WorldWideScience

Sample records for upland forest habitat

  1. The Importance of Maintaining Upland Forest Habitat Surrounding Salamander Breeding Ponds: Case Study of the Eastern Tiger Salamander in New York, USA

    Directory of Open Access Journals (Sweden)

    Valorie Titus

    2014-12-01

    Full Text Available Most amphibians use both wetland and upland habitats, but the extent of their movement in forested habitats is poorly known. We used radiotelemetry to observe the movements of adult and juvenile eastern tiger salamanders over a 4-year period. Females tended to move farther from the breeding ponds into upland forested habitat than males, while the distance a juvenile moved appeared to be related to body size, with the largest individuals moving as far as the adult females. Individuals chose refugia in native pitch pine—oak forested habitat and avoided open fields, roads, and developed areas. We also observed a difference in potential predation pressures in relation to the distance an individual moved from the edge of the pond. Our results support delineating forested wetland buffer zones on a case-by-case basis to reduce the impacts of concentrated predation, to increase and protect the availability of pitch pine—oak forests near the breeding pond, and to focus primarily on the habitat needs of the adult females and larger juveniles, which in turn will encompass habitat needs of adult males and smaller juveniles.

  2. Songbird use of floodplain and upland forests along the Upper Mississippi River corridor during spring migration

    Science.gov (United States)

    Kirsch, Eileen M.; Heglund, Patricia J.; Gray, Brian R.; Mckann, Patrick

    2013-01-01

    The Upper Mississippi River is thought to provide important stopover habitat for migrating landbirds because of its north-south orientation and floodplain forests. The river flows through the Driftless Area of southwestern Wisconsin and southeastern Minnesota where forests are plentiful, yet forests of the floodplain and Driftless Area uplands differ greatly in landscape setting, tree species composition, and topography. We compared landbird assemblages in these upland and floodplain forests over three springs, 2005–2007, using line-transect surveys at randomly selected areas in and within 16 km of the floodplain. We found more species of both transient and locally breeding migrants per survey in floodplain than in upland forest. Detections of transient neotropical migrants did not differ statistically by habitat. Detections of locally breeding neotropical and temperate-zone migrants and transient temperate-zone migrants were greater in floodplain than in upland forest. Between floodplain and upland forest, assemblages of locally breeding species, including neotropical and temperate-zone migrants (of which some individuals were in transit), differed substantially, but assemblages of transients (including both neotropical and temperate-zone migrants) did not differ as much. Only two species of transient migrants had clear affinities for floodplain forest, and none had an affinity for upland forest, whereas most locally breeding migrants had an affinity for either upland or floodplain forest. Within each spring, however, detections of transient neotropical migrants shifted from being greater in floodplain to greater in upland forests. This intraseasonal shift may be related to the phenology of certain tree species.

  3. Bat activity following restoration prescribed burning in the central Appalachian Upland and riparian habitats

    Science.gov (United States)

    Austin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Muthersbaugh, Michael; Powers, Karen E.

    2018-01-01

    After decades of fire suppression in eastern North America, land managers now are prioritizing prescribed fire as a management tool to restore or maintain fire-adapted vegetation communities. However, in long—fire-suppressed landscapes, such as the central and southern Appalachians, it is unknown how bats will respond to prescribed fire in both riparian and upland forest habitats. To address these concerns, we conducted zero-crossing acoustic surveys of bat activity in burned, unburned, riparian, and non-riparian areas in the central Appalachians, Virginia, USA. Burn and riparian variables had model support (ΔAICc fire differently between upland and riparian forest habitats, but overall, large landscape-level prescribed fire has a slightly positive to neutral impact on all bats species identified at our study site post—fire application.

  4. Upland hardwood habitat types in southwestern North Dakota

    Science.gov (United States)

    Michele M. Girard; Harold Goetz; Ardell J. Bjugstad

    1985-01-01

    The Daubenmire habitat type method was used to classify the upland hardwood draws of southwestern North Dakota. Preliminary data analysis indicates there are four upland habitat types: Fraxinus pennsylvanica/Prunus virginiana; F. pnnseanica-Ulmus americana/P. virginiana; Populus...

  5. Cryptic Methane Emissions from Upland Forest Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Megonigal, Patrick [Smithsonian Institution, Washington, DC (United States); Pitz, Scott [Johns Hopkins Univ., Baltimore, MD (United States); Smithsonian Institution, Washington, DC (United States)

    2016-04-19

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) develop the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.

  6. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland

    DEFF Research Database (Denmark)

    Helama, Samuli; Arentoft, Birgitte W.; Collin-Haubensak, Olivier

    2013-01-01

    Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L...

  7. Oak-Black Bear Relationships in Southeastern Uplands

    Science.gov (United States)

    Joseph D. Clark

    2004-01-01

    Bears (Ursus americanus) primarily occur in upland habitats in the Southeast because uplands were the last to be developed for agriculture and were more likely to become publicly owned. National parks and forests created in the early to mid-1900s served as sources to supply surrounding uplands with bears. Bears could not survive in southeastern...

  8. FOREST DISTRIBUTION ON THE CENTRAL RUSSIAN UPLAND: HISTORICAL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Maria V. Arkhipova

    2014-01-01

    Full Text Available We studied the change of forestland in the Central Russian Upland within the deciduous forest, forest-steppe, and steppe zones using old maps (XVIII-XX cc. and current satellite images. The forest distribution within the Central Russian Upland has been relatively stable during the last 220 years. On average, the decrease in the forested area was small. However, we identified significant changes in certain regions. In the southern part of CRU, the significant increase of the forested land is caused by the forest protection of abatis woodland and afforestation. During the last 100 years, reforestation took place mainly in the Oka basin due to both afforestation and natural reforestation. New forests appeared generally in ravines within all zones. The analysis of the abatis forests changes from the XVIII to XX cc. allowed us to identify forested area within the Central Russian Upland prior to active development.

  9. Responses of Isolated Wetland Herpetofauna to Upland Forest Management

    International Nuclear Information System (INIS)

    Russell, K.R.; Hanlin, H.G.; Wigley, T.B.; Guynn, D.C. Jr.

    2002-01-01

    Measurement of responses of herpetofauna at isolated wetlands in the Coastal Plain of South Carolina to disturbance of adjacent loblolly pine forest. Many species of isolated wetland herpetofauna in the Southeastern Coastal Plain may tolerate some disturbance in adjacent upland stands. Responses of isolated wetland herpetofauna to upland silviculture and the need for adjacent forested buffers likely depend on the specific landscape context in which the wetlands occur and composition of the resident herpetofaunal community

  10. Assessing the feasibility and profitability of cable logging in southern upland hardwood forests

    Science.gov (United States)

    Chris B. LeDoux; Dennis M. May; Tony Johnson; Richard H. Widmann

    1995-01-01

    Procedures developed to assess available timber supplies from upland hardwood forest statistics reported by the USDA Forest Services' Forest Inventory and Analysis unit were modified to assess the feasibility and profitability of cable logging in southern upland hardwood forests. Depending on the harvest system and yarding distance used, cable logging can be...

  11. Breeding birds in riparian and upland dry forests of the Cascade Range

    Science.gov (United States)

    John F. Lehmkuhl; E. Dorsey Burger; Emily K. Drew; John P. Lindsey; Maryellen Haggard; Kent Z. Woodruff

    2007-01-01

    We quantified breeding bird abundance, diversity, and indicator species in riparian and upland dry forests along six third- to fourth-order streams on the east slope of the Cascade Range, Washington, USA. Upland mesic forest on southerly aspects was dominated by open ponderosa pine (Pinus ponderosa) and dry Douglas-fir (Pseudotsuga menziesii...

  12. Responses of upland herpetofauna to the restoration of Carolina Bays and thinning of forested Bay Margins.

    Energy Technology Data Exchange (ETDEWEB)

    Ledvina, Joseph A.

    2008-05-01

    Research on the effects of wetland restoration on reptiles and amphibians is becoming more common, but almost all of these studies have observed the colonization of recently disturbed habitats that were completely dry at the time of restoration. In a similar manner, investigations herpetofaunal responses to forest management have focused on clearcuts, and less intensive stand manipulations are not as well studied. To evaluate community and population responses of reptiles and amphibians to hydrology restoration and canopy removal in the interior of previously degraded Carolina bays, I monitored herpetofauna in the uplands adjacent to six historically degraded Carolina bays at the Savannah River Site (SRS) in South Carolina for four years after restoration. To evaluate the effects of forest thinning on upland herpetofauna, forests were thinned in the margins of three of these bays. I used repeated measures ANOVA to compare species richness and diversity and the abundance of selected species and guilds between these bays and with those at three reference bays that were not historically drained and three control bays that remained degraded. I also used Non-metric Multidimensional Scaling (NMDS) to look for community-level patterns based treatments.

  13. Species composition, diversity and relative abundance of amphibians in forests and non-forest habitats on Langkawi Island, Peninsular Malaysia

    Science.gov (United States)

    Nur Johana, J.; Muzzneena, A. M.; Grismer, L. L.; Norhayati, A.

    2016-11-01

    Anurans on Langkawi Island, Peninsular Malaysia exhibit variation in their habits and forms, ranging from small (SVL 150 mm), and occupy a range of habitats, such as riverine forests, agricultural fields, peat swamps, and lowland and upland dipterocarp forests. These variations provide a platform to explore species diversity, distribution, abundance, microhabitat, and other ecological parameters to understand the distribution patterns and to facilitate conservation and management of sensitive or important species and areas. The objective of this study was to evaluate the diversity and distribution of anuran species in different types of habitat on Langkawi Island. Specimens were collected based on active sampling using the Visual Encounter Survey (VES) method. We surveyed anuran species inhabiting seven types of habitat, namely agriculture (AG), coastal (CL), forest (FT), pond (PD), mangrove (MG), riparian forest (RF) and river (RV). A total of 775 individuals were sampled from all localities, representing 23 species from 12 genera and included all six families of frogs in Malaysia. FT and RF showed high values of Shannon Index, H', 2.60 and 2.38, respectively, followed by the other types of habitat, CL (1.82), RV (1.71), MG (1.56), PD (1.54), and AG (1.53). AG had the highest abundance (156 individuals) compared to other habitat types. Based on Cluster Analysis by using Jaccard coefficient (UPGMA), two groups can be clearly seen and assigned as forested species group (FT and RF) and species associating with human activity (AG, CL, PD, MG and RV). Forest species group is more diverse compared to non-forest group. Nevertheless, non-forest species are found in abundance, highlighting the relevance of these disturbed habitats in supporting the amphibians.

  14. Ghost forest creation and the conversion of uplands to wetlands

    Science.gov (United States)

    Kirwan, M. L.; Schieder, N. W.; Reay, W.

    2017-12-01

    Global sea level rise rates began accelerating sharply in the late 19th century, with an approximate tripling in sea level rise rates in many regions of the world. Some portions of the coastal landscape, such as marshes and barrier islands, survive relative sea level rise by natural eco-geomorphic processes that allow them to build elevation vertically and migrate landward. In contrast, adjacent uplands typically occupied by forests and agricultural fields have limited ability to resist the impacts of sea level rise. This portion of the coastal landscape consists of mostly salt intolerant plants, receives little mineral sediment deposition, and rarely builds elevation through the accumulation of soil organic matter. Thus, ghost forests- dead trees surrounded by marshland- are a prominent feature of many low-relief coastal landscapes, and represent a striking visual indicator of upland to wetland conversion. Here, we report preliminary results of several efforts designed to quantify rates and drivers of upland to wetland conversion in the mid-Atlantic region of the United States. Drone based canopy monitoring and ground-based seedling experiments suggest that ghost forests are created by episodic, storm-driven adult tree mortality paired with continuous seedling mortality. Preliminary comparisons between sediment cores and historical photographs from 5 sites in Maryland, Virginia, and North Carolina suggest that modern coastal forest retreat is 2-10 times faster than late-Holocene retreat rates, and that rates have accelerated in most decades since the 1930's. Finally, historical T-Sheet maps suggest that approximately 100,000 acres (400 km2) of uplands have converted to wetlands in the Chesapeake region, and that about 1/3 of all present-day marsh was created by upland drowning since the late 19th Century. Together, these observations indicate rapid coastal transgression, where low-relief, terrestrial portions of the coastal landscape are perhaps more sensitive to

  15. Migrating birds’ use of stopover habitat in the southwestern United States

    Science.gov (United States)

    Ruth, Janet M.; Diehl, R.H.; Felix, R.K.

    2012-01-01

    In the arid Southwest, migratory birds are known to use riparian stopover habitats; we know less about how migrants use other habitat types during migratory stopover. Using radar data and satellite land-cover data, we determined the habitats with which birds are associated during migration stopover. Bird densities differed significantly by habitat type at all sites in at least one season. In parts of Arizona and New Mexico upland forest supported high densities of migrants, especially in fall. Developed habitat, in areas with little upland forest, also supported high densities of migrants. Scrub/shrub and grassland habitats supported low to intermediate densities, but because these habitat types dominate the Southwestern landscape, they may provide stopover habitat for larger numbers of migratory birds than previously recognized. These results are complicated by continuing challenges related to target identity (i.e., distinguishing among birds, arthropods and bats). Our results suggest that it is too simplistic to (1) consider the arid West as a largely inhospitable landscape in which there are only relatively small oases of habitat that provide the resources needed by all migrants, (2) think of western riparian and upland forests as supporting the majority of migrants in all cases, and (3) consider a particular habitat unimportant for stopover solely on the basis of low densities of migrants.

  16. Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain.

    Science.gov (United States)

    Schäfer, Karina V R; Renninger, Heidi J; Carlo, Nicholas J; Vanderklein, Dirk W

    2014-01-01

    Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance.

  17. Field irradiator gamma: pre-irradiation occurrence of breeding birds in three boreal habitats

    International Nuclear Information System (INIS)

    Seabloom, R.W.

    1975-10-01

    A trail census was conducted of the breeding birds found in three major habitats in the Field Irradiator Gamma area at the Whiteshell Nuclear Research Establishment, Pinawa, Manitoba. The area sampled was about 10.50 ha in size, and included 4.25 ha of upland forest, 4.75 ha of lowland conifers, and 1.50 ha of black spruce-tamarack bog. Forty-four species of birds were identified, of which 24 were considered to be resident in the study area. The highest population density was observed in the bog, followed by upland forest and lowland conifer respectively. In contrast, species diversity was greatest in the upland forest, while it decreased markedly in the relatively monotypic lowland conifer and bog habitats. (author)

  18. Stand model for upland forests of Southern Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Mielke, D.L.; Shugart, H.H.; West, D.C.

    1978-06-01

    A forest stand growth and composition simulator (FORAR) was developed by modifying a stand growth model by Shugart and West (1977). FORAR is a functional stand model which used ecological parameters to relate individual tree growth to environment rather than using Markov probability matrices or differential equations to determine single tree or species replacement rates. FORAR simulated tree growth and species composition of upland forests of Union County, Ark., by considering 33 tree species on a /sup 1///sub 12/ ha circular plot.

  19. Saproxylic Hemiptera Habitat Associations

    Science.gov (United States)

    Michael D. Ulyshen; James L. Hanula; Robert L. Blinn; Gene. Kritsky

    2012-01-01

    Understanding the habitat requirements of organisms associated with dead wood is important in order to conserve them in managed forests. Unfortunately, many of the less diverse saproxylic taxa, including Hemiptera, remain largely unstudied. An effort to rear insects from dead wood taken from two forest types (an upland pine-dominated and a bottomland mixed hardwood),...

  20. Litter and nutrient flows in tropical upland forest flooded by a hydropower plant in the Amazonian basin.

    Science.gov (United States)

    Pereira, Guilherme Henrique A; Jordão, Henos Carlos K; Silva, Vanessa Francieli V; Pereira, Marcos Gervasio

    2016-12-01

    Extensive areas in the Brazilian Amazon have been flooded for the construction of hydroelectric dams. However, the water regime of these areas affects the dynamics of igarapés (streams) in adjacent terra firme (upland forests). When the reservoirs are filled, the water levels of streams rise above the normal levels and upland bank forests are flooded. We investigated how this flooding affects the litterfall and nutrient input in the upland forests upstream of a hydroelectric dam reservoir in the Central Amazonia. When the reservoir was filled, the forests were flooded and produced more than twice the litter (8.80Mg·ha -1 yr -1 ), with three times more leaves (6.36Mg·ha -1 yr -1 ) than when they were not flooded (4.20 and 1.92Mg·ha -1 yr -1 , respectively). During flooding, the decomposition rate was four times lower in flooded forests (0.328g·g -1 yr -1 ) than in control forests (1.460g·g -1 yr -1 ). Despite this, the flooding did not favor litter or nutrient accumulation. Therefore, dam construction changes the organic matter and nutrient cycling in upland Amazon rainforests. This may influence the important role that they play in organic matter dynamics and could have consequences for the regional carbon balance and, ultimately, global climate. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Reptile and amphibian response to season of burn in an upland hardwood forest

    Science.gov (United States)

    Cathryn H. Greenberg; Tyler Seiboldt; Tara L. Keyser; W. Henry McNab; Patrick Scott; Janis Bush; Christopher E. Moorman

    2018-01-01

    Growing-season burns are increasingly used in upland hardwood forest for multiple forest management goals. Many species of reptiles and amphibians are ground-dwelling, potentially increasing their vulnerability to prescribed fire, especially during the growing-season when they are most active. We used drift fences with pitfall traps to experimentally assess how...

  2. Forest Stakeholder Participation in Improving Game Habitat in Swedish Forests

    Directory of Open Access Journals (Sweden)

    Eugene E. Ezebilo

    2012-07-01

    Full Text Available Although in Sweden the simultaneous use of forests for timber production and game hunting are both of socioeconomic importance it often leads to conflicting interests. This study examines forest stakeholder participation in improving game habitat to increase hunting opportunities as well as redistribute game activities in forests to help reduce browsing damage in valuable forest stands. The data for the study were collected from a nationwide survey that involved randomly selected hunters and forest owners in Sweden. An ordered logit model was used to account for possible factors influencing the respondents’ participation in improving game habitat. The results showed that on average, forest owning hunters were more involved in improving game habitat than non-hunting forest owners. The involvement of non-forest owning hunters was intermediate between the former two groups. The respondents’ participation in improving game habitat were mainly influenced by factors such as the quantity of game meat obtained, stakeholder group, forests on hunting grounds, the extent of risk posed by game browsing damage to the economy of forest owners, importance of bagging game during hunting, and number of hunting days. The findings will help in designing a more sustainable forest management strategy that integrates timber production and game hunting in forests.

  3. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks.

    Science.gov (United States)

    Mukul, Sharif A; Herbohn, John; Firn, Jennifer

    2016-03-08

    In the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines. We found significantly higher carbon in the aboveground total biomass and living woody biomass in old-growth forest, while coarse dead wood biomass carbon was higher in the new fallow sites. For young through to the oldest fallow secondary forests, there was a progressive recovery of biomass carbon evident. Multivariate analysis indicates patch size as an influential factor in explaining the variation in biomass carbon recovery in secondary forests after shifting cultivation. Our study indicates secondary forests after shifting cultivation are substantial carbon sinks and that this capacity to store carbon increases with abandonment age. Large trees contribute most to aboveground biomass. A better understanding of the relative contribution of different biomass sources in aboveground total forest biomass, however, is necessary to fully capture the value of such landscapes from forest management, restoration and conservation perspectives.

  4. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China

    International Nuclear Information System (INIS)

    Fu Xuewu; Feng Xinbin; Zhu Wanze; Rothenberg, S.; Yao Heng; Zhang Hui

    2010-01-01

    Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m -3 and 30.7 pg m -3 , respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 μg m -2 yr -1 . Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 μg m -2 yr -1 , respectively. - Upland forest ecosystem is a great sink of atmospheric mercury in southwest China.

  5. Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts

    Directory of Open Access Journals (Sweden)

    S. D. Marks

    1997-01-01

    Full Text Available As identified by the detailed long-term monitoring networks at Plynlimon, increased sediment supply to upland fluvial systems is often associated with forestry land-use and practice. Literature is reviewed, in the light of recent results from Plynlimon sediment studies, to enable identification of the potential ecological impacts of fluvial particulate inputs to upland gravel bed rivers draining forested catchments similar to the headwaters of the River Severn. Both sediment transport and deposition can have significant impacts upon aquatic vertebrates, invertebrates and plants.

  6. A source of methane from upland forests in the Brazilian Amazon.

    Science.gov (United States)

    Janaina Braga do Carmo; Michael Keller; Jadson Dezincourt Dias; Plinio Barbosa de Camargo; Patrick Crill

    2006-01-01

    We sampled air in the canopy layer of undisturbed upland forests during wet and dry seasons at three sites in the Brazilian Amazon region and found that both methane(CH4) and carbon dioxide (CO2) mixing ratios increased at night. Such increases were consistent across sites and seasons. A canopy layer budget model based on measured soil-atmosphere fluxes of CO2 was...

  7. Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.

    Science.gov (United States)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen Pieter; Bruun, Hans Henrik

    2013-02-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently accompanied by specialization in their regeneration niche; and (2) species are thereby adapted to utilize different windows of opportunity in time (season) and space (habitat). Seed germination response to temperature, light and stratification was tested for 17 congeneric pairs, each consisting of one forest species and one open-habitat species. A factorial design was used with temperature levels and diurnal temperature variation (10 °C constant, 15-5 °C fluctuating, 20 °C constant, 25-15 °C fluctuating), and two light levels (light and darkness) and a cold stratification treatment. The congeneric species pair design took phylogenetic dependence into account. Species from open habitats germinated better at high temperatures, whereas forest species performed equally well at low and high temperatures. Forest species tended to germinate only after a period of cold stratification that could break dormancy, while species from open habitats generally germinated without cold stratification. The empirically derived germination strategies correspond quite well with establishment opportunities for forest and open-habitat plant species in nature. Annual changes in temperature and light regime in temperate forest delimit windows of opportunity for germination and establishment. Germination strategies of forest plants are adaptations to utilize such narrow windows in time. Conversely, lack of fit between germination ecology and environment may explain why species of open habitats generally fail to establish in forests. Germination strategy should be considered an important mechanism for habitat specialization in temperate herbs to forest habitats. The findings strongly suggest that

  8. Upland Forest Linkages to Seasonal Wetlands: Litter Flux, Processing, and Food Quality

    Science.gov (United States)

    Brian J. Palik; Darold P. Batzer; Christel Kern

    2005-01-01

    The flux of materials across ecosystem boundaries has significant effects on recipient systems. Because of edge effects, seasonal wetlands in upland forest are good systems to explore these linkages. The purpose of this study was to examine flux of coarse particulate organic matter as litter fall into seasonal wetlands in Minnesota, and the relationship of this flux to...

  9. New England wildlife: management forested habitats

    Science.gov (United States)

    Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier

    1992-01-01

    Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...

  10. High-resolution coproecology: using coprolites to reconstruct the habits and habitats of New Zealand's extinct upland moa (Megalapteryx didinus.

    Directory of Open Access Journals (Sweden)

    Jamie R Wood

    Full Text Available Knowledge about the diet and ecology of extinct herbivores has important implications for understanding the evolution of plant defence structures, establishing the influences of herbivory on past plant community structure and composition, and identifying pollination and seed dispersal syndromes. The flightless ratite moa (Aves: Dinornithiformes were New Zealand's largest herbivores prior to their extinction soon after initial human settlement. Here we contribute to the knowledge of moa diet and ecology by reporting the results of a multidisciplinary study of 35 coprolites from a subalpine cave (Euphrates Cave on the South Island of New Zealand. Ancient DNA analysis and radiocarbon dating revealed the coprolites were deposited by the extinct upland moa (Megalapteryx didinus, and span from at least 6,368±31 until 694±30 (14C years BP; the approximate time of their extinction. Using pollen, plant macrofossil, and ancient DNA analyses, we identified at least 67 plant taxa from the coprolites, including the first evidence that moa fed on the nectar-rich flowers of New Zealand flax (Phormium and tree fuchsia (Fuchsia excorticata. The plant assemblage from the coprolites reflects a highly-generalist feeding ecology for upland moa, including browsing and grazing across the full range of locally available habitats (spanning southern beech (Nothofagus forest to tussock (Chionochloa grassland. Intact seeds in the coprolites indicate that upland moa may have been important dispersal agents for several plant taxa. Plant taxa with putative anti-browse adaptations were also identified in the coprolites. Clusters of coprolites (based on pollen assemblages, moa haplotypes, and radiocarbon dates, probably reflect specimens deposited at the same time by individual birds, and reveal the necessity of suitably large sample sizes in coprolite studies to overcome potential biases in diet interpretation.

  11. Runoff water quality from a sierran upland forest, transition ecotone, and riparian wet meadow

    Science.gov (United States)

    High concentrations of inorganic N, P, and S have been reported in overland and litter interflow within forested uplands of the Tahoe basin and surrounding watersheds. In this study we compared runoff nutrient concentration and load as well as soil nutrient fluxes at three watershed locations; an up...

  12. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  13. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat.

    Science.gov (United States)

    Kang, Dongwei; Wang, Xiaorong; Li, Shuang; Li, Junqing

    2017-06-15

    Artificial restoration is an important way to restore forests, but little is known about its effect on the habitat restoration of the giant panda. In the present study, we investigated the characteristics of artificial forest in the Wanglang Nature Reserve to determine whether through succession it has formed a suitable habitat for the giant panda. We compared artificial forest characteristics with those of natural habitat used by the giant panda. We found that the dominant tree species in artificial forest differed from those in the natural habitat. The artificial forest had lower plant species richness and diversity in the tree and shrub layers than did the latter, and its community structure was characterized by smaller tree and bamboo sizes, and fewer and lower bamboo clumps, but more trees and larger shrub sizes. The typical community collocation of artificial forest was a "Picea asperata + no-bamboo" model, which differs starkly from the giant panda's natural habitat. After several years of restoration, the artificial forest has failed to become a suitable habitat for the giant panda. Therefore, a simple way of planting individual trees cannot restore giant panda habitat; instead, habitat restoration should be based on the habitat requirements of the giant panda.

  14. The upland flooding experiment : assessing the impact of reservoir creation on the biogeochemical cycling of mercury in boreal forest uplands

    Energy Technology Data Exchange (ETDEWEB)

    Rolfhus, K.R. [Wisconsin Univ., Madison, WI (United States). Water Chemistry Program; Bodaly, R.A.; Fudge, R.J.P.; Huebert, D.; Paterson, M.J. [Department of Fisheries and Oceans, Ottawa, ON (Canada) Fresh Water Inst.; Hall, B.D.; St Louis, V.L. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; Krabbenhoft, D.P. [U.S. Geological Survey (United States); Hurley, J.P. [Wisconsin Univ., Madison, WI (United States). Water Resources Inst.; Peech, K. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Entomology

    2000-07-01

    One of the major environmental problems associated with boreal hydroelectric reservoirs such as those found in Canada and other northern countries is the elevated concentrations of mercury (Hg) in fish. A flooding experiment was conducted in northern Ontario to study methyl mercury (MeHg) production/bioaccumulation and greenhouse gas dynamics in impoundments with flooded upland forests of different soil carbon content, moisture and vegetation. The study, entitled Upland Flooding Experiment (FLUDEX) took place in June 1999 at the Experimental Lakes Area (ELA) where three impoundments of 0.7 ha were flooded to a depth of 1 m using oligotrophic lake water. The hydraulic residence time was 10-14 days. Responses to flooding were compared among treatment reservoirs and to previously flooded wetlands. The study included researchers from Canada and the United States who characterized mercury species fluxes from soils, the overall reservoir mass balance for total Hg and MeHg, inorganic Hg and MeHg concentration in zooplankton, benthic invertebrates, emerging insects and fish. Carbon decomposition was also examined. Preliminary results, one year after inundation, show significantly high levels of MeHg concentration compared to the feed water and that of surrounding natural lakes. Outflow samples from the dry forest areas showed the highest concentrations of Hg and MeHg, with lower concentrations from the moist forest. The lowest levels were observed from the outflow from the driest forest reservoir. A rapid pulse of inorganic Hg appears to have been released during the first 2 weeks of flooding. Soil leaching was found to be the main mechanism or inorganic Hg supply while MeHg appears to have been supplied by in situ microbial methylation. It was also shown that forage fish introduced into the reservoir had significantly elevated concentrations of MeHg compared to fish in natural lakes.

  15. Historic range of variability for upland vegetation in the Medicine Bow National Forest, Wyoming

    Science.gov (United States)

    Gregory K. Dillon; Dennis H. Knight; Carolyn B. Meyer

    2005-01-01

    An approach for synthesizing the results of ecological research pertinent to land management is the analysis of the historic range of variability (HRV) for key ecosystem variables that are affected by management activities. This report provides an HRV analysis for the upland vegetation of the Medicine Bow National Forest in southeastern Wyoming. The variables include...

  16. Habitat Effects on the Breeding Performance of Three Forest-Dwelling Hawks.

    Science.gov (United States)

    Björklund, Heidi; Valkama, Jari; Tomppo, Erkki; Laaksonen, Toni

    2015-01-01

    Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis), common buzzard (Buteo buteo) and European honey buzzard (Pernis apivorus). We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100-4000 m) around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992-2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.

  17. Habitat Effects on the Breeding Performance of Three Forest-Dwelling Hawks.

    Directory of Open Access Journals (Sweden)

    Heidi Björklund

    Full Text Available Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis, common buzzard (Buteo buteo and European honey buzzard (Pernis apivorus. We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100-4000 m around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992-2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.

  18. Spatial variation in population dynamics of Sitka mice in floodplain forests.

    Science.gov (United States)

    T.A. Hanley; J.C. Barnard

    1999-01-01

    Population dynamics and demography of the Sitka mouse, Peromyscus keeni sitkensis, were studied by mark-recapture live-trapping over a 4-year period in four floodplain and upland forest habitats: old-growth Sitka spruce (Picea sitchensis) floodplain; red alder (Alnus rubra) floodplain; beaver-pond...

  19. Condition varies with habitat choice in postbreeding forest birds

    Science.gov (United States)

    Scott H. Stoleson

    2013-01-01

    Many birds that are experiencing population declines require extensive tracts of mature forest habitat for breeding. Recent work suggests that at least some may shift their habitat use to early-successional areas after nesting but before migration. I used constant-effort mist netting in regenerating clearcuts (4-8 years postcut) and dense mature-forest understories to...

  20. Burrow characteristics and habitat associations of armadillos in Brazil and the United States of America

    Directory of Open Access Journals (Sweden)

    Colleen M. McDonough

    2000-03-01

    Full Text Available We censused and measured armadillo burrows in ten 10 m x 40 m plots in each of four habitat types at a study site in northern Florida and one in the Atlantic coastal rainforest of Brazil. The nine-banded armadillo (Dasypus novemcinctus was the only species of armadillo found in Florida, but several additional species were present in Brazil. Burrows were more numerous but smaller in Brazil than in the U. S., probably due to the inclusion of burrows dug by the smaller congener D. septemcinctus. In Brazil, burrows were larger and more numerous in swamp and forest habitats than in grassland or disturbed areas, suggesting that D. novemcinctus is found primarily in forests and swamps while D. septemcinctus is located in the other areas. This was supported by data from sightings of live animals. In Florida, burrows were more numerous in hardwood hammocks than in wetlands, fields or upland pine areas, but burrow dimensions did not vary across habitat types. In Florida, armadillos were seen more frequently than expected in hammocks and wetlands and less frequently than expected in fields and upland pine areas. There were also age (juvenile versus adult, sex, and yearly differences in habitat use in Florida. Biomass, abundance, and species diversity of terrestrial invertebrates did not vary significantly between habitat types in Florida, suggesting that habitat associations of armadillos were not influenced by prey availability.

  1. User's manual for FORAR: a stand model for composition and growth of upland forests of southern Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Mielke, D. L.; Shugart, H. H.; West, D. C.

    1977-04-01

    This report is a user's manual for FORAR, a computer model simulating stand growth and composition of upland forests of south central Arkansas. The model computes: the number and biomass of each tree species, and the dbh, age, and species of each individual tree on a 1/12-ha circular plot.

  2. Landscape responses of bats to habitat fragmentation in Atlantic forest of paraguay

    Science.gov (United States)

    Gorresen, P.M.; Willig, M.R.

    2004-01-01

    Understanding effects of habitat loss and fragmentation on populations or communities is critical to effective conservation and restoration. This is particularly important for bats because they provide vital services to ecosystems via pollination and seed dispersal, especially in tropical and subtropical habitats. Based on more than 1,000 h of survey during a 15-month period, we quantified species abundances and community structure of phyllostomid bats at 14 sites in a 3,000-km2 region of eastern Paraguay. Abundance was highest for Artibeus lituratus in deforested landscapes and for Chrotopterus auritus in forested habitats. In contrast, Artibeus fimbriatus, Carollia perspicillata, Glossophaga soricina, Platyrrhinus lineatus, Pygoderma bilabiatum, and Sturnira lilium attained highest abundance in moderately fragmented forest landscapes. Forest cover, patch size, and patch density frequently were associated with abundance of species. At the community level, species richness was highest in partly deforested landscapes, whereas evenness was greatest in forested habitat. In general, the highest diversity of bats occurred in landscapes comprising moderately fragmented forest habitat. This underscores the importance of remnant habitat patches to conservation strategies.

  3. Future of forest gardens in the Uvan uplands of Sri Lanka

    Science.gov (United States)

    Nuberg, Ian K.; Evans, David G.; Senanayake, Ranil

    1994-11-01

    Forest gardens are traditional agroecosystems in the humid tropics that have evolved a forestlike structure and as such are commonly thought to be a good example of sustainable agriculture. While this may be true in the sense of soil protection and maintenance of biodiversity, they are not necessarily maintainable in the context of competing land use in the landscape. Such appears to be the case of forest gardens in the uplands of Uva Province of Sri Lanka. This paper reports an agroecological analysis of forest gardens and other forms of land use in Uva, and discusses how this understanding can be used to make use of the good properties of forest gardens. It shows that although they have very real environmental and social benefits, they are unable to satisfy the material needs of a rural population undergoing demographic and cultural changes. However, the alternative land-use systems, both private smallholder and state owned, have serious deficiencies with respect to long-term sustainability, and it is essential to develop appropriate alternatives. It should be possible to design a smallholder farming system that incorporates the high productivity of market gardens (i.e., the cultivation of seasonal crops such as vegetables) with, at least, the high stability and biophysical sustainability of the forest garden. Considerable work still needs to be done on the design of such a system as well as the agency for its development and promotion. The paper treats the forest gardens of Uva as a case study from which some general conclusions can be drawn with respect to the conscious development of forest garden systems elsewhere in the tropics.

  4. History of natural resource use and environmental impacts in an interfluvial upland forest area in western Amazonia

    Directory of Open Access Journals (Sweden)

    Anders Siren

    2014-03-01

    Full Text Available Much of the research done on environmental impacts by Amazonian indigenous peoples in the past focus on certain areas where archaeological remains are particularly abundant, such as the Amazon River estuary, the seasonally inundated floodplain of the lower Amazon, and various sites in the forest-savannah mosaic of the southern Amazon The environmental history of interfluvial upland areas has received less attention. This study reconstructed the history of human use of natural resources in an upland area of 1400 km2 surrounding the indigenous Kichwa community of Sarayaku in the Ecuadorian Amazon, based on oral history elicited from local elders as well as historical source documents and some modern scientific studies. Although data is scarce, one can conclude that the impacts of humans on the environment have varied in time and space in quite intricate ways. Hunting has affected, and continues affecting, basically the whole study area, but it is now more concentrated in space than what it has probably ever been before. Also forest clearing has become more concentrated in space but, in addition, it has gone from affecting only hilltops forests to affecting alluvial plains as well as hilltops and, lately, also the slopes of the hills.

  5. Fire ecology of Montana forest habitat types east of the Continental Divide

    Science.gov (United States)

    William C. Fischer; Bruce D. Clayton

    1983-01-01

    Provides information on fire as an ecological factor for forest habitat types occurring east of the Continental Divide in Montana. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  6. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    International Nuclear Information System (INIS)

    Jafarov, E E; Romanovsky, V E; Marchenko, S S; Genet, H; McGuire, A D

    2013-01-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ∼80 cm) and upland (with thin organic layers, ∼30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming. (letter)

  7. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.

    Science.gov (United States)

    Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea

  8. Arthropod prey for riparian associated birds in headwater forests of the Oregon Coast Range

    Science.gov (United States)

    Hagar, Joan C.; Li, Judith; Sobota, Janel; Jenkins, Stephanie

    2012-01-01

    Headwater riparian areas occupy a large proportion of the land base in Pacific Northwest forests, and thus are ecologically and economically important. Although a primary goal of management along small headwater streams is the protection of aquatic resources, streamside habitat also is important for many terrestrial wildlife species. However, mechanisms underlying the riparian associations of some terrestrial species have not been well studied, particularly for headwater drainages. We investigated the diets of and food availability for four bird species associated with riparian habitats in montane coastal forests of western Oregon, USA. We examined variation in the availability of arthropod prey as a function of distance from stream. Specifically, we tested the hypotheses that (1) emergent aquatic insects were a food source for insectivorous birds in headwater riparian areas, and (2) the abundances of aquatic and terrestrial arthropod prey did not differ between streamside and upland areas during the bird breeding season. We found that although adult aquatic insects were available for consumption throughout the study period, they represented a relatively small proportion of available prey abundance and biomass and were present in only 1% of the diet samples from only one of the four riparian-associated bird species. Nonetheless, arthropod prey, comprised primarily of insects of terrestrial origin, was more abundant in streamside than upland samples. We conclude that food resources for birds in headwater riparian areas are primarily associated with terrestrial vegetation, and that bird distributions along the gradient from streamside to upland may be related to variation in arthropod prey availability. Because distinct vegetation may distinguish riparian from upland habitats for riparian-associated birds and their terrestrial arthropod prey, we suggest that understory communities be considered when defining management zones for riparian habitat.

  9. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Rebecca L. Flitcroft; Jeffrey A. Falke; Gordon H. Reeves; Paul F. Hessburg; Kris M. McNyset; Lee E. Benda

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed...

  10. Long-term changes in tree composition in a mesic old-growth upland forest in southern Illinois

    Science.gov (United States)

    James J. Zaczek; John W. Groninger; J.W. Van Sambeek

    1999-01-01

    The Kaskaskia Woods (Lat. 37.5 N, Long. 88.3 W), an old-growth hardwood forest in southern Illinois, has one of the oldest and best documented set of permanent plots with individual tree measurements in the Central Hardwood Region. In 1935, eight 0.101-ha plots were installed in a 7.4 ha upland area consisting of xeric oak-hickory and mesic mixed hardwoods communities...

  11. Multiscale habitat use and selection in cooperatively breeding Micronesian kingfishers

    Science.gov (United States)

    Kesler, D.C.; Haig, S.M.

    2007-01-01

    Information about the interaction between behavior and landscape resources is key to directing conservation management for endangered species. We studied multi-scale occurrence, habitat use, and selection in a cooperatively breeding population of Micronesian kingfishers (Todiramphus cinnamominus) on the island of Pohnpei, Federated States of Micronesia. At the landscape level, point-transect surveys resulted in kingfisher detection frequencies that were higher than those reported in 1994, although they remained 15-40% lower than 1983 indices. Integration of spatially explicit vegetation information with survey results indicated that kingfisher detections were positively associated with the amount of wet forest and grass-urban vegetative cover, and they were negatively associated with agricultural forest, secondary vegetation, and upland forest cover types. We used radiotelemetry and remote sensing to evaluate habitat use by individual kingfishers at the home-range scale. A comparison of habitats in Micronesian kingfisher home ranges with those in randomly placed polygons illustrated that birds used more forested areas than were randomly available in the immediate surrounding area. Further, members of cooperatively breeding groups included more forest in their home ranges than birds in pair-breeding territories, and forested portions of study areas appeared to be saturated with territories. Together, these results suggested that forest habitats were limited for Micronesian kingfishers. Thus, protecting and managing forests is important for the restoration of Micronesian kingfishers to the island of Guam (United States Territory), where they are currently extirpated, as well as to maintaining kingfisher populations on the islands of Pohnpei and Palau. Results further indicated that limited forest resources may restrict dispersal opportunities and, therefore, play a role in delayed dispersal and cooperative behaviors in Micronesian kingfishers.

  12. Grazing Habitat of the Rusa Deer (Cervus timorensis in the Upland Kebar, Manokwari

    Directory of Open Access Journals (Sweden)

    AGUSTINA YOHANA SETYARINI AROBAYA

    2009-07-01

    Full Text Available The general objective of the study was to provide current information on grassland communities as deer habitat and its future development plan for a sustainable forage management in upland Kebar, Papua. Quantitative estimation of forage production was carried out by measuring a biomass harvest in fresh weight bases, while occasional observations on ranging deer were done within habitat range with the aid of 7x50 binoculars verified by actual visitation of grazed area. The study indicated that Kebar was the only grazing area of deer varies in low layer vegetation composition that comprised of eleven grass species and five legume species. Imperata cylindrica, Paspalum conjugatum, Themeda arguens, Melinis minutiflora and Cyperus rotundus were identified as food plant of deer in Kebar. Among these species T. arguens, M. minutiflora, C. rotundus and I. cylindrica were the most preferred species consumed by deer. The biomass harvest (species productivity was 30.36 kg/ha fresh weight, while deer food productivity in the grassland was slightly lower (26.70 kg/ha than total productivity of the grassland. The major drainage area is Kasi River, but two other rivers across this valley (Api River, Apriri River are also supply water to the swampy area.

  13. Evaluating Anthropogenic Risk of Grassland and Forest Habitat Degradation using Land-Cover Data

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2009-09-01

    Full Text Available The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple spatial scales. A landscape mosaic model classifies a given location according to the amounts of intensive agriculture and intensive development in its surrounding landscape, providing measures of anthropogenic risks attributable to habitat isolation and edge effects at that location. The model is implemented using a land-cover map (0.09 ha/pixel of the conterminous United States and six landscape sizes (4.4, 15.2, 65.6, 591, 5300, and 47800 ha to evaluate the spatial scales of anthropogenic risk. Statistics for grassland and forest habitat are extracted by geographic overlays of the maps of land-cover and landscape mosaics. Depending on landscape size, 81 to 94 percent of all grassland and forest habitat occurs in landscapes that are dominated by natural land-cover including habitat itself. Within those natural-dominated landscapes, 50 percent of grassland and 59 percent of forest is within 590 m of intensive agriculture and/or intensive developed land which is typically a minor component of total landscape area. The conclusion is that anthropogenic risk attributable to habitat patch isolation affects a small proportion of the total grassland or forest habitat area, while the majority of habitat area is exposed to edge effects.

  14. Effect of Group-Selection Opening Size on Breeding Bird Habitat Use in a Bottomland Forest

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, C.E.; D.C. Guynn, Jr.

    2001-12-01

    Research on the effects of creating group-selection openings of various sizes on breeding birds habitat use in a bottomland hardwood forest of the Upper Coastal Plain of South Carolina. Creation of 0.5-ha group selection openings in southern bottomland forests should provide breeding habitat for some field-edge species in gaps and habitat for forest-interior species and canopy-dwelling forest-edge species between gaps provided that enough mature forest is made available.

  15. Integrating conservation objectives into forest management: coppice management and forest habitats in Natura 2000 sites

    Czech Academy of Sciences Publication Activity Database

    Mairota, P.; Buckley, P.; Suchomel, C.; Heinsoo, K.; Verheyen, K.; Hédl, Radim; Terzuolo, P. G.; Sindaco, R.; Carpanelli, A.

    2016-01-01

    Roč. 9, AUG 2016 (2016), s. 560-568 ISSN 1971-7458 Institutional support: RVO:67985939 Keywords : biodiversity * habitats directive * forest habitat types Subject RIV: GK - Forestry Impact factor: 1.623, year: 2016

  16. Ecohydrological dynamics of peatlands and adjacent upland forests in the Rocky Mountains

    Science.gov (United States)

    Millar, D.; Parsekian, A.; Mercer, J.; Ewers, B. E.; Mackay, D. S.; Williams, D. G.; Cooper, D. J.; Ronayne, M. J.

    2017-12-01

    Mountain peatlands are susceptible to a changing climate via changes in the water cycle. Understanding the impacts of such changes requires knowledge of the hydrological processes within these peatlands and in the upland forests that supply them with water. We investigated hydrological processes in peatland catchments in the Rocky Mountains by developing empirical models of groundwater dynamics, and are working to improve subsurface water dynamics in a ecohydrological process model, the Terrestrial Regional Ecosystem Exchange Simulator (TREES). Results from empirical models showed major differences in water budget components between two peatlands with differing climate, vegetation, and hydrogeological settings. Several-fold higher rates of evapotranspiration from the saturated zone, and groundwater inflow were observed for a sloping fen in southern Wyoming than that of a basin fen in southwestern Colorado, where rainfall was two-fold higher due to stronger influence of the North American monsoon. We also present ongoing work coupling stable water isotope and borehole nuclear magnetic resonance analyses to test which soil water pools (bound or mobile) are used by dominant upland and peatland vegetation in two catchments in southern Wyoming. These data are being used to test whether the root hydraulic mechanisms in TREES can simulate water uptake from these two soil water pools, and sap flux measurements are being used to evaluate simulated transpiration. Preliminary results from this work suggest that upland vegetation utilize tightly-bound soil water pools, as these pools comprise the largest amount of subsurface water (> 80%) in the vadose zone long after snow melt. Conversely, it appears that herbaceous peatland hydrophytes may preferentially utilize mobile soil water pools, since their roots extend below the water table. The results of this work are expected to increase predictive understanding of hydrological processes in these important ecosystems.

  17. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. A Canadian upland forest soil profile and carbon stocks database.

    Science.gov (United States)

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    "A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve

  19. Safeguarding saproxylic fungal biodiversity in Apennine beech forest priority habitats

    Science.gov (United States)

    Maggi, Oriana; Lunghini, Dario; Pecoraro, Lorenzo; Sabatini, Francesco Maria; Persiani, Anna Maria

    2015-04-01

    The FAGUS LIFE Project (LIFE11/NAT/IT/135) targets two European priority habitats, i.e. Habitat 9210* Apennine beech forests with Taxus and Ilex, and Habitat 9220* Apennine beech forests with Abies alba, within two National Parks: Cilento, Vallo di Diano and Alburni; Gran Sasso and Monti della Laga. The current limited distribution of the target habitats is also due to the impact of human activities on forest systems, such as harvesting and grazing. The FAGUS project aims at developing and testing management strategies able to integrate the conservation of priority forest habitats (9210* and 9220*) and the sustainable use of forest resources. In order to assess the responses to different management treatments the BACI monitoring design (Before-After, Control-Intervention) has been applied on forest structure and diversity of focus taxa before and after experimental harvesting treatments. Conventional management of Apennine beech forests impacts a wealth of taxonomic groups, such as saproxylic beetles and fungi, which are threatened throughout Europe by the lack of deadwood and of senescing trees, and by the homogeneous structure of managed forests. Deadwood has been denoted as the most important manageable habitat for biodiversity in forests not only for supporting a wide diversity of organisms, but also for playing a prominent role in several ecological processes, creating the basis for the cycling of photosynthetic energy, carbon, and nutrients stored in woody material. Especially fungi can be regarded as key group for understanding and managing biodiversity associated with decaying wood. The before-intervention field sampling was carried out in Autumn 2013 in 33 monitoring plots across the two national Parks. The occurrence at plot level of both Ascomycota and Basidiomycota sporocarps was surveyed. All standing and downed deadwood with a minimum diameter of 10 cm was sampled for sporocarps larger than 1 mm, and information on decay class and fungal morphogroups

  20. Evaluating carbon storage, timber harvest, and habitat possibilities for a Western Cascades (USA) forest landscape.

    Science.gov (United States)

    Kline, Jeffrey D; Harmon, Mark E; Spies, Thomas A; Morzillo, Anita T; Pabst, Robert J; McComb, Brenda C; Schnekenburger, Frank; Olsen, Keith A; Csuti, Blair; Vogeler, Jody C

    2016-10-01

    Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production analysis of forest management is adequately representing ecological conditions and processes that influence joint production relationships. We used simulation models of vegetation structure, forest sector carbon, and potential wildlife habitat to characterize landscape-level joint production possibilities for carbon storage, timber harvest, and habitat for seven wildlife species across a range of forest management regimes. We sought to (1) characterize the general relationships of production possibilities for combinations of carbon storage, timber, and habitat, and (2) identify management variables that most influence joint production relationships. Our 160 000-ha study landscape featured environmental conditions typical of forests in the Western Cascade Mountains of Oregon (USA). Our results indicate that managing forests for carbon storage involves trade-offs among timber harvest and habitat for focal wildlife species, depending on the disturbance interval and utilization intensity followed. Joint production possibilities for wildlife species varied in shape, ranging from competitive to complementary to compound, reflecting niche breadth and habitat component needs of species examined. Managing Pacific Northwest forests to store forest sector carbon can be roughly complementary with habitat for Northern Spotted Owl, Olive-sided Flycatcher, and red tree vole. However, managing forests to increase carbon storage potentially can be competitive with timber production and habitat for Pacific marten, Pileated Woodpecker, and Western Bluebird, depending on the disturbance interval and harvest intensity chosen

  1. Using forest inventory data to assess fisher resting habitat suitability in California.

    Science.gov (United States)

    William J. Zielinski; Richard L. Truex; Jeffrey R. Dunk; Tom Gaman

    2006-01-01

    The fisher (Martes pennanti) is a forest-dwelling carnivore whose current distribution and association with late-seral forest conditions make it vulnerable to stand-altering human activities or natural disturbances. Fishers select a variety of structures for daily resting bouts. These habitat elements, together with foraging and reproductive (denning) habitat,...

  2. Remote sensing-based landscape indicators for the evaluation of threatened-bird habitats in a tropical forest.

    Science.gov (United States)

    Singh, Minerva; Tokola, Timo; Hou, Zhengyang; Notarnicola, Claudia

    2017-07-01

    Avian species persistence in a forest patch is strongly related to the degree of isolation and size of a forest patch and the vegetation structure within a patch and its matrix are important predictors of bird habitat suitability. A combination of space-borne optical (Landsat), ALOS-PALSAR (radar), and airborne Light Detection and Ranging (LiDAR) data was used for assessing variation in forest structure across forest patches that had undergone different levels of forest degradation in a logged forest-agricultural landscape in Southern Laos. The efficacy of different remote sensing (RS) data sources in distinguishing forest patches that had different seizes, configurations, and vegetation structure was examined. These data were found to be sensitive to the varying levels of degradation of the different patch categories. Additionally, the role of local scale forest structure variables (characterized using the different RS data and patch area) and landscape variables (characterized by distance from different forest patches) in influencing habitat preferences of International Union for Conservation of Nature (IUCN) Red listed birds found in the study area was examined. A machine learning algorithm, MaxEnt, was used in conjunction with these data and field collected geographical locations of the avian species to identify the factors influencing habitat preference of the different bird species and their suitable habitats. Results show that distance from different forest patches played a more important role in influencing habitat suitability for the different avian species than local scale factors related to vegetation structure and health. In addition to distance from forest patches, LiDAR-derived forest structure and Landsat-derived spectral variables were important determinants of avian habitat preference. The models derived using MaxEnt were used to create an overall habitat suitability map (HSM) which mapped the most suitable habitat patches for sustaining all the

  3. The role of the plant litter layer in the recycling of radiocaesium in upland habitats

    International Nuclear Information System (INIS)

    Horrill, A.D.; Kennedy, V.H.; Dent, T.L.; Thomson, A.J.

    1992-08-01

    Field and laboratory studies have been used to investigate the role of the plant litter layer in upland habitats. Radiocaesium, deposited unhomogeneously, by the Chernobyl accident, ranged from 1 3000 - 2 400 Bq kgsup(-1) in a range of plant litters in May 1992. In the field 45% of the 137 Cs in heather litter was released over a two year period. Litter leachates contained 0.1 -0.7 Bq 1 -1 of 137 Cs. Microbial population size has also been shown to affect 137 Cs release rates in laboratory experiments on heather and spruce litter. 137 Cs distribution within litter has been investigated by sequential extraction techniques and it was shown that there is a potential long term immobilization of c. 20% of litter 137 Cs by the lignin component. (author)

  4. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Susannah B. Lerman; Keith H. Nislow; David J. Nowak; Stephen DeStefano; David I. King; D. Todd. Jones-Farrand

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat...

  5. Chapter 36: Status of Forest Habitat of the Marbled Murrelet

    Science.gov (United States)

    David A. Perry

    1995-01-01

    Marbled Murrelets (Brachyramphus marmoratus) have been shown to be dependant upon old-growth forests for nesting habitat. These forests have declined over the last century as they are cut for human use. This paper reviews the current status of old-growth forests along the west coast, in both the United States and Canada.

  6. History of natural resource use and environmental impacts in an interfluvial upland forest area in western Amazonia

    OpenAIRE

    Anders Siren

    2014-01-01

    Much of the research done on environmental impacts by Amazonian indigenous peoples in the past focus on certain areas where archaeological remains are particularly abundant, such as the Amazon River estuary, the seasonally inundated floodplain of the lower Amazon, and various sites in the forest-savannah mosaic of the southern Amazon The environmental history of interfluvial upland areas has received less attention. This study reconstructed the history of human use of natural resources in an ...

  7. Habitat disturbance results in chronic stress and impaired health status in forest-dwelling paleotropical bats.

    Science.gov (United States)

    Seltmann, Anne; Czirják, Gábor Á; Courtiol, Alexandre; Bernard, Henry; Struebig, Matthew J; Voigt, Christian C

    2017-01-01

    Anthropogenic habitat disturbance is a major threat to biodiversity worldwide. Yet, before population declines are detectable, individuals may suffer from chronic stress and impaired immunity in disturbed habitats, making them more susceptible to pathogens and adverse weather conditions. Here, we tested in a paleotropical forest with ongoing logging and fragmentation, whether habitat disturbance influences the body mass and immunity of bats. We measured and compared body mass, chronic stress (indicated by neutrophil to lymphocyte ratios) and the number of circulating immune cells between several bat species with different roost types living in recovering areas, actively logged forests, and fragmented forests in Sabah, Malaysia. In a cave-roosting species, chronic stress levels were higher in individuals from fragmented habitats compared with conspecifics from actively logged areas. Foliage-roosting species showed a reduced body mass and decrease in total white blood cell counts in actively logged areas and fragmented forests compared with conspecifics living in recovering habitats. Our study highlights that habitat disturbance may have species-specific effects on chronic stress and immunity in bats that are potentially related to the roost type. We identified foliage-roosting species as particularly sensitive to forest habitat deterioration. These species may face a heightened extinction risk in the near future if anthropogenic habitat alterations continue.

  8. Wildlife Habitats in Managed Forests the Blue Mountains of Oregon and Washington

    Science.gov (United States)

    Jack Ward [Technical Editor] Thomas

    1979-01-01

    The Nation's forests are one of the last remaining natural habitats forterrestrial wildlife. Much of this vast forest resource has changed dramatically in the last 200 years and can no longer be considered wild. It is now managed for multiple use benefits, including timber production. Timber harvesting and roadbuilding now alter wildlife habitat more than any...

  9. Effect of long-term understory prescribed burning on standing and down dead woody material in dry upland oak forests

    Science.gov (United States)

    Polo, John A.; Hallgren, S.W.; Leslie,, David M.

    2013-01-01

    Dead woody material, long ignored or viewed as a nuisance for forest management, has gained appreciation for its many roles in the forest including wildlife habitat, nutrient storage and cycling, energy for trophic webs, protection of soil, fuel for fire and carbon storage. The growing interest in managing dead woody material has created strong demand for greater understanding of factors controlling amounts and turnover. Prescribed burning, an important management tool, may have strong effects of dead woody material given fire’s capacity to create and consume dead woody material. We determined effects of long-term understory prescribed burning on standing and down woody material in upland oak forests in south-central North America. We hypothesized that as frequency of fire increased in these stands the amount of deadwood would decrease and the fine woody material would decrease more rapidly than coarse woody material. The study was conducted in forests dominated by post oak (Quercus stellata) and blackjack oak (Quercus marilandica) in wildlife management areas where understory prescribed burning had been practiced for over 20 years and the range of burn frequencies was 0 (unburned) fires per decade (FPD) to 4.6 FPD. The amount of deadwood was low compared with more productive forests in southeastern North America. The biomass (24.7 Mg ha-1) and carbon stocks (11.7 Mg ha-1) were distributed among standing dead (22%), coarse woody debris (CWD, dia. > 7.5 cm., 12%), fine woody debris (FWD, dia. prescribed burning influenced the amount and size distribution of standing and down dead woody material. There were two explanations for the lack of a detectable effect. First, a high incidence of severe weather including ice storms and strong winds that produce large amounts of deadwood intermittently in an irregular pattern across the landscape may preclude detecting a strong effect of understory prescribed burning. Second, fire suppression during the first one-half of the

  10. Selecting Tree Species with High Carbon Stock Potency from Tropical Upland Forest of Bedugul-Bali, Indonesia

    Directory of Open Access Journals (Sweden)

    Arief Priyadi

    2014-11-01

    Full Text Available Vegetation studies to reveal tree diversity and its contribution to carbon stock were conducted in three different sites of upland forest in Bali, Indonesia. The sites were located approximately 60 km north of the Bali Province capital city of Denpasar in an area named Bedugul. Those three sites were Mt. Mangu (forest area east of Beratan lake, forest area west of Buyan lake and forest area south of Tamblingan lake. There were 44, 29, and 21 tree species of 14, 19, 14 families with Shannon Diversity Index (H’ of 2.87, 2.64 and 1.69 respectively. Carbon stock average of above ground tree biomass from these sites were 214.2, 693.0 and 749.1 ton.ha-1 respectively. Tree species with top Summed Dominance Ratio (SDR in each of those sites were Platea latifolia in Mt. Mangu, Planchonella sp. in Buyan, and Tabernaemontana macrocarpa in Tamblingan. Average carbon content of these three species were 493.25, 12,876.26 and 40.35 kg.ha-1 respectively.

  11. Linear infrastructure drives habitat conversion and forest fragmentation associated with Marcellus shale gas development in a forested landscape.

