WorldWideScience

Sample records for updated numerical analysis

  1. Numerical analysis

    CERN Document Server

    Khabaza, I M

    1960-01-01

    Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput

  2. Numerical analysis

    CERN Document Server

    Rao, G Shanker

    2006-01-01

    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  3. Numerical analysis

    CERN Document Server

    Scott, L Ridgway

    2011-01-01

    Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...

  4. Numerical analysis

    CERN Document Server

    Brezinski, C

    2012-01-01

    Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<

  5. Numerical analysis

    CERN Document Server

    Jacques, Ian

    1987-01-01

    This book is primarily intended for undergraduates in mathematics, the physical sciences and engineering. It introduces students to most of the techniques forming the core component of courses in numerical analysis. The text is divided into eight chapters which are largely self-contained. However, with a subject as intricately woven as mathematics, there is inevitably some interdependence between them. The level of difficulty varies and, although emphasis is firmly placed on the methods themselves rather than their analysis, we have not hesitated to include theoretical material when we consider it to be sufficiently interesting. However, it should be possible to omit those parts that do seem daunting while still being able to follow the worked examples and to tackle the exercises accompanying each section. Familiarity with the basic results of analysis and linear algebra is assumed since these are normally taught in first courses on mathematical methods. For reference purposes a list of theorems used in the t...

  6. Introduction to numerical analysis

    CERN Document Server

    Hildebrand, F B

    1987-01-01

    Well-known, respected introduction, updated to integrate concepts and procedures associated with computers. Computation, approximation, interpolation, numerical differentiation and integration, smoothing of data, other topics in lucid presentation. Includes 150 additional problems in this edition. Bibliography.

  7. Conjugate heat transfer analysis of an energy conversion device with an updated numerical model obtained through inverse identification

    International Nuclear Information System (INIS)

    Hey, Jonathan; Malloy, Adam C.; Martinez-Botas, Ricardo; Lamperth, Michael

    2015-01-01

    Highlights: • Conjugate heat transfer analysis of an electric machine. • Inverse identification method for estimating the model parameters. • Experimentally determined thermal properties and electromagnetic losses. • Coupling of inverse identification method with a numerical model. • Improved modeling accuracy through introduction of interface material. - Abstract: Energy conversion devices undergo thermal loading during their operation as a result of inefficiencies in the energy conversion process. This will eventually lead to degradation and possible failure of the device if the heat generated is not properly managed. The ability to accurately predict the thermal behavior of such a device during the initial developmental stage is an important requirement. However, accurate predictions of critical temperature is challenging due to the variation of heat transfer parameters from one device to another. The ability to determine the model parameters is key to accurately representing the heat transfer in such a device. This paper presents the use of an inverse identification technique to estimate the model parameters of an energy conversion device designed for vehicular applications. To simulate the imperfect contact and the presence of insulating materials in the permanent magnet electric machine, thin material are introduced at the component interface of the numerical model. The proposed inverse identification method is used to estimate the equivalent thermal conductance of the thin material. In addition, the electromagnetic losses generated in the permanent magnet is also derived indirectly from the temperature measurement using the same method. With the thermal properties and input parameters of the numerical model obtained from the inverse identification method, the critical temperature of the device can be predicted more accurately. The deviation between the maximum measured and predicted winding temperature is less than 2.4%

  8. Numerical model updating technique for structures using firefly algorithm

    Science.gov (United States)

    Sai Kubair, K.; Mohan, S. C.

    2018-03-01

    Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.

  9. The distance effect in numerical memory-updating tasks.

    Science.gov (United States)

    Lendínez, Cristina; Pelegrina, Santiago; Lechuga, Teresa

    2011-05-01

    Two experiments examined the role of numerical distance in updating numerical information in working memory. In the first experiment, participants had to memorize a new number only when it was smaller than a previously memorized number. In the second experiment, updating was based on an external signal, which removed the need to perform any numerical comparison. In both experiments, distance between the memorized number and the new one was manipulated. The results showed that smaller distances between the new and the old information led to shorter updating times. This graded facilitation suggests that the process by which information is substituted in the focus of attention involves maintaining the shared features between the new and the old number activated and selecting other new features to be activated. Thus, the updating cost may be related to amount of new features to be activated in the focus of attention.

  10. The role of similarity in updating numerical information in working memory: decomposing the numerical distance effect.

    Science.gov (United States)

    Lendínez, Cristina; Pelegrina, Santiago; Lechuga, M Teresa

    2014-01-01

    The present study investigates the process of updating representations in working memory (WM) and how similarity between the information involved influences this process. In WM updating tasks, the similarity in terms of numerical distance between the number to be substituted and the new one facilitates the updating process. We aimed to disentangle the possible effect of two dimensions of similarity that may contribute to this numerical effect: numerical distance itself and common digits shared between the numbers involved. Three experiments were conducted in which different ranges of distances and the coincidence between the digits of the two numbers involved in updating were manipulated. Results showed that the two dimensions of similarity had an effect on updating times. The greater the similarity between the information maintained in memory and the new information that substituted it, the faster the updating. This is consistent both with the idea of distributed representations based on features, and with a selective updating process based on a feature overwriting mechanism. Thus, updating in WM can be understood as a selective substitution process influenced by similarity in which only certain parts of the representation stored in memory are changed.

  11. Introductory numerical analysis

    CERN Document Server

    Pettofrezzo, Anthony J

    2006-01-01

    Written for undergraduates who require a familiarity with the principles behind numerical analysis, this classical treatment encompasses finite differences, least squares theory, and harmonic analysis. Over 70 examples and 280 exercises. 1967 edition.

  12. Numerical analysis of bifurcations

    International Nuclear Information System (INIS)

    Guckenheimer, J.

    1996-01-01

    This paper is a brief survey of numerical methods for computing bifurcations of generic families of dynamical systems. Emphasis is placed upon algorithms that reflect the structure of the underlying mathematical theory while retaining numerical efficiency. Significant improvements in the computational analysis of dynamical systems are to be expected from more reliance of geometric insight coming from dynamical systems theory. copyright 1996 American Institute of Physics

  13. Analysis of numerical methods

    CERN Document Server

    Isaacson, Eugene

    1994-01-01

    This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.

  14. Industrial numerical analysis

    International Nuclear Information System (INIS)

    McKee, S.; Elliott, C.M.

    1986-01-01

    The applications of mathematics to industrial problems involves the formulation of problems which are amenable to mathematical investigation, mathematical modelling, the solution of the mathematical problem and the inter-pretation of the results. There are 12 chapters describing industrial problems where mathematics and numerical analysis can be applied. These range from the numerical assessment of the flatness of engineering surfaces and plates, the design of chain links, control problems in tidal power generation and low thrust satellite trajectory optimization to mathematical models in welding. One chapter, on the ageing of stainless steels, is indexed separately. (UK)

  15. Numerical analysis using Sage

    CERN Document Server

    Anastassiou, George A

    2015-01-01

    This is the first numerical analysis text to use Sage for the implementation of algorithms and can be used in a one-semester course for undergraduates in mathematics, math education, computer science/information technology, engineering, and physical sciences. The primary aim of this text is to simplify understanding of the theories and ideas from a numerical analysis/numerical methods course via a modern programming language like Sage. Aside from the presentation of fundamental theoretical notions of numerical analysis throughout the text, each chapter concludes with several exercises that are oriented to real-world application.  Answers may be verified using Sage.  The presented code, written in core components of Sage, are backward compatible, i.e., easily applicable to other software systems such as Mathematica®.  Sage is  open source software and uses Python-like syntax. Previous Python programming experience is not a requirement for the reader, though familiarity with any programming language is a p...

  16. Numerical analysis II essentials

    CERN Document Server

    REA, The Editors of; Staff of Research Education Association

    1989-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Numerical Analysis II covers simultaneous linear systems and matrix methods, differential equations, Fourier transformations, partial differential equations, and Monte Carlo methods.

  17. Numerical Analysis Objects

    Science.gov (United States)

    Henderson, Michael

    1997-08-01

    The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.

  18. Summary Analysis: Hanford Site Composite Analysis Update

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Lehman, L. L. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-06-05

    The Hanford Site’s currently maintained Composite Analysis, originally completed in 1998, requires an update. A previous update effort was undertaken by the U.S. Department of Energy (DOE) in 2001-2005, but was ended before completion to allow the Tank Closure & Waste Management Environmental Impact Statement (TC&WM EIS) (DOE/EIS-0391) to be prepared without potential for conflicting sitewide models. This EIS was issued in 2012, and the deferral was ended with guidance in memorandum “Modeling to Support Regulatory Decision Making at Hanford” (Williams, 2012) provided with the aim of ensuring subsequent modeling is consistent with the EIS.

  19. Numerical analysis targets

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    Numerical analyses are needed in different steps of the overall design process. Complex models or non-linear reactor core behaviour are important for qualification and/or comparison of results obtained. Adequate models and test should be defined. Fuel assembly, fuel row, and the complete core should be tested for seismic effects causing LOCA and flow-induced vibrations (FIV)

  20. Handbook of numerical analysis

    CERN Document Server

    Ciarlet, Philippe G

    Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas an

  1. Numerical Limit Analysis:

    DEFF Research Database (Denmark)

    Damkilde, Lars

    2007-01-01

    Limit State analysis has a long history and many prominent researchers have contributed. The theoretical foundation is based on the upper- and lower-bound theorems which give a very comprehensive and elegant formulation on complicated physical problems. In the pre-computer age Limit State analysis...... also enabled engineers to solve practical problems within reinforced concrete, steel structures and geotechnics....

  2. Theoretical numerical analysis a functional analysis framework

    CERN Document Server

    Atkinson, Kendall

    2005-01-01

    This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solu

  3. Updated safety analysis of ITER

    International Nuclear Information System (INIS)

    Taylor, Neill; Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid

    2011-01-01

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  4. Updated safety analysis of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Neill, E-mail: neill.taylor@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Baker, Dennis; Ciattaglia, Sergio; Cortes, Pierre; Elbez-Uzan, Joelle; Iseli, Markus; Reyes, Susana; Rodriguez-Rodrigo, Lina; Rosanvallon, Sandrine; Topilski, Leonid [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2011-10-15

    An updated version of the ITER Preliminary Safety Report has been produced and submitted to the licensing authorities. It is revised and expanded in response to requests from the authorities after their review of an earlier version in 2008, to reflect enhancements in ITER safety provisions through design changes, to incorporate new and improved safety analyses and to take into account other ITER design evolution. The updated analyses show that changes to the Tokamak cooling water system design have enhanced confinement and reduced potential radiological releases as well as removing decay heat with very high reliability. New and updated accident scenario analyses, together with fire and explosion risk analyses, have shown that design provisions are sufficient to minimize the likelihood of accidents and reduce potential consequences to a very low level. Taken together, the improvements provided a stronger demonstration of the very good safety performance of the ITER design.

  5. Update of Part 61 impacts analysis methodology

    International Nuclear Information System (INIS)

    Oztunali, O.I.; Roles, G.W.

    1986-01-01

    The US Nuclear Regulatory Commission is expanding the impacts analysis methodology used during the development of the 10 CFR Part 61 rule to allow improved consideration of costs and impacts of disposal of waste that exceeds Class C concentrations. The project includes updating the computer codes that comprise the methodology, reviewing and updating data assumptions on waste streams and disposal technologies, and calculation of costs for small as well as large disposal facilities. This paper outlines work done to date on this project

  6. Update of Part 61 impacts analysis methodology

    International Nuclear Information System (INIS)

    Oztunali, O.I.; Roles, G.W.; US Nuclear Regulatory Commission, Washington, DC 20555)

    1985-01-01

    The US Nuclear Regulatory Commission is expanding the impacts analysis methodology used during the development of the 10 CFR Part 61 regulation to allow improved consideration of costs and impacts of disposal of waste that exceeds Class C concentrations. The project includes updating the computer codes that comprise the methodology, reviewing and updating data assumptions on waste streams and disposal technologies, and calculation of costs for small as well as large disposal facilities. This paper outlines work done to date on this project

  7. Numerical analysis of the big bounce in loop quantum cosmology

    International Nuclear Information System (INIS)

    Laguna, Pablo

    2007-01-01

    Loop quantum cosmology (LQC) homogeneous models with a massless scalar field show that the big-bang singularity can be replaced by a big quantum bounce. To gain further insight on the nature of this bounce, we study the semidiscrete loop quantum gravity Hamiltonian constraint equation from the point of view of numerical analysis. For illustration purposes, we establish a numerical analogy between the quantum bounces and reflections in finite difference discretizations of wave equations triggered by the use of nonuniform grids or, equivalently, reflections found when solving numerically wave equations with varying coefficients. We show that the bounce is closely related to the method for the temporal update of the system and demonstrate that explicit time-updates in general yield bounces. Finally, we present an example of an implicit time-update devoid of bounces and show back-in-time, deterministic evolutions that reach and partially jump over the big-bang singularity

  8. Matlab programming for numerical analysis

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. Programming MATLAB for Numerical Analysis introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. You will first become

  9. Numerical analysis of electromagnetic fields

    CERN Document Server

    Zhou Pei Bai

    1993-01-01

    Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...

  10. Odelouca Dam Construction: Numerical Analysis

    OpenAIRE

    Brito, A.; Maranha, J. R.; Caldeira, L.

    2012-01-01

    Odelouca dam is an embankment dam, with 76 m height, recently constructed in the south of Portugal. It is zoned with a core consisting of colluvial and residual schist soil and with soil-rockfill mixtures making up the shells (weathered schist with a significant fraction of coarse sized particles). This paper presents a numerical analysis of Odelouca Dam`s construction. The material con-stants of the soil model used are determined from a comprehensive testing programme carried out in the C...

  11. Blacklist Ecosystem Analysis Update: 2014

    Science.gov (United States)

    2014-12-01

    example, we checked to see if any of the blacklisted IP addresses were known sinkhole IP addresses. This information would essentially invalidate the...indicator as an indicator of malicious activity, since sinkholes are operated by CERTCC-2014-82 4 Blacklist Ecosystem Analysis CERT/CC network defenders who...clean up and collect intelligence on threats. Only one list out of 67, LI_3, contained any sinkhole IP addresses and that list contained only 10. All

  12. Food Irradiation Update and Cost Analysis

    Science.gov (United States)

    1991-11-01

    Natick). Significant contributions were made by Dr. Irwin Taub and Mr. Christopher Rees of the Technology Acquisition Division, Food Engineering...stability. 5 Food Irradiation Update C-ost Analysis I. Introduction In the book The Physioloqy of Taste (1825), one of the pioneers of gastronomy ...review of the utility that radiation preserved foods might offer the military food service system. To date, this technology has seen limited use in the

  13. N Reactor updated safety analysis report, NUSAR

    International Nuclear Information System (INIS)

    1978-01-01

    An update of the N Reactor safety analysis is presented to reconfirm that the continued operation does not pose undue risk to DOE personnel and property, the public, or the environment. A reanalysis of LOCA and reactivity transients utilizing current codes and methods is made. The principal aspects of the overall submission, a general description, and site characteristics including geography and demography, nearby industrial, transportation and military facilities, meteorology, hydraulic engineering, and geology and seismology are described

  14. Update of the Unitarity Triangle Analysis

    CERN Document Server

    Bevan, A.J.; Ciuchini, M.; Derkach, D.; Stocchi, A.; Franco, E.; Silvestrini, L.; Lubicz, V.; Tarantino, Cecilia; Martinelli, G.; Parodi, F.; Schiavi, C.; Pierini, M.; Sordini, V.; Vagnoni, V.

    2010-01-01

    We present the status of the Unitarity Triangle Analysis (UTA), within the Standard Model (SM) and beyond, with experimental and theoretical inputs updated for the ICHEP 2010 conference. Within the SM, we find that the general consistency among all the constraints leaves space only to some tension (between the UTA prediction and the experimental measurement) in BR(B -> tau nu), sin(2 beta) and epsilon_K. In the UTA beyond the SM, we allow for New Physics (NP) effects in (Delta F)=2 processes. The hint of NP at the 2.9 sigma level in the B_s-\\bar B_s mixing turns out to be confirmed by the present update, which includes the new D0 result on the dimuon charge asymmetry but not the new CDF measurement of phi_s, being the likelihood not yet released.

  15. Analysis of Stress Updates in the Material-point Method

    DEFF Research Database (Denmark)

    Andersen, Søren; Andersen, Lars

    2009-01-01

    The material-point method (MPM) is a new numerical method for analysis of large strain engineering problems. The MPM applies a dual formulation, where the state of the problem (mass, stress, strain, velocity etc.) is tracked using a finite set of material points while the governing equations...... are solved on a background computational grid. Several references state, that one of the main advantages of the material-point method is the easy application of complicated material behaviour as the constitutive response is updated individually for each material point. However, as discussed here, the MPM way...

  16. Numerical Analysis of Multiscale Computations

    CERN Document Server

    Engquist, Björn; Tsai, Yen-Hsi R

    2012-01-01

    This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.

  17. An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2013-01-01

    Praise for the First Edition "". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises.""-Zentralblatt MATH "". . . carefully structured with many detailed worked examples.""-The Mathematical Gazette The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis. An Introduction to

  18. Update of the Unitarity Triangle Analysis

    International Nuclear Information System (INIS)

    Tarantino, C.; Bona, M.; Sordini, V.

    2009-01-01

    We present the update of the Unitarity Triangle (UT) analysis within the Standard Model (SM) and beyond. Within the SM, combining the direct measurements on sides and angles, the UT turns out to be overconstraint in a consistent way, showing that the CKM matrix is the dominant source of flavour mixing and CP-violation and that New Physics (NP) effects can appear at most as small corrections to the CKM picture. Generalizing the UT analysis to investigate NP effects, constraints on b → s transitions are also included and both CKM and NP parameters are fitted simultaneously. While no evidence of NP effects is found in K - (bar) K and B d - (bar) B d mixing, in the B s - (bar) B s mixing an hint of NP is found. The UT analysis beyond the SM also allows us to derive bounds on the coefficients of the most general ΔF = 2 effective Hamiltonian, that can be translated into bounds on the NP scale. (authors)

  19. Theory and applications of numerical analysis

    CERN Document Server

    Phillips, G M

    1996-01-01

    This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions

  20. Numerical methods in software and analysis

    CERN Document Server

    Rice, John R

    1992-01-01

    Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm

  1. Real-time numerical shake prediction and updating for earthquake early warning

    Science.gov (United States)

    Wang, Tianyun; Jin, Xing; Wei, Yongxiang; Huang, Yandan

    2017-12-01

    Ground motion prediction is important for earthquake early warning systems, because the region's peak ground motion indicates the potential disaster. In order to predict the peak ground motion quickly and precisely with limited station wave records, we propose a real-time numerical shake prediction and updating method. Our method first predicts the ground motion based on the ground motion prediction equation after P waves detection of several stations, denoted as the initial prediction. In order to correct the prediction error of the initial prediction, an updating scheme based on real-time simulation of wave propagation is designed. Data assimilation technique is incorporated to predict the distribution of seismic wave energy precisely. Radiative transfer theory and Monte Carlo simulation are used for modeling wave propagation in 2-D space, and the peak ground motion is calculated as quickly as possible. Our method has potential to predict shakemap, making the potential disaster be predicted before the real disaster happens. 2008 M S8.0 Wenchuan earthquake is studied as an example to show the validity of the proposed method.

  2. Average-case analysis of numerical problems

    CERN Document Server

    2000-01-01

    The average-case analysis of numerical problems is the counterpart of the more traditional worst-case approach. The analysis of average error and cost leads to new insight on numerical problems as well as to new algorithms. The book provides a survey of results that were mainly obtained during the last 10 years and also contains new results. The problems under consideration include approximation/optimal recovery and numerical integration of univariate and multivariate functions as well as zero-finding and global optimization. Background material, e.g. on reproducing kernel Hilbert spaces and random fields, is provided.

