probably due to the inclusion of burrows dug by the smaller congener D. septemcinctus. In Brazil, burrows were larger and more numerous in swamp and forest habitats than in grassland or disturbed areas, suggesting that D. novemcinctus is found primarily in forests and swamps while D. septemcinctus is located in the other areas. This was supported by data from sightings of live animals. In Florida, burrows were more numerous in hardwood hammocks than in wetlands, fields or upland pine areas, but burrow dimensions did not vary across habitat types. In Florida, armadillos were seen more frequently than expected in hammocks and wetlands and less frequently than expected in fields and upland pine areas. There were also age (juvenile versus adult, sex, and yearly differences in habitat use in Florida. Biomass, abundance, and species diversity of terrestrial invertebrates did not vary significantly between habitat types in Florida, suggesting that habitat associations of armadillos were not influenced by prey availability.

  15. Water quality, biodiversity, and codes of practice in relation to harvesting forest plantations in streamside management zones

    Science.gov (United States)

    Daniel G. Neary; Philip J. Smethurst; Brenda Baillie; Kevin C. Petrone

    2011-01-01

    Streamside management zones (SMZs) are special landscape units that include riparian areas and adjacent lands that mitigate the movement of sediment, nutrients and other chemicals from upland forest and agricultural management areas into streams. The size, shape, and management of SMZs are governed by various combinations of economic, ecological, and regulatory factors...

  16. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    Science.gov (United States)

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming. © 2014 John Wiley & Sons Ltd.

  17. Scottish landform examples : The Cairngorms - a pre-glacial upland granite landscape

    OpenAIRE

    Hall, A.M.; Gillespie, M.R.; Thomas, C.W.; Ebert, K.

    2013-01-01

    The Cairngorm massif in NE Scotland (Figure 1) is an excellent example of a preglacial upland landscape formed in granite. Glacial erosion in the mountains has been largely confined to valleys and corries (Rea, 1998) and so has acted to dissect a pre-existing upland (Figure 2). Intervening areas of the massif experienced negligible glacial erosion due to protective covers of cold-based ice (Sugden, 1968) and preserve a wide range of pre-glacial and non-glacial landforms and reg...

  18. Mercury concentrations and pools in four adjacent coniferous and deciduous upland forests in Beijing, China

    Science.gov (United States)

    Zhou, Jun; Wang, Zhangwei; Zhang, Xiaoshan; Gao, Yu

    2017-05-01

    Understanding of forest mercury (Hg) pools is important for quantifying the global atmospheric Hg removal. We studied gaseous elemental Hg (GEM) concentrations, litterfall Hg depositions, and pool sizes in four adjacent stands at Mount Dongling to assess Hg dynamics in the forested catchment and the potential of Hg release during wildfires. The average GEM concentration was 2.5 ± 0.5 ng m-3, about 1.5 times of the background levels in the Northern Hemisphere. In all four stands, Hg concentrations increase in the following order: bole wood mineral soil litter < Oe soil < Oa organic soil. The Hg pools of aboveground biomass were comparable in the forests of larch, oak, and Chinese pine, which were much greater than that of mixed broadleaf stands due to lower biomass. The total Hg pools in ecosystems were similar in the four stands, because of the comparable Hg pool in the soil horizons (0-40 cm), which accounted for over 97% of the total ecosystem Hg storage in the four stands. Although Hg pools of the forest ecosystem in north China were comparable to North America and North Europe, Hg storage in forests constituted a high threat for large Hg emission pulses to the atmosphere by wildfires. The potential Hg emissions from the combustion at the four stands were ranged from 0.675 to 1.696 mg m-2.

  19. High-resolution coproecology: using coprolites to reconstruct the habits and habitats of New Zealand's extinct upland moa (Megalapteryx didinus.

    Directory of Open Access Journals (Sweden)

    Jamie R Wood

    Full Text Available Knowledge about the diet and ecology of extinct herbivores has important implications for understanding the evolution of plant defence structures, establishing the influences of herbivory on past plant community structure and composition, and identifying pollination and seed dispersal syndromes. The flightless ratite moa (Aves: Dinornithiformes were New Zealand's largest herbivores prior to their extinction soon after initial human settlement. Here we contribute to the knowledge of moa diet and ecology by reporting the results of a multidisciplinary study of 35 coprolites from a subalpine cave (Euphrates Cave on the South Island of New Zealand. Ancient DNA analysis and radiocarbon dating revealed the coprolites were deposited by the extinct upland moa (Megalapteryx didinus, and span from at least 6,368±31 until 694±30 (14C years BP; the approximate time of their extinction. Using pollen, plant macrofossil, and ancient DNA analyses, we identified at least 67 plant taxa from the coprolites, including the first evidence that moa fed on the nectar-rich flowers of New Zealand flax (Phormium and tree fuchsia (Fuchsia excorticata. The plant assemblage from the coprolites reflects a highly-generalist feeding ecology for upland moa, including browsing and grazing across the full range of locally available habitats (spanning southern beech (Nothofagus forest to tussock (Chionochloa grassland. Intact seeds in the coprolites indicate that upland moa may have been important dispersal agents for several plant taxa. Plant taxa with putative anti-browse adaptations were also identified in the coprolites. Clusters of coprolites (based on pollen assemblages, moa haplotypes, and radiocarbon dates, probably reflect specimens deposited at the same time by individual birds, and reveal the necessity of suitably large sample sizes in coprolite studies to overcome potential biases in diet interpretation.

  20. U.S. hardwood fiber demand and supply situation : globalization and structural change

    Science.gov (United States)

    Peter J. Ince; Irene Durbak

    2005-01-01

    This paper reviews demand and supply trends for hardwood fiber in the United States. The objective is to illustrate nationwide shifts in demand and supply and show how the hardwood pulpwood market reacts to those shifts at a regional level. Thus, the market situation is illustrated using an economic rationale, and trends are projected under assumptions about future...