    Science.gov (United States)

    Langlois, Lillie A; Drohan, Patrick J; Brittingham, Margaret C

    2017-07-15

    Large, continuous forest provides critical habitat for some species of forest dependent wildlife. The rapid expansion of shale gas development within the northern Appalachians results in direct loss of such habitat at well sites, pipelines, and access roads; however the resulting habitat fragmentation surrounding such areas may be of greater importance. Previous research has suggested that infrastructure supporting gas development is the driver for habitat loss, but knowledge of what specific infrastructure affects habitat is limited by a lack of spatial tracking of infrastructure development in different land uses. We used high-resolution aerial imagery, land cover data, and well point data to quantify shale gas development across four time periods (2010, 2012, 2014, 2016), including: the number of wells permitted, drilled, and producing gas (a measure of pipeline development); land use change; and forest fragmentation on both private and public land. As of April 2016, the majority of shale gas development was located on private land (74% of constructed well pads); however, the number of wells drilled per pad was lower on private compared to public land (3.5 and 5.4, respectively). Loss of core forest was more than double on private than public land (4.3 and 2.0%, respectively), which likely results from better management practices implemented on public land. Pipelines were by far the largest contributor to the fragmentation of core forest due to shale gas development. Forecasting future land use change resulting from gas development suggests that the greatest loss of core forest will occur with pads constructed farthest from pre-existing pipelines (new pipelines must be built to connect pads) and in areas with greater amounts of core forest. To reduce future fragmentation, our results suggest new pads should be placed near pre-existing pipelines and methods to consolidate pipelines with other infrastructure should be used. Without these mitigation practices, we

  12. Spatial and vertical distribution of mercury in upland forest soils across the northeastern United States

    International Nuclear Information System (INIS)

    Richardson, Justin B.; Friedland, Andrew J.; Engerbretson, Teresa R.; Kaste, James M.; Jackson, Brian P.

    2013-01-01

    Assessing current Hg pools in forest soils of the northeastern U.S. is important for monitoring changes in Hg cycling. The forest floor, upper and lower mineral horizons were sampled at 17 long-term upland forest sites across the northeastern U.S. in 2011. Forest floor Hg concentration was similar across the study region (274 ± 13 μg kg −1 ) while Hg amount at northern sites (39 ± 6 g ha −1 ) was significantly greater than at western sites (11 ± 4 g ha −1 ). Forest floor Hg was correlated with soil organic matter, soil pH, latitude and mean annual precipitation and these variables explained approximately 70% of the variability when multiple regressed. Mercury concentration and amount in the lower mineral soil was correlated with Fe, soil organic matter and latitude, corresponding with Bs horizons of Spodosols (Podzols). Our analysis shows the importance of regional and soil properties on Hg accumulation in forest soils. -- Highlights: •Mercury in the forest floor and mineral soil was quantified at 17 sites. •Concentrations and amounts were regressed with regional factors and soil properties. •Forest floor Hg was most explained by soil organic matter, pH, and precipitation. •Mineral soil Hg was explained by latitude, Fe concentration, and soil organic matter. •Mineral soil Hg was greatest in Bs horizons of Spodosols due to podzolization. -- Forest floor Hg was correlated with soil organic matter, pH, latitude, and mean annual precipitation. Mineral soil Hg was greatest in Bs horizons of Spodosols

  13. Winter Responses of Forest Birds to Habitat Corridors and Gaps

    Directory of Open Access Journals (Sweden)

    Colleen Cassady St. Clair

    1998-12-01

    Full Text Available Forest fragmentation and habitat loss may disrupt the movement or dispersal of forest-dwelling birds. Despite much interest in the severity of these effects and ways of mitigating them, little is known about actual movement patterns in different habitat types. We studied the movement of wintering resident birds, lured by playbacks of mobbing calls, to compare the willingness of forest birds to travel various distances in continuous forest, along narrow corridors (fencerows, and across gaps in forest cover. We also quantified the willingness of Black-capped Chickadees (Poecile atricapillus to cross gaps when alternative forested detour routes were available. All species were less likely to respond to the calls as distance increased to 200 m, although White-breasted Nuthatches (Sitta carolinensis and Hairy Woodpeckers (Picoides villosus were generally less likely to respond than chickadees and Downy Woodpeckers (P. pubescens. Chickadees were as likely to travel in corridors as in continuous forest, but were less likely to cross gaps as the gap distance increased. The other species were less willing to travel in corridors and gaps relative to forest, and the differences among habitats also increased with distance. For chickadees, gap-crossing decisions in the presence of forested detours varied over the range of distances that we tested, and were primarily influenced by detour efficiency (the length of the shortcut relative to the available detour. Over short distances, birds used forested detours, regardless of their efficiency. As absolute distances increased, birds tended to employ larger shortcuts in the open when detour efficiency was low or initial distance in the open was high, but they limited their distance from the nearest forest edge to 25 m. Thus, chickadees were unwilling to cross gaps of > 50 m when they had forested alternatives, yet they sometimes crossed gaps as large as 200 m when no such choice existed. Our results suggest that

  14. Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species.

    Science.gov (United States)

    Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Felton, Adam; Ranius, Thomas; Lundmark, Tomas; Nordin, Annika

    2018-03-15

    We evaluated the long-term implications from modifying rotation lengths in production forests for four forest-reliant species with different habitat requirements. By combining simulations of forest development with habitat models, and accounting both for stand and landscape scale influences, we projected habitat availability over 150 years in a large Swedish landscape, using rotation lengths which are longer (+22% and +50%) and shorter (-22%) compared to current practices. In terms of mean habitat availability through time, species requiring older forest were affected positively by extended rotations, and negatively by shortened rotations. For example, the mean habitat area for the treecreeper Certhia familiaris (a bird preferring forest with larger trees) increased by 31% when rotations were increased by 22%, at a 5% cost to net present value (NPV) and a 7% decrease in harvested volume. Extending rotation lengths by 50% provided more habitat for this species compared to a 22% extension, but at a much higher marginal cost. In contrast, the beetle Hadreule elongatula, which is dependent on sun-exposed dead wood, benefited from shortened rather than prolonged rotations. Due to an uneven distribution of stand-ages within the landscape, the relative amounts of habitat provided by different rotation length scenarios for a given species were not always consistent through time during the simulation period. If implemented as a conservation measure, prolonging rotations will require long-term strategic planning to avoid future bottlenecks in habitat availability, and will need to be accompanied by complementary measures accounting for the diversity of habitats necessary for the conservation of forest biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. History and Productivity Determine the Spatial Distribution of Key Habitats for Biodiversity in Norwegian Forest Landscapes

    Directory of Open Access Journals (Sweden)

    Magne Sætersdal

    2016-01-01

    Full Text Available Retention forestry, including the retention of woodland key habitats (WKH at the forest stand scale, has become an essential management practice in boreal forests. Here, we investigate the spatial distribution of 9470 habitat patches, mapped according to the Complementary Habitat Inventory method (CHI habitats, as potential WKHs in 10 sample areas in Norway. We ask whether there are parts of the forest landscapes that have consistently low or high density of CHI habitats compared to the surveyed landscape as a whole, and therefore have a low or high degree of conflict with harvesting, respectively. We found that there was a general pattern of clumped distribution of CHI habitats at distances up to a few kilometres. Furthermore, results showed that most types of CHI habitats were approximately two to three times as common in the 25% steepest slopes, lowest altitudes and highest site indices. CHI habitats that are most common in old-growth forests were found at longer distances from roads, whereas habitats rich in deciduous trees were found at shorter distances from roads than expected. Both environmental factors and the history of human impact are needed to explain the spatial distribution of CHI habitats. The overrepresentation of WKHs in parts of the forest landscapes represents a good starting point to develop more efficient inventory methods.

  16. Modeling demographic performance of northern spotted owls relative to forest habitat in Oregon

    Science.gov (United States)

    Olson, Gail S.; Glenn, Elizabeth M.; Anthony, Robert G.; Forsman, Eric D.; Reid, Janice A.; Loschl, Peter J.; Ripple, William J.

    2004-01-01

    Northern spotted owls (Strix occidentalis caurina) are known to be associated with late-successional forests in the Pacific Northwest of the United States, but the effects of habitat on their demographic performance are relatively unknown. We developed statistical models relating owl survival and productivity to forest cover types within the Roseburg Study Area in the Oregon Coast Range of Oregon, USA. We further combined these demographic parameters using a Leslie-type matrix to obtain an estimate of habitat fitness potential for each owl territory (n = 94). We used mark–recapture methods to develop models for survival and linear mixed models for productivity. We measured forest composition and landscape patterns at 3 landscape scales centered on nest and activity sites within owl territories using an aerial photo-based map and a Geographic Information System (GIS). We also considered additional covariates such as age, sex, and presence of barred owls (Strix varia), and seasonal climate variables (temperature and precipitation) in our models. We used Akaike's Information Criterion (AIC) to rank and compare models. Survival had a quadratic relationship with the amount of late- and mid-seral forests within 1,500 m of nesting centers. Survival also was influenced by the amount of precipitation during the nesting season. Only 16% of the variability in survival was accounted for by our best model, but 85% of this was due to the habitat variable. Reproductive rates fluctuated biennially and were positively related to the amount of edge between late- and mid-seral forests and other habitat classes. Reproductive rates also were influenced by parent age, amount of precipitation during nesting season, and presence of barred owls. Our best model accounted for 84% of the variability in productivity, but only 3% of that was due to the habitat variable. Estimates of habitat fitness potential (which may range from 0 to infinity) for the 94 territories ranged from 0.74 to 1

  17. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems.

    Science.gov (United States)

    Dirnböck, Thomas; Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol-Dijkstra, Janet P; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G W

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+) together with a novel niche-based plant response model (PROPS) to 5 forest habitat types (18 forest sites) protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered.

  18. Multi-scale habitat use of male ruffed grouse in the Black Hills National Forest

    Science.gov (United States)

    Cassandra L. Mehls; Kent C. Jensen; Mark A. Rumble; Michael C. Wimberly

    2014-01-01

    Ruffed grouse (Bonasa umbellus) are native upland game birds and a management indicator species (MIS) for aspen (Populus tremuloides) in the Black Hills National Forest (Black Hills). Our objective was to assess resource selection of male ruffed grouse to identify the most appropriate scale to manage for aspen and ruffed grouse in the Black Hills. During spring 2007...

  19. A habitat selection model for Javan deer (Rusa timorensis in Wanagama I Forest, Yogyakarta

    Directory of Open Access Journals (Sweden)

    DANANG WAHYU PURNOMO

    2010-07-01

    Full Text Available Purnomo DW. 2010. A Habitat selection model for Javan deer (Rusa timorensis in Wanagama I Forest, Yogyakarta. Nusantara Bioscience 2: 84-89. Wanagama I Forest is the natural breeding habitat of Javan deer (Rusa timorensis de Blainville, 1822. Habitat changes had affected Timor’s resource selection and caused the deer to move from undisturbed areas to developed areas with agriculture and human settlements. We suspected that this shift was caused by the degradation of natural habitat. The research aimed to identify factors that might influence future habitat selection. Habitat selection was analyzed by comparing proportions of sites actually used to sites that we considered available to use. The results of a logistic regression of site categories showed there are three habitat variables that influence resource selection: sum of tree species (expß=1.305, slope (expß=1.061, and distance to a water source (expß=1.002. The three variables influence the deer existing in a certain site of Wanagama Forest and arrange resource selection probability function (RSPF.

  20. Seeding and planting upland oaks

    Science.gov (United States)

    1989-01-01

    Oaks can be planted or seeded in uplands to: (1) afforest old fields, strip-mined areas, or other areas devoid of trees, and (2) supplement natural reproduction within existing forests. Planting is usually more successful than direct seeding. But even under good conditions survival and growth of planted oak has been considerably poorer than with conifers and other...

  1. Variable density management in riparian reserves: lessons learned from an operational study in managed forests of western Oregon, USA.

    Science.gov (United States)

    Samuel Chan; Paul Anderson; John Cissel; Larry Lateen; Charley Thompson

    2004-01-01

    A large-scale operational study has been undertaken to investigate variable density management in conjunction with riparian buffers as a means to accelerate development of late-seral habitat, facilitate rare species management, and maintain riparian functions in 40-70 year-old headwater forests in western Oregon, USA. Upland variable retention treatments include...

  2. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems

    Science.gov (United States)

    Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol-Dijkstra, Janet P.; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G. W.

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+) together with a novel niche-based plant response model (PROPS) to 5 forest habitat types (18 forest sites) protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered. PMID:28898262

  3. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems.

    Directory of Open Access Journals (Sweden)

    Thomas Dirnböck

    Full Text Available Climate change and excess deposition of airborne nitrogen (N are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+ together with a novel niche-based plant response model (PROPS to 5 forest habitat types (18 forest sites protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered.

  4. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees.

    Science.gov (United States)

    Felton, Adam; Sonesson, Johan; Nilsson, Urban; Lämås, Tomas; Lundmark, Tomas; Nordin, Annika; Ranius, Thomas; Roberge, Jean-Michel

    2017-04-01

    Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.

  5. Early successional forest habitats and water resources

    Science.gov (United States)

    James Vose; Chelcy Ford

    2011-01-01

    Tree harvests that create early successional habitats have direct and indirect impacts on water resources in forests of the Central Hardwood Region. Streamflow increases substantially immediately after timber harvest, but increases decline as leaf area recovers and biomass aggrades. Post-harvest increases in stormflow of 10–20%, generally do not contribute to...

  6. Forest species in an agricultural landscape in The Netherlands: effects of habitat fragmentation

    NARCIS (Netherlands)

    Grashof-Bokdam, C.

    1997-01-01

    For 312 forest patches on sandy soils in the Netherlands, effects of fragmentation are studied of forest habitat in the past on the present occurrence of forest plato species. Using regression techniques, the numbers of forest edge, interior, zoochorous and anemochorous species, as well as

  7. Targeted habitat restoration can reduce extinction rates in fragmented forests.

    Science.gov (United States)

    Newmark, William D; Jenkins, Clinton N; Pimm, Stuart L; McNeally, Phoebe B; Halley, John M

    2017-09-05

    The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species-area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21-$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide.

  8. Stocking chart for upland central hardwoods

    Science.gov (United States)

    Martin E. Dale; Donald E. Hilt

    1989-01-01

    The upland hardwoods stocking chart, introduced by Gingrich in 1967, has become one of the forest manager's most useful tools. The chart allows you to determine the condition of the present stand in relation to a stocking standard. The stocking of a stand is extremely helpful in prescribing various silvicultural treatments such as intermediate thinnings,...

  9. Habitat preferences of birds in a montane forest mosaic in the ...

    African Journals Online (AJOL)

    Endemic species are most closely dependent on continuous forest cover. However, some montane species did not show any clear habitat associations and thus can be viewed as local habitat generalists. This study shows that many restricted-range species (including endangered endemics) are able to live in fragmented ...

  10. Implementing northern goshawk habitat management in Southwestern forests: a template for restoring fire-adapted forest ecosystems.

    Science.gov (United States)

    James A. Youtz; Russell T. Graham; Richard T. Reynolds; Jerry. Simon

    2008-01-01

    Developing and displaying forest structural targets are crucial for sustaining the habitats of the northern goshawk, a sensitive species in Southwestern forests. These structural targets were described in Management Recommendations for the Northern Goshawk in the Southwestern United States (MRNG) (Reynolds, et al., 1992). The MRNG were developed in a unique food-web...

  11. The future of forests and orangutans (Pongo abelii) in Sumatra: predicting impacts of oil palm plantations, road construction, and mechanisms for reducing carbon emissions from deforestation

    Science.gov (United States)

    Gaveau, David L. A.; Wich, Serge; Epting, Justin; Juhn, Daniel; Kanninen, Markku; Leader-Williams, Nigel

    2009-09-01

    Payments for reduced carbon emissions from deforestation (RED) are now attracting attention as a way to halt tropical deforestation. Northern Sumatra comprises an area of 65 000 km2 that is both the site of Indonesia's first planned RED initiative, and the stronghold of 92% of remaining Sumatran orangutans. Under current plans, this RED initiative will be implemented in a defined geographic area, essentially a newly established, 7500 km2 protected area (PA) comprising mostly upland forest, where guards will be recruited to enforce forest protection. Meanwhile, new roads are currently under construction, while companies are converting lowland forests into oil palm plantations. This case study predicts the effectiveness of RED in reducing deforestation and conserving orangutans for two distinct scenarios: the current plan of implementing RED within the specific boundary of a new upland PA, and an alternative scenario of implementing RED across landscapes outside PAs. Our satellite-based spatially explicit deforestation model predicts that 1313 km2 of forest would be saved from deforestation by 2030, while forest cover present in 2006 would shrink by 22% (7913 km2) across landscapes outside PAs if RED were only to be implemented in the upland PA. Meanwhile, orangutan habitat would reduce by 16% (1137 km2), resulting in the conservative loss of 1384 orangutans, or 25% of the current total population with or without RED intervention. By contrast, an estimated 7824 km2 of forest could be saved from deforestation, with maximum benefit for orangutan conservation, if RED were to be implemented across all remaining forest landscapes outside PAs. Here, RED payments would compensate land users for their opportunity costs in not converting unprotected forests into oil palm, while the construction of new roads to service the marketing of oil palm would be halted. Our predictions suggest that Indonesia's first RED initiative in an upland PA may not significantly reduce

  12. The future of forests and orangutans (Pongo abelii) in Sumatra: predicting impacts of oil palm plantations, road construction, and mechanisms for reducing carbon emissions from deforestation

    International Nuclear Information System (INIS)

    Gaveau, David L A; Leader-Williams, Nigel; Wich, Serge; Epting, Justin; Juhn, Daniel; Kanninen, Markku

    2009-01-01

    Payments for reduced carbon emissions from deforestation (RED) are now attracting attention as a way to halt tropical deforestation. Northern Sumatra comprises an area of 65 000 km 2 that is both the site of Indonesia's first planned RED initiative, and the stronghold of 92% of remaining Sumatran orangutans. Under current plans, this RED initiative will be implemented in a defined geographic area, essentially a newly established, 7500 km 2 protected area (PA) comprising mostly upland forest, where guards will be recruited to enforce forest protection. Meanwhile, new roads are currently under construction, while companies are converting lowland forests into oil palm plantations. This case study predicts the effectiveness of RED in reducing deforestation and conserving orangutans for two distinct scenarios: the current plan of implementing RED within the specific boundary of a new upland PA, and an alternative scenario of implementing RED across landscapes outside PAs. Our satellite-based spatially explicit deforestation model predicts that 1313 km 2 of forest would be saved from deforestation by 2030, while forest cover present in 2006 would shrink by 22% (7913 km 2 ) across landscapes outside PAs if RED were only to be implemented in the upland PA. Meanwhile, orangutan habitat would reduce by 16% (1137 km 2 ), resulting in the conservative loss of 1384 orangutans, or 25% of the current total population with or without RED intervention. By contrast, an estimated 7824 km 2 of forest could be saved from deforestation, with maximum benefit for orangutan conservation, if RED were to be implemented across all remaining forest landscapes outside PAs. Here, RED payments would compensate land users for their opportunity costs in not converting unprotected forests into oil palm, while the construction of new roads to service the marketing of oil palm would be halted. Our predictions suggest that Indonesia's first RED initiative in an upland PA may not significantly reduce

  13. Habitat shifts in the evolutionary history of a Neotropical flycatcher lineage from forest and open landscapes

    Directory of Open Access Journals (Sweden)

    Christidis Les

    2008-07-01

    Full Text Available Abstract Background Little is known about the role ecological shifts play in the evolution of Neotropical radiations that have colonized a variety of environments. We here examine habitat shifts in the evolutionary history of Elaenia flycatchers, a Neotropical bird lineage that lives in a range of forest and open habitats. We evaluate phylogenetic relationships within the genus based on mitochondrial and nuclear DNA sequence data, and then employ parsimony-based and Bayesian methods to reconstruct preferences for a number of habitat types and migratory behaviour throughout the evolutionary history of the genus. Using a molecular clock approach, we date the most important habitat shifts. Results Our analyses resolve phylogenetic relationships among Elaenia species and confirm several species associations predicted by morphology while furnishing support for other taxon placements that are in conflict with traditional classification, such as the elevation of various Elaenia taxa to species level. While savannah specialism is restricted to one basal clade within the genus, montane forest was invaded from open habitat only on a limited number of occasions. Riparian growth may have been favoured early on in the evolution of the main Elaenia clade and subsequently been deserted on several occasions. Austral long-distance migratory behaviour evolved on several occasions. Conclusion Ancestral reconstructions of habitat preferences reveal pronounced differences not only in the timing of the emergence of certain habitat preferences, but also in the frequency of habitat shifts. The early origin of savannah specialism in Elaenia highlights the importance of this habitat in Neotropical Pliocene and late Miocene biogeography. While forest in old mountain ranges such as the Tepuis and the Brazilian Shield was colonized early on, the most important colonization event of montane forest was in conjunction with Pliocene Andean uplift. Riparian habitats may have

  14. Effects of forest fragmentation and habitat degradation on West African leaf-litter frogs

    NARCIS (Netherlands)

    Hillers, A.; Veith, M.; Rödel, M.-O.

    2008-01-01

    Habitat degradation alters the dynamics and composition of anuran assemblages in tropical forests. The effects of forest fragmentation on the composition of anuran assemblages are so far poorly known. We studied the joint influence of forest fragmentation and degradation on leaf-litter frogs. We

  15. Hydraulic modelling of the spatial and temporal variability in Atlantic salmon parr habitat availability in an upland stream.

    Science.gov (United States)

    Fabris, Luca; Malcolm, Iain Archibald; Buddendorf, Willem Bastiaan; Millidine, Karen Jane; Tetzlaff, Doerthe; Soulsby, Chris

    2017-12-01

    We show how spatial variability in channel bed morphology affects the hydraulic characteristics of river reaches available to Atlantic salmon parr (Salmo salar) under different flow conditions in an upland stream. The study stream, the Girnock Burn, is a long-term monitoring site in the Scottish Highlands. Six site characterised by different bed geometry and morphology were investigated. Detailed site bathymetries were collected and combined with discharge time series in a 2D hydraulic model to obtain spatially distributed depth-averaged velocities under different flow conditions. Available habitat (AH) was estimated for each site. Stream discharge was used according to the critical displacement velocity (CDV) approach. CDV defines a velocity threshold above which salmon parr are not able to hold station and effective feeding opportunities or habitat utilization are reduced, depending on fish size and water temperature. An average value of the relative available habitat () for the most significant period for parr growth - April to May - was used for inter-site comparison and to analyse temporal variations over 40years. Results show that some sites are more able than others to maintain zones where salmon parr can forage unimpeded by high flow velocities under both wet and dry conditions. With lower flow velocities, dry years offer higher values of than wet years. Even though can change considerably across the sites as stream flow changes, the directions of change are consistent. Relative available habitat (RAH) shows a strong relationship with discharge per unit width, whilst channel slope and bed roughness either do not have relevant impact or compensate each other. The results show that significant parr habitat was available at all sites across all flows during this critical growth period, suggesting that hydrological variability is not a factor limiting growth in the Girnock. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Evaluating anthropogenic risk of grassland and forest habitat degradation using land-cover data

    Science.gov (United States)

    Kurt Riitters; James Wickham; Timothy Wade

    2009-01-01

    The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple...

  17. Light habitat, structure, diversity and dynamic of the tropical dry forest

    Directory of Open Access Journals (Sweden)

    Omar Melo-Cruz

    2017-01-01

    Full Text Available Tropical dry forests are complex and fragile ecosystems with high anthropic intervention and restricted reproductive cycles. These have unique richness, structural diversity, physiological and phenological . This research was executed  in the Upper Magdalena Valley, in four forest fragments with different successional stages. In each fragment four permanent plots of 0.25 ha were established and lighting habitat associated with richness, relative abundance and rarity of species. The forest dynamics included the mortality, recruitment and diameter growth for a period of 5.25 years. The species rischness found in the mature riparian forestis higher than that reported in other studies of similar areas in Valle del Cauca and the Atlantic coast.  The values of richness, diversity and rarity species are more evidenced  than the magnitudes found in  drier areas of Tolima. The structure, diversity and dynamics of forests were correlated with the lighting habitat, showing differences in canopy architecture and its role in the capture and absorption of radiation. Forests with dense canopy have limited availability of photosynthetically active radiation in understory related low species richness, while illuminated undergrowth are richer and heterogeneous.

  18. Habitat degradation and seasonality affect physiological stress levels of Eulemur collaris in littoral forest fragments.

    Directory of Open Access Journals (Sweden)

    Michela Balestri

    Full Text Available The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species.

  19. Habitat degradation and seasonality affect physiological stress levels of Eulemur collaris in littoral forest fragments.

    Science.gov (United States)

    Balestri, Michela; Barresi, Marta; Campera, Marco; Serra, Valentina; Ramanamanjato, Jean Baptiste; Heistermann, Michael; Donati, Giuseppe

    2014-01-01

    The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM) levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species.

  20. Development and Validation of Spatially Explicit Habitat Models for Cavity-nesting Birds in Fishlake National Forest, Utah

    Science.gov (United States)

    Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino

    2005-01-01

    The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...

  1. Shifts in Plant Assemblages Reduce the Richness of Galling Insects Across Edge-Affected Habitats in the Atlantic Forest.

    Science.gov (United States)

    Souza, Danielle G; Santos, Jean C; Oliveira, Marcondes A; Tabarelli, Marcelo

    2016-10-01

    Impacts of habitat loss and fragmentation on specialist herbivores have been rarely addressed. Here we examine the structure of plant and galling insect assemblages in a fragmented landscape of the Atlantic forest to verify a potential impoverishment of these assemblages mediated by edge effects. Saplings and galling insects were recorded once within a 0.1-ha area at habitat level, covering forest interior stands, forest edges, and small fragments. A total of 1,769 saplings from 219 tree species were recorded across all three habitats, with differences in terms of sapling abundance and species richness. Additionally, edge-affected habitats exhibited reduced richness of both host-plant and galling insects at plot and habitat spatial scale. Attack levels also differed among forest types at habitat spatial scale (21.1% of attacked stems in forest interior, 12.4% in small fragments but only 8.5% in forest edges). Plot ordination resulted in three clearly segregated clusters: one formed by forest interior, one by small fragments, and another formed by edge plots. Finally, the indicator species analysis identified seven and one indicator plant species in forest interior and edge-affected habitats, respectively. Consequently, edge effects lead to formation of distinct taxonomic groups and also an impoverished assemblage of plants and galling insects at multiple spatial scales. The results of the present study indicate that fragmentation-related changes in plant assemblages can have a cascade effects on specialist herbivores. Accordingly, hyperfragmented landscapes may not be able to retain an expressive portion of tropical biodiversity. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Habitat selection of endemic birds in temperate forests in a biodiversity "Hotspot"

    Directory of Open Access Journals (Sweden)

    Roberto A. Moreno-García

    2014-08-01

    Full Text Available Aim of study: Our objective was to find habitat associations at a microhabitat level for two endemic birds in a Chilean temperate forest (biodiversity “hotspots”, in order to integrate biodiversity into forest planning.Area of study: Nahuelbuta Range, Chile.Material and methods: The two birds studied were Scelorchilus rubecula (Chucao Tapaculo and Scytalopus magellanicus (Magellanic Tapaculo, both belonging to the Rhinocryptidae family. Presence or absence of the two species was sampled in 57 census spots. Habitat was categorized according to presence/absence results. We assessed the influence of abiotic variables (altitude, exposure, slope and vegetation structure (percentage of understory cover, number of strata using a statistical cluster analysis.Main results: The two bird species selected the habitat. Most frequent presence was detected at a range of 600-1100 masl, but Magellanic Tapaculo was associated to more protected sites in terms of vegetation structure (50-75% for understory cover and 2-3 strata. Slope was the most relevant abiotic variable in habitat selection due to its linkage to vegetation traits in this area.Research highlights: Our results can help managers to integrate biodiversity (endemic fauna species into forest planning by preserving certain traits of the vegetation as part of a habitat (at a microhabitat level selected by the fauna species. That planning should be implemented with both an adequate wood harvesting cuts system and specific silvicultural treatments.Key words: Chile; Nahuelbuta; rhinocryptidae; cluster analysis; rorest planning; vegetation structure.

  3. Clear-cutting affects habitat connectivity for a forest amphibian by decreasing permeability to juvenile movements.

    Science.gov (United States)

    Popescu, Viorel D; Hunter, Malcolm L

    2011-06-01

    Conservation of forest amphibians is dependent on finding the right balance between management for timber production and meeting species' habitat requirements. For many pond-breeding amphibians, successful dispersal of the juvenile stage is essential for long-term population persistence. We investigated the influence of timber-harvesting practices on the movements of juvenile wood frogs (Lithobates sylvaticus). We used a chronosequence of stands produced by clear-cutting to evaluate how stand age affects habitat permeability to movements. We conducted experimental releases of juveniles in 2008 (n = 350) and 2009 (n = 528) in unidirectional runways in four treatments: mature forest, recent clearcut, 11-year-old, and 20-year-old regeneration. The runways were 50 x 2.5-m enclosures extending into each treatment, perpendicular to a distinct edge, with four tracking stations at 10, 20, 30, and 40 m from the edge. We recorded the number of animals reaching each tracking station, and the proportion of animals changing their direction of movement at each distance. We found that the mature forest was 3.1 and 3.7 times more permeable than the 11-year-old regeneration and the recent clearcut, respectively. Animals actively avoided open-canopy habitats and sharp edges; significantly more animals returned toward the closed-canopy forest at 0 m and 10 m in the less permeable treatments. There were no significant differences in habitat permeability between the mature forest and the 20-year-old regeneration. Our study is the first to directly assess habitat permeability to juvenile amphibian movement in relation to various forestry practices. We argue that habitat permeability at this scale is largely driven by the behavior of animals in relation to habitat disturbance and that caution needs to be used when using spatial modeling and expert-derived permeability values to assess connectivity of amphibian populations. The effects of clear-cutting on the migratory success of juvenile

  4. Large-Scale Habitat Corridors for Biodiversity Conservation: A Forest Corridor in Madagascar.

    Directory of Open Access Journals (Sweden)

    Tanjona Ramiadantsoa

    Full Text Available In biodiversity conservation, habitat corridors are assumed to increase landscape-level connectivity and to enhance the viability of otherwise isolated populations. While the role of corridors is supported by empirical evidence, studies have typically been conducted at small spatial scales. Here, we assess the quality and the functionality of a large 95-km long forest corridor connecting two large national parks (416 and 311 km2 in the southeastern escarpment of Madagascar. We analyze the occurrence of 300 species in 5 taxonomic groups in the parks and in the corridor, and combine high-resolution forest cover data with a simulation model to examine various scenarios of corridor destruction. At present, the corridor contains essentially the same communities as the national parks, reflecting its breadth which on average matches that of the parks. In the simulation model, we consider three types of dispersers: passive dispersers, which settle randomly around the source population; active dispersers, which settle only in favorable habitat; and gap-avoiding active dispersers, which avoid dispersing across non-habitat. Our results suggest that long-distance passive dispersers are most sensitive to ongoing degradation of the corridor, because increasing numbers of propagules are lost outside the forest habitat. For a wide range of dispersal parameters, the national parks are large enough to sustain stable populations until the corridor becomes severely broken, which will happen around 2065 if the current rate of forest loss continues. A significant decrease in gene flow along the corridor is expected after 2040, and this will exacerbate the adverse consequences of isolation. Our results demonstrate that simulation studies assessing the role of habitat corridors should pay close attention to the mode of dispersal and the effects of regional stochasticity.

  5. First use of a compound-specific stable isotope (CSSI) technique to trace sediment transport in upland forest catchments of Chile.

    Science.gov (United States)

    Bravo-Linares, Claudio; Schuller, Paulina; Castillo, Alejandra; Ovando-Fuentealba, Luis; Muñoz-Arcos, Enrique; Alarcón, Oscar; de Los Santos-Villalobos, Sergio; Cardoso, Renan; Muniz, Marcelo; Meigikos Dos Anjos, Roberto; Bustamante-Ortega, Ramón; Dercon, Gerd

    2018-03-15

    Land degradation is a problem affecting the sustainability of commercial forest plantations. The identification of critical areas prone to erosion can assist this activity to better target soil conservation efforts. Here we present the first use of the carbon-13 signatures of fatty acids (C14 to C24) in soil samples for spatial and temporal tracing of sediment transport in river bodies of upland commercial forest catchments in Chile. This compound-specific stable isotope (CSSI) technique was tested as a fingerprinting approach to determine the degree of soil erosion in pre-harvested forest catchments with surface areas ranging from 12 to 40ha. For soil apportionment a mixing model based on a Bayesian inference framework was used (CSSIAR v.2.0). Approximately four potential sediment sources were used for the calculations of all of the selected catchments. Unpaved forestry roads were shown to be the main source of sediment deposited at the outlet of the catchments (30-75%). Furthermore, sampling along the stream channel demonstrated that sediments were mainly comprised of sediment coming from the unpaved roads in the upper part of the catchments (74-98%). From this it was possible to identify the location and type of primary land use contributing to the sediment delivered at the outlet of the catchments. The derived information will allow management to focus efforts to control or mitigate soil erosion by improving the runoff features of the forest roads. The use of this CSSI technique has a high potential to help forestry managers and decision makers to evaluate and mitigate sources of soil erosion in upland forest catchments. It is important to highlight that this technique can also be a good complement to other soil erosion assessment and geological fingerprinting techniques, especially when attempting to quantify (sediment loads) and differentiate which type of land use most contributes to sediment accumulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Habitat correlates of the red panda in the temperate forests of Bhutan.

    Directory of Open Access Journals (Sweden)

    Sangay Dorji

    Full Text Available Anthropogenic activities and associated global climate change are threatening the biodiversity in the Himalayas against a backdrop of poor knowledge of the region's threatened species. The red panda (Ailurus fulgens is a threatened mammal confined to the eastern Himalayas, and because of Bhutan's central location in the distributional range of red pandas, its forests are integral to the long-term viability of wild populations. Detailed habitat requirements of the red panda are largely speculative, and there is virtually no ecological information available on this species in Bhutan. Between 2007 and 2009, we established 615 presence/absence plots in a systematic sampling of resident habitat types within Jigme Dorji and Thrumshingla National Parks, Bhutan, to investigate broad and fine-scale red panda habitat associations. Additional locality records of red pandas were obtained from interviewing 664 park residents. Red pandas were generally confined to cool broadleaf and conifer forests from 2,110-4,389 m above sea level (asl, with the majority of records between 2,400-3,700 m asl on south and east-facing slopes. At a finer scale, multivariate analysis revealed that red pandas were strongly associated with old growth Bhutan Fir (Abies densa forest dominated by a dense cover of Yushania and Arundanaria bamboo with a high density of fallen logs and tree stumps at ground level; a high density of trees, dead snags, and rhododendron shrubs in the mid-storey; and locations that were close to water. Because Bhutan's temperate forests that encompass prime red panda habitat are also integral to human subsistence and socio-economic development, there exists an inadvertent conflict between the needs of people and red pandas. As such, careful sustainable management of Bhutan's temperate forests is necessary if a balance is to be met between the socioeconomic needs of people and the conservation goals for red pandas.

  7. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Science.gov (United States)

    Ripperger, Simon P; Kalko, Elisabeth K V; Rodríguez-Herrera, Bernal; Mayer, Frieder; Tschapka, Marco

    2015-01-01

    Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  8. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Directory of Open Access Journals (Sweden)

    Simon P Ripperger

    Full Text Available Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae, a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  9. Linking Forests and Fish: The Relationship Between Productivities of Salmonids and Forest Stands in Northern California

    Science.gov (United States)

    Wilzbach, P.; Frazey, S.

    2005-05-01

    Productivities of resident salmonid populations, upland, and riparian areas in 25 small watersheds of coastal northern California were estimated and compared to determine if: 1) upland site productivity predicted riparian site productivity; 2) either upland or riparian site productivity predicted salmonid productivity; and 3) other parameters explained more of the variance in salmonid productivity than upland or riparian site productivity. Salmonid productivity was indexed by total salmonid biomass, length of age 1 fish, and percent habitat saturation. Upland and riparian site productivities were estimated using site indices for redwood (Sequoia sempervirens) and red alder (Alnus rubra), respectively. Upland and riparian site indices were correlated, but neither factor contributed to the best approximating models of salmonid biomass or fish length at age one. Salmonid biomass was best described by a positive relationship with drainage area, and length at age was best described by a positive relationship with percent of riparian hardwoods. Percent habitat saturation was not well described by any of the models constructed. Lack of a relationship between upland conifer and salmonid productivity suggests that management of land for timber productivity and component streams for salmonid production in these sites will require separate, albeit integrated, strategies.

  10. The application of single-tree selection compared to diameter-limit cutting in an upland oak-hickory forest on the Cumberland Plateau in Jackson County, Alabama

    Science.gov (United States)

    Callie Jo Schweitzer; Greg Janzen

    2012-01-01

    Cumberland Plateau region upland oak forests have undergone a myriad of disturbances (including periods of few and minor disturbances). Traditional timber harvesting practices such as diameter-limit cutting have negatively altered species composition and skewed stand structure, especially on medium-quality sites. We assessed the ability of single-tree selection to...

  11. Habitat, density and group size of primates in a Brazilian tropical forest.

    Science.gov (United States)

    Pinto, L P; Costa, C M; Strier, K B; da Fonseca, G A

    1993-01-01

    Habitats, population densities and group sizes of 5 primate species (Callithrix flaviceps, Callicebus personatus personatus, Cebus apella nigritus, Alouatta fusca clamitans, and Brachyteles arachnoides) were estimated, using the method of repeated transect sampling, in an area of montane pluvial forest in eastern Brazil (Atlantic forest). A. fusca and C. apella had the highest densities in terms of groups and individuals per square kilometer, respectively, while B. arachnoides was least abundant. The highest primate densities were observed in areas of secondary vegetation. Both group sizes and population densities for the 5 species were generally lower at the Reserva Biologica Augusto Ruschi than those reported in other areas of Atlantic forest. Hunting pressure and the different carrying capacity of the habitat are suggested as possible causes for the low number of sightings registered for these species.

  12. Forest succession on four habitat types in western Montana

    Science.gov (United States)

    Stephen F. Arno; Dennis G. Simmerman; Robert E. Keane

    1985-01-01

    Presents classifications of successional community types on four major forest habitat types in western Montana. Classifications show the sequences of seral community types developing after stand-replacing wildfire and clearcutting with broadcast burning, mechanical scarification, or no followup treatment. Information is provided for associating vegetational response to...

  13. Opposing resonses to ecological gradients structure amphibian and reptile communities across a temperate grassland-savanna-forest landscape

    Science.gov (United States)

    Grundel, Ralph; Beamer, David; Glowacki, Gary A.; Frohnapple, Krystal; Pavlovic, Noel B.

    2014-01-01

    Temperate savannas are threatened across the globe. If we prioritize savanna restoration, we should ask how savanna animal communities differ from communities in related open habitats and forests. We documented distribution of amphibian and reptile species across an open-savanna–forest gradient in the Midwest U.S. to determine how fire history and habitat structure affected herpetofaunal community composition. The transition from open habitats to forests was a transition from higher reptile abundance to higher amphibian abundance and the intermediate savanna landscape supported the most species overall. These differences warn against assuming that amphibian and reptile communities will have similar ecological responses to habitat structure. Richness and abundance also often responded in opposite directions to some habitat characteristics, such as cover of bare ground or litter. Herpetofaunal community species composition changed along a fire gradient from infrequent and recent fires to frequent but less recent fires. Nearby (200-m) wetland cover was relatively unimportant in predicting overall herpetofaunal community composition while fire history and fire-related canopy and ground cover were more important predictors of composition, diversity, and abundance. Increased developed cover was negatively related to richness and abundance. This indicates the importance of fire history and fire related landscape characteristics, and the negative effects of development, in shaping the upland herpetofaunal community along the native grassland–forest continuum.

  14. Understory response to varying fire frequencies after 20 years of prescribed burning in an upland oak forest

    Science.gov (United States)

    Burton, J.A.; Hallgren, S.W.; Fuhlendorf, S.D.; Leslie, David M.

    2011-01-01

    Ecosystems in the eastern United States that were shaped by fire over thousands of years of anthropogenic burning recently have been subjected to fire suppression resulting in significant changes in vegetation composition and structure and encroachment by invasive species. Renewed interest in use of fire to manage such ecosystems will require knowledge of effects of fire regime on vegetation. We studied the effects of one aspect of the fire regime, fire frequency, on biomass, cover and diversity of understory vegetation in upland oak forests prescribe-burned for 20 years at different frequencies ranging from zero to five fires per decade. Overstory canopy closure ranged from 88 to 96% and was not affected by fire frequency indicating high tolerance of large trees for even the most frequent burning. Understory species richness and cover was dominated by woody reproduction followed in descending order by forbs, C3 graminoids, C4 grasses, and legumes. Woody plant understory cover did not change with fire frequency and increased 30% from one to three years after a burn. Both forbs and C3 graminoids showed a linear increase in species richness and cover as fire frequency increased. In contrast, C4 grasses and legumes did not show a response to fire frequency. The reduction of litter by fire may have encouraged regeneration of herbaceous plants and helped explain the positive response of forbs and C3 graminoids to increasing fire frequency. Our results showed that herbaceous biomass, cover, and diversity can be managed with long-term prescribed fire under the closed canopy of upland oak forests. ?? 2011 Springer Science+Business Media B.V.

  15. Effects of overstory retention, herbicides, and fertilization on sub-canopy vegetation structure and functional group composition in loblolly pine forests restored to longleaf pine

    Science.gov (United States)

    Benjamin O. Knapp; Joan L. Walker; G. Geoff Wang; Huifeng Hu; Robert N.  Addington

    2014-01-01

    The desirable structure of longleaf pine forests, which generally includes a relatively open canopy of pines, very few woody stems in the mid-story, and a well-developed, herbaceous ground layer, provides critical habitat for flora and fauna and contributes to ecosystem function. Current efforts to restore longleaf pine to upland sites dominated by second-growth...

  16. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  17. The future of forests and orangutans (Pongo abelii) in Sumatra: predicting impacts of oil palm plantations, road construction, and mechanisms for reducing carbon emissions from deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Gaveau, David L A; Leader-Williams, Nigel [Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent CT2 7NR (United Kingdom); Wich, Serge [Great Apes Trust of Iowa, 4200 SE 44th Avenue, Des Moines, IA 50320 (United States); Epting, Justin; Juhn, Daniel [Center for Applied Biodiversity Science, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA 22202 (United States); Kanninen, Markku, E-mail: dgaveau@yahoo.co.u, E-mail: swich@greatapetrust.or, E-mail: justep22@myfastmail.co, E-mail: d.juhn@conservation.or, E-mail: m.kanninen@cgiar.or, E-mail: n.leader-williams@kent.ac.u [Center for International Forestry Research, Jalan CIFOR, Situ Gede, Sidang Barang, Bogor, West Java (Indonesia)

    2009-09-15

    Payments for reduced carbon emissions from deforestation (RED) are now attracting attention as a way to halt tropical deforestation. Northern Sumatra comprises an area of 65 000 km{sup 2} that is both the site of Indonesia's first planned RED initiative, and the stronghold of 92% of remaining Sumatran orangutans. Under current plans, this RED initiative will be implemented in a defined geographic area, essentially a newly established, 7500 km{sup 2} protected area (PA) comprising mostly upland forest, where guards will be recruited to enforce forest protection. Meanwhile, new roads are currently under construction, while companies are converting lowland forests into oil palm plantations. This case study predicts the effectiveness of RED in reducing deforestation and conserving orangutans for two distinct scenarios: the current plan of implementing RED within the specific boundary of a new upland PA, and an alternative scenario of implementing RED across landscapes outside PAs. Our satellite-based spatially explicit deforestation model predicts that 1313 km{sup 2} of forest would be saved from deforestation by 2030, while forest cover present in 2006 would shrink by 22% (7913 km{sup 2}) across landscapes outside PAs if RED were only to be implemented in the upland PA. Meanwhile, orangutan habitat would reduce by 16% (1137 km{sup 2}), resulting in the conservative loss of 1384 orangutans, or 25% of the current total population with or without RED intervention. By contrast, an estimated 7824 km{sup 2} of forest could be saved from deforestation, with maximum benefit for orangutan conservation, if RED were to be implemented across all remaining forest landscapes outside PAs. Here, RED payments would compensate land users for their opportunity costs in not converting unprotected forests into oil palm, while the construction of new roads to service the marketing of oil palm would be halted. Our predictions suggest that Indonesia's first RED initiative in an

  18. Habitat typing versus advanced vegetation classification in western forests

    Science.gov (United States)

    Tony Kusbach; John Shaw; James Long; Helga Van Miegroet

    2012-01-01

    Major habitat and community types in northern Utah were compared with plant alliances and associations that were derived from fidelity- and diagnostic-species classification concepts. Each of these classification approaches was associated with important environmental factors. Within a 20,000-ha watershed, 103 forest ecosystems were described by physiographic features,...

  19. Influences of forest and rangeland management on salmonid fishes and their habitats

    National Research Council Canada - National Science Library

    Meehan, William R

    1991-01-01

    Contents : Stream ecosystems - Salmonid distributions and life histories - Habitat requirements of salmonids in streams - Natural processes - Timber harvesting, silvicultrue and watershed processes - Forest...

  20. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    Rodrigo B Ferreira

    Full Text Available Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i 200 m inside the forest, ii 50 m inside the forest, iii at the forest edge, and iv 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types. By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog

  1. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest.

    Science.gov (United States)

    Ferreira, Rodrigo B; Beard, Karen H; Crump, Martha L

    2016-01-01

    Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in

  2. The Habitat Susceptibility of Bali Starling (Leucopsar rothschildi Stresemann> 1912) Based on Forest Fire Vulnerability Mappin in West Bali National Park

    Science.gov (United States)

    Pramatana, F.; Prasetyo, L. B.; Rushayati, S. B.

    2017-10-01

    Bali starling is an endemic and endangered species which tend to decrease of its population in the wild. West Bali National Park (WBNP) is the only habitat of bali starling, however it is threatened nowadays by forest fire. Understanding the sensitivity of habitat to forest & land fire is urgently needed. Geographic Information System (GIS) can be used for mapping the vulnerability of forest fire. This study aims to analyze the contributed factor of forest fire, to develop vulnerability level map of forest fire in WBNP, to estimate habitat vulnerability of bali starling. The variable for mapping forest fire in WBNP were road distance, village distance, land cover, NDVI, NDMI, surface temperature, and slope. Forest fire map in WBNP was created by scoring from each variable, and classified into four classes of forest fire vulnerability which are very low (9 821 ha), low (5 015.718 ha), middle (6 778.656 ha), and high (2 126.006 ha). Bali starling existence in the middle and high vulnerability forest fire class in WBNP, consequently the population and habitat of bali starling is a very vulnerable. Management of population and habitat of bali starling in WBNP must be implemented focus on forest fire impact.

  3. Habitat Requirements of Breeding Black-Backed Woodpeckers (Picoides arcticus in Managed, Unburned Boreal Forest

    Directory of Open Access Journals (Sweden)

    Junior A. Tremblay

    2009-06-01

    Full Text Available We investigated home-range characteristics and habitat selection by Black-backed Woodpeckers (Picoides arcticus in an unburned, boreal forest landscape managed by mosaic harvesting in Quebec, Canada. Habitat selection by this species was specifically examined to determine home-range establishment and foraging activities. We hypothesized that Black-backed Woodpeckers would respond to harvesting by adjusting their home-range size as a function of the amount of dead wood available. Twenty-two birds were tracked using radiotelemetry, and reliable estimates of home-range size were obtained for seven breeding individuals (six males and one female. The average home-range size was 151.5 ± 18.8 ha (range: 100.4-256.4 ha. Our results indicate that this species establishes home ranges in areas where both open and forested habitats are available. However, during foraging activities, individuals preferentially selected areas dominated by old coniferous stands. The study also showed that the spatial distribution of preferred foraging habitat patches influenced space use, with home-range area increasing with the median distance between old coniferous habitat patches available within the landscape. Finally, these data show that Black-backed Woodpeckers may successfully breed in an unburned forest with at least 35 m3 • ha-1 of dead wood, of which 42% (15 m3 • ha-1 is represented by dead wood at the early decay stage.

  4. Introduction to the Special Section--Bat Habitat Use in Eastern North American Temperate Forests: Site, Stand, an Landscape Effects

    Science.gov (United States)

    Robert T. Brooks; W. Mark Ford

    2006-01-01

    Forest bats of eastern North America select habitats for roosting, foraging, and winter hibernation/migration over a myriad of scales. An understanding of forest-bat habitat use over scales of time and space is important for their conservation and management. The papers in this Special Section report studies of bat habitat use across multiple scales from locations...

  5. Element cycling in upland/peatland watersheds Chapter 8.

    Science.gov (United States)

    Noel Urban; Elon S. Verry; Steven Eisenreich; David F. Grigal; Stephen D. Sebestyen

    2011-01-01

    Studies at the Marcell Experimental Forest (MEF) have measured the pools, cycling, and transport of a variety of elements in both the upland and peatland components of the landscape. Peatlands are important zones of element retention and biogeochemical reactions that greatly influence the chemistry of surface water. In this chapter, we summarize findings on nitrogen (N...

  6. Mapping Distinct Forest Types Improves Overall Forest Identification Based on Multi-Spectral Landsat Imagery for Myanmar’s Tanintharyi Region

    Directory of Open Access Journals (Sweden)

    Grant Connette

    2016-10-01

    Full Text Available We investigated the use of multi-spectral Landsat OLI imagery for delineating mangrove, lowland evergreen, upland evergreen and mixed deciduous forest types in Myanmar’s Tanintharyi Region and estimated the extent of degraded forest for each unique forest type. We mapped a total of 16 natural and human land use classes using both a Random Forest algorithm and a multivariate Gaussian model while considering scenarios with all natural forest classes grouped into a single intact or degraded category. Overall, classification accuracy increased for the multivariate Gaussian model with the partitioning of intact and degraded forest into separate forest cover classes but slightly decreased based on the Random Forest classifier. Natural forest cover was estimated to be 80.7% of total area in Tanintharyi. The most prevalent forest types are upland evergreen forest (42.3% of area and lowland evergreen forest (21.6%. However, while just 27.1% of upland evergreen forest was classified as degraded (on the basis of canopy cover <80%, 66.0% of mangrove forest and 47.5% of the region’s biologically-rich lowland evergreen forest were classified as degraded. This information on the current status of Tanintharyi’s unique forest ecosystems and patterns of human land use is critical to effective conservation strategies and land-use planning.

  7. Lizard activity and abundance greater in burned habitat of a xeric montane forest

    Science.gov (United States)

    Fouts, Kevin L.; Moore, Clinton; Johnson, Kristine D.; Maerz, John C.

    2017-01-01

    Restoring the natural or historical state of ecosystems is a common objective among resource managers, but determining whether desired system responses to management actions are occurring is often protracted and challenging. For wildlife, the integration of mechanistic habitat modeling with population monitoring may provide expedited measures of management effectiveness and improve understanding of how management actions succeed or fail to recover populations. Southern Appalachia is a region of high biodiversity that has undergone dramatic change as a result of human activities such as historic logging, exotic invasions, and alteration of disturbance regimes—including reduction in application of fire. Contemporary efforts to restore fire-maintained ecosystems within southern Appalachian forests require tools to assess the effects of fire management practices on individual animal fitness and relate them to corresponding influences on species abundance. Using automated sensing equipment, we investigated the effects of burned forests on reptile habitat suitability within the western portion of Great Smoky Mountains National Park, Tennessee. Specifically, we used microclimate measurements to model northern fence lizard Sceloporus undulatus hyacinthinus diurnal activity budgets in unburned and variable burn age (3–27-y) forest stands. We estimated northern fence lizard occurrence and abundance along transects through burned and unburned forests. Burned forest stands had microclimates that resulted in longer modeled daily activity periods under most conditions during summer. S. undulatus abundance was 4.75 times greater on burned stands compared to paired unburned stands, although the relationship between burn age and abundance was not well determined. Results suggest the more open habitat structure of burned areas within these xeric pine–oak forests may benefit S. undulatus.

  8. Competition and habitat selection in a forest-floor small mammal fauna

    Energy Technology Data Exchange (ETDEWEB)

    Dueser, R D [Univ. of Virginia, Charlottesville; Hallett, J G

    1980-01-01

    In a study of habitat exploitation in a forest-floor small mammal community, we have collected habitat and population data for Peromyscus leucopus, Ochrotomys nuttalli, and Tamias striatus. Using multiple regression analysis, researchers estimate the effects of habitat selection and competition on the local distributions of these species during three seasons. Each of the partial regression coefficients relating the density of an independent species to the density of the dependent species is negative. This result indicates that competition is pervasive among these species. Competitive ability and habitat selectivity both increase in the order Peromyscus-Tamias-Ochrotomys. Peromyscus is a poorly competitive habitat generalist, Ochrotomys is a strongly competitive habitat specialist, and Tamias is intermediate in both respects. The competitive hierarchy is stable between seasons. These results both confirm the conclusions reached in previous studies of this small mammal community and suggest the design of experiments to further clarify the mode and consequences of interaction between these species.

  9. Historical trends in rusty blackbird nonbreeding habitat in forested wetlands

    Science.gov (United States)

    Paul B. Hamel; Diane De Steven; Ted Leininger; Randy. Wilson

    2009-01-01

    Rusty Blackbird (Euphagus carolinus) populations have declined perhaps 95% in the recent past, creating legitimate concern that the species may become endangered. During the nonbreeding period the species occurs predominantly in southern U.S. forested wetland habitats, with concentrations in the Mississippi Alluvial Valley and in the southeastern...

  10. The Landscape Ecological Impact of Afforestation on the British Uplands and Some Initiatives to Restore Native Woodland Cover

    Directory of Open Access Journals (Sweden)

    Bunce Robert G. H.

    2014-11-01

    Full Text Available The majority of forest cover in the British Uplands had been lost by the beginning of the Nineteenth Century, because of felling followed by overgrazing by sheep and deer. The situation remained unchanged until a government policy of afforestation, mainly by exotic conifers, after the First World War up to the present day. This paper analyses the distribution of these predominantly coniferous plantations, and shows how they occupy specific parts of upland landscapes in different zones throughout Britain Whilst some landscapes are dominated by these new forests, elsewhere the blocks of trees are more localised. Although these forests virtually eliminate native ground vegetation, except in rides and unplanted land, the major negative impacts are at the landscape level. For example, drainage systems are altered and ancient cultural landscape patterns are destroyed. These impacts are summarised and possible ways of amelioration are discussed. By contrast, in recent years, a series of projects have been set up to restore native forest cover, as opposed to the extensive plantations of exotic species. Accordingly, the paper then provides three examples of such initiatives designed to restore native forests to otherwise bare landscapes, as well as setting them into a policy context. Whilst such projects cover a limited proportion of the British Uplands they nevertheless restore forest to landscapes at a local level.

  11. The role of tolerant genotypes and plant nutrients in the management of acid soil infertility in upland rice

    International Nuclear Information System (INIS)

    Sahrawat, K.L.; Jones, M.P.; Diatta, S.

    2000-01-01

    As in other parts of the humid tropics, acid-related problems are the major constraint to crop production on low-activity clay soils in the humid and sub-humid zones of West Africa. The upland ecosystem of West Africa is very important to rice production. About 70% of upland rice is grown in the humid zone of the sub-region. To increase and stabilize rice productivity of the acid uplands at reasonable levels, a strategy is needed that integrates the use of tolerant cultivars with soil and plant-nutrient management. Research conducted on Alfisols and Ultisols of the humid-forest and savannah zones in West Africa showed that upland rice is a robust crop, possessing a wide range of tolerance to acid-soil conditions. Recent research at WARDA showed also that acid-soil tolerance can be enhanced through interspecific Oryza sativa x O. glaberrima progenies, which not only possess increased tolerance of acid-soil conditions, but also have superior overall adaptability to diverse upland environments in the sub-region. Our research on the diagnosis of acid-soil infertility problems on the Ultisols and Alfisols of the humid savannah and forest zones indicates that P deficiency is the most important nutrient disorder for upland rice. In the forest zone, response to N depended on the application of P. In the savannah and forest-savannah transition zones, N deficiency was more important than P deficiency. Among other plant nutrients, the application of Ca and Mg (as plant nutrients) did not appear initially to improve the performance of acid-tolerant upland rice cultivars. The results from a long-term study on an Ultisol with four acid-tolerant rice cultivars, revealed that they differed in agronomic and physiological P efficiencies, and the efficiencies were higher at lower rates of P. The amounts of total P removed in three successive crops were similar for all four cultivars although P-harvest index was 10 to 12% higher in the P-efficient than the inefficient cultivars. The

  12. Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci.

    Directory of Open Access Journals (Sweden)

    Nancai Pei

    Full Text Available Elucidating the ecological mechanisms underlying community assembly in subtropical forests remains a central challenge for ecologists. The assembly of species into communities can be due to interspecific differences in habitat associations, and there is increasing evidence that these associations may have an underlying phylogenetic structure in contemporary terrestrial communities. In other words, by examining the degree to which closely related species prefer similar habitats and the degree to which they co-occur, ecologists are able to infer the mechanisms underlying community assembly. Here we implement this approach in a diverse subtropical tree community in China using a long-term forest dynamics plot and a molecular phylogeny generated from three DNA barcode loci. We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny. In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities. Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied.

  13. The roe dier diet: is floodplain forest optimal habitat?

    Czech Academy of Sciences Publication Activity Database

    Barančeková, Miroslava

    2004-01-01

    Roč. 53, č. 3 (2004), s. 285-292 ISSN 0139-7893 R&D Projects: GA AV ČR IBS6093003; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6093917 Keywords : roe deer * forest habitat * diet Subject RIV: EG - Zoology Impact factor: 0.536, year: 2004 http://www.ivb.cz/folia/53/3/285-292.pdf

  14. The existence of Sumatran tiger (Panthera tigris sumatrae Pocock, 1929 and their prey in different forest habitat types in Kerinci Seblat National Park, Sumatra

    Directory of Open Access Journals (Sweden)

    YOAN DINATA

    2008-07-01

    Full Text Available A study on the relationships between prey animals and the occurence of sumatran tiger was conducted in Kerinci Seblat National Park, western Sumatra from May up to September 2001. The data have been collected from eight study sites based on the forest habitat types and its threats. The results showed that frequency of encounters with prey animals in different forest habitats were no difference. This might indicates that the prey animals were distributed fairly in all types of forest habitat. The frequency encounters of the sumatran tiger signs, however, have shown differently between locations. The encounters of tiger signs were more frequent in the forest habitats that close to the streams; in forest habitats with few animal huntings; and in forest habitats with no logging activities. This findings support the hypotheses that the existence of sumatran tiger as a predator is determined by the dense vegetations surrounding streams as hiding place used in an ambush; availability of prey animals as food, and habitat disturbances as shown by logging.

  15. Large-scale determinants of diversity across Spanish forest habitats: accounting for model uncertainty in compositional and structural indicators

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Quller, E.; Torras, O.; Alberdi, I.; Solana, J.; Saura, S.