  3. On the complexity of numerical analysis

    DEFF Research Database (Denmark)

    Miltersen, Peter Bro; Allender, Eric; Burgisser, Peter

    2009-01-01

    an integer N, decide whether N>0. • In the Blum-Shub-Smale model, polynomial time computation over the reals (on discrete inputs) is polynomial-time equivalent to PosSLP, when there are only algebraic constants. We conjecture that using transcendental constants provides no additional power, beyond nonuniform...... reductions to PosSLP, and we present some preliminary results supporting this conjecture. • The Generic Task of Numerical Computation is also polynomial-time equivalent to PosSLP. We prove that PosSLP lies in the counting hierarchy. Combining this with work of Tiwari, we obtain that the Euclidean Traveling......We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The Blum-Shub-Smale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation,” which captures an aspect of doing numerical computation...

  4. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lui, S H

    2011-01-01

    A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis

  5. Numerical methods and analysis of multiscale problems

    CERN Document Server

    Madureira, Alexandre L

    2017-01-01

    This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

  6. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2016-01-01

    ; the framework is based on the theory of rigid-plasticity, and the resulting mathematical optimisation problem can be solved efficiently using modern algorithms. This paper gives a brief introduction to convex optimisation and numerical limit analysis. The mathematical formulation of lower bound load...

  7. Numerical analysis of thermoluminescence glow curves

    International Nuclear Information System (INIS)

    Gomez Ros, J. M.; Delgado, A.

    1989-01-01

    This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs

  8. Ferrofluids: Modeling, numerical analysis, and scientific computation

    Science.gov (United States)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a

  9. Numerical analysis of the Anderson localization

    International Nuclear Information System (INIS)

    Markos, P.

    2006-01-01

    The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper (Author)

  10. Numerical Limit Analysis of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    For more than half a century, limit state analysis based on the extremum principles have been used to assess the load bearing capacity of reinforced concrete structures. Extensi- ve research within the field has lead to several techniques for performing such analysis manually. While these manual...... methods provide engineers with valuable tools for limit sta- te analysis, their application becomes difficult with increased structural complexity. The main challenge is to solve the optimization problem posed by the extremum principles. This thesis is a study of how numerical methods can be used to solve...... limit state analysis problems. The work focuses on determination of the load bearing capacity of reinforced concrete structures by employing the lower bound theorem and a finite element method using equilibrium elements is developed. The recent year’s development within the field of convex optimization...

  11. A numerical technique for reactor subchannel analysis

    International Nuclear Information System (INIS)

    Fath, Hassan E.S.

    1983-01-01

    A numerical technique is developed for the solution of the transient boundary layer equations with a moving liquid-vapour interface boundary. The technique uses the finite difference method with the velocity components defined over an Eulerian mesh. A system of interface massless markers is defined where the markers move with the flow field according to a simple kinematic relation between the interface geometry and the fluid velocity. Different applications of nuclear engineering interest are reported with some available results. The present technique is capable of predicting the interface profile near the wall which is important in the reactor subchannel analysis

  12. Updated Meta-Analysis of Learner Control within Educational Technology

    Science.gov (United States)

    Karich, Abbey C.; Burns, Matthew K.; Maki, Kathrin E.

    2014-01-01

    Giving a student control over their learning has theoretical and intuitive appeal, but its effects are neither powerful nor consistent in the empirical literature base. This meta-analysis updated previous meta-analytic research by Niemiec, Sikorski, and Walberg by studying the overall effectiveness of providing learner control within educational…

  13. Automated Image Analysis Corrosion Working Group Update: February 1, 2018

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, James G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-01

    These are slides for the automated image analysis corrosion working group update. The overall goals were: automate the detection and quantification of features in images (faster, more accurate), how to do this (obtain data, analyze data), focus on Laser Scanning Confocal Microscope (LCM) data (laser intensity, laser height/depth, optical RGB, optical plus laser RGB).

  14. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen

    Precast concrete elements are widely used in the construction industry as they provide a number of advantages over the conventional in-situ cast concrete structures. Joints cast on the construction site are needed to connect the precast elements, which poses several challenges. Moreover, the curr...... problems are solved efficiently using state-of-the-art solvers. It is concluded that the framework and developed joint models have the potential to enable efficient design of precast concrete structures in the near future......., the current practice is to design the joints as the weakest part of the structure, which makes analysis of the ultimate limit state behaviour by general purpose software difficult and inaccurate. Manual methods of analysis based on limit analysis have been used for several decades. The methods provide...... of the ultimate limit state behaviour. This thesis introduces a framework based on finite element limit analysis, a numerical method based on the same extremum principles as the manual limit analysis. The framework allows for efficient analysis and design in a rigorous manner by use of mathematical optimisation...

  15. Numerical modeling techniques for flood analysis

    Science.gov (United States)

    Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.

    2016-12-01

    Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.

  16. Computational techniques for inelastic analysis and numerical experiments

    International Nuclear Information System (INIS)

    Yamada, Y.

    1977-01-01

    A number of formulations have been proposed for inelastic analysis, particularly for the thermal elastic-plastic creep analysis of nuclear reactor components. In the elastic-plastic regime, which principally concerns with the time independent behavior, the numerical techniques based on the finite element method have been well exploited and computations have become a routine work. With respect to the problems in which the time dependent behavior is significant, it is desirable to incorporate a procedure which is workable on the mechanical model formulation as well as the method of equation of state proposed so far. A computer program should also take into account the strain-dependent and/or time-dependent micro-structural changes which often occur during the operation of structural components at the increasingly high temperature for a long period of time. Special considerations are crucial if the analysis is to be extended to large strain regime where geometric nonlinearities predominate. The present paper introduces a rational updated formulation and a computer program under development by taking into account the various requisites stated above. (Auth.)

  17. Sensitivity analysis of numerical solutions for environmental fluid problems

    International Nuclear Information System (INIS)

    Tanaka, Nobuatsu; Motoyama, Yasunori

    2003-01-01

    In this study, we present a new numerical method to quantitatively analyze the error of numerical solutions by using the sensitivity analysis. If a reference case of typical parameters is one calculated with the method, no additional calculation is required to estimate the results of the other numerical parameters such as more detailed solutions. Furthermore, we can estimate the strict solution from the sensitivity analysis results and can quantitatively evaluate the reliability of the numerical solution by calculating the numerical error. (author)

  18. Updated Global Analysis of Higgs Couplings

    CERN Document Server

    Ellis, John

    2013-01-01

    There are many indirect and direct experimental indications that the new particle H discovered by the ATLAS and CMS Collaborations has spin zero and (mostly) positive parity, and that its couplings to other particles are correlated with their masses. Beyond any reasonable doubt, it is a Higgs boson, and here we examine the extent to which its couplings resemble those of the single Higgs boson of the Standard Model. Our global analysis of its couplings to fermions and massive bosons determines that they have the same relative sign as in the Standard Model. We also show directly that these couplings are highly consistent with a dependence on particle masses that is linear to within a few %, and scaled by the conventional electroweak symmetry-breaking scale to within 10%. We also give constraints on loop-induced couplings, on the total Higgs decay width, and on possible invisible decays of the Higgs boson under various assumptions.

  19. Deuterated drugs; updates and obviousness analysis.

    Science.gov (United States)

    Timmins, Graham S

    2017-12-01

    The pharmacokinetics and/or toxicity of many known drugs can be modified by selective deuteration, an area of significant commercial interest and scientific and regulatory progress. Areas covered: This review firstly discusses recent developments in deuterated drugs including the FDA approval of deutetrabenazine. Secondly, it discusses 35 U.S.C. §103 'obviousness' as it relates to recent patent prosecution, and also to Inter Partes Review (IPR). IPR is a new post-award review of patentability under §102 or §103, two IPR petitions upon deuterated drugs have been instituted and included §103 arguments. Finally, an extended analysis of §103 obviousness based upon the practices of major pharmaceutical companies is provided, that supports rather late priority dates, while §102 is also discussed. Expert opinion: The total value of transactions involving deuterated drugs is close to $5 billion. While the importance of §103 'obviousness' rejections remains in patent applications under current prosecution, IPR of issued patents is developing and will affect likely affect §103 interpretations in this area. However, patents are still issuing with later priority dates, and further litigation will likely occur.

  20. An updated data acquisition and analysis system at RIBLL

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Ye, Y.L.; Zhan, W.L.; Xiao, G.Q.; Guo, Z.Y.; Xu, H.S.; Wang, J.C.; Jiang, D.X.; Wang, Q.J.; Zheng, T.; Zhang, G.L.; Wu, C.E.; Li, Z.H.; Li, X.Q.; Hu, Q.Y.; Pang, D.Y.; Wang, J.

    2005-01-01

    An updated data acquisition and analysis system for beam tuning and nuclear physics experiments at RIBLL is presented. The system hardware is based on standard CAMAC bus with SCSI KSC3929-Z1B crate controller. The system software has a user-friendly GUI which is written in C/C++ language using Microsoft Visual C++ .Net 2003 with ROOT class library and runs under PC-based Windows 2000 operating system. The performance of the DAQ system is reliable and safe

  1. Numerically and experimentally analysis of creep

    International Nuclear Information System (INIS)

    Fontanive, J.A.

    1982-11-01

    The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt

  2. Update-in-Place Analysis for True Multidimensional Arrays

    Directory of Open Access Journals (Sweden)

    Steven M. Fitzgerald

    1996-01-01

    Full Text Available Applicative languages have been proposed for defining algorithms for parallel architectures because they are implicitly parallel and lack side effects. However, straightforward implementations of applicative-language compilers may induce large amounts of copying to preserve program semantics. The unnecessary copying of data can increase both the execution time and the memory requirements of an application. To eliminate the unnecessary copying of data, the Sisal compiler uses both build-in-place and update-in-place analyses. These optimizations remove unnecessary array copy operations through compile-time analysis. Both build-in-place and update-in-place are based on hierarchical ragged arrays, i.e., the vector-of-vectors array model. Although this array model is convenient for certain applications, many optimizations are precluded, e.g., vectorization. To compensate for this deficiency, new languages, such as Sisal 2.0, have extended array models that allow for both high-level array operations to be performed and efficient implementations to be devised. In this article, we introduce a new method to perform update-in-place analysis that is applicable to arrays stored either in hierarchical or in contiguous storage. Consequently, the array model that is appropriate for an application can be selected without the loss of performance. Moreover, our analysis is more amenable for distributed memory and large software systems.

  3. A Numerical Analysis of Smoothed Particle Hydrodynamics

    Science.gov (United States)

    1994-09-01

    for the q terms: 1 N_ V).- Ernj(v.- iv)(X Ps4 -=0 N J) 03 R’, 1 - , P- El)( (4.54) Substitute equation (4.54) in equation (4.53) for q, then update the...p=, L ,(p,ý)2 (pn)2) Xn’+1 n + tVX (7.55) 7-17 7.4.2 Upwind. The second lower order scheme considered is motivated by upwind finite difference

  4. DATMAN: A reliability data analysis program using Bayesian updating

    International Nuclear Information System (INIS)

    Becker, M.; Feltus, M.A.

    1996-01-01

    Preventive maintenance (PM) techniques focus on the prevention of failures, in particular, system components that are important to plant functions. Reliability-centered maintenance (RCM) improves on the PM techniques by introducing a set of guidelines by which to evaluate the system functions. It also minimizes intrusive maintenance, labor, and equipment downtime without sacrificing system performance when its function is essential for plant safety. Both the PM and RCM approaches require that system reliability data be updated as more component failures and operation time are acquired. Systems reliability and the likelihood of component failures can be calculated by Bayesian statistical methods, which can update these data. The DATMAN computer code has been developed at Penn State to simplify the Bayesian analysis by performing tedious calculations needed for RCM reliability analysis. DATMAN reads data for updating, fits a distribution that best fits the data, and calculates component reliability. DATMAN provides a user-friendly interface menu that allows the user to choose from several common prior and posterior distributions, insert new failure data, and visually select the distribution that matches the data most accurately

  5. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  6. "Big Data Assimilation" for 30-second-update 100-m-mesh Numerical Weather Prediction

    Science.gov (United States)

    Miyoshi, Takemasa; Lien, Guo-Yuan; Kunii, Masaru; Ruiz, Juan; Maejima, Yasumitsu; Otsuka, Shigenori; Kondo, Keiichi; Seko, Hiromu; Satoh, Shinsuke; Ushio, Tomoo; Bessho, Kotaro; Kamide, Kazumi; Tomita, Hirofumi; Nishizawa, Seiya; Yamaura, Tsuyoshi; Ishikawa, Yutaka

    2017-04-01

    A typical lifetime of a single cumulonimbus is within an hour, and radar observations often show rapid changes in only a 5-minute period. For precise prediction of such rapidly-changing local severe storms, we have developed what we call a "Big Data Assimilation" (BDA) system that performs 30-second-update data assimilation cycles at 100-m grid spacing. The concept shares that of NOAA's Warn-on-Forecast (WoF), in which rapidly-updated high-resolution NWP will play a central role in issuing severe-storm warnings even only minutes in advance. The 100-m resolution and 30-second update frequency are a leap above typical recent research settings, and it was possible by the fortunate combination of Japan's most advanced supercomputing and sensing technologies: the 10-petaflops K computer and the Phased Array Weather Radar (PAWR). The X-band PAWR is capable of a dense three-dimensional volume scan at 100-m range resolution with 100 elevation angles and 300 azimuth angles, up to 60-km range within 30 seconds. The PAWR data show temporally-smooth evolution of convective rainstorms. This gives us a hope that we may assume the Gaussian error distribution in 30-second forecasts before strong nonlinear dynamics distort the error distribution for rapidly-changing convective storms. With this in mind, we apply the Local Ensemble Transform Kalman Filter (LETKF) that considers flow-dependent error covariance explicitly under the Gaussian-error assumption. The flow-dependence would be particularly important in rapidly-changing convective weather. Using a 100-member ensemble at 100-m resolution, we have tested the Big Data Assimilation system in real-world cases of sudden local rainstorms, and obtained promising results. However, the real-time application is a big challenge, and currently it takes 10 minutes for a cycle. We explore approaches to accelerating the computations, such as using single-precision arrays in the model computation and developing an efficient I/O middleware for

  7. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  8. Analysis of numerical solutions for Bateman equations

    International Nuclear Information System (INIS)

    Loch, Guilherme G.; Bevilacqua, Joyce S.

    2013-01-01

    The implementation of stable and efficient numerical methods for solving problems involving nuclear transmutation and radioactive decay chains is the main scope of this work. The physical processes associated with irradiations of samples in particle accelerators, or the burning spent nuclear fuel in reactors, or simply the natural decay chains, can be represented by a set of first order ordinary differential equations with constant coefficients, for instance, the decay radioactive constants of each nuclide in the chain. Bateman proposed an analytical solution for a particular case of a linear chain with n nuclides decaying in series and with different decay constants. For more complex and realistic applications, the construction of analytical solutions is not viable and the introduction of numerical techniques is imperative. However, depending on the magnitudes of the decay radioactive constants, the matrix of coefficients could be almost singular, generating unstable and non convergent numerical solutions. In this work, different numerical strategies for solving systems of differential equations were implemented, the Runge-Kutta 4-4, Adams Predictor-Corrector (PC2) and the Rosenbrock algorithm, this last one more specific for stiff equations. Consistency, convergence and stability of the numerical solutions are studied and the performance of the methods is analyzed for the case of the natural decay chain of Uranium-235 comparing numerical with analytical solutions. (author)

  9. Numerical Analysis of Dusty-Gas Flows

    Science.gov (United States)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  10. Numerical

    Directory of Open Access Journals (Sweden)

    M. Boumaza

    2015-07-01

    Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.

  11. Similarity-based interference in a working memory numerical updating task: age-related differences between younger and older adults.

    Science.gov (United States)

    Pelegrina, Santiago; Borella, Erika; Carretti, Barbara; Lechuga, M Teresa

    2012-01-01

    Similarity among representations held simultaneously in working memory (WM) is a factor which increases interference and hinders performance. The aim of the current study was to investigate age-related differences between younger and older adults in a working memory numerical updating task, in which the similarity between information held in WM was manipulated. Results showed a higher susceptibility of older adults to similarity-based interference when accuracy, and not response times, was considered. It was concluded that older adults' WM difficulties appear to be due to the availability of stored information, which, in turn, might be related to the ability to generate distinctive representations and to the process of binding such representations to their context when similar information has to be processed in WM.

  12. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lions, Jacques-Louis

    2011-01-01

    S. Albertoni: Alcuni metodi di calcolo nella teoria della diffusione dei neutroni.- I. Babuska: Optimization and numerical stability in computations.- J.H. Bramble: Error estimates in elliptic boundary value problems.- G. Capriz: The numerical approach to hydrodynamic problems.- A. Dou: Energy inequalities in an elastic cylinder.- T. Doupont: On the existence of an iterative method for the solution of elliptic difference equation with an improved work estimate.- J. Douglas, J.R. Cannon: The approximation of harmonic and parabolic functions of half-spaces from interior data.- B.E. Hubbard: Erro

  13. Numerical analysis in electromagnetics the TLM method

    CERN Document Server

    Saguet, Pierre

    2013-01-01

    The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been

  14. Lecture notes in numerical analysis with Mathematica

    CERN Document Server

    Styś, Tadeusz

    2014-01-01

    The contents of this book include chapters on floating point computer arithmetic, natural and generalized interpolating polynomials, uniform approximation, numerical integration, polynomial splines and many more.This book is intended for undergraduate and graduate students in institutes, colleges, universities and academies who want to specialize in this field. The readers will develop a solid understanding of the concepts of numerical methods and their application. The inclusion of Lagrane and Hermite approximation by polynomials, Trapezian rule, Simpsons rule, Gauss methods and Romberg`s met

  15. Numerical analysis of Swiss roll metamaterials

    International Nuclear Information System (INIS)

    Demetriadou, A; Pendry, J B

    2009-01-01

    A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic permeability for a range of frequencies, due to its self-inductance and self-capacitance components. In this paper, we discuss the band structure, S-parameters and effective electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical results, which show an exceptional convergence.

  16. An updated comprehensive techno-economic analysis of algae biodiesel.

    Science.gov (United States)

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Sharing wind power forecasts in electricity markets: A numerical analysis

    International Nuclear Information System (INIS)

    Exizidis, Lazaros; Kazempour, S. Jalal; Pinson, Pierre; Greve, Zacharie de; Vallée, François

    2016-01-01

    Highlights: • Information sharing among different agents can be beneficial for electricity markets. • System cost decreases by sharing wind power forecasts between different agents. • Market power of wind producer may increase by sharing forecasts with market operator. • Extensive out-of-sample analysis is employed to draw reliable conclusions. - Abstract: In an electricity pool with significant share of wind power, all generators including conventional and wind power units are generally scheduled in a day-ahead market based on wind power forecasts. Then, a real-time market is cleared given the updated wind power forecast and fixed day-ahead decisions to adjust power imbalances. This sequential market-clearing process may cope with serious operational challenges such as severe power shortage in real-time due to erroneous wind power forecasts in day-ahead market. To overcome such situations, several solutions can be considered such as adding flexible resources to the system. In this paper, we address another potential solution based on information sharing in which market players share their own wind power forecasts with others in day-ahead market. This solution may improve the functioning of sequential market-clearing process through making more informed day-ahead schedules, which reduces the need for balancing resources in real-time operation. This paper numerically evaluates the potential value of sharing forecasts for the whole system in terms of system cost reduction. Besides, its impact on each market player’s profit is analyzed. The framework of this study is based on a stochastic two-stage market setup and complementarity modeling, which allows us to gain further insights into information sharing impacts.

  18. Mathematical and numerical analysis of plasma stability

    International Nuclear Information System (INIS)

    Saramito, B.