    2011-07-01

    An integral understanding of forest biodiversity requires the exploration of the many aspects it comprises and of the numerous potential determinants of their distribution. The landscape ecological approach provides a necessary complement to conventional local studies that focus on individual plots or forest ownerships. However, most previous landscape studies used equally-sized cells as units of analysis to identify the factors affecting forest biodiversity distribution. Stratification of the analysis by habitats with a relatively homogeneous forest composition might be more adequate to capture the underlying patterns associated to the formation and development of a particular ensemble of interacting forest species. Here we used a landscape perspective in order to improve our understanding on the influence of large-scale explanatory factors on forest biodiversity indicators in Spanish habitats, covering a wide latitudinal and attitudinal range. We considered six forest biodiversity indicators estimated from more than 30,000 field plots in the Spanish national forest inventory, distributed in 213 forest habitats over 16 Spanish provinces. We explored biodiversity response to various environmental (climate and topography) and landscape configuration (fragmentation and shape complexity) variables through multiple linear regression models (built and assessed through the Akaike Information Criterion). In particular, we took into account the inherent model uncertainty when dealing with a complex and large set of variables, and considered different plausible models and their probability of being the best candidate for the observed data. Our results showed that compositional indicators (species richness and diversity) were mostly explained by environmental factors. Models for structural indicators (standing deadwood and stand complexity) had the worst fits and selection uncertainties, but did show significant associations with some configuration metrics. In general

  16. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland cover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglecta). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2}2 plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  17. Habitat suitability and nest survival of white-headed woodpeckers in unburned forests of Oregon

    Science.gov (United States)

    Hollenbeck, Jeff P.; Saab, Victoria A.; Frenzel, Richard W.

    2011-01-01

    We evaluated habitat suitability and nest survival of breeding white-headed woodpeckers (Picoides albolarvatus) in unburned forests of central Oregon, USA. Daily nest-survival rate was positively related to maximum daily temperature during the nest interval and to density of large-diameter trees surrounding the nest tree. We developed a niche-based habitat suitability model (partitioned Mahalanobis distance) for nesting white-headed woodpeckers using remotely sensed data. Along with low elevation, high density of large trees, and low slope, our habitat suitability model suggested that interspersion–juxtaposition of low- and high-canopy cover ponderosa pine (Pinus ponderosa) patches was important for nest-site suitability. Cross-validation suggested the model performed adequately for management planning at a scale >1 ha. Evaluation of mapped habitat suitability index (HSI) suggested that the maximum predictive gain (HSI = 0.36), where the number of nest locations are maximized in the smallest proportion of the modeled landscape, provided an objective initial threshold for identification of suitable habitat. However, managers can choose the threshold HSI most appropriate for their purposes (e.g., locating regions of low–moderate suitability that have potential for habitat restoration). Consequently, our habitat suitability model may be useful for managing dry coniferous forests for white-headed woodpeckers in central Oregon; however, model validation is necessary before our model could be applied to other locations.

  18. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  19. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-23

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  20. Habitat use by bats in two Indiana forests prior to silvicultural treatments for oak regeneration

    Science.gov (United States)

    Jeremy J. Sheets; Joseph E. Duchamp; Megan K. Caylor; Laura D' Acunto; John O. Whitaker; Virgil Jr. Brack; Dale W. Sparks

    2013-01-01

    As part of a study examining the effects of silvicultural treatments for oak regeneration on habitat use by bats, we surveyed forest stands prior to the implementation of treatments in two state forests in Indiana. Interior forest sites corresponding to areas designated for silvicultural treatments were surveyed for 2 nights each during the summers of 2007 and 2008....

  1. Home-range use patterns and movements of the Siberian flying squirrel in urban forests: Effects of habitat composition and connectivity.

    Science.gov (United States)

    Mäkeläinen, Sanna; de Knegt, Henrik J; Ovaskainen, Otso; Hanski, Ilpo K

    2016-01-01

    Urbanization causes modification, fragmentation and loss of native habitats. Such landscape changes threaten many arboreal and gliding mammals by limiting their movements through treeless parts of a landscape and by making the landscape surrounding suitable habitat patches more inhospitable. Here, we investigate the effects of landscape structure and habitat availability on the home-range use and movement patterns of the Siberian flying squirrel (Pteromys volans) at different spatial and temporal scales. We followed radio-tagged individuals in a partly urbanized study area in Eastern Finland, and analysed how landscape composition and connectivity affected the length and speed of movement bursts, distances moved during one night, and habitat and nest-site use. The presence of urban habitat on movement paths increased both movement lengths and speed whereas nightly distances travelled by males decreased with increasing amount of urban habitat within the home range. The probability of switching from the present nest site to another nest site decreased with increasing distance among the nest sites, but whether the nest sites were connected or unconnected by forests did not have a clear effect on nest switching. Flying squirrels preferred to use mature forests for their movements at night. Our results suggest that the proximity to urban habitats modifies animal movements, possibly because animals try to avoid such habitats by moving faster through them. Urbanization at the scale of an entire home range can restrict their movements. Thus, maintaining a large enough amount of mature forests around inhabited landscape fragments will help protect forest specialists in urban landscapes. The effect of forested connections remains unclear, highlighting the difficulty of measuring and preserving connectivity in a species-specific way.

  2. The effect of local and landscape-level characteristics on the abundance of forest birds in early-successional habitats during the post-fledging season in western Massachusetts.

    Directory of Open Access Journals (Sweden)

    Michelle A Labbe

    Full Text Available Many species of mature forest-nesting birds ("forest birds" undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its

  3. The Effect of Local and Landscape-Level Characteristics on the Abundance of Forest Birds in Early-Successional Habitats during the Post-Fledging Season in Western Massachusetts

    Science.gov (United States)

    Labbe, Michelle A.; King, David I.

    2014-01-01

    Many species of mature forest-nesting birds (“forest birds”) undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its benefit to

  4. An experimental test of the habitat-amount hypothesis for saproxylic beetles in a forested region.

    Science.gov (United States)

    Seibold, Sebastian; Bässler, Claus; Brandl, Roland; Fahrig, Lenore; Förster, Bernhard; Heurich, Marco; Hothorn, Torsten; Scheipl, Fabian; Thorn, Simon; Müller, Jörg

    2017-06-01

    The habitat-amount hypothesis challenges traditional concepts that explain species richness within habitats, such as the habitat-patch hypothesis, where species number is a function of patch size and patch isolation. It posits that effects of patch size and patch isolation are driven by effects of sample area, and thus that the number of species at a site is basically a function of the total habitat amount surrounding this site. We tested the habitat-amount hypothesis for saproxylic beetles and their habitat of dead wood by using an experiment comprising 190 plots with manipulated patch sizes situated in a forested region with a high variation in habitat amount (i.e., density of dead trees in the surrounding landscape). Although dead wood is a spatio-temporally dynamic habitat, saproxylic insects have life cycles shorter than the time needed for habitat turnover and they closely track their resource. Patch size was manipulated by adding various amounts of downed dead wood to the plots (~800 m³ in total); dead trees in the surrounding landscape (~240 km 2 ) were identified using airborne laser scanning (light detection and ranging). Over 3 yr, 477 saproxylic species (101,416 individuals) were recorded. Considering 20-1,000 m radii around the patches, local landscapes were identified as having a radius of 40-120 m. Both patch size and habitat amount in the local landscapes independently affected species numbers without a significant interaction effect, hence refuting the island effect. Species accumulation curves relative to cumulative patch size were not consistent with either the habitat-patch hypothesis or the habitat-amount hypothesis: several small dead-wood patches held more species than a single large patch with an amount of dead wood equal to the sum of that of the small patches. Our results indicate that conservation of saproxylic beetles in forested regions should primarily focus on increasing the overall amount of dead wood without considering its

  5. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico

    Directory of Open Access Journals (Sweden)

    G. García-Marmolejo

    2015-01-01

    Full Text Available Secondary forests are extensive in the tropics. Currently, these plant communities are the available habitats for wildlife and in the future they will possibly be some of the most wide-spread ecosystems world-wide. To understand the potential role of secondary forests for wildlife conservation, three ungulate species were studied: Mazama temama, Odocoileus virginianus and Pecari tajacu. We analyzed their relative abundance and habitat use at two spatial scales: (1 Local, where three different successional stages of tropical deciduous forest were compared, and (2 Landscape, where available habitats were compared in terms of landscape composition (proportion of forests, pastures and croplands within 113 ha. To determine the most important habitat-related environmental factors influencing the Sign Encounter Rate (SER of the three ungulate species, 11 physical, anthropogenic and vegetation variables were simultaneously analyzed through model selection using Akaike’s Information Criterion. We found, that P. tajacu and O. virginianus mainly used early successional stages, while M. temama used all successional stages in similar proportions. The latter species, however, used early vegetation stages only when they were located in landscapes mainly covered by forest (97%. P. tajacu and O. virginianus also selected landscapes covered essentially by forests, although they required smaller percentages of forest (86%. All ungulate species avoided landscape fragments covered by pastures. For all three species, landscape composition and human activities were the variables that best explained SER. We concluded that landscape is the fundamental scale for ungulate management, and that secondary forests are potentially important landscape elements for ungulate conservation.

  6. Habitat filtering across tree life stages in tropical forest communities

    Science.gov (United States)

    Baldeck, C. A.; Harms, K. E.; Yavitt, J. B.; John, R.; Turner, B. L.; Valencia, R.; Navarrete, H.; Bunyavejchewin, S.; Kiratiprayoon, S.; Yaacob, A.; Supardi, M. N. N.; Davies, S. J.; Hubbell, S. P.; Chuyong, G. B.; Kenfack, D.; Thomas, D. W.; Dalling, J. W.

    2013-01-01

    Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes (number of stems) that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large (24–50 ha) tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree sub-communities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census (1 cm diameter at breast height), which indicates that habitat filtering occurs during earlier life stages. PMID:23843384

  7. Applying the Delphi method to assess impacts of forest management on biodiversity and habitat preservation

    DEFF Research Database (Denmark)

    Filyushkina, Anna; Strange, Niels; Löf, Magnus

    2018-01-01

    This study applied a structured expert elicitation technique, the Delphi method, to identify the impacts of five forest management alternatives and several forest characteristics on the preservation of biodiversity and habitats in the boreal zone of the Nordic countries. The panel of experts...... as a valuable addition to on-going empirical and modeling efforts. The findings could assist forest managers in developing forest management strategies that generate benefits from timber production while taking into account the trade-offs with biodiversity goals....

  8. Ecomorphology, differentiated habitat use, and nocturnal activities of Rhinolophus and Hipposideros species in East Asian tropical forests.

    Science.gov (United States)

    Lee, Ya-Fu; Kuo, Yen-Min; Chu, Wen-Chen; Lin, Yu-Hsiu; Chang, Hsing-Yi; Chen, Wei-Ming

    2012-02-01

    We investigated the wing morphology and foraging distributions of sympatric Rhinolophus and Hipposideros species by acoustic sampling, measuring wing parameters, and observing bats in different settings of tropical East Asian forests, to evaluate their flexibility in habitat use and edge sensitivity. R. formosae and H. terasensis were more abundant at edges/in open habitats and shared the highest overlap, with R. formosae displaying the greatest breadth in habitat use, whereas R. monoceros had a higher abundance and feeding efficiency in forest interiors with a continuous canopy. H. terasensis was significantly larger and had higher wing loading and aspect ratio than R. formosae and R. monoceros, while R. formosae had higher wing loading but a lower aspect ratio than the smaller-sized R. monoceros. Shrubs and herbs were higher at sites where bats were captured than at those without bat captures, and R. monoceros and R. formosae were associated with greater canopy and ground coverage, respectively. R. monoceros always foraged while flying at lower heights close to the herb/shrub layers, while H. terasensis and R. formosae used perching to different extents, with R. formosae preferably using fly-catching techniques and appearing farther from the path in open forests rather than in forest interiors. Our results indicate that differences in wing parameters account for the different degrees of flexibility in habitat use, yet the deviations of call frequency from the expected values in R. formosae and H. terasensis suggest additional adaptations accounting for their flexibility in exploring habitats. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Nutritional status among the Shabar tribal children living in urban, rural and forest habitats of Orissa, India

    Directory of Open Access Journals (Sweden)

    Suman Chakrabarty

    2010-09-01

    Full Text Available

    Background: The current trend towards increasing urbanization due to urban migration among the scheduled tribes in developing countries like India should be reflected in differential nutritional outcomes and its associated factors. The aims of the present study are to investigate the nutritional status amongst Shabar children living in urban, rural and forest habitats and factors associated to nutritional state.

    Methods: This cross sectional study was conducted among 577 Shabar children (boys and girls aged 5 to 19 years (258 urban, 195 rural and 124 forest. The anthropometric nutritional indices, socio-economic condition and disease prevalence were used to evaluate the present conditions.

    Results: The results revealed that children from forest regions had the highest prevalence of under-nutrition followed by their rural and urban counterparts, 33.87%, 24.62% and 20.16%, respectively. Malaria prevalence in forest areas and economic conditions in rural and urban habitats might have been significantly related to underweight and stunting.

    Conclusions: To reduce the prevalence and the extent of under-nutrition, it is essential to improve the economic conditions and to simultaneously carry out measurements for reducing malaria specifically in forest habitats.

  10. Habitat change and restoration: responses of a forest-floor mammal species to manipulations of fallen timber in floodplain forests

    Directory of Open Access Journals (Sweden)

    Mac Nally, R

    2002-05-01

    Full Text Available In forests and woodlands, fallen timber (logs and large branches is an important habitat element for many species of animals. Fallen timber has been systematically stripped in many forests, eliminating an important structural element. This study describes results of a ‘meso-scale’ experiment in which fallen timber was manipulated in a floodplain forest of the Murray River in south-eastern Australia. A thousand tons of wood were redistributed after one-year’s pre-manipulation monitoring, while a further two-year’s post-manipulation monitoring was conducted. The response of the main forest-floor small-mammal species, the Yellow-footed Antechinus Antechinus flavipes, to alterations of fallen-wood loads is documented. Results of the experiment will help to frame guidelines for fallen-timber management in these extensive floodplain forests.

  11. Problem-solving performance and reproductive success of great tits in urban and forest habitats.

    Science.gov (United States)

    Preiszner, Bálint; Papp, Sándor; Pipoly, Ivett; Seress, Gábor; Vincze, Ernő; Liker, András; Bókony, Veronika

    2017-01-01

    Success in problem solving, a form of innovativeness, can help animals exploit their environments, and recent research suggests that it may correlate with reproductive success. Innovativeness has been proposed to be especially beneficial in urbanized habitats, as suggested by superior problem-solving performance of urban individuals in some species. If there is stronger selection for innovativeness in cities than in natural habitats, we expect problem-solving performance to have a greater positive effect on fitness in more urbanized habitats. We tested this idea in great tits (Parus major) breeding at two urban sites and two forests by measuring their problem-solving performance in an obstacle-removal task and a food-acquisition task. Urban pairs were significantly faster problem-solvers in both tasks. Solving speed in the obstacle-removal task was positively correlated with hatching success and the number of fledglings, whereas performance in the food-acquisition task did not correlate with reproductive success. These relationships did not differ between urban and forest habitats. Neophobia, sensitivity to human disturbance, and risk taking in the presence of a predator did not explain the relationships of problem-solving performance either with habitat type or with reproductive success. Our results suggest that the benefit of innovativeness in terms of reproductive success is similar in urban and natural habitats, implying that problem-solving skills may be enhanced in urban populations by some other benefits (e.g. increased survival) or reduced costs (e.g. more opportunities to gain practice with challenging tasks).

  12. Whole-island carbon stocks in the tropical Pacific: implications for mangrove conservation and upland restoration.

    Science.gov (United States)

    Donato, D C; Kauffman, J B; Mackenzie, R A; Ainsworth, A; Pfleeger, A Z

    2012-04-30

    Management of forest carbon (C) stocks is an increasingly prominent land-use issue. Knowledge of carbon storage in tropical forests is improving, but regional variations are still poorly understood, and this constrains forest management and conservation efforts associated with carbon valuation mechanisms (e.g., carbon markets). This deficiency is especially pronounced in tropical islands and low-lying coastal areas where climate change impacts are expected to be among the most severe. This study presents the first field estimate of island-wide carbon storage in ecosystems of Oceania, with special attention to the regional role of coastal mangroves, which occur on islands and coastal zones throughout the tropics. On two island groups of Micronesia (Yap and Palau), we sampled all above- and belowground C pools, including soil and vegetation, in 24 sites distributed evenly among the three major vegetation structural types: mangroves, upland forests, and open savannas (generally on degraded lands formerly forested). Total C stocks were estimated to be 3.9 and 15.2 Tg C on Yap and Palau, respectively. Mangroves contained by far the largest per-hectare C pools (830-1218 Mg C ha(-1)), with deep organic-rich soils alone storing more C (631-754 Mg C ha(-1)) than all pools combined in upland systems. Despite covering just 12-13% of land area, mangroves accounted for 24-34% of total island C stocks. Savannas (156-203 Mg C ha(-1)) contained significantly lower C stocks than upland forests (375-437 Mg C ha(-1)), suggesting that reforesting savannas where appropriate has high potential for carbon-based funding to aid restoration objectives. For mangroves, these results demonstrate the key role of these systems within the broader context of C storage in island and coastal landscapes. Sustainable management of mangrove forests and their large C stocks is of high importance at the regional scale, and climate change mitigation programs such as REDD+ could play a large role in

  13. Forested wetland habitat

    Science.gov (United States)

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  14. Songbirds as sentinels of mercury in terrestrial habitats of eastern North America

    Science.gov (United States)

    Jackson, Allyson K.; Evers, David C.; Adams, Evan M.; Cristol, Daniel A.; Eagles-Smith, Collin A.; Edmonds, Samuel T.; Gray, Carrie E.; Hoskins, Bart; Lane, Oksana P.; Sauer, Amy; Tear, Timothy

    2015-01-01

    Mercury (Hg) is a globally distributed environmental contaminant with a variety of deleterious effects in fish, wildlife, and humans. Breeding songbirds may be useful sentinels for Hg across diverse habitats because they can be effectively sampled, have well-defined and small territories, and can integrate pollutant exposure over time and space. We analyzed blood total Hg concentrations from 8,446 individuals of 102 species of songbirds, sampled on their breeding territories across 161 sites in eastern North America [geometric mean Hg concentration = 0.25 μg/g wet weight (ww), range freshwater or estuarine) than upland forests. Generally, adults exhibited higher blood Hg concentrations than juveniles within each habitat type. We used model results to examine species-specific differences in blood Hg concentrations during this time period, identifying potential Hg sentinels in each region and habitat type. Our results present the most comprehensive assessment of blood Hg concentrations in eastern songbirds to date, and thereby provide a valuable framework for designing and evaluating risk assessment schemes using sentinel songbird species in the time after implementation of the new atmospheric Hg standards.

  15. Habitat associations drive species vulnerability to climate change in boreal forests

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Triviño, María; Tikkanen, Olli-Pekka

    2016-01-01

    if species sensitivity, the species ability to tolerate climatic variations determined by traits, plays a key role in determining vulnerability. We analyse the role of species’ habitat associations, a proxy for sensitivity, in explaining vulnerability for two poorly-known but species-rich taxa in boreal...... forest, saproxylic beetles and fungi, using three IPCC emissions scenarios. Towards the end of the 21st century we projected an improvement in habitat quality associated with an increase of deadwood, an important resource for species, as a consequence of increased tree growth under high emissions...... scenarios. However, climate change will potentially reduce habitat suitability for ~9–43 % of the threatened deadwood-associated species. This loss is likely caused by future increase in timber extraction and decomposition rates causing higher deadwood turnover, which have a strong negative effect on boreal...

  16. Comparative Studies on Community Ecology of Two Types of Subtropical Forests Grown in Silicate and Limestone Habitats in the Northern Part of Okinawa Island, Japan

    Directory of Open Access Journals (Sweden)

    S. M. Feroz

    2008-06-01

    Full Text Available In order to compare woody species diversity, spatial distribution of trees and stand structure on the basis of the architectural stratification between two types of subtropical forests in the northern part of Okinawa Island, Japan, tree censuses in a 750 m2 plot in silicate habitat and a 1000 m2 plot in limestone habitat were performed. It was found that both subtropical forests growing in silicate and limestone habitats consisted of four architectural layers. A total of 26 families, 43 genera, 60 species and 4684 individuals larger than 0.1 m high in the silicate habitat, and 31 families, 51 genera, 62 species and 4798 individuals larger than 0.0 m high in the limestone habitat, were recorded. As a result, the floristic composition in the silicate habitat was quite different from that in the limestone habitat in terms of similarity index ( Π C = 0.07; approximately only one-sixth of the species were in common. The floristic composition among layers was more similar in the silicate habitat than in the limestone habitat. Castanopsis sieboldii (Mak. Hatusima was the most dominant species in the silicate habitat, but was completely absent in the limestone habitat where Cinnamomum japonicum Sieb. ex Nees was the most dominant species. The potential number of species in the silicate forest (62 was lower than that in the limestone forest (71. However, the woody species diversity was higher in the silicate forest than in the limestone forest. The values of H′ and J′ tended to increase from the top layer downward except for the bottom layer in the silicate forest, while this increasing trend was reversed in the limestone forest. It follows that high woody species diversity in the silicate forest depended on small-sized trees, whereas in the limestone forest it depended on big-sized trees. The spatial distribution of trees in the forests was random in each layer, except the top layer, where there existed a double-clump structure. High degree of

  17. Demographic source-sink dynamics restrict local adaptation in Elliott's blueberry (Vaccinium elliottii).

    Science.gov (United States)

    Anderson, Jill T; Geber, Monica A

    2010-02-01

    In heterogeneous landscapes, divergent selection can favor the evolution of locally adapted ecotypes, especially when interhabitat gene flow is minimal. However, if habitats differ in size or quality, source-sink dynamics can shape evolutionary trajectories. Upland and bottomland forests of the southeastern USA differ in water table depth, light availability, edaphic conditions, and plant community. We conducted a multiyear reciprocal transplant experiment to test whether Elliott's blueberry (Vaccinium elliottii) is locally adapted to these contrasting environments. Additionally, we exposed seedlings and cuttings to prolonged drought and flooding in the greenhouse to assess fitness responses to abiotic stress. Contrary to predictions of local adaptation, V. elliottii families exhibited significantly higher survivorship and growth in upland than in bottomland forests and under drought than flooded conditions, regardless of habitat of origin. Neutral population differentiation was minimal, suggesting widespread interhabitat migration. Population density, reproductive output, and genetic diversity were all significantly greater in uplands than in bottomlands. These disparities likely result in asymmetric gene flow from uplands to bottomlands. Thus, adaptation to a marginal habitat can be constrained by small populations, limited fitness, and immigration from a benign habitat. Our study highlights the importance of demography and genetic diversity in the evolution of local (mal)adaptation.

  18. LBA-ECO CD-10 Forest Litter Data for km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a single text file which reports litter type and mass in the old-growth upland forest at the Para Western (Santarem) - km 67, Primary Forest...

  19. Assessing Habitat Quality of Forest-Corridors through NDVI Analysis in Dry Tropical Forests of South India: Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Paramesha Mallegowda

    2015-02-01

    Full Text Available Most wildlife habitats and migratory routes are extremely threatened due to increasing demands on forestland and forest resources by burgeoning human population. Corridor landscape in Biligiri Rangaswamy Temple Tiger Reserve (BRT is one among them, subjected to various anthropogenic pressures. Human habitation, intensive farming, coffee plantations, ill-planned infrastructure developments and rapid spreading of invasive plant species Lantana camara, pose a serious threat to wildlife habitat and their migration. Aim of this work is to create detailed NDVI based land change maps and to use them to identify time-series trends in greening and browning in forest corridors in the study area and to identify the drivers that are influencing the observed changes. Over the four decades in BRT, NDVI increased in the core area of the forest and reduced in the fringe areas. The change analysis between 1973 and 2014 shows significant changes; browning due to anthropogenic activities as well as natural processes and greening due to Lantana spread. This indicates that the change processes are complex, involving multiple driving factors, such as socio-economic changes, high population growth, historical forest management practices and policies. Our study suggests that the use of updated and accurate change detection maps will be useful in taking appropriate site specific action-oriented conservation decisions to restore and manage the degraded critical wildlife corridors in human-dominated landscape.

  20. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland rover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2} plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  1. Using maximum entropy modeling to identify and prioritize red spruce forest habitat in West Virginia

    Science.gov (United States)

    Nathan R. Beane; James S. Rentch; Thomas M. Schuler

    2013-01-01

    Red spruce forests in West Virginia are found in island-like distributions at high elevations and provide essential habitat for the endangered Cheat Mountain salamander and the recently delisted Virginia northern flying squirrel. Therefore, it is important to identify restoration priorities of red spruce forests. Maximum entropy modeling was used to identify areas of...

  2. Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments.

    Science.gov (United States)

    Ehrmann, Steffen; Ruyts, Sanne C; Scherer-Lorenzen, Michael; Bauhus, Jürgen; Brunet, Jörg; Cousins, Sara A O; Deconchat, Marc; Decocq, Guillaume; De Frenne, Pieter; De Smedt, Pallieter; Diekmann, Martin; Gallet-Moron, Emilie; Gärtner, Stefanie; Hansen, Karin; Kolb, Annette; Lenoir, Jonathan; Lindgren, Jessica; Naaf, Tobias; Paal, Taavi; Panning, Marcus; Prinz, Maren; Valdés, Alicia; Verheyen, Kris; Wulf, Monika; Liira, Jaan

    2018-01-08

    The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro- and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks

  3. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Quaempts, Eric

    2003-01-01

    U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation species

  4. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    Science.gov (United States)

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  5. Habitat selection of the Mauritian lowland forest day gecko at multiple spatial scales: A baseline for translocation

    Directory of Open Access Journals (Sweden)

    Steeves Buckland

    2014-08-01

    Full Text Available Of 30 known subpopulations of Phelsuma guimbeaui, 18 are in patches of exotic forest and are predicted to disappear in the next decade. One possible means of mitigating the reduction in genetic diversity associated with the loss of subpopulations is to translocate “at risk” subpopulations to more secure habitats. Prior to any such intervention, it is important to identify a species’ basic ecological needs. We had three main objectives: to calculate home range sizes of adult geckos; characterise habitat selection among age groups; and identify the order of importance of each habitat predictor. Habitat selection of P. guimbeaui was explored at the population, home range and microhabitat levels. Males had larger home ranges than females, and overlapped temporally with more females than males. We showed that habitat selection differed between age groups. In order of importance, tree diversity, tree species, tree height, trunk dbh and cavity density were important habitat predictors. We discuss how these data can be used to inform the choice of sites for the translocation of threatened subpopulations. Our results also highlight the importance of undertaking habitat restoration for the long-term conservation of the 12 subpopulations that survive in patches of endemic forest.

  6. LiDAR Remote Sensing of Forest Structure and GPS Telemetry Data Provide Insights on Winter Habitat Selection of European Roe Deer

    Directory of Open Access Journals (Sweden)

    Michael Ewald

    2014-06-01

    Full Text Available The combination of GPS-Telemetry and resource selection functions is widely used to analyze animal habitat selection. Rapid large-scale assessment of vegetation structure allows bridging the requirements of habitat selection studies on grain size and extent, particularly in forest habitats. For roe deer, the cold period in winter forces individuals to optimize their trade off in searching for food and shelter. We analyzed the winter habitat selection of roe deer (Capreolus capreolus in a montane forest landscape combining estimates of vegetation cover in three different height strata, derived from high resolution airborne Laser-scanning (LiDAR, Light detection and ranging, and activity data from GPS telemetry. Specifically, we tested the influence of temperature, snow height, and wind speed on site selection, differentiating between active and resting animals using mixed-effects conditional logistic regression models in a case-control design. Site selection was best explained by temperature deviations from hourly means, snow height, and activity status of the animals. Roe deer tended to use forests of high canopy cover more frequently with decreasing temperature, and when snow height exceeded 0.6 m. Active animals preferred lower canopy cover, but higher understory cover. Our approach demonstrates the potential of LiDAR measures for studying fine scale habitat selection in complex three-dimensional habitats, such as forests.

  7. Mapping tropical dry forest habitats integrating landsat NDVI, Ikonos imagery, and topographic information in the Caribbean island of Mona.

    Science.gov (United States)

    Martinuzzi, Sebastiáin; Gould, William A; Ramos Gonzalez, Olga M; Martinez Robles, Alma; Calle Maldonado, Paulina; Pérez-Buitrago, Néstor; Fumero Caban, José J

    2008-06-01

    Assessing the status of tropical dry forest habitats using remote sensing technologies is one of the research priorities for Neotropical forests. We developed a simple method for mapping vegetation and habitats in a tropical dry forest reserve, Mona Island, Puerto Rico, by integrating the Normalized Difference Vegetation Index (NDVI) from Landsat, topographic information, and high-resolution Ikonos imagery. The method was practical for identifying vegetation types in areas with a great variety of plant communities and complex relief, and can be adapted to other dry forest habitats of the Caribbean Islands. NDVI was useful for identifying the distribution of forests, woodlands, and shrubland, providing a natural representation of the vegetation patterns on the island. The use of Ikonos imagery allowed increasing the number of land cover classes. As a result, sixteen land-cover types were mapped over the 5500 ha area, with a kappa coefficient of accuracy equal to 79%. This map is a central piece for modeling vertebrate species distribution and biodiversity patterns by the Puerto Rico Gap Analysis Project, and it is of great value for assisting research and management actions in the island.

  8. Species-specific Mechanisms Contributing to the Mesophication of Upland Oak Stands in the Absence of Fire

    Science.gov (United States)

    Babl, E. K.; Alexander, H. D.; Siegert, C. M.; Willis, J. L.; Berry, A. I.

    2017-12-01

    Upland oak forests of the eastern United States are shifting dominance towards shade-tolerant, fire-intolerant species. This shift is hypothesized to be driven by anthropogenic fire suppression and lead to mesophication, a positive feedback loop where shade-tolerant, fire-sensitive species (i.e. mesophytes) create a cool, moist understory, reducing forest flammability and promoting their own proliferation at the expense of pyrophytic, shade-intolerant species such as oaks. There have been few empirical studies identifying mechanisms of mesophication, and these studies have yet to extensively explore potential mesophytes other than red maple (Acer rubrum). To address this issue, we sampled four hypothesized mesophytes (A. rubrum, A. saccharum, Carya glabra, and Fagus grandifolia) and two upland oak species (Quercus alba and Q. montana) across a gradient of sizes (20-60 cm DBH) in western Kentucky. We quantified canopy, bark, and leaf litter traits among upland oaks and mesophytes that may lead to differences in forest flammability. Preliminary results show that mesophytes had thinner and smoother bark than upland oaks and an increased canopy volume (normalized to stem volume), traits known to influence water movement through the canopy and understory microclimate. Maple leaf litter also decomposed faster, which could decrease fuel loads; after 6 months, red and sugar maple leaf litter lost 37% of original mass compared to 32%, 22%, and 14% mass loss in hickory, oak, and American beech litter, respectively. Furthermore, volumetric soil moisture of the soil organic layer beneath the canopies of mesophytes was 62% moister two days following a rainfall event compared to oaks. These differences in soil organic layer water retention after rainfall could lead to fuel discontinuity. These findings suggest that mesophytes may alter future forest flammability through their bark, canopy, and leaf litter traits which may modify fuel moisture, loads, and continuity and that a

  9. Importance of tracks on habitat use characterization of Medium and Big mammals in Los Mangos Forest (Puerto Lopez, Meta, Colombia)

    International Nuclear Information System (INIS)

    Guzman Lenis, Angelica; Camargo Sanabria, Angela

    2004-01-01

    Tracks and signs are very useful for detecting medium and big mammals, which usually are out of sight. These are helpful tools on field investigation, provide detailed information on the identity and activities of an animal in a place, and can provide us indications of their habitat use (Aranda, 1981a; Navarro and Munoz, 2000; Villalba and Yanosky, 2000). In this paper we characterize the habitat use of medium and big land mammals in Los Mangos Forest. We use an observation and track tramp transect, and a modification of the Habitat Suitability Index (HSI) for evaluating habitat suitability. We detect six burrows, four footprints and five Seje palm (Oenocarpus batagua) feeding places, in addition to ten tracks compiled along the other days of field investigation. We recognized ten species of mammals, which belong to five orders, using tracks and bitted fruits. The HSI calculated was 7.30 on inner forest, indicating that the habitat is appropriate for animals, which use burrows. Resources like food (insects, fruits and preys), refuge, water and resting places converges generating favorable environment for immigration and residence of insectivore, frugivore and carnivore mammals. The fertile plane forest is an important habitat of this area because present there. It offers quality resources to the animal species in there

  10. Regeneration in bottomland forest canopy gaps 6 years after variable retention harvests to enhance wildlife habitat

    Science.gov (United States)

    Daniel J. Twedt; Scott G. Somershoe

    2013-01-01

    To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after...

  11. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient.

    Science.gov (United States)

    Pillsbury, Finn C; Miller, James R

    2008-07-01

    Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.

  12. Green infrastructure development at European Union's eastern border: Effects of road infrastructure and forest habitat loss.

    Science.gov (United States)

    Angelstam, Per; Khaulyak, Olha; Yamelynets, Taras; Mozgeris, Gintautas; Naumov, Vladimir; Chmielewski, Tadeusz J; Elbakidze, Marine; Manton, Michael; Prots, Bohdan; Valasiuk, Sviataslau

    2017-05-15

    The functionality of forest patches and networks as green infrastructure may be affected negatively both by expanding road networks and forestry intensification. We assessed the effects of (1) the current and planned road infrastructure, and (2) forest loss and gain, on the remaining large forest landscape massifs as green infrastructure at the EU's eastern border region in post-socialistic transition. First, habitat patch and network functionality in 1996-98 was assessed using habitat suitability index modelling. Second, we made expert interviews about road development with planners in 10 administrative regions in Poland, Belarus and Ukraine. Third, forest loss and gain inside the forest massifs, and gain outside them during the period 2001-14 were measured. This EU cross-border region hosts four remaining forest massifs as regional green infrastructure hotspots. While Poland's road network is developing fast in terms of new freeways, city bypasses and upgrades of road quality, in Belarus and Ukraine the focus is on maintenance of existing roads, and no new corridors. We conclude that economic support from the EU, and thus rapid development of roads in Poland, is likely to reduce the permeability for wildlife of the urban and agricultural matrix around existing forest massifs. However, the four identified forest massifs themselves, forming the forest landscape green infrastructure at the EU's east border, were little affected by road development plans. In contrast, forest loss inside massifs was high, especially in Ukraine. Only in Poland forest loss was balanced by gain. Forest gain outside forest massifs was low. To conclude, pro-active and collaborative spatial planning across different sectors and countries is needed to secure functional forest green infrastructure as base for biodiversity conservation and human well-being. Copyright © 2017. Published by Elsevier Ltd.

  13. Habitat use by forest bats in South Carolina in relation to local, stand, and landscape characteristics

    Science.gov (United States)

    Susan C. Loeb; Joy M. O' Keefe

    2006-01-01

    Knowledge and understanding of bat habitat associations and the responses of bats to forest management are critical for effective bat conservation and management. Few studies have been conducted on bat habitat use in the southeast, despite the high number of endangered and sensitive species in the region. Our objective was to identify important local, stand, and...

  14. Effects of Habitat Structure and Fragmentation on Diversity and Abundance of Primates in Tropical Deciduous Forests in Bolivia.

    Science.gov (United States)

    Pyritz, Lennart W; Büntge, Anna B S; Herzog, Sebastian K; Kessler, Michael

    2010-10-01

    Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures.

  15. Domestic dogs in a fragmented landscape in the Brazilian Atlantic Forest: abundance, habitat use and caring by owners

    Directory of Open Access Journals (Sweden)

    PC. Torres

    Full Text Available This study aimed at estimating the population size and attitudes of residents towards caring for domestic dogs, through questionnaire surveys, as well as the frequency of these animals in different habitats (anthropic and forest patch, using scent stations. The study was conducted in a severely fragmented area of the Brazilian Atlantic Forest. A large number of unrestricted dogs was recorded, averaging 6.2 ind/km². These dogs have owners and are regularly fed. Dog records decreased from the anthropogenic matrix to the forest patch edge, which suggests that dogs act as an edge effect on forest patches. Encounters between domestic dog and wild animals can still be frequent in severely fragmented landscapes, mainly at the forest edges. However the fact that most dogs have an owner and are more frequent in the anthropic habitat suggests that their putative effects are less severe than expected for a carnivore of such abundance, but the reinforcement of responsible ownership is needed to further ameliorate such effects.

  16. Landscape context mediates avian habitat choice in tropical forest restoration.

    Directory of Open Access Journals (Sweden)

    J Leighton Reid

    Full Text Available Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches, and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites.

  17. [Relative abundance, population structure, habitat preferences and activity patterns of Tapirus bairdii (Perissodactyla: Tapiridae), in Chimalapas forest, Oaxaca, Mexico].

    Science.gov (United States)

    Lira-Torres, Iván; Briones-Salas, Miguel; Sánchez-Rojas, Gerardo

    2014-12-01

    Baird's tapir (Tapirus bairdii) is endangered primarily because of habitat loss and fragmentation, and overhunting throughout its distribution range. One of the priority land areas for the conservation of this species is the Northern part of its range in the Chimalapas forest, Oaxaca. The aim of this research was to determine the relative abundance, population struc- ture, habitat preferences and activity patterns of Baird's tapir (Tapirus bairdii) in the Chimalapas forest, Oaxaca, Mexico, through the non-invasive technique of camera-trap sampling. A total of five sampling sessions were undertaken among 2009-2013, and used a total of 30 camera-traps in each period. The determinant factor of the sampling design was the hunting between two study areas. A total sampling effort of 9000 trap-days allowed to estimate an index of relative abundance (IRA) of 6.77 tapir photographs/1,000 trap-days (n = 61). IRA varied significantly between sampling stations (Mann-Whitney, p dry season in tropical rain forest without hunting (χ2, p tropical rain forest and secondary vegetation habitats showed higher photo frequency than expected from random (χ2, p forest appears to be the second most important terrestrial priority ecoregion, just after the Mayan Forest (Campeche, Chiapas, Quintana Roo), for the conservation of tapir populations, not only for Mexico but also for Central America.

  18. Boreal Forests of Kamchatka: Structure and Composition

    Directory of Open Access Journals (Sweden)

    Markus P. Eichhorn

    2010-09-01

    Full Text Available Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-dominant B. ermanii forests. Basal area ranged from 7.8–38.1 m2/ha and average tree height from 8.3–24.7 m, both being greater in lowland forests. Size distributions varied considerably among plots, though they were consistently more even for L. cajanderi than B. platyphylla. Upland sites also contained a dense subcanopy of Pinus pumila averaging 38% of ground area. Soil characteristics differed among plots, with upland soils being of lower pH and containing more carbon. Comparisons are drawn with boreal forests elsewhere and the main current threats assessed. These forests provide a potential baseline to contrast with more disturbed regions elsewhere in the world and therefore may be used as a target for restoration efforts or to assess the effects of climate change independent of human impacts.

  19. Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain.

    Science.gov (United States)

    Carlo, Nicholas J; Renninger, Heidi J; Clark, Kenneth L; Schäfer, Karina V R

    2016-08-01

    A comparative analysis of the impacts of prescribed fire on three upland forest stands in the Northeastern Atlantic Plain, NJ, USA, was conducted. Effects of prescribed fire on water use and gas exchange of overstory pines were estimated via sap-flux rates and photosynthetic measurements on Pinus rigida Mill. Each study site had two sap-flux plots, one experiencing prescribed fire and one control (unburned) plot for comparison before and after the fire. We found that photosynthetic capacity in terms of Rubisco-limited carboxylation rate and intrinsic water-use efficiency was unaffected, while light compensation point and dark respiration rate were significantly lower in the burned vs control plots post-fire. Furthermore, quantum yield in pines in the pine-dominated stands was less affected than pines in the mixed oak/pine stand, as there was an increase in quantum yield in the oak/pine stand post-fire compared with the control (unburned) plot. We attribute this to an effect of forest type but not fire per se. Average daily sap-flux rates of the pine trees increased compared with control (unburned) plots in pine-dominated stands and decreased in the oak/pine stand compared with control (unburned) plots, potentially due to differences in fuel consumption and pre-fire sap-flux rates. Finally, when reference canopy stomatal conductance was analyzed, pines in the pine-dominated stands were more sensitive to changes in vapor pressure deficit (VPD), while stomatal responses of pines in the oak/pine stand were less affected by VPD. Therefore, prescribed fire affects physiological functioning and water use of pines, but the effects may be modulated by forest stand type and fuel consumption pattern, which suggests that these factors may need to be taken into account for forest management in fire-dominated systems. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient

    Science.gov (United States)

    Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B.

    2010-01-01

    Given bees' central effect on vegetation communities, it is important to understand how and why bee distributions vary across ecological gradients. We examined how plant community composition, plant diversity, nesting suitability, canopy cover, land use, and fire history affected bee distribution across an open-forest gradient in northwest Indiana, USA, a gradient similar to the historic Midwest United States landscape mosaic. When considered with the other predictors, plant community composition was not a significant predictor of bee community composition. Bee abundance was negatively related to canopy cover and positively to recent fire frequency, bee richness was positively related to plant richness and abundance of potential nesting resources, and bee community composition was significantly related to plant richness, soil characteristics potentially related to nesting suitability, and canopy cover. Thus, bee abundance was predicted by a different set of environmental characteristics than was bee species richness, and bee community composition was predicted, in large part, by a combination of the significant predictors of bee abundance and richness. Differences in bee community composition along the woody vegetation gradient were correlated with relative abundance of oligolectic, or diet specialist, bees. Because oligoleges were rarer than diet generalists and were associated with open habitats, their populations may be especially affected by degradation of open habitats. More habitat-specialist bees were documented for open and forest/scrub habitats than for savanna/woodland habitats, consistent with bees responding to habitats of intermediate woody vegetation density, such as savannas, as ecotones rather than as distinct habitat types. Similarity of bee community composition, similarity of bee abundance, and similarity of bee richness between sites were not significantly related to proximity of sites to each other. Nestedness analysis indicated that species

  1. Managing heart rot in live trees for wildlife habitat in young-growth forests of coastal Alaska

    Science.gov (United States)

    Paul E. Hennon; Robin L. Mulvey

    2014-01-01

    Stem decays of living trees, known also as heart rots, are essential elements of wildlife habitat, especially for cavity-nesting birds and mammals. Stem decays are common features of old-growth forests of coastal Alaska, but are generally absent in young, managed forests. We offer several strategies for maintaining or restoring fungal stem decay in these managed...

  2. Songbirds as sentinels of mercury in terrestrial habitats of eastern North America

    Science.gov (United States)

    Jackson, Allyson K.; Evers, David C.; Adams, Evan M.; Cristol, Daniel A.; Eagles-Smith, Collin A.; Edmonds, Samuel T.; Gray, Carrie E.; Hoskins, Bart; Lane, Oksana P.; Sauer, Amy; Tear, Timothy

    2015-01-01

    Mercury (Hg) is a globally distributed environmental contaminant with a variety of deleterious effects in fish, wildlife, and humans. Breeding songbirds may be useful sentinels for Hg across diverse habitats because they can be effectively sampled, have well-defined and small territories, and can integrate pollutant exposure over time and space. We analyzed blood total Hg concentrations from 8,446 individuals of 102 species of songbirds, sampled on their breeding territories across 161 sites in eastern North America [geometric mean Hg concentration = 0.25 μg/g wet weight (ww), range of the USEPA Mercury and Air Toxics Standards, which will reduce Hg emissions from coal-fired power plants by over 90 %. Mixed-effects modeling indicated that habitat, foraging guild, and age were important predictors of blood Hg concentrations across species and sites. Blood Hg concentrations in adult invertebrate-eating songbirds were consistently higher in wetland habitats (freshwater or estuarine) than upland forests. Generally, adults exhibited higher blood Hg concentrations than juveniles within each habitat type. We used model results to examine species-specific differences in blood Hg concentrations during this time period, identifying potential Hg sentinels in each region and habitat type. Our results present the most comprehensive assessment of blood Hg concentrations in eastern songbirds to date, and thereby provide a valuable framework for designing and evaluating risk assessment schemes using sentinel songbird species in the time after implementation of the new atmospheric Hg standards.

  3. Changes in forest habitat classes under alternative climate and land-use change scenarios in the northeast and midwest, USA

    Science.gov (United States)

    Brian G. Tavernia; Mark D. Nelson; Michael E. Goerndt; Brian F. Walters; Chris Toney

    2013-01-01

    Large-scale and long-term habitat management plans are needed to maintain the diversity of habitat classes required by wildlife species. Planning efforts would benefit from assessments of potential climate and land-use change effects on habitats. We assessed climate and land-use driven changes in areas of closed- and open-canopy forest across the Northeast and Midwest...

  4. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    Science.gov (United States)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  5. Response of a tropical tree to non-timber forest products harvest and reduction in habitat size

    Science.gov (United States)

    Kouagou, M’Mouyohoun; Natta, Armand K.; Gado, Choukouratou

    2017-01-01

    Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution. PMID:28850624

  6. Response of a tropical tree to non-timber forest products harvest and reduction in habitat size.

    Directory of Open Access Journals (Sweden)

    Orou G Gaoue

    Full Text Available Non-timber forest products (NTFPs are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae across two contrasting ecological regions (dry vs. moist in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high. Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution.

  7. Investigation of 137Cs cycling in the upland deciduous sedge, Eriophorum vaginatum l

    International Nuclear Information System (INIS)

    Jones, D. R.; Eason, W. R.; Dighton, J.

    1996-01-01

    Relatively high levels of 137 Cs from the Chernobyl accident in indigenous vegetation in infertile upland habitats in the UK have been partly attributed to plant strategies that permit efficient use of limited nutrient resources. This study investigated temporal and spatial patterns of 137 Cs allocation in root-labelled Eriophorum vaginatum plants in relation to its well-documented nutrient retrieval and storage strategy. (author)

  8. Influence of seasonality and gestation on habitat selection by northern Mexican gartersnakes (Thamnophis eques megalops.

    Directory of Open Access Journals (Sweden)

    Tiffany A Sprague

    Full Text Available Species conservation requires a thorough understanding of habitat requirements. The northern Mexican gartersnake (Thamnophis eques megalops was listed as threatened under the U.S. Endangered Species Act in 2014. Natural resource managers are interested in understanding the ecology of this subspecies to guide management decisions and to determine what features are necessary for habitat creation and restoration. Our objective was to identify habitat selection of northern Mexican gartersnakes in a highly managed, constructed wetland hatchery. We deployed transmitters on 42 individual gartersnakes and documented use of habitat types and selection of specific habitat features. Habitat selection was similar between males and females and varied seasonally. During the active season (March-October, gartersnakes primarily selected wetland edge habitat with abundant cover. Gestating females selected similar locations but with less dense cover. During the inactive season (November-February, gartersnakes selected upland habitats, including rocky slopes with abundant vegetation. These results of this study can help inform management of the subspecies, particularly in human-influenced habitats. Conservation of this subspecies should incorporate a landscape-level approach that includes abundant wetland edge habitat with a mosaic of dense cover for protection and sparsely vegetated areas for basking connected to terrestrial uplands for overwintering.

  9. Characterizing Forest Succession Stages for Wildlife Habitat Assessment Using Multispectral Airborne Imagery

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2017-06-01

    Full Text Available In this study, we demonstrate the potential of using high spatial resolution airborne imagery to characterize the structural development stages of forest canopies. Four forest succession stages were adopted: stand initiation, young multistory, understory reinitiation, and old growth. Remote sensing metrics describing the spatial patterns of forest structures were derived and a Random Forest learning algorithm was used to classify forest succession stages. These metrics included texture variables from Gray Level Co-occurrence Measures (GLCM, range and sill from the semi-variogram, and the fraction of shadow and its spatial distribution. Among all the derived variables, shadow fractions and the GLCM variables of contrast, mean, and dissimilarity were the most important for characterizing the forest succession stages (classification accuracy of 89%. In addition, a LiDAR (Light Detection and Ranging derived forest structural index (predicted Lorey’s height was employed to validate the classification result. The classification using imagery spatial variables was shown to be consistent with the LiDAR derived variable (R2 = 0.68 and Root Mean Square Error (RMSE = 2.39. This study demonstrates that high spatial resolution imagery was able to characterize forest succession stages with promising accuracy and may be considered an alternative to LiDAR data for this kind of application. Also, the results of stand development stages build a framework for future wildlife habitat mapping.

  10. Home-range size and habitat use of European Nightjars Caprimulgus europaeus nesting in a complex plantation-forest landscape

    OpenAIRE

    Sharps, Katrina; Henderson, Ian; Conway, Greg; Armour-Chelu, Neal; Dolman, Paul

    2015-01-01

    In Europe, the consequences of commercial plantation management for birds of conservation concern are poorly understood. The European Nightjar Caprimulgus europaeus is a species of conservation concern across Europe due to population depletion through habitat loss. Pine plantation-forest is now a key Nightjar nesting habitat, particularly in northwestern Europe, and increased understanding of foraging habitat selection is required. We radiotracked 31 Nightjars in an extensive (185-km2) comple...

  11. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  12. Methane production potential and microbial community structure for different forest soils

    Science.gov (United States)

    Matsumoto, Y.; Ueyama, M.; Kominami, Y.; Endo, R.; Tokumoto, H.; Hirano, T.; Takagi, K.; Takahashi, Y.; Iwata, H.; Harazono, Y.

    2017-12-01

    Forest soils are often considered as a methane (CH4) sink, but anaerobic microsites potentially decrease the sink at the ecosystem scale. In this study, we measured biological CH4 production potential of soils at various ecosystems, including upland forests, a lowland forest, and a bog, and analyzed microbial community structure using 16S ribosomal RNA (rRNA) genes. Three different types of soil samples (upland, bank of the stream, and center of the stream) were collected from Yamashiro forest meteorology research site (YMS) at Kyoto, Japan, on 11 May 2017. The soils were incubated at dark and anaerobic conditions under three different temperatures (37°C, 25°C, and 10°C) from 9 June 2017. The upland soils emitted CH4 with largest yields among the three soils at 37°C and 25°C, although no CH4 emission was observed at 10°C. For all temperature ranges, the emission started to increase with a 14- to 20-days lag after the start of the incubation. The lag indicates a slow transition to anaerobic conditions; as dissolved oxygen in water decreased, the number and/or activity of anaerobic bacteria like methanogens increased. The soils at the bank and center of the stream emitted CH4 with smaller yields than the upland soils in the three temperature ranges. The microbial community analyses indicate that methanogenic archaea presented at the three soils including the aerobic upland soil, but compositions of methanogenic archaea were different among the soils. In upland soils, hydrogenotrophic methanogens, such as Methanobacterium and Methanothermobacter, consisted almost all of the total methanogen detected. In the bank and center of the stream, soils contained approximately 10-25% of acetoclastic methanogens, such as Methanosarcina and Methanosaeta, among the total methanogen detected. Methanotrophs, a genus of Methanobacteriaceae, was appeared in the all types of soils. We will present results from same incubation and 16S rRNA analyses for other ecosystems, including

  13. Sustainable forest management and habitat of diurnal raptors in the SIC Alpe della Luna-Bocca Trabaria (province of Pesaro and Urbino.

    Directory of Open Access Journals (Sweden)

    Carlo Urbinati

    2013-09-01

    Full Text Available For the definition of methodology in a naturalistic silviculture in a Site of Community Importance (Marche Region, documents relating to the physiognomic-structural data of forest vegetation and ecological requirements of 4 species of raptors (Goshawk, Sparrow hawk, Buzzard, Honey Buzzard were superimposed. A wildlife suitability index of forest habitats (IIHF was calculated, according to which forestry interventions, aimed at improving and preserving the raptor habitats, are proposed.

  14. Evaluating avian-habitat relationships models in mixed-conifer forests of the Sierra Nevada

    Science.gov (United States)

    Kathryn L. Purcell; Sallie J. Hejl; Terry A. Larson

    1992-01-01

    Using data from two studies in the southern and central Sierra Nevada, we compared the presence and abundance of bird species breeding in mixedconifer forests during 1978-79 and 1983-85 to predictions &om the California Wildlife Habitat Relationships (WHR) System. Twelve percent of the species observed in either study were not predicted by the WHR database to occur...

  15. Mercury and Organic Carbon Relationships in Streams Draining Forested Upland/Peatland Watersheds

    Science.gov (United States)

    R. K. Kolka; D. F. Grigal; E. S. Verry; E. A. Nater

    1999-01-01

    We determined the fluxes of total mecury (HgT), total organic carbon (TOC), and dissolved organic carbon (DOC) from five upland/peatland watersheds at the watershed outlet. The difference between TOC and DOC was defined as particulate OC (POC). Concentrations of HgT showed moderate to strong relationships with POC (R2 = 0.77) when all watersheds...

  16. Habitat Preferences of Boros schneideri (Coleoptera: Boridae) in the Natural Tree Stands of the Białowieża Forest

    Science.gov (United States)

    Gutowski, Jerzy M.; Sućko, Krzysztof; Zub, Karol; Bohdan, Adam

    2014-01-01

    Abstract We analyzed habitat requirements of Boros schneideri (Panzer, 1796) (Coleoptera: Boridae) in the natural forests of the continental biogeographical region, using data collected in the Białowieża Forest. This species has been found on the six host trees, but it preferred dead, standing pine trees, characterized by large diameter, moderately moist and moist phloem but avoided trees in sunny locations. It occurred mostly in mesic and wet coniferous forests. This species demonstrated preferences for old tree stands (over 140-yr old), and its occurrence in younger tree-stand age classes (minimum 31–40-yr old) was not significantly different from random distribution. B. schneideri occupied more frequently locations distant from the forest edge, which were less affected by logging. Considering habitat requirements, character of occurrence, and decreasing number of occupied locations in the whole range of distribution, this species can be treated as relict of primeval forests. PMID:25527586

  17. Understanding landowner intentions to create early successional forest habitat in the northeastern United States

    Science.gov (United States)

    Dayer, Ashley A.; Stedman, Richard C.; Allred, Shorna B.; Rosenberg, Kenneth V.; Fuller, Angela K.

    2016-01-01

    Early successional forest habitat (ESH) and associated wildlife species in the northeastern United States are in decline. One way to help create early successional forest conditions is engaging private forest landowners in even-aged forest management because their limited participation may have contributed to declines in ESH for wildlife species of high conservation concern. We applied the reasoned action approach from social psychology to predict intentions of landowners in the 13-county Southern Tier of New York State, USA, to conduct patch-cuts, which is a type of even-aged forest management. We tested the predictive ability of the model using data from a mail survey of landowners conducted from November 2010 to January 2011. Landowner intention to conduct patch-cuts was high (55% of respondents), with attitude being the strongest direct predictor of behavioral intention. Our results suggest that patch-cutting intentions are most likely expressed by landowners who think the behavior is good for their land and wildlife, believe in positive outcomes of land and wildlife management, belong to a game wildlife organization, and have conducted patch-cuts in the past. Strategies to engage more landowners in ESH management will have the highest likelihood of success if outreach efforts focus on influencing behavioral beliefs and subsequently attitudes, possibly working with game wildlife organizations to communicate a unified message for habitat conservation, including the importance of maintaining and creating ESH. Our results demonstrate the importance of social science research to increase the likelihood that conservation targets for declining wildlife species are met. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. Effects of Habitat Structure, Plant Cover, and Successional Stage on the Bat Assemblage of a Tropical Dry Forest at Different Spatial Scales

    Directory of Open Access Journals (Sweden)

    Luiz A. D. Falcão

    2018-05-01

    Full Text Available Bats play a fundamental role in ecosystem functioning since they are responsible for several ecological services such as seed dispersal and pollination. Therefore, assessing the effects of habitat structure at different scales on the bat assemblage is extremely important for supporting conservation strategies. The objective of the present study was to investigate the effects of habitat structure at multiple spatial scales on the bat assemblages and their variation along a gradient of secondary succession in a Brazilian tropical dry forest. Our results suggest that bat abundance is higher in areas close to mature forests, which shows the important role of those habitats as refuges for the regional bat fauna (in a fragmented landscape and for the maintenance of ecosystem services provided by this group in tropical dry forests in a landscape context. In addition, bat abundance was lower in protected areas whose surroundings were better preserved (greater forest extension. This unexpected finding could result from an altered behavior in areas under a strong influence of a fruit crop matrix. Finally, we showed that the effects of the surroundings depend on the successional stage of the area under analysis. Late forests are more susceptible to variations in the forest cover in their surroundings, which show the higher fragility of these environments.

  19. Habitat Evaluation Procedures (HEP) Report : Oleson Tracts of the Tualatin River National Wildlife Refuge, 2001-2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Donna; Smith, maureen; Schmidt, Peter

    2004-09-01

    Located in the northern Willamette River basin, Tualatin River National Wildlife Refuge (Refuge) was established in 1992 with an approved acquisition boundary to accommodate willing sellers with potentially restorable holdings within the Tualatin River floodplain. The Refuge's floodplain of seasonal and emergent wetlands, Oregon ash riparian hardwood, riparian shrub, coniferous forest, and Garry oak communities are representative of remnant plant communities historically common in the Willamette River valley and offer an opportunity to compensate for wildlife habitat losses associated with the Willamette River basin federal hydroelectric projects. The purchase of the Oleson Units as additions to the Refuge using Bonneville Power Administration (BPA) funds will partially mitigate for wildlife habitat and target species losses incurred as a result of construction and inundation activities at Dexter and Detroit Dams. Lands acquired for mitigation of Federal Columbia River Power System (FCRPS) impacts to wildlife are evaluated using the Habitat Evaluation Procedures (HEP) methodology, which quantifies how many Habitat Units (HUs) are to be credited to BPA. HUs or credits gained lessen BPA's debt, which was formally tabulated in the FCRPS Loss Assessments and adopted as part of the Northwest Power and Conservation Council's Fish and Wildlife Program as a BPA obligation (NWPCC, 1994 and 2000). There are two basic management scenarios to consider for this evaluation: (1) Habitats can be managed without restoration activities to benefit wildlife populations, or (2) Habitats can be restored using a number of techniques to improve habitat values more quickly. Without restoration, upland and wetland areas may be periodically mowed and disced to prevent invasion of exotic vegetation, volunteer trees and shrubs may grow to expand forested areas, and cooperative farming may be employed to provide forage for migrating and wintering waterfowl. Abandoned cropland

  20. Visual simulations of forest wildlife habitat structure, change, and landscape context in New England

    Science.gov (United States)

    Richard M. DeGraaf; Anna M. Lester; Mariko Yamasaki; William B. Leak

    2007-01-01

    Visualization is a powerful tool for depicting projections of forest structure and landscape conditions, for communicating habitat management practices, and for providing a landscape context to private landowners and to those concerned with public land management. Recent advances in visualization technology, especially in graphics quality, ease of use, and relative...

  1. Mixed grazing systems benefit both upland biodiversity and livestock production.

    Directory of Open Access Journals (Sweden)

    Mariecia D Fraser

    Full Text Available With world food demand expected to double by 2050, identifying farming systems that benefit both agricultural production and biodiversity is a fundamentally important challenge for the 21(st century, but this has to be achieved in a sustainable way. Livestock grazing management directly influences both economic outputs and biodiversity on upland farms while contributing to potentially damaging greenhouse gas emissions, yet no study has attempted to address these impacts simultaneously.Using a replicated, landscape-scale field experiment consisting of five management 'systems' we tested the effects of progressively altering elements within an upland farming system, viz i incorporating cattle grazing into an upland sheep system, ii integrating grazing of semi-natural rough grazing into a mixed grazing system based on improved pasture, iii altering the stocking ratio within a mixed grazing system, and iv replacing modern crossbred cattle with a traditional breed. We quantified the impacts on livestock productivity and numbers of birds and butterflies over four years.We found that management systems incorporating mixed grazing with cattle improve livestock productivity and reduce methane emissions relative to sheep only systems. Systems that also included semi-natural rough grazing consistently supported more species of birds and butterflies, and it was possible to incorporate bouts of summer grazing of these pastures by cattle to meet habitat management prescriptions without compromising cattle performance overall. We found no evidence that the system incorporating a cattle breed popular as a conservation grazer was any better for bird and butterfly species richness than those based on a mainstream breed, yet methane emissions from such a system were predicted to be higher. We have demonstrated that mixed upland grazing systems not only improve livestock production, but also benefit biodiversity, suggesting a 'win-win' solution for farmers and

  2. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus)

    Science.gov (United States)

    Margolis, Ellis; Malevich, Steven B.

    2016-01-01

    Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to

  3. Habitats and Natural Areas--Some Applications of the 1995-96 Forest Survey of Arkansas on the Conservation of Biodiversity in Arkansas

    Science.gov (United States)

    Douglas Zollner

    2001-01-01

    The conservation status and trend of rare species groups should be better in landscapes with more forest cover due to the presence of quantitatively more habitat, and in the case of aquatic species,qualitatively better habitat. Arkansas provides habitat for 97 species of plants and animals considered critically imperiled globally or imperiled globally.T hese 97 species...

  4. Road Impact on Deforestation and Jaguar Habitat Loss in the Mayan Forest

    DEFF Research Database (Denmark)

    Conde, Dalia Amor

    2008-01-01

    The construction of roads, either as an economic tool or as necessity for the implementation of other infrastructure projects is increasing in the tropical forest worldwide. However, roads are one of the main deforestation drivers in the tropics. In this study we analyzed the impact of road...... and important role in high developed areas. In the short term, the impact of a road in a low developed area is lower than in a road in a high developed area, which could be the result of the lag effect between road construction and forest colonization. This is consistent since roads resulted to be a significant...... investments on both deforestation and jaguar habitat loss, in the Mayan Forest. As well we used these results to forecast the impact of two road investments planned in the region. Our results show that roads are the single deforestation driver in low developed areas, whether many other drivers play...

  5. Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest.

    Science.gov (United States)

    Bai, Xuejiao; Queenborough, Simon A; Wang, Xugao; Zhang, Jian; Li, Buhang; Yuan, Zuoqiang; Xing, Dingliang; Lin, Fei; Ye, Ji; Hao, Zhanqing

    2012-11-01

    Seedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2 years from an old-growth temperate forest in northeastern China. We found significant negative density-dependence effects on survival of tree seedlings, and limited effects of habitat heterogeneity (edaphic and topographic variables) on survival of shrub seedlings. The importance of negative density dependence on young tree seedling survival was replaced by habitat in tree seedlings ≥ 4 years old. As expected, negative density dependence was more apparent in gravity-dispersed species compared to wind-dispersed and animal-dispersed species. Moreover, we found that a community compensatory trend existed for trees. Therefore, although negative density dependence was not as pervasive as in other forest communities, it is an important mechanism for the maintenance of community diversity in this temperate forest. We conclude that both negative density dependence and habitat heterogeneity drive seedling survival, but their relative importance varies with seedling age classes and species traits.

  6. Wildlife habitat, range, recreation, hydrology, and related research using Forest Inventory and Analysis surveys: a 12-year compendium

    Science.gov (United States)

    Victor A. Rudis

    1991-01-01

    More than 400 publications are listed for the period 1979 to 1990; these focus on water, range, wildlife habitat, recreation, and related studies derived from U.S. Department of Agriculture, forest Service, Forest Inventory and Analysis unit surveys conducted on private and public land in the continental United States. Included is an overview of problems and progress...

  7. Space-use and habitat associations of Black-backed Woodpeckers (Picoides arcticus) occupying recently disturbed forests in the Black Hills, South Dakota

    Science.gov (United States)

    Christopher T. Rota; Mark A. Rumble; Joshua J. Millspaugh; Chadwick P. Lehman; Dylan C. Kesler

    2014-01-01

    Black-backed Woodpeckers (Picoides arcticus) are a disturbance-dependent species that occupy recently burned forest and mountain pine beetle (MPB) infestations. Forest management practices that reduce the amount of disturbed forest may lead to habitat loss for Black-backed Woodpeckers, which have recently been petitioned for listing under the Endangered Species Act. We...

  8. Red-tailed Hawk movements and use of habitat in the Luquillo Mountains of Puerto Rico

    Science.gov (United States)

    Vilella, Francisco; Nimitz, Wyatt F.

    2012-01-01

    The Red-tailed Hawk (Buteo jamaicensis) is a top predator of upland ecosystems in the Greater Antilles. Little information exists on the ecology of the insular forms of this widely distributed species. We studied movements and resource use of the Red-tailed Hawk from 2000 to 2002 in the montane forests of northeastern Puerto Rico. We captured 32 and used 21 radio-marked Red-tailed Hawks to delineate home range, core area shifts, and macrohabitat use in the Luquillo Mountains. Red-tailed Hawks in the Luquillo Mountains frequently perched near the top of canopy emergent trees and were characterized by wide-ranging capabilities and extensive spatial overlap. Home range size averaged 5,022.6 6 832.1 ha (305–11,288 ha) and core areas averaged 564.8 6 90.7 ha (150–1,230 ha). This species had large mean weekly movements (3,286.2 6 348.5 m) and a preference for roadside habitats. Our findings suggest fragmentation of contiguous forest outside protected areas in Puerto Rico may benefit the Red-tailed Hawk

  9. Phytosociological characteristics of forest vegetation NPR Dubnik

    International Nuclear Information System (INIS)

    Hrabovsky, A.; Balkovic, J.; Kollar, J.

    2010-01-01

    National Wildlife (NPR) Dubnik represents a unique fragment of natural forest vegetation in the region of Nitra loess upland. Status of oak and oak-hornbeam forests in this book was last documented in 1965. The aim of the contribution is to assess the current status of forest vegetation in the NPR Dubnik by modern methods of phytosociology in accordance with current thinking on the classification of oak and oak-hornbeam forests.

  10. Mechanisms Driving Galling Success in a Fragmented Landscape: Synergy of Habitat and Top-Down Factors along Temperate Forest Edges.

    Directory of Open Access Journals (Sweden)

    Nina-S Kelch

    Full Text Available Edge effects play key roles in the anthropogenic transformation of forested ecosystems and their biota, and are therefore a prime field of contemporary fragmentation research. We present the first empirical study to address edge effects on the population level of a widespread galling herbivore in a temperate deciduous forest. By analyzing edge effects on abundance and trophic interactions of beech gall midge (Mikiola fagi Htg., we found 30% higher gall abundance in the edge habitat as well as lower mortality rates due to decreased top-down control, especially by parasitoids. Two GLM models with similar explanatory power (58% identified habitat specific traits (such as canopy closure and altitude and parasitism as the best predictors of gall abundance. Further analyses revealed a crucial influence of light exposure (46% on top-down control by the parasitoid complex. Guided by a conceptual framework synthesizing the key factors driving gall density, we conclude that forest edge proliferation of M. fagi is due to a complex interplay of abiotic changes and trophic control mechanisms. Most prominently, it is caused by the microclimatic regime in forest edges, acting alone or in synergistic concert with top-down pressure by parasitoids. Contrary to the prevailing notion that specialists are edge-sensitive, this turns M. fagi into a winner species in fragmented temperate beech forests. In view of the increasing proportion of edge habitats and the documented benefits from edge microclimate, we call for investigations exploring the pest status of this galling insect and the modulators of its biological control.

  11. Habitat Blocks and Wildlife Corridors

    Data.gov (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  12. STRUCTURE AND FUTURE POTENTIAL OF USE OF THE NATURAL REGENERATION IN UPLAND FLOODPLAIN FOREST IN AFUÁ COUNTY, PARÁ STATE

    Directory of Open Access Journals (Sweden)

    João Ricardo Vasconcellos Gama

    2010-08-01

    Full Text Available The aim of this paper was to analyze the structure and describe the future potential of use of the natural regeneration in an non-exploited upland floodplain forest located at EMAPA forestlands, Afuá County (0° 09’ 24” S and 50° 23’ 12” W, North of Pará State. The sample consisted of 29 sub-plots of 100 m2. In each sub-plot, all trees and palms with height (h ³ 0.30 m and diameter at 1.30 m above ground level (DBH < 15 cm were identified and measured. All trees with h ³ 3.0 m and DBH < 15.0 cm were measured too. The total density was 30,969 individuals/ha distributed into 70 species, 57 genera and 25 botanical families, with a Shannon Index (H’ of 2.68. The most important species were: Virola surinamensis, Euterpe oleracea, Astrocaryum murumuru, Geonoma laxiflora e Guarea guidonia. There are many species used for the local fauna as feeding, and many that also provide timber and non-timber forest products; some of them function as an addition to the diet of the riverine people, such as: Eschweilera coriacea, Gustavia augusta, Inga Alba, Nectandra cf. risi e Protium spruceanum.

  13. Diet preferences of goats in a subtropical dry forest and implications for habitat management

    Science.gov (United States)

    Genie M. Fleming; Joseph Wunderle Jr.; David N. Ewert

    2016-01-01

    As part of an experimental study of using controlled goat grazing to manage winter habitat of the Kirtland’s warbler (Setophaga kirtlandii), an endangered Nearctic neotropical migratory bird, we evaluated diet preferences of domesticated goats within early successional subtropical dry forest in The Bahamas. We expected goats would show a low preference for two plants (...

  14. Seasonal Effects of Habitat on Sources and Rates of Snowshoe Hare Predation in Alaskan Boreal Forests.

    Directory of Open Access Journals (Sweden)

    Dashiell Feierabend

    Full Text Available Survival and predation of snowshoe hares (Lepus americanus has been widely studied, yet there has been little quantification of the changes in vulnerability of hares to specific predators that may result from seasonal changes in vegetation and cover. We investigated survival and causes of mortalities of snowshoe hares during the late increase, peak, and decline of a population in interior Alaska. From June 2008 to May 2012, we radio-tagged 288 adult and older juvenile hares in early successional and black spruce (Picea mariana forests and, using known-fate methods in program MARK, evaluated 85 survival models that included variables for sex, age, and body condition of hares, as well as trapping site, month, season, year, snowfall, snow depth, and air temperature. We compared the models using Akaike's information criterion with correction for small sample size. Model results indicated that month, capture site, and body condition were the most important variables in explaining survival rates. Survival was highest in July, and more generally during summer, when alternative prey was available to predators of hares. Low survival rates coincided with molting periods, breeding activity in the spring, and the introduction of juveniles to the sample population in the fall. We identified predation as the cause of mortality in 86% of hare deaths. When the source of predation could be determined, hares were killed more often by goshawks (Accipiter gentilis than other predators in early successional forest (30%, and more often by lynx (Lynx canadensis than other predators in black spruce forest (31%. Great horned owls (Bubo virginianus and coyotes (Canis latrans represented smaller proportions of hare predation, and non-predatory causes were a minor source (3% of mortality. Because hares rely on vegetative cover for concealment from predators, we measured cover in predation sites and habitats that the hares occupied and concluded that habitat type had a

  15. What makes segmentation good? A case study in boreal forest habitat mapping

    OpenAIRE

    Räsänen, Aleksi; Rusanen, Antti; Kuitunen, Markku; Lensu, Anssi

    2013-01-01

    Segmentation goodness evaluation is a set of approaches meant for deciding which segmentation is good. In this study, we tested different supervised segmentation evaluation measures and visual interpretation in the case of boreal forest habitat mapping in Southern Finland. The data used were WorldView-2 satellite imagery, a lidar digital elevation model (DEM), and a canopy height model (CHM) in 2 m resolution. The segmentation methods tested were the fractal net evolution approach (FNEA) and ...

  16. LBA-ECO CD-10 Forest Litter Data for km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains a single text file which reports litter type and mass in the old-growth upland forest at the Para Western (Santarem) - km 67,...

  17. On Spatial Resolution in Habitat Models: Can Small-scale Forest Structure Explain Capercaillie Numbers?

    Directory of Open Access Journals (Sweden)

    Ilse Storch

    2002-06-01

    Full Text Available This paper explores the effects of spatial resolution on the performance and applicability of habitat models in wildlife management and conservation. A Habitat Suitability Index (HSI model for the Capercaillie (Tetrao urogallus in the Bavarian Alps, Germany, is presented. The model was exclusively built on non-spatial, small-scale variables of forest structure and without any consideration of landscape patterns. The main goal was to assess whether a HSI model developed from small-scale habitat preferences can explain differences in population abundance at larger scales. To validate the model, habitat variables and indirect sign of Capercaillie use (such as feathers or feces were mapped in six study areas based on a total of 2901 20 m radius (for habitat variables and 5 m radius sample plots (for Capercaillie sign. First, the model's representation of Capercaillie habitat preferences was assessed. Habitat selection, as expressed by Ivlev's electivity index, was closely related to HSI scores, increased from poor to excellent habitat suitability, and was consistent across all study areas. Then, habitat use was related to HSI scores at different spatial scales. Capercaillie use was best predicted from HSI scores at the small scale. Lowering the spatial resolution of the model stepwise to 36-ha, 100-ha, 400-ha, and 2000-ha areas and relating Capercaillie use to aggregated HSI scores resulted in a deterioration of fit at larger scales. Most importantly, there were pronounced differences in Capercaillie abundance at the scale of study areas, which could not be explained by the HSI model. The results illustrate that even if a habitat model correctly reflects a species' smaller scale habitat preferences, its potential to predict population abundance at larger scales may remain limited.

  18. Tissue radionuclide concentrations in water birds and upland birds on the Hanford Site (USA) from 1971-2009

    International Nuclear Information System (INIS)

    Delistraty, Damon; Van Verst, Scott

    2011-01-01

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result, there is a need to characterize contaminant effects on site biota. Within this framework, the main purpose of our study was to evaluate radionuclide concentrations in bird tissue, obtained from the Hanford Environmental Information System (HEIS). The database was sorted by avian group (water bird vs. upland bird), radionuclide (over 20 analytes), tissue (muscle, bone, liver), location (onsite vs. offsite), and time period (1971-1990 vs. 1991-2009). Onsite median concentrations in water birds were significantly higher (Bonferroni P < 0.05) than those in onsite upland birds for Cs-137 in muscle (1971-1990) and Sr-90 in bone (1991-2009), perhaps due to behavioral, habitat, or trophic species differences. Onsite median concentrations in water birds were higher (borderline significance with Bonferroni P = 0.05) than those in offsite birds for Cs-137 in muscle (1971-1990). Onsite median concentrations in the earlier time period were significantly higher (Bonferroni P < 0.05) than those in the later time period for Co-60, Cs-137, Eu-152, and Sr-90 in water bird muscle and for Cs-137 in upland bird muscle tissue. Median concentrations of Sr-90 in bone were significantly higher (Bonferroni P < 0.05) than those in muscle for both avian groups and both locations. Over the time period, 1971-2009, onsite median internal dose was estimated for each radionuclide in water bird and upland bird tissues. However, a meaningful dose comparison between bird groups was not possible, due to a dissimilar radionuclide inventory, mismatch of time periods for input radionuclides, and lack of an external dose estimate. Despite these limitations, our results contribute toward ongoing efforts to characterize ecological risk at the Hanford Site. - Highlights: → Radionuclides evaluated in bird tissues on the Hanford Site

  19. Tissue radionuclide concentrations in water birds and upland birds on the Hanford Site (USA) from 1971-2009

    Energy Technology Data Exchange (ETDEWEB)

    Delistraty, Damon, E-mail: DDEL461@ecy.wa.gov [Washington State Department of Ecology, N. 4601 Monroe Street, Spokane, WA 99205-1295 (United States); Van Verst, Scott [Washington State Department of Health, Olympia, WA (United States)

    2011-08-15

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result, there is a need to characterize contaminant effects on site biota. Within this framework, the main purpose of our study was to evaluate radionuclide concentrations in bird tissue, obtained from the Hanford Environmental Information System (HEIS). The database was sorted by avian group (water bird vs. upland bird), radionuclide (over 20 analytes), tissue (muscle, bone, liver), location (onsite vs. offsite), and time period (1971-1990 vs. 1991-2009). Onsite median concentrations in water birds were significantly higher (Bonferroni P < 0.05) than those in onsite upland birds for Cs-137 in muscle (1971-1990) and Sr-90 in bone (1991-2009), perhaps due to behavioral, habitat, or trophic species differences. Onsite median concentrations in water birds were higher (borderline significance with Bonferroni P = 0.05) than those in offsite birds for Cs-137 in muscle (1971-1990). Onsite median concentrations in the earlier time period were significantly higher (Bonferroni P < 0.05) than those in the later time period for Co-60, Cs-137, Eu-152, and Sr-90 in water bird muscle and for Cs-137 in upland bird muscle tissue. Median concentrations of Sr-90 in bone were significantly higher (Bonferroni P < 0.05) than those in muscle for both avian groups and both locations. Over the time period, 1971-2009, onsite median internal dose was estimated for each radionuclide in water bird and upland bird tissues. However, a meaningful dose comparison between bird groups was not possible, due to a dissimilar radionuclide inventory, mismatch of time periods for input radionuclides, and lack of an external dose estimate. Despite these limitations, our results contribute toward ongoing efforts to characterize ecological risk at the Hanford Site. - Highlights: > Radionuclides evaluated in bird tissues on the Hanford Site

  20. Upscaling of greenhouse gas emissions in upland forestry following clearfell

    Science.gov (United States)

    Toet, Sylvia; Keane, Ben; Yamulki, Sirwan; Blei, Emanuel; Gibson-Poole, Simon; Xenakis, Georgios; Perks, Mike; Morison, James; Ineson, Phil

    2016-04-01

    Data on greenhouse gas (GHG) emissions caused by forest management activities are limited. Management such as clearfelling may, however, have major impacts on the GHG balance of forests through effects of soil disturbance, increased water table, and brash and root inputs. Besides carbon dioxide (CO2), the biogenic GHGs nitrous oxide (N2O) and methane (CH4) may also contribute to GHG emissions from managed forests. Accurate flux estimates of all three GHGs are therefore necessary, but, since GHG emissions usually show large spatial and temporal variability, in particular CH4 and N2O fluxes, high-frequency GHG flux measurements and better understanding of their controls are central to improve process-based flux models and GHG budgets at multiple scales. In this study, we determined CO2, CH4 and N2O emissions following felling in a mature Sitka spruce (Picea sitchensis) stand in an upland forest in northern England. High-frequency measurements were made along a transect using a novel, automated GHG chamber flux system ('SkyLine') developed at the University of York. The replicated, linear experiment aimed (1) to quantify GHG emissions from three main topographical features at the clearfell site, i.e. the ridges on which trees had been planted, the hollows in between and the drainage ditches, and (2) to determine the effects of the green-needle component of the discarded brash. We also measured abiotic soil and climatic factors alongside the 'SkyLine' GHG flux measurements to identify drivers of the observed GHG emissions. All three topographic features were overall sources of GHG emissions (in CO2 equivalents), and, although drainage ditches are often not included in studies, GHG emissions per unit area were highest from ditches, followed by ridges and lowest in hollows. The CO2 emissions were most important in the GHG balance of ridges and hollows, but CH4 emissions were very high from the drainage ditches, contributing to over 50% of their overall net GHG emissions

  1. Response of the agile antechinus to habitat edge, configuration and condition in fragmented forest.

    Directory of Open Access Journals (Sweden)

    Christopher P Johnstone

    Full Text Available Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR, did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals.

  2. A technical guide for monitoring wildlife habitat

    Science.gov (United States)

    M.M. Rowland; C.D. Vojta

    2013-01-01

    Information about status and trend of wildlife habitat is important for the U.S. Department of Agriculture, Forest Service to accomplish its mission and meet its legal requirements. As the steward of 193 million acres (ac) of Federal land, the Forest Service needs to evaluate the status of wildlife habitat and how it compares with desired conditions. Habitat monitoring...

  3. What is the importance of open habitat in a predominantly closed forest area to the dung beetle (Coleoptera, Scarabaeinae assemblage?

    Directory of Open Access Journals (Sweden)

    Fábio C. Costa

    2013-09-01

    Full Text Available What is the importance of open habitat in a predominantly closed forest to the dung beetle assemblage? The Atlantic Forest in Brazil is one of the most highly disturbed ecosystems and is mainly represented by fragmented areas. However, in places where human disturbances have ceased, certain areas are showing a natural regeneration pattern. The aim of the present study was to determine how the dung beetle assemblage responds to distinct habitat structures in a fragment of Atlantic Forest. For such, open and closed forest areas were sampled in a fragment of the Atlantic Forest in the northeastern region of Brazil. Pitfall traps baited with excrement and carrion were used to collect the beetles. A total of 7,267 individuals belonging to 35 species were captured. Canthon chalybaeus and C. mutabilis were restricted to open areas. Nearly 90% of the individuals of C. aff. simulans and Deltochilum aff. irroratum were identified in these areas. A higher percentage (> 50% of Canthon staigi, Dichotomius aff. depressicolis and D. aff. sericeus occurred in closed areas. Abundance differed between areas, with higher values in closed areas. Richness was not influenced by the habitat structure. NMDS ordination exhibited the segregation of areas and ANOSIM confirmed that this variable explained the assemblage of dung beetle species. The findings of the present study validate that open areas are associated to more restrictive conditions, limiting a higher abundance of dung beetle. Although situated near preserved fragments, the studied open areas increase the heterogeneity of the general landscape.

  4. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    Science.gov (United States)

    Mueller-Niggemann, Cornelia; Rahayu Utami, Sri; Marxen, Anika; Mangelsdorf, Kai; Bauersachs, Thorsten; Schwark, Lorenz

    2016-03-01

    Rice paddies constitute almost a fifth of global cropland and provide more than half of the world's population with staple food. At the same time, they are a major source of methane and therewith significantly contribute to the current warming of Earth's atmosphere. Despite their apparent importance in the cycling of carbon and other elements, however, the microorganisms thriving in rice paddies are insufficiently characterized with respect to their biomolecules. Hardly any information exists on human-induced alteration of biomolecules from natural microbial communities in paddy soils through varying management types (affecting, e.g., soil or water redox conditions, cultivated plants). Here, we determined the influence of different land use types on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs), which serve as molecular indicators for microbial community structures, in rice paddy (periodically flooded) and adjacent upland (non-flooded) soils and, for further comparison, forest, bushland and marsh soils. To differentiate local effects on GDGT distribution patterns, we collected soil samples in locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general, upland soil had higher crenarchaeol contents than paddy soil, which by contrast was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio, indicating the enhanced presence of methanogenic archaea, was 3-27 times higher in paddy soils compared to other soils and increased with the number of rice cultivation cycles per year. The index of tetraethers consisting of 86 carbons (TEX86) values were 1.3 times higher in upland, bushland and forest soils than in paddy soils, potentially due to differences in soil temperature. In all soils br

  5. Decreasing soil water Ca2+ reduces DOC adsorption in mineral soils: implications for long-term DOC trends in an upland forested catchment in southern Ontario, Canada.

    Science.gov (United States)

    Kerr, Jason Grainger; Eimers, M Catherine

    2012-06-15

    Positive trends in dissolved organic carbon (DOC) concentration have been observed in surface waters throughout North America and northern Europe. Although adsorption in mineral soils is an important driver of DOC in upland streams, little is known about the potential for changes in DOC adsorption to contribute to these trends. We hypothesized that long-term declines in soil water Ca(2+) levels, in response to declining acid deposition, might influence DOC adsorption and that this could contribute to long-term DOC trends in an upland forested catchment in south-central Ontario, Canada. Between 1987 and 2009, DOC concentrations increased significantly (pDOC concentration (DOC(np)), which is a measure of the soil water DOC concentration at equilibrium with the soil, ranged from 1.27 to 3.75 mg L(-1) in B horizon soils. This was similar to the mean DOC concentrations of B horizon soil water (2.04-6.30 mg L(-1)) and stream water (2.20 mg L(-1)), indicating that soil and stream water DOC concentrations are controlled by equilibrium processes at the soil-water interface. Adsorption experiments using variable Ca(2+) concentrations demonstrated that as Ca(2+) decreased the DOC(np) increased (1.96 to 4.74 mg L(-1)), which was consistent with the observed negative correlation between DOC and Ca(2+) in B horizon soil water (pDOC adsorption (p>0.05), indicating that changes in DOC adsorption might be related to cation bridging. We conclude that declines in soil water Ca(2+) concentration can contribute to increasing DOC trends in upland streams by reducing DOC adsorption in mineral soils. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Beneficial Insect Borders Provide Northern Bobwhite Brood Habitat

    Science.gov (United States)

    Moorman, Christopher E.; Plush, Charles J.; Orr, David B.; Reberg-Horton, Chris

    2013-01-01

    Strips of fallow vegetation along cropland borders are an effective strategy for providing brood habitat for declining populations of upland game birds (Order: Galliformes), including northern bobwhite (Colinus virginianus), but fallow borders lack nectar-producing vegetation needed to sustain many beneficial insect populations (e.g., crop pest predators, parasitoids, and pollinator species). Planted borders that contain mixes of prairie flowers and grasses are designed to harbor more diverse arthropod communities, but the relative value of these borders as brood habitat is unknown. We used groups of six human-imprinted northern bobwhite chicks as a bioassay for comparing four different border treatments (planted native grass and prairie flowers, planted prairie flowers only, fallow vegetation, or mowed vegetation) as northern bobwhite brood habitat from June-August 2009 and 2010. All field border treatments were established around nine organic crop fields. Groups of chicks were led through borders for 30-min foraging trials and immediately euthanized, and eaten arthropods in crops and gizzards were measured to calculate a foraging rate for each border treatment. We estimated arthropod prey availability within each border treatment using a modified blower-vac to sample arthropods at the vegetation strata where chicks foraged. Foraging rate did not differ among border treatments in 2009 or 2010. Total arthropod prey densities calculated from blower-vac samples did not differ among border treatments in 2009 or 2010. Our results showed plant communities established to attract beneficial insects should maximize the biodiversity potential of field border establishment by providing habitat for beneficial insects and young upland game birds. PMID:24376759

  7. Spatial heterogeneity and scale-dependent habitat selection for two sympatric raptors in mixed-grass prairie.

    Science.gov (United States)

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-08-01

    Sympatric predators are predicted to partition resources, especially under conditions of food limitation. Spatial heterogeneity that influences prey availability might play an important role in the scales at which potential competitors select habitat. We assessed potential mechanisms for coexistence by examining the role of heterogeneity in resource partitioning between sympatric raptors overwintering in the southern Great Plains. We conducted surveys for wintering Red-tailed hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyanea ) at two state wildlife management areas in Oklahoma, USA. We used information from repeated distance sampling to project use locations in a GIS. We applied resource selection functions to model habitat selection at three scales and analyzed for niche partitioning using the outlying mean index. Habitat selection of the two predators was mediated by spatial heterogeneity. The two predators demonstrated significant fine-scale discrimination in habitat selection in homogeneous landscapes, but were more sympatric in heterogeneous landscapes. Red-tailed hawk used a variety of cover types in heterogeneous landscapes but specialized on riparian forest in homogeneous landscapes. Northern Harrier specialized on upland grasslands in homogeneous landscapes but selected more cover types in heterogeneous landscapes. Our study supports the growing body of evidence that landscapes can affect animal behaviors. In the system we studied, larger patches of primary land cover types were associated with greater allopatry in habitat selection between two potentially competing predators. Heterogeneity within the scale of raptor home ranges was associated with greater sympatry in use and less specialization in land cover types selected.

  8. Impact of habitat degradation on phlebotominae (Diptera: Psychodidae) of tropical dry forests in Northern Colombia.

    Science.gov (United States)

    Travi, Bruno L; Adler, Gregory H; Lozano, Margarita; Cadena, Horacio; Montoya-Lerma, James

    2002-05-01

    We examined changes in the phlebotomine fauna resulting from human intervention in a tropical dry forest of Northern Colombia where visceral and cutaneous leishmaniases are endemic. A natural forest reserve (Colosó) and a highly degraded area (San Andrés de Sotavento [SAS]) were sampled monthly for 8 mo using Shannon traps, sticky traps, and resting-site collections. Overall abundances were higher in Colosó (15,988) than in SAS (2,324). and species richness of phlebotomines was greater in the forest reserve (11 species) than in the degraded habitat (seven species). Fisher alpha, a measure of diversity, reinforced this trend. Both sand fly communities were dominated by Lutzomyia evansi (Nuòez-Tovar), vector of Leishmania chagasi (Cunha & Chagas), representing 92 and 81% of all captures in Colosó and SAS, respectively. Lutzomyia longipalpis (Lutz & Neiva), the common vector of visceral leishmaniasis, accounted for 4-7% of the sand fly community. Lutzornyia panamensis (Shannon) and Lutzomya gomezi (Nitzulescu), putative vectors of Leishmania braziliensis (Vianna), had low abundances at both study sites. The zoophilic species Lutzomyia cayennensis (Floch & Abonneuc) and Lutzomyia trinidadensis (Newstead) were present in variable numbers according to trapping methods and site. Habitat degradation negatively affected sand fly communities, but medically important species were able to exploit modified environments, thereby contributing to Lishmania endemicity.

  9. Vertical stratification of bat assemblages in flooded and unflooded Amazonian forests

    Directory of Open Access Journals (Sweden)

    Maria João Ramos PEREIRA, João Tiago MARQUES, Jorge M. PALMEIRIM

    2010-08-01

    Full Text Available Tropical rainforests usually have multiple strata that results in a vertical stratification of ecological opportunities for animals. We investigated if this stratification influences the way bats use the vertical space in flooded and unflooded forests of the Central Amazon. Using mist-nets set in the canopy (17 to 35 m high and in the understorey (0 to 3 m high we sampled four sites in upland unflooded forests (terra firme, three in forests seasonally flooded by nutrient-rich water (várzea, and three in forests seasonally flooded by nutrient-poor water (igapó. Using rarefaction curves we found that species richness in the understorey and canopy were very similar. An ordination analysis clearly separated the bat assemblages of the canopy from those of the understorey in both flooded and unflooded habitats. Gleaning carnivores were clearly associated with the understorey, whereas frugivores were abundant in both strata. Of the frugivores, Carollinae and some Stenodermatinae were understorey specialists, but several Stenodermatinae mostly used the canopy. The first group mainly includes species that, in general, feed on fruits of understorey shrubs, whereas the second group feed on figs and other canopy fruits. We conclude that vertical stratification in bat communities occurs even within forests with lower canopy heights, such as Amazonian seasonally flooded forests, and that the vertical distribution of bat species is closely related to their diet and foraging behaviour [Current Zoology 56 (4: 469–478, 2010].

  10. Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non-forest species

    Science.gov (United States)

    Ruiz-Gutierrez, Viviana; Zipkin, Elise F.; Dhondt, Andre A.

    2010-01-01

    1. Worldwide loss of biodiversity necessitates a clear understanding of the factors driving population declines as well as informed predictions about which species and populations are at greatest risk. The biggest threat to the long-term persistence of populations is the reduction and changes in configuration of their natural habitat. 2. Inconsistencies have been noted in the responses of populations to the combined effects of habitat loss and fragmentation. These have been widely attributed to the effects of the matrix habitats in which remnant focal habitats are typically embedded. 3. We quantified the potential effects of the inter-patch matrix by estimating occupancy and colonization of forest and surrounding non-forest matrix (NF). We estimated species-specific parameters using a dynamic, multi-species hierarchical model on a bird community in southwestern Costa Rica. 4. Overall, we found higher probabilities of occupancy and colonization of forest relative to the NF across bird species, including those previously categorized as open habitat generalists not needing forest to persist. Forest dependency was a poor predictor of occupancy dynamics in our study region, largely predicting occupancy and colonization of only non-forest habitats. 5. Our results indicate that the protection of remnant forest habitats is key for the long-term persistence of all members of the bird community in this fragmented landscape, including species typically associated with open, non-forest habitats. 6.Synthesis and applications. We identified 39 bird species of conservation concern defined by having high estimates of forest occupancy, and low estimates of occupancy and colonization of non-forest. These species survive in forest but are unlikely to venture out into open, non-forested habitats, therefore, they are vulnerable to the effects of habitat loss and fragmentation. Our hierarchical community-level model can be used to estimate species-specific occupancy dynamics for focal

  11. Bridging gaps: On the performance of airborne LiDAR to model wood mouse-habitat structure relationships in pine forests.

    Science.gov (United States)

    Jaime-González, Carlos; Acebes, Pablo; Mateos, Ana; Mezquida, Eduardo T

    2017-01-01

    LiDAR technology has firmly contributed to strengthen the knowledge of habitat structure-wildlife relationships, though there is an evident bias towards flying vertebrates. To bridge this gap, we investigated and compared the performance of LiDAR and field data to model habitat preferences of wood mouse (Apodemus sylvaticus) in a Mediterranean high mountain pine forest (Pinus sylvestris). We recorded nine field and 13 LiDAR variables that were summarized by means of Principal Component Analyses (PCA). We then analyzed wood mouse's habitat preferences using three different models based on: (i) field PCs predictors, (ii) LiDAR PCs predictors; and (iii) both set of predictors in a combined model, including a variance partitioning analysis. Elevation was also included as a predictor in the three models. Our results indicate that LiDAR derived variables were better predictors than field-based variables. The model combining both data sets slightly improved the predictive power of the model. Field derived variables indicated that wood mouse was positively influenced by the gradient of increasing shrub cover and negatively affected by elevation. Regarding LiDAR data, two LiDAR PCs, i.e. gradients in canopy openness and complexity in forest vertical structure positively influenced wood mouse, although elevation interacted negatively with the complexity in vertical structure, indicating wood mouse's preferences for plots with lower elevations but with complex forest vertical structure. The combined model was similar to the LiDAR-based model and included the gradient of shrub cover measured in the field. Variance partitioning showed that LiDAR-based variables, together with elevation, were the most important predictors and that part of the variation explained by shrub cover was shared. LiDAR derived variables were good surrogates of environmental characteristics explaining habitat preferences by the wood mouse. Our LiDAR metrics represented structural features of the forest

  12. The effects of habitat degradation on metacommunity structure of wood-inhabiting fungi in European beech forests

    DEFF Research Database (Denmark)

    Halme, Panu; Ódor, Péter; Christensen, Morten

    2013-01-01

    Intensive forest management creates habitat degradation by reducing the variation of forest stands in general, and by removing old trees and dead wood in particular. Non-intervention forest reserves are commonly believed to be the most efficient tool to counteract the negative effects...... with different management histories. For this purpose, we used a large data set of wood-inhabiting fungi collected from dead beech trees in European beech-dominated forest reserves. The structure of fungal assemblages showed high beta diversity, while nestedness and similarity was low. During the decomposition...... extirpated specialized species from the local species pools in managed sites, and resulted in more homogeneous communities in managed sites. It is alarming that community structure is affected the most in the latest decay stages where the decay process turns the dead wood into litter, and which is thus...

  13. Peatlands and green frogs: A relationship regulated by acidity?

    Science.gov (United States)

    Mazerolle, M.J.

    2005-01-01

    The effects of site acidification on amphibian populations have been thoroughly addressed in the last decades. However, amphibians in naturally acidic environments, such as peatlands facing pressure from the peat mining industry, have received little attention. Through two field studies and an experiment, I assessed the use of bog habitats by the green frog (Rana clamitans melanota), a species sensitive to various forestry and peat mining disturbances. First, I compared the occurrence and breeding patterns of frogs in bog and upland ponds. I then evaluated frog movements between forest and bog habitats to determine whether they corresponded to breeding or postbreeding movements. Finally, I investigated, through a field experiment, the value of bogs as rehydrating areas for amphibians by offering living Sphagnum moss and two media associated with uplands (i.e., water with pH ca 6.5 and water-saturated soil) to acutely dehydrated frogs. Green frog reproduction at bog ponds was a rare event, and no net movements occurred between forest and bog habitats. However, acutely dehydrated frogs did not avoid Sphagnum. Results show that although green frogs rarely breed in bogs and do not move en masse between forest and bog habitats, they do not avoid bog substrates for rehydrating, despite their acidity. Thus, bogs offer viable summering habitat to amphibians, which highlights the value of these threatened environments in terrestrial amphibian ecology.

  14. Ground-based structure from motion - multi view stereo (SFM-MVS) for upland soil erosion assessment.

    Science.gov (United States)

    McShane, Gareth; James, Mike; Quniton, John; Farrow, Luke; Glendell, Miriam; Jones, Lee; Kirkham, Matthew; Morgan, David; Evans, Martin; Anderson, Karen; Lark, Murray; Rawlins, Barry; Rickson, Jane; Quine, Timothy; Benaud, Pia; Brazier, Richard

    2016-04-01

    In upland environments, quantifying soil loss through erosion processes at a high resolution can be time consuming, costly and logistically difficult. In this pilot study 'A cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we evaluate the use of annually repeated ground-based photography surveys, processed using structure-from-motion and multi-view stereo (SfM-MVS) 3-D reconstruction software (Agisoft Photoscan). The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, in order to quantify dynamic processes, such as erosion and mass movement. The evaluation of the SfM-MVS technique is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. We present results from 5 upland sites across the UK, acquired over a 2-year period. Erosion features of varying width (3 m to 35 m) and length (20 m to 60 m), representing a range of spatial scales (from 100 m2 to 1000 m2) were surveyed, in upland habitats including bogs, peatland, upland grassland and moorland. For each feature, around 150 to 600 ground-based photographs were taken at oblique angles over a 10 to 20 minute period, using an uncalibrated Canon 600D SLR camera with a 28 mm lens (focal length set to infinity). Camera settings varied based upon light conditions (exposure 100-400 ISO, aperture F4.5 to F8, shutter speed 1/100 to 1/250 second). For inter-survey comparisons, models were geo-referenced using 20 to 30 ground control points (numbered black markers with a white target) placed around and within the feature, with their co-ordinates measured by survey-grade differential GNSS (Trimble R4). Volumetric estimates of soil loss were quantified using digital surface models (DSMs) derived from the repeat survey data and subtracted from a

  15. Habitat split and the global decline of amphibians.

    Science.gov (United States)

    Becker, Carlos Guilherme; Fonseca, Carlos Roberto; Haddad, Célio Fernando Baptista; Batista, Rômulo Fernandes; Prado, Paulo Inácio

    2007-12-14

    The worldwide decline in amphibians has been attributed to several causes, especially habitat loss and disease. We identified a further factor, namely "habitat split"-defined as human-induced disconnection between habitats used by different life history stages of a species-which forces forest-associated amphibians with aquatic larvae to make risky breeding migrations between suitable aquatic and terrestrial habitats. In the Brazilian Atlantic Forest, we found that habitat split negatively affects the richness of species with aquatic larvae but not the richness of species with terrestrial development (the latter can complete their life cycle inside forest remnants). This mechanism helps to explain why species with aquatic larvae have the highest incidence of population decline. These findings reinforce the need for the conservation and restoration of riparian vegetation.

  16. Quantifying geomorphic controls on riparian forest dynamics using a linked physical-biological model: implications for river corridor conservation

    Science.gov (United States)

    Stella, J. C.; Harper, E. B.; Fremier, A. K.; Hayden, M. K.; Battles, J. J.

    2009-12-01

    In high-order alluvial river systems, physical factors of flooding and channel migration are particularly important drivers of riparian forest dynamics because they regulate habitat creation, resource fluxes of water, nutrients and light that are critical for growth, and mortality from fluvial disturbance. Predicting vegetation composition and dynamics at individual sites in this setting is challenging, both because of the stochastic nature of the flood regime and the spatial variability of flood events. Ecological models that correlate environmental factors with species’ occurrence and abundance (e.g., ’niche models’) often work well in infrequently-disturbed upland habitats, but are less useful in river corridors and other dynamic zones where environmental conditions fluctuate greatly and selection pressures on disturbance-adapted organisms are complex. In an effort to help conserve critical riparian forest habitat along the middle Sacramento River, CA, we are taking a mechanistic approach to quantify linkages between fluvial and biotic processes for Fremont cottonwood (Populus fremontii), a keystone pioneer tree in dryland rivers ecosystems of the U.S. Southwest. To predict the corridor-wide population effects of projected changes to the disturbance regime from flow regulation, climate change, and landscape modifications, we have coupled a physical model of channel meandering with a patch-based population model that incorporates the climatic, hydrologic, and topographic factors critical for tree recruitment and survival. We employed these linked simulations to study the relative influence of the two most critical habitat types--point bars and abandoned channels--in sustaining the corridor-wide cottonwood population over a 175-year period. The physical model uses discharge data and channel planform to predict the spatial distribution of new habitat patches; the population model runs on top of this physical template to track tree colonization and survival on

  17. Natural Propagation and Habitat Improvement Idaho: Lolo Creek and Upper Lochsa, Clearwater National Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, F.A. Jr.; Lee, Kristine M.

    1991-01-01

    In 1983, the Clearwater National Forest and the Bonneville Power Administration (BPA) entered into a contractual agreement to improve anadromous fish habitat in selected tributaries of the Clearwater River Basin. This agreement was drawn under the auspices of the Northwest Power Act of 1980 and the Columbia River basin Fish and Wildlife Program (section 700). The Program was completed in 1990 and this document constitutes the Final Report'' that details all project activities, costs, accomplishments, and responses. The overall goal of the Program was to enhance spawning, rearing, and riparian habitats of Lolo Creek and major tributaries of the Lochsa River so that their production systems could reach full capability and help speed the recovery of salmon and steelhead within the basin.

  18. Natural propagation and habitat improvement Idaho: Lolo Creek and Upper Lochsa, Clearwater National Forest

    International Nuclear Information System (INIS)

    Espinosa, F.A. Jr.; Lee, K.M.

    1991-01-01

    In 1983, the Clearwater National Forest and the Bonneville Power Administration (BPA) entered into a contractual agreement to improve anadromous fish habitat in selected tributaries of the Clearwater River Basin. This agreement was drawn under the auspices of the Northwest Power Act of 1980 and the Columbia River basin Fish and Wildlife Program (section 700). The Program was completed in 1990 and this document constitutes the ''Final Report'' that details all project activities, costs, accomplishments, and responses. The overall goal of the Program was to enhance spawning, rearing, and riparian habitats of Lolo Creek and major tributaries of the Lochsa River so that their production systems could reach full capability and help speed the recovery of salmon and steelhead within the basin

  19. Implications of Fine-Grained Habitat Fragmentation and Road Mortality for Jaguar Conservation in the Atlantic Forest, Brazil.

    Directory of Open Access Journals (Sweden)

    Laury Cullen

    Full Text Available Jaguar (Panthera onca populations in the Upper Paraná River, in the Brazilian Atlantic Forest region, live in a landscape that includes highly fragmented areas as well as relatively intact ones. We developed a model of jaguar habitat suitability in this region, and based on this habitat model, we developed a spatially structured metapopulation model of the jaguar populations in this area to analyze their viability, the potential impact of road mortality on the populations' persistence, and the interaction between road mortality and habitat fragmentation. In more highly fragmented populations, density of jaguars per unit area is lower and density of roads per jaguar is higher. The populations with the most fragmented habitat were predicted to have much lower persistence in the next 100 years when the model included no dispersal, indicating that the persistence of these populations are dependent to a large extent on dispersal from other populations. This, in turn, indicates that the interaction between road mortality and habitat fragmentation may lead to source-sink dynamics, whereby populations with highly fragmented habitat are maintained only by dispersal from populations with less fragmented habitat. This study demonstrates the utility of linking habitat and demographic models in assessing impacts on species living in fragmented landscapes.

  20. Implications of Fine-Grained Habitat Fragmentation and Road Mortality for Jaguar Conservation in the Atlantic Forest, Brazil.

    Science.gov (United States)

    Cullen, Laury; Stanton, Jessica C; Lima, Fernando; Uezu, Alexandre; Perilli, Miriam L L; Akçakaya, H Reşit

    2016-01-01

    Jaguar (Panthera onca) populations in the Upper Paraná River, in the Brazilian Atlantic Forest region, live in a landscape that includes highly fragmented areas as well as relatively intact ones. We developed a model of jaguar habitat suitability in this region, and based on this habitat model, we developed a spatially structured metapopulation model of the jaguar populations in this area to analyze their viability, the potential impact of road mortality on the populations' persistence, and the interaction between road mortality and habitat fragmentation. In more highly fragmented populations, density of jaguars per unit area is lower and density of roads per jaguar is higher. The populations with the most fragmented habitat were predicted to have much lower persistence in the next 100 years when the model included no dispersal, indicating that the persistence of these populations are dependent to a large extent on dispersal from other populations. This, in turn, indicates that the interaction between road mortality and habitat fragmentation may lead to source-sink dynamics, whereby populations with highly fragmented habitat are maintained only by dispersal from populations with less fragmented habitat. This study demonstrates the utility of linking habitat and demographic models in assessing impacts on species living in fragmented landscapes.

  1. Contesting State Forests in Post-Suharto Indonesia: Authority Formation, State Forest Land Dispute, and Power in Upland Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Anu Lounela

    2012-01-01

    Full Text Available This article explores the ongoing conflict over state forest land between the local population and the State Forestry Corporation (SFC in a village in upland Central Java with regard to authority formation. It looks at how different agents draw on different sources of authority in the course of the conflict and its negotiations. The principal questions are to what kind of sources of authority villagers refer to and how the formation of authority informs the relations between the state and society in the land dispute. The article is based on 11 months of ethnographic fieldwork and focuses on the central figure of Pak Wahid who took a leading position in the forest land dispute and in mobilising peasants in the village. The article argues that in post-Suharto Java, leadership in the struggle for state forest land at the village level is embedded in the interaction of Javanese ideas of power and authority as well as administrative authority. Due to political and institutional reforms, new sources of authority could be invoked while there are no real changes in the power relations within the village or between the SFC and the villagers. ----- Dieser Artikel untersucht den anhaltenden Konflikt um staatliche Waldflächen zwischen der lokalen Bevölkerung und der State Forestry Corporation (SFC in einem Dorf im Hochland von Zentral- Java in Bezug auf die Entwicklung von Autorität. Es wird untersucht, wie sich unterschiedliche AkteurInnen im Rahmen des Konflikts und dessen Verhandlung auf unterschiedliche Bezugsquellen von Autorität beziehen. Die zentralen Forschungsfragen in diesem Zusammenhang sind, auf welche Bezugsquellen von Autorität sich DorfbewohnerInnen beziehen und wie die Entwicklung von Autorität die Beziehungen zwischen Staat und Gesellschaft im Rahmen des Landkonflikts beeinflusst. Der Artikel basiert auf einer 11-monatigen ethnografischen Feldforschung und fokussiert auf die Person von Pak Wahid, der eine Schlüsselrolle im Konflikt

  2. Forest bird monitoring protocol for strategic habitat conservation and endangered species management on O'ahu Forest National Wildlife Refuge, Island of O'ahu, Hawai'i

    Science.gov (United States)

    Camp, Richard J.; Gorresen, P. Marcos; Banko, Paul C.

    2011-01-01

    This report describes the results of a pilot forest bird survey and a consequent forest bird monitoring protocol that was developed for the O'ahu Forest National Wildlife Refuge, O'ahu Island, Hawai'i. The pilot survey was conducted to inform aspects of the monitoring protocol and to provide a baseline with which to compare future surveys on the Refuge. The protocol was developed in an adaptive management framework to track bird distribution and abundance and to meet the strategic habitat conservation requirements of the Refuge. Funding for this research was provided through a Science Support Partnership grant sponsored jointly by the U.S. Geological Survey (USGS) and the U.S. Fish and Wildlife Service (USFWS).

  3. Comparing population patterns to processes: abundance and survival of a forest salamander following habitat degradation.

    Directory of Open Access Journals (Sweden)

    Clint R V Otto

    Full Text Available Habitat degradation resulting from anthropogenic activities poses immediate and prolonged threats to biodiversity, particularly among declining amphibians. Many studies infer amphibian response to habitat degradation by correlating patterns in species occupancy or abundance with environmental effects, often without regard to the demographic processes underlying these patterns. We evaluated how retention of vertical green trees (CANOPY and coarse woody debris (CWD influenced terrestrial salamander abundance and apparent survival in recently clearcut forests. Estimated abundance of unmarked salamanders was positively related to CANOPY (β Canopy  = 0.21 (0.02-1.19; 95% CI, but not CWD (β CWD  = 0.11 (-0.13-0.35 within 3,600 m2 sites, whereas estimated abundance of unmarked salamanders was not related to CANOPY (β Canopy  = -0.01 (-0.21-0.18 or CWD (β CWD  = -0.02 (-0.23-0.19 for 9 m2 enclosures. In contrast, apparent survival of marked salamanders within our enclosures over 1 month was positively influenced by both CANOPY and CWD retention (β Canopy  = 0.73 (0.27-1.19; 95% CI and β CWD  = 1.01 (0.53-1.50. Our results indicate that environmental correlates to abundance are scale dependent reflecting habitat selection processes and organism movements after a habitat disturbance event. Our study also provides a cautionary example of how scientific inference is conditional on the response variable(s, and scale(s of measure chosen by the investigator, which can have important implications for species conservation and management. Our research highlights the need for joint evaluation of population state variables, such as abundance, and population-level process, such as survival, when assessing anthropogenic impacts on forest biodiversity.

  4. [Contribution of tropical upland forests to carbon storage in Colombia].

    Science.gov (United States)

    Yepes, Adriana; Herrera, Johana; Phillips, Juan; Galindo, Gustavo; Granados, Edwin; Duque, Alvaro; Barbosa, Adriana; Olarte, Claudia; Cardona, María

    2015-03-01

    The tropical montane forests in the Colombian Andean region are located above 1500 m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to (i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, (ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and (iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25 ha plots were randomly distributed in the forests and all trees with D > or =10 cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (approximatly = 700-1800 m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical

  5. Intermediate Cutting in Mixed Upland Oak Stands on the Western Highland Rim, Tennessee, After a Quarter of a Century

    Science.gov (United States)

    Adrienne N. Hall; John C. Rennie; Glendon W. Smalley

    2004-01-01

    In 1973 and 1974, a study was established at Stewart State Forest (SSF) and Lewis State Forest (LSF) to evaluate Roach and Gingrich’s “Even-Aged Silviculture for Upland Central Oaks” on the Western Highland Rim. Harvesting to the “B-level” of the stocking guide primarily removed cull and low-quality stems. Basal area was reduced from 110 to 80 square feet per acre at...

  6. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach.

    Science.gov (United States)

    Hübner, Lena; Pennings, Steven C; Zimmer, Martin

    2015-08-01

    Distinct habitats are often linked through fluxes of matter and migration of organisms. In particular, intertidal ecotones are prone to being influenced from both the marine and the terrestrial realms, but whether or not small-scale migration for feeding, sheltering or reproducing is detectable may depend on the parameter studied. Within the ecotone of an upper saltmarsh in the United States, we investigated the sex-specific movement of the semi-terrestrial crab Armases cinereum using an approach of determining multiple measures of across-ecotone migration. To this end, we determined food preference, digestive abilities (enzyme activities), bacterial hindgut communities (genetic fingerprint), and the trophic position of Armases and potential food sources (stable isotopes) of males versus females of different sub-habitats, namely high saltmarsh and coastal forest. Daily observations showed that Armases moved frequently between high-intertidal (saltmarsh) and terrestrial (forest) habitats. Males were encountered more often in the forest habitat, whilst gravid females tended to be more abundant in the marsh habitat but moved more frequently. Food preference was driven by both sex and habitat. The needlerush Juncus was preferred over three other high-marsh detrital food sources, and the periwinkle Littoraria was the preferred prey of male (but not female) crabs from the forest habitats; both male and female crabs from marsh habitat preferred the fiddler crab Uca over three other prey items. In the field, the major food sources were clearly vegetal, but males have a higher trophic position than females. In contrast to food preference, isotope data excluded Uca and Littoraria as major food sources, except for males from the forest, and suggested that Armases consumes a mix of C4 and C3 plants along with animal prey. Digestive enzyme activities differed significantly between sexes and habitats and were higher in females and in marsh crabs. The bacterial hindgut community

  7. Diet selectivity in a terrestrial forest invertebrate, the Auckland tree wētā, across three habitat zones.

    Science.gov (United States)

    Brown, Matthew B G J; Gemmill, Chrissen E C; Miller, Steven; Wehi, Priscilla M

    2018-03-01

    Insects are important but overlooked components of forest ecosystems in New Zealand. For many insect species, information on foraging patterns and trophic relationships is lacking. We examined diet composition and selectivity in a large-bodied insect, the Auckland tree wētā Hemideina thoracica , in three habitat zones in a lowland New Zealand forest. We asked whether H. thoracica selectively forage from available plant food sources, and whether these choices were lipid-rich compared to nonpreferred available plants. We also identified the proportion of invertebrates in their frass as a proxy for omnivory. From reconnaissance plot sampling, together with fecal fragment analysis, we report that more than 93% of individual tree wētā had eaten invertebrates before capture. Additionally, wētā in the highest elevation hillslope habitat zone consumed significantly fewer species of plants on average than wētā on the low-elevation terrace habitat. Upper hillslope wētā also had the highest average number of invertebrate fragments in their frass, significantly more than wētā in the low-elevation terrace habitat zone. Wētā showed high variability in the consumption of fruit and seeds across all habitat zones. Generally, we did not observe diet differences between the sexes (although it appears that male wētā in the mid-hillslope habitat ate fruits and seeds more voraciously than females), suggesting that the sexes have similar niche breadths and display similar degrees of omnivorous behavior. Extraction of leaf lipids demonstrated a range of lipid content values in available plants, and Ivlev's Electivity Index indicated that plant species which demonstrated high electivity tended to have higher concentrations of lipids in their leaves. Our findings indicate that H. thoracica forage omnivorously and selectively, and hence play multiple roles in native ecosystems and food webs.

  8. Upland log volumes and conifer establishment patterns in two northern, upland old-growth redwood forests, a brief synopsis

    Science.gov (United States)

    Daniel J. Porter; John O. Sawyer

    2007-01-01

    We characterized the volume, weight and top surface area of naturally fallen logs in an old-growth redwood forest, and quantified conifer recruit densities on these logs and on the surrounding forest floor. We report significantly greater conifer recruit densities on log substrates as compared to the forest floor. Log substrate availability was calculated on a per...

  9. Inferring Evolution of Habitat Usage and Body Size in Endangered, Seasonal Cynopoeciline Killifishes from the South American Atlantic Forest through an Integrative Approach (Cyprinodontiformes: Rivulidae.

    Directory of Open Access Journals (Sweden)

    Wilson J E M Costa

    Full Text Available Cynopoecilines comprise a diversified clade of small killifishes occurring in the Atlantic Forest, one of the most endangered biodiversity hotspots in the world. They are found in temporary pools of savannah-like and dense forest habitats, and most of them are highly threatened with extinction if not already extinct. The greatest gap in our knowledge of cynopoecilines stems from the absence of an integrative approach incorporating molecular phylogenetic data of species still found in their habitats with phylogenetic data taken from the rare and possibly extinct species without accessible molecular information. An integrative analysis combining 115 morphological characters with a multigene dataset of 2,108 bp comprising three nuclear loci (GLYT1, ENC1, Rho, provided a robust phylogeny of cynopoeciline killifishes, which was herein used to attain an accurate phylogenetic placement of nearly extinct species. The analysis indicates that the most recent common ancestor of the Cynopoecilini lived in open vegetation habitats of the Atlantic Forest of eastern Brazil and was a miniature species, reaching between 25 and 28 mm of standard length. The rare cases of cynopoecilines specialized in inhabiting pools within dense forests are interpreted as derived from four independent evolutionary events. Shifts in habitat usage and biogeographic patterns are tentatively associated to Cenozoic paleogeographic events, but the evolutionary history of cynopoecilines may be partially lost by a combination of poor past sampling and recent habitat decline. A sharp evolutionary shift directed to increased body size in a clade encompassing the genera Campellolebias and Cynopoecilus may be related to a parallel acquisition of an internally-fertilizing reproductive strategy, unique among aplocheiloid killifishes. This study reinforces the importance of adding morphological information to molecular databases as a tool to understand the biological complexity of organisms

  10. Inferring Evolution of Habitat Usage and Body Size in Endangered, Seasonal Cynopoeciline Killifishes from the South American Atlantic Forest through an Integrative Approach (Cyprinodontiformes: Rivulidae).