    1987-11-01

    Equilibrium of a tokamak plasma is analyzed using two two-dimensional numerical models. Plasma configuration; convection in a cylindrical plasma layer; and tearing instabilities in a flat layer are considered. The finite element code used is explained. The existence of analogous stationary solutions for a problem concerning compressible fluids is shown. Stationary convection created by the equilibrium density gradient is treated. Approximation using fluid equations is employed in the case of convection resulting from the equilibrium temperature gradient. Evolution towards turbulence of incompressible fluid models is followed [fr

  19. Numerical and experimental analysis on tensile properties of ...

    Indian Academy of Sciences (India)

    A Shadrach Jeyasekaran

    2014-11-17

    Nov 17, 2014 ... 4 Department of Electronics and Communication Engineering, Sri Sai ... the findings that the numerical analysis is found to be higher than experimental analysis. .... using ANSYS software has showed that the differences of.

  20. Parameterized Analysis of Paging and List Update Algorithms

    DEFF Research Database (Denmark)

    Dorrigiv, Reza; Ehmsen, Martin R.; López-Ortiz, Alejandro

    2015-01-01

    that a larger cache leads to a better performance. We also apply the parameterized analysis framework to list update and show that certain randomized algorithms which are superior to MTF in the classical model are not so in the parameterized case, which matches experimental results....... set model and express the performance of well known algorithms in terms of this parameter. This explicitly introduces parameterized-style analysis to online algorithms. The idea is that rather than normalizing the performance of an online algorithm by an (optimal) offline algorithm, we explicitly...... express the behavior of the algorithm in terms of two more natural parameters: the size of the cache and Denning’s working set measure. This technique creates a performance hierarchy of paging algorithms which better reflects their experimentally observed relative strengths. It also reflects the intuition...

  1. A theoretical introduction to numerical analysis

    CERN Document Server

    Ryaben'kii, Victor S

    2006-01-01

    PREFACE ACKNOWLEDGMENTS INTRODUCTION Discretization Conditioning Error On Methods of Computation INTERPOLATION OF FUNCTIONS. QUADRATURES ALGEBRAIC INTERPOLATION Existence and Uniqueness of Interpolating Polynomial Classical Piecewise Polynomial Interpolation Smooth Piecewise Polynomial Interpolation (Splines) Interpolation of Functions of Two Variables TRIGONOMETRIC INTERPOLATION Interpolation of Periodic Functions Interpolation of Functions on an Interval. Relation between Algebraic and Trigonometric Interpolation COMPUTATION OF DEFINITE INTEGRALS. QUADRATURES Trapezoidal Rule, Simpson's Formula, and the Like Quadrature Formulae with No Saturation. Gaussian Quadratures Improper Integrals. Combination of Numerical and Analytical Methods Multiple Integrals SYSTEMS OF SCALAR EQUATIONS SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS: DIRECT METHODS Different Forms of Consistent Linear Systems Linear Spaces, Norms, and Operators Conditioning of Linear Systems Gaussian Elimination and Its Tri-Diag...

  2. Numerical Analysis of Magnetic Sail Spacecraft

    International Nuclear Information System (INIS)

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-01-01

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  3. Cassini Spacecraft Uncertainty Analysis Data and Methodology Review and Update/Volume 1: Updated Parameter Uncertainty Models for the Consequence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    WHEELER, TIMOTHY A.; WYSS, GREGORY D.; HARPER, FREDERICK T.

    2000-11-01

    Uncertainty distributions for specific parameters of the Cassini General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) Final Safety Analysis Report consequence risk analysis were revised and updated. The revisions and updates were done for all consequence parameters for which relevant information exists from the joint project on Probabilistic Accident Consequence Uncertainty Analysis by the United States Nuclear Regulatory Commission and the Commission of European Communities.

  4. Numerical analysis on acoustic impulse response for watermelon

    International Nuclear Information System (INIS)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho; Lee, Yun Ho

    2002-01-01

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  5. Numerical analysis on acoustic impulse response for watermelon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho [Dongshin University, Naju (Korea, Republic of); Lee, Yun Ho [Korea Inspection and Engineering CO.,LTD., Seoul (Korea, Republic of)

    2002-11-15

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  6. Integration of numerical analysis tools for automated numerical optimization of a transportation package design

    International Nuclear Information System (INIS)

    Witkowski, W.R.; Eldred, M.S.; Harding, D.C.

    1994-01-01

    The use of state-of-the-art numerical analysis tools to determine the optimal design of a radioactive material (RAM) transportation container is investigated. The design of a RAM package's components involves a complex coupling of structural, thermal, and radioactive shielding analyses. The final design must adhere to very strict design constraints. The current technique used by cask designers is uncoupled and involves designing each component separately with respect to its driving constraint. With the use of numerical optimization schemes, the complex couplings can be considered directly, and the performance of the integrated package can be maximized with respect to the analysis conditions. This can lead to more efficient package designs. Thermal and structural accident conditions are analyzed in the shape optimization of a simplified cask design. In this paper, details of the integration of numerical analysis tools, development of a process model, nonsmoothness difficulties with the optimization of the cask, and preliminary results are discussed

  7. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  8. Numerical analysis of creep brittle rupture by the finite element method

    International Nuclear Information System (INIS)

    Goncalves, O.J.A.; Owen, D.R.J.

    1983-01-01

    In this work an implicit algorithm is proposed for the numerical analysis of creep brittle rupture problems by the finite element method. This kind of structural failure, typical in components operating at high temperatures for long periods of time, is modelled using either a three dimensional generalization of the Kachanov-Rabotnov equations due to Leckie and Hayhurst or the Monkman-Grant fracture criterion together with the Linear Life Fraction Rule. The finite element equations are derived by the displacement method and isoparametric elements are used for the spatial discretization. Geometric nonlinear effects (large displacements) are accounted for by an updated Lagrangian formulation. Attention is also focussed on the solution of the highly stiff differential equations that govern damage growth. Finally the numerical results of a three-dimensional analysis of a pressurized thin cylinder containing oxidised pits in its external wall are discussed. (orig.)

  9. Numerical analysis on pump turbine runaway points

    International Nuclear Information System (INIS)

    Guo, L; Liu, J T; Wang, L Q; Jiao, L; Li, Z F

    2012-01-01

    To research the character of pump turbine runaway points with different guide vane opening, a hydraulic model was established based on a pumped storage power station. The RNG k-ε model and SMPLEC algorithms was used to simulate the internal flow fields. The result of the simulation was compared with the test data and good correspondence was got between experimental data and CFD result. Based on this model, internal flow analysis was carried out. The result show that when the pump turbine ran at the runway speed, lots of vortexes appeared in the flow passage of the runner. These vortexes could always be observed even if the guide vane opening changes. That is an important way of energy loss in the runaway condition. Pressure on two sides of the runner blades were almost the same. So the runner power is very low. High speed induced large centrifugal force and the small guide vane opening gave the water velocity a large tangential component, then an obvious water ring could be observed between the runner blades and guide vanes in small guide vane opening condition. That ring disappeared when the opening bigger than 20°. These conclusions can provide a theory basis for the analysis and simulation of the pump turbine runaway points.

  10. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  11. Vacuum Large Current Parallel Transfer Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Enyuan Dong

    2014-01-01

    Full Text Available The stable operation and reliable breaking of large generator current are a difficult problem in power system. It can be solved successfully by the parallel interrupters and proper timing sequence with phase-control technology, in which the strategy of breaker’s control is decided by the time of both the first-opening phase and second-opening phase. The precise transfer current’s model can provide the proper timing sequence to break the generator circuit breaker. By analysis of the transfer current’s experiments and data, the real vacuum arc resistance and precise correctional model in the large transfer current’s process are obtained in this paper. The transfer time calculated by the correctional model of transfer current is very close to the actual transfer time. It can provide guidance for planning proper timing sequence and breaking the vacuum generator circuit breaker with the parallel interrupters.

  12. Vitamin D and Graves' disease: a meta-analysis update.

    Science.gov (United States)

    Xu, Mei-Yan; Cao, Bing; Yin, Jian; Wang, Dong-Fang; Chen, Kai-Li; Lu, Qing-Bin

    2015-05-21

    The association between vitamin D levels and Graves' disease is not well studied. This update review aims to further analyze the relationship in order to provide an actual view of estimating the risk. We searched for the publications on vitamin D and Graves' disease in English or Chinese on PubMed, EMBASE, Chinese National Knowledge Infrastructure, China Biology Medical and Wanfang databases. The standardized mean difference (SMD) and 95% confidence interval (CI) were calculated for the vitamin D levels. Pooled odds ratio (OR) and 95% CI were calculated for vitamin D deficiency. We also performed sensitivity analysis and meta-regression. Combining effect sizes from 26 studies for Graves' disease as an outcome found a pooled effect of SMD = -0.77 (95% CI: -1.12, -0.42; p Graves' disease were more likely to be deficient in vitamin D compared to the controls (OR = 2.24, 95% CI: 1.31, 3.81) with a high heterogeneity (I2 = 84.1%, p Graves' disease.

  13. Numerical methods design, analysis, and computer implementation of algorithms

    CERN Document Server

    Greenbaum, Anne

    2012-01-01

    Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book a...

  14. Thermodynamic analysis and numerical modeling of supercritical injection

    OpenAIRE

    Banuti, Daniel

    2015-01-01

    Although liquid propellant rocket engines are operational and have been studied for decades, cryogenic injection at supercritical pressures is still considered essentially not understood. This thesis intends to approach this problem in three steps: by developing a numerical model for real gas thermodynamics, by extending the present thermodynamic view of supercritical injection, and finally by applying these methods to the analysis of injection. A new numerical real gas thermodynamics mode...

  15. Mining Sequential Update Summarization with Hierarchical Text Analysis

    Directory of Open Access Journals (Sweden)

    Chunyun Zhang

    2016-01-01

    Full Text Available The outbreak of unexpected news events such as large human accident or natural disaster brings about a new information access problem where traditional approaches fail. Mostly, news of these events shows characteristics that are early sparse and later redundant. Hence, it is very important to get updates and provide individuals with timely and important information of these incidents during their development, especially when being applied in wireless and mobile Internet of Things (IoT. In this paper, we define the problem of sequential update summarization extraction and present a new hierarchical update mining system which can broadcast with useful, new, and timely sentence-length updates about a developing event. The new system proposes a novel method, which incorporates techniques from topic-level and sentence-level summarization. To evaluate the performance of the proposed system, we apply it to the task of sequential update summarization of temporal summarization (TS track at Text Retrieval Conference (TREC 2013 to compute four measurements of the update mining system: the expected gain, expected latency gain, comprehensiveness, and latency comprehensiveness. Experimental results show that our proposed method has good performance.

  16. Numerical and RAPD Analysis of Eight Cowpea Genotypes from ...

    African Journals Online (AJOL)

    Hence, numerical tools such as single linkage cluster analysis (SLCA) and principal component analysis (PCA) have been used to determine the extent of variability. This study was conducted to determine the performance, character contribution as well as variation pattern in eight cowpea genotypes collected in Nigeria.

  17. A review on model updating of joint structure for dynamic analysis purpose

    Directory of Open Access Journals (Sweden)

    Zahari S.N.

    2016-01-01

    Full Text Available Structural joints provide connection between structural element (beam, plate etc. in order to construct a whole assembled structure. There are many types of structural joints such as bolted joint, riveted joints and welded joints. The joints structures significantly contribute to structural stiffness and dynamic behaviour of structures hence the main objectives of this paper are to review on method of model updating on joints structure and to discuss the guidelines to perform model updating for dynamic analysis purpose. This review paper firstly will outline some of the existing finite element modelling works of joints structure. Experimental modal analysis is the next step to obtain modal parameters (natural frequency & mode shape to validate and improve the discrepancy between results obtained from experimental and the simulation counterparts. Hence model updating will be carried out to minimize the differences between the two results. There are two methods of model updating; direct method and iterative method. Sensitivity analysis employed using SOL200 in NASTRAN by selecting the suitable updating parameters to avoid ill-conditioning problem. It is best to consider both geometrical and material properties in the updating procedure rather than choosing only a number of geometrical properties alone. Iterative method was chosen as the best model updating procedure because the physical meaning of updated parameters are guaranteed although this method required computational effort compare to direct method.

  18. Java technology for implementing efficient numerical analysis in intranet

    International Nuclear Information System (INIS)

    Song, Hee Yong; Ko, Sung Ho

    2001-01-01

    This paper introduces some useful Java technologies for utilizing the internet in numerical analysis, and suggests one architecture performing efficient numerical analysis in the intranet by using them. The present work has verified it's possibility by implementing some parts of this architecture with two easy examples. One is based on Servlet-Applet communication, JDBC and swing. The other is adding multi-threads, file transfer and Java remote method invocation to the former. Through this work it has been intended to make the base for the later advanced and practical research that will include efficiency estimates of this architecture and deal with advanced load balancing

  19. Polyhedral meshing in numerical analysis of conjugate heat transfer

    Science.gov (United States)

    Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata

    2018-06-01

    Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.

  20. Numerical analysis of a polysilicon-based resistive memory device

    KAUST Repository

    Berco, Dan; Chand, Umesh

    2018-01-01

    This study investigates a conductive bridge resistive memory device based on a Cu top electrode, 10-nm polysilicon resistive switching layer and a TiN bottom electrode, by numerical analysis for $$10^{3}$$103 programming and erase simulation cycles

  1. Investigating Convergence Patterns for Numerical Methods Using Data Analysis

    Science.gov (United States)

    Gordon, Sheldon P.

    2013-01-01

    The article investigates the patterns that arise in the convergence of numerical methods, particularly those in the errors involved in successive iterations, using data analysis and curve fitting methods. In particular, the results obtained are used to convey a deeper level of understanding of the concepts of linear, quadratic, and cubic…

  2. Scilab and Maxima Environment: Towards Free Software in Numerical Analysis

    Science.gov (United States)

    Mora, Angel; Galan, Jose Luis; Aguilera, Gabriel; Fernandez, Alvaro; Merida, Enrique; Rodriguez, Pedro

    2010-01-01

    In this work we will present the ScilabUMA environment we have developed as an alternative to Matlab. This environment connects Scilab (for numerical analysis) and Maxima (for symbolic computations). Furthermore, the developed interface is, in our opinion at least, as powerful as the interface of Matlab. (Contains 3 figures.)

  3. Numerical equilibrium analysis for structured consumer resource models

    NARCIS (Netherlands)

    de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.

    2010-01-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured re- source. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries

  4. Numerical equilibrium analysis for structured consumer resource models

    NARCIS (Netherlands)

    de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.

    2010-01-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries

  5. Assessment of Available Numerical Tools for Dynamic Mooring Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Eskilsson, Claes; Ferri, Francesco

    This report covers a preliminary assessment of available numerical tools to be used in upcoming full dynamic analysis of the mooring systems assessed in the project _Mooring Solutions for Large Wave Energy Converters_. The assessments tends to cover potential candidate software and subsequently c...

  6. Application of numerical analysis methods to thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Gomez Ros, J. M.; Delgado, A.

    1989-01-01

    This report presents the application of numerical methods to thermoluminescence dosimetry (TLD), showing the advantages obtained over conventional evaluation systems. Different configurations of the analysis method are presented to operate in specific dosimetric applications of TLD, such as environmental monitoring and mailed dosimetry systems for quality assurance in radiotherapy facilities. (Author) 10 refs

  7. A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures

    Science.gov (United States)

    Peng, Heng; Liu, Yinghua; Chen, Haofeng

    2018-05-01

    In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.

  8. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Belzer, David B.; Winiarski, David W.; Richman, Eric E.

    2004-04-30

    The state of North Dakota is considering updating its commercial building energy code. This report evaluates the potential costs and benefits to North Dakota residents from updating and requiring compliance with ASHRAE Standard 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in the analysis. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST simulation combined with a Life-cycle Cost (LCC) approach to assess correspodning economic costs and benefits.

  9. Numerical analysis of rapid drawdown: Applications in real cases

    Directory of Open Access Journals (Sweden)

    Eduardo E. Alonso

    2016-07-01

    Full Text Available In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for calculating pore water pressure distributions during and after a drawdown. To do that, a single slope subjected to a drawdown was first analyzed under different calculation alternatives, and numerical results were discussed. Simple methods, such as undrained analysis and pure flow analysis, implicitly assuming a rigid soil skeleton, lead to significant errors in pore water pressure distributions when compared with coupled flow-deformation analysis. A similar analysis was performed for the upstream slope of the Glen Shira Dam, Scotland, and numerical results were compared with field measurements during a controlled drawdown. Field records indicate that classical undrained calculations are conservative but unrealistic. Then, a recent case of a major landslide triggered by a rapid drawdown in a reservoir was interpreted. A key aspect of the case was the correct characterization of permeability of a representative soil profile. This was achieved by combining laboratory test results and a back analysis of pore water pressure time records during a period of reservoir water level fluctuations. The results highlight the difficulty of predicting whether the pore water pressure is overestimated or underestimated when using simplified approaches, and it is concluded that predicting the pore water pressure distribution in a slope after a rapid drawdown requires a coupled flow-deformation analysis in saturated and unsaturated porous media.

  10. Update of Part 61 Impacts Analysis Methodology. Methodology report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Oztunali, O.I.; Roles, G.W.

    1986-01-01

    Under contract to the US Nuclear Regulatory Commission, the Envirosphere Company has expanded and updated the impacts analysis methodology used during the development of the 10 CFR Part 61 rule to allow improved consideration of the costs and impacts of treatment and disposal of low-level waste that is close to or exceeds Class C concentrations. The modifications described in this report principally include: (1) an update of the low-level radioactive waste source term, (2) consideration of additional alternative disposal technologies, (3) expansion of the methodology used to calculate disposal costs, (4) consideration of an additional exposure pathway involving direct human contact with disposed waste due to a hypothetical drilling scenario, and (5) use of updated health physics analysis procedures (ICRP-30). Volume 1 of this report describes the calculational algorithms of the updated analysis methodology.

  11. Update of Part 61 Impacts Analysis Methodology. Methodology report. Volume 1

    International Nuclear Information System (INIS)

    Oztunali, O.I.; Roles, G.W.

    1986-01-01

    Under contract to the US Nuclear Regulatory Commission, the Envirosphere Company has expanded and updated the impacts analysis methodology used during the development of the 10 CFR Part 61 rule to allow improved consideration of the costs and impacts of treatment and disposal of low-level waste that is close to or exceeds Class C concentrations. The modifications described in this report principally include: (1) an update of the low-level radioactive waste source term, (2) consideration of additional alternative disposal technologies, (3) expansion of the methodology used to calculate disposal costs, (4) consideration of an additional exposure pathway involving direct human contact with disposed waste due to a hypothetical drilling scenario, and (5) use of updated health physics analysis procedures (ICRP-30). Volume 1 of this report describes the calculational algorithms of the updated analysis methodology

  12. Numerical Analysis of Deflections of Multi-Layered Beams

    Science.gov (United States)

    Biliński, Tadeusz; Socha, Tomasz

    2015-03-01

    The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.

  13. Numerical Analysis of Deflections of Multi-Layered Beams

    Directory of Open Access Journals (Sweden)

    Biliński Tadeusz

    2015-03-01

    Full Text Available The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.

  14. On numerical solution of Burgers' equation by homotopy analysis method

    International Nuclear Information System (INIS)

    Inc, Mustafa

    2008-01-01

    In this Letter, we present the Homotopy Analysis Method (shortly HAM) for obtaining the numerical solution of the one-dimensional nonlinear Burgers' equation. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Convergence of the solution and effects for the method is discussed. The comparison of the HAM results with the Homotopy Perturbation Method (HPM) and the results of [E.N. Aksan, Appl. Math. Comput. 174 (2006) 884; S. Kutluay, A. Esen, Int. J. Comput. Math. 81 (2004) 1433; S. Abbasbandy, M.T. Darvishi, Appl. Math. Comput. 163 (2005) 1265] are made. The results reveal that HAM is very simple and effective. The HAM contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of solution series. The numerical solutions are compared with the known analytical and some numerical solutions

  15. Numerical analysis on pool boiling using user defined function

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sung Uk; Jeon, Byong Guk; Kim, Seok; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    PAFS (passive auxiliary feedwater system) adopted in the APR+ (Advanced Power Reactor Plus) of Korea is one such application. When PAFS is activated with an actuation signal, steam from the steam generator passes through heat exchanger tubes submerged in a water tank of the PAFS. Outside these heat exchanger tubes, nucleate boiling phenomena appears. In the present work, a numerical study is reported on three-dimensional transient state pool boiling of water having an immersed heat source. The velocity vector fields during the decrease in the water level are numerically investigated in a pool, and the accuracy of the results is checked by comparing the experimental results conducted using the PIV techniques by Kim et al. These numerical results can be used as basic research data for an analysis and prediction of the natural circulation phenomena in the cooling tank of the passive safety system in a nuclear power plant.