    Science.gov (United States)

    Costa, Wilson J E M

    2016-01-01

    Cynopoecilines comprise a diversified clade of small killifishes occurring in the Atlantic Forest, one of the most endangered biodiversity hotspots in the world. They are found in temporary pools of savannah-like and dense forest habitats, and most of them are highly threatened with extinction if not already extinct. The greatest gap in our knowledge of cynopoecilines stems from the absence of an integrative approach incorporating molecular phylogenetic data of species still found in their habitats with phylogenetic data taken from the rare and possibly extinct species without accessible molecular information. An integrative analysis combining 115 morphological characters with a multigene dataset of 2,108 bp comprising three nuclear loci (GLYT1, ENC1, Rho), provided a robust phylogeny of cynopoeciline killifishes, which was herein used to attain an accurate phylogenetic placement of nearly extinct species. The analysis indicates that the most recent common ancestor of the Cynopoecilini lived in open vegetation habitats of the Atlantic Forest of eastern Brazil and was a miniature species, reaching between 25 and 28 mm of standard length. The rare cases of cynopoecilines specialized in inhabiting pools within dense forests are interpreted as derived from four independent evolutionary events. Shifts in habitat usage and biogeographic patterns are tentatively associated to Cenozoic paleogeographic events, but the evolutionary history of cynopoecilines may be partially lost by a combination of poor past sampling and recent habitat decline. A sharp evolutionary shift directed to increased body size in a clade encompassing the genera Campellolebias and Cynopoecilus may be related to a parallel acquisition of an internally-fertilizing reproductive strategy, unique among aplocheiloid killifishes. This study reinforces the importance of adding morphological information to molecular databases as a tool to understand the biological complexity of organisms under intense

  11. DISTRIBUTION OF METALS IN PARTICLE SIZE FRACTIONS IN SOILS OF TWO FORESTED CATENAS (SMOLENSK-MOSCOW UPLAND

    Directory of Open Access Journals (Sweden)

    Olga Samonova

    2013-01-01

    Full Text Available The concentrations and distribution of Fe, Ti, Zr, Mn, Cu. Ni, Co, Cr, Pb, and Zn associated with various particle size fractions have been analyzed in soils of two forested catenas located in the middle Protva River basin on the Smolensk-Moscow Upland. The results showed that concentration of metals in a particular size fraction was defined by a complex of factors: element chemical properties, soil type, genesis of a soil horizon, and position in the catena. A clearly defined relationship between the fraction size and metal concentrations was found for Ti and Zr. The highest levels of Ti were found in coarse and medium silt, while Zr had its highest values only in coarse silt and, in some cases, in fine sand. Such metals as Fe, Mn, Co, Cu and Pb had high concentrations in sand, fine silt, and clay fractions depending on a soil type and a genetic horizon. The maximum load of Cr, Zn, and Ni (in the majority of cases was found in clay fraction. The minimum loads of Fe, Mn, Co, Cu, and Ni were found in the coarse silt fraction. Variation in concentrations of heavy metals differed depending on particle size. For most metals, the variations were decreasing from coarser to finer fractions.Key words: soils, heavy metals, grain-size fractionation, vertical and lateral distribution patterns

  12. Tracking changes and preventing loss in critical tiger habitat.

    Science.gov (United States)

    Joshi, Anup R; Dinerstein, Eric; Wikramanayake, Eric; Anderson, Michael L; Olson, David; Jones, Benjamin S; Seidensticker, John; Lumpkin, Susan; Hansen, Matthew C; Sizer, Nigel C; Davis, Crystal L; Palminteri, Suzanne; Hahn, Nathan R

    2016-04-01

    The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km(2)) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km(2), 7.7% of remaining habitat) over the 14-year study period (2001-2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km(2)) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km(2) ([Formula: see text], SD = 89, total = 1676 ± 476 km(2)). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near-real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion.

  13. Ectomycorrhizal colonization of naturally regenerating Pinus sylvestris L. seedlings growing in different micro-habitats in boreal forest.

    Science.gov (United States)

    Iwański, Michał; Rudawska, Maria

    2007-07-01

    We investigated the species richness and composition of ectomycorrhizal (EM) fungi colonizing Pinus sylvestris L. seedlings naturally regenerating in boreal forest, in three different microhabitats: on forest ground, on decaying stumps, and within moss layer on erratic boulders. We tested the hypothesis that habitat differences would affect the composition of the EM community of regenerating pine seedlings. In total, 16 EM species were detected, from which none occurred on seedlings growing in all three microhabitats. Piloderma croceum and Cenococcum geophilum were common for seedlings growing in forest ground and on boulders, while Tricholoma aestuans and Suillus luteus were shared between seedlings growing on forest ground and decaying stumps. EM species richness and composition were strikingly different between seedlings regenerating in different microhabitats. Results are discussed as a function of dispersal and niche differentiation of EM fungi.

  14. Mapping upland hardwood site quality and productivity with GIS and FIA in the Blue Ridge of North Carolina

    Science.gov (United States)

    Claudia A. Cotton; Stephen R. Prisley; Thomas R. Fox

    2009-01-01

    The forested ecosystems of the southern Appalachians are some of the most diverse in North America due to the variability in climate, soils, and geologic parent material coupled with the complex topography found throughout the region. These same characteristics cause stands of upland hardwoods to be extremely variable with regard to site quality and productivity. Site...

  15. CEPF Western Ghats Special Series: Metazoan community composition in tree hole aquatic habitats of Silent Valley National Park and New Amarambalam Reserve Forest of the Western Ghats, India

    Directory of Open Access Journals (Sweden)

    K.A. Nishadh

    2012-11-01

    Full Text Available In a study of the metazoan community composition in tree hole aquatic habitat of a tropical rainforest, Silent Valley National Park, and the adjacent moist deciduous forest, New Amarambalam Reserve Forest, of the Western Ghats, 28 different species were recorded from 150 tree hole aquatic habitats with an average of 3-5 species per tree hole. Most of the recorded organisms (96.8% belong to Odonata (dragonflies and damselflies, Heteroptera (bugs, Diptera (flies, Coleoptera (beetles and Trichoptera (caddisflies. The study reports the first record of toe-winged beetle larvae (Ptilodactylidae in a tree hole aquatic habitat. The most significant observation is the prolific occurrence of trichopteran larvae as the second most abundant taxa in tree holes of Silent Valley National Park, and this stands as the first comprehensive record of the entire order in the habitat studied. The study upholds the importance of less explored microhabitats in the Western Ghats region in terms of sustaining unique community composition in the most delicate and extreme habitat conditions. It also puts forward important ecological research questions on biodiversity ecosystem functionality which could impart important lessons for managing and conserving the diminishing tropical evergreen forests which are significant for these unique habitats.

  16. Variations in dung beetles assemblages (Coleoptera: Scarabaeidae within two rain forest habitats in French Guiana

    Directory of Open Access Journals (Sweden)

    François Feer

    2013-06-01

    Full Text Available The structure of dung beetle communities inhabiting tropical forests are known to be sensitive to many kinds of environmental changes such as microclimate related to vegetation structure. I examined Scarabaeinae assemblages in two sites of undisturbed high forest and two sites of low forest forming a transitional zone with the open habitat of an inselberg in French Guiana. Sampling was made with pitfall and flight interception traps during 2003 and 2004. The driest and warmest conditions characterized the low forest sites. Across two years we obtained 2 927 individuals from 61 species with pitfall traps and 1 431 individuals from 85 species with flight interception traps. Greater species richness and abundance characterized all sites sampled with pitfall traps during 2003 more than 2004. In 2003 no differences were detected among sites by rarefaction analyses. In 2004 the species richest high forest site was significantly different from one of the low forest sites. For both years Clench model asymptotes for species richness were greater in high forest than in low forest sites. For both years, mean per-trap species richness, abundance and biomass among high forest sites were similar and higher than in low forest sites, especially where the lowest humidity and the highest temperature were recorded. Within the two low forest sites, species richness and abundance recorded during the second year, decreased with distance to edge. Different dominant roller species characterized the pitfall samples in one site of low forest and in other sites. Small variations in microclimatic conditions correlated to canopy height and openness likely affected dung beetle assemblages but soil depth and the presence of large mammals providing dung resource may also play a significant role.

  17. Behavioral assumptions of conservation policy: conserving oak habitat on family-forest land in the Willamette Valley, Oregon

    Science.gov (United States)

    A. Paige Fischer; John C. Bliss

    2008-01-01

    Designing policies that harness the motivations of landowners is essential for conserving threatened habitats on private lands. Our goal was to understand how to apply ethnographic information about family-forest owners to the design of conservation policy for Oregon white oak (Quercus garryana) in the Willamette Valley, Oregon (U.S.A.). We examined...

  18. Long-Term Field Data and Climate-Habitat Models Show That Orangutan Persistence Depends on Effective Forest Management and Greenhouse Gas Mitigation

    Science.gov (United States)

    Gregory, Stephen D.; Brook, Barry W.; Goossens, Benoît; Ancrenaz, Marc; Alfred, Raymond; Ambu, Laurentius N.; Fordham, Damien A.

    2012-01-01

    Background Southeast Asian deforestation rates are among the world’s highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation. Methodology/Principal Findings Using a long time-series of orangutan nest counts for Sabah (2000–10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions. Conclusions/Significance We find strong quantitative support for the Sabah government’s proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests. PMID:22970145

  19. NORTHWOODS Wildlife Habitat Data Base

    Science.gov (United States)

    Mark D. Nelson; Janine M. Benyus; Richard R. Buech

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. Several electronic file formats of NORTHWOODS data base and documentation are available on floppy disks for microcomputers.

  20. Microcomputer software for calculating an elk habitat effectiveness index on Blue Mountain winter ranges.

    Science.gov (United States)

    Mark Hitchcock; Alan. Ager

    1992-01-01

    National Forests in the Pacific Northwest Region have incorporated elk habitat standards into Forest plans to ensure that elk habitat objectives are met on multiple use land allocations. Many Forests have employed versions of the habitat effectiveness index (HEI) as a standard method to evaluate habitat. Field application of the HEI model unfortunately is a formidable...

  1. Habitat, food, and small mammal community structure in Namaqualand

    Directory of Open Access Journals (Sweden)

    M. van Deventer

    2006-12-01

    Full Text Available The effect of habitat differences and food availability on small mammal (rodent and elephant shrew species richness, diversity, density and biomass was investigated in Namaqualand, South Africa. Species richness in the three habitats sampled, namely Upland Succulent Karoo, Dry Riverine Shrub and North-western Mountain Renosterveld was low, with only 2–4 species per habitat. Rodents trapped were predominantly Gerbillurus paeba and Aethomys namaquensis, with fewer Mus minutoides and Petromyscus sp. The only non-rodent was the elephant shrew Elephantulus edwardii. Ten habitat features, the percentage of total plant cover, tree cover, shrub cover, grass cover, plant litter, total basal cover, sand, gravel or rock cover, and the dominant plant height were recorded at 30 randomly chosen points on five sampling grids in each habitat. Small mammal density and biomass was significantly correlated with food availability (green foliage cover, seeds, and relative density and biomass of insects. Species richness and diversity of small mammals were significantly correlated with shrub cover. Numbers and biomass of specific species correlated significantly with different habitat features in each case.

  2. Predators, Prey and Habitat Structure: Can Key Conservation Areas and Early Signs of Population Collapse Be Detected in Neotropical Forests?

    Directory of Open Access Journals (Sweden)

    Benoit de Thoisy

    Full Text Available Tropical forests with a low human population and absence of large-scale deforestation provide unique opportunities to study successful conservation strategies, which should be based on adequate monitoring tools. This study explored the conservation status of a large predator, the jaguar, considered an indicator of the maintenance of how well ecological processes are maintained. We implemented an original integrative approach, exploring successive ecosystem status proxies, from habitats and responses to threats of predators and their prey, to canopy structure and forest biomass. Niche modeling allowed identification of more suitable habitats, significantly related to canopy height and forest biomass. Capture/recapture methods showed that jaguar density was higher in habitats identified as more suitable by the niche model. Surveys of ungulates, large rodents and birds also showed higher density where jaguars were more abundant. Although jaguar density does not allow early detection of overall vertebrate community collapse, a decrease in the abundance of large terrestrial birds was noted as good first evidence of disturbance. The most promising tool comes from easily acquired LiDAR data and radar images: a decrease in canopy roughness was closely associated with the disturbance of forests and associated decreasing vertebrate biomass. This mixed approach, focusing on an apex predator, ecological modeling and remote-sensing information, not only helps detect early population declines in large mammals, but is also useful to discuss the relevance of large predators as indicators and the efficiency of conservation measures. It can also be easily extrapolated and adapted in a timely manner, since important open-source data are increasingly available and relevant for large-scale and real-time monitoring of biodiversity.

  3. The role of novel forest ecosystems in the conservation of wood-inhabiting fungi in boreal broadleaved forests.

    Science.gov (United States)

    Juutilainen, Katja; Mönkkönen, Mikko; Kotiranta, Heikki; Halme, Panu

    2016-10-01

    The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood-associated species. This is especially alarming given the important role wood-inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad-leaved-dominated, herb-rich forests are threatened habitats which have high wood-inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man-made afforested fields are novel habitats that could potentially be important for wood-inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood-inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb-rich forests, four birch-dominated wood pastures, and four birch-dominated afforested field sites in central Finland. As predicted, natural herb-rich forests were the most species-rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications : In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man-made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood

  4. Wildlife habitat considerations

    Science.gov (United States)

    Helen Y. Smith

    2000-01-01

    Fire, insects, disease, harvesting, and precommercial thinning all create mosaics on Northern Rocky Mountain landscapes. These mosaics are important for faunal habitat. Consequently, changes such as created openings or an increase in heavily stocked areas affect the water, cover, and food of forest habitats. The “no action” alternative in ecosystem management of low...

  5. Habitat relationships of reptiles in pine beetle disturbed forests of Alabama, U.S.A., with guidelines for a modified drift-fence sampling method

    Science.gov (United States)

    William B. Sutton; Yong Wang; Callie J. Schweitzer

    2010-01-01

    Understanding vertebrate habitat relationships is important to promote management strategies for the longterm conservation of many species. Using a modified drift fence method, we sampled reptiles and compared habitat variables within the William B. Bankhead National Forest (BNF) in Alabama, U.S.A from April 2005 to June 2006. We captured 226 individual reptiles...

  6. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat.

    Science.gov (United States)

    de Weerd, Nelleke; van Langevelde, Frank; van Oeveren, Herman; Nolet, Bart A; Kölzsch, Andrea; Prins, Herbert H T; de Boer, W Fred

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable classification method to infer behaviour from location data. Behavioural observations were carried out during tracking of cows (Bos Taurus) fitted with high-frequency GPS (Global Positioning System) receivers. Data were obtained in an open field and forested area, and movement metrics were calculated for 1 min, 12 s and 2 s intervals. We observed four behaviour types (Foraging, Lying, Standing and Walking). We subsequently used Classification and Regression Trees to classify the simultaneously obtained GPS data as these behaviour types, based on distances and turning angles between fixes. GPS data with a 1 min interval from the open field was classified correctly for more than 70% of the samples. Data from the 12 s and 2 s interval could not be classified successfully, emphasizing that the interval should be long enough for the behaviour to be defined by its characteristic movement metrics. Data obtained in the forested area were classified with a lower accuracy (57%) than the data from the open field, due to a larger positional error of GPS locations and differences in behavioural performance influenced by the habitat type. This demonstrates the importance of understanding the relationship between behaviour and movement metrics, derived from GNSS fixes at different frequencies and in different habitats, in order to successfully infer behaviour. When spatially accurate location data can be obtained, behaviour can be inferred from high-frequency GNSS fixes by calculating simple movement metrics and using easily interpretable decision trees. This allows for the combined study of animal behaviour and habitat use based on location data, and might make it possible to detect deviations

  7. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat.

    Directory of Open Access Journals (Sweden)

    Nelleke de Weerd

    Full Text Available The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable classification method to infer behaviour from location data. Behavioural observations were carried out during tracking of cows (Bos Taurus fitted with high-frequency GPS (Global Positioning System receivers. Data were obtained in an open field and forested area, and movement metrics were calculated for 1 min, 12 s and 2 s intervals. We observed four behaviour types (Foraging, Lying, Standing and Walking. We subsequently used Classification and Regression Trees to classify the simultaneously obtained GPS data as these behaviour types, based on distances and turning angles between fixes. GPS data with a 1 min interval from the open field was classified correctly for more than 70% of the samples. Data from the 12 s and 2 s interval could not be classified successfully, emphasizing that the interval should be long enough for the behaviour to be defined by its characteristic movement metrics. Data obtained in the forested area were classified with a lower accuracy (57% than the data from the open field, due to a larger positional error of GPS locations and differences in behavioural performance influenced by the habitat type. This demonstrates the importance of understanding the relationship between behaviour and movement metrics, derived from GNSS fixes at different frequencies and in different habitats, in order to successfully infer behaviour. When spatially accurate location data can be obtained, behaviour can be inferred from high-frequency GNSS fixes by calculating simple movement metrics and using easily interpretable decision trees. This allows for the combined study of animal behaviour and habitat use based on location data, and might make it possible to

  8. Photosynthesis of seedlings of Otoba novogranatensis (Myristicaceae and Ruagea glabra (Meliaceae in abandoned pasture, secondary forest and plantation habitats in Costa Rica

    Directory of Open Access Journals (Sweden)

    Michael E. Loik

    2013-09-01

    Full Text Available Enrichment planting in naturally recovering secondary forests or in tree plantations is increasingly being used as strategy to restore later-successional, large-seeded tropical forest trees. We seeded two tree species (Otoba novogranatensis and Ruagea glabra in three agricultural sites in Southern Costa Rica: abandoned pastures, eight to ten year old secondary forests and three year old tree plantations (containing two N-fixing of four total tree species. We measured micrometeorological conditions, soil water content, plant water potential, leaf area, foliar C and N, and photosynthesis to better understand mechanistic responses of seedlings to conditions in the different successional habitats. Micrometeorological conditions, soil water content, and plant water potential were generally similar across habitats. Certain aspects of leaves (such as Specific Leaf Area and foliar N content, and photosynthesis (e.g. quantum yield and electron transport rate were highest in the plantations, intermediate in the secondary forests, and lowest in abandoned pastures. Enhanced rates of photosynthetic biochemistry (such as Vcmax and Jmax and Photosystem II efficiency (e.g. thermal energy dissipation occurred in leaves from the plantations compared to the abandoned pastures, which may be related to higher leaf %N content. Results suggest that foliar N may be of greater importance than soil water content and micrometeorological factors in driving differences in photosynthetic processes across planting habitats. Planting seeds of these two species in plantations containing three year old trees (including two N-fixing species enhances certain aspects of their photosynthesis and growth, compared to seedlings in abandoned pastures with non-native grasses, and thus can help increase forest recovery on abandoned agricultural lands.

  9. The long-term water balance (1972–2004 of upland forestry and grassland at Plynlimon, mid-Wales

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available This paper reviews research into the hydrological impacts of UK upland forestry and updates the water balance of the Plynlimon research catchments for the period 1972–2004. Comparison of this network of densely instrumented coniferous forest and grassland catchments builds upon previously reported differences in annual evaporation of the two land uses and, most crucially, provides evidence of systematic, age-related, variations in forest evaporation losses over a managed plantation forest cycle. In comparison with the grassland catchment, the additional water use of the 70% forested catchment fell from 250 to 150 mm yr−1 because of increasing forest age; this is equivalent to a decline from 370 mm to 210 mm extra evaporation from a complete forest cover. At present, with up to half of the forest area felled or only recently replanted, the difference in evaporation between the forest and grass catchments is negligible. Knowledge of the period of maximum tree water use may be critically important for the future management of multi-use forests. This is also being investigated by micro-meteorological measurements at the scale of the forest stand using eddy covariance, in conjunction with the long-term catchment monitoring.

  10. Improvement, Verification, and Refinement of Spatially-Explicit Exposure Models in Risk Assessment - SEEM

    Science.gov (United States)

    2015-06-01

    is Beltsville silt loam. Land use in the watershed is mainly upland or wetland forests, with significant urban and agricultural development. The...covered with extensive woodlands and wetlands that provide habitat for many animals, including white tail deer, foxes, and wild turkeys. The area is

  11. Improvement, Verification, and Refinement of Spatially Explicit Exposure Models in Risk Assessment - SEEM Demonstration

    Science.gov (United States)

    2015-06-01

    is Beltsville silt loam. Land use in the watershed is mainly upland or wetland forests, with significant urban and agricultural development. The...covered with extensive woodlands and wetlands that provide habitat for many animals, including white tail deer, foxes, and wild turkeys. The area is

  12. Gap characteristics of southeastern Ohio second-growth forests

    Science.gov (United States)

    David M. Hix; Katherine K. Helfrich

    2003-01-01

    Transect sampling was used to assess the features of 30 gaps encountered in upland oak stands on the Wayne National Forest. Tip-ups caused the most canopy gaps (52 percent), two-thirds of which were small (

  13. Evidence for deep sub-surface flow routing in forested upland Wales: implications for contaminant transport and stream flow generation

    Directory of Open Access Journals (Sweden)

    A. H. Haria

    2004-01-01

    Full Text Available Upland streamflow generation has traditionally been modelled as a simple rainfall-runoff mechanism. However, recent hydrochemical studies conducted in upland Wales have highlighted the potentially important role of bedrock groundwater in streamflow generation processes. To investigate these processes, a detailed and novel field study was established in the riparian zone and lower hillslopes of the Hafren catchment at Plynlimon, mid-Wales. Results from this study showed groundwater near the river behaving in a complex and most likely confined manner within depth-specific horizons. Rapid responses to rainfall in all boreholes at the study site indicated rapid recharge pathways further upslope. The different flow pathways and travel times influenced the chemical character of groundwaters with depth. Groundwaters were shown to discharge into the stream from the fractured bedrock. A lateral rapid flow horizon was also identified as a fast flow pathway immediately below the soils. This highlighted a mechanism whereby rising groundwater may pick up chemical constituents from the lower soils and transfer them quickly to the stream channel. Restrictions in this horizon resulted in groundwater upwelling into the soils at some locations indicating soil water to be sourced from both rising groundwater and rainfall. The role of bedrock groundwater in upland streamflow generation is far more complicated than previously considered, particularly with respect to residence times and flow pathways. Hence, water quality models in upland catchments that do not take account of the bedrock geology and the groundwater interactions therein will be seriously flawed. Keywords: bedrock, groundwater, Hafren, hillslope hydrology, Plynlimon, recharge, soil water, streamflow generation

  14. Impacts of habitat loss and fragmentation on the activity budget, ranging ecology and habitat use of Bale monkeys (Chlorocebus djamdjamensis) in the southern Ethiopian Highlands.

    Science.gov (United States)

    Mekonnen, Addisu; Fashing, Peter J; Bekele, Afework; Hernandez-Aguilar, R Adriana; Rueness, Eli K; Nguyen, Nga; Stenseth, Nils Chr

    2017-07-01

    Understanding the extent to which primates in forest fragments can adjust behaviorally and ecologically to changes caused by deforestation is essential to designing conservation management plans. During a 12-month period, we studied the effects of habitat loss and degradation on the Ethiopian endemic, bamboo specialist, Bale monkey (Chlorocebus djamdjamensis) by comparing its habitat quality, activity budget, ranging ecology and habitat use in continuous forest and two fragments. We found that habitat loss and fragmentation resulted in major differences in vegetation composition and structure between forest types. We also found that Bale monkeys in continuous forest spent more time feeding and traveling and less time resting and socializing than monkeys in fragments. Bale monkeys in continuous forest also had higher movement rates (m/hr) than monkeys in fragments. Bale monkeys in continuous forest used exclusively bamboo and mixed bamboo forest habitats while conspecifics in fragments used a greater variety of habitats including human use areas (i.e., matrix). Our findings suggest that Bale monkeys in fragments use an energy minimization strategy to cope with the lower availability of the species' primary food species, bamboo (Arundinaria alpina). We contend that Bale monkeys may retain some of the ancestral ecological flexibility assumed to be characteristic of the genus Chlorocebus, within which all extant species except Bale monkeys are regarded as ecological generalists. Our results suggest that, like other bamboo eating primates (e.g., the bamboo lemurs of Madagascar), Bale monkeys can cope with a certain threshold of habitat destruction. However, the long-term conservation prospects for Bale monkeys in fragments remain unclear and will require further monitoring to be properly evaluated. © 2017 Wiley Periodicals, Inc.

  15. A new skink (Scincidae: Saproscincus) from rocky rainforest habitat on Cape Melville, north-east Australia.

    Science.gov (United States)

    Hoskin, Conrad J

    2013-01-01

    Saproscincus skinks are restricted to wet forest habitats of eastern Australia. Eleven species have previously been described, with most having small distributions in disjunct areas of subtropical and tropical rainforest. The localized distributions and specific habitat requirements of Saproscincus have made them a key group for understanding the biogeographic history of Australia's rainforests. Here I describe a new species of Saproscincus from the Melville Range on Cape Melville, north-east Australia. The Melville Range is composed of boulder-fields and areas of rainforest in the uplands, and is highly isolated from other areas of elevated rainforest. All individuals of the new species were found on a moist ridgeline, active on boulders under a rainforest canopy or on boulder-field immediately adjacent to rainforest. Saproscincus saltus sp. nov. is highly distinct in morphology and colour pattern. Of particular interest are its long limbs and digits compared to congeners, which in conjunction with the observed ecology, suggest a long history of association with rock. The discovery of S. saltus sp. nov. extends the distribution of the genus over 100 km north from the nearest congeners in the Wet Tropics region. This species brings the number of vertebrates known to be endemic to the Melville Range to six, which is remarkable for such a small area.

  16. Positive edge effects on forest-interior cryptogams in clear-cuts.

    Directory of Open Access Journals (Sweden)

    Alexandro Caruso

    Full Text Available Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting forest-interior cryptogams (lichens, bryophytes, and fungi associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase

  17. Sibling vole species (Microtus in the fragmented landscape of south-eastern part of Thrace, Balkan Peninsula: species presence, habitat selection and craniometry

    Directory of Open Access Journals (Sweden)

    GEORGI MARKOV

    2014-04-01

    Full Text Available The presence of sibling vole species (Microtus in the most common forests and open landscapes in south-eastern part of Thrace (Balkan Peninsula of contemporary territories of Bulgaria and Turkey was studied. Only the southern vole (Microtus levis was found in the investigated region. In his northern part, the Southern vole is associated with semi dry, upland habitats such as deserted and overgrown with wild vegetation vines near sparse forests and large agricultural fields under autumn crops with adjacent non-arable lands with shrub vegetation. In the southern part, it is presented in open landscape related to water areas (meadows near rivers and wetlands. On the basis of trapping the Southern vole is a common species in the north part of Strandzha region. The established craniological characteristics of the Southern vole from investigated region, which can be considered as a zoogeographical crossroads, with a late Pleistocene connection between the Balkan Peninsula and the mammalian fauna of Anatolian peninsula, enriched the knowledge about its craniological variation in Europe.

  18. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    International Nuclear Information System (INIS)

    Stauffer, R.E.; Wittchen, B.D.

    1991-01-01

    The authors use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) US. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. The authors attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by So 4 because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m -2 yr -1 ) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks

  19. Chapter 13 Application of landscape and habitat suitability models to conservation: the Hoosier National Forest land-management plan

    Science.gov (United States)

    Chadwick D. Rittenhouse; Stephen R. Shifley; William D. Dijak; Zhaofei Fan; Frank R., III Thompson; Joshua J. Millspaugh; Judith A. Perez; Cynthia M. Sandeno

    2011-01-01

    We demonstrate an approach to integrated land-management planning and quantify differences in vegetation and avian habitat conditions among 5 management alternatives as part of the Hoosier National Forest planning process. The alternatives differed in terms of the type, extent, magnitude, frequency, and location of management activities. We modeled ecological processes...

  20. Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA

    Science.gov (United States)

    Heady, Paul A.; Hayes, John P.; Frick, Winifred F.

    2013-01-01

    Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts. PMID:23483936

  1. Habitat constraints on the distribution of passerine residents and neotropical migrants in Latin America

    Science.gov (United States)

    Robbins, C.S.; Dowell, B.A.; Dawson, D.K.

    1994-01-01

    With continuing tropical deforestation, there is increased concern for birds that depend on forest habitats in Latin America. During the past 10 northern winters, we have conducted quantitative studies of habitat use by wintering migrant songbirds and by residents in the Greater Antilles, Mexico, Central America, and northern South America. Many migrants, but few residents, winter in forest fragments and in certain arboreal agricultural habitats (citrus, cacao, shade coffee). Many other agricultural habitats (sun coffee, mango, commercial banana plantations, and heavily grazed pasture) are avoided by most birds. Some species, such as thrushes and ground-feeding warblers, depend on closed-canopy forest. Some, such as Northern Waterthrush (Seiurus noveboracensis) and Prothonotary Warbler (Protonotaria citrea), winter primarily in mangroves or other swamp forests. The majority of neotropical migrant passerines winter in forest fragments and certain agricultural habitats, as well as mature forest; but many resident species, especially suboscines (Furnariidae, Dendrocolaptidae, Formicariidae, Papridae), are heavily impacted by loss and fragmentation of the forest.

  2. Habitats of small mammals at Whiteshell Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, S L; Turner, B N

    1973-12-01

    The small mammals in the area around the Whiteshell Nuclear Research Establishment in southeastern Manitoba were sampled by approximately 110,000 snap- trap nights in a 5 year period. Habitats trapped were divided into major types on the basis of the tree species present, and occurrences of the different species of shrubs and herbs in each habitat type were noted. The major habitats were mixed deciduous, aspen, ash, mixed coniferous, The small mammal component of the mixed deciduous forest was dominated by Peromyscus maniculatus and Clethrionomys gapperi but all of the other species included in this study were also present. In both aspen and ash forests, Microtus pennsylvanicus and C. gapperi were the most numerous species, with Sorex arcticus reaching its greatest abundance in the latter. In the open field, M. pennsylvanicus was most abundant, followed by Zapus hudsonius, C. gapperi, M. pennsylvanicus and Sorex cinereus were the most numerous mammals in the black spruce bog community, and also extended into the black spruce forest. All of the species studied, except Napaeozapus insignis and S. arcticus, were present in the mixed coniferous forest. S. arcticus and S. cinereus, although captured in habitats ranging from heavy forest to open field, appeared to be most numerous in young forests and other intermediate habitats. Blarina brevicauda was most numerous in older forests. P. maniculatus and N. insignis were most common in the mixed deciduous forest, but P. maniculatus occurred more frequently than N. insignis in the younger forests. P. maniculatus showed a significant positive relationship with large tree diameter and low percentages of ground cover. C. gapperi was captured in highest numbers in the mixed deciduous and coniferous forests, but was also found in the other types of forest in greater numbers than P. maniculaius. M. pennsylvanicus and Zapus hudsonius were most common in the open field, but both species were present in the forests. Analysis of data

  3. Habitat-associated and temporal patterns of bat activity in a diverse forest landscape of southern New England, USA

    Science.gov (United States)

    Robert T. Brooks

    2009-01-01

    The development and use of acoustic recording technology, surveys have revealed the composition, relative levels of activity, and preliminary habitat use of bat communities of various forest locations. However, detailed examinations of acoustic surveys results to investigate temporal patterns of bat activity are rare. Initial active acoustic surveys of bat activity on...

  4. Orobanche pallidiflora Wimm. & Grab. in Poland: distribution, habitat and host preferences

    Directory of Open Access Journals (Sweden)

    Renata Piwowarczyk

    2011-01-01

    Full Text Available The paper presents ten new localities of Orobanche pallidiflora Wimm. & Grab. from Poland (Middle Roztocze, Równina Bełska plain, Wyżyna Malopolska upland, Góry Kaczawskie Mts and Western Bieszczady Mts. Information on hosts, abundance and habitat preferences at the new localities is given and a supplemented map of the distribution in Poland is included.

  5. Characterization of breeding habitats for black and surf scoters in the eastern boreal forest and subarctic regions of Canada

    Science.gov (United States)

    Perry, M.C.; Kidwell, D.M.; Wells, A.M.; Lohnes, E.J.R.; Osenton, P.C.; Altmann, S.H.; Hanson, Alan; Kerekes, Joseph; Paquet, Julie

    2006-01-01

    We analyzed characteristics of wetland habitats used by breeding black scoters (Melanitta nigra) and surf scoters (M. perspicillata) in the eastern boreal forest and subarctic regions of Canada based on satellite telemetry data collected in the spring and summer. During 2002 and 2004, nine black scoters (four males, five females) were tracked to breeding areas in Quebec, Manitoba, and Northwest Territories. In addition, in 2001?04, seven surf scoters (three males, four females) were tracked to breeding areas in Labrador, Quebec, Northwest Territories, and Nunavut. Based on satellite telemetry data, locations of black and surf scoters in breeding areas were not significantly different in regard to latitude and longitude. Presumed breeding areas were manually plotted on topographic maps and percent cover type and water were estimated. Breeding habitat of black scoters was significantly different than that for surf scoters, with black scoters mainly using open (tundra) areas (44%) and surf scoters using mainly forest areas (66%). Surf scoters presumed breeding areas were at significantly higher elevations than areas used by black scoters. Some breeding areas were associated with islands, but the role of islands for breeding areas is equivocal. These results aid in the identification of potentially critical breeding areas and provide a baseline classification of breeding habitats used by these two species.

  6. Panthers and Forests in South Florida: an Ecological Perspective

    Directory of Open Access Journals (Sweden)

    E. Jane Comiskey

    2002-06-01

    Full Text Available The endangered Florida panther (Puma concolor coryi survives in an area of pronounced habitat diversity in southern Florida, occupying extensive home ranges that encompass a mosaic of habitats. Twenty-one years of daytime monitoring via radiotelemetry have provided substantial but incomplete information about panther ecology, mainly because this method fails to capture movement and habitat use between dusk and dawn, when panthers are most active. Broad characterizations of panther habitat suitability have nonetheless been derived from telemetry-based habitat selection studies, focusing narrowly on forests where daytime resting sites are often located. The resulting forest-centered view of panthers attributed their restricted distribution and absence of population growth in the mid-1990s to a scarcity of unfragmented forest for expansion. However, the panther population has doubled since the beginning of genetic restoration in 1995, increasing five-fold in public areas described as unsuitable based on forest criteria. Although the forest-centered view no longer explains panther distribution, it continues to shape management decisions and habitat conservation policies. The assumptions and limitations of this view therefore merit critical examination. We analyze the role of forests in the ecology of the Florida panther. To address the absence of nighttime telemetry data, we use innovative telemetry mapping techniques and incorporate information from field observations indicating habitat use during active hours (e.g., tracks, scats, urine markers, and kill sites. We consider daytime telemetry data in the context of panther home ranges and breeding units. We analyze home range size in relation to the amount of forest within each range, concluding that percent forest cover is a poor predictor of size. We apply fractal analysis techniques to characterize the relative density of forest cover associated with daytime locations and interpret the results in

  7. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  8. Habitat specialization through germination cueing

    DEFF Research Database (Denmark)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen; Bruun, Hans Henrik

    2013-01-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently...

  9. The distribution and habitat requirements of the genus Orobanche L. (Orobanchaceae in SE Poland

    Directory of Open Access Journals (Sweden)

    Renata Piwowarczyk

    2011-05-01

    Full Text Available The distribution of the genus Orobanche in SE Poland is presented. The study area stretches between the Vistula and the Bug rivers, and comprises the Polish areas of the Lublin-Lwów Upland, the Wołyń Upland and the southern part of Polesie. Eight species of the genus Orobanche: O. alba, O. alsatica, O. arenaria, O. caryophyllacea, O. elatior, O. lutea, O. pallidiflora, O. picridis, were collected during floristic investigations conducted between 1999 and 2010. The hosts, abundance and habitat preferences at the localities are given and a supplemented map of the distribution in SE Poland is included.

  10. Determining effective riparian buffer width for nonnative plant exclusion and habitat enhancement

    Science.gov (United States)

    Gavin Ferris; Vincent D' Amico; Christopher K. Williams

    2012-01-01

    Nonnative plants threaten native biodiversity in landscapes where habitats are fragmented. Unfortunately, in developed areas, much of the remaining forested habitat occurs in fragmented riparian corridors. Because forested corridors of sufficient width may allow forest interior specializing native species to retain competitive advantage over edge specialist and...

  11. ROOT BIOMASS ALLOCATION IN THE WORLD'S UPLAND FORESTS

    Science.gov (United States)

    Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard meth...

  12. Expansion of Industrial Plantations Continues to Threaten Malayan Tiger Habitat

    Directory of Open Access Journals (Sweden)

    Varada S. Shevade

    2017-07-01

    Full Text Available Southeast Asia has some of the highest deforestation rates globally, with Malaysia being identified as a deforestation hotspot. The Malayan tiger, a critically endangered subspecies of the tiger endemic to Peninsular Malaysia, is threatened by habitat loss and fragmentation. In this study, we estimate the natural forest loss and conversion to plantations in Peninsular Malaysia and specifically in its tiger habitat between 1988 and 2012 using the Landsat data archive. We estimate a total loss of 1.35 Mha of natural forest area within Peninsular Malaysia over the entire study period, with 0.83 Mha lost within the tiger habitat. Nearly half (48% of the natural forest loss area represents conversion to tree plantations. The annual area of new plantation establishment from natural forest conversion increased from 20 thousand ha year−1 during 1988–2000 to 34 thousand ha year−1 during 2001–2012. Large-scale industrial plantations, primarily those of oil palm, as well as recently cleared land, constitute 80% of forest converted to plantations since 1988. We conclude that industrial plantation expansion has been a persistent threat to natural forests within the Malayan tiger habitat. Expanding oil palm plantations dominate forest conversions while those for rubber are an emerging threat.

  13. 75 FR 26979 - Piedmont National Wildlife Refuge, Jones and Jasper Counties, GA

    Science.gov (United States)

    2010-05-13

    ... acquisition; (3) forest and fire management and education; (4) cane break restoration; (5) invasive species... area with smaller burn units on a 2-year rotation. We would prioritize the need for removal of invasive... expand invasive plant species control from uplands to include other habitat types to reduce adverse...

  14. Effects of riparian buffer width on wood loading in headwater streams after repeated forest thinning

    Science.gov (United States)

    Julia I. Burton; Deanna H. Olson; Klaus J. Puettmann

    2016-01-01

    Forested riparian buffer zones are used in conjunction with upland forest management, in part, to provide for the recruitment for large wood to streams. Small headwater streams account for the majority of stream networks in many forested regions. Yet, our understanding of how riparian buffer width influences wood dynamics in headwater streams is relatively less...

  15. Ecosystem management and the conservation of caribou habitat in British Columbia

    Directory of Open Access Journals (Sweden)

    Dale R. Seip

    1998-03-01

    Full Text Available Woodland caribou (Rangifer tarandus caribou in British Columbia inhabit a wide variety of forest ecosystems. Numerous research projects have provided information that has been used to develop caribou habitat management recommendations for different areas. Recently, the province has implemented guidelines to protect biodiversity that are based on an ecosystem management strategy of mimicking natural forest conditions. There is a great deal of similarity between caribou management recommendations and biodiversity recommendations within different forest types. In mountain caribou habitat, both approaches recommend maintaining a landscape dominated by old and mature forests, uneven-aged management, small cutblocks, and maintaining mature forest connectivity. In northern caribou habitat, both approaches recommend maintaining some older stands on the landscape (but less than for mountain caribou, even-aged management, and a mosaic of large harvest units and leave areas. The ecosystem management recommendations provide a useful foundation for caribou habitat conservation. More detailed information on caribou and other management objectives can then be used to fine-tune those recommendations.

  16. Estuarine habitat quality reflects urbanization at large spatial scales in South Carolina's coastal zone.

    Science.gov (United States)

    Van Dolah, Robert F; Riekerk, George H M; Bergquist, Derk C; Felber, Jordan; Chestnut, David E; Holland, A Fredrick

    2008-02-01

    Land cover patterns were evaluated in 29 estuarine watersheds of South Carolina to determine relationships between urban/suburban development and estuarine habitat quality. Principal components analysis and Pearson product moment correlation analyses were used to examine the relationships between ten land cover categories and selected measures of nutrient or bacterial enrichment in the water column and contaminant enrichment in sediments. These analyses indicated strong relationships between land cover categories representing upland development and a composite measure of 24 inorganic and organic contaminants using the Effect Range Median-Quotient (ERM-Q). Similar relationships also were observed for the summed concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, and metals. Data obtained from tidal creeks generally showed stronger correlations between urban/suburban land use and pesticides and metals compared to data obtained from larger open water habitats. Correlations between PAH concentrations and the urban/suburban land cover categories were similar between creek and open water habitats. PCB concentrations generally showed very little relationship to any of the land cover categories. Measures of nutrient enrichment, which included total Kjeldahl nitrogen (TKN), nitrate-nitrite, phosphorus, chlorophyll-a, and total organic carbon, were generally not significantly correlated with any land cover categories, whereas fecal coliform bacteria were significantly and positively correlated with the urban/suburban land cover categories and negatively correlated with the non-urban land cover categories. Fecal coliform correlations were stronger using data from the open water sites than from the tidal creek sites. Both ERM-Q and fecal coliform concentrations were much greater and more pervasive in watersheds with relatively high (>50%) urban/suburban cover compared to watersheds with low (urban/suburban cover. These

  17. GIS-based approach for quantifying landscape connectivity of Javan Hawk-Eagle habitat

    Science.gov (United States)

    Nurfatimah, C.; Syartinilia; Mulyani, Y. A.

    2018-05-01

    Javan Hawk-Eagle (Nisaetus bartelsi; JHE) is a law-protected endemic raptor which currently faced the decreased in number and size of habitat patches that will lead to patch isolation and species extinction. This study assessed the degree of connectivity between remnant habitat patches in central part of Java by utilizing Conefor Sensinode software as an additional tool for ArcGIS. The connectivity index was determined by three fractions which are infra, flux and connector. Using connectivity indices successfully identified 4 patches as core habitat, 9 patches as stepping-stone habitat and 6 patches as isolated habitat were derived from those connectivity indices. Those patches then being validated with land cover map derived from Landsat 8 of August 2014. 36% of core habitat covered by natural forest, meanwhile stepping stone habitat has 55% natural forest and isolated habitat covered by 59% natural forest. Isolated patches were caused by zero connectivity (PCcon = 0) and the patch size which too small to support viable JHE population. Yet, the condition of natural forest and the surrounding matrix landscape in isolated patches actually support the habitat need. Thus, it is very important to conduct the right conservation management system based on the condition of each patches.

  18. How old is upland catchment water?

    Science.gov (United States)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe; Gilfedder, Benjamin

    2014-05-01

    Understanding the dynamics of water supply catchments is an essential part of water management. Upland catchments provide a continuous, reliable source of high quality water not only for some of the world's biggest cities, but also for agriculture and industry. Headwater streams control river flow in lowland agricultural basins as the majority of river discharge emerges from upland catchments. Many rivers are perennial and flow throughout the year, even during droughts. However, it is still unclear how reliable and continuous upland catchment water resources really are. Despite many efforts in upland catchment research, there is still little known about where the water is stored and how long it takes to travel through upper catchments. Resolving these questions is crucial to ensure that this resource is protected from changing land use and to estimate potential impacts from a changing climate. Previous research in this important area has been limited by existing measurement techniques. Knowledge to date has relied heavily on the use of variation in stable isotope signals to estimate the age and origin of water from upland catchments. The problem with relying on these measures is that as the water residence time increases, the variation in the stable isotope signal decreases. After a maximum period of four years, no variation can be detected This means that to date, the residence time in upland catchments is likely to have been vastly underestimated. Consequently, the proportion of water flow out of upland river catchments to the total river flow is also underestimated. Tritium (3H) combines directly with water molecules and enters the flow paths with the infiltrating water. Its half-life (12.32 years) makes it ideal to describe residence times in upper catchment reservoirs as it can theoretically measure water up to about 150 years old. The bomb pulse peak in the southern hemisphere was several orders of magnitude lower than in the northern hemisphere. Hence the

  19. Modeling the Effect of Geomorphic Change Triggered by Large Wood Addition on Salmon Habitat in a Forested Coastal Watershed

    Science.gov (United States)

    Bair, R.; Segura, C.; Lorion, C.

    2015-12-01

    Large wood (LW) additions are often part of fish habitat restorations in the PNW where historic forest clear-cutting limited natural wood recruitment. These efforts' relative successes are rarely reported in terms of ecological significance to different life stages of fish. Understanding the effectiveness of LW additions will contribute to successfully managing forest land. In this study we quantify the geomorphic change of a restoration project involving LW additions to three alluvial reaches in Mill Creek, OR. The reaches are 110-130m in plane-bed morphology and drain 2-16km2. We quantify the change in available habitat to different life stages of coho salmon in terms of velocity (v), shear stress (t), flow depth, and grain size distributions (GSD) considering existing thresholds in the literature for acceptable habitat. Flow conditions before and after LW additions are assessed using a 2D hydrodynamic model (FaSTMECH). Model inputs include detailed channel topography, discharge, and surface GSD. The spatial-temporal variability of sediment transport was also quantified based the modeled t distributions and the GSD to document changes in the overall geomorphic regime. Initial modeling results for pre wood conditions show mean t and v values ranging between 0 and 26N/m2 and between 0 and 2.4m/s, respectively for up to bankfull flow (Qbf). The distributions of both t and v become progressively wider and peak at higher values as flow increases with the notable exception at Qbf for which the area of low velocity increases noticeably. The spatial distributions of velocity results indicates that the extent of suitable habitat for adult coho decreased by 18% between flows 30 and 55% of BF. However the area of suitable habitat increased by 15% between 0.55Qbf and Qbf as the flow spreads from the channel into the floodplain. We expect the LW will enhance floodplain connectivity and thus available habitat by creating additional areas of low v during winter flows.

  20. dwindling ethiopian forests

    African Journals Online (AJOL)

    eliasn

    1999-05-26

    May 26, 1999 ... Shelter for animals: Forests are natural “habitats for many wild animals. .... nificance of forest conservation and development in Ethiopia's combat ...... of forests are not, unfortunately, analogues to traffic lights where the impact.

  1. Using genetic profiles of African forest elephants to infer population structure, movements, and habitat use in a conservation and development landscape in Gabon.

    Science.gov (United States)

    Eggert, L S; Buij, R; Lee, M E; Campbell, P; Dallmeier, F; Fleischer, R C; Alonso, A; Maldonado, J E

    2014-02-01

    Conservation of wide-ranging species, such as the African forest elephant (Loxodonta cyclotis), depends on fully protected areas and multiple-use areas (MUA) that provide habitat connectivity. In the Gamba Complex of Protected Areas in Gabon, which includes 2 national parks separated by a MUA containing energy and forestry concessions, we studied forest elephants to evaluate the importance of the MUA to wide-ranging species. We extracted DNA from elephant dung samples and used genetic information to identify over 500 individuals in the MUA and the parks. We then examined patterns of nuclear microsatellites and mitochondrial control-region sequences to infer population structure, movement patterns, and habitat use by age and sex. Population structure was weak but significant, and differentiation was more pronounced during the wet season. Within the MUA, males were more strongly associated with open habitats, such as wetlands and savannas, than females during the dry season. Many of the movements detected within and between seasons involved the wetlands and bordering lagoons. Our results suggest that the MUA provides year-round habitat for some elephants and additional habitat for others whose primary range is in the parks. With the continuing loss of roadless wilderness areas in Central Africa, well-managed MUAs will likely be important to the conservation of wide-ranging species. © 2013 Society for Conservation Biology.

  2. Microhabitat features influencing habitat use by Florida black bears

    Directory of Open Access Journals (Sweden)

    Dana L. Karelus

    2018-01-01

    Full Text Available Understanding fine-scale habitat needs of species and the factors influencing heterogeneous use of habitat within home range would help identify limiting resources and inform habitat management practices. This information is especially important for large mammals living in fragmented habitats where resources may be scarcer and more patchily distributed than in contiguous habitats. Using bihourly Global Position System (GPS location data collected from 10 individuals during 2011–2014, we investigated microhabitat features of areas within home ranges that received high vs. low intensity of use by Florida black bears (Ursus americanus floridanus in north-central, Florida. We identified areas receiving high and low levels of use by bears based on their utilization distributions estimated with the dynamic Brownian bridge movement model, and performed vegetation sampling at bear locations within high- and low-use areas. Using univariate analyses and generalized linear mixed models, we found that (1 canopy cover, visual obstruction, and hardwood density were important in defining high-use sites; (2 the probability of high use was positively associated with principal components that represented habitat closer to creeks and with high canopy and shrub cover and higher hardwood densities, likely characteristic of forested wetlands; and (3 the probability of high use was, to a lesser extent, associated with principal components that represented habitat with high canopy cover, high pine density, and low visual obstruction and hardwood density; likely representing sand pine and pine plantations. Our results indicate that the high bear-use sites were in forested wetlands, where cover and food resources for bears are likely to occur in higher abundance. Habitat management plans whereby bears are a focal species should aim to increase the availability and quality of forested wetlands. Keywords: Habitat selection, Heterogeneous habitat use, Forest management

  3. Integration of LIDAR, optical remotely sensed, and ancillary data for forest monitoring and Grizzly bear habitat characterization / Integração de LIDAR, sensores remotos óticos e dados auxiliares para o monitoramento fl orestal e caracterização do habitat dos ursos Grizzly

    Directory of Open Access Journals (Sweden)

    Michael A. Wulder

    2008-09-01

    Full Text Available Forest management and reporting information needs are becomingincreasingly complex in Canada. Inclusion of timber and non-timber considerations for both management and reporting has resulted inopportunities for integration of data from differing sources to provide the desired information. Canada’s forested land-base is over 400million hectares in size and fulfi lls important ecological and economic functions. In this communication we describe how remotely senseddata and other available spatial data layers capture different forestcharacteristics and conditions, and how these varying data sources may be combined to provide otherwise unavailable information. For instance, light detection and ranging (LIDAR confers information regardingvertical forest structure; high spatial resolution imagery captures (indetail the horizontal distribution and arrangement of vegetation andvegetation conditions; and, moderate spatial resolution imagery providesconsistent wide-area depictions of forest conditions. Furthermore, coarsespatial resolution imagery, with a high temporal density, can be blended with data of a higher spatial resolution to generate moderate spatialresolution data with a high temporal density. These remotely sensed datasources, when combined with existing spatial data layers such as forest inventory and digital terrain models, provide useful information thatmay be used to address, through modelling, questions regarding forest condition, structure, and change. In this communication, we discuss the importance of data integration and ultimately, information generation, inthe context of Grizzly bear habitat characterization. Grizzly bear habitat in western Canada is currently undergoing pressure from a combination of anthropogenic activities and a widespread outbreak of mountain pine beetle, resulting in a variety of information needs, including: detailed depictions of horizontal and vertical vegetation structure over large areasto support bark

  4. Resilience of Alaska's Boreal Forest to Climatic Change

    Science.gov (United States)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; hide

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  5. Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2003-04-01

    The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment

  6. Relative importance of current and past landscape structure and local habitat conditions for plant species richness in dry grassland-like forest openings.

    Science.gov (United States)

    Husáková, Iveta; Münzbergová, Zuzana

    2014-01-01

    In fragmented landscapes, plant species richness may depend not only on local habitat conditions but also on landscape structure. In addition, both present and past landscape structure may be important for species richness. There are, however, only a few studies that have investigated the relative importance of all of these factors. The aim of this study was to examine the effect of current and past landscape structures and habitat conditions on species richness at dry grassland-like forest openings in a forested landscape and to assess their relative importance for species richness. We analyzed information on past and present landscape structures using aerial photographs from 1938, 1973, 1988, 2000 and 2007. We calculated the area of each locality and its isolation in the present and in the past and the continuity of localities in GIS. At each locality, we recorded all vascular plant species (296 species in 110 forest openings) and information on abiotic conditions of the localities. We found that the current species richness of the forest openings was significantly determined by local habitat conditions as well as by landscape structure in the present and in the past. The highest species richness was observed on larger and more heterogeneous localities with rocks and shallow soils, which were already large and well connected to other localities in 1938. The changes in the landscape structure in the past can thus have strong effects on current species richness. Future studies attempting to understand determinants of species diversity in fragmented landscapes should also include data on past landscape structure, as it may in fact be more important than the present structure.

  7. Mapping caribou habitat north of the 51st parallel in Québec using Landsat imagery

    Directory of Open Access Journals (Sweden)

    Stéphanie Chalifoux

    2003-04-01

    Full Text Available A methodology using Landsat Thematic Mapper (TM images and vegetation typology, based on lichens as the principal component of caribou winter diet, was developed to map caribou habitat over a large and diversified area of Northern Québec. This approach includes field validation by aerial surveys (helicopter, classification of vegetation types, image enhancement, visual interpretation and computer assisted mapping. Measurements from more than 1500 field sites collected over six field campaigns from 1989 to 1996 represented the data analysed in this study. As the study progressed, 14 vegetation classes were defined and retained for analyses. Vegetation classes denoting important caribou habitat included six classes of upland lichen communities (Lichen, Lichen-Shrub, Shrub-Lichen, Lichen-Graminoid-Shrub, Lichen-Woodland, Lichen-Shrub-Woodland. Two classes (Burnt-over area, Regenerating burnt-over area are related to forest fire, and as they develop towards lichen communities, will become important for caribou. The last six classes are retained to depict remaining vegetation cover types. A total of 37 Landsat TM scenes were geocoded and enhanced using two methods: the Taylor method and the false colour composite method (bands combination and stretching. Visual inter¬pretation was chosen as the most efficient and reliable method to map vegetation types related to caribou habitat. The 43 maps produced at the scale of 1:250 000 and the synthesis map (1:2 000 000 provide a regional perspective of caribou habitat over 1200 000 km2 covering the entire range of the George river herd. The numerical nature of the data allows rapid spatial analysis and map updating.

  8. Strip thinning young hardwood forests: multi-functional management for wood, wildlife, and bioenergy

    Science.gov (United States)

    Jamie Schuler; Ashlee Martin

    2016-01-01

    Upland hardwood forests dominate the Appalachian landscape. However, early successional forests are limited. In WV and PA, for example, only 8 percent of the timberland is classified as seedling and sapling-sized. Typically no management occurs in these forests due to the high cost of treatment and the lack of marketable products. If bioenergy markets come to fruition...

  9. Avian use of forest habitats in the Pembina Hills of northeastern North Dakota

    Science.gov (United States)

    Faanes, Craig A.; Andrew, Jonathan M.

    1983-01-01

    North Dakota has the least extensive total area of forested habitats of any of the 50 United States. Although occurring in limited area, forest communities add considerably to the total ecological diversity of the State. The forests of the Pembina Hills region in northeastern North Dakota are one of only three areas large enough to be considered of commercial value. During 1981 we studied the avifauna of the upper valley of the Pembina River in the Pembina Hills. Field work extended from 20 April to 23 July; breeding bird censuses were conducted 7 June to 2 July. Of the 120 bird species recorded during the study period, 79 species were recorded during the breeding season. The total breeding population was estimated at nearly 76,000 breeding pairs. The wood warblers (Parulidae) were the most numerous family, accounting for about 28,000 breeding pairs. The yellow warbler (Dendroica petechia) was the most abundant breeding species, making up 19.4% of the population. American redstart (Setophaga ruticilla) was second in abundance, accounting for 10.5% of the breeding population. Largest breeding densities occurred in the willow (Salix sp.) shrub community. Although supporting the lowest mean breeding density, quaking aspen (Populus tremuloides) forests supported the highest species diversity. First State breeding records were recorded for alder flycatcher (Empidonax alnorum) and golden-winged warbler (Vermivora chrysoptera). Records were obtained for 12 species considered rare or unusual in North Dakota during the breeding season. The status of all species known to have occurred in the study area is described in an annotated species list.

  10. Intentional systems management: managing forests for biodiversity.

    Science.gov (United States)

    A.B. Carey; B.R. Lippke; J. Sessions

    1999-01-01

    Conservation of biodiversity provides for economic, social, and environmental sustainability. Intentional management is designed to manage conflicts among groups with conflicting interests. Our goal was to ascertain if intentional management and principles of conservation of biodiversity could be combined into upland and riparian forest management strategies that would...

  11. Forest Policy Scenario Analysis: Sensitivity of Songbird Community to Changes in Forest Cover Amount and Configuration

    Directory of Open Access Journals (Sweden)

    Robert S. Rempel

    2007-06-01

    Full Text Available Changes in mature forest cover amount, composition, and configuration can be of significant consequence to wildlife populations. The response of wildlife to forest patterns is of concern to forest managers because it lies at the heart of such competing approaches to forest planning as aggregated vs. dispersed harvest block layouts. In this study, we developed a species assessment framework to evaluate the outcomes of forest management scenarios on biodiversity conservation objectives. Scenarios were assessed in the context of a broad range of forest structures and patterns that would be expected to occur under natural disturbance and succession processes. Spatial habitat models were used to predict the effects of varying degrees of mature forest cover amount, composition, and configuration on habitat occupancy for a set of 13 focal songbird species. We used a spatially explicit harvest scheduling program to model forest management options and simulate future forest conditions resulting from alternative forest management scenarios, and used a process-based fire-simulation model to simulate future forest conditions resulting from natural wildfire disturbance. Spatial pattern signatures were derived for both habitat occupancy and forest conditions, and these were placed in the context of the simulated range of natural variation. Strategic policy analyses were set in the context of current Ontario forest management policies. This included use of sequential time-restricted harvest blocks (created for Woodland caribou (Rangifer tarandus conservation and delayed harvest areas (created for American marten (Martes americana atrata conservation. This approach increased the realism of the analysis, but reduced the generality of interpretations. We found that forest management options that create linear strips of old forest deviate the most from simulated natural patterns, and had the greatest negative effects on habitat occupancy, whereas policy options

  12. Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests.

    Science.gov (United States)

    Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando

    2015-05-01

    Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.

  13. Use of olfactory cues by newly metamorphosed wood frogs (Lithobates sylvaticus) during emigration

    Science.gov (United States)

    Zydlewski, Joseph D.; Popescu, Viorel D.; Brodie, Bekka S.; Hunter, Malcom L.

    2012-01-01

    Juvenile amphibians are capable of long-distance upland movements, yet cues used for orientation during upland movements are poorly understood. We used newly metamorphosed Wood Frogs (Lithobates sylvaticus) to investigate: (1) the existence of innate (i.e., inherited) directionality, and (2) the use of olfactory cues, specifically forested wetland and natal pond cues during emigration. In a circular arena experiment, animals with assumed innate directionality did not orient in the expected direction (suggested by previous studies) when deprived of visual and olfactory cues. This suggests that juvenile Wood Frogs most likely rely on proximate cues for orientation. Animals reared in semi-natural conditions (1500 l cattle tanks) showed a strong avoidance of forested wetland cues in two different experimental settings, although they had not been previously exposed to such cues. This finding is contrary to known habitat use by adult Wood Frogs during summer. Juvenile Wood Frogs were indifferent to the chemical signature of natal pond (cattle tank) water. Our findings suggest that management strategies for forest amphibians should consider key habitat features that potentially influence the orientation of juveniles during emigration movements, as well as adult behavior.

  14. Monitoring Natura 2000 habitats: habitat 92A0 in central Italy as an example

    Directory of Open Access Journals (Sweden)

    Emanuela Carli

    2016-10-01

    Full Text Available The evaluation and the subsequent monitoring of the conservation status of habitats is one of the key steps in nature protection. While some European countries have tested suitable methodologies, others, including Italy, lack procedures tested at the national level. The aim of this work is to propose a method to assess the conservation status of habitat 92A0 (Salix alba and Populus alba galleries in central Italy, and to test the method using data from the Molise region. We selected parameters that highlight the conservation status of the flora and vegetation in order to assess habitat structures and functions at the site level. After selecting the parameters, we tested them on a training dataset of 22 unpublished phytosociological relevés taken from the whole dataset, which consists of 119 relevés (49 unpublished relevés for the study area, and 70 published relevés for central Italy. We detected the most serious conservation problems in the middle and lower course of the Biferno river: the past use of river terraces for agriculture and continual human interventions on the river water flow have drastically reduced the riparian forests of Molise. Our results show that in areas in which forest structure and floristic composition have been substantially modified, certain alien plant species, particularly Robinia pseudoacacia, Amorpha fruticosa and Erigeron canadensis, have spread extensively along rivers. In the management of riparian forests, actions aimed at maintaining the stratification of the forest, its uneven-agedness and tree species richness may help to ensure the conservation status, as well as favour the restoration, of habitat 92A0.