  16. Numeric computation and statistical data analysis on the Java platform

    CERN Document Server

    Chekanov, Sergei V

    2016-01-01

    Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language. The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis ...

  17. Experimental and Numerical analysis of Metallic Bellow for Acoustic Performance

    Science.gov (United States)

    Panchwadkar, Amit A.; Awasare, Pradeep J., Dr.; Ingle, Ravidra B., Dr.

    2017-08-01

    Noise will concern about the work environment of industry. Machinery environment has overall noise which interrupts communication between the workers. This problem of miscommunication and health hazard will make sense to go for noise attenuation. Modification in machine setup may affect the performance of it. Instead of that, Helmholtz resonator principle will be a better option for noise reduction along the transmission path. Resonator has design variables which gives resonating frequency will help us to confirm the frequency range. This paper deals with metallic bellow which behaves like inertial mass under incident sound wave. Sound wave energy is affected by hard boundary condition of resonator and bellow. Metallic bellow is used in combination with resonator to find out Transmission loss (TL). Microphone attachment with FFT analyzer will give the frequency range for numerical analysis. Numerical analysis of bellow and resonator is carried out to summarize the acoustic behavior of bellow. Bellow can be numerically analyzed to check noise attenuation for centrifugal blower. An impedance tube measurement technique is performed to validate the numerical results for assembly. Dimensional and shape modification can be done to get the acoustic performance of bellow.

  18. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  19. Numerical analysis of a neural network with hierarchically organized patterns

    International Nuclear Information System (INIS)

    Bacci, Silvia; Wiecko, Cristina; Parga, Nestor

    1988-01-01

    A numerical analysis of the retrieval behaviour of an associative memory model where the memorized patterns are stored hierarchically is performed. It is found that the model is able to categorize errors. For a finite number of categories, these are retrieved correctly even when the stored patterns are not. Instead, when they are allowed to increase with the number of neurons, their retrieval quality deteriorates above a critical category capacity. (Author)

  20. Heterogeneous agent model and numerical analysis of learning

    Czech Academy of Sciences Publication Activity Database

    Vošvrda, Miloslav; Vácha, Lukáš

    2002-01-01

    Roč. 9, č. 17 (2002), s. 15-22 ISSN 1212-074X R&D Projects: GA ČR GA402/01/0034; GA ČR GA402/01/0539; GA AV ČR IAA7075202 Institutional research plan: CEZ:AV0Z1075907 Keywords : efficient markets hypothesis * technical trading rules * numerical analysis of learning Subject RIV: AH - Economics

  1. Numerical bifurcation analysis of conformal formulations of the Einstein constraints

    International Nuclear Information System (INIS)

    Holst, M.; Kungurtsev, V.

    2011-01-01

    The Einstein constraint equations have been the subject of study for more than 50 years. The introduction of the conformal method in the 1970s as a parametrization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et al. in 2008, with extensions to rough data by Holst et al. in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental nonuniqueness problems with the conformal method as a parametrization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einstein constraints. In particular, numerical evidence suggests the existence of multiple solutions with a quadratic fold, and a recent analysis of a simplified model supports this conclusion. In this article, we examine this apparent bifurcation phenomena in a methodical way, using modern techniques in bifurcation theory and in numerical homotopy methods. We first review the evidence for the presence of bifurcation in the Hamiltonian constraint in the time-symmetric case. We give a brief introduction to the mathematical framework for analyzing bifurcation phenomena, and then develop the main ideas behind the construction of numerical homotopy, or path-following, methods in the analysis of bifurcation phenomena. We then apply the continuation software package AUTO to this problem, and verify the presence of the fold with homotopy-based numerical methods. We discuss these results and their physical significance, which lead to some interesting remaining questions to

  2. Numerical analysis and nuclear standard code application to thermal fatigue

    International Nuclear Information System (INIS)

    Merola, M.

    1992-01-01

    The present work describes the Joint Research Centre Ispra contribution to the IAEA benchmark exercise 'Lifetime Behaviour of the First Wall of Fusion Machines'. The results of the numerical analysis of the reference thermal fatigue experiment are presented. Then a discussion on the numerical analysis of thermal stress is tackled, pointing out its particular aspects in view of their influence on the stress field evaluation. As far as the design-allowable number of cycles are concerned the American nuclear code ASME and the French code RCC-MR are applied and the reasons for the different results obtained are investigated. As regards a realistic fatigue lifetime evaluation, the main problems to be solved are brought out. This work, is intended as a preliminary basis for a discussion focusing on the main characteristics of the thermal fatigue problem from both a numerical and a lifetime assessment point of view. In fact the present margin of discretion left to the analyst may cause undue discrepancies in the results obtained. A sensitivity analysis of the main parameters involved is desirable and more precise design procedures should be stated

  3. Numerical analysis for prediction of fatigue crack opening level

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang

    2004-01-01

    Finite Element Analysis (FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials

  4. A general numerical analysis of the superconducting quasiparticle mixer

    Science.gov (United States)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1985-01-01

    For very low noise millimeter-wave receivers, the superconductor-insulator-superconductor (SIS) quasiparticle mixer is now competitive with conventional Schottky mixers. Tucker (1979, 1980) has developed a quantum theory of mixing which has provided a basis for the rapid improvement in SIS mixer performance. The present paper is concerned with a general method of numerical analysis for SIS mixers which allows arbitrary terminating impedances for all the harmonic frequencies. This analysis provides an approach for an examination of the range of validity of the three-frequency results of the quantum mixer theory. The new method has been implemented with the aid of a Fortran computer program.

  5. Numeral-Incorporating Roots in Numeral Systems: A Comparative Analysis of Two Sign Languages

    Science.gov (United States)

    Fuentes, Mariana; Massone, Maria Ignacia; Fernandez-Viader, Maria del Pilar; Makotrinsky, Alejandro; Pulgarin, Francisca

    2010-01-01

    Numeral-incorporating roots in the numeral systems of Argentine Sign Language (LSA) and Catalan Sign Language (LSC), as well as the main features of the number systems of both languages, are described and compared. Informants discussed the use of numerals and roots in both languages (in most cases in natural contexts). Ten informants took part in…

  6. Numerical analysis of modified Central Solenoid insert design

    Energy Technology Data Exchange (ETDEWEB)

    Khodak, Andrei, E-mail: akhodak@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Martovetsky, Nicolai; Smirnov, Aleksandre [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Titus, Peter [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2015-10-15

    Highlights: • Modified design of coil for testing ITER superconducting cable is presented. • Numerical analysis allowed design verification. • Three-dimensional current sharing temperature distributions are obtained from the results. - Abstract: The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design three-dimensional numerical simulations were performed using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagnetic simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4 K, no current, (3) temperature 4 K, current 60 kA direct charge, and (4) temperature 4 K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4 K, no current, and temperature 4 K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor

  7. Analysis of control rod behavior based on numerical simulation

    International Nuclear Information System (INIS)

    Ha, D. G.; Park, J. K.; Park, N. G.; Suh, J. M.; Jeon, K. L.

    2010-01-01

    The main function of a control rod is to control core reactivity change during operation associated with changes in power, coolant temperature, and dissolved boron concentration by the insertion and withdrawal of control rods from the fuel assemblies. In a scram, the control rod assemblies are released from the CRDMs (Control Rod Drive Mechanisms) and, due to gravity, drop rapidly into the fuel assemblies. The control rod insertion time during a scram must be within the time limits established by the overall core safety analysis. To assure the control rod operational functions, the guide thimbles shall not obstruct the insertion and withdrawal of the control rods or cause any damage to the fuel assembly. When fuel assembly bow occurs, it can affect both the operating performance and the core safety. In this study, the drag forces of the control rod are estimated by a numerical simulation to evaluate the guide tube bow effect on control rod withdrawal. The contact condition effects are also considered. A full scale 3D model is developed for the evaluation, and ANSYS - commercial numerical analysis code - is used for this numerical simulation. (authors)

  8. LikelihoodLib - Fitting, Function Maximization, and Numerical Analysis

    CERN Document Server

    Smirnov, I B

    2001-01-01

    A new class library is designed for function maximization, minimization, solution of equations and for other problems related to mathematical analysis of multi-parameter functions by numerical iterative methods. When we search the maximum or another special point of a function, we may change and fit all parameters simultaneously, sequentially, recursively, or by any combination of these methods. The discussion is focused on the first the most complicated method, although the others are also supported by the library. For this method we apply: control of precision by interval computations; the calculation of derivatives either by differential arithmetic, or by the method of finite differences with the step lengths which provide suppression of the influence of numerical noise; possible synchronization of the subjective function calls with minimization of the number of iterations; competitive application of various methods for step calculation, and converging to the solution by many trajectories.

  9. Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    of a constitutive model for soil is based on a profound knowledge of the soil behaviour upon loading. In the present study it is attempted to get a better understanding of the soil behaviour bv performing a number of triaxial compression tests on sand. The stress-strain behaviour of sand depends strongly......This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... and subsequently dilates during shear. The change in the volumetric behaviour of the soil skeleton is commonly referred to as the characteristic state. The stress ratio corresponding to the characteristic state is independent of the mean normal effective stress and the relative density, but depends on the stress...

  10. Numerical analysis of stress fields generated by quenching process

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account mechanical phenomena generated by thermalphenomena and phase transformations. In the model of mechanical phenomena, apart from thermal, plastic and structural strain, alsotransformations plasticity was taken into account. The stress and strain fields are obtained using the solution of the Finite Elements Method of the equilibrium equation in rate form. The thermophysical constants occurring in constitutive relation depend on temperature and phase composite. For determination of plastic strain the Huber-Misses condition with isotropic strengthening was applied whereas fordetermination of transformation plasticity a modified Leblond model was used. In order to evaluate the quality and usefulness of thepresented models a numerical analysis of stresses and strains associated hardening process of a fang lathe of cone shaped made of tool steel was carried out.

  11. Numerical analysis of anisotropic diffusion effect on ICF hydrodynamic instabilities

    Directory of Open Access Journals (Sweden)

    Olazabal-Loumé M.

    2013-11-01

    Full Text Available The effect of anisotropic diffusion on hydrodynamic instabilities in the context of Inertial Confinement Fusion (ICF flows is numerically assessed. This anisotropy occurs in indirect-drive when laminated ablators are used to modify the lateral transport [1,2]. In direct-drive, non-local transport mechanisms and magnetic fields may modify the lateral conduction [3]. In this work, numerical simulations obtained with the code PERLE [4], dedicated to linear stability analysis, are compared with previous theoretical results [5]. In these approaches, the diffusion anisotropy can be controlled by a characteristic coefficient which enables a comprehensive study. This work provides new results on the ablative Rayleigh-Taylor (RT, ablative Richtmyer-Meshkov (RM and Darrieus-Landau (DL instabilities.

  12. Application of symplectic integrator to numerical fluid analysis

    International Nuclear Information System (INIS)

    Tanaka, Nobuatsu

    2000-01-01

    This paper focuses on application of the symplectic integrator to numerical fluid analysis. For the purpose, we introduce Hamiltonian particle dynamics to simulate fluid behavior. The method is based on both the Hamiltonian formulation of a system and the particle methods, and is therefore called Hamiltonian Particle Dynamics (HPD). In this paper, an example of HPD applications, namely the behavior of incompressible inviscid fluid, is solved. In order to improve accuracy of HPD with respect to space, CIVA, which is a highly accurate interpolation method, is combined, but the combined method is subject to problems in that the invariants of the system are not conserved in a long-time computation. For solving the problems, symplectic time integrators are introduced and the effectiveness is confirmed by numerical analyses. (author)

  13. Numerical equilibrium analysis for structured consumer resource models.

    Science.gov (United States)

    de Roos, A M; Diekmann, O; Getto, P; Kirkilionis, M A

    2010-02-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for "Daphnia consuming algae" models in C-code. The results obtained by way of this implementation are shown in the form of graphs.

  14. FRMAC Updates

    International Nuclear Information System (INIS)

    Mueller, P.

    1995-01-01

    This talks describes updates in the following updates in FRMAC publications concerning radiation emergencies: Monitoring and Analysis Manual; Evaluation and Assessment Manual; Handshake Series (Biannual) including exercises participated in; environmental Data and Instrument Transmission System (EDITS); Plume in a Box with all radiological data stored onto a hand-held computer; and courses given

  15. Numerical analysis of interacting cracks in biaxial stress field

    International Nuclear Information System (INIS)

    Kovac, M.; Cizelj, L.

    1999-01-01

    The stress corrosion cracks as seen for example in PWR steam generator tubing made of Inconel 600 usually produce highly irregular kinked and branched crack patterns. Crack initialization and propagation depends on stress state underlying the crack pattern. Numerical analysis (such as finite element method) of interacting kinked and branched cracks can provide accurate solutions. This paper discusses the use of general-purpose finite element code ABAQUS for evaluating stress fields at crack tips of interacting complex cracks. The results obtained showed reasonable agreement with the reference solutions and confirmed use of finite elements in such class of problems.(author)

  16. Numerical analysis of jet breakup behavior using particle method

    International Nuclear Information System (INIS)

    Shibata, Kazuya; Koshizuka, Seiichi; Oka, Yoshiaki

    2002-01-01

    A continuous jet changes to droplets where jet breakup occurs. In this study, two-dimensional numerical analysis of jet breakup is performed using the MPS method (Moving Particle Semi-implicit Method) which is a particle method for incompressible flows. The continuous fluid surrounding the jet is neglected. Dependencies of the jet breakup length on the Weber number and the Froude number agree with the experiment. The size distribution of droplets is in agreement with the Nukiyama-Tanasawa distribution which has been widely used as an experimental correlation. Effects of the Weber number and the Froude number on the size distribution are also obtained. (author)

  17. Numerical model of solar dynamic radiator for parametric analysis

    Science.gov (United States)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  18. Numerical analysis of beam with sinusoidally corrugated webs

    Science.gov (United States)

    Górecki, Marcin; Pieńko, Michał; Łagoda, GraŻyna

    2018-01-01

    The paper presents numerical tests results of the steel beam with sinusoidally corrugated web, which were performed in the Autodesk Algor Simulation Professional 2010. The analysis was preceded by laboratory tests including the beam's work under the influence of the four point bending as well as the study of material characteristics. Significant web's thickness and use of tools available in the software allowed to analyze the behavior of the plate girder as beam, and also to observe the occurrence of stresses in the characteristic element - the corrugated web. The stress distribution observed on the both web's surfaces was analyzed.

  19. Numerical analysis of flow fields generated by accelerating flames

    Energy Technology Data Exchange (ETDEWEB)

    Kurylo, J.

    1977-12-01

    Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.

  20. Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

    International Nuclear Information System (INIS)

    Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  1. An analysis of nuclear plant operating costs: A 1991 update

    International Nuclear Information System (INIS)

    1991-05-01

    This report updates a 1988 Energy Information Administration (EIA) report which examined trends in nonfuel operating costs at the Nation's nuclear power plants. Nonfuel operating costs are comprised of operating and maintenance (O ampersand M) costs and capital expenditures incurred after a plant begins operating. Capital expenditures are typically called ''capital additions'' because the costs are added to the utility's rate base and recovered as a depreciation expense over several years, the number of years being regulated by State Public Utility Commissions. These costs consist of large maintenance expenditures needed to keep a plant operational as well as those needed to make plant modifications mandated by the Nuclear Regulatory Commission (NRC) or implemented at the utility's discretion. The 1988 report found that from 1974 through 1984, the last year for which data were available, nuclear power plant nonfuel operating costs escalated by 14 percent annually in real terms. The objective of the present study was to determine whether trends in nonfuel operating costs have changed since 1984, if there was any change in the underlying factors influencing these costs, and if so, how these changes affect the basic conclusions of the 1988 report. The general trends are encouraging: Total nonfuel operating costs peaked in 1984 and have been lower since that time; O ampersand M costs have been rising, but at a much lower rate than seen from 1974 through 1984; capital additions costs have actually been declining. 9 figs., 12 tabs

  2. Dementia Caregiver Burden: a Research Update and Critical Analysis.

    Science.gov (United States)

    Cheng, Sheung-Tak

    2017-08-10

    This article provides an updated review of the determinants of caregiver burden and depression, with a focus on care demands and especially the differential effects of various neuropsychiatric symptoms or symptom clusters. Moreover, studies on caregivers for frontotemporal and Lewy body dementias were referred to in order to identify differences and similarities with the mainstream literature based largely on Alzheimer caregivers. As a group, neuropsychiatric symptoms are most predictive of caregiver burden and depression regardless of dementia diagnosis, but the effects appear to be driven primarily by disruptive behaviors (e.g., agitation, aggression, disinhibition), followed by delusions and mood disturbance. Disruptive behaviors are more disturbing partly because of the adverse impact on the emotional connection between the caregiver and the care-recipient and partly because they exacerbate difficulties in other domains (e.g., caring for activities of daily living). In behavioral variant frontotemporal dementia, not only are these disruptive behaviors more prominent but they are also more disturbing due to the care-recipient's insensitivity to others' feelings. In Lewy body dementia, visual hallucinations also appear to be distressing. The disturbing nature of disruptive behaviors cuts across dementia conditions, but the roles played by symptoms that are unique or particularly serious in a certain condition need to be explored further.

  3. Updated earthquake catalogue for seismic hazard analysis in Pakistan

    Science.gov (United States)

    Khan, Sarfraz; Waseem, Muhammad; Khan, Muhammad Asif; Ahmed, Waqas

    2018-03-01

    A reliable and homogenized earthquake catalogue is essential for seismic hazard assessment in any area. This article describes the compilation and processing of an updated earthquake catalogue for Pakistan. The earthquake catalogue compiled in this study for the region (quadrangle bounded by the geographical limits 40-83° N and 20-40° E) includes 36,563 earthquake events, which are reported as 4.0-8.3 moment magnitude (M W) and span from 25 AD to 2016. Relationships are developed between the moment magnitude and body, and surface wave magnitude scales to unify the catalogue in terms of magnitude M W. The catalogue includes earthquakes from Pakistan and neighbouring countries to minimize the effects of geopolitical boundaries in seismic hazard assessment studies. Earthquakes reported by local and international agencies as well as individual catalogues are included. The proposed catalogue is further used to obtain magnitude of completeness after removal of dependent events by using four different algorithms. Finally, seismicity parameters of the seismic sources are reported, and recommendations are made for seismic hazard assessment studies in Pakistan.