  15. Larval habitat for the avian malaria vector culex quinquefasciatus (Diptera: Culicidae) in altered mid-elevation mesic-dry forests in Hawai'i

    Science.gov (United States)

    Reiter, M.E.; Lapointe, D.A.

    2009-01-01

    Effective management of avian malaria (Plasmodium relictum) in Hawai'i's endemic honeycreepers (Drepanidinae) requires the identification and subsequent reduction or treatment of larval habitat for the mosquito vector, Culex quinquefasciatus (Diptera: Culicidae). We conducted ground surveys, treehole surveys, and helicopter aerial surveys from 20012003 to identify all potential larval mosquito habitat within two 100+ ha mesic-dry forest study sites in Hawai'i Volcanoes National Park, Hawai'i; 'Ainahou Ranch and Mauna Loa Strip Road. At 'Ainahou Ranch, anthropogenic sites (43%) were more likely to contain mosquitoes than naturally occurring (8%) sites. Larvae of Cx. quinquefasciatus were predominately found in anthropogenic sites while Aedes albopictus larvae occurred less frequently in both anthropogenic sites and naturally-occurring sites. Additionally, moderate-size (???20-22,000 liters) anthropogenic potential larval habitat had >50% probability of mosquito presence compared to larger- and smaller-volume habitat (malaria, may be controlled by larval habitat reduction in the mesic-dry landscapes of Hawai'i where anthropogenic sources predominate.

  16. Study on the morphology and agroecology of creat (Andrographis panculata ness. in various habitat

    Directory of Open Access Journals (Sweden)

    BAMBANG PUJIASMANTO

    2007-10-01

    Full Text Available Raw material supply which still depends on nature has caused genetic erotion of medicinal plants. The objectives of the research were to study creat (Andrographis paniculata Ness. morphology; and agroecology in many habitat for cultivated be medical substance. The research were conducted at three different locations, ie. at lowland ( 700 m asl.. The result showed that creat growth on 180 m – 861 m above sea level with environmental conditions : temperature 20.320C – 26.930C, relative humidity 78% - 87%, perticipation 2053.2 mm/ year – 3555.6 mm/ year. The creat can growth on soil mineral that contains N medium, P low, K medium, Mg low, Ca verylow until low ,C organic low until medium, and pH less acid until acid. The heihgt plant of creat in middleland is the highest of in lowland and upland, that also leaf of creat. The flower, fruit, and root of creat as good as in the habitat various. The highest andrographolid contain in middleland (2.27%, whereas in lowland (1.37% and upland (0.89%.

  17. Balancing the risks of habitat alteration and environmental contamination in a contaminated forested wetland

    International Nuclear Information System (INIS)

    Bleiler, J.A.; Daukas, G.; Richardson, N.

    1994-01-01

    The North Lawrence Oil Dump Site (NLODS) is an inactive hazardous waste site located adjacent to an extensive palustrine forested wetland in upstate New York. Waste oil and oil sludge were disposed of in a lagoon adjacent to the wetland during the 1960s. During periods of high water, oils escaped from the lagoon and were transported into the wetlands. High concentrations of lead and PCBs were detected in NLODS wetland sediments, and contaminants from the site were present in wetland's plant and animal tissues. However, contaminated portions of the wetlands appear to be physically undisturbed and provide high quality wildlife habitat. The results of an ecological risk assessment indicated that lead and PCB contamination in NLODS sediment may be impacting some components of the wetlands community. The risk management process considered both the toxicological risks associated with lead and PCB contamination, as well as the significant habitat destruction risks associated with remediation. Six potential PCB target cleanup levels were evaluated. Following removal of sediments with PCB contamination greater than 0.5 mg/kg, 3.5 acres of sediment with lead contamination in excess of 250 mg/kg (the New York State ''Severe Effect Level'') would remain. More than 1.5 of these acres would contain lead concentrations in excess of 1,000 mg/kg. Reducing lead levels to background concentrations would require more than 50 acres of wetlands alteration. The Record of Decision at the NLODS recognized the high quality habitat provided by the site's wetlands, and attempted to balance the risks from habitat alteration with the risks of environmental contamination

  18. Flora, life form and chorology of Box trees (Buxus hyrcana habitats in forests of the Farim area of Sari

    Directory of Open Access Journals (Sweden)

    Seyedeh Samira Soleymanipour

    2015-07-01

    Full Text Available This study intends to present floristic-physiognomic investigation of Box trees (Buxus hyrcana of the Farim area of Sari. All of species in the area were recorded by two methods field-walk and 60 releves with an area of 400 m2 in a systematic-selective design in two elevation classes, more and less than 1200 m above sea level implemented. Our results showed that the flora of this region includes 47 families, 67 genera, and 77 species. Phanerophytes (37.7%, Cryptophytes (32.5% and Hemicryptophytes (24.7% were the most important structure groups of the local biological spectrum according to Raunkiaer method, and also with increasing elevation, portions of Hemicryptophytes and Cryptophytes increased and decreased, respectively. Chorological studies showed that chorotype form Euro-Sibria was the most important phytochorion in two habitats. The correlation of environment variables with two first axes of DCA showed that elevation of sea level and dominance average (canopy percentage of Box trees had decisive role on the vegetation composition and mean richness of species (Hill N0 index. Also, Jackknife estimation results confirmed that species richness in habitats with elevation more than 1200 m (75.8 species had a higher level compared to habitats with elevation less than 1200 m (58.6 species because of decreasing box trees dominance. Totally, the results of the present study not only confirmed the ecological capacity of Box trees in developing up to 1700 m in mountain forests of north Iran, but also the association of box trees with some plants of high regions with steep slope of north Hyrcanian forests such as: Acer mazandaranicum, Carpinus schuschaensis and Taxus baccata, can be introduced as two new syntaxa including Taxus baccata- Buxus hyrcana and Carpinus schuschaensis- Buxus hyrcana in Hyrcanian forests.

  19. Controls on soil solution nitrogen along an altitudinal gradient in the Scottish uplands.

    Science.gov (United States)

    Jackson-Blake, L; Helliwell, R C; Britton, A J; Gibbs, S; Coull, M C; Dawson, L

    2012-08-01

    Nitrogen (N) deposition continues to threaten upland ecosystems, contributing to acidification, eutrophication and biodiversity loss. We present results from a monitoring study aimed at investigating the fate of this deposited N within a pristine catchment in the Cairngorm Mountains (Scotland). Six sites were established along an elevation gradient (486-908 m) spanning the key habitats of temperate maritime uplands. Bulk deposition chemistry, soil carbon content, soil solution chemistry, soil temperature and soil moisture content were monitored over a 5 year period. Results were used to assess spatial variability in soil solution N and to investigate the factors and processes driving this variability. Highest soil solution inorganic N concentrations were found in the alpine soils at the top of the hillslope. Soil carbon stock, soil solution dissolved organic carbon (DOC) and factors representing site hydrology were the best predictors of NO(3)(-) concentration, with highest concentrations at low productivity sites with low DOC and freely-draining soils. These factors act as proxies for changing net biological uptake and soil/water contact time, and therefore support the hypothesis that spatial variations in soil solution NO(3)(-) are controlled by habitat N retention capacity. Soil percent carbon was a better predictor of soil solution inorganic N concentration than mass of soil carbon. NH(4)(+) was less affected by soil hydrology than NO(3)(-) and showed the effects of net mineralization inputs, particularly at Racomitrium heath and peaty sites. Soil solution dissolved organic N concentration was strongly related to both DOC and temperature, with a stronger temperature effect at more productive sites. Due to the spatial heterogeneity in N leaching potential, a fine-scale approach to assessing surface water vulnerability to N leaching is recommended over the broad scale, critical loads approach currently in use, particularly for sensitive areas. Copyright © 2012

  20. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    Science.gov (United States)

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  1. 75 FR 19575 - Endangered and Threatened Wildlife and Plants; Revised Critical Habitat for Navarretia fossalis

    Science.gov (United States)

    2010-04-15

    ... (PCE 2), and the topography and soils that support ponding during winter and spring months (PCE 3). The... and upland habitats that act as the local watershed (PCE 2), and the topography and soils that support... businesses (13 CFR 121.201). Small businesses include manufacturing and mining concerns with fewer than 500...

  2. Temporal mapping of deforestation and forest degradation in Nepal: Applications to forest conservation

    NARCIS (Netherlands)

    Panta, M.; Kim, K.; Joshi, C.

    2008-01-01

    Deforestation and forest degradation are associated and progressive processes resulting in the conversion of forest area into a mosaic of mature forest fragments, pasture, and degraded habitat. Monitoring of forest landscape spatial structures has been recommended to detect degenerative trends in

  3. Habitat association and conservation implications of endangered Francois' langur (Trachypithecus francoisi.

    Directory of Open Access Journals (Sweden)

    Yajie Zeng

    Full Text Available Francois' langur (Trachypithecus francoisi is an endangered primate and endemic to the limestone forests of the tropical and subtropical zone of northern Vietnam and South-west China with a population of about 2,000 individuals. Conservation efforts are hampered by limited knowledge of habitat preference in its main distribution area. We surveyed the distribution of Francois' langur and modeled the relationship between the probability of use and habitat features in Mayanghe National Nature Reserve, Guizhou, China. The main objectives of this study were to provide quantitative information on habitat preference, estimating the availability of suitable habitat, and providing management guidelines for the effective conservation of this species. By comparing 92 used locations with habitat available in the reserve, we found that Francois' langur was mainly distributed along valleys and proportionally, used bamboo forests and mixed conifer-broadleaf forests more than their availability, whereas they tended to avoid shrubby areas and coniferous forests. The langur tended to occur at sites with lower elevation, steeper slope, higher tree canopy density, and a close distance to roads and water. The habitat occupancy probability was best modeled by vegetation type, vegetation coverage, elevation, slope degree, distances to nearest water, paved road, and farmland edge. The suitable habitat in this reserve concentrated in valleys and accounted for about 25% of the total reserve area. Our results showed that Francois' langur was not only restricted at the landscapes level at the regions with karst topography, limestone cliffs, and caves, but it also showed habitat preference at the local scale. Therefore, the protection and restoration of the langur preferred habitats such as mixed conifer-broadleaf forests are important and urgent for the conservation of this declining species.

  4. Prioritizing tropical habitats for long-distance migratory songbirds: an assessment of habitat quality at a stopover site in Colombia

    Directory of Open Access Journals (Sweden)

    Nicholas J. Bayly

    2016-12-01

    Full Text Available Long-distance migratory birds are declining globally and migration has been identified as the primary source of mortality in this group. Despite this, our lack of knowledge of habitat use and quality at stopovers, i.e., sites where the energy for migration is accumulated, remains a barrier to designing appropriate conservation measures, especially in tropical regions. There is therefore an urgent need to assess stopover habitat quality and concurrently identify efficient and cost-effective methods for doing so. Given that fuel deposition rates directly influence stopover duration, departure fuel load, and subsequent speed of migration, they are expected to provide a direct measure of habitat quality and have the advantage of being measurable through body-mass changes. Here, we examined seven potential indicators of quality, including body-mass change, for two ecologically distinct Neotropical migratory landbirds on stopover in shade-coffee plantations and tropical humid premontane forest during spring migration in Colombia: (1 rate of body-mass change; (2 foraging rate; (3 recapture rate; (4 density; (5 flock size; (6 age and sex ratios; and (7 body-mass distribution. We found higher rates of mass change in premontane forest than in shade-coffee in Tennessee Warbler Oreothlypis peregrina, a difference that was mirrored in higher densities and body masses in forest. In Gray-cheeked Thrush Catharus minimus, a lack of recaptures in shade-coffee and higher densities in forest, also suggested that forest provided superior fueling conditions. For a reliable assessment of habitat quality, we therefore recommend using a suite of indicators, taking into account each species' ecology and methodological considerations. Our results also imply that birds stopping over in lower quality habitats may spend a longer time migrating and require more stopovers, potentially leading to important carryover effects on reproductive fitness. Evaluating habitat quality is

  5. Consequences of habitat fragmentation on genetic structure of Chamaedorea alternans (Arecaceae) palm populations in the tropical rain forests of Los Tuxtlas, Veracruz, Mexico

    OpenAIRE

    Peñaloza-Ramírez, Juan Manuel; Aguilar-Amezquita, Bernardo; Núñez-Farfán, Juan; Pérez-Nasser, Nidia; Albarrán-Lara, Ana Luisa; Oyama, Ken

    2016-01-01

    Abstract: Chamaedorea alternans is a palm species that has suffered from selective extraction, and habitat loss. We collected 11 populations from fragmented and conserved forest. We assess genetic variation of C. alternans, genetic exchange, differentiation, bottlenecks, effective population size and signals of natural selection. Genetic diversity was higher in conserved than in fragmented forest but not significant. Fragmentation did not play a significant role in genetic diversity, possibly...

  6. KEANEKARAGAMAN JENIS BURUNG PADA BERBAGAI TIPE HABITAT BESERTA GANGGUANNYA DI HUTAN PENELITIAN DRAMAGA, BOGOR, JAWA BARAT

    Directory of Open Access Journals (Sweden)

    Asep Saefullah

    2016-01-01

    Full Text Available Dramaga Research Forest, located in the outskirt of Bogor, provides a good habitat for birds. This research was aimed to study bird diversity, identifying habitat characteristics (around the forest path, along house edge, riparian habitat and the interior area and recorded the activities of the local people around the forest. Point count, MacKinnon list, habitat profiling and interviews were conducted. The highest index of species diversity (Shannon-Wiener index was at interior area (2.34, followed by around the forest path (2.21, along house edge (1.97 and riparian habitat (1.86. The highest species richness was at riparian habitat (27 species, the forest path had 21 species, along house edge had 26 species, while the interior area was a home for 21 bird species. The highest similarity (0.81 was between forest path and interior area. On the activities of the local people, the most often was firewood harvesting. Other activities were hunting for cage birds, harvesting ferns, harvesting wild fruit and harvesting ant larvae. Activity that might disrupt the bird population was hunting. Keywords: Diversity,Dramaga Research Forest, human activities.

  7. Resilience of Alaska’s boreal forest to climatic change

    Science.gov (United States)

    Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.

    2010-01-01

    This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  8. Habitat degradation may affect niche segregation patterns in lizards

    Science.gov (United States)

    Pelegrin, N.; Chani, J. M.; Echevarria, A. L.; Bucher, E. H.

    2013-08-01

    Lizards partition resources in three main niche dimensions: time, space and food. Activity time and microhabitat use are strongly influenced by thermal environment, and may differ between species according to thermal requirements and tolerance. As thermal characteristics are influenced by habitat structure, microhabitat use and activity of lizards can change in disturbed habitats. We compared activity and microhabitat use of two abundant lizard species of the Semi-arid Chaco of Argentina between a restored and a highly degraded Chaco forest, to determine how habitat degradation affects lizard segregation in time and space, hypothesizing that as activity and microhabitat use of lizards are related to habitat structure, activity and microhabitat use of individual species can be altered in degraded habitats, thus changing segregation patterns between them. Activity changed from an overlapped pattern in a restored forest to a segregated pattern in a degraded forest. A similar trend was observed for microhabitat use, although to a less extent. No correlation was found between air temperature and lizard activity, but lizard activity varied along the day and among sites. Contrary to what was believed, activity patterns of neotropical diurnal lizards are not fixed, but affected by multiple factors related to habitat structure and possibly to interspecific interactions. Changes in activity patterns and microhabitat use in degraded forests may have important implications when analyzing the effects of climate change on lizard species, due to synergistic effects.

  9. Stream water responses to timber harvest: Riparian buffer width effectiveness

    Science.gov (United States)

    Barton D. Clinton

    2011-01-01

    Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...

  10. Design of forest bird monitoring for strategic habitat conservation on Kaua'i Island, Hawai'i

    Science.gov (United States)

    Camp, Richard J.; Gorresen, P. Marcos

    2011-01-01

    This report was commissioned by the U.S. Fish and Wildlife Service (USFWS). The purpose was to develop a monitoring program for Kaua`i forest birds in the USFWS Strategic Habitat Conservation and adaptive management frameworks. Monitoring within those frameworks is a tool to assess resource responses to management and conservation actions, and through an iterative learning process improve our understanding of species recovery, effective management, and knowledge gaps. This report provides only the monitoring component of both frameworks, and we apply the monitoring program to the East Alaka`i Protective Fence Project.

  11. Generation of Transcript Assemblies and Identification of Single Nucleotide Polymorphisms from Seven Lowland and Upland Cultivars of Switchgrass

    Directory of Open Access Journals (Sweden)

    Kevin L. Childs

    2014-07-01

    Full Text Available Switchgrass is a North American perennial prairie species that has been used as a rangeland and forage crop and has recently been targeted as a potential biofuel feedstock species. Switchgrass, which occurs as tetraploid and octoploid forms, is classified into lowland or upland ecotypes that differ in growth phenotypes and adaptation to distinct habitats. Using RNA-sequencing (RNA-seq reads derived from crown, young shoot, and leaf tissues, we generated sequence data from seven switchgrass cultivars, three lowland and four upland, to enable comparative analyses between switchgrass cultivars and to identify single nucleotide polymorphisms (SNPs for use in breeding and genetic analysis. We also generated individual transcript assemblies for each of the cultivars. Transcript data indicate that subgenomes of octoploid switchgrass are not substantially different from subgenomes of tetraploids as expected for an autopolyploid origin of switchgrass octoploids. Using RNA-seq reads aligned to the switchgrass Release 0 AP13 reference genome, we identified 1,305,976 high-confidence SNPs. Of these SNPs, 438,464 were unique to lowland cultivars, but only 12,002 were found in all lowlands. Conversely, 723,678 SNPs were unique to upland cultivars, with only 34,665 observed in all uplands. Comparison of our high-confidence transcriptome-derived SNPs with SNPs previously identified in a genotyping-by-sequencing (GBS study of an association panel revealed limited overlap between the two methods, highlighting the utility of transcriptome-based SNP discovery in augmenting genome diversity polymorphism datasets. The transcript and SNP data described here provide a useful resource for switchgrass gene annotation and marker-based analyses of the switchgrass genome.

  12. Susceptibility of eastern U.S. habitats to invasion of Celastrus orbiculatus (oriental bittersweet) following fire

    Science.gov (United States)

    Leicht-Young, Stacey A.; Pavlovic, Noel B.; Grundel, Ralph

    2013-01-01

    Fire effects on invasive species are an important land management issue in areas subjected to prescribed fires as well as wildfires. These effects on invasive species can be manifested across life stages. The liana Celastrus orbiculatus (oriental bittersweet) is a widespread invader of eastern US habitats including those where fire management is in practice. This study examined if prescribed fire makes these habitats more susceptible to invasion of C. orbiculatus by seed at Indiana Dunes National Lakeshore. Four treatments (control, litter removed, high and low intensity fire) were applied in six habitat types (sand savanna/woodland, sand prairie, moraine prairie, sand oak forest, beech-maple forest, and oak-hickory forest) and germinating seedlings were tracked over two growing seasons. Treatment did not have a significant effect on the germination, survival, or biomass of C. orbiculatus. However, habitat type did influence these responses mostly in the first growing season. Moraine prairie, beech-maple forest, and oak-hickory forests had the greatest peak percentage of germinants. Moraine prairie had significantly greater survival than oak forest and savanna habitats. Control plots with intact litter, and the moraine prairie habitat had the tallest seedlings at germination, while tallest final heights and greatest aboveground biomass were highest in oak forest. Thus, fire and litter removal did not increase the susceptibility of these habitats to germination and survival of C. orbiculatus. These results indicate that most eastern US habitats are vulnerable to invasion by this species via seed regardless of the level or type of disturbance to the litter layer.

  13. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

    Science.gov (United States)

    Tarr, Nathan M.; Rubino, Matthew J.; Costanza, Jennifer K.; McKerrow, Alexa; Collazo, Jaime A.; Abt, Robert C.

    2016-01-01

    Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state-and-transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business-as-usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub-associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose-grown feedstocks. The conversion of agricultural lands on marginal soils to purpose-grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape-scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade-offs among wildlife species, and the choice of focal species is likely to affect the results of landscape-scale assessments. We offer general principals

  14. Bird migration patterns in the arid southwest-Final report

    Science.gov (United States)

    Ruth, Janet M.; Felix, Rodney K.; Dieh, Robert H.

    2010-01-01

    habitat types at all sites in at least one season. Upland forest habitat in parts of Arizona and New Mexico supported high migrant densities, especially in fall. Developed habitats in areas with little upland forest habitat also supported high migrant densities. Scrub/shrub and grassland habitats supported low to intermediate migrant densities, but because these habitat types dominate the region, they may support large numbers of migratory birds. This may be especially true for species that do not use forested habitats during migration. Target identity remains a challenge for radar-based studies. Presence of bats in the data complicates interpretation of some observations, particularly from central Texas. Based on our results it is simplistic to: (1) consider the arid west as a largely inhospitable landscape in which there are only relatively small oases of habitat that provide the resources needed by all migrants; (2) think of western riparian and upland forest habitat as supporting the majority of migrants in all cases; or (3) consider a particular habitat type unimportant migrant stopover habitat based solely on migrant densities.

  15. Amazonian forest restoration: an innovative system for native species selection based on phenological data and performance indices

    Science.gov (United States)

    Oliver H. Knowles; John A. Parrotta

    1995-01-01

    One hundred and sixty taxa of upland moist forest trees were studied with reference to their suitability for forest restoration on bauxite mined Iands in western Para State, Brazil. Over a 14-year period, field observations in native primary forests, nursery studies, and evaluations of over 600 ha of mixed-species reforestation areas were used to characterize fruiting...

  16. Trunk structural traits explain habitat use of a tree-dwelling spider (Selenopidae) in a tropical forest

    Science.gov (United States)

    Villanueva-Bonilla, German Antonio; Salomão, Adriana Trevizoli; Vasconcellos-Neto, João

    2017-11-01

    Habitat selection by spiders may be strongly influenced by biotic, climatic, and physical factors. However, it has been shown that the selection of habitats by generalist predators (like spiders) is regulated more by the physical structure of the habitat than by prey availability. Yet, the preferences of spiders in relation to plants or plant traits remain poorly explored. In a remnant of the Atlantic forest in Brazil, the spider Selenops cocheleti is frequently detected on the trunks of plants from the Myrtaceae family. Here, we investigated quantitatively and experimentally whether the colonization of trees by S. cocheleti is related to plant species or the presence of specific structures on trunks. We found that S. cocheleti preferentially occurred on plants of the family Myrtaceae. This spider was also strongly associated with trees that have smooth trunks and/or exfoliating bark. Non-Myrtaceae plants that were occupied by this species have exfoliating bark (e.g., Piptadenia gonoacantha) or deep fissures on the trunk (e.g., the exotic species Pinus elliottii). Our results indicate that the selection of host plants by S. cocheleti is not species-specific, but based on the structural characteristics of plants. Trunks with exfoliating bark may benefit spiders by providing shelter against predators and harsh climatic conditions. Smooth surfaces might allow rapid movements, facilitating both attacks on preys and escape from predators. Our study emphasizes the importance of the physical structure of the habitat on spider's distribution. Future studies investigating how specific plant characteristics influence prey acquisition and predator avoidance would improve our understanding of habitat selection by these animals.

  17. Forests Regenerating after Clear-Cutting Function as Habitat for Bryophyte and Lichen Species of Conservation Concern

    Science.gov (United States)

    Rudolphi, Jörgen; Gustafsson, Lena

    2011-01-01

    The majority of managed forests in Fennoscandia are younger than 70 years old but yet little is known about their potential to host rare and threatened species. In this study, we examined red-listed bryophytes and lichens in 19 young stands originating from clear-cutting (30–70 years old) in the boreal region, finding 19 red-listed species (six bryophytes and 13 lichens). We used adjoining old stands, which most likely never had been clear-cut, as reference. The old stands contained significantly more species, but when taking the amount of biological legacies (i.e., remaining deciduous trees and dead wood) from the previous forest generation into account, bryophyte species number did not differ between old and young stands, and lichen number was even higher in young stands. No dispersal effect could be detected from the old to the young stands. The amount of wetlands in the surroundings was important for bryophytes, as was the area of old forest for both lichens and bryophytes. A cardinal position of young stands to the north of old stands was beneficial to red-listed bryophytes as well as lichens. We conclude that young forest plantations may function as habitat for red-listed species, but that this depends on presence of structures from the previous forest generation, and also on qualities in the surrounding landscape. Nevertheless, at repeated clear-cuttings, a successive decrease in species populations in young production stands is likely, due to increased fragmentation and reduced substrate amounts. Retention of dead wood and deciduous trees might be efficient conservation measures. Although priority needs to be given to preservation of remnant old-growth forests, we argue that young forests rich in biological legacies and located in landscapes with high amounts of old forests may have a conservation value. PMID:21490926

  18. Boreal Forests of Kamchatka: Structure and Composition

    OpenAIRE

    Eichhorn, Markus P.

    2010-01-01

    Central Kamchatka abounds in virgin old-growth boreal forest, formed primarily by Larix cajanderi and Betula platyphylla in varying proportions. A series of eight 0.25–0.30 ha plots captured the range of forests present in this region and their structure is described. Overall trends in both uplands and lowlands are for higher sites to be dominated by L. cajanderi with an increasing component of B. platyphylla with decreasing altitude. The tree line on wet sites is commonly formed by mono-domi...

  19. Forest nutrient and carbon pools at Walker Branch watershed: changes during a 21-year period

    Science.gov (United States)

    Carl C. Trettin; D.W. Johnson; D.E. Todd

    1999-01-01

    A 21-yr perspective on changes in nutrient and C pools on undisturbed upland forest sites is provided. Plots originally representing four cover types have been sampled three times. On each plot, forest biomass, forest floor, and soil, to a depth of 60 cm, were measured, sampled, and analyzed for Ca, Mg, C, N, and P. Exchangeable soil Ca and Mg have declined in most...

  20. Cluster fescue (Festuca paradoxa Desv.): A multipurpose native cool-season grass

    Science.gov (United States)

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; R.A. Pierce

    2005-01-01

    Native cool-season grasses (NCSG) are adapted to a wide range of habitats and environmental conditions, and cluster fescue (Festuca paradoxa Desv.) is no exception. Cluster fescue can be found in unplowed upland prairies, prairie draws, savannas, forest openings, and glades (Aiken et al. 1996). Although its range includes 23 states in the continental...

  1. Putting density back into the habitat-quality equation: case study of an open-nesting forest bird.

    Science.gov (United States)

    Pérot, Aurore; Villard, Marc-André

    2009-12-01

    Ecological traps and other cases of apparently maladaptive habitat selection cast doubt on the relevance of density as an indicator of habitat quality. Nevertheless, the prevalence of these phenomena remains poorly known, and density may still reflect habitat quality in most systems. We examined the relationship between density and two other parameters of habitat quality in an open-nesting passerine species: the Ovenbird (Seiurus aurocapilla). We hypothesized that the average individual bird makes a good decision when selecting its breeding territory and that territory spacing reflects site productivity or predation risk. Therefore, we predicted that density would be positively correlated with productivity (number of young fledged per unit area). Because individual performance is sensitive to events partly determined by chance, such as nest predation, we further predicted density would be weakly correlated or uncorrelated with the proportion of territories fledging young. We collected data in 23 study sites (25 ha each), 16 of which were located in untreated mature northern hardwood forest and seven in stands partially harvested (treated) 1-7 years prior to the survey. Density explained most of the variability in productivity (R(2)= 0.73), and there was no apparent decoupling between density and productivity in treated plots. In contrast, there was no significant relationship between density and the proportion of territories fledging >or=1 young over the entire breeding season. These results suggest that density reflects habitat quality at the plot scale in this study system. To our knowledge this is one of the few studies testing the value of territory density as an indicator of habitat quality in an open-nesting bird species on the basis of a relatively large number of sizeable study plots.

  2. Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests

    Directory of Open Access Journals (Sweden)

    Matthias Schleuning

    2012-12-01

    Full Text Available Mountain forest ecosystems in the Andes are threatened by deforestation. Increasing fire frequencies lead to fire-degraded habitats that are often characterized by a persistent fern-dominated vegetation. Little is known about the consequences of these drastic changes in habitat conditions for pollinator communities. In a rapid diversity assessment, we collected individuals of two major groups of insect pollinators (bees and butterflies/moths with pan traps and compared pollinator diversities in a spatial block design between forest interior, forest edge and adjacent fire-degraded habitats at eight sites in the Bolivian Andes. We found that bee species richness and abundance were significantly higher in fire-degraded habitats than in forest habitats, whereas species richness and abundance of butterflies/moths increased towards the forests interior. Species turnover between forest and fire-degraded habitats was very high for both pollinator groups and was reflected by an increase in the body size of bee species and a decrease in the body size of butterfly/moth species in fire-degraded habitats. We conclude that deforestation by frequent fires has profound impacts on the diversity and composition of pollinator communities. Our tentative findings suggest shifts towards bee-dominated pollinator communities in fire-degraded habitats that may have important feedbacks on the regenerating communities of insect-pollinated plant species.

  3. Selection of roosting habitat by forest bats in a diverse forested landscape

    Science.gov (United States)

    Roger W. Perry; Ronald E. Thill; David M. Leslie

    2007-01-01

    Many studies of roost selection by forest-dwelling bats have concentrated on microhabitat surrounding roosts without providing forest stand level preferences of bats; thus, those studies have provided only part of the information needed by managers. We evaluated diurnal summer roost selection by the bat community at the forest-stand level in a diversely forested...

  4. Assessment and management of dead-wood habitat

    Science.gov (United States)

    Hagar, Joan

    2007-01-01

    The Bureau of Land Management (BLM) is in the process of revising its resource management plans for six districts in western and southern Oregon as the result of the settlement of a lawsuit brought by the American Forest Resource Council. A range of management alternatives is being considered and evaluated including at least one that will minimize reserves on O&C lands. In order to develop the bases for evaluating management alternatives, the agency needs to derive a reasonable range of objectives for key issues and resources. Dead-wood habitat for wildlife has been identified as a key resource for which decision-making tools and techniques need to be refined and clarified. Under the Northwest Forest Plan, reserves were to play an important role in providing habitat for species associated with dead wood (U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, 1994). Thus, the BLM needs to: 1) address the question of how dead wood will be provided if reserves are not included as a management strategy in the revised Resource Management Plan, and 2) be able to evaluate the effects of alternative land management approaches. Dead wood has become an increasingly important conservation issue in managed forests, as awareness of its function in providing wildlife habitat and in basic ecological processes has dramatically increased over the last several decades (Laudenslayer et al., 2002). A major concern of forest managers is providing dead wood habitat for terrestrial wildlife. Wildlife in Pacific Northwest forests have evolved with disturbances that create large amounts of dead wood; so, it is not surprising that many species are closely associated with standing (snags) or down, dead wood. In general, the occurrence or abundance of one-quarter to one-third of forest-dwelling vertebrate wildlife species, is strongly associated with availability of suitable dead-wood habitat (Bunnell et al., 1999; Rose et al., 2001). In

  5. Rare Plants of the Redwood Forest and Forest Management Effects

    Science.gov (United States)

    Teresa Sholars; Clare Golec

    2007-01-01

    Coast redwood forests are predominantly a timber managed habitat type, subjected to repeated disturbances and short rotation periods. What does this repeated disturbance mean for rare plants associated with the redwood forests? Rare plant persistence through forest management activities is influenced by many factors. Persistence of rare plants in a managed landscape is...

  6. Phenotypic plasticity despite source-sink population dynamics in a long-lived perennial plant.

    Science.gov (United States)

    Anderson, Jill T; Sparks, Jed P; Geber, Monica A

    2010-11-01

    • Species that exhibit adaptive plasticity alter their phenotypes in response to environmental conditions, thereby maximizing fitness in heterogeneous landscapes. However, under demographic source-sink dynamics, selection should favor traits that enhance fitness in the source habitat at the expense of fitness in the marginal habitat. Consistent with source-sink dynamics, the perennial blueberry, Vaccinium elliottii (Ericaceae), shows substantially higher fitness and population sizes in dry upland forests than in flood-prone bottomland forests, and asymmetrical gene flow occurs from upland populations into bottomland populations. Here, we examined whether this species expresses plasticity to these distinct environments despite source-sink dynamics. • We assessed phenotypic responses to a complex environmental gradient in the field and to water stress in the glasshouse. • Contrary to expectations, V. elliottii exhibited a high degree of plasticity in foliar and root traits (specific leaf area, carbon isotope ratios, foliar nitrogen content, root : shoot ratio, root porosity and root architecture). • We propose that plasticity can be maintained in source-sink systems if it is favored within the source habitat and/or a phylogenetic artifact that is not costly. Additionally, plasticity could be advantageous if habitat-based differences in fitness result from incipient niche expansion. Our results illuminate the importance of evaluating phenotypic traits and fitness components across heterogeneous landscapes. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  7. Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest

    Science.gov (United States)

    Julia Kirschman

    2014-01-01

    Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...

  8. The energetic consequences of habitat structure for forest stream salmonids.

    Science.gov (United States)

    Naman, Sean M; Rosenfeld, Jordan S; Kiffney, Peter M; Richardson, John S

    2018-05-08

    1.Increasing habitat availability (i.e. habitat suitable for occupancy) is often assumed to elevate the abundance or production of mobile consumers; however, this relationship is often nonlinear (threshold or unimodal). Identifying the mechanisms underlying these nonlinearities is essential for predicting the ecological impacts of habitat change, yet the functional forms and ultimate causation of consumer-habitat relationships are often poorly understood. 2.Nonlinear effects of habitat on animal abundance may manifest through physical constraints on foraging that restrict consumers from accessing their resources. Subsequent spatial incongruence between consumers and resources should lead to unimodal or saturating effects of habitat availability on consumer production if increasing the area of habitat suitable for consumer occupancy comes at the expense of habitats that generate resources. However, the shape of this relationship could be sensitive to cross-ecosystem prey subsidies, which may be unrelated to recipient habitat structure and result in more linear habitat effects on consumer production. 3.We investigated habitat-productivity relationships for juveniles of stream-rearing Pacific salmon and trout (Oncorhynchus spp.), which typically forage in low-velocity pool habitats, while their prey (drifting benthic invertebrates) are produced upstream in high-velocity riffles. However, juvenile salmonids also consume subsidies of terrestrial invertebrates that may be independent of pool-riffle structure. 4.We measured salmonid biomass production in 13 experimental enclosures each containing a downstream pool and upstream riffle, spanning a gradient of relative pool area (14-80% pool). Increasing pool relative to riffle habitat area decreased prey abundance, leading to a nonlinear saturating effect on fish production. We then used bioenergetics model simulations to examine how the relationship between pool area and salmonid biomass is affected by varying levels of

  9. A protocol using coho salmon to monitor Tongass National Forest Land and Resource Management Plan standards and guidelines for fish habitat.

    Science.gov (United States)

    M.D. Bryant; Trent McDonald; R. Aho; B.E. Wright; Michelle Bourassa Stahl

    2008-01-01

    We describe a protocol to monitor the effectiveness of the Tongass Land Management Plan (TLMP) management standards for maintaining fish habitat. The protocol uses juvenile coho salmon (Oncorhynchus kisutch) in small tributary streams in forested watersheds. We used a 3-year pilot study to develop detailed methods to estimate juvenile salmonid...

  10. Northwest Forest Plan—the first 10 years (1994-2003): status and trends of populations and nesting habitat for the marbled murrelet.

    Science.gov (United States)

    Mark H. Huff; Martin G. Raphael; Sherri L. Miller; S. Kim Nelson; Jim Baldwin

    2006-01-01

    The Northwest Forest Plan (the Plan) is a large-scale ecosystem management plan for federal land in the Pacific Northwest. Marbled murrelet (Brachyramphus marmoratus) populations and habitat were monitored to evaluate effectiveness of the Plan. The chapters in this volume summarize information on marbled murrelet ecology and present the monitoring...

  11. Competition and habitat quality influence age and sex distribution in wintering rusty blackbirds.

    Science.gov (United States)

    Mettke-Hofmann, Claudia; Hamel, Paul B; Hofmann, Gerhard; Zenzal, Theodore J; Pellegrini, Anne; Malpass, Jennifer; Garfinkel, Megan; Schiff, Nathan; Greenberg, Russell

    2015-01-01

    Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus) is a forested wetland specialist wintering in bottomland hardwood forests in the south-eastern U. S. and belongs to the most steeply declining songbirds in the U.S. Little information is available to support priority birds such as the Rusty Blackbird wintering in this threatened habitat. We assessed age and sex distribution and body condition of Rusty Blackbirds among the three major habitats used by this species in the Lower Mississippi Alluvial Valley and also measured food availability. Overall, pecan groves had the highest biomass mainly driven by the amount of nuts. Invertebrate biomass was highest in forests but contributed only a small percentage to overall biomass. Age and sex classes were unevenly distributed among habitats with adult males primarily occupying pecan groves containing the highest nut biomass, females being found in forests which had the lowest nut biomass and young males primarily staying in forest fragments along creeks which had intermediate nut biomass. Males were in better body condition than females and were in slightly better condition in pecan groves. The results suggest that adult males occupy the highest quality habitat and may competitively exclude the other age and sex classes.

  12. Competition and habitat quality influence age and sex distribution in wintering rusty blackbirds.

    Directory of Open Access Journals (Sweden)

    Claudia Mettke-Hofmann

    Full Text Available Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus is a forested wetland specialist wintering in bottomland hardwood forests in the south-eastern U. S. and belongs to the most steeply declining songbirds in the U.S. Little information is available to support priority birds such as the Rusty Blackbird wintering in this threatened habitat. We assessed age and sex distribution and body condition of Rusty Blackbirds among the three major habitats used by this species in the Lower Mississippi Alluvial Valley and also measured food availability. Overall, pecan groves had the highest biomass mainly driven by the amount of nuts. Invertebrate biomass was highest in forests but contributed only a small percentage to overall biomass. Age and sex classes were unevenly distributed among habitats with adult males primarily occupying pecan groves containing the highest nut biomass, females being found in forests which had the lowest nut biomass and young males primarily staying in forest fragments along creeks which had intermediate nut biomass. Males were in better body condition than females and were in slightly better condition in pecan groves. The results suggest that adult males occupy the highest quality habitat and may competitively exclude the other age and sex classes.

  13. Conserving pollinators in North American forests: A review

    Science.gov (United States)

    James L. Hanula; Michael D. Ulyshen; Scott Horn

    2016-01-01

    Bees and butterflies generally favor open forest habitats regardless of forest type, geographic region, or methods used to create these habitats. Dense shrub layers of native or nonnative species beneath forest canopies negatively impact herbaceous plant cover and diversity, and pollinators. The presence of nonnative flowers as a source of nectar, pollen, or larval...

  14. Trophic basis of production for a mayfly in a North Island, New Zealand, forest stream : contributions of benthic versus hyporheic habitats and implications for restoration

    International Nuclear Information System (INIS)

    Collier, K.J.; Wright-Stow, A.E.; Smith, B.J.

    2004-01-01

    The leptophlebiid mayfly Acanthophlebia cruentata (Hudson) is restricted to the North Island and some associated offshore islands of northern New Zealand where it commonly occurs in benthic and hyporheic habitats of forested streams. We investigated: (1) life history; (2) secondary production in benthic and hyporheic habitats; and (3) major energy sources contributing to nutrition and production of this species in a pristine forest stream. Most nymphal size classes were present throughout the year, and emergence extended over several months, peaking from February to April. Despite apparently having extended emergence and recruitment periods, Acanthophlebia exhibited a predominantly univoltine life history. Annual benthic production (calculated by the size-frequency method) was 0.318 g dry mass (DM) m -2 year -1 , compared to 4.601 g DM m -2 year -1 in high-density benthic habitats at the tails of pools, and 34.476 g m -3 year -1 for colonisation baskets set at 15-45 cm deep in the substratum. On a habitat weighted basis averaged out over the entire sampling reach, it was estimated that 76% of annual production occurred in hyporheic habitats >10 cm below the streambed surface. Gut contents were dominated by fine particulate matter (FPM) ≤75 μm and larger inorganic material on all dates in individuals from both benthic and hyporheic habitats. Fungi were relatively abundant in guts of benthic animals collected on some dates, whereas spores and pollen were relatively common food items in both habitats on occasions. Analysis of the trophic basis of production, based on gut contents and assumed assimilation and net production efficiencies, indicated that benthic secondary production was supported largely by fungi (48% of production) and FPM (37%), whereas FPM supported a higher level of hyporheic production (52%) than fungi (27%). Although stable carbon isotope values suggested dependence on epilithon, the enriched δ 15 N values for this food source implicated the

  15. Spatial and Temporal Habitat Use of an Asian Elephant in Sumatra

    Directory of Open Access Journals (Sweden)

    Todd K. Fuller

    2013-07-01

    Full Text Available Increasingly, habitat fragmentation caused by agricultural and human development has forced Sumatran elephants into relatively small areas, but there is little information on how elephants use these areas and thus, how habitats can be managed to sustain elephants in the future. Using a Global Positioning System (GPS collar and a land cover map developed from TM imagery, we identified the habitats used by a wild adult female elephant (Elephas maximus sumatranus in the Seblat Elephant Conservation Center, Bengkulu Province, Sumatra during 2007–2008. The marked elephant (and presumably her 40–60 herd mates used a home range that contained more than expected medium canopy and open canopy land cover. Further, within the home range, closed canopy forests were used more during the day than at night. When elephants were in closed canopy forests they were most often near the forest edge vs. in the forest interior. Effective elephant conservation strategies in Sumatra need to focus on forest restoration of cleared areas and providing a forest matrix that includes various canopy types.

  16. Groundwater connectivity of upland-embedded wetlands in the Prairie Pothole Region

    Science.gov (United States)

    Neff, Brian; Rosenberry, Donald O.

    2018-01-01

    Groundwater connections from upland-embedded wetlands to downstream waterbodies remain poorly understood. In principle, water from upland-embedded wetlands situated high in a landscape should flow via groundwater to waterbodies situated lower in the landscape. However, the degree of groundwater connectivity varies across systems due to factors such as geologic setting, hydrologic conditions, and topography. We use numerical models to evaluate the conditions suitable for groundwater connectivity between upland-embedded wetlands and downstream waterbodies in the prairie pothole region of North Dakota (USA). Results show groundwater connectivity between upland-embedded wetlands and other waterbodies is restricted when these wetlands are surrounded by a mounding water table. However, connectivity exists among adjacent upland-embedded wetlands where water–table mounds do not form. In addition, the presence of sand layers greatly facilitates groundwater connectivity of upland-embedded wetlands. Anisotropy can facilitate connectivity via groundwater flow, but only if it becomes unrealistically large. These findings help consolidate previously divergent views on the significance of local and regional groundwater flow in the prairie pothole region.

  17. Habitat Use and Selection by Giant Pandas

    Science.gov (United States)

    Hull, Vanessa; Zhang, Jindong; Huang, Jinyan; Zhou, Shiqiang; Viña, Andrés; Shortridge, Ashton; Li, Rengui; Liu, Dian; Xu, Weihua; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2016-01-01

    Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca). We constructed spatial autoregressive resource utilization functions (RUF) to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types) at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking. PMID:27627805

  18. Habitat Use and Selection by Giant Pandas.

    Directory of Open Access Journals (Sweden)

    Vanessa Hull

    Full Text Available Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca. We constructed spatial autoregressive resource utilization functions (RUF to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking.

  19. Effects of past logging and grazing on understory plant communities in a montane Colorado forest

    Science.gov (United States)

    Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stohlgren, T.J.

    2009-01-01

    Throughout Pinus ponderosa-Pseudotsuga menziesii forests of the southern Colorado Front Range, USA, intense logging and domestic grazing began at the time of Euro-American settlement in the late 1800s and continued until the early 1900s. We investigated the long-term impacts of these settlement-era activities on understory plant communities by comparing understory composition at a historically logged and grazed site to that of an environmentally similar site which was protected from past use. We found that species richness and cover within functional groups rarely differed between sites in either upland or riparian areas. Multivariate analyses revealed little difference in species composition between sites on uplands, though compositional differences were apparent in riparian zones. Our findings suggest that settlement-era logging and grazing have had only minor long-term impacts on understories of upland Front Range P. ponderosa-P. menziesii forests, though they have had a greater long-term influence on riparian understories, where these activities were likely the most intense. ?? 2008 Springer Science+Business Media B.V.

  20. Organotin compounds in precipitation, fog and soils of a forested ecosystem in Germany

    International Nuclear Information System (INIS)

    Huang, J.-H.; Schwesig, David; Matzner, Egbert

    2004-01-01

    Organotin compounds (OTC) are highly toxic pollutants and have been mostly investigated so far in aquatic systems and sediments. The concentrations and fluxes of different organotin compounds, including methyl-, butyl-, and octyltin species in precipitation and fog were investigated in a forested catchment in NE Bavaria, Germany. Contents, along with the vertical distribution and storages in two upland and two wetland soils were determined. During the 1-year monitoring, the OTC concentrations in bulk deposition, throughfall and fog ranged from 1 ng Sn l -1 to several ten ng Sn l -1 , but never over 200 ng Sn l -1 . The OTC concentrations in fog were generally higher than in throughfall and bulk deposition. Mono-substituted species were the dominant Sn species in precipitation (up to 190 ng Sn l -1 ) equaling a flux of up to 70 mg Sn ha -1 a -1 . In upland soils, OTC contents peaked in the forest floor (up to 30 ng Sn g -1 ) and decreased sharply with the depth. In wetland soils, OTC had slightly higher contents in the upper horizons. The dominance of mono-substituted species in precipitation is well reflected in the contents and storages of OTC in both upland and wetland soils. The ratios of OTC soil storages to the annual throughfall flux ranged from 20 to 600 years. These high ratios are probably due to high stability and low mobility of OTC in soils. No evidence was found for methylation of tin in the wetland soils. In comparison with sediments, concentrations and contents of organotin in forest soils are considerably lower, and the dominant species are less toxic. It is concluded that forested soils may act as sinks for OTC deposited from the atmosphere. - Forested soils may act as sinks for atmospherically deposited organotin compounds

  1. Ranging, Activity and Habitat Use by Tigers in the Mangrove Forests of the Sundarban.

    Directory of Open Access Journals (Sweden)

    Dipanjan Naha

    Full Text Available The Sundarban of India and Bangladesh (about 6000 km² are the only mangrove forests inhabited by a sizeable population of tigers. The adjoining area also supports one of the highest human densities and experiences severe human-tiger conflicts. We used GPS-Satellite and VHF radio-collars on 6 (3 males and 3 female tigers to study their ranging patterns and habitat preference. The average home range (95% Fixed Kernel for resident females was 56.4 (SE 5.69 and for males it was 110 (SE 49 km². Tigers crossed an average of 5 water channels > 30 meters per day with a mean width of 54 meters, whereas channels larger than 400 meters were rarely crossed. Tigers spent over 58% of their time within Phoenix habitat but compositional analysis showed a habitat preference of the order Avicennia-Sonneratia > Phoenix > Ceriops > Barren > Water. Average daily distance moved was 4.6 km (range 0.1-23. Activity of tigers peaked between 05:00 hours and 10:00 hours showing some overlap with human activity. Territory boundaries were demarcated by large channels which tigers intensively patrolled. Extra caution should be taken while fishing or honey collection during early morning in Avicennia-Sonneratia and Phoenix habitat types along wide channels to reduce human-tiger conflict. Considering home-range core areas as exclusive, tiger density was estimated at 4.6 (SE range 3.6 to 6.7 tigers/100 km2 giving a total population of 76 (SE range 59-110 tigers in the Indian Sundarban. Reluctance of tigers to cross wide water channels combined with increasing commercial boat traffic and sea level rise due to climate change pose a real threat of fragmenting the Sundarban tiger population.

  2. Avian diversity in forest gaps of Kibale Forest National Park, Uganda

    African Journals Online (AJOL)

    been conducted in forest gaps, particularly in Africa. It is likely that gap ... of gaps used by elephants was significantly greater in the logged forest than ... 1996). Consequently, gaps are considered as keystone habitats for such species.

  3. POPULASI DAN HABITAT Nepenthes ampullaria Jack. DI CAGAR ALAM MANDOR, KALIMANTAN BARAT

    Directory of Open Access Journals (Sweden)

    Maysarah .

    2017-04-01

    Full Text Available Nepenthes ampullaria Jack. is a species which adapted on the nutrient-poor areas in Mandor nature reserve.  Its could be increasing the quality of Mandor nature reserve as protected area. This research aims to study the population and habitat of N. ampullaria in the Mandor nature reserve. This study was conducted at two habitats, heath forest and peat swamp forest. Observations were made on, population abundance and habitat factors of  N. ampullaria. The results showed that the highest population density of N. ampullaria was in heath forest. Their are growth in groups. Vegetation analysis showed that constituent species habitat of N. ampullaria consist of 69 species from 39 familly. Result of identification to insects showed Formicidae is dominant family that trapped in pitcher of N. ampullaria. Temperature and humidity in N. ampullaria’s habitat has been switable for requirements growth of pitcher plant. Rainfall during the study was normally. Ratio of sand and soil on both affected the improvement of individual N. ampullaria in Mandor nature reserve. Keywords: habitat, Mandor nature reserve, Nepenthes ampullaria Jack, population

  4. Plastic debris retention and exportation by a mangrove forest patch

    International Nuclear Information System (INIS)

    Ivar do Sul, Juliana A.; Costa, Monica F.; Silva-Cavalcanti, Jacqueline S.; Araújo, Maria Christina B.

    2014-01-01

    Highlights: • Estuaries and mangrove forests are rarely studied for marine plastic debris loads. • Types of plastic items and mangrove forest habitats determine the potential of debris retention. • Mangrove habitats are temporary sinks of plastic debris from river and marine origins. • Plastics rapidly accumulate in mangrove forest, but are exported slowly. • Fauna and fishers using mangrove forest habitats are at risk of interaction with plastic debris. -- Abstract: An experiment observed the behavior of selected tagged plastic items deliberately released in different habitats of a tropical mangrove forest in NE Brazil in late rainy (September) and late dry (March) seasons. Significant differences were not reported among seasons. However, marine debris retention varied among habitats, according to characteristics such as hydrodynamic (i.e., flow rates and volume transported) and relative vegetation (Rhizophora mangle) height and density. The highest grounds retained significantly more items when compared to the borders of the river and the tidal creek. Among the used tagged items, PET bottles were more observed and margarine tubs were less observed, being easily transported to adjacent habitats. Plastic bags were the items most retained near the releasing site. The balance between items retained and items lost was positive, demonstrating that mangrove forests tend to retain plastic marine debris for long periods (months-years)

  5. Breeding bird populations and habitat associations within the Savannah River Site (SRS).

    Energy Technology Data Exchange (ETDEWEB)

    Gauthreaux, Sidney, A.; Steven J. Wagner.

    2005-06-29

    Gauthreaux, Sidney, A., and Steven J. Wagner. 2005. Breeding bird populations and habitat associations within the Savannah River Site (SRS). Final Report. USDA Forest Service, Savannah River, Aiken, SC. 48 pp. Abstract: During the 1970's and 1980's a dramatic decline occurred in the populations of Neotropical migratory birds, species that breed in North America and winter south of the border in Central and South America and in the Caribbean. In 1991 an international initiative was mounted by U. S. governmental land management agencies, nongovernmental conservation agencies, and the academic and lay ornithological communities to understand the decline of Neotropical migratory birds in the Americas. In cooperation with the USDA Forest Service - Savannah River (FS - SR) we began 1992 a project directed to monitoring population densities of breeding birds using the Breeding Bird Census (BBC) methodology in selected habitats within the Savannah River Site SRS. In addition we related point count data on the occurrence of breeding Neotropical migrants and other bird species to the habitat data gathered by the Forest Inventory and Analysis (FIA) program of the USDA Forest Service and data on habitat treatments within forest stands.

  6. Threshold responses of forest birds to landscape changes around exurban development.

    Directory of Open Access Journals (Sweden)

    Marcela Suarez-Rubio

    Full Text Available Low-density residential development (i.e., exurban development is often embedded within a matrix of protected areas and natural amenities, raising concern about its ecological consequences. Forest-dependent species are particularly susceptible to human settlement even at low housing densities typical of exurban areas. However, few studies have examined the response of forest birds to this increasingly common form of land conversion. The aim of this study was to assess whether, how, and at what scale forest birds respond to changes in habitat due to exurban growth. We evaluated changes in habitat composition (amount and configuration (arrangement for forest and forest-edge species around North America Breeding Bird Survey (BBS stops between 1986 and 2009. We used Threshold Indicator Taxa Analysis to detect change points in species occurrence at two spatial extents (400-m and 1-km radius buffer. Our results show that exurban development reduced forest cover and increased habitat fragmentation around BBS stops. Forest birds responded nonlinearly to most measures of habitat loss and fragmentation at both the local and landscape extents. However, the strength and even direction of the response changed with the extent for several of the metrics. The majority of forest birds' responses could be predicted by their habitat preferences indicating that management practices in exurban areas might target the maintenance of forested habitats, for example through easements or more focused management for birds within existing or new protected areas.

  7. Using Remote Sensing and Random Forest to Assess the Conservation Status of Critical Cerrado Habitats in Mato Grosso do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Jason Reynolds

    2016-05-01

    Full Text Available Brazil’s Cerrado is a highly diverse ecosystem and it provides critical habitat for many species. Cerrado habitats have suffered significant degradation and decline over the past decades due to expansion of cash crops and livestock farming across South America. Approximately 1,800,000 km2 of the Cerrado remain in Brazil, but detailed maps and conservation assessments of the Cerrado are lacking. We developed a land cover classification for the Cerrado, focusing on the state of Mato Grosso do Sul, which may also be used to map critical habitat for endangered species. We used a Random Forest algorithm to perform a supervised classification on a set of Landsat 8 images. To determine habitat fragmentation for the Cerrado, we used Fragstats. A habitat connectivity analysis was performed using Linkage Mapper. Our final classification had an overall accuracy of 88%. Our classification produced higher accuracies (72% in predicting Cerrado than existing government maps. We found that remaining Cerrado habitats were severely fragmented. Four potential corridors were identified in the southwest of Mato Grosso do Sul, where large Cerrado patches are located. Only two large patches remain in Mato Grosso do Sul: one within the Kadiwéu Indian Reserve, and one near the southeastern edge of the Pantanal-dominated landscape. These results are alarming for rare species requiring larger tracts of habitat such as the giant armadillo (Priodontes maximus.

  8. Landscape Analysis of Adult Florida Panther Habitat.

    Directory of Open Access Journals (Sweden)

    Robert A Frakes

    Full Text Available Historically occurring throughout the southeastern United States, the Florida panther is now restricted to less than 5% of its historic range in one breeding population located in southern Florida. Using radio-telemetry data from 87 prime-aged (≥3 years old adult panthers (35 males and 52 females during the period 2004 through 2013 (28,720 radio-locations, we analyzed the characteristics of the occupied area and used those attributes in a random forest model to develop a predictive distribution map for resident breeding panthers in southern Florida. Using 10-fold cross validation, the model was 87.5 % accurate in predicting presence or absence of panthers in the 16,678 km2 study area. Analysis of variable importance indicated that the amount of forests and forest edge, hydrology, and human population density were the most important factors determining presence or absence of panthers. Sensitivity analysis showed that the presence of human populations, roads, and agriculture (other than pasture had strong negative effects on the probability of panther presence. Forest cover and forest edge had strong positive effects. The median model-predicted probability of presence for panther home ranges was 0.81 (0.82 for females and 0.74 for males. The model identified 5579 km2 of suitable breeding habitat remaining in southern Florida; 1399 km2 (25% of this habitat is in non-protected private ownership. Because there is less panther habitat remaining than previously thought, we recommend that all remaining breeding habitat in south Florida should be maintained, and the current panther range should be expanded into south-central Florida. This model should be useful for evaluating the impacts of future development projects, in prioritizing areas for panther conservation, and in evaluating the potential impacts of sea-level rise and changes in hydrology.

  9. Landscape Analysis of Adult Florida Panther Habitat.

    Science.gov (United States)

    Frakes, Robert A; Belden, Robert C; Wood, Barry E; James, Frederick E

    2015-01-01

    Historically occurring throughout the southeastern United States, the Florida panther is now restricted to less than 5% of its historic range in one breeding population located in southern Florida. Using radio-telemetry data from 87 prime-aged (≥3 years old) adult panthers (35 males and 52 females) during the period 2004 through 2013 (28,720 radio-locations), we analyzed the characteristics of the occupied area and used those attributes in a random forest model to develop a predictive distribution map for resident breeding panthers in southern Florida. Using 10-fold cross validation, the model was 87.5 % accurate in predicting presence or absence of panthers in the 16,678 km2 study area. Analysis of variable importance indicated that the amount of forests and forest edge, hydrology, and human population density were the most important factors determining presence or absence of panthers. Sensitivity analysis showed that the presence of human populations, roads, and agriculture (other than pasture) had strong negative effects on the probability of panther presence. Forest cover and forest edge had strong positive effects. The median model-predicted probability of presence for panther home ranges was 0.81 (0.82 for females and 0.74 for males). The model identified 5579 km2 of suitable breeding habitat remaining in southern Florida; 1399 km2 (25%) of this habitat is in non-protected private ownership. Because there is less panther habitat remaining than previously thought, we recommend that all remaining breeding habitat in south Florida should be maintained, and the current panther range should be expanded into south-central Florida. This model should be useful for evaluating the impacts of future development projects, in prioritizing areas for panther conservation, and in evaluating the potential impacts of sea-level rise and changes in hydrology.

  10. Degradation of male and female rufous-and-white wren songs in a tropical forest: effects of sex, perch height, and habitat

    DEFF Research Database (Denmark)

    Barker, Nicole K.S.; Dabelsteen, Torben; Mennill, Daniel J.