  4. Experimental analysis with numerical comparison for different thermoelectric generators configurations

    International Nuclear Information System (INIS)

    Favarel, Camille; Bédécarrats, Jean-Pierre; Kousksou, Tarik; Champier, Daniel

    2016-01-01

    Highlights: • 3 experimental TE generators are tested and compared to a numerical model. • Different mass flow rates and temperatures ranges were used. • Maximum output electrical power is guaranty by the use of MPPT DC/DC controllers. • The importance of the occupancy rate for the design of TEG is demonstrated. • The importance of the location of the TE modules is shown. - Abstract: Thermoelectric (TE) energy harvesting is a promising perspective to use waste heat. Due to the low efficiency of thermoelectric materials many analytical and numerical optimization studies have been developed. To be validated, an optimization must necessarily be linked to the experience. There are a lot of results on thermoelectric generators (TEG) based on experiments or model validations. Nevertheless, the validated models concern most of the time one TE module but rarely an entire system. Moreover, these models of complete system mainly concern the optimization of fluid flow rates or of heat exchangers. Our choice is to optimize the number of these modules in a whole system point of view. A numerical model using a software for numerical computation, based on multi-physics equations such as heat transfer, fluid mechanics and thermoelectricity was developed to predict both thermal and electrical powers of TEG. This paper aims to present the experimental validation of this model and shows interesting experimental results on the location of the TE modules. In parallel, an experimental set-up was built to compare and validate this model. This set-up is composed of a thermal loop with a hot gas source, a cold fluid, a hot fin exchanger, a cold tubular exchanger and thermoelectric modules. The number and the place of these modules can be changed to study different configurations. A specific maximum power point tracker DC/DC converter charging a battery is added in order to study the electrical power produced by the TEG. The analysis of the influence of the number of

  5. Modal interval analysis new tools for numerical information

    CERN Document Server

    Sainz, Miguel A; Calm, Remei; Herrero, Pau; Jorba, Lambert; Vehi, Josep

    2014-01-01

    This book presents an innovative new approach to interval analysis. Modal Interval Analysis (MIA) is an attempt to go beyond the limitations of classic intervals in terms of their structural, algebraic and logical features. The starting point of MIA is quite simple: It consists in defining a modal interval that attaches a quantifier to a classical interval and in introducing the basic relation of inclusion between modal intervals by means of the inclusion of the sets of predicates they accept. This modal approach introduces interval extensions of the real continuous functions, identifies equivalences between logical formulas and interval inclusions, and provides the semantic theorems that justify these equivalences, along with guidelines for arriving at these inclusions. Applications of these equivalences in different areas illustrate the obtained results. The book also presents a new interval object: marks, which aspire to be a new form of numerical treatment of errors in measurements and computations.

  6. Numerical analysis of a polysilicon-based resistive memory device

    KAUST Repository

    Berco, Dan

    2018-03-08

    This study investigates a conductive bridge resistive memory device based on a Cu top electrode, 10-nm polysilicon resistive switching layer and a TiN bottom electrode, by numerical analysis for $$10^{3}$$103 programming and erase simulation cycles. The low and high resistive state values in each cycle are calculated, and the analysis shows that the structure has excellent retention reliability properties. The presented Cu species density plot indicates that Cu insertion occurs almost exclusively along grain boundaries resulting in a confined isomorphic conductive filament that maintains its overall shape and electric properties during cycling. The superior reliability of this structure may thus be attributed to the relatively low amount of Cu migrating into the RSL during initial formation. In addition, the results show a good match and help to confirm experimental measurements done over a previously demonstrated device.

  7. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    precisely by the valve manufacturer. As a matter of fact, attempts were made to obtain flow characteristic curves resorting to analytical as well as numerical methods. The flow characteristic curve relates the stem lift with mass flow rate at a specific temperature and pressure. This paper focuses on computational and numerical analysis of the combined stop and control valve. Combined Airflow Regulation Analysis (CARA) is performed to check on the hydrodynamic characteristic, which is represented by flow coefficient characteristic. CATIA V.5 and ANSYS CFX are used for three-dimensional computer-aided design and computational fluid dynamics (CFD) analysis, respectively. Flow characteristic curves are plotted by calculating theoretical and numerical mass flow rate. Hydrodynamic analysis was made of the combined stop and control valve for the turbine system using ANSYS CFX. The result of the numerical study represented by the valve flow coefficient with different normalized values of valve stem movement L/D and different pressure ratios of valve outlet and inlet agrees well with the ideal case and other similar previous experimental results. This study also provided a solid understanding with versatile options for analyzing the hydrodynamics of the combined valve considering the various internal geometry, seat, plug, and the inlet plus outlet boundary conditions to improve the efficiency, performance and reliability of the turbine system of small as well as large power conversion system using the numerical analysis with minimal cost and time.

  8. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    International Nuclear Information System (INIS)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y.

    2014-01-01

    precisely by the valve manufacturer. As a matter of fact, attempts were made to obtain flow characteristic curves resorting to analytical as well as numerical methods. The flow characteristic curve relates the stem lift with mass flow rate at a specific temperature and pressure. This paper focuses on computational and numerical analysis of the combined stop and control valve. Combined Airflow Regulation Analysis (CARA) is performed to check on the hydrodynamic characteristic, which is represented by flow coefficient characteristic. CATIA V.5 and ANSYS CFX are used for three-dimensional computer-aided design and computational fluid dynamics (CFD) analysis, respectively. Flow characteristic curves are plotted by calculating theoretical and numerical mass flow rate. Hydrodynamic analysis was made of the combined stop and control valve for the turbine system using ANSYS CFX. The result of the numerical study represented by the valve flow coefficient with different normalized values of valve stem movement L/D and different pressure ratios of valve outlet and inlet agrees well with the ideal case and other similar previous experimental results. This study also provided a solid understanding with versatile options for analyzing the hydrodynamics of the combined valve considering the various internal geometry, seat, plug, and the inlet plus outlet boundary conditions to improve the efficiency, performance and reliability of the turbine system of small as well as large power conversion system using the numerical analysis with minimal cost and time

  9. Numerical analysis and optimisation of heavy water upgrading column

    International Nuclear Information System (INIS)

    Sankar, Rama; Ghosh, Brindaban; Bhanja, K.

    2013-01-01

    In the 'Pressurised Heavy Water' type of reactors, heavy water is used both as moderator and coolant. During operation of reactor downgraded heavy water is generated that needs to be upgraded for reuse in the reactor. When the isotopic purity of heavy water becomes less than 99.75%, it is termed as downgraded heavy water. Downgraded heavy water also contains impurity such as corrosion products, dirt, oil etc. Upgradation of downgraded heavy water is normally done in two steps: (i) Purification: In this step downgraded heavy water is first purified to remove corrosion products, dirt, oil, etc. and (ii) Upgradation of heavy water to increase its isotopic purity, this step is carried out by vacuum distillation of downgraded heavy water after purification. This project is aimed at mathematical modelling and numerical simulation of heavy water upgrading column. Modelling and simulation studies of the upgradation column are based on equilibrium stage model to evaluate the effect of feed location, pressure, feed composition, reflux ratio in the packed column for given reboiler and condenser duty of distillation column. State to stage modelling of two-phase two-component flow has constitutes the overall modelling of the column. The governing equations consist of stage-wise species and overall mass continuity and stage-wise energy balance. This results in tridigonal matrix equation for stage liquid fractions for heavy and light water. The stage-wise liquid flow rates and temperatures are governed by stage-wise mass and energy balance. The combined form of the corresponding governing equations, with the incorporation of thermodynamic equation of states, form a system of nonlinear equations. This system have been resolved numerically using modified Newton-Raphson method. A code in the MATLAB platform has been developed by on above numerical procedure. The optimisation of the column operating conditions is to be carried out based on parametric studies and analysis of different

  10. The concept of validation of numerical models for consequence analysis

    International Nuclear Information System (INIS)

    Borg, Audun; Paulsen Husted, Bjarne; Njå, Ove

    2014-01-01

    Numerical models such as computational fluid dynamics (CFD) models are increasingly used in life safety studies and other types of analyses to calculate the effects of fire and explosions. The validity of these models is usually established by benchmark testing. This is done to quantitatively measure the agreement between the predictions provided by the model and the real world represented by observations in experiments. This approach assumes that all variables in the real world relevant for the specific study are adequately measured in the experiments and in the predictions made by the model. In this paper the various definitions of validation for CFD models used for hazard prediction are investigated to assess their implication for consequence analysis in a design phase. In other words, how is uncertainty in the prediction of future events reflected in the validation process? The sources of uncertainty are viewed from the perspective of the safety engineer. An example of the use of a CFD model is included to illustrate the assumptions the analyst must make and how these affect the prediction made by the model. The assessments presented in this paper are based on a review of standards and best practice guides for CFD modeling and the documentation from two existing CFD programs. Our main thrust has been to assess how validation work is performed and communicated in practice. We conclude that the concept of validation adopted for numerical models is adequate in terms of model performance. However, it does not address the main sources of uncertainty from the perspective of the safety engineer. Uncertainty in the input quantities describing future events, which are determined by the model user, outweighs the inaccuracies in the model as reported in validation studies. - Highlights: • Examine the basic concept of validation applied to models for consequence analysis. • Review standards and guides for validation of numerical models. • Comparison of the validation

  11. POLLUTANT EMISSION NUMERICAL ANALYSIS OF A MARINE ENGINE

    Directory of Open Access Journals (Sweden)

    DOREL DUMITRU VELCEA

    2016-06-01

    Full Text Available The energies produced by the diesel engines of strong power are largely used in marine propulsion because of their favorable reliability and their significant output. However, the increasingly constraining legislations, aimed at limiting the pollutant emissions from the exhaust gas produced by these engines, tend to call into question their supremacy. The analysis of the pollutant emissions and their reduction in the exhaust gas of the slow turbocharged marine diesel engine using ANSYS 15 constitutes the principal objective of this study. To address problems of global air pollution due to the pollutant emission from fuel oil engin e combustion, it is necessary to understand the mechanisms by which pollutants are produced in combustion processes. In the present work, an experimental and numerical study is carried out on a unit of real use aboard a car ferry ship. A numerical model based on a detailed chemical kinetics scheme is used to calculate the emissions of NOx, SOx and Sooth in an internal combustion engine model for the same characteristics of the real unit.

  12. Numerical electromagnetic frequency domain analysis with discrete exterior calculus

    Science.gov (United States)

    Chen, Shu C.; Chew, Weng Cho

    2017-12-01

    In this paper, we perform a numerical analysis in frequency domain for various electromagnetic problems based on discrete exterior calculus (DEC) with an arbitrary 2-D triangular or 3-D tetrahedral mesh. We formulate the governing equations in terms of DEC for 3-D and 2-D inhomogeneous structures, and also show that the charge continuity relation is naturally satisfied. Then we introduce a general construction for signed dual volume to incorporate material information and take into account the case when circumcenters fall outside triangles or tetrahedrons, which may lead to negative dual volume without Delaunay triangulation. Then we examine the boundary terms induced by the dual mesh and provide a systematical treatment of various boundary conditions, including perfect magnetic conductor (PMC), perfect electric conductor (PEC), Dirichlet, periodic, and absorbing boundary conditions (ABC) within this method. An excellent agreement is achieved through the numerical calculation of several problems, including homogeneous waveguides, microstructured fibers, photonic crystals, scattering by a 2-D PEC, and resonant cavities.

  13. Desiccant wheels for air humidification: An experimental and numerical analysis

    International Nuclear Information System (INIS)

    De Antonellis, Stefano; Intini, Manuel; Joppolo, Cesare Maria; Molinaroli, Luca; Romano, Francesco

    2015-01-01

    Highlights: • The use of desiccant wheel to humidify an air stream is investigated. • Air humidification is obtained by extracting water vapour from outdoor air. • Experimental tests in winter humidification conditions are performed. • The design of the proposed humidification system is numerically analyzed. • Effects of boundary conditions on humidification capacity are investigated. - Abstract: In this work the use of a desiccant wheel for air humidification is investigated through a numerical and experimental approach. In the proposed humidification system, water vapour is adsorbed from outdoor environment and it is released directly to the air stream supplied to the building. Such a system can be an interesting alternative to steam humidifiers in hospitals or, more generally, in applications where air contamination is a critical issue and therefore adiabatic humidifiers are not allowed. Performance of the proposed system is deeply investigated and optimal values of desiccant wheel configuration parameters are discussed. It is shown that in the investigated conditions, which are representative of Southern Europe winter climate, the system can properly match the latent load of the building. Finally, power consumption referred to the primary source of the proposed humidification system is compared to the one of steam humidifiers. The present analysis is carried out through experimental tests of a desiccant wheel in winter humidification conditions and through a phenomenological model of the device, based on heat and mass transfer equations.

  14. Numerical Analysis of Film Cooling at High Blowing Ratio

    Science.gov (United States)

    El-Gabry, Lamyaa; Heidmann, James; Ameri, Ali

    2009-01-01

    Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.

  15. Global foot-and-mouth disease research update and gap analysis: 6 - immunology

    Science.gov (United States)

    In 2014, the Global Foot-and-mouth disease Research Alliance (GFRA) conducted a gap analysis of FMD research. This has been updated with findings reported in a series of papers. Here we present findings for FMD immunology research. The paper consists of the following four sections: 1. Research prior...

  16. Global foot-and-mouth disease research update and gap analysis: 3 - vaccines

    Science.gov (United States)

    In 2014, the Global Foot-and-mouth disease Research Alliance (GFRA) conducted a gap analysis of FMD research. In this paper, we report updated findings in the field of FMD vaccine research. This paper consists of the following four sections: 1) Research priorities identified in the 2010 GFRA gap ana...

  17. The choice of leasing companies for automobile fleet updating on the basis of hierarchies analysis method

    OpenAIRE

    Dorohov, А.

    2007-01-01

    The basic criteria of leasing companies choice by the transport enterprises for automobile fleet updating such as terms of financing, size of advance, assortment time of existence at the market, have been determined. The determination of the best leasing company according to these parameters on the basis of hierarchies analysis method has been offered.

  18. Measuring the Effectiveness of Lamb Advertising and Promotion: An Updated Analysis

    OpenAIRE

    Capps, Oral, Jr.; Williams, Gary W.

    2006-01-01

    This report updates a previous tentative analysis of the effectiveness of the Lamb Checkoff Program in shifting out the demand for American lamb. The main conclusion is that program has resulted in roughly 8.4 additional pounds of total lamb consumption per dollar spent on advertising and promotion and $44.60 in additional lamb sales per dollar spent on advertising and promotion.

  19. Numerical Analysis of Vibrations of Structures under Moving Inertial Load

    CERN Document Server

    Bajer, Czeslaw I

    2012-01-01

    Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations ...

  20. Numerical analysis of boosting scheme for scalable NMR quantum computation

    International Nuclear Information System (INIS)

    SaiToh, Akira; Kitagawa, Masahiro

    2005-01-01

    Among initialization schemes for ensemble quantum computation beginning at thermal equilibrium, the scheme proposed by Schulman and Vazirani [in Proceedings of the 31st ACM Symposium on Theory of Computing (STOC'99) (ACM Press, New York, 1999), pp. 322-329] is known for the simple quantum circuit to redistribute the biases (polarizations) of qubits and small time complexity. However, our numerical simulation shows that the number of qubits initialized by the scheme is rather smaller than expected from the von Neumann entropy because of an increase in the sum of the binary entropies of individual qubits, which indicates a growth in the total classical correlation. This result--namely, that there is such a significant growth in the total binary entropy--disagrees with that of their analysis

  1. Numerical Analysis on Seepage in the deep overburden CFRD

    Science.gov (United States)

    Zeyu, GUO; Junrui, CHAI; Yuan, QIN

    2017-12-01

    There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.

  2. Numerical analysis of lateral illumination lightpipes using elliptical grooves

    Science.gov (United States)

    Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Martínez-Guerra, Edgar; Ceballos-Herrera, Daniel E.

    2017-09-01

    Lightpipes are used for illumination in applications such as back-lighting or solar cell concentrators due to the high irradiance uniformity, but its optimal design requires several parameters. This work presents a procedure to design a square lightpipe to control the light-extraction on its lateral face using commercial LEDs placed symmetrically in the lightpipe frontal face. We propose the use of grooves using total internal reflection placed successively in the same face of extraction to control the area of emission. The LED area of emission is small compared with the illuminated area, and, as expected, the lateral face total power is attenuated. These grooves reduce the optical elements in the system and can control areas of illumination. A mathematical and numerical analysis are presented to determine the dependencies on the light-extraction.

  3. [Effects decomposition in mediation analysis: a numerical example].

    Science.gov (United States)

    Zugna, Daniela; Richiardi, Lorenzo

    2018-01-01

    Mediation analysis aims to decompose the total effect of the exposure on the outcome into a direct effect (unmediated) and an indirect effect (mediated by a mediator). When the interest also lies on understanding whether the exposure effect differs in different sub-groups of study population or under different scenarios, the mediation analysis needs to be integrated with interaction analysis. In this setting it is necessary to decompose the total effect not only into two components, the direct and indirect effects, but other two components linked to interaction. The interaction between the exposure and the mediator in their effect on the outcome could indeed act through the effect of the exposure on the mediator or through the mediator when the mediator is not totally explained by the exposure. We describe options for decomposition, proposed in literature, of the total effect and we illustrate them through a hypothetical example of the effect of age at diagnosis of cancer on survival, mediated and unmediated by the therapeutical approach, and a numerical example.

  4. Development of small scale cluster computer for numerical analysis

    Science.gov (United States)

    Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.

    2017-09-01

    In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.

  5. Experimental and Numerical Analysis of Notched Composites Under Tension Loading

    Science.gov (United States)

    Aidi, Bilel; Case, Scott W.

    2015-12-01

    Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.

  6. Developments in mycotoxin analysis: an update for 2009-2010

    NARCIS (Netherlands)

    Shephard, G.S.; Berthiller, F.; Burdaspal, P.; Crews, C.; Jonker, M.A.; Krska, R.; MacDonald, S.; Malone, B.; Maragos, C.; Sabino, M.; Solfrizzo, M.; Egmond, van H.P.; Whitaker, T.B.

    2011-01-01

    This review highlights developments in mycotoxin analysis and sampling over a period between mid-2009 and mid-2010. It covers the major mycotoxins aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. New and improved methods for mycotoxins

  7. Numerical analysis of reactor internals under hydrodynamic loads

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Da Hye; Chang, Yoon Suk [Kyung Hee Univ., Yongin (Korea, Republic of); Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In the present study, six kinds of major equipment of a typical reactor internals were identified by incorporating recent research trend. Based on this, detailed numerical models were developed and used for establishment of optimum analysis methodology subjected to hydrodynamic loads. As a result, stress values of the major equipment were calculated through the acoustic-structure analysis under periodic hydrodynamic load and the turbulence-structure analysis under random hydrodynamic load. The numerical analysis scheme can be used for development of preventive action plan and management procedures of the reactor internals. Reactor internals installed in a pressure vessel have been exposed to harsh environment such as high neutron irradiation and temperature with complex fluid flow. As the increase of operational years of NPPs(Nuclear Power Plants), possibility of functional loss of the reactor internals is increased due to degradation caused by radiation embrittlement, thermal aging, fatigue, corrosion and FIV(Flow-Induced Vibration) etc. In practice, defects were detected at core support structure as well as upper and lower parts of structural assembly in European and United States NPPs. Recently, in a GALL(Generic Aging Lessons Learned) report, US NRC(Nuclear Regulatory Commission) identified reactor internals as a high priority component and addressed relevant management programs. In Korea, similar activities have been conducted for long-term operation beyond design lifetime but most of them were limited to qualitative evaluation based on examination and maintenance programs. Therefore, not only to reduce repair and replacement efforts but also to secure the stability of NPPs, necessity for development of quantitative evaluation technique as well as establishment of preventive action plan and management procedures is on the rise. The FIV represents the structural vibration phenomenon induced by liquid flow and generally occurs at contact surfaces. In the present

  8. Numerical Aspects Related to the Dynamic Update of Anisotropic Permeability Field During the Transport of Nanoparticles in the Subsurface

    KAUST Repository

    Chen, Meng-Huo; Salama, Amgad; Ei-Amin, Mohamed

    2016-01-01

    Nanoparticles are particles that are between 1 and 100 nanometers in size. They present possible dangers to the environment due to the high surface to volume ratio, which can make the particles very reactive or catalytic. Furthermore, rapid increase in the implementation of nanotechnologies has released large amount of the nanowaste into the environment. In the last two decades, transport of nanoparticles in the subsurface and the potential hazard they impose to the environment have attracted the attention of researchers. In this work, we use numerical simulation to investigate the problem regarding the transport phenomena of nanoparticles in anisotropic porous media. We consider the case in which the permeability in the principal direction components will vary with respect to time. The interesting thing in this case is the fact that the anisotropy could disappear with time. We investigate the effect of the degenerating anisotropy on various fields such as pressure, porosity, concentration and velocities.

  9. Numerical Aspects Related to the Dynamic Update of Anisotropic Permeability Field During the Transport of Nanoparticles in the Subsurface

    KAUST Repository

    Chen, Meng-Huo

    2016-06-01

    Nanoparticles are particles that are between 1 and 100 nanometers in size. They present possible dangers to the environment due to the high surface to volume ratio, which can make the particles very reactive or catalytic. Furthermore, rapid increase in the implementation of nanotechnologies has released large amount of the nanowaste into the environment. In the last two decades, transport of nanoparticles in the subsurface and the potential hazard they impose to the environment have attracted the attention of researchers. In this work, we use numerical simulation to investigate the problem regarding the transport phenomena of nanoparticles in anisotropic porous media. We consider the case in which the permeability in the principal direction components will vary with respect to time. The interesting thing in this case is the fact that the anisotropy could disappear with time. We investigate the effect of the degenerating anisotropy on various fields such as pressure, porosity, concentration and velocities.

  10. Nano-Aptasensing in Mycotoxin Analysis: Recent Updates and Progress

    Directory of Open Access Journals (Sweden)

    Amina Rhouati

    2017-10-01

    Full Text Available Recent years have witnessed an overwhelming integration of nanomaterials in the fabrication of biosensors. Nanomaterials have been incorporated with the objective to achieve better analytical figures of merit in terms of limit of detection, linear range, assays stability, low production cost, etc. Nanomaterials can act as immobilization support, signal amplifier, mediator and artificial enzyme label in the construction of aptasensors. We aim in this work to review the recent progress in mycotoxin analysis. This review emphasizes on the function of the different nanomaterials in aptasensors architecture. We subsequently relate their features to the analytical performance of the given aptasensor towards mycotoxins monitoring. In the same context, a critically analysis and level of success for each nano-aptasensing design will be discussed. Finally, current challenges in nano-aptasensing design for mycotoxin analysis will be highlighted.

  11. Introductory Psychology Textbooks: An Objective Analysis and Update.

    Science.gov (United States)

    Griggs, Richard A.; Jackson, Sherri L.; Christopher, Andrew N.; Marek, Pam

    1999-01-01

    Explores changes in the introductory psychology textbook market through an analysis of edition, author, length, and content coverage of the volumes that comprise the current market. Finds a higher edition average, a decrease in the number of authors, an increase in text pages, and a focus on developmental psychology and sensation/perception. (CMK)

  12. Evaluation of Offshore Wind Turbine Tower Dynamics with Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Begum Yurdanur Dagli

    2018-01-01

    Full Text Available A dynamic behaviour of a cylindirical wind tower with variable cross section is investigated under environmental and earthquake forces. The ground acceleration term is represented by a simple cosine function to investigate both normal and parallel components of the earthquake motions located near ground surface. The function of earthquake force is simplified to apply Rayleigh’s energy method. Wind forces acting on above the water level and wave forces acting on below this level are utilized in computations considering earthquake effect for entire structure. The wind force is divided into two groups: the force acting on the tower and the forces acting on the rotor nacelle assembly (RNA. The drag and the inertial wave forces are calculated with water particle velocities and accelerations due to linear wave theory. The resulting hydrodynamic wave force on the tower in an unsteady viscous flow is determined using the Morison equation. The displacement function of the physical system in which dynamic analysis is performed by Rayleigh’s energy method is obtained by the single degree of freedom (SDOF model. The equation of motion is solved by the fourth-order Runge–Kutta method. The two-way FSI (fluid-structure interaction technique was used to determine the accuracy of the numerical analysis. The results of computational fluid dynamics and structural mechanics are coupled in FSI analysis by using ANSYS software. Time-varying lateral displacements and the first natural frequency values which are obtained from Rayleigh’s energy method and FSI technique are compared. The results are presented by graphs. It is observed from these graphs that the Rayleigh model can be an alternative way at the prelimanary stage of the structural analysis with acceptable accuracy.

  13. Critical Radionuclide and Pathway Analysis for the Savannah River Site, 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hartman, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-08

    During the operational history of Savannah River Site, many different radionuclides have been released from site facilities. However, as shown in this analysis, only a relatively small number of the released radionuclides have been significant contributors to doses to the offsite public. This report is an update to the 2011 analysis, Critical Radionuclide and Pathway Analysis for the Savannah River Site. SRS-based Performance Assessments for E-Area, Saltstone, F-Tank Farm, H-Tank Farm, and a Comprehensive SRS Composite Analysis have been completed. The critical radionuclides and pathways identified in those extensive reports are also detailed and included in this analysis.

  14. Cost Analysis Sources and Documents Data Base Reference Manual (Update)

    Science.gov (United States)

    1989-06-01

    M: Refcrence Manual PRICE H: Training Course Workbook 11. Use in Cost Analysis. Important source of cost estimates for electronic and mechanical...Nature of Data. Contains many microeconomic time series by month or quarter. 5. Level of Detail. Very detailed. 6. Normalization Processes Required...Reference Manual. Moorestown, N.J,: GE Corporation, September 1986. 64. PRICE Training Course Workbook . Moorestown, N.J.: GE Corporation, February 1986

  15. Reliability analysis and updating of deteriorating systems with subset simulation

    DEFF Research Database (Denmark)

    Schneider, Ronald; Thöns, Sebastian; Straub, Daniel

    2017-01-01

    An efficient approach to reliability analysis of deteriorating structural systems is presented, which considers stochastic dependence among element deterioration. Information on a deteriorating structure obtained through inspection or monitoring is included in the reliability assessment through B...... is an efficient and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue....

  16. Finite element modelling and updating of friction stir welding (FSW joint for vibration analysis

    Directory of Open Access Journals (Sweden)

    Zahari Siti Norazila

    2017-01-01

    Full Text Available Friction stir welding of aluminium alloys widely used in automotive and aerospace application due to its advanced and lightweight properties. The behaviour of FSW joints plays a significant role in the dynamic characteristic of the structure due to its complexities and uncertainties therefore the representation of an accurate finite element model of these joints become a research issue. In this paper, various finite elements (FE modelling technique for prediction of dynamic properties of sheet metal jointed by friction stir welding will be presented. Firstly, nine set of flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by FSW are used. Nine set of specimen was fabricated using various types of welding parameters. In order to find the most optimum set of FSW plate, the finite element model using equivalence technique was developed and the model validated using experimental modal analysis (EMA on nine set of specimen and finite element analysis (FEA. Three types of modelling were engaged in this study; rigid body element Type 2 (RBE2, bar element (CBAR and spot weld element connector (CWELD. CBAR element was chosen to represent weld model for FSW joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, total error of the natural frequencies for CBAR model is improved significantly. Therefore, CBAR element was selected as the most reliable element in FE to represent FSW weld joint.

  17. Numerical simulation for the design analysis of kinematic Stirling engines

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2015-01-01

    Highlights: • A thermodynamic analysis for kinematic Stirling engines was presented. • The analysis integrated thermal, mechanical and thermodynamic interactions. • The analyses considered geometrical and operational parameters. • The results allowed to map the performance of the engine. • The analysis allow the design assessment of Stirling engines. - Abstract: The Stirling engine is a closed-cycle regenerative system that presents good theoretical properties. These include a high thermodynamic efficiency, low emissions levels thanks to a controlled external heat source, and multi-fuel capability among others. However, the performance of actual prototypes largely differs from the mentioned theoretical potential. Actual engine prototypes present low electrical power outputs and high energy losses. These are mainly attributed to the complex interaction between the different components of the engine, and the challenging heat transfer and fluid dynamics requirements. Furthermore, the integration of the engine into decentralized energy systems such as the Combined Heat and Power systems (CHP) entails additional complications. These has increased the need for engineering tools that could assess design improvements, considering a broader range of parameters that would influence the engine performance when integrated within overall systems. Following this trend, the current work aimed to implement an analysis that could integrate the thermodynamics, and the thermal and mechanical interactions that influence the performance of kinematic Stirling engines. In particular for their use in Combined Heat and Power systems. The mentioned analysis was applied for the study of an engine prototype that presented very low experimental performance. The numerical methodology was selected for the identification of possible causes that limited the performance. This analysis is based on a second order Stirling engine model that was previously developed and validated. The

  18. Numerical performance and throughput benchmark for electronic structure calculations in PC-Linux systems with new architectures, updated compilers, and libraries.

    Science.gov (United States)

    Yu, Jen-Shiang K; Hwang, Jenn-Kang; Tang, Chuan Yi; Yu, Chin-Hui

    2004-01-01

    A number of recently released numerical libraries including Automatically Tuned Linear Algebra Subroutines (ATLAS) library, Intel Math Kernel Library (MKL), GOTO numerical library, and AMD Core Math Library (ACML) for AMD Opteron processors, are linked against the executables of the Gaussian 98 electronic structure calculation package, which is compiled by updated versions of Fortran compilers such as Intel Fortran compiler (ifc/efc) 7.1 and PGI Fortran compiler (pgf77/pgf90) 5.0. The ifc 7.1 delivers about 3% of improvement on 32-bit machines compared to the former version 6.0. Performance improved from pgf77 3.3 to 5.0 is also around 3% when utilizing the original unmodified optimization options of the compiler enclosed in the software. Nevertheless, if extensive compiler tuning options are used, the speed can be further accelerated to about 25%. The performances of these fully optimized numerical libraries are similar. The double-precision floating-point (FP) instruction sets (SSE2) are also functional on AMD Opteron processors operated in 32-bit compilation, and Intel Fortran compiler has performed better optimization. Hardware-level tuning is able to improve memory bandwidth by adjusting the DRAM timing, and the efficiency in the CL2 mode is further accelerated by 2.6% compared to that of the CL2.5 mode. The FP throughput is measured by simultaneous execution of two identical copies of each of the test jobs. Resultant performance impact suggests that IA64 and AMD64 architectures are able to fulfill significantly higher throughput than the IA32, which is consistent with the SpecFPrate2000 benchmarks.

  19. Budget impact analysis of medicines: updated systematic review and implications.

    Science.gov (United States)

    Faleiros, Daniel Resende; Álvares, Juliana; Almeida, Alessandra Maciel; de Araújo, Vânia Eloisa; Andrade, Eli Iola Gurgel; Godman, Brian B; Acurcio, Francisco A; Guerra Júnior, Augusto A

    2016-01-01

    This evaluation determines whether published studies to date meet the key characteristics identified for budget impact analyses (BIA) for medicines, accomplished through a systematic review and assessment against identified key characteristics. Studies from 2001-2015 on 'budget impact analysis' with 'drug' interventions were assessed, selected based on their titles/abstracts and full texts, and their characteristics checked according to key criteria. Out of 1,984 studies, 92 were subsequently identified for review. Of these, 95% were published in Europe and the USA. 2012 saw the largest number of publications (16%) with a decline thereafter. 48% met up to 7 out of the 9 key characteristics. Only 22% stated no conflict of interest. The results indicate low adherence to the key characteristics that should be considered for BIAs and strong conflict of interest. This is an issue since BIAs can be of fundamental importance in managing the entry of new medicines including reimbursement decisions.

  20. Smoking and multiple sclerosis: an updated meta-analysis.

    Directory of Open Access Journals (Sweden)

    Adam E Handel

    2011-01-01

    Full Text Available Multiple sclerosis (MS is a leading cause of disability in young adults. Susceptibility to MS is determined by environmental exposure on the background of genetic risk factors. A previous meta-analysis suggested that smoking was an important risk factor for MS but many other studies have been published since then.We performed a Medline search to identify articles published that investigated MS risk following cigarette smoking. A total of 14 articles were included in this study. This represented data on 3,052 cases and 457,619 controls. We analysed these studies in both a conservative (limiting our analysis to only those where smoking behaviour was described prior to disease onset and non-conservative manner. Our results show that smoking is associated with MS susceptibility (conservative: risk ratio (RR 1.48, 95% confidence interval (CI 1.35-1.63, p < 10⁻¹⁵; non-conservative: RR 1.52, 95% CI 1.39-1.66, p < 10⁻¹⁹. We also analysed 4 studies reporting risk of secondary progression in MS and found that this fell just short of statistical significance with considerable heterogeneity (RR 1.88, 95% CI 0.98-3.61, p = 0.06.Our results demonstrate that cigarette smoking is important in determining MS susceptibility but the effect on the progression of disease is less certain. Further work is needed to understand the mechanism behind this association and how smoking integrates with other established risk factors.

  1. Numeric calculation of celestial bodies with spreadsheet analysis

    Science.gov (United States)

    Koch, Alexander

    2016-04-01

    The motion of the planets and moons in our solar system can easily be calculated for any time by the Kepler laws of planetary motion. The Kepler laws are a special case of the gravitational law of Newton, especially if you consider more than two celestial bodies. Therefore it is more basic to calculate the motion by using the gravitational law. But the problem is, that by gravitational law it is not possible to calculate the state of motion with only one step of calculation. The motion has to be numerical calculated for many time intervalls. For this reason, spreadsheet analysis is helpful for students. Skills in programmes like Excel, Calc or Gnumeric are important in professional life and can easily be learnt by students. These programmes can help to calculate the complex motions with many intervalls. The more intervalls are used, the more exact are the calculated orbits. The sutdents will first get a quick course in Excel. After that they calculate with instructions the 2-D-coordinates of the orbits of Moon and Mars. Step by step the students are coding the formulae for calculating physical parameters like coordinates, force, acceleration and velocity. The project is limited to 4 weeks or 8 lessons. So the calcualtion will only include the calculation of one body around the central mass like Earth or Sun. The three-body problem can only be shortly discussed at the end of the project.

  2. Numerical Analysis of Heat Transfer During Quenching Process

    Science.gov (United States)

    Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana

    2018-04-01

    A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.

  3. The design and numerical analysis of tandem thermophotovoltaic cells

    International Nuclear Information System (INIS)

    Yang Hao-Yu; Liu Ren-Jun; Wang Lian-Kai; Lü You; Li Tian-Tian; Li Guo-Xing; Zhang Yuan-Tao; Zhang Bao-Lin

    2013-01-01

    In this paper, numerical analysis of GaSb =(E g = 0.72 eV)/Ga 0.84 In 0.16 As 0.14 Sb 0.86 (E g = 0.53 eV) tandem thermophotovoltaic (TPV) cells is carried out by using Silvaco/Atlas software. In the tandem cells, a GaSb p-n homojunction is used for the top cell and a GaInAsSb p-n homojunction for the bottom cell. A heavily doped GaSb tunnel junction connects the two sub-cells together. The simulations are carried out at a radiator temperature of 2000 K and a cell temperature of 300 K. The radiation photons are injected from the top of the tandem cells. Key properties of the single- and dual-junction TPV cells, including I–V characteristic, maximum output power (P max ), open-circuit voltage (V oc ), short-circuit current (I sc ), etc. are presented. The effects of the sub-cell thickness and carrier concentration on the key properties of tandem cells are investigated. A comparison of the dual-TPV cells with GaSb and GaInAsSb single junction cells shows that the P max of tandem cells is almost twice as great as that of the single-junction cells. (interdisciplinary physics and related areas of science and technology)

  4. Numerical Analysis of a Passive Containment Filtered Venting System

    International Nuclear Information System (INIS)

    Kim, Taejoon; Ha, Huiun; Heo, Sun

    2014-01-01

    The passive Containment Filtered Venting system (CFVS) does not have principally any kind of isolation valves or filtering devices which need periodic maintenance. In this study, the hydro-thermal analysis is presented to investigate the existence of flow instability in the passive CFVS and its performance under the pressure change of APR+ containment building with LB-LOCA M/E data. The Passive Containment Filtered Venting System was suggested as a part in i-Power development project and the operation mechanism was investigated by numerical modeling and simulation using GOTHIC8.0 system code. There are four Phases for consideration to investigate the pressurization of the containment building, loss of hydrostatic head in the pipe line of CFVS, opening of pipe line and gas ejection to the coolant tank, and the head recovery inside the pipe as the containment gas exhausted. The simulation results show that gas generation rate determine the timing of head recovery in the CFVS pipe line and that the equipment of various devices inducing pressure loss at the pipe can give the capacity of Phase control of the passive CFVS operation

  5. Improvement of numerical analysis method for FBR core characteristics. 3

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yamamoto, Toshihisa; Kitada, Takanori; Katagi, Yousuke

    1998-03-01

    As the improvement of numerical analysis method for FBR core characteristics, studies on several topics have been conducted; multiband method, Monte Carlo perturbation and nodal transport method. This report is composed of the following three parts. Part 1: Improvement of Reaction Rate Calculation Method in the Blanket Region Based on the Multiband Method; A method was developed for precise evaluation of the reaction rate distribution in the blanket region using the multiband method. With the 3-band parameters obtained from the ordinary fitting method, major reaction rates such as U-238 capture, U-235 fission, Pu-239 fission and U-238 fission rate distributions were analyzed. Part 2: Improvement of Estimation Method for Reactivity Based on Monte-Carlo Perturbation Theory; Perturbation theory based on Monte-Carlo perturbation theory have been investigated and introduced into the calculational code. The Monte-Carlo perturbation code was applied to MONJU core and the calculational results were compared to the reference. Part 3: Improvement of Nodal Transport Calculation for Hexagonal Geometry; A method to evaluate the intra-subassembly power distribution from the nodal averaged neutron flux and surface fluxes at the node boundaries, was developed based on the transport theory. (J.P.N.)

  6. Dynamic optimization of a FCC converter unit: numerical analysis

    Directory of Open Access Journals (Sweden)

    E. Almeida Nt

    2011-03-01

    Full Text Available Fluidized-bed Catalytic Cracking (FCC is a process subject to frequent variations in the operating conditions (including feed quality and feed rate. The production objectives usually are the maximization of LPG and gasoline production. This fact makes the FCC converter unit an excellent opportunity for real-time optimization. The present work aims to apply a dynamic optimization in an industrial FCC converter unit, using a mechanistic dynamic model, and to carry out a numerical analysis of the solution procedure. A simultaneous approach was used to discretize the system of differential-algebraic equations and the resulting large-scale NLP problem was solved using the IPOPT solver. This study also does a short comparison between the results obtained by a potential dynamic real-time optimization (DRTO against a possible steady-state real-time optimization (RTO application. The results demonstrate that the application of dynamic real-time optimization of a FCC converter unit can bring significant benefits in production.

  7. Summary of research in applied mathematics, numerical analysis, and computer sciences

    Science.gov (United States)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  8. Climate and Lightning: An updated TRMM-LIS Analysis

    Science.gov (United States)

    Petersen, Walter A.; Buechler, D. E.

    2009-01-01

    The TRMM Lightning Imaging Sensor (LIS) has sampled global tropical and sub-tropical lightning flash densities for approximately 11 years. These data were originally processed and results presented by the authors in the 3rd AMS MALD Conference held in 2007 using both pre and post TRMM-boost lightning data. These data were normalized for the orbit boost by scaling the pre-boost data by a fixed constant based on the different swath areas for the pre and post-boost years (post-boost after 2001). Inevitably, one must question this simple approach to accounting for the orbit boost when sampling such a noisy quantity. Hence we are in the process of reprocessing the entire 11-year TRMM LIS dataset to reduce the orbit swath of the post-boost era to that of the pre-boost in order to eliminate sampling bias in the dataset. Study of the diurnal/seasonal/annual sampling suggests that those biases are already minimal and should not contribute to error in examination of annual trends. We will present new analysis of the 11-year annual trends in total lightning flash density for all latitudinal belts and select regions/regimes of the tropics as related to conventional climate signals and precipitation contents in the same period. The results should enable us to address, in some fashion, the sensitivity of the lightning flash density to subtle changes in climate.

  9. Aerodynamic flight evaluation analysis and data base update

    Science.gov (United States)

    Boyle, W. W.; Miller, M. S.; Wilder, G. O.; Reheuser, R. D.; Sharp, R. S.; Bridges, G. I.