    2009-01-01

    We performed a song transmission experiment to investigate the effects of distance, song post height, receiver perch height, signaller sex, and microhabitat on song degradation in rufous-and-white wrens (Thryothorus rufalbus), a neotropical duetting songbird. We quantified the effects of these fa......We performed a song transmission experiment to investigate the effects of distance, song post height, receiver perch height, signaller sex, and microhabitat on song degradation in rufous-and-white wrens (Thryothorus rufalbus), a neotropical duetting songbird. We quantified the effects...... of these factors on excess attenuation, signal-to-noise ratio, tail-to-signal ratio, and blur ratio of male and female songs. As expected, song degradation increased with distance between signaller and receiver. Songs transmitted best when emitted from moderate heights (5-7 m), although this pattern varied....... Rufous-and-white wren songs appeared more attenuated in open field than forest habitats, but microhabitat conditions within the forests exerted a strong influence on song degradation. These findings match previous studies showing an effect of distance, song post height, and habitat, but contrast...

  11. Using genetic profiles of African forest elephants to infer population structure, movements, and habitat use in a conservation and development landscape in Gabon

    NARCIS (Netherlands)

    Eggert, L. S.; Buij, R.; Lee, M. E.; Campbell, P.; Dallmeier, F.; Fleischer, R. C.; Alonso, A.; Maldonado, J. E.

    Conservation of wide-ranging species, such as the African forest elephant (Loxodonta cyclotis), depends on fully protected areas and multiple-use areas (MUA) that provide habitat connectivity. In the Gamba Complex of Protected Areas in Gabon, which includes 2 national parks separated by a MUA

  12. using genetic profiles of african forest elephants to infer population structure, movements, and habitat use in a conservation and development landscape in gabon

    NARCIS (Netherlands)

    Eggert, L.S.; Buij, R.; Lee, M.E.; Campbell, P.; Dallmeier, F.; Fleischer, R.C.; Alonso, A.; Maldonado, J.

    2014-01-01

    Conservation of wide-ranging species, such as the African forest elephant (Loxodonta cyclotis), depends on fully protected areas and multiple-use areas (MUA) that provide habitat connectivity. In the Gamba Complex of Protected Areas in Gabon, which includes 2 national parks separated by a MUA

  13. Deriving habitat models for northern long-eared bats from historical detection data: A case study using the Fernow Experimental Forest

    Science.gov (United States)

    Ford, W. Mark; Silvis, Alexander; Rodrigue, Jane L.; Kniowski, Andrew B.; Johnson, Joshua B.

    2016-01-01

    The listing of the northern long-eared bat (Myotis septentrionalis) as federally threatened under the Endangered Species Act following severe population declines from white-nose syndrome presents considerable challenges to natural resource managers. Because the northern long-eared bat is a forest habitat generalist, development of effective conservation measures will depend on appropriate understanding of its habitat relationships at individual locations. However, severely reduced population sizes make gathering data for such models difficult. As a result, historical data may be essential in development of habitat models. To date, there has been little evaluation of how effective historical bat presence data, such as data derived from mist-net captures, acoustic detection, and day-roost locations, may be in developing habitat models, nor is it clear how models created using different data sources may differ. We explored this issue by creating presence probability models for the northern long-eared bat on the Fernow Experimental Forest in the central Appalachian Mountains of West Virginia using a historical, presence-only data set. Each presence data type produced outputs that were dissimilar but that still corresponded with known traits of the northern long-eared bat or are easily explained in the context of the particular data collection protocol. However, our results also highlight potential limitations of individual data types. For example, models from mist-net capture data only showed high probability of presence along the dendritic network of riparian areas, an obvious artifact of sampling methodology. Development of ecological niche and presence models for northern long-eared bat populations could be highly valuable for resource managers going forward with this species. We caution, however, that efforts to create such models should consider the substantial limitations of models derived from historical data, and address model assumptions.

  14. Managing for Caribou Survival in a Partitioned Habitat

    Directory of Open Access Journals (Sweden)

    H.G. Cumming

    1996-01-01

    Full Text Available Forest management guidelines for woodland caribou (Rangifer tarandus caribou in Ontario need to be re-examined in light of the finding that caribou partition habitat with moose (Alces alces, partly to find virtual refuges from predation by gray wolves (Canis lupus. Forest-wide guidelines seem inappropriate for a species that is widely scattered and little known. Management should concentrate on and around currently used virtual refuges to ensure their continued habitability. Cutting these areas may force the caribou into places with higher densities of predators; winter use of roads might bring poachers, increased wolf entry, and accidents. A proposal for 100 km2 clear-cuts scheduled over 60+ years across the forest landscape would probably minimize moose/wolf densities in the long run as intended, but because of habitat partitioning might forfeit any benefits to caribou in the short-term. Sharply reducing moose densities near areas where caribou have sought refuge might incline wolves to switch to caribou. Cutting beyond caribou winter refuge areas should aim at maintaining current moose densities to prevent wolves from switching prey species. Operations level manipulation of the forest around each wintering area should provide winter habitat for the future, while treatment replications with controls across the whole forest would provide reliable knowledge about which approaches work best. The remainder of the forest should be managed to maintain suitable densities of all other species.

  15. Pollination and reproduction of a self-incompatible forest herb in hedgerow corridors and forest patches.

    Science.gov (United States)

    Schmucki, Reto; de Blois, Sylvie

    2009-07-01

    Habitat-corridors are assumed to counteract the negative impacts of habitat loss and fragmentation, but their efficiency in doing so depends on the maintenance of ecological processes in corridor conditions. For plants dispersing in linear habitats, one of these critical processes is the maintenance of adequate pollen transfer to insure seed production within the corridor. This study focuses on a common, self-incompatible forest herb, Trillium grandiflorum, to assess plant-pollinator interactions and the influence of spatial processes on plant reproduction in hedgerow corridors compared to forests. First, using pollen supplementation experiments over 2 years, we quantified the extent of pollen limitation in both habitats, testing the prediction of greater limitation in small hedgerow populations than in forests. While pollen limitation of fruit and seed set was common, its magnitude did not differ between habitats. Variations among sites, however, suggested an influence of landscape context on pollination services. Second, we examined the effect of isolation on plant reproduction by monitoring fruit and seed production, as well as pollinator activity and assemblage, in small flower arrays transplanted in hedgerows at increasing distances from forest and from each other. We detected no difference in the proportion of flowers setting fruit or in pollinator activity with isolation, but we observed some differences in pollinator assemblages. Seed set, on the other hand, declined significantly with increasing isolation in the second year of the study, but not in the first year, suggesting altered pollen transfer with distance. Overall, plants in hedgerow corridors and forests benefited from similar pollination services. In this system, plant-pollinator interactions and reproduction seem to be influenced more by variations in resource distribution over years and landscapes than by local habitat conditions.

  16. Mosquito Vector Diversity across Habitats in Central Thailand Endemic for Dengue and Other Arthropod-Borne Diseases

    Science.gov (United States)

    Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

    2013-01-01

    Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an

  17. Key tiger habitats in the Garo Hills of Meghalaya

    Science.gov (United States)

    Ashish Kumar; Bruce G. Marcot

    2010-01-01

    We describe assumed tiger habitat characteristics and attempt to identify potential tiger habitats in the Garo Hills region of Meghalaya, North East India. Conserving large forest tracts and protected wildlife habitats provides an opportunity for restoring populations of wide-ranging wildlife such as tigers and elephants. Based on limited field observations coupled...

  18. The effect of wildfire and clear-cutting on above-ground biomass, foliar C to N ratios and fiber content throughout succession: Implications for forage quality in woodland caribou (Rangifer tarandus caribou)

    Science.gov (United States)

    Mallon, E. E.; Turetsky, M.; Thompson, I.; Noland, T. L.; Wiebe, P.

    2013-12-01

    Disturbance is known to play an important role in maintaining the productivity and biodiversity of boreal forest ecosystems. Moderate to low frequency disturbance is responsible for regeneration opportunities creating a mosaic of habitats and successional trajectories. However, large-scale deforestation and increasing wildfire frequencies exacerbate habitat loss and influence biogeochemical cycles. This has raised concern about the quality of the under-story vegetation post-disturbance and whether this may impact herbivores, especially those vulnerable to change. Forest-dwelling caribou (Rangifer tarandus caribou) are declining in several regions of Canada and are currently listed as a species at risk by COSEWIC. Predation and landscape alteration are viewed as the two main threats to woodland caribou. This has resulted in caribou utilizing low productivity peatlands as refuge and the impact of this habitat selection on their diet quality is not well understood. Therefore there are two themes in the study, 1) Forage quantity: above-ground biomass and productivity and 2) Forage quality: foliar N and C to N ratios and % fiber. The themes are addressed in three questions: 1) How does forage quantity and quality vary between upland forests and peatlands? 2) How does wildfire affect the availability and nutritional quality of forage items? 3) How does forage quality vary between sites recovering from wildfire versus timber harvest? Research sites were located in the Auden region north of Geraldton, ON. This landscape was chosen because it is known woodland caribou habitat and has thorough wildfire and silviculture data from the past 7 decades. Plant diversity, above-ground biomass, vascular green area and seasonal foliar fiber and C to N ratios were collected across a matrix of sites representing a chronosequence of time since disturbance in upland forests and peatlands. Preliminary findings revealed productivity peaked in early age stands (0-30 yrs) and biomass peaked

  19. Ecological consequences of forest elephant declines for Afrotropical forests.

    Science.gov (United States)

    Poulsen, John R; Rosin, Cooper; Meier, Amelia; Mills, Emily; Nuñez, Chase L; Koerner, Sally E; Blanchard, Emily; Callejas, Jennifer; Moore, Sarah; Sowers, Mark

    2017-10-27

    Poaching is rapidly extirpating African forest elephants (Loxodonta cyclotis) from most of their historical range, leaving vast areas of elephant-free tropical forest. Elephants are ecological engineers that create and maintain forest habitat; thus, their loss will have large consequences for the composition and structure of Afrotropical forests. Through a comprehensive literature review, we evaluated the roles of forest elephants in seed dispersal, nutrient recycling, and herbivory and physical damage to predict the cascading ecological effects of their population declines. Loss of seed dispersal by elephants will favor tree species dispersed abiotically and by smaller dispersal agents, and tree species composition will depend on the downstream effects of changes in elephant nutrient cycling and browsing. Loss of trampling and herbivory of seedlings and saplings will result in high tree density with release from browsing pressures. Diminished seed dispersal by elephants and high stem density are likely to reduce the recruitment of large trees and thus increase homogeneity of forest structure and decrease carbon stocks. The loss of ecological services by forest elephants likely means Central African forests will be more like Neotropical forests, from which megafauna were extirpated thousands of years ago. Without intervention, as much as 96% of Central African forests will have modified species composition and structure as elephants are compressed into remaining protected areas. Stopping elephant poaching is an urgent first step to mitigating these effects, but long-term conservation will require land-use planning that incorporates elephant habitat into forested landscapes that are being rapidly transformed by industrial agriculture and logging. © 2017 Society for Conservation Biology.

  20. 2001 annual report for the Pend Oreille wetlands wildlife mitigation projects; ANNUAL

    International Nuclear Information System (INIS)

    Entz, Ray D.

    2001-01-01

    The Pend Oreille Wetlands project consists of two adjacent parcels totaling about 600 acres. The parcels make up the northern boundary of the Kalispel Indian Reservation, and is also adjacent to the Pend Oreille River about 25 miles north of Newport and Albeni Falls Dam (Figure 1). Located in the Selkirk Mountains in Pend Oreille County Washington, the project is situated on an active floodplain, increasing its effectiveness as mitigation for Albeni Falls Dam. The combination of the River, wetlands and the north-south alignment of the valley have resulted in an important migratory waterfowl flyway. Washington Department of Fish and Wildlife and Kalispel Natural Resource Department have designated both project sites as priority habitats. Seven habitat types exist on the project properties and include four wetland habitats (open water, emergent, and scrub-shrub and forested), riparian deciduous forest, upland mixed coniferous forest and floodplain meadow. Importance of the project to wildlife is further documented by the occurrence of an active Bald Eagle nest aerie

  1. Differential Habitat Use or Intraguild Interactions: What Structures a Carnivore Community?

    Directory of Open Access Journals (Sweden)

    Matthew E Gompper

    Full Text Available Differential habitat use and intraguild competition are both thought to be important drivers of animal population sizes and distributions. Habitat associations for individual species are well-established, and interactions between particular pairs of species have been highlighted in many focal studies. However, community-wide assessments of the relative strengths of these two factors have not been conducted. We built multi-scale habitat occupancy models for five carnivore taxa of New York's Adirondack landscape and assessed the relative performance of these models against ones in which co-occurrences of potentially competing carnivore species were also incorporated. Distribution models based on habitat performed well for all species. Black bear (Ursus americanus and fisher (Martes pennanti distribution was similar in that occupancy of both species was negatively associated with paved roads. However, black bears were also associated with larger forest fragments and fishers with smaller forest fragments. No models with habitat features were more supported than the null habitat model for raccoons (Procyon lotor. Martens (Martes americana were most associated with increased terrain ruggedness and elevation. Weasel (Mustela spp. occupancy increased with the cover of deciduous forest. For most species dyads habitat-only models were more supported than those models with potential competitors incorporated. The exception to this finding was for the smallest carnivore taxa (marten and weasel where habitat plus coyote abundance models typically performed better than habitat-only models. Assessing this carnivore community as whole, we conclude that differential habitat use is more important than species interactions in maintaining the distribution and structure of this carnivore guild.

  2. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest.

    Science.gov (United States)

    Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K

    2014-09-01

    Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG-CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle.

  3. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change

    Science.gov (United States)

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2011-01-01

    We present an approach to modeling potential climate-driven changes in habitat for tree and bird species in the eastern United States. First, we took an empirical-statistical modeling approach, using randomForest, with species abundance data from national inventories combined with soil, climate, and landscape variables, to build abundance-based habitat models for 134...

  4. Invasion establishment and habitat suitability of Chromolaena odorata (L. King and Robinson over time and space in the western Himalayan forests of India

    Directory of Open Access Journals (Sweden)

    Gautam Mandal

    2014-12-01

    Full Text Available Habitat suitability assessment of the invasive species Chromolaena odorata (L. King and Robinson from Himalayan forests reveals some interesting findings and conclusions. At different study sites, 29 of 72 species were exotic and invasive and comprised 21 genera and eight families. Indigenous species accounted for 59% of the total species and comprised 26 genera and 11 families. Perennials outnumbered the annuals in all study sites. Chromolaena odorata and Lantana camara L. were the only invasive species that were common to all sites with high importance value index values. The present work reveals that sites with high biotic pressure, maximum temperature variation, open forest canopy, and free from herbivory are the most suitable habitat for the growth of C. odorata. An elevated level of phosphorus, potassium, magnesium, soil organic matter, and nitrogen and acidic soil in all invaded sites are possible reasons for further invasion of C. odorata.

  5. Environmental variation and habitat separation among small mammals

    International Nuclear Information System (INIS)

    Vickery, W.L.; Iverson, S.L.; Mihok, S.; Schwartz, B.

    1989-01-01

    Habitat use and population density of five species of forest small mammals were monitored by annual spring snap-trap censuses at Pinawa, Manitoba, over 14 years. Population sizes were positively correlated among species and showed no evidence of density-dependent effects. Species were habitat selectors. Habitat use by species did not vary among years. Habitat separation between the dominant species was not correlated with environmental variables or with population size. We suggest that habitat selection and positive covariance among species abundances are the principal factors characterizing the dynamics of this community

  6. Targeting incentives to reduce habitat fragmentation

    Science.gov (United States)

    David Lewis; Andrew Plantinga; Junjie Wu

    2009-01-01

    This article develops a theoretical model to analyze the spatial targeting of incentives for the restoration of forested landscapes when wildlife habitat can be enhanced by reducing fragmentation. The key theoretical result is that the marginal net benefits of increasing forest can be convex, in which case corner solutions--converting either none or all of the...

  7. Maladaptive habitat selection of a migratory passerine bird in a human-modified landscape.

    Directory of Open Access Journals (Sweden)

    Franck A Hollander

    Full Text Available In human-altered environments, organisms may preferentially settle in poor-quality habitats where fitness returns are lower relative to available higher-quality habitats. Such ecological trapping is due to a mismatch between the cues used during habitat selection and the habitat quality. Maladaptive settlement decisions may occur when organisms are time-constrained and have to rapidly evaluate habitat quality based on incomplete knowledge of the resources and conditions that will be available later in the season. During a three-year study, we examined settlement decision-making in the long-distance migratory, open-habitat bird, the Red-backed shrike (Lanius collurio, as a response to recent land-use changes. In Northwest Europe, the shrikes typically breed in open areas under a management regime of extensive farming. In recent decades, Spruce forests have been increasingly managed with large-size cutblocks in even-aged plantations, thereby producing early-successional vegetation areas that are also colonised by the species. Farmland and open areas in forests create mosaics of two different types of habitats that are now occupied by the shrikes. We examined redundant measures of habitat preference (order of settlement after migration and distribution of dominant individuals and several reproductive performance parameters in both habitat types to investigate whether habitat preference is in line with habitat quality. Territorial males exhibited a clear preference for the recently created open areas in forests with higher-quality males settling in this habitat type earlier. Reproductive performance was, however, higher in farmland, with higher nest success, offspring quantity, and quality compared to open areas in forests. The results showed strong among-year consistency and we can therefore exclude a transient situation. This study demonstrates a case of maladaptive habitat selection in a farmland bird expanding its breeding range to human

  8. Transient habitats limit development time for periodical cicadas.

    Science.gov (United States)

    Karban, Richard

    2014-01-01

    Periodical cicadas (Magicicada spp.) mature in 13 or 17 years, the longest development times for any non-diapausing insects. Selection may favor prolonged development since nymphs experience little mortality and individuals taking 17 years have been shown to have greater fecundity than those taking 13 years. Why don't periodical cicadas take even longer to develop? Nymphs feed on root xylem fluid and move little. Ovipositing females prefer fast-growing trees at forest edges. I hypothesized that (1) adults emerging at edges would be heavier than those from forest interiors and (2) habitat changes could limit development time. I collected newly eclosed females that had neither fed as adults nor moved from their site of development. For M. septendecim, females from edges were 4.9% heavier than those from the interior. I assumed that emergence density indicated habitat quality and measured density at eight sites in 1979, 1996, and 2013. Over three generations, variation in densities was great; densities at two sites crashed, and at one site they exploded to 579/m2 Habitat transience may limit development time because only adults can reassess habitats and reposition offspring. In conclusion, cicadas are affected by habitat characteristics, habitats change over 17 years, and cicadas may emerge, mate, and redistribute their offspring to track habitat dynamics.

  9. Private lands habitat programs benefit California's native birds

    Directory of Open Access Journals (Sweden)

    Ryan T. DiGaudio

    2015-10-01

    Full Text Available To address the loss of wetlands and riparian forests in California, private lands habitat programs are available through U.S. federal and state government agencies to help growers, ranchers and other private landowners create and enhance wildlife habitat. The programs provide financial and technical assistance for implementing conservation practices. To evaluate the benefits of these programs for wildlife, we examined bird use of private wetlands, postharvest flooded croplands and riparian forests enrolled in habitat programs in the Central Valley and North Coast regions of California. We found that private Central Valley wetlands supported 181 bird species during the breeding season. During fall migration, postharvest flooded croplands supported wetland-dependent species and a higher density of shorebirds than did semipermanent wetlands. At the riparian sites, bird species richness increased after restoration. These results demonstrated that the programs provided habitat for the species they were designed to protect; a variety of resident and migratory bird species used the habitats, and many special status species were recorded at the sites.

  10. Habitat preferences of ground beetle (Coleoptera: Carabidae) species in the northern Black Hills of South Dakota.

    Science.gov (United States)

    Bergmann, David J; Brandenburg, Dylan; Petit, Samantha; Gabel, Mark

    2012-10-01

    Ground beetles (Coleoptera: Carabidae) are a major component of terrestrial invertebrate communities and have been used as bioindicators of habitat change and disturbance. The Black Hills of South Dakota is a small area with a high biodiversity, but the ground beetles of this region are little studied. The habitat preferences of ground beetles in the Black Hills are unknown, and baseline data must be collected if these beetles are to be used in the future as bioindicators. Ground beetles (Coleoptera: Carabidae) were collected from pitfall traps at two sites in each of five kinds of habitats (grassland, bur oak-ironwood forests, ponderosa pine-common juniper forests, aspen-pine forests, and a spruce forest) from which habitat structure characteristics and plant abundance data also were collected. In total, 27 species of ground beetles were identified. Although some species, such as Dicaelus sculptilis Say were found in most habitats, other species showed distinct habitat preferences: Poecilus lucublandus (Say) preferred oak forests, Pasimachus elongatus LeConte preferred grasslands, and Calathus ingratus Dejean preferred high-elevation aspen-pine forests. Pterostichus adstrictus Escholtz was found only in woodlands, and Carabus taedatus Say strictly in higher elevation (over 1,500 m) aspen or coniferous woods, and may represent relict populations of boreal species. Elevation, exposure to sunlight, and cover of woody plants strongly influence the structure of carabid communities in the Black Hills.

  11. Wildlife inventory of oil sand leases 12, 13 and 34

    International Nuclear Information System (INIS)

    Skinner, D.L.

    1996-01-01

    Results of a preliminary study to assess wildlife abundance and distribution on Syncrude's proposed oil sand leases 12, 13 and 34 were presented. The objective of the study was to determine the relative abundance and habitat preferences of different wildlife species. Aerial and track count surveys were conducted in winter. The abundance of hooved animals was determined using an aerial survey of the entire Syncrude area which is composed of conifer-dominated lowlands. Results of the surveys showed that wildlife abundance in the study area was typical of the Fort McMurray region. Thirteen habitat types were identified, including 2 types of upland deciduous forest, mixed wood forest, 4 types of coniferous forest, 2 types of wetland community, 3 types of riparian community and cleared peatland. The distribution of mammals in the study area was presented. This included distribution of hooved animals, small herbivores, large carnivores, small carnivores, and other furbearers. The habitat utilization of each wildlife species was discussed. Several habitat types were preferred by at least one species. Very few species were associated with deciduous and mixed wood forest. It was noted that winter track counts may not be indicative of habitat preferences and distribution during other important periods such as breeding and natal seasons. 69 refs., 12 tabs., 13 figs

  12. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    José Carlos Morante-Filho

    Full Text Available Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists and specific food resources (frugivores and insectivores to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%. At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.

  13. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    Science.gov (United States)

    Morante-Filho, José Carlos; Faria, Deborah; Mariano-Neto, Eduardo; Rhodes, Jonathan

    2015-01-01

    Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.

  14. Structure and resilience of fungal communities in Alaskan boreal forest soils

    Science.gov (United States)

    D. Lee Taylor; Ian C. Herriott; Kelsie E. Stone; Jack W. McFarland; Michael G. Booth; Mary Beth Leigh

    2010-01-01

    This paper outlines molecular analyses of soil fungi within the Bonanza Creek Long Term Ecological Research program. We examined community structure in three studies in mixed upland, black spruce (Picea mariana (Mill.) BSP), and white spruce (Picea glauca (Moench) Voss) forests and examined taxa involved in cellulose...

  15. Plant component features of forest-bog ecotones of eutrophic paludification in the south of boreal forest zone of West Siberia

    Science.gov (United States)

    Klimova, N. V.; Chernova, N. A.; Pologova, N. N.

    2018-03-01

    Paludified forests formed in transitional forest-bog zone aren’t studied enough, inspite of its high expected diversity and large areas in the south of boreal forest zone of West Siberia. In this article wet birch (Betula pubescens) forests of forest-bog ecotones of eutrophic paludification are investigated on Vasyugan plain with nutrient-rich calcareous clays as soil-forming rocks. Species diversity and ecocoenotic structure of these phytocoenoses are discussed. They correlated with wetness and nutrient-availability of habitats evaluated with indicator values of plants. The participation of hydrophylous species is increasing as wetness of habitats increasing in the forest-to-bog direction like in mesotrophic paludification series. However the number of species is higher in the phytocoenoses of eutrophic paludification. The share of species required to nutrient availability is also higher, both in number and in abundance. A lot of these species are usual for eutrophic boreal forested swamps with groundwater input and absent in forests of mesotrophic paludification. Accordingly the nutrient-availability of habitats is also higher. All these features we connect with birch to be a forest forming species instead of dark-coniferous and with the influence of nutrient-rich parent rocks, which is evident in forest-bog ecotones of Vasyugan plain gradually decreasing together with peat horizon thickening.

  16. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  17. Floristic composition and community structure of epiphytic angiosperms in a terra firme forest in central Amazonia

    Directory of Open Access Journals (Sweden)

    Mariana Victória Irume

    2013-06-01

    Full Text Available This survey aimed to describe the floristic composition and structure of the epiphytic community occurring in a terra firme forest in the city of Coari, Brazil, in the Amazon region. Data collection was performed with a 1.5 ha plot method, with which upland, slope and lowland habitats were sampled. All angiosperm epiphytes and their host plants (diameter at breast height > 10 cm were sampled. We recorded 3.528 individuals in 13 families, 48 genera and 164 species. Araceae was the most prevalent family with regard to the importance value and stood out in all related parameters, followed by Bromeliaceae, Cyclanthaceae and Orchidaceae. The species with the highest epiphytic importance values were Guzmania lingulata (L. Mez. and Philodendron linnaei Kunth. The predominant life form was hemiepiphytic. Estimated floristic diversity was 3.2 (H'. The studied epiphytic community was distributed among 727 host plants belonging to 40 families, 123 genera and 324 species. One individual of Guarea convergens T.D. Penn. was the host with the highest richness and abundance of epiphytes. Stems/trunks of host plants were the most colonized segments, and the most favorable habitat for epiphytism was the lowlands, where 84.1% of species and 48.2% of epiphytic specimens were observed.

  18. Red River Wildlife Management Area HEP Report, Habitat Evaluation Procedures, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    2004-11-01

    A habitat evaluation procedures (HEP) analysis conducted on the 314-acre Red River Wildlife Management Area (RRWMA) managed by the Idaho Department of Fish and Game resulted in 401.38 habitat units (HUs). Habitat variables from six habitat suitability index (HSI) models, comprised of mink (Mustela vison), mallard (Anas platyrhynchos), common snipe (Capella gallinago), black-capped chickadee (Parus altricapillus), yellow warbler (Dendroica petechia), and white-tailed deer (Odocoileus virginianus), were measured by Regional HEP Team (RHT) members in August 2004. Cover types included wet meadow, riverine, riparian shrub, conifer forest, conifer forest wetland, and urban. HSI model outputs indicate that the shrub component is lacking in riparian shrub and conifer forest cover types and that snag density should be increased in conifer stands. The quality of wet meadow habitat, comprised primarily of introduced grass species and sedges, could be improved through development of ephemeral open water ponds and increasing the amount of persistent wetland herbaceous vegetation e.g. cattails (Typha spp.) and bulrushes (Scirpus spp.).

  19. Long-term patterns of fruit production in five forest types of the South Carolina upper coastal plain

    International Nuclear Information System (INIS)

    Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles; Mccarty, John P.; Pearson, Scott F.

    2012-01-01

    Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995–2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly (Pinus taeda) and longleaf pine (P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual number of fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 ± 37,444 fruits; 12,009 ± 2,392 g/ha), upland hardwoods (60,769 ± 7,667 fruits; 5,079 ± 529 g/ha), and bottomland hardwoods (65,614 ± 8,351 fruits; 4,621 ± 677 g/ha), and lowest in longleaf pine (44,104 ± 8,301 fruits; 4,102 ± 877 g/ha) and loblolly (39,532 ± 5,034 fruits; 3,261 ± 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995–2003). Fruit availability was highest June–September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. As a result, land managers could enhance fruit

  20. Nesting Ecology of Wood Thrush (Turdidae: Passeriformes) in Hardwood Forests of South Carolina

    Science.gov (United States)

    Robert A. Sargent; John C. Kilgo; Brian R. Chapman; Karl V. Miller

    2003-01-01

    We studied nesting success of the Wood Thrush (Hylocichla mustelina) in bottomland and upland hardwood forests in South Carolina. Twenty-one of 26 nests (80.8%) were located in bottomland sites, and 76.2% of these nests were in narrow (

  1. Adoption Study Of Seed Priming Technology In Upland Rice ...

    African Journals Online (AJOL)

    Adoption study was carried out during 2003 cropping season on randomly selected 83 farmers out of the 300 that participated in the upland rice seed priming technology transfer between year 2000 – 2002 to determine the impact of the technology on upland rice production in five States of Nigeria, through the use of ...

  2. Mapping tropical dry forest habitats integrating Landsat NDVI, Ikonos imagery, and topographic information in the Caribbean Island of Mona

    Directory of Open Access Journals (Sweden)

    Sebastián Martinuzzi

    2008-06-01

    Full Text Available Assessing the status of tropical dry forest habitats using remote sensing technologies is one of the research priorities for Neotropical forests. We developed a simple method for mapping vegetation and habitats in a tropical dry forest reserve, Mona Island, Puerto Rico, by integrating the Normalized Difference vegetation Index (NDvI from Landsat, topographic information, and high-resolution Ikonos imagery. The method was practical for identifying vegetation types in areas with a great variety of plant communities and complex relief, and can be adapted to other dry forest habitats of the Caribbean Islands. NDvI was useful for identifying the distribution of forests, woodlands, and shrubland, providing a natural representation of the vegetation patterns on the island. The use of Ikonos imagery allowed increasing the number of land cover classes. As a result, sixteen land-cover types were mapped over the 5 500 ha area, with a kappa coefficient of accuracy equal to 79 %. This map is a central piece for modeling vertebrate species distribution and biodiversity patterns by the Puerto Rico Gap Analysis Project, and it is of great value for assisting research and management actions in the island. Rev. Biol. Trop. 56 (2: 625-639. Epub 2008 June 30.El estudio y evaluación de los bosques tropicales secos mediante herramientas de teledetección es una de las prioridades de investigación en los ambientes neotropicales. Desarrollamos una metodología simple para mapear la vegetación de la isla de Mona, Puerto Rico, mediante el uso del índice de vegetación normalizado (NDVI por sus siglas en inglés de Landsat, información topográfica, e imágenes auxiliares de alta resolución Ikonos. La metodología fue útil para identificar las clases de vegetación en un área de gran variedad de comunidades vegetales y relieve complejo, y puede ser adaptada a otras regiones de bosque seco de las islas del Caribe. El NDVI permitió identificar la distribución de

  3. Strategies for monitoring terrestrial animals and habitats

    Science.gov (United States)

    Richard Holthausen; Raymond L. Czaplewski; Don DeLorenzo; Greg Hayward; Winifred B. Kessler; Pat Manley; Kevin S. McKelvey; Douglas S. Powell; Leonard F. Ruggiero; Michael K. Schwartz; Bea Van Horne; Christina D. Vojta

    2005-01-01

    This General Technical Report (GTR) addresses monitoring strategies for terrestrial animals and habitats. It focuses on monitoring associated with National Forest Management Act planning and is intended to apply primarily to monitoring efforts that are broader than individual National Forests. Primary topics covered in the GTR are monitoring requirements; ongoing...

  4. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient.

    Science.gov (United States)

    Vanbergen, Adam J; Watt, Allan D; Mitchell, Ruth; Truscott, Anne-Marie; Palmer, Stephen C F; Ivits, Eva; Eggleton, Paul; Jones, T Hefin; Sousa, José Paulo

    2007-09-01

    Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates-species with small range sizes-is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km(2)) and local (up to 200 m(2)) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together

  5. Habitat quality of the woolly spider monkey (Brachyteles hypoxanthus).

    Science.gov (United States)

    da Silva Júnior, Wilson Marcelo; Alves Meira-Neto, João Augusto; da Silva Carmo, Flávia Maria; Rodrigues de Melo, Fabiano; Santana Moreira, Leandro; Ferreira Barbosa, Elaine; Dias, Luiz Gustavo; da Silva Peres, Carlos Augusto

    2009-01-01

    This study examines how habitat structure affects the home range use of a group of Brachyteles hypoxanthus in the Brigadeiro State Park, Brazil. It has been reported that most of the annual feeding time of woolly spider monkeys is spent eating leaves, but they prefer fruits when available. We hypothesise that the protein-to-fibre ratio (PF; best descriptor of habitat quality for folivorous primates) is a better descriptor of habitat quality and abundance for these primates than the structural attributes of forests (basal area is the best descriptor of habitat quality for frugivorous primates of Africa and Asia). We evaluated plant community structure, successional status, and PF of leaf samples from the dominant tree populations, both within the core and from a non-core area of the home range of our study group. Forest structure was a combination of stem density and basal area of dominant tree populations. The core area had larger trees, a higher forest basal area, and higher stem density than the non-core area. Mean PF did not differ significantly between these sites, although PF was influenced by differences in tree regeneration guilds. Large-bodied monkeys could be favoured by later successional stages of forests because larger trees and denser stems prevent the need for a higher expenditure of energy for locomotion as a consequence of vertical travel when the crowns of trees are disconnected in early successional forests. Forest structure variables (such as basal area of trees) driven by succession influence woolly spider monkey abundance in a fashion similar to frugivorous monkeys of Asia and Africa, and could explain marked differences in ranging behaviour and home range use by B. hypoxanthus. Copyright 2009 S. Karger AG, Basel.

  6. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    Directory of Open Access Journals (Sweden)

    Nicholas John Deacon

    Full Text Available Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses.High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation.Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by

  7. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    Science.gov (United States)

    Deacon, Nicholas John; Cavender-Bares, Jeannine

    2015-01-01

    Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses. High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation. Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by examining a common

  8. Habitat differences in dung beetle assemblages in an African savanna-forest ecotone: implications for secondary seed dispersal.

    Science.gov (United States)

    Kunz, Britta K; Krell, Frank-Thorsten

    2011-06-01

    The probability and pattern of secondary seed dispersal by dung beetles (Scarabaeinae) depend on their community structure and composition at the site of primary deposition, which, in turn, seem to be strongly determined by vegetation. Consequently, we expected pronounced differences in secondary seed dispersal between forest and savanna in the northern Ivory Coast, West Africa. We found 99 dung beetle species at experimentally exposed dung piles of the olive baboon (Papio anubis (Lesson, 1827)), an important primary seed disperser in West Africa. Seventy-six species belonged to the roller and tunneler guilds, which are relevant for secondary seed dispersal. Most species showed a clear habitat preference. Contrary to the Neotropics, species number and abundance were much higher in the savanna than in the forest. Rollers and tunnelers each accounted for approximately 50% of the individuals in the savanna, but in the forest rollers made up only 4%. Seeds deposited into the savanna by an omnivorous primary disperser generally have a higher overall probability of being more rapidly dispersed secondarily by dung beetles than seeds in the forest. Also, rollers disperse seeds over larger distances. In contrast to other studies, small rollers were active in dispersal of large seeds, which were seemingly mistaken for dung balls. Our results suggest that rollers can remove seeds from any plant dispersed in primate dung in this ecosystem. © 2011 ISZS, Blackwell Publishing and IOZ/CAS.

  9. Spatial differences in hydrologic characteristics and water chemistry of a temperate coastal plain peatland: The Great Dismal Swamp, USA

    Science.gov (United States)

    Speiran, Gary K.; Wurster, Frederick C.

    2016-01-01

    Spatial differences in hydrologic processes and geochemistry across forested peatlands control the response of the wetland-community species and resiliency to natural and anthropogenic disturbances. Knowing these controls is essential to effectively managing peatlands as resilient wetland habitats. The Great Dismal Swamp is a 45,325 hectare peatland in the Atlantic Coastal Plain of Virginia and North Carolina, USA, managed by the U.S. Fish and Wildlife Service. The existing forest-species distribution is a product of timber harvesting, hydrologic alteration by canal and road construction, and wildfires. Since 2009, studies of hydrologic and geochemical controls have expanded knowledge of groundwater flow paths, water chemistry, response to precipitation events, and characteristics of the peat. Dominant hydrologic and geochemical controls include (1) the gradual slope in land surface, (2) vertical differences in the hydraulic characteristics of the peat, (3) the proximity of lateral groundwater and small stream inflows from uplands, (4) the presence of an extensive canal and road network, and (5) small, adjustable-height dams on the canals. Although upland sources provide some surface water and lateral groundwater inflow to western parts of the swamp, direct groundwater recharge by precipitation is the major source of water throughout the swamp and the only source in many areas. Additionally, the proximity and type of upland water sources affect water levels and nutrient concentrations in canal water and groundwater. Where streams are a dominant upland source, variations in groundwater levels and nutrient concentrations are greater than where recharge by precipitation is the primary water source. Where upland groundwater is a dominant source, water levels are more stable. Because the species distribution of forest communities in the Swamp is strongly influenced by these controls, swamp managers are beginning to incorporate this knowledge into forest, water, and fire

  10. Introduction to natural disturbances and historic range of variation: type, frequency, severity, and post-disturbance structure in central hardwood forests

    Science.gov (United States)

    Katie Greenberg; Beverly S. Collins; Henry McNab; Douglas K. Miller; Gary R. Wein

    2015-01-01

    EXCERPT FROM: Natural Disturbances and Historic Range Variation 2015. Throughout the history of upland hardwood forests of the Central Hardwood Region, natural disturbances have been integral to shaping forest structure and composition, and essential in maintaining diverse biotic...

  11. Floristic conservation value, nested understory floras, and the development of second-growth forest.

    Science.gov (United States)

    Spyreas, Greg; Matthews, Jeffrey W

    2006-08-01

    Nestedness analysis can reveal patterns of plant composition and diversity among forest patches. For nested floral assemblages, the plants occupying any one patch are a nested subset of the plants present in successively more speciose patches. Elimination of sensitive understory plants with human disturbance is one of several mechanisms hypothesized to generate nonrandom, nested floral distributions. Hypotheses explaining distributions of understory plants remain unsubstantiated across broad landscapes of varying forest types and disturbance histories. We sampled the vegetation of 51 floodplain and 55 upland forests across Illinois (USA) to examine how the diversity, composition, and nestedness of understory floras related to their overstory growth and structure (basal area), and their overall floristic conservation value (mean C). We found that plant assemblages were nested with respect to site species richness, such that rare plants indicated diverse forests. Floras were also nested with respect to site mean C and basal area (BA). However, in an opposite pattern from what we had expected, floras of high-BA stands were nested subsets of those of low-BA stands. A set of early-successional plants restricted to low-BA stands, and more importantly, the absence of a set of true forest plants in high-BA stands, accounted for this pattern. Additionally, we observed a decrease in species richness with increasing BA. These results are consistent with the hypothesis that recovery of true forest plants does not occur concurrently with overstory regeneration following massive anthropogenic disturbance. Nestedness by site mean C indicates that high conservation value (conservative) plants co-occur in highly diverse stands; these forests are assumed to be less disturbed historically. Because site mean C was uncorrelated with BA, BA-neutral disturbances such as livestock usage are suggested as accounting for between-site differences in mean C. When considered individually

  12. Upland and wetland vegetation establishment on coal slurry in northern Missouri

    International Nuclear Information System (INIS)

    Skeel, V.A.; Nawrot, J.R.

    1998-01-01

    Since the Cooperative Wildlife Research Laboratory's (CWRL) Mined Land Reclamation Program's first establishment of a wetland on slurry in 1976, industry, state, and federal agency interest in reclamation alternatives for inactive slurry has increased. CWRL has been involved in pre-reclamation site characterization and monitoring for inactive slurry impoundments throughout Illinois, Indiana, Kansas, Kentucky, Missouri, and Washington. Geochemical site characterization of three slurry impoundments at the AECI Bee Veer Mine located near Macon, Missouri began in April 1990. A substrate sampling grid was established for all slurry impoundments with a centerline orientated parallel to the discharge to decant flow pattern. Surface (0--6 in.) and subsurface (30--36 in.) slurry samples were collected annually and analyzed for acid-base balance, immediate acidity macro- and micro-nutrients, potential phytotoxic metallic ions and salts, and texture. Water table elevations and water quality were monitored quarterly from shallow (≤12 ft.) piezometers. General reclamation plans included annual (3 years) incremental limestone amendments (35--50 tons/acre) and direct vegetation establishment. Cool and warm season grasses dominate vegetation cover in upland habitats (slurry cell RDA1) while wetland habitats (palustrine emergent seasonally-permanently inundated) have been established in slurry cells (RDA2 and RDA3). Isolated hot spots continue to be amended with limestone and supplemental vegetation establishment is scheduled

  13. 78 FR 17632 - Caribou-Targhee National Forest; Idaho and Wyoming; Amendment to the Targhee Revised Forest Plan...

    Science.gov (United States)

    2013-03-22

    ...; Amendment to the Targhee Revised Forest Plan--Canada Lynx Habitat AGENCY: Forest Service, USDA. ACTION... Forest proposes to amend the Targhee Revised Forest Plan (1997) to include a map identifying specific... Administrative Review Process: The decision on this proposed plan amendment will be subject to the objection...

  14. Evaluating the spatial variation of total mercury in young-of-year yellow perch (Perca flavescens), surface water and upland soil for watershed-lake systems within the southern Boreal Shield

    Science.gov (United States)

    Mark C. Gabriel; Randy Kolka; Trent Wickman; Ed Nater; Laurel. Woodruff

    2009-01-01

    The primary objective of this research is to investigate relationships between mercury in upland soil, lake water and fish tissue and explore the cause for the observed spatial variation of THg in age one yellow perch (Perca flavescens) for ten lakes within the Superior National Forest. Spatial relationships between yellow perch THg tissue...

  15. Heterogeneity of bird communities in a mosaic of habitats on a restinga ecosystem in southeast Brazil

    Directory of Open Access Journals (Sweden)

    Verônica S. da M. Gomes

    Full Text Available ABSTRACT Restinga occurs as a narrow band of coastal habitats throughout the Atlantic Forest, although it presents considerable variation in vegetation structure, which likely contributes to heterogeneity in species inhabiting this endangered ecosystem. The goal of this study is to examine how variation in vegetation and abiotic conditions in the restinga ecosystem may contribute to heterogeneity of bird communities in Restinga de Jurubatiba, Brazil. Temperature, relative humidity, and vegetation structure were sampled to characterize four sites (dry forest, flooded forest, open scrub and closed scrub. Birds were sampled using observations, mist-netting and voice recordings. Results indicate that major differences of all variables occur between forest and scrub in both vegetation and birds. In addition, differences also exist within forests and within scrub, resulting in considerable heterogeneity among sampled areas. Scrub sites were richer in bird species (n = 58 than forest sites (n = 41, while closed scrub had the most species (n = 49. Also, 64% (47 of 73 of bird species were exclusive to forest or scrub habitats. Scrub habitats were more similar to each other than forest habitats. Normalized Difference Vegetation Index (NDVI calculated from satellite images distinguished scrub sites and may be useful to monitor changes in vegetation patches through time. The restinga ecosystem is quite heterogeneous with considerable turnover in bird species composition and differences in vegetation structure. Forest strips may serve as connectors on the landscape and to help maintain species diversity and conservation of forest species. Also, this highly dynamic ecosystem, which includes a mosaic of habitat types, likely promotes resilience of bird populations under changing conditions.

  16. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon.

    Science.gov (United States)

    Sousa, Leijiane F; Portes-Junior, José A; Nicolau, Carolina A; Bernardoni, Juliana L; Nishiyama, Milton Y; Amazonas, Diana R; Freitas-de-Sousa, Luciana A; Mourão, Rosa Hv; Chalkidis, Hipócrates M; Valente, Richard H; Moura-da-Silva, Ana M

    2017-04-21

    Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA 2 s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA 2 s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats. In this report, we compared isoforms present in venoms from snakes collected at different Amazonian habitats. By means of a species venom gland transcriptome and the in silico functional prediction of each isoform, we were able to predict the principal venom activities in vitro and in animal models. We also showed remarkable differences in the venom pools from snakes collected at the floodplain (várzea habitat) compared to other habitats. Not only was this venom less hemorrhagic and more procoagulant, when compared to the venom pools from the other three habitats studied, but also this enhanced procoagulant activity was not

  17. Modeling the hydrologic impacts of forest harvesting on Florida flatwoods

    Science.gov (United States)

    Ge Sun; Hans Rierkerk; Nicholas B. Comerford

    1998-01-01

    The great temporal and spatial variability of pine flatwoods hydrology suggests traditional short-term field methods may not be effective in evaluating the hydrologic effects of forest management. The flatwoods model was developed, calibrated and validated specifically for the cypress wetland-pine upland landscape. The model was applied to two typical flatwoods sites...

  18. Studi pendahuluan daerah penyebaran populasi dan habitat betet Jawa

    Directory of Open Access Journals (Sweden)

    W. Widodo

    2012-02-01

    Full Text Available On April and September 2006, preliminary study to know the distribution, population status and habitat of the Javan moustached parakeets (Psittacula alexandri alexandri Linnaeus 1758 were conducted in the Baluran and Alas Purwo National Parks (East Java and in the Tilu Geder Mountain Forests and in the Darmaga IPB Campus Parks (West Java. Direct and indirect observations were used in this research. The results are found only 2 individuals of birds in the Darmaga IPB Campus Parks. However, 45 species of plants were recorded as the natural food resources for the Javan moustached parakeets in the fields. Almost 60% parts of plants i.e., fruits were food by birds, even if those birds are more frugivorous. Some species of plants were known as the nesting trees for the species, namely: Tectona grandis, Acacia lecophloea, Azadirachta indica, Tetrameles nudiflora and Eucalyptus deglupta. The Javan moustached parakeets have needed mangrove forests, beach forests, evergreen forests and old teak forests for their activities. The population and their habitat of javan parakeets are threatened by forest fragmentation effects and over hunting.

  19. Natal Dispersal in the North Island Robin (Petroica longipes: the Importance of Connectivity in Fragmented Habitats

    Directory of Open Access Journals (Sweden)

    Askia K. Wittern

    2007-12-01

    Full Text Available Natal dispersal is an important component in bird population dynamics and can influence the persistence of local and metapopulations. We examined natal dispersal in the North Island robin (Petroica longipes, a sedentary bird species distributed in a fragmented forest habitat on Tiritiri Matangi Island, New Zealand. Earlier studies have shown that the only dispersal phase in this species takes place when juveniles leave their natal patch, and that juveniles who fail to find suitable habitat do not survive their first winter. These findings suggest that natal dispersal behavior in this species is important for population viability. We found that juveniles were highly affected by the fragmentation of the forest habitat, with patch occupancy being positively correlated with degree of connectivity of the landscape. Most juvenile movements (52.1% were observed between patches that were separated by less than 20 m. Juvenile North Island robins were found in all forest habitat types, including young and open stands. This suggests that the juveniles are not dependent on old forest stands during their dispersal phase. Based on these findings, we suggest that management of this regionally-threatened species should focus not only on maintaining populations in occupied patches and increasing the habitat quality of these patches, but also on protecting existing forest patches acting as corridors and creating new forest habitat among patches. This would greatly increase the viability of the species' metapopulations by increasing dispersal success between both unoccupied patches and subpopulations. Additionally, increased connectivity between forest patches could also be expected to increase the probability of successful dispersal of other threatened native species, many of which are also sensitive to the high degree of fragmentation of their habitats.

  20. Encroachment of oriental bittersweet into Pitcher’s thistle habitat

    Science.gov (United States)

    Leicht-Young, Stacey A.; Pavlovic, Noel B.

    2012-01-01

    Common invasive species and rare endemic species can grow and interact at the ecotone between forested and non-forested dune habitats. To investigate these interactions, a comparison of the proximity and community associates of a sympatric invasive (Celastrus orbiculatus; oriental bittersweet) and native (C. scandens; American bittersweet) liana species to federally threatened Cirsium pitcheri (Pitcher's thistle) in the dunes habitats of Lake Michigan was conducted. Overall, the density of the invasive liana species was significantly greater in proximity to C. pitcheri than the native species. On the basis of composition, the three focal species occurred in both foredune and blowout habitats. The plant communities associated with the three focal species overlapped in ordination space, but there were significant differences in composition. The ability of C. orbiculatus to rapidly grow and change the ecological dynamics of invasion sites adds an additional threat to the successional habitats of C. pitcheri.

  1. Chamaedorea: diverse species in diverse habitats

    Directory of Open Access Journals (Sweden)

    1992-01-01

    Full Text Available DIVERSES ESPÈCES DANS DIVERS HABITATS. Des espèces extraordinairement diverses se trouvant dans des habitats également divers caractérisent Chamaedorea, un genre qui compte environ 90 espèces dioïques limitées aux sous-bois des forêts néo-tropicales constamment dans la pluie et les nuages du Mexique à la Bolivie et à l’Équateur. Une vaste gamme de formes biologiques, de tiges, de feuilles, d’inflorescences, de fleurs, et de fruits reflète la diversité des espèces. Bien que le genre soit plus riche en espèces dans les forêts denses et humides situées entre 800-1,500 mètres d’altitude, quelques espèces exceptionnelles se trouvent dans des forêts moins denses et/ou occasionnellement sèches, sur des substances dures ou dans d’autres habitats inhabituels. DIVERSAS ESPECIES EN DIVERSOS HÁBITATS. Especies notablemente diversas presentes en habitats igualmente diversos caracterizan a Chamaedorea, un genero de aproximadamente 90 especies dioicas limitadas al sotobosque de los bosques lluviosos y nubosos neotropicales desde Mexico hasta Bolivia y Ecuador. Una amplia gama de formas biológicas, tallos, hojas, inflorescencias, flores, y frutos refleja la diversidad de las especies. Aunque el género es más rico en especies en los bosques densos y húmedos de 800-1,500 metros de altura, unas pocas especies excepcionales ocurren en bosques abiertos o ocasionalmente secos, en substrato severo o en otros habitats extraordinarios. Remarkably diverse species occurring in equally diverse habitats characterize Chamaedorea, a genus of about 90, dioecious species restricted to the understory of neotropical rain and cloud forests from Mexico to Bolivia and Ecuador. A vast array of habits, stems, leaves, inflorescences, flowers, and fruits reflect the diversity of species. Although the genus is most species-rich in dense, moist or wet, diverse forests from 800-1,500 meters elevation, a few exceptional species occur in open and/or seasonally

  2. HABITAT PREFERENSIAL TARSIUS BELITUNG (Cephalopachus bancanus saltator Elliot, 1910

    Directory of Open Access Journals (Sweden)

    Fifin Fitriana

    2017-04-01

    Full Text Available Belitung tarsier (Cephalopachus bancanus saltator is an endemic species in Belitung Island from Cephalopachus genus. Existence of belitung tarsier in its habitat is now under threatened by deforestatition. Due to lack information about its habitat and as conservation effort, this research was tackled to reveal the characteristic of habitat preference of belitung tarsier. The aim of this study are to identify characteristic of habitat preference of belitung tarsier. This research was conducted in March until May 2016 at around Mount Tajam Protected Forest and plantation area. Presence of tarsiers were identified by direct observation, urine odor detection, identifying based tarsier habitat suitability and the local information. Chi-square and Neu methode was used to analyze the variable of habitat preference of belitung tarsiers. This research found that characteristics of habitat preference of belitung tarsier consisted of its homerange was prefer to dry land agricultural and shurb land cover type, not too tight canopy cover (Leaf Area Index /LAI value of 0,83-2,46, close to the edge of forest (0 -874 m, roads (0 – 3.698 m and settlements (0-403 m, elevation range was between 1 -142 m asl, slope slightly (0-15%, temperature 24-25 0C and high rainfall (3.222 – 3.229 mm/year. Characteristic of habitat preference information could be considered to develop conservation action of belitung tarsier. Keywords: belitung tarsiers, habitat, habitat preference, tarsier  

  3. The endangered Ethiopian endemic Crotalaria trifoliolata (Leguminosae-Papilionoideae) and its little-known habitat

    DEFF Research Database (Denmark)

    Friis, Ib; Weber, Odile; van Breugel, Paulo

    2016-01-01

    to limestone habitats in the Kubayo National Forest, where it forms almost monospecific stands of up to one thousand individuals in glades and at forest margins. Predictive distribution models suggest uncertain suitability of the present habitats under future climatic conditions. Based on this and other...

  4. Evaluation of Upland Rice Genotypes for Efficient Uptake of Nitrogen and Phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Zaharah, A. R.; Hanafi, M. M. [Universiti Putra Malaysia, Serdang, Selangor (Malaysia)

    2013-11-15

    Upland rice grown by subsistence farmers in the tropics and subtropics is known to produce very low yields due to it being planted on low fertility soils and under drought-prone conditions. Little information is available on upland rice cultivar differences in response to N and P fertilization in Asia, thus screening for P (PUE) and N use efficiency (NUE) of upland rice genotypes is a necessary first step. The objectives of the study were: (i) to identify upland rice genotypes with root characteristics favorable for efficient N and P uptake and utilization, (ii) to evaluate the selected genotypes for their grain yield, and (iii) to assess the variability of N and P use efficiency in upland rice genotypes grown under field conditions. Several laboratory, glasshouse and field experiments were carried out from 2007 to 2011 at Universiti Putra Malaysia to achieve the above objectives. Fifteen local and 15 upland rice genotypes from WARDA were identified to have long roots, and it was observed that some of the WARDA lines showed longer root length than the local landraces. This is a good trait since it is known that longer root length will enhance the absorption of easily mobile nutrients such as nitrate and potassium. Glasshouse and field evaluation of N use efficiency by these upland rice genotypes showed that high N is utilized (40-80% of applied N), with good grain yield, and P use efficiency is similar to other crops (4-8%). (author)

  5. The importance of novel and agricultural habitats for the avifauna of an oceanic island

    DEFF Research Database (Denmark)

    Dallimer, Martin; Parnell, Mark; Bicknell, Jake E.

    2012-01-01

    Conservation management can no longer rely on protecting pristine habitats, but must consider the wider landscape. This is especially true on oceanic islands where endemic species are believed to be particularly susceptible to the extinction risks that accompany land conversion. Despite this......, there is a paucity of studies examining how endemic communities on oceanic islands may be distributed across such human-modified habitats. Taking Principe Island in West Africa as a case study, we investigate how avian communities vary across the habitats (primary forest, secondary forest, agricultural areas......, more diverse and held higher overall abundances of birds than those within primary forest. This was true for both the entire avian assemblage and the endemic species alone. Nevertheless, two IUCN-listed species were restricted to primary forest, and many other endemics occurred at higher densities...

  6. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    Science.gov (United States)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships

  7. Landscape structure shapes habitat finding ability in a butterfly.

    Directory of Open Access Journals (Sweden)

    Erik Öckinger

    Full Text Available Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L. from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape.

  8. Landscape Structure Shapes Habitat Finding Ability in a Butterfly

    Science.gov (United States)

    Öckinger, Erik; Van Dyck, Hans

    2012-01-01

    Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape. PMID:22870227

  9. 31 flavors to 50 shades of grey: battling Phytophthoras in native habitats managed by the Santa Clara Valley Water District

    Science.gov (United States)

    Janet Hillman; Tedmund J. Swiecki; Elizabeth A. Bernhardt; Heather K. Mehl; Tyler B. Bourret; David Rizzo

    2017-01-01

    The Santa Clara Valley Water District (District) is a wholesale water supplier for 1.8 million people in Santa Clara County, California. Capital, water utility, and stream maintenance projects result in extensive, long-term mitigation requirements in riparian, wetland, and upland habitats throughout the county. In 2014, several restoration sites on the valley floor and...

  10. Wildlife of southern forests habitat & management: Introduction

    Science.gov (United States)

    James G. Dickson

    2003-01-01

    The temperate climate, productive soils, and lush forests of the South support an abundant and diverse wildlife community. But these forests and the wildlife that inhabit them have never been stable. They have continually been molded by a variety of forces. Early, during the Pleistocene period, drastic periodic climatic shifts wrought wholesale changes to the nature...

  11. Upland Trees Contribute to Exchange of Nitrous Oxide (N2O) in Forest Ecosystems

    Science.gov (United States)

    Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Machacova, K.; Maier, M.; Halmeenmäki, E.; Svobodova, K.; Lang, F.; Pihlatie, M.; Urban, O.

    2017-12-01

    The increase in atmospheric nitrous oxide (N2O) concentration contributes to the acceleration of the greenhouse effect. However, the role of trees in the N2O exchange of forest ecosystems is still an open question. While the soils of temperate and boreal forests were shown to be a natural source of N2O, trees have been so far overlooked in the forest N2O inventories. We determined N2O fluxes in common tree species of boreal and temperate forests: Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch (Betula pubescens, B. pendula), and European beech (Fagus sylvatica). We investigated (1) whether these tree species exchange N2O with the atmosphere under natural field conditions, (2) how the tree N2O fluxes contribute to the forest N2O balance, and (3) whether these fluxes show seasonal dynamics. The studies were performed in a boreal forest (SMEAR II station, Finland; June 2014 - May 2015) and two temperate mountain forests (White Carpathians, Czech Republic; Black Forest, Germany; June and July 2015). Fluxes of N2O in mature tree stems and forest floor were measured using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. Pine, spruce and birch trees were identified as net annual N2O sources. Spruce was found the strongest emitter (0.27 mg ha-1 h-1) amounting thus up to 2.5% of forest floor N2O emissions. All tree species showed a substantial seasonality in stem N2O flux that was related to their physiological activity and climatic variables. In contrast, stems of beech trees growing at soils consuming N2O may act as a substantial sink of N2O from the atmosphere. Consistent N2O consumption by tree stems ranging between -12.1 and -35.2 mg ha-1 h-1 and contributing by up to 3.4% to the forest floor N2O uptake is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with

  12. Umatilla River Basin Anadromus Fish Habitat Enhancement Project. 1994 Annual report

    International Nuclear Information System (INIS)

    Shaw, R.T.

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994--95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation

  13. Cooking quality of upland and lowland rice characterized by different methods

    Directory of Open Access Journals (Sweden)

    Diva Mendonça Garcia

    2011-06-01

    Full Text Available Rice cooking quality is usually evaluated by texture and stickiness characteristics using many different methods. Gelatinization temperature, amylose content, viscosity (Brookfield viscometer and Rapid Visco Analyzer, and sensory analysis were performed to characterize culinary quality of rice grains produced under two cropping systems and submitted to different technologies. All samples from the upland cropping system and two from the irrigated cropping system presented intermediate amylose content. Regarding stickiness, BRS Primavera, BRS Sertaneja, and BRS Tropical showed loose cooked grains. Irrigated cultivars presented less viscosity and were softer than upland cultivars. Upland grain samples had similar profile on the viscoamylografic curve, but the highest viscosity peaks were observed for BRS Alvorada, IRGA 417, and SCS BRS Piracema among the irrigated cropping system samples. In general, distinct grain characteristics were observed between upland and irrigated samples by cluster analysis. The majority of the upland cultivars showed soft and loose grains with adequate cooking quality confirmed by sensory tests. Most of the irrigated cultivars, however, presented soft and sticky grains. Different methodologies allowed to improve the construction of the culinary profile of the varieties studied.