    1989-01-01

    Research was conducted to determine the feasibility of replacing the Solid Rocket Boosters on the existing Space Shuttle Launch Vehicle (SSLV) with Liquid Rocket Boosters (LRB). As a part of the LRB selection process, a series of wind tunnel tests were conducted along with aero studies to determine the effects of different LRB configurations on the SSLV. Final results were tabulated into increments and added to the existing SSLV data base. The research conducted in this study was taken from a series of wind tunnel tests conducted at Marshall's 14-inch Trisonic Wind Tunnel. The effects on the axial force (CAF), normal force (CNF), pitching moment (CMF), side force (CY), wing shear force (CSR), wing torque moment (CTR), and wing bending moment (CBR) coefficients were investigated for a number of candidate LRB configurations. The aero effects due to LRB protuberances, ET/LRB separation distance, and aft skirts were also gathered from the tests. Analysis was also conducted to investigate the base pressure and plume effects due to the new booster geometries. The test results found in Phases 1 and 2 of wind tunnel testing are discussed and compared. Preliminary LRB lateral/directional data results and trends are given. The protuberance and gap/skirt effects are discussed. The base pressure/plume effects study is discussed and results are given.

  10. Hazard screening application guide. Safety Analysis Report Update Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  11. Dual Systems for Spatial Updating in Immediate and Retrieved Environments: Evidence from Bias Analysis.

    Science.gov (United States)

    Liu, Chuanjun; Xiao, Chengli

    2018-01-01

    The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one.

  12. Dual Systems for Spatial Updating in Immediate and Retrieved Environments: Evidence from Bias Analysis

    Directory of Open Access Journals (Sweden)

    Chuanjun Liu

    2018-02-01

    Full Text Available The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one.

  13. Numerical analysis of laminar forced convection in a spherical annulus

    International Nuclear Information System (INIS)

    Tuft, D.B.

    1980-01-01

    Calculations of steady laminar incompressible fluid-flow and heat transfer in a spherical annulus are presented. Steady pressures, temperatures, velocities, and heat transfer coefficients are calculated for an insulated outer sphere and a 0 0 C isothermal inner sphere with 50 0 C heated water flowing in the annulus. The inner sphere radius is 13.97 cm, the outer sphere radius is 16.83 cm and the radius ratio is 1.2. The transient axisymmetric equations of heat, mass, and momentum conservation are solved numerically in spherical coordinates. The transient solution is carried out in time until steady state is achieved. A variable mesh is used to improve resolution near the inner sphere where temperature and velocity gradients are steep. It is believed that this is the first fully two-dimensional analysis of forced flow in a spherical annulus. Local and bulk Nusselt numbers are presented for Reynolds numbers from 4.4 to 440. Computed bulk Nusselt numbers ranged from 2 to 50 and are compared to experimental results from the literature. Inlet flow jetting off the inner sphere and flow separation are predicted by the analysis. The location of wall jet separation was found to be a function of Reynolds number, indicating the location of separation depends upon the ratio of inertia to viscous forces. Wall jet separation has a pronounced effect on the distribution of local heat flux. The area between inlet and separation was found to be the most significant area for heat transfer. Radial distributions of azimuthal velocity and temperature are presented for various angles beginning at the inlet. Inner sphere pressure distribution is presented and the effect on flow separation is discussed

  14. Sampling and Analysis Plan Update for Groundwater Monitoring 1100-EM-1 Operable Unit

    International Nuclear Information System (INIS)

    DR Newcomer

    1999-01-01

    This document updates the sampling and analysis plan (Department of Energy/Richland Operations--95-50) to reflect current groundwater monitoring at the 1100-EM-1Operable Unit. Items requiring updating included sampling and analysis protocol, quality assurance and quality control, groundwater level measurement procedure, and data management. The plan covers groundwater monitoring, as specified in the 1993 Record of Decision, during the 5-year review period from 1995 through 1999. Following the 5-year review period, groundwater-monitoring data will be reviewed by Environmental Protection Agency to evaluate the progress of natural attenuation of trichloroethylene. Monitored natural attenuation and institutional controls for groundwater use at the inactive Horn Rapids Landfill was the selected remedy specified in the Record of Decision

  15. Numerical issues for liquid-metal boiling transient analysis

    International Nuclear Information System (INIS)

    Rowe, D.S.

    1986-01-01

    The large liquid-to-vapor density ratio of a boiling liquid-metal leads to a very abrupt change of the two-phase mixture density at the inception of boiling. Unfortunately, the strong dependence of mixture density on pressure leads to a key numerical issue that adversely affects the behavior of numerical solutions. The difficulties can be reduced by using techniques that acknowledge this functional behavior at the start of boiling. Some of the methods used include a spatially averaged density function, mathematical smoothing, and under relaxation. Nonequilibrium two-fluid models also seem to offer aid in obtaining reliable numerical solutions. (author)

  16. Treatment of Latent Tuberculosis Infection: An Updated Network Meta-analysis

    OpenAIRE

    Zenner, D.; Beer, N.; Harris, R. J.; Lipman, M. C.; Stagg, H. R.; van der Werf, M. J.

    2017-01-01

    Background: Treatment of latent tuberculosis infection (LTBI) is an important component of tuberculosis (TB) control, and this study updates a previous network meta-analysis of the best LTBI treatment options to inform public health action and programmatic management of LTBI. Purpose: To evaluate the comparative efficacy and harms of LTBI treatment regimens aimed at preventing active TB among adults and children. Data Sources: PubMed, Embase, and Web of Science from indexing ...

  17. Numerical analysis of choked converging nozzle flows with surface ...

    Indian Academy of Sciences (India)

    numerically investigated by means of a recent computational model that ..... dependent nonlinear formulations, where the solution scheme is most likely to face with .... boundary and geometric conditions, to (15–16), also proves the validity.

  18. RAMAN amplifier gain dynamics with ASE : Numerical analysis and ...

    African Journals Online (AJOL)

    DR OKE

    simulation approach ... single pump amplification is diagnosed numerically and simulated using MATLAB to obtain experimental outcome. ... or high speed response in comparison with the other nonlinear processes ... Mathematical Modeling.

  19. Numerical Analysis of Impulse Turbine for Isolated Pilot OWC System

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2013-01-01

    Full Text Available Oscillating water column (OWC is the most widely used wave energy converting technology in the world. The impulse turbine is recently been employed as the radial turbine in OWC facilities to convert bidirectional mechanical air power into electricity power. 3D numerical model for the impulse turbine is established in this paper to investigate its operating performance of the designed impulse turbine for the pilot OWC system which is under the construction on Jeju Island, Republic of Korea. The proper mesh style, turbulence model, and numerical solutions are employed to study the velocity and air pressure distribution especially around the rotor blade. The operating coefficients obtained from the numerical simulation are compared with corresponding experimental data, which demonstrates that the 3D numerical model proposed here can be applied to the research of impulse turbines for OWC system. Effects of tip clearances on flow field distribution characteristics and operating performances are also studied.

  20. Experimental and Numerical Analysis of Steel Joints in Round Wood

    Directory of Open Access Journals (Sweden)

    Mikolášek David

    2014-12-01

    Full Text Available The paper analyses a drawn steel joint in round logs for which several types of reinforcements have been proposed. The load-carrying capacity of the reinforcements have been tested in laboratories. At the same time, numerical modelling has been performed - it has focused, in particular, on rigidity of the joints during the loading process. Physical and geometrical nonlinearities have been taken into account. The Finite Element Method and 3D computation models have been used in the numerical calculations.

  1. Fatigue behavior of a bolted assembly - a comparison between numerical analysis and experimental analysis

    International Nuclear Information System (INIS)

    Bosser, M.; Vagner, J.

    1987-01-01

    The fatigue behavior of a bolted assembly can be analysed, either by fatigue tests, or by computing the stress variations and using a fatigue curve. This paper presents the fatigue analysis of a stud-bolt and stud-flange of a steam generator manway carried out with the two methods. The experimental analysis is performed for various levels of load, according to the recommandations of the ASME code section III appendix II. The numerical analysis of the stresses is based on the results of a finite element analysis performed with the program SYSTUS. The maximum stresses are obtained in the first bolt threads. In using these stresses, the allowable number of cycles for each level of loading analysed, is obtained from fatigue curves, as defined in appendix I section III of the ASME code. The analysis underlines that, for each level of load the purely numerical approach is highly conservative, compared to the experimental approach. (orig.)

  2. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    International Nuclear Information System (INIS)

    Ma Ji; Fang Guang-You; Ji Yi-Cai

    2015-01-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)

  3. Reactions on Twitter to updated alcohol guidelines in the UK: a content analysis.

    Science.gov (United States)

    Stautz, Kaidy; Bignardi, Giacomo; Hollands, Gareth J; Marteau, Theresa M

    2017-02-28

    In January 2016, the 4 UK Chief Medical Officers released a public consultation regarding updated guidelines for low-risk alcohol consumption. This study aimed to assess responses to the updated guidelines using comments made on Twitter. Tweets containing the hashtag #alcoholguidelines made during 1 week following the announcement of the updated guidelines were retrieved using the Twitter Archiver tool. The source, sentiment and themes of the tweets were categorised using manual content analysis. A total of 3061 tweets was retrieved. 6 sources were identified, the most prominent being members of the public. Of 821 tweets expressing sentiment specifically towards the guidelines, 80% expressed a negative sentiment. 11 themes were identified, 3 of which were broadly supportive of the guidelines, 7 broadly unsupportive and 1 neutral. Overall, more tweets were unsupportive (49%) than supportive (44%). While the most common theme overall was sharing information, the most common in tweets from members of the public encouraged alcohol consumption (15%) or expressed disagreement with the guidelines (14%), reflecting reactance, resistance and misunderstanding. This descriptive analysis revealed a number of themes present in unsupportive comments towards the updated UK alcohol guidelines among a largely proalcohol community. An understanding of these may help to tailor effective communication of alcohol and health-related policies, and could inform a more dynamic approach to health communication via social media. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Numerical analysis of pipe impact on reinforced concrete structures

    International Nuclear Information System (INIS)

    Prinja, N.K.

    1990-01-01

    This paper presents the methodology and the results of numerical analyses carried out by using the computer code DYNA3D to analyse pipe impacts on a reinforced concrete slab, a floor beam and a column. Modelling techniques employed to represent various features of typical reinforced concrete (RC) structures and the details of a soil and crushable foam type of material model used to represent concrete material behaviour are described. The results show that a reasonable prediction of global behaviour of reinforced concrete structures under impact loading can be obtained by this numerical method. (author)

  5. International Winter Workshop on Differential Equations and Numerical Analysis

    CERN Document Server

    Miller, John; Narasimhan, Ramanujam; Mathiazhagan, Paramasivam; Victor, Franklin

    2016-01-01

    This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.

  6. Numerical analysis of the performance prediction for a thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Nyung [Kyung Hee University, Yongin (Korea, Republic of)

    2015-09-15

    The present study develops a two-dimensional numerical code that can predict the performance of a thermoelectric generator module including a p-leg/n-leg pair and top and bottom electrodes. The present code can simulate the detailed thermoelectric phenomena including the heat flow, electric current, Joule heating, Peltier heating, and Thomson heating, together with the efficiency of the modules whose properties depend on the temperature. The present numerical code can be used for the design optimization of a thermoelectric power generator.

  7. Sharing wind power forecasts in electricity markets: A numerical analysis

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Pinson, Pierre; Kazempour, Jalal

    2016-01-01

    In an electricity pool with significant share of wind power, all generators including conventional and wind power units are generally scheduled in a day-ahead market based on wind power forecasts. Then, a real-time market is cleared given the updated wind power forecast and fixed day......-ahead decisions to adjust power imbalances. This sequential market-clearing process may cope with serious operational challenges such as severe power shortage in real-time due to erroneous wind power forecasts in day-ahead market. To overcome such situations, several solutions can be considered such as adding...... flexible resources to the system. In this paper, we address another potential solution based on information sharing in which market players share their own wind power forecasts with others in day-ahead market. This solution may improve the functioning of sequential market-clearing process through making...

  8. Numerical Clifford Analysis for the Non-stationary Schroedinger Equation

    International Nuclear Information System (INIS)

    Faustino, N.; Vieira, N.

    2007-01-01

    We construct a discrete fundamental solution for the parabolic Dirac operator which factorizes the non-stationary Schroedinger operator. With such fundamental solution we construct a discrete counterpart for the Teodorescu and Cauchy-Bitsadze operators and the Bergman projectors. We finalize this paper with convergence results regarding the operators and a concrete numerical example

  9. Numerical analysis of fragmentation mechanisms in vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Koshizuka, Seiichi; Ikeda, Hirokazu; Oka, Yoshiaki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1998-01-01

    Fragmentation of molten metal is the key process in vapor explosions. However this process is so rapid that the mechanisms have not been clarified yet in the experimental studies. Besides, numerical simulation is difficult because we have to analyze water, steam and molten metal simultaneously with evaporation and fragmentation. The authors have been developing a new numerical method, the Moving Particle Semi-implicit (MPS) method, based on moving particles and their interactions. Grids are not necessary. Incompressible flows with fragmentation on free surfaces have been calculated successfully using the MPS method. In the present study numerical simulation of the fragmentation processes using the MPS method is carried out to investigate the mechanisms. A numerical model to calculate evaporation from water to steam is developed. In this model, new particles are generated on water-steam interfaces. Effect of evaporation is also investigated. Growth of the filament is not accelerated when the normal evaporation is considered. This is because the normal evaporation needs a longer time than the moment of the jet impingement, though the filament growth is decided in this moment. Next, rapid evaporation based on spontaneous nucleation is considered. The filament growth is markedly accelerated. This result is consistent with the experimental fact that the spontaneous nucleation temperature is a necessary condition of small-scale vapor explosions. (J.P.N.)

  10. Numerical analysis of choked converging nozzle flows with surface ...

    Indian Academy of Sciences (India)

    Choked converging nozzle flow and heat transfer characteristics are numerically investigated by means of a recent computational model that integrates the axisymmetric continuity, state, momentum and energy equations. To predict the combined effects of nozzle geometry, friction and heat transfer rates, analyses are ...

  11. Numerical Modeling and Mechanical Analysis of Flexible Risers

    Directory of Open Access Journals (Sweden)

    J. Y. Li

    2015-01-01

    Full Text Available ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact interaction, geometric nonlinearity, and friction has been employed to accurately simulate the structural behavior of riser. The model includes the main features of the riser geometry with very little simplifying assumptions. The model was solved using a fully explicit time-integration scheme implemented in a parallel environment on an eight-processor cluster and 24 G memory computer. There is a very good agreement obtained from numerical and analytical comparisons, which validates the use of numerical model here. The results from the numerical simulation show that the numerical model takes into account various details of the riser. It has been shown that the detailed finite element model can be used to predict riser’s mechanics behavior under various load cases and bound conditions.

  12. About numerical analysis of a plasma physics problem

    International Nuclear Information System (INIS)

    Almeida Cipolatti, R. de

    1985-01-01

    A numerical study on macroscopic equilibrium of a plasma at interior of a tokamak device, considering boundary problems for the case which f(s)=sis presented. The abstract Dirichlet problem enumerating main results which is applied to plasma model is studied. (M.C.K.) [pt

  13. Numerical bifurcation analysis of a class of nonlinear renewal equations

    NARCIS (Netherlands)

    Breda, Dimitri; Diekmann, Odo; Liessi, Davide; Scarabel, Francesca

    2016-01-01

    We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic-and Ricker-type population equations and exhibits

  14. Numerical analysis and control of the recirculation bubble strength ...

    African Journals Online (AJOL)

    Numerical investigation of the turbulent jet flows, both central and annular type of jets has been carried out with the introduction of swirl at the inlet using the modified κ −ε model. It was observed that the recirculation bubble generated by the central jet without swirl diminishes in size due to increase in swirl number, while in ...

  15. On the numerical stability analysis of pipelined Krylov subspace methods

    Czech Academy of Sciences Publication Activity Database

    Carson, E.T.; Rozložník, Miroslav; Strakoš, Z.; Tichý, P.; Tůma, M.

    submitted 2017 (2018) R&D Projects: GA ČR GA13-06684S Grant - others:GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : Krylov subspace methods * the conjugate gradient method * numerical stability * inexact computations * delay of convergence * maximal attainable accuracy * pipelined Krylov subspace methods * exascale computations

  16. Introduction to Numerical Computation - analysis and Matlab illustrations

    DEFF Research Database (Denmark)

    Elden, Lars; Wittmeyer-Koch, Linde; Nielsen, Hans Bruun

    In a modern programming environment like eg MATLAB it is possible by simple commands to perform advanced calculations on a personal computer. In order to use such a powerful tool efiiciently it is necessary to have an overview of available numerical methods and algorithms and to know about...... are illustrated by examples in MATLAB....

  17. Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Emanuele Teodori

    2017-06-01

    Full Text Available This study presents the numerical reproduction of the entire surface temperature field resulting from a water droplet spreading on a heated surface, which is compared with experimental data. High-speed infrared thermography of the back side of the surface and high-speed images of the side view of the impinging droplet were used to infer on the solid surface temperature field and on droplet dynamics. Numerical reproduction of the phenomena was performed using OpenFOAM CFD toolbox. An enhanced volume of fluid (VOF model was further modified for this purpose. The proposed modifications include the coupling of temperature fields between the fluid and the solid regions, to account for transient heat conduction within the solid. The results evidence an extremely good agreement between the temporal evolution of the measured and simulated spreading factors of the considered droplet impacts. The numerical and experimental dimensionless surface temperature profiles within the solid surface and along the droplet radius, were also in good agreement. Most of the differences were within the experimental measurements uncertainty. The numerical results allowed relating the solid surface temperature profiles with the fluid flow. During spreading, liquid recirculation within the rim, leads to the appearance of different regions of heat transfer that can be correlated with the vorticity field within the droplet.

  18. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    Science.gov (United States)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  19. Methodology, Measurement and Analysis of Flow Table Update Characteristics in Hardware OpenFlow Switches

    KAUST Repository

    Kuźniar, Maciej

    2018-02-15

    Software-Defined Networking (SDN) and OpenFlow are actively being standardized and deployed. These deployments rely on switches that come from various vendors and differ in terms of performance and available features. Understanding these differences and performance characteristics is essential for ensuring successful and safe deployments.We propose a systematic methodology for SDN switch performance analysis and devise a series of experiments based on this methodology. The methodology relies on sending a stream of rule updates, while relying on both observing the control plane view as reported by the switch and probing the data plane state to determine switch characteristics by comparing these views. We measure, report and explain the performance characteristics of flow table updates in six hardware OpenFlow switches. Our results describing rule update rates can help SDN designers make their controllers efficient. Further, we also highlight differences between the OpenFlow specification and its implementations, that if ignored, pose a serious threat to network security and correctness.

  20. Performance analysis of numeric solutions applied to biokinetics of radionuclides

    International Nuclear Information System (INIS)

    Mingatos, Danielle dos Santos; Bevilacqua, Joyce da Silva

    2013-01-01

    Biokinetics models for radionuclides applied to dosimetry problems are constantly reviewed by ICRP. The radionuclide trajectory could be represented by compartmental models, assuming constant transfer rates between compartments. A better understanding of physiological or biochemical phenomena, improve the comprehension of radionuclide behavior in the human body and, in general, more complex compartmental models are proposed, increasing the difficulty of obtaining the analytical solution for the system of first order differential equations. Even with constant transfer rates numerical solutions must be carefully implemented because of almost singular characteristic of the matrix of coefficients. In this work we compare numerical methods with different strategies for ICRP-78 models for Thorium-228 and Uranium-234. The impact of uncertainty in the parameters of the equations is also estimated for local and global truncation errors. (author)

  1. 3D numerical simulation and analysis of railgun gouging mechanism

    Directory of Open Access Journals (Sweden)

    Jin-guo Wu

    2016-04-01

    Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  2. Classical and modern numerical analysis theory, methods and practice

    CERN Document Server

    Ackleh, Azmy S; Kearfott, R Baker; Seshaiyer, Padmanabhan

    2009-01-01

    Mathematical Review and Computer Arithmetic Mathematical Review Computer Arithmetic Interval ComputationsNumerical Solution of Nonlinear Equations of One Variable Introduction Bisection Method The Fixed Point Method Newton's Method (Newton-Raphson Method) The Univariate Interval Newton MethodSecant Method and Müller's Method Aitken Acceleration and Steffensen's Method Roots of Polynomials Additional Notes and SummaryNumerical Linear Algebra Basic Results from Linear Algebra Normed Linear Spaces Direct Methods for Solving Linear SystemsIterative Methods for Solving Linear SystemsThe Singular Value DecompositionApproximation TheoryIntroduction Norms, Projections, Inner Product Spaces, and Orthogonalization in Function SpacesPolynomial ApproximationPiecewise Polynomial ApproximationTrigonometric ApproximationRational ApproximationWavelet BasesLeast Squares Approximation on a Finite Point SetEigenvalue-Eigenvector Computation Basic Results from Linear Algebra The Power Method The Inverse Power Method Deflation T...