  14. Evaluation of habitat suitability models for forest passerines using demographic data

    Science.gov (United States)

    Chadwick D. Rittenhouse; Frank R., III Thompson; William D. Dijak; Joshua J. Millspaugh; Richard L. Clawson

    2010-01-01

    Habitat suitability is often used as a surrogate for demographic responses (i.e., abundance, survival, fecundity, or population viability) in the application of habitat suitability index (HSI) models. Whether habitat suitability actually relates to demographics, however, has rarely been evaluated. We validated HSI models of breeding habitat suitability for wood thrush...

  15. Regional Assessment of Remote Forests and Black Bear Habitat from Forest Resource Surveys

    Science.gov (United States)

    Victor A. Rudis; John B. Tansey

    1995-01-01

    We developed a spatially explicit modeling approach, using a county-scaled remote forest (i.e., forested area reserved from or having no direct human interference) assessment derived from 1984-1990 forest resource inventory data and a 1984 black bear (Ursus americantus) range map for 12 states in the southern United States.We defined minimum suitable and optimal black...

  16. 76 FR 65121 - Community Forest and Open Space Conservation Program

    Science.gov (United States)

    2011-10-20

    ..., environmental benefits including clean air, water, and wildlife habitat; benefits from forest-based educational... Program will be removed as deauthorized by the Farm Security and Rural Investment Act of 2002, and this... benefits, including wildlife habitat, stewardship demonstration sites for forest landowners, and...

  17. Populus species from diverse habitats maintain high night-time conductance under drought.

    Science.gov (United States)

    Cirelli, Damián; Equiza, María Alejandra; Lieffers, Victor James; Tyree, Melvin Thomas

    2016-02-01

    We investigated the interspecific variability in nocturnal whole-plant stomatal conductance under well-watered and drought conditions in seedlings of four species of Populus from habitats characterized by abundant water supply (mesic and riparian) or from drier upland sites. The study was carried out to determine whether (i) nocturnal conductance varies across different species of Populus according to their natural habitat, (ii) nocturnal conductance is affected by water stress similarly to daytime conductance based on species habitat and (iii) differences in conductance among species could be explained partly by differences in stomatal traits. We measured whole-plant transpiration and conductance (G) of greenhouse-grown seedlings using an automated high-resolution gravimetric technique. No relationship was found between habitat preference and daytime G (GD), but night-time G (GN) was on average 1.5 times higher in riparian and mesic species (P. deltoides Bartr. ex Marsh. and P. trichocarpa Torr. & Gray) than in those from drier environments (P. tremuloides Michx. and P. × petrowskyana Schr.). GN was not significantly reduced under drought in riparian species. Upland species restricted GN significantly in response to drought, but it was still at least one order of magnitude greater that the cuticular conductance until leaf death was imminent. Under both well-watered and drought conditions, GN declined with increasing vapour pressure deficit (D). Also, a small increase in GN towards the end of the night period was observed in P. deltoides and P. × petrowskyana, suggesting the involvement of endogenous regulation. The anatomical analyses indicated a positive correlation between G and variable stomatal pore index among species and revealed that stomata are not likely to be leaky but instead seem capable of complete occlusion, which raises the question of the possible physiological role of the significant GN observed under drought. Further comparisons among

  18. Comparison of radio-telemetric home range analysis and acoustic detection for Little Brown Bat habitat evaluation

    Science.gov (United States)

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    With dramatic declines of bat populations due to mortality caused by Pseudogymnoascus destructans (White-nose Syndrome), assessing habitat preferences of bats in the northeastern US is now critical to guide the development of regional conservation efforts. In the summer of 2012, we conducted fixed-station simultaneous telemetry to determine nocturnal spatial use and fixed-kernel home-range estimates of available habitat of a Myotis lucifugus (Le Conte) (Little Brown Bat) maternity colony in an artificial bat house. In summers of 2011 and 2012, we also deployed a 52-ha grid of 4 × 4 Anabat acoustic detectors over five 6–8-day sampling periods in various riparian and non-riparian environments in close proximity to the same bat house. The mean telemetry home range of 143 ha for bats (n = 7) completely overlapped the acoustic grid. Rankings of habitats from telemetry data for these 7 bats and 5 additional bats not included in home-range calculations but added for habitat-use measures (n = 13) revealed a higher proportional use of forested riparian habitats than other types at the landscape scale. Pair-wise comparisons of habitats indicated that bats were found significantly closer to forested riparian habitats and forests than to open water, developed areas, fields, shrublands, or wetland habitats at the landscape scale. Acoustic sampling showed that naïve occupancy was 0.8 and 0.6 and mean nightly detection probabilities were 0.23 and 0.08 at riparian and non-riparian sites, respectively. Our findings suggest that Little Brown Bats select forested riparian and forested habitats for foraging at the landscape scale but may be most easily detected acoustically at riparian sites when a simple occupancy determination for an area is required.

  19. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico.

    Science.gov (United States)

    Mason-Romo, Edgard David; Farías, Ariel A; Ceballos, Gerardo

    2017-01-01

    Understanding the effects of global climate disruption on biodiversity is important to future conservation efforts. While taxonomic diversity is widely studied, functional diversity of plants, and recently animals, is receiving increasing attention. Most studies of mammals are short-term, focus on temperate habitats, and rely on traits described in the literature rather than generating traits from observations. Unlike previous studies, this long-term field study assessed the factors driving the functional and taxonomic diversity of small-mammal assemblages in dry tropical forests using both traits recorded from literature and a demographic database. We assessed the drivers (abundance and biomass, temperature and rainfall) of taxonomic richness and functional diversity for two rain-driven seasons in two adjacent but distinct forests-upland and lowland (arroyo or riparian) forests. Our analysis found that rainfall, both seasonal and atypical, was the primary factor driving functional and taxonomic diversity of small-mammal assemblages. Functional responses differed between the two types of forests, however, with effects being stronger in the harsher conditions of the upland forests than in the less severe conditions prevailing in the arroyo (riparian) forest. The latter also supports a richer, more diverse, and more stable small-mammal assemblage. These findings highlight the importance of climate to tropical biological diversity, as extreme climate events (hurricanes, droughts and floods) and disruption of rainfall patterns were shown to decrease biodiversity. They also support the need to preserve these habitats, as their high taxonomic diversity and functional redundancy makes them resilient against global climate disruption and local extreme events. Tropical dry forests constitute a potential reservoir for biodiversity and the ecosystem services they provide. Unfortunately, these forests are among the most endangered terrestrial ecosystems because of

  20. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico.

    Directory of Open Access Journals (Sweden)

    Edgard David Mason-Romo

    Full Text Available Understanding the effects of global climate disruption on biodiversity is important to future conservation efforts. While taxonomic diversity is widely studied, functional diversity of plants, and recently animals, is receiving increasing attention. Most studies of mammals are short-term, focus on temperate habitats, and rely on traits described in the literature rather than generating traits from observations. Unlike previous studies, this long-term field study assessed the factors driving the functional and taxonomic diversity of small-mammal assemblages in dry tropical forests using both traits recorded from literature and a demographic database. We assessed the drivers (abundance and biomass, temperature and rainfall of taxonomic richness and functional diversity for two rain-driven seasons in two adjacent but distinct forests-upland and lowland (arroyo or riparian forests. Our analysis found that rainfall, both seasonal and atypical, was the primary factor driving functional and taxonomic diversity of small-mammal assemblages. Functional responses differed between the two types of forests, however, with effects being stronger in the harsher conditions of the upland forests than in the less severe conditions prevailing in the arroyo (riparian forest. The latter also supports a richer, more diverse, and more stable small-mammal assemblage. These findings highlight the importance of climate to tropical biological diversity, as extreme climate events (hurricanes, droughts and floods and disruption of rainfall patterns were shown to decrease biodiversity. They also support the need to preserve these habitats, as their high taxonomic diversity and functional redundancy makes them resilient against global climate disruption and local extreme events. Tropical dry forests constitute a potential reservoir for biodiversity and the ecosystem services they provide. Unfortunately, these forests are among the most endangered terrestrial ecosystems because

  1. Adaptation of the QBR index for use in riparian forests of central Ohio

    Science.gov (United States)

    Stephanie R. Colwell; David M. Hix

    2008-01-01

    Although high quality riparian forests are an endangered ecosystem type throughout the world, there has been no ecological index to measure the habitat quality of riparian forests in Ohio. The QBR (qualitat del bosc de ribera, or riparian forest quality) index was developed to assess the quality of habitat in Mediterranean forested riparian areas, and we have modified...

  2. Identifying core habitat and connectivity for focal species in the interior cedar-hemlock forest of North America to complete a conservation area design

    Science.gov (United States)

    Lance Craighead; Baden Cross

    2007-01-01

    To identify the remaining areas of the Interior Cedar- Hemlock Forest of North America and prioritize them for conservation planning, the Craighead Environmental Research Institute has developed a 2-scale method for mapping critical habitat utilizing 1) a broad-scale model to identify important regional locations as the basis for a Conservation Area Design (CAD), and 2...

  3. Edge effects at an induced forest-grassland boundary: forest birds in ...

    African Journals Online (AJOL)

    Bird species diversity and guild composition between the edge (5-10 m from the margin) of primary forest abutting grassland and the deep interior (> 500 m from the margin) in the Dngoye Forest Reserve were compared. Edge and interior sites were chosen that were homogeneous with respect to habitat physiognomy i.e. ...

  4. Spatially dynamic forest management to sustain biodiversity and economic returns.

    Science.gov (United States)

    Mönkkönen, Mikko; Juutinen, Artti; Mazziotta, Adriano; Miettinen, Kaisa; Podkopaev, Dmitry; Reunanen, Pasi; Salminen, Hannu; Tikkanen, Olli-Pekka

    2014-02-15

    Production of marketed commodities and protection of biodiversity in natural systems often conflict and thus the continuously expanding human needs for more goods and benefits from global ecosystems urgently calls for strategies to resolve this conflict. In this paper, we addressed what is the potential of a forest landscape to simultaneously produce habitats for species and economic returns, and how the conflict between habitat availability and timber production varies among taxa. Secondly, we aimed at revealing an optimal combination of management regimes that maximizes habitat availability for given levels of economic returns. We used multi-objective optimization tools to analyze data from a boreal forest landscape consisting of about 30,000 forest stands simulated 50 years into future. We included seven alternative management regimes, spanning from the recommended intensive forest management regime to complete set-aside of stands (protection), and ten different taxa representing a wide variety of habitat associations and social values. Our results demonstrate it is possible to achieve large improvements in habitat availability with little loss in economic returns. In general, providing dead-wood associated species with more habitats tended to be more expensive than providing requirements for other species. No management regime alone maximized habitat availability for the species, and systematic use of any single management regime resulted in considerable reductions in economic returns. Compared with an optimal combination of management regimes, a consistent application of the recommended management regime would result in 5% reduction in economic returns and up to 270% reduction in habitat availability. Thus, for all taxa a combination of management regimes was required to achieve the optimum. Refraining from silvicultural thinnings on a proportion of stands should be considered as a cost-effective management in commercial forests to reconcile the conflict

  5. Spatial overlap between environmental policy instruments and areas of high conservation value in forest.

    Science.gov (United States)

    Sverdrup-Thygeson, Anne; Søgaard, Gunnhild; Rusch, Graciela M; Barton, David N

    2014-01-01

    In order to safeguard biodiversity in forest we need to know how forest policy instruments work. Here we use a nationwide network of 9400 plots in productive forest to analyze to what extent large-scale policy instruments, individually and together, target forest of high conservation value in Norway. We studied both instruments working through direct regulation; Strict Protection and Landscape Protection, and instruments working through management planning and voluntary schemes of forest certification; Wilderness Area and Mountain Forest. As forest of high conservation value (HCV-forest) we considered the extent of 12 Biodiversity Habitats and the extent of Old-Age Forest. We found that 22% of productive forest area contained Biodiversity Habitats. More than 70% of this area was not covered by any large-scale instruments. Mountain Forest covered 23%, while Strict Protection and Wilderness both covered 5% of the Biodiversity Habitat area. A total of 9% of productive forest area contained Old-Age Forest, and the relative coverage of the four instruments was similar as for Biodiversity Habitats. For all instruments, except Landscape Protection, the targeted areas contained significantly higher proportions of HCV-forest than areas not targeted by these instruments. Areas targeted by Strict Protection had higher proportions of HCV-forest than areas targeted by other instruments, except for areas targeted by Wilderness Area which showed similar proportions of Biodiversity Habitats. There was a substantial amount of spatial overlap between the policy tools, but no incremental conservation effect of overlapping instruments in terms of contributing to higher percentages of targeted HCV-forest. Our results reveal that although the current policy mix has an above average representation of forest of high conservation value, the targeting efficiency in terms of area overlap is limited. There is a need to improve forest conservation and a potential to cover this need by better

  6. Habitat amount modulates the effect of patch isolation on host-parasitoid interactions

    Directory of Open Access Journals (Sweden)

    Valérie eCoudrain

    2014-06-01

    Full Text Available 1.Habitat amount and patch isolation are important determinants of biodiversity and ecosystem functioning. We studied the separate and interactive effects of these two components of habitat fragmentation on host-parasitoid interactions in a replicated landscape-scale study. 2.We used trap-nesting solitary bees, wasps and their natural enemies as study system. We exposed trap nests in 30 tree patches in agricultural landscapes in northern Switzerland. Study sites were either (i adjacent to forest (adjacent, (ii distant from forest but connected through woody elements (connected or (iii distant from forest with no connecting woody elements (isolated. Independent of the three levels of isolation, the amount of woody habitat in the landscapes covered a gradient from 4 to 74%. 3.Host and parasitoid species richness increased with the amount of habitat in the landscape and was strongly reduced at isolated compared to adjacent and connected sites. Loss of host species richness was 21% at isolated compared to non-isolated sites, whereas parasitoid species richness decreased by 68%, indicating that the higher trophic level was more adversely affected by isolation. Most importantly, habitat amount and isolation had a pronounced interactive effect on parasitism: while isolation resulted in a strong decrease in parasitism in landscapes with low habitat amount, this effect was mitigated by high habitat amount. These interactive effects were consistent across the three years of the study. 4.The observed interplay between habitat amount and patch isolation may explain the often conflicting results in the habitat fragmentation literature and should be considered in future research on multitrophic communities and ecosystem functioning in fragmented landscapes.

  7. Co-benefits of biodiversity and carbon from regenerating secondary forests after shifting cultivation in the upland Philippines: implications for forest landscape restoration

    Science.gov (United States)

    Mukul, S. A.; Herbohn, J.; Firn, J.; Gregorio, N.

    2017-12-01

    Shifting cultivation is a widespread practice in tropical forest agriculture frontiers that policy makers often regard as the major driver of forest loss and degradation. Secondary forests regrowing after shifting cultivation are generally not viewed as suitable option for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration benefits in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co-benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.

  8. California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape

    Science.gov (United States)

    Eyes, Stephanie; Roberts, Susan L.; Johnson, Matthew D.

    2017-01-01

    Fire is a dynamic ecosystem process of mixed-conifer forests of the Sierra Nevada, but there is limited scientific information addressing wildlife habitat use in burned landscapes. Recent studies have presented contradictory information regarding the effects of stand-replacing wildfires on Spotted Owls (Strix occidentalis) and their habitat. While fire promotes heterogeneous forest landscapes shown to be favored by owls, high severity fire may create large canopy gaps that can fragment the closed-canopy habitat preferred by Spotted Owls. We used radio-telemetry to determine whether foraging California Spotted Owls (S. o. occidentalis) in Yosemite National Park, California, USA, showed selection for particular fire severity patch types within their home ranges. Our results suggested that Spotted Owls exhibited strong habitat selection within their home ranges for locations near the roost and edge habitats, and weak selection for lower fire severity patch types. Although owls selected high contrast edges with greater relative probabilities than low contrast edges, we did not detect a statistical difference between these probabilities. Protecting forests from stand-replacing fires via mechanical thinning or prescribed fire is a priority for management agencies, and our results suggest that fires of low to moderate severity can create habitat conditions within California Spotted Owls' home ranges that are favored for foraging.

  9. The use of edge habitats by commuting and foraging bats

    NARCIS (Netherlands)

    Verboom, B.

    1998-01-01

    Travelling routes and foraging areas of many bat species are mainly along edge habitats, such as treelines, hedgerows, forest edges, and canal banks. This thesis deals with the effects of density, configuration, and structural features of edge habitats on the occurrence of bats. Four

  10. Forest biodiversity conservation in the context of increasing woody biomass harvests

    International Nuclear Information System (INIS)

    Bouget, Christophe; Gosselin, Frederic; Gosselin, Marion

    2011-01-01

    After describing peculiarities and stakes in forest biodiversity, we discuss the response of biodiversity to potential habitat changes induced by increasing forest biomass harvesting: decrease in old trees and stands, and in forest areas unmanaged for decades, increase in overall felled areas, in forest road density and in habitat fragmentation, deleterious changes in soil conditions and forest ambience, development of short and very short rotation coppices. Positive or negative effects on several components of forest biodiversity (mainly soil fauna and flora, and dead wood associated species) are explored. Needs are highlighted: biodiversity monitoring, adaptive management and context-based recommendations. (authors)

  11. Kelp forest as a habitat for mobile epifauna: case study of Caprella septentrionalis Kröyer, 1838 (Amphipoda, Caprellidae in an Arctic glacial fjord

    Directory of Open Access Journals (Sweden)

    Marta Ronowicz

    2013-11-01

    Full Text Available Distribution and abundance of the amphipod Caprella septentrionalis in relation to environmental conditions and habitat preferences were investigated in a kelp forest in Hornsund, Spitsbergen. Three sampling sites differed in hydrodynamics, organic and inorganic suspension concentration, and sedimentation rates. None of these abiotic factors or species of a macroalgal host appeared to have a significant influence on C. septentrionalis abundance and size range. An apparent preference towards the blade parts of the algal thalli was observed. These results support the idea of C. septentrionalis as a generalist Arctic–boreal species that takes advantage of the protective nature of kelp forests.

  12. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    Science.gov (United States)

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  13. An ontological system based on MODIS images to assess ecosystem functioning of Natura 2000 habitats: A case study for Quercus pyrenaica forests

    Science.gov (United States)

    Pérez-Luque, A. J.; Pérez-Pérez, R.; Bonet-García, F. J.; Magaña, P. J.

    2015-05-01

    The implementation of the Natura 2000 network requires methods to assess the conservation status of habitats. This paper shows a methodological approach that combines the use of (satellite) Earth observation with ontologies to monitor Natura 2000 habitats and assess their functioning. We have created an ontological system called Savia that can describe both the ecosystem functioning and the behaviour of abiotic factors in a Natura 2000 habitat. This system is able to automatically download images from MODIS products, create indicators and compute temporal trends for them. We have developed an ontology that takes into account the different concepts and relations about indicators and temporal trends, and the spatio-temporal components of the datasets. All the information generated from datasets and MODIS images, is stored into a knowledge base according to the ontology. Users can formulate complex questions using a SPARQL end-point. This system has been tested and validated in a case study that uses Quercus pyrenaica Willd. forests as a target habitat in Sierra Nevada (Spain), a Natura 2000 site. We assess ecosystem functioning using NDVI. The selected abiotic factor is snow cover. Savia provides useful data regarding these two variables and reflects relationships between them.

  14. Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland

    International Nuclear Information System (INIS)

    Porvari, Petri; Verta, Matti

    2003-01-01

    Peatlands have higher methyl mercury output than uplands. - Total mercury (TotHg) and methyl mercury (MeHg) concentrations were studied in runoff from eight small (0.02-1.3 km 2 ) boreal forest catchments (mineral soil and peatland) during 1990-1995. Runoff waters were extremely humic (TOC 7-70 mg l -1 ). TotHg concentrations varied between 0.84 and 24 ng l -1 and MeHg between 0.03 and 3.8 ng l -1 . TotHg fluxes from catchments ranged from 0.92 to 1.8 g km -2 a -1 , and MeHg fluxes from 0.03 to 0.33 g km -2 a -1 . TotHg concentrations and output fluxes measured in runoff water from small forest catchments in Finland were comparable with those measured in other boreal regions. By contrast, MeHg concentrations were generally higher. Estimates for MeHg output fluxes in this study were comparable at sites with forests and wetlands in Sweden and North America, but clearly higher than those measured at upland or agricultural sites in other studies. Peatland catchments released more MeHg than pure mineral soil or mineral soil catchments with minor area of peatland

  15. Global screening for Critical Habitat in the terrestrial realm.

    Science.gov (United States)

    Brauneder, Kerstin M; Montes, Chloe; Blyth, Simon; Bennun, Leon; Butchart, Stuart H M; Hoffmann, Michael; Burgess, Neil D; Cuttelod, Annabelle; Jones, Matt I; Kapos, Val; Pilgrim, John; Tolley, Melissa J; Underwood, Emma C; Weatherdon, Lauren V; Brooks, Sharon E

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as 'likely' or 'potential' Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature's presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as 'unknown'. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC's Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate new and

  16. Evaluating the habitat of the critically endangered Kipunji monkey ...

    African Journals Online (AJOL)

    Effective conservation of threatened species requires a good understanding of their habitat. Most primates are threatened by tropical forest loss. One population of the critically endangered kipunji monkey Rungwecebus kipunji occurs in a restricted part of one forest in southern Tanzania. This restricted range is something of ...

  17. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands

    Science.gov (United States)

    Leddy, K.L.; Higgins, K.F.; Naugle, D.E.

    1999-01-01

    Grassland passerines were surveyed during summer 1995 on the Buffalo Ridge Wind Resource Area in southwestern Minnesota to determine the relative influence of wind turbines on overall densities of upland nesting birds in Conservation Reserve Program (CRP) grasslands. Birds were surveyed along 40 m fixed width transects that were placed along wind turbine strings within three CRP fields and in three CRP fields without turbines. Conservation Reserve Program grasslands without turbines and areas located 180 m from turbines supported higher densities (261.0-312.5 males/100 ha) of grassland birds than areas within 80 m of turbines (58.2-128.0 males/100 ha). Human disturbance, turbine noise, and physical movements of turbines during operation may have disturbed nesting birds. We recommend that wind turbines be placed within cropland habitats that support lower densities of grassland passerines than those found in CRP grasslands.

  18. SPATIAL DISTRIBUTION OF SOME ECTOMYCORRHIZAL FUNGI (RUSSULACEAE, FUNGI, BASIDIOMYCOTA IN FOREST HABITATS FROM THE NORTH-EAST REGION (ROMANIA

    Directory of Open Access Journals (Sweden)

    Ovidiu COPOT

    2016-12-01

    Full Text Available Ectomycorrhizal macromycetes are, generally, an important ecological component for forest habitats, and a valuable resource in the context of sustainable development of rural communities in the North-East Region of Romania. The woody species distribution is an extremely important factor for the ECM macromycetes presence. The purpose of this study was to elaborate maps of potential distribution for some ECM edible macromycetes from Russula and Lactarius genera, based on chorological information, ICAS Forest Types Map, vegetation tables and bibliographical sources. These information allowed the elaboration of 15 potential maps of distribution for 15 edible species of Russula and Lactarius. The study was based entirely on the plant – fungal associations. The results highlighted that in the North-East Region of Romania there is a noteworthy potential for Russulaceae species. As expected, there is a large amplitude of species presence in the field depending on the fungal specificity for tree host and tree species distribution.

  19. Plantation forests, climate change and biodiversity

    Science.gov (United States)

    S.M. Pawson; A. Brin; E.G. Brockerhoff; D. Lamb; T.W. Payn; A. Paquette; J.A. Parrotta

    2013-01-01

    Nearly 4 % of the world’s forests are plantations, established to provide a variety of ecosystem services, principally timber and other wood products. In addition to such services, plantation forests provide direct and indirect benefits to biodiversity via the provision of forest habitat for a wide range of species, and by reducing negative impacts on natural forests...

  20. Rarity Status and Habitat of Shorea laevis and Shorea leprosula in Muara Teweh, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Sri Wilarso Budi

    2012-08-01

    Full Text Available Forest exploitation and conversion to other landuse may cause lost of biodiversity, including most important dipterocarp trees species, i.e. Shorea leprosula and Shorea laevis. The objective of this study was to determine the rarity status of the two important shorea species, i.e. S. laevis and S. leprosula, based on IUCN criteria, their habitat characteristics, and their association with other species, as one of the basis for determining their conservation strategy as a part of forest management. This study was conducted in three types of ecosystem (virgin forest, secondary forest, and fragmented forest in Muara Teweh, Central Kalimantan.  Methodology used in this research includes vegetation and tree diversity analysis. Study results showed that both S. laevis and S. leprosula were included within category of “low risk” in the 3 types of ecosystem in the forest area being studied.  Habitat characteristics which determined the absence of S. laevis in the virgin forest habitat was the soil permeability which was too low, whereas other soil chemical and physical properties in the three types of ecosystems were relatively similar.  Presence of S. laevis were positively associated with species of S. uliginosa, Dialium platysepalum, Dipterocarpus ibmalatus, Palaquium rostatum, Vatica rasak, Adinandra sp., and Memecyclon steenis.  On the other hand,  S. leprosula were positively correlated with S. kunstleri, Castanopsis sp., Shorea sp., Quercus bennettii, Castanopsis argentea, and D. hasseltii.Keywords: threatened species, Shorea spp., habitat characteristic, ecosystems type, associated species

  1. Fine-scale movement decisions of tropical forest birds in a fragmented landscape.

    Science.gov (United States)

    Gillies, Cameron S; Beyer, Hawthorne L; St Clair, Colleen Cassady

    2011-04-01

    The persistence of forest-dependent species in fragmented landscapes is fundamentally linked to the movement of individuals among subpopulations. The paths taken by dispersing individuals can be considered a series of steps built from individual route choices. Despite the importance of these fine-scale movement decisions, it has proved difficult to collect such data that reveal how forest birds move in novel landscapes. We collected unprecedented route information about the movement of translocated forest birds from two species in the highly fragmented tropical dry forest of Costa Rica. In this pasture-dominated landscape, forest remains in patches or riparian corridors, with lesser amounts of living fencerows and individual trees or "stepping stones." We used step selection functions to quantify how route choice was influenced by these habitat elements. We found that the amount of risk these birds were willing to take by crossing open habitat was context dependent. The forest-specialist Barred Antshrike (Thamnophilus doliatus) exhibited stronger selection for forested routes when moving in novel landscapes distant from its territory relative to locations closer to its territory. It also selected forested routes when its step originated in forest habitat. It preferred steps ending in stepping stones when the available routes had little forest cover, but avoided them when routes had greater forest cover. The forest-generalist Rufous-naped Wren (Campylorhynchus rufinucha) preferred steps that contained more pasture, but only when starting from non-forest habitats. Our results showed that forested corridors (i.e., riparian corridors) best facilitated the movement of a sensitive forest specialist through this fragmented landscape. They also suggested that stepping stones can be important in highly fragmented forests with little remaining forest cover. We expect that naturally dispersing birds and species with greater forest dependence would exhibit even stronger

  2. Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests.

    Science.gov (United States)

    Lamarre, Greg P A; Hérault, Bruno; Fine, Paul V A; Vedel, Vincent; Lupoli, Roland; Mesones, Italo; Baraloto, Christopher

    2016-01-01

    Arthropods represent most of global biodiversity, with the highest diversity found in tropical rain forests. Nevertheless, we have a very incomplete understanding of how tropical arthropod communities are assembled. We conducted a comprehensive mass sampling of arthropod communities within three major habitat types of lowland Amazonian rain forest, including terra firme clay, white-sand and seasonally flooded forests in Peru and French Guiana. We examined how taxonomic and functional composition (at the family level) differed across these habitat types in the two regions. The overall arthropod community composition exhibited strong turnover among habitats and between regions. In particular, seasonally flooded forest habitats of both regions comprised unique assemblages. Overall, 17·7% (26 of 147) of arthropod families showed significant preferences for a particular habitat type. We present a first reproducible arthropod functional classification among the 147 taxa based on similarity among 21 functional traits describing feeding source, major mouthparts and microhabitats inhabited by each taxon. We identified seven distinct functional groups whose relative abundance contrasted strongly across the three habitats, with sap and leaf feeders showing higher abundances in terra firme clay forest. Our novel arthropod functional classification provides an important complement to link these contrasting patterns of composition to differences in forest functioning across geographical and environmental gradients. This study underlines that both environment and biogeographical processes are responsible for driving arthropod taxonomic composition while environmental filtering is the main driver of the variance in functional composition. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  3. Sustaining Biodiversity in the Oregon Coast Range: Potential effects of Forest Policies in a Multi-ownership Province

    Directory of Open Access Journals (Sweden)

    Brenda C. McComb

    2007-12-01

    Full Text Available To understand the potential effects of forest policies on sustaining biological diversity at broad scales, we used spatial simulation models to evaluate current and potential future habitat availability over 100 yr for three focal species: Pacific Fisher (Martes pennanti, Pileated Woodpecker (Dryocopus pileatus, and Warbling Vireo (Vireo gilvus. The habitats of these species represent a broad range of spatial scales and forest types. Area of habitat for fishers and Pileated Woodpeckers is predicted to increase over time under current forest land management policies. Habitat for Warbling Vireos is predicted to decline. These patterns are consistent with past analyses that predicted declines in diverse early successional forests and hardwood forests and increases in late-successional forests under current and two alternative policies. Land ownership influenced the spatial arrangement of habitat for all three focal species. Public lands subsidized habitat for wide-ranging species on adjacent private lands. A land use policy that required greater green tree retention on private lands seemed to result in modest increases in habitat quality over 100 yr for Pileated Woodpeckers. Thinning of plantations on federal lands had little effect on these focal species. Policy analyses such as these highlight incongruities between historic habitat patterns and contemporary spatial and temporal scales of habitat in managed landscapes. This information can be used to assess risks and inform the policy debates surrounding biodiversity conservation.

  4. Effect of coarse woody debris manipulation on soricid and herpetofaunal communities in upland pine stands of the southeastern coastal plain.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Justin, Charles

    2009-04-01

    Abstract -The majority of studies investigating the importance of coarse woody debris (CWD) to forest- floor vertebrates have taken place in the Pacific Northwest and southern Appalachian Mountains, while comparative studies in the southeastern Coastal Plain are lacking. My study was a continuation of a long-term project investigating the importance of CWD as a habitat component for shrew and herpetofaunal communities within managed pine stands in the southeastern Coastal Plain. Results suggest that addition of CWD can increase abundance of southeastern and southern short-tailed shrews. However, downed wood does not appear to be a critical habitat component for amphibians and reptiles. Rising petroleum costs and advances in wood utilization technology have resulted in an emerging biofuels market with potential to decrease CWD volumes left in forests following timber harvests. Therefore, forest managers must understand the value of CWD as an ecosystem component to maintain economically productive forests while conserving biological diversity.

  5. Regional habitat needs of a nationally listed species, Canada Warbler (Cardellina canadensis, in Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Jeffrey R. Ball

    2016-12-01

    Full Text Available Understanding factors that affect the distribution and abundance of species is critical to developing effective management plans for conservation. Our goal was to quantify the distribution and abundance of Canada Warbler (Cardellina canadensis, a threatened old-forest associate in Alberta, Canada. The Canada Warbler has declined across its range, including in Alberta where habitat loss and alteration from urban expansion, forestry, and energy development are changing the forest landscape. We used 110,427 point count survey visits from 32,287 unique survey stations to model local-level (150-m radius circular buffers and stand-level (564-m radius circular buffers habitat associations of the Canada Warbler. We found that habitat supporting higher densities of Canada Warblers was locally concentrated yet broadly distributed across Alberta's boreal forest region. Canada Warblers were most commonly associated with older deciduous forest at the local scale, particularly near small, incised streams, and greater amounts of deciduous forest at the stand scale. Predicted density was lower in other forest types and younger age classes measured at the local scale. There was little evidence that local-scale fragmentation (i.e., edges created by linear features influenced Canada Warbler abundance. However, current forestry practices in the province likely will reduce the availability of Canada Warbler habitat over time by cutting old deciduous forest stands. Our results suggest that conservation efforts aimed at Canada Warbler focus on retaining large stands of old deciduous forest, specifically stands adjacent to streams, by increasing the width of deciduous retention buffers along streams during harvest and increasing the size and number of old forest residual patches in harvested stands.

  6. Barred Owl Habitat and Prey: A Review and Synthesis of the Literature

    OpenAIRE

    Livezey, Kent B.

    2007-01-01

    Barred Owls (Strix varia) historically inhabited the forests of eastern North America. During the last century, they expanded their range to include forests throughout the southern provinces of Canada, southeastern Alaska, British Columbia, Washington, Oregon, and northern California. To date, there has been no synthesis of the varied habitats or prey used by Barred Owls in their expanded range. Here I review and synthesize studies concerning habitat (N  =  114) and prey (N  =  43) of Barred ...

  7. Habitat Evaluation Procedures (HEP) Report; Gamblin Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 12, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Gamblin Lake property, an acquisition completed by the Kalispel Tribe of Indians in December 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Gamblin Lake Project provides a total of 273.28 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 127.92 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 21.06 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Wet meadow provides 78.05 HUs for Canada goose and mallard. Emergent wetland habitat provides 46.25 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the Gamblin Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  8. The Peculiarities of Territorial Distribution and Abundance of Birds of Prey in Kharkiv Region, Ukraine

    Directory of Open Access Journals (Sweden)

    Stanislav G. Viter

    2014-11-01

    Full Text Available This study investigates the features of the spatial distribution and abundance of birds of prey in the Kharkov region, Ukraine. Investigations were carried out in 2003–2013 years. Totaly we found 1569 nest sites of Falconiformes. There are 29 species of raptors in avifauna of Kharkiv region. Nine of them are wintering species and 16 – nesting. The highest number of nest sites we found in agricultural landscapes – 677 pairs. However, population density here is low, and high number of nest sites can be explained by large extension of this type of habitat. Also significant populations of birds of prey inhabit forest-steppe areas of Central Russian Upland (East European Plain – 468 pairs, steppe areas of Central Russian Upland – at least 279 pairs (notable that the size of steppe areas are 4 times smaller then forest-steppe areas, and gully forests on the spurs of Donets Ridge – 205 pairs (the size of this habitat in Kharkiv region is no more than 3 000 km2. The other habitats includes highlands in the forest-steppe zone covered with oak forests – 431 pairs, and floodplain forests in the valley of river Siverskyi Donets – 148 pairs (with rather small area of this habitat. These last two habitats are refuge for local populations of Booted Eagle (Hieraaetus pennata and Honey Buzzard (Pernis apivorus because these areas held the most stable nest sites and the highest density of these two species. The same could be said about gully forests on the spurs of Donets Ridge. The estimate number of breeding pairs of Falconiformes in gully forests is around 290 pairs. In this study, we also assessed the total number of breeding Birds of Prey in Kharkiv region. Here are our estimates: Honey Buzzard – 142–156 pairs, Black Kite (Milvus migrans – 133–148 pairs, White-Tailed Eagle (Haliaeetus albicilla – 26–28 pairs, Montagu’s Harrier (Circus pygargus – 174–191, Marsh Harrier (C. aeruginosus – 344–359, Northern Goshawk

  9. Remote Sensing of Forest Cover in Boreal Zones of the Earth

    Science.gov (United States)

    Sedykh, V. N.

    2011-12-01

    Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of

  10. Sensitivity of pine flatwoods hydrology to climate change and forest management in Florida, USA

    Science.gov (United States)

    Jianbiao Lu; Ge Sun; Steven G. McNulty; Nicholas B. Comerford

    2009-01-01

    Pine flatwoods (a mixture of cypress wetlands and managed pine uplands) is an important ecosystem in the southeastern U.S. However, long-term hydrologic impacts of forest management and climate change on this heterogeneous landscape are not well understood. Therefore, this study examined the sensitivity of cypress-pine flatwoods...

  11. Resource use of Japanese macaques in heavy snowfall areas: implications for habitat management.

    Science.gov (United States)

    Enari, Hiroto; Sakamaki-Enari, Haruka

    2013-07-01

    Populations of Japanese macaque (Macaca fuscata) that inhabit the northernmost distribution of any nonhuman primates have been listed as endangered in Japan; however, macaques are widely known for being pests that cause agricultural damage. This study identified priority areas for the conservation and management of macaque habitats, by comparing the resource use of troops occupying remote mountains (montane troops) against troops inhabiting disturbed forests adjacent to settlements (rural troops). We collected species presence data across 2 years by radio-tracking two montane troops and two rural troops in the Shirakami Mountains. We developed seasonal utilization distributions by using the kernel method, and identified habitat characteristics by using ecological-niche factor analysis (ENFA). Our results indicate that environmental factors influencing the potential habitat varied widely with season in montane troops as compared with that in rural troops. ENFA results demonstrated that rural troops exhibited more biased resource use and narrower niche breadths than montane troops. Based on our findings, we propose that (1) primary broadleaf forests are the spring habitat conservation priority of montane troops; (2) the habitat unit--the product of habitat suitability index and its surface area--for montane troops is enhanced by removing old conifer plantations from the forest edge at low elevations; (3) such removal around settlements may also contribute toward removing a frontline refuge for rural troops intruding farmlands; and (4) intensive prevention measures against macaque intrusions into settlements during the bottleneck snowy season contribute toward reducing the habitat unit of rural troops.

  12. Investigating Targets of Avian Habitat Management to Eliminate an Ecological Trap

    Directory of Open Access Journals (Sweden)

    Bruce A. Robertson

    2012-12-01

    trees. Both sexes preferred standing dead perch trees (snags and these preferences were most obvious in harvested forest where snags are rarer. Because previous research shows that snag density is linked to habitat preference and spruce/fir trees are preferred nest substrate, my results suggest these two habitat components are focal habitat selection cues. I suggest alternative and complementary strategies for eliminating the ecological trap for Olive-sided Flycatchers including: (1 reduced retention and creation of snags, (2 avoiding selective harvest in spruce, fir, and larch stands, (3 avoiding retention of these tree species, and (4 selecting only even-aged canopy height trees for retention so as to reduce perch availability for female flycatchers. Because these strategies also have potential to negatively impact habitat suitability for other forest species or even create new ecological traps, we urge caution in the application of our management recommendations.

  13. Spatial patterns of degraded tropical forest and biodiversity restoration over 70-years of succession

    Directory of Open Access Journals (Sweden)

    Janet E. Nichol

    2017-07-01

    Full Text Available Landscape metrics have often been used to analyse the spatial dynamics of habitat fragmentation accompanying forest loss. However, there are few studies of the spatial dynamics of natural forest succession, especially over periods longer than the operational period of imaging satellites. This study applies spatial metrics to understand the spatial processes of a 70-year tropical secondary forest succession in Hong Kong, since World War 2. The highest rate of forest regeneration at 11% a year from 1989 to 2001 occurred when the landscape achieved greatest habitat diversity and juxtapositioning of habitat patches. This rapid regeneration occurred by infilling from remnant forest in adjacent valleys rather than by an advance along a broad forest front, and led to simplification of the landscape and declining habitat diversity. It was also accompanied by declines in species richness and abundance in regenerated forest patches. Thus both habitat and woody plant species diversity show a humped trend over the successional period as disconnected forest patches amalgamate, and shade-intolerant pioneers are shaded out by taller pioneers. From this point onwards, the birds of mixed habitats including bulbuls and hwamei known to disperse seed in the study area, may become less effective as forest patches consolidate, and only a few forest mammals remain. The observed improved connectivity within forest patches and reduced edge disturbances accompanying landscape simplification provide better conditions for dispersion within forest of light-intolerant climax species from the oldest, species-rich valley sites to the newly regenerated areas. However, in addition to the loss of forest dispersal agents, other natural dispersal agents such as gravity, flash floods and slope wash involving downward processes may be ineffective, as forest has regenerated upwards to higher elevations. Progression to a mature, biodiverse and stable forest ecosystem may depend on

  14. Forest Health Status in North America

    Directory of Open Access Journals (Sweden)

    Borys Tkacz

    2007-01-01

    Full Text Available The forests of North America provide a variety of benefits including water, recreation, wildlife habitat, timber, and other forest products. However, they continue to face many biotic and abiotic stressors including fires, native and invasive pests, fragmentation, and air pollution. Forest health specialists have been monitoring the health of forests for many years. This paper highlights some of the most damaging forest stressors affecting North American forests in recent years and provides some projections of future risks.

  15. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.

    Science.gov (United States)

    Dunn, Allison L; Wofsy, Steven C; v H Bright, Alfram

    2009-03-01

    We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands.

  16. Detection of understory bamboo in giant panda habitats using an indirect remote sensing approach

    NARCIS (Netherlands)

    Bian, B.M.; Wang, T.; Liu, Y.F.; Fei, T.; Skidmore, A.K.

    2007-01-01

    The bamboo is the exclusive food of the wild giant pandas. Detection of the bamboo forest in giant panda habitat will help scientists further understand the spatial distribution pattern of giant pandas and their habitats. Moreover, it provides crucial scientific evidence for estimating habitat

  17. Specific Vicariance of Two Primeval Lowland Forest Lichen Indicators

    Science.gov (United States)

    Kubiak, Dariusz; Osyczka, Piotr

    2017-06-01

    To date, the lichens Chrysothrix candelaris and Varicellaria hemisphaerica have been classified as accurate primeval lowland forest indicators. Both inhabit particularly valuable remnants of oak-hornbeam forests in Europe, but tend toward a specific kind of vicariance on a local scale. The present study was undertaken to determine habitat factors responsible for this phenomenon and verify the indicative and conservation value of these lichens. The main spatial and climatic parameters that, along with forest structure, potentially affect their distribution patterns and abundance were analysed in four complexes with typical oak-hornbeam stands in NE Poland. Fifty plots of 400 m2 each were chosen for detailed examination of stand structure and epiphytic lichens directly associated with the indicators. The study showed that the localities of the two species barely overlap within the same forest community in a relatively small geographical area. The occurrence of Chrysothrix candelaris depends basically only on microhabitat space provided by old oaks and its role as an indicator of the ecological continuity of habitat is limited. Varicellaria hemisphaerica is not tree specific but a sufficiently high moisture of habitat is essential for the species and it requires forests with high proportion of deciduous trees in a wide landscape scale. Local landscape-level habitat continuity is more important for this species than the current age of forest stand. Regardless of the indicative value, localities of both lichens within oak-hornbeam forests deserve the special protection status since they form unique assemblages of exclusive epiphytes, including those with high conservation value.

  18. No Habitat Selection during Spring Migration at a Meso-Scale Range across Mosaic Landscapes: A Case Study with the Woodcock (Scolopax rusticola.

    Directory of Open Access Journals (Sweden)

    Ariñe Crespo

    Full Text Available Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal.

  19. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related services

    Science.gov (United States)

    Eckehard G. Brockerhoff; Hervé Jactel; John A. Parrotta; Silvio F.B. Ferraz

    2013-01-01

    Forests provide important habitat for much of the world’s biodiversity, and the continuing global deforestation is one of our greatest environmental concerns. Planted forests represent an increasing proportion of the global forest area and partly compensate for the loss of natural forest in terms of forest area, habitat for biodiversity and ecological function. At...

  20. Conserving a geographically isolated Charaxes butterfly in response to habitat fragmentation and invasive alien plants

    Directory of Open Access Journals (Sweden)

    Casparus J. Crous

    2015-08-01

    Full Text Available In South Africa, much of the forest biome is vulnerable to human-induced disturbance. The forest-dwelling butterfly Charaxes xiphares occidentalis is naturally confined to a small forest region in the south-western Cape, South Africa. Most of the remaining habitat of this species is within a fragmented agricultural matrix. Furthermore, this geographical area is also heavily invaded by alien plants, especially Acacia mearnsii. We investigated how C. x. occidentalis behaviourally responds to different habitat conditions in the landscape. We were particularly interested in touring, patrolling and settling behaviour as a conservation proxy for preference of a certain habitat configuration in this agricultural matrix. Remnant forest patches in the agricultural matrix showed fewer behavioural incidents than in a reference protected area. Moreover, dense stands of A. mearnsii negatively influenced the incidence and settling pattern of this butterfly across the landscape, with fewer tree settlings associated with more heavily invaded forest patches. This settling pattern was predominantly seen in female butterflies. We also identified specific trees that were settled upon for longer periods by C. x. occidentalis. Distance to a neighbouring patch and patch size influenced behavioural incidences, suggesting that further patch degradation and isolation could be detrimental to this butterfly. Conservation implications: We highlight the importance of clearing invasive tree species from vulnerable forest ecosystems and identify key tree species to consider in habitat conservation and rehabilitation programmes for this butterfly. We also suggest retaining as much intact natural forest as possible. This information should be integrated in local biodiversity management plans.

  1. The Role of Social Constructions and Biophysical Attributes of the Environment in Decision-Making in the Context of Biofuels and Rubber Production Partnership Regimes in Upland Philippines

    Science.gov (United States)

    Montefrio, M. F.

    2012-12-01

    Burgeoning attention in biofuels and natural rubber has spurred interest among governments and private companies in integrating marginalized communities into global commodity markets. Upland farmers from diverse cultural backgrounds and biophysical settings today are deciding whether to agree with partnership proposals from governments and private firms to grow biofuels and natural rubber. In this paper, I examine whether upland farmers' socio-environmental constructions (evaluative beliefs, place satisfaction, and ecological worldviews) and the actual biophysical attributes (land cover and soil types) of upland environments, respectively, function as significant predictors of the intent and decisions of indigenous and non-indigenous farmers to cooperate with government and private actors to establish certain biofuel crops and natural rubber production systems in Palawan, Philippines. Drawing from ethnography and statistical analysis of household surveys, I propose that social constructions and the biophysical attributes of the environment are closely related with each other and in turn both influence individual decision-making behavior in resource-based production partnership regimes. This has significant implications on the resilience of socio-ecological systems, particularly agro-ecosystems, as certain upland farmers prefer to engage in intensive, monocrop production of biofuels and natural rubber on relatively more biodiverse areas, such as secondary forests and traditional shifting cultivation lands. The study aims to advance new institutional theories of resource management, particularly Ostrom's Institutional Analysis and Development and Socio-Ecological Systems frameworks, and scholarship on environmental decision-making in the context of collective action.

  2. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

  3. habitat are of special scientific, educative and

    African Journals Online (AJOL)

    Dr Osondu

    Over 50% of all sightings were achieved in the matured forest. Keywords: ... hotspots, eco- tourism potential for game viewing, ... conservation is the increasing rate of habitat loss or ... to relatively undisturbed natural areas for educational,.

  4. Assessing forest mortality patterns using climate and FIA data at multiple scales

    Science.gov (United States)

    Michael K. Crosby; Zhaofei Fan; Xingang Fan; Theodor D. Leininger; Martin A. Spetich

    2012-01-01

    Forest Inventory and Analysis (FIA) and PRISM climate data from 1991-2000 were obtained for 10 states in the southeastern United States. Mortality was calculated for each plot, and annual values for precipitation and maximum and minimum temperature were extracted from the PRISM data. Data were then stratified by upland/bottomland for red oak species, and classification...

  5. A Moveable Feast: Insects Moving at the Forest-Crop Interface Are Affected by Crop Phenology and the Amount of Forest in the Landscape.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Defagó, María Teresa; Valladares, Graciela

    2016-01-01

    Edges have become prevailing habitats, mainly as a result of habitat fragmentation and agricultural expansion. The interchange of functionally relevant organisms like insects occurs through these edges and can influence ecosystem functioning in both crop and non-crop habitats. However, very few studies have focused on the directionality of insect movement through edges, and the role of crop and non-crop amount has been ignored. Using bi-directional flight interception traps we investigated interchange of herbivore, natural enemy, pollinator and detritivore insects between native forest fragments and soybean crops, simultaneously considering movement direction, forest cover in the landscape and crop phenology. In total, 52,173 specimens and 877 morphospecies were collected. We found that, within most functional and taxonomic groups, movement intensity was similar (richness and/or abundance) between directions, whereas a predominantly forest-to-crop movement characterized natural enemies. Insect movement was extensively affected by crop phenology, decreasing during crop senescence, and was enhanced by forest cover particularly at senescence. Mainly the same herbivore species moved to and from the forest, but different natural enemy species predominated in each direction. Finally, our analyses revealed greater forest contribution to natural enemy than to herbivore communities in the crop, fading with distance to the forest in both groups. By showing that larger amounts of forest lead to richer insect interchange, in both directions and in four functional groups, our study suggests that allocation to natural and cultivated habitats at landscape level could influence functioning of both systems. Moreover, natural enemies seemed to benefit more than pests from natural vegetation, with natural enemy spillover from forests likely contributing to pest control in soybean fields. Thus consequences of insect interchange seem to be mostly positive for the agroecosystem

  6. Forest Service's Northern Research Station FIA launches 24-state study of forest regeneration

    Science.gov (United States)

    Will McWilliams; Shawn Lehman; Paul Roth; Jim. Westfall

    2012-01-01

    Inventory foresters often quake when asked to count tree seedlings, because the work is tedious and sometimes means tallying hundreds of stems. They also know that the density and quality of advance regeneration are key to the success of new stand establishment. Seedling counts provide valuable information on regeneration adequacy, forest diversity, wildlife habitat,...

  7. Habitat Evaluation Procedures (HEP) Report; Beaver Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 14, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Beaver Lake Project provides a total of 232.26 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 136.58 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 20.02 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Scrub-shrub wetland habitat provides 7.67 HUs for mallard, yellow warbler, and white-tailed deer. Grassland meadow provides 22.69 HUs for Canada goose and mallard. Emergent wetlands provide 35.04 HUs for Canada goose, mallard, and muskrat. Open water provided 10.26 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  8. Factors affecting seasonal habitat use, and predicted range of two tropical deer in Indonesian rainforest

    Science.gov (United States)

    Rahman, Dede Aulia; Gonzalez, Georges; Haryono, Mohammad; Muhtarom, Aom; Firdaus, Asep Yayus; Aulagnier, Stéphane

    2017-07-01

    There is an urgent recognized need for conservation of tropical forest deer. In order to identify some environmental factors affecting conservation, we analyzed the seasonal habitat use of two Indonesian deer species, Axis kuhlii in Bawean Island and Muntiacus muntjak in south-western Java Island, in response to several physical, climatic, biological, and anthropogenic variables. Camera trapping was performed in different habitat types during both wet and dry season to record these elusive species. The highest number of photographs was recorded in secondary forest and during the dry season for both Bawean deer and red muntjac. In models, anthropogenic and climatic variables were the main predictors of habitat use. Distances to cultivated area and to settlement were the most important for A. kuhlii in the dry season. Distances to cultivated area and annual rainfall were significant for M. muntjak in both seasons. Then we modelled their predictive range using Maximum entropy modelling (Maxent). We concluded that forest landscape is the fundamental scale for deer management, and that secondary forests are potentially important landscape elements for deer conservation. Important areas for conservation were identified accounting of habitat transformation in both study areas.

  9. Effects of habitat structure and altitudinal gradients on avian species ...

    African Journals Online (AJOL)

    ... effect on bird species diversity. Bird species diversity increased with increase in tree height. A significant decline in bird species diversity with increased number of trees and canopy cover was noted. This result probably suggests an accumulation of forest edge species and generalist species in the less forested habitat.

  10. Ecological pattern of lichen species abundance in mixed forests of Eastern Romania

    Directory of Open Access Journals (Sweden)

    Ioana Vicol

    2016-12-01

    Full Text Available The importance of this study consists in the knowledge of the ecological attributes characteristic to mixed forestry habitats and how they affect the structure of the lichen species abundances. The field activities were performed within five forest habitat types from Moldavia Province, characterised mainly by oak mixed forests, riparian mixed forests and mixed beech forests. The habitat variables, tree variables and the lichen species abundances were analysed to get informations on the structural disimilarities, on the one hand, and relationships on the other hand. Within this study no significant disimilarities were found out from abundance lichen species point of view. The lichen species abundances are a result of interactions between components of their microhabitat and macrohabitat. The correlation analysis pointed out the preferences of lichen species to their host trees, especially Quercus and Fraxinus, altitude and tree level variables as are aspect and mosses coverage. The regression analysis has highlighted that the changes in lichen species abundances are caused by macrohabitat level predictors such as host trees represented by Fraxinus. This study demonstrates that, structure of lichen species is influenced by attributes of mixed forest habitats; therefore maintaining the diversity of tree species and ensuring the continuous occurrence of forestry land is necessary for lichen and their habitat conservation.

  11. The conservation value of South East Asia's highly degraded forests: evidence from leaf-litter ants

    Science.gov (United States)

    Woodcock, Paul; Edwards, David P.; Fayle, Tom M.; Newton, Rob J.; Khen, Chey Vun; Bottrell, Simon H.; Hamer, Keith C.

    2011-01-01

    South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority. PMID:22006966

  12. Coyote abundance in relation to habitat characteristics in Sierra San Luis, Sonora, Mexico

    Science.gov (United States)

    Eduardo Ponce Guevara; Karla Pelz Serrano; Carlos A. Lopez Gonzalez

    2005-01-01

    Coyotes have expanded their historical distribution range because of anthropogenic activities and habitat transformation, where forests have been considered marginal habitat. We tested the relationship between vegetation structure and coyote abundance in different habitat types. We expected to find a higher abundance in open lands than in thicker areas. We used scent...

  13. Effect Of Shade Organic Materials And Varieties On Growth And Production Of Upland Rice

    Directory of Open Access Journals (Sweden)

    Jonatan Ginting

    2015-01-01

    Full Text Available Abstract There is a shade factor and low organic matter content of the soil is a problem that needs to be addressed in the development of upland rice cultivation as intercrops in the plantation area. Based on these considerations then one study that needs to be done is to conduct experiments on the effect of shade factor combined with the the provision of the organic material to the some varieties of upland rice that has been recommended nationally. The objective of experiment is to study the influence of shade organic materials and varieties on the growth and production of upland rice. This research using experimental design of Split - Split Plot Design with 3 treatment factors and 3 replications or blocks. The first factor is the treatment of shade with 3 levels shade percentage 0 20 and 40. The second factor is the dosage of organic material consists of 3 levels 0 g polybag 25 g polybag 50 g polybag and 75 g polybag. The third factor is the treatment of varieties consists of 4 types of upland rice varieties Si Kembiri Situ Patengggang Situ Bagendit and Tuwoti. The research results showed that the effect of shade on upland rice varieties decrease number of tillers number of panicles number of productive grains grain production per hill of uplnd rice plants and total sugar content of upland rice plants. Effect of organic matter increases number of panicles number of productive grains grain production per hill of upland rice plants and total sugar content of upland rice plants. It is known that the the variety of Situ Patenggang provides better growth and production compared with three other varieties Si Kembiri Situ Bagendit and Tuwoti in shaded conditions.

  14. Forest fire impact on bird habitat in a mixed oak-pine forest in Puebla, Mexico

    Science.gov (United States)

    Laura P. Ponce-Calderón Ponce-Calderón; Dante A. Rodríguez-Trejo; Beatriz C. Aguilar-Váldez; Elvia. López-Pérez

    2013-01-01

    To assess the impact of different-severity wildfires on bird habitat, habitat quality was determined by analyzing the degree of richness association, abundance and diversity of bird species and vegetation structure (richness, abundance, diversity and coverage). These attributes were quantified with four sampling sites for birds and five for quadrant-centered points...

  15. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    Science.gov (United States)

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and

  16. Will climate change affect biodiversity in pacific northwest forests

    International Nuclear Information System (INIS)

    Henderson, S.; Rosenbaum, B.J.

    1992-01-01

    Global climate change could have significant consequences for biological diversity in Pacific Northwest (PNW) forested ecosystems, particularly in areas already threatened by anthropogenic activities and the resultant habitat modification and fragmentation. The forests of the Pacific Northwest have a high biological diversity, not only in terms of tree species, but also in terms of herbs, bryophytes and hepatophytes, algae, fungi, protist, bacteria, and many groups of vertebrates and invertebrates. Global circulation and vegetation model projections of global climate change effects on PNW forests include reductions in species diversity in low elevation forests as well as elevational and latitudinal shifts in species ranges. As species are most likely to be stressed at the edges of their ranges, plant and animal species with low mobility, or those that are prevented from migrating by lack of habitat corridors, may become regionally extinct. Endangered species with limited distribution may be especially vulnerable to shifts in habitat conditions

  17. Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across a habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi

    Directory of Open Access Journals (Sweden)

    SHAHABUDDIN

    2010-01-01

    Full Text Available Shahabuddin (2010 Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi. Biodiversitas 11: 29-33. Dung beetles are important component of most terrestrial ecosystems and used to assess the effects of habitat disturbance and deforestation. This study aimed at comparing dung beetle assemblages among several habitat types ranging from natural tropical forest and agroforestry systems to open cultivated areas at the margin of Lore Lindu National Park (LLNP, Central Sulawesi (one of Indonesia’s biodiversity hotspots. Therefore, 10 pitfall traps baited with cattle dung were exposed at each habitat type (n = 4 replicate sites per habitat type to collect the dung beetles. The results showed that species richness of dung beetles declined significantly from natural forest to open area. However cacao agroforestry systems seemed to be capable of maintaining a high portion of dung beetle species inhabiting at forest sites. The closer relationship between dung beetle assemblages recorded at forest and agroforestry sites reflects the high similarity of some measured habitat parameters (e.g. vegetation structure and microclimate between both habitat types, while species assemblages at open areas differed significantly from both other habitat groups. These results indicated that habitat type has importance effect on determining the species richness and community structure of dung beetles at the margin of LLNP.

  18. Habitat Evaluation Procedures (HEP) Report; North Eaton Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-11-01

    On July 6, 2005, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the North Eaton Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The North Eaton Lake Project provides a total of 235.05 Habitat Units (HUs) for the species evaluated. Open water habitat provides 9.38 HUs for Canada goose, mallard and muskrat. Emergent wetland habitat provides 11.36 HUs for Canada goose, mallard and muskrat. Forested wetland provides 10.97 HUs for bald eagle, black-capped chickadee, mallard and white-tailed deer. Conifer forest habitat provides 203.34 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the North Eaton Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  19. Bat habitat use in White Mountain National Forest

    Science.gov (United States)

    Rachel A. Krusic; Mariko Yamasaki; Christopher D. Neefus; Peter J. Pekins

    1996-01-01

    In 1992 and 1993, we surveyed the foraging and feeding activity of bat species with broadband bat detectors at 2 foliage heights in 4 age classes of northern hardwood and spruce/fir forest stands in White Mountain National Forest, New Hampshire and Maine. The association of bat activity with trails and water bodies and the effect of elevation were measured. Mist nets,...

  20. Relevance of ruminants in upland mixed-farming systems in East Java, Indonesia

    NARCIS (Netherlands)

    Ifar, S.

    1996-01-01

    In Indonesia, upland agriculture is associated with resource-poor farmers, land degradation, and low agricultural production. The common premise is that cattle productivity in upland areas is low and that this is mainly caused by a shortage of feed. The area chosen to carry out this study on the