  3. Detecting failure events in buildings: a numerical and experimental analysis

    OpenAIRE

    Heckman, V. M.; Kohler, M. D.; Heaton, T. H.

    2010-01-01

    A numerical method is used to investigate an approach for detecting the brittle fracture of welds associated with beam -column connections in instrumented buildings in real time through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalog of Green’s functions for an instrumented building to detect failure events in the building during a later seismic event by screening continuous data for the presence of wavef...

  4. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  5. Numerical analysis of biosonar beamforming mechanisms and strategies in bats.

    Science.gov (United States)

    Müller, Rolf

    2010-09-01

    Beamforming is critical to the function of most sonar systems. The conspicuous noseleaf and pinna shapes in bats suggest that beamforming mechanisms based on diffraction of the outgoing and incoming ultrasonic waves play a major role in bat biosonar. Numerical methods can be used to investigate the relationships between baffle geometry, acoustic mechanisms, and resulting beampatterns. Key advantages of numerical approaches are: efficient, high-resolution estimation of beampatterns, spatially dense predictions of near-field amplitudes, and the malleability of the underlying shape representations. A numerical approach that combines near-field predictions based on a finite-element formulation for harmonic solutions to the Helmholtz equation with a free-field projection based on the Kirchhoff integral to obtain estimates of the far-field beampattern is reviewed. This method has been used to predict physical beamforming mechanisms such as frequency-dependent beamforming with half-open resonance cavities in the noseleaf of horseshoe bats and beam narrowing through extension of the pinna aperture with skin folds in false vampire bats. The fine structure of biosonar beampatterns is discussed for the case of the Chinese noctule and methods for assessing the spatial information conveyed by beampatterns are demonstrated for the brown long-eared bat.

  6. PREFACE: Proceedings of the 2008 Numerical Relativity Data Analysis Meeting, Syracuse University, Syracuse, NY, USA, 11-14 August 2008 Proceedings of the 2008 Numerical Relativity Data Analysis Meeting, Syracuse University, Syracuse, NY, USA, 11-14 August 2008

    Science.gov (United States)

    Sutton, Patrick; Shoemaker, Deirdre

    2009-06-01

    many of the highlights of the meeting. These include an article that summarizes the NINJA project, a collaboration between data analysts and numerical relativists that is testing data analysis pipelines on numerical relativity waveforms buried in simulated detector noise. In addition, there are several technical papers concerning the results of team efforts involved in NINJA. Also included is a review of the status of black-hole simulations, updates on black-hole and neutron-star sources of gravitational waves, accuracy tests of gravitational waveforms, binary parameter estimation methods, updates on searches using analytic and phenomenological waveforms, and a road map to the advanced LIGO detectors. The conference organizers would like to acknowledge the financial support of the National Science Foundation under grant number PHY-0838740, and support from Syracuse University. We thank the local organizing committee of Duncan Brown, Penny Davis and Joshua Smith as well as the other members of the scientific organizing committee of Duncan Brown (Syracuse University), Sascha Husa (AEI), Badri Krishnan (AEI) and Harald Pfeiffer (CITA) for putting together an exciting conference. We also thank the editorial staff of the journal Classical and Quantum Gravity, especially Adam Day, Suzanne Prescott, and Joseph Tennant for their assistance, support, and patience in preparing this issue. Finally, we would like to thank the participants of NRDA2008 for making this conference so vital and energizing. The next NRDA meeting will be held at the Albert Einstein Institute in Potsdam, Germany 6-9 July 2009. We look forward to new collaborations, and to the continued blurring of the lines between our communities as we explore the interface of numerical relativity and data analysis. Patrick Sutton, Cardiff University and Deirdre Shoemaker, Georgia Institute of Technology Guest Editors

  7. A SWOT Analysis of the Updated National HIV/AIDS Strategy for the U.S., 2015-2020.

    Science.gov (United States)

    Holtgrave, David R; Greenwald, Robert

    2016-01-01

    In July 2015, President Barack Obama released an updated National HIV/AIDS Strategy (NHAS) for the United States to guide HIV efforts through the year 2020. A federal action plan to accompany the updated NHAS will be released in December 2015. In this editorial, we offer a strengths, weaknesses, opportunities and threats analysis with the aim of increasing discussion of ways to truly fulfill the promise of the updated NHAS and to address barriers that may thwart it from achieving its full potential.

  8. Current problems and subjects on numerical analysis of earthquake geotechnical engineering. For seamless analysis

    International Nuclear Information System (INIS)

    Yoshida, Taiki

    2016-01-01

    There are continuum and discontinuum analyses in the evaluation of seismic stability of surrounding slope in nuclear power plant facility. However, we cannot rationally evaluate such seismic stability due to excessive conservative margin of the results by each analysis. If we can simulate the behavior from small to large deformation by hybridizing them, we can contribute not only to the rationalization of the slope stability evaluation but also the enhancement of evaluation precision in the numerical analysis. In this review, the previous numerical analyses and application cases of them in earthquake geotechnical engineering were classified into three categories, that is, continuum analysis, discontinuum one and the hybridizing process to identify their research themes. The present review has revealed that the research themes are the standardization of condition for conversion, construction of the technique to determine parameters related to conversion and the reasonable physical property set of DEM(Distinct Element Method) after conversion. Our future work will be development of a numerical analysis code hybridizing continuum and discontinuum analyses based on the identified research themes. (author)

  9. Luminescence Sensors Applied to Water Analysis of Organic Pollutants—An Update

    Directory of Open Access Journals (Sweden)

    Graciela M. Escandar

    2011-11-01

    Full Text Available The development of chemical sensors for environmental analysis based on fluorescence, phosphorescence and chemiluminescence signals continues to be a dynamic topic within the sensor field. This review covers the fundamentals of this type of sensors, and an update on recent works devoted to quantifying organic pollutants in environmental waters, focusing on advances since about 2005. Among the wide variety of these contaminants, special attention has been paid polycyclic aromatic hydrocarbons, pesticides, explosives and emerging organic pollutants. The potential of coupling optical sensors with multivariate calibration methods in order to improve the selectivity is also discussed.

  10. Numerical Analysis Of The Resistance To Pullout Test Of Clinched Assemblies Of Thin Metal Sheets

    International Nuclear Information System (INIS)

    Jomaa, Moez; Billardon, Rene

    2007-01-01

    This paper presents the finite element analysis of the resistance of a clinch point to pullout test -that follows the numerical analysis of the forming process of the point-. The simulations have been validated by comparison with experimental evidences. The influence on the numerical predictions of various computation and process parameters have been evaluated

  11. Numerical and experimental analysis of vertical spray control patternators

    Directory of Open Access Journals (Sweden)

    F. Sarghini

    2013-09-01

    Full Text Available The experimental vertical spray control walls have the purpose of picking up the liquid delivered by trained sprayer for providing the liquid distribution profile in height. Theoretically this should correspond to the ideal profile, which consists in a uniform distribution on the vegetation. If the profile is different from the ideal, a parameter setup is required on the sprayer. Nonetheless, some problems are hidden in the aforementioned statements: i no wall measures exactly the distribution profile (i.e. the flow through the sections in the vertical plane, parallel to the direction of advancement of the sprayer. Compared to real profile, sensitive errors are introduced: the evaporation of the drops, the deviation of the air flows caused by the sensors panel themselves; by the possibility that the drops bounce on the wall panels, also due to the current of air that can push the liquid veil laterally or upwards, Moreover, everything varies depending on the geometry of the sensors, air velocity, air humidity; ii no one knows what exactly is the optimal distribution profile. It is often considered as optimal a profile that reflects the amount of leaf area subtended by each section absorber: however, it is evident that the path of the droplets changes according to the sprayer typology (eg. radial-flow or horizontal flows. In this work a combined numerical-experimental approach is adopted, in order to assess some of the aforementioned issues: numerical data obtained by using computational fluid dynamics models are compared and validated with experimental data, in order to assess the reliability of numerical simulations in configurations which are difficult to analyze using an experimental setup.

  12. The set of prime numbers: Multiscale analysis and numeric accelerators

    International Nuclear Information System (INIS)

    Iovane, Gerardo

    2009-01-01

    In this work, we show that the prime numbers follow a multiscale distribution. Indeed they can be classified thanks to tree structures, which are expressed in terms of two maximal subsets of N and using multilayer selection rules, acting on these sets of prime candidates. Consequently, the prime numbers follow a specific deterministic rules. Indeed, a numeric accelerator for generating primes can be realized in terms of the above mentioned specific rules. From the comparison with the Fibonacci numbers a beautiful harmony comes in terms of the Golden Mean which is relevant to high energy physics and E-Infinity theory too.

  13. Floor Heating with Displacement Ventilation: An Experimental and Numerical Analysis

    DEFF Research Database (Denmark)

    Causone, Francesco; Olesen, Bjarne W.; Corgnati, S.P.

    2010-01-01

    The effect of floor heating combined with displacement ventilation (DV) on thermal indoor environments and indoor air quality (IAQ) was studied by means of CFD. The numerical model was validated with experimental data. A typical office room was simulated, and one of the occupants was considered...... to simulate different kinds of contaminant sources, under the same boundary conditions. It was found that DV does not guarantee a better IAQ than full mixing when contaminant sources are not linked to heat sources, even when floor heating is used. Contaminants produced by powerful heat sources require high...

  14. Analysis and modeling of subgrid scalar mixing using numerical data

    Science.gov (United States)

    Girimaji, Sharath S.; Zhou, YE

    1995-01-01

    Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is used to study, analyze and, subsequently, model the role of small (subgrid) scales in the mixing process. In particular, we attempt to model the dissipation of the large scale (supergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts: (1) the effect due to the interaction among the subgrid scales; and (2) the effect due to interaction between the supergrid and the subgrid scales. Model comparisons with DNS data show good agreement. This model is expected to be useful in the large eddy simulations of scalar mixing and reaction.

  15. Numerical analysis of sawtooth oscillation during electron cyclotron heating phases

    International Nuclear Information System (INIS)

    Wang Shiqing; Jin Yaqiu

    2001-01-01

    By employing two models, namely the reconnection model and the turbulence model, the authors present a transport code simulation of sawtooth discharges in T-10 Tokamak in the electron cyclotron heating phases, and the trigger conditions are also coupled into the transport code. In one discharge, ECRH was located nearly on-axis, and in another ECRH was located well off-axis. The comparison of numerical results and experiment data show that good prediction was obtained with the turbulence model. In contrast, due to some fundamental shortcoming of the reconnection model, no satisfactory fit could be obtained using the latter

  16. Numerical analysis of data in dynamic function studies

    International Nuclear Information System (INIS)

    Riihimaeki, E.

    1975-01-01

    Relations between tracer theories, models for organ function and the numerical solution of parameters from tracer experiments are reviewed. A unified presentation is given in terms of systems theory. Dynamic tracer studies should give the flow and volume of the tracer and, possibly, indications of the internal structure of the organ studied. Proper program writing will facilitate the exchange of the programs between the users and thereby avoid duplication of effort. An important attribute in this respect is machine independence of the programs which is achieved by the use of a high-level language. (author)

  17. Tea consumption may decrease the risk of osteoporosis: an updated meta-analysis of observational studies.

    Science.gov (United States)

    Guo, Ming; Qu, Hua; Xu, Lin; Shi, Da-Zhuo

    2017-06-01

    Several epidemiological investigations have evaluated the correlation between tea consumption and risk of osteoporosis, but the results are inconsistent. Therefore, we conducted an updated meta-analysis of observational studies to assess this association. We searched for all relevant studies including cohort, cross-sectional, and case-control studies published from database inception to July 15, 2016, using MEDLINE EMBASE, and Cochrane Library. Polled odds ratios (ORs) were calculated using the random-effect model. Fourteen articles (16 studies) that examined 138523 patients were included in this meta-analysis. Seven studies concerning bone mineral density (BMD) showed an increase in BMD with tea consumption, including 4 cross-sectional studies (OR, 0.04, 95% confidence interval [CI], 0.01-0.08) and 3 cohort studies (OR, 0.01; 95% CI, 0.01-0.01). The remaining 9 studies concerning fracture, including 6 case-control studies and 3 cohort studies, showed no association between tea consumption and osteoporotic fracture (OR, 0.86; 95% CI, 0.74-1.01). This updated meta-analysis demonstrates that tea consumption could increase BMD, but the association with osteoporotic fracture requires further investigation. Together, the results highlight the need for future, high-quality-designed clinical trials on tea consumption and osteoporosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Standard Model updates and new physics analysis with the Unitarity Triangle fit

    International Nuclear Information System (INIS)

    Bevan, A.; Bona, M.; Ciuchini, M.; Derkach, D.; Franco, E.; Silvestrini, L.; Lubicz, V.; Tarantino, C.; Martinelli, G.; Parodi, F.; Schiavi, C.; Pierini, M.; Sordini, V.; Stocchi, A.; Vagnoni, V.

    2013-01-01

    We present the summer 2012 update of the Unitarity Triangle (UT) analysis performed by the UTfit Collaboration within the Standard Model (SM) and beyond. The increased accuracy on several of the fundamental constraints is now enhancing some of the tensions amongst and within the constraint themselves. In particular, the long standing tension between exclusive and inclusive determinations of the V ub and V cb CKM matrix elements is now playing a major role. Then we present the generalisation the UT analysis to investigate new physics (NP) effects, updating the constraints on NP contributions to ΔF=2 processes. In the NP analysis, both CKM and NP parameters are fitted simultaneously to obtain the possible NP effects in any specific sector. Finally, based on the NP constraints, we derive upper bounds on the coefficients of the most general ΔF=2 effective Hamiltonian. These upper bounds can be translated into lower bounds on the scale of NP that contributes to these low-energy effective interactions

  19. 3rd International Conference on Numerical Analysis and Optimization : Theory, Methods, Applications and Technology Transfer

    CERN Document Server

    Grandinetti, Lucio; Purnama, Anton

    2015-01-01

    Presenting the latest findings in the field of numerical analysis and optimization, this volume balances pure research with practical applications of the subject. Accompanied by detailed tables, figures, and examinations of useful software tools, this volume will equip the reader to perform detailed and layered analysis of complex datasets. Many real-world complex problems can be formulated as optimization tasks. Such problems can be characterized as large scale, unconstrained, constrained, non-convex, non-differentiable, and discontinuous, and therefore require adequate computational methods, algorithms, and software tools. These same tools are often employed by researchers working in current IT hot topics such as big data, optimization and other complex numerical algorithms on the cloud, devising special techniques for supercomputing systems. The list of topics covered include, but are not limited to: numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, opt...

  20. Numerical Analysis of Ginzburg-Landau Models for Superconductivity.

    Science.gov (United States)

    Coskun, Erhan

    Thin film conventional, as well as High T _{c} superconductors of various geometric shapes placed under both uniform and variable strength magnetic field are studied using the universially accepted macroscopic Ginzburg-Landau model. A series of new theoretical results concerning the properties of solution is presented using the semi -discrete time-dependent Ginzburg-Landau equations, staggered grid setup and natural boundary conditions. Efficient serial algorithms including a novel adaptive algorithm is developed and successfully implemented for solving the governing highly nonlinear parabolic system of equations. Refinement technique used in the adaptive algorithm is based on modified forward Euler method which was also developed by us to ease the restriction on time step size for stability considerations. Stability and convergence properties of forward and modified forward Euler schemes are studied. Numerical simulations of various recent physical experiments of technological importance such as vortes motion and pinning are performed. The numerical code for solving time-dependent Ginzburg-Landau equations is parallelized using BlockComm -Chameleon and PCN. The parallel code was run on the distributed memory multiprocessors intel iPSC/860, IBM-SP1 and cluster of Sun Sparc workstations, all located at Mathematics and Computer Science Division, Argonne National Laboratory.

  1. Experimental and numerical analysis of pollutant dispersion from a chimney

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.M.; Mhiri, H. [Ecole Nationale d' Ingenieurs de Monastir, Tunisie (Tunisia). Laboratorie de Mecanique des Fluides et Thermique; Le Palec, G.; Bournot, P. [UNIMECA, Marseille (France). Institut de Mecanique de Marseille, Equipe IMFT

    2005-03-01

    Particle image velocimetry (PIV) is used to extract and characterize the underlying organized motions, i.e. coherent structures, within the near-wake region of a turbulent round jet discharged perpendicularly from a chimney into a crossflow. This flow has been found to be quite complex owing to its three-dimensional nature and the interactions between several flow regions. Analyses of the underlying coherent structures, which play an important role in the physics of the flow, are still rare and mostly based on flow-visualization techniques. Using a PIV technique, we examined the wake regions of the chimney and plume at levels near the top of the chimney. The complex geometry of these structures in the wake of the plume as well as their interaction with the plume as it bends over after emission is discussed. In this paper we describe the Kelvin-Helmholtz vortex structures, the downwash phenomena and the effect of the height of the chimney. Extensive wind tunnel experimental results are presented and compared with numerical simulation. A good level of agreement was found between the results of flow visualization and numerical simulation. (author)

  2. Numerical analysis of the spacer grids' compression strength

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N., E-mail: carlosschettino@inb.gov.br, E-mail: jpg@metal.eeimvr.uff.br [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Programa de Engenharia Metalurgica

    2013-07-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  3. Experimental and numerical analysis of the drainage of aluminium foams

    International Nuclear Information System (INIS)

    Brunke, O; Hamann, A; Cox, S J; Odenbach, S

    2005-01-01

    Drainage is one of the driving forces for the temporal instability of molten metal foams. For usual aqueous foams this phenomenon is well examined and understood on both the experimental and the theoretical side. The situation is different for metallic foams. Due to their opaque nature, the observation of drainage is only possible by either measuring the density distribution of solidified samples ex situ or by x-ray or neutron radioscopy. Up to now there exists just one theoretical study describing the drainage behaviour of metallic foams incorporating the drainage equation, the temperature dependence of the viscosity and thermal transport. This paper will present results on the drainage behaviour of aluminium foams grown by a powder-metallurgical production route. For this purpose an experiment which allows the observation of drainage in cylindrical metal foam columns has been developed. Experimental density profiles after different drainage times are measured ex situ and compared to numerical results of the standard drainage equation for aqueous foams. This first comparison between the density redistribution of metallic aluminium foams and numerical solutions shows that the standard drainage equation can be used to explain the drainage behaviour of metallic foams

  4. Numerical analysis of the spacer grids' compression strength

    International Nuclear Information System (INIS)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N.

    2013-01-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  5. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S. [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed.

  6. Numerical Analysis on Behavior of Droplet in Venturi Scrubber

    International Nuclear Information System (INIS)

    Choi, W. Y.; Lee, D. Y.; Bang, Y. S.

    2015-01-01

    At throat, the velocity of the gas would be at maximum and the pressure would be the lowest. Due to pressure difference between inside and outside of the throat, the liquid submerging the venture scrubber would be sucked and atomized. As the gas flow through the diffuser, the pressure would be recovered and the dust in the gas mixture would be captured by the atomized liquid droplets. In this process of dust removal in venture scrubber, atomization (i.e. breakup of liquid droplet in the venturi scrubber) is crucial for filtering efficiency. In order to maintain the high efficiency, the injected liquid should be atomized into fine droplets and well spread. Because of its importance, the experimental study has been conducted by many researchers. However, numerical study has not been conducted extensively. As a preliminary study for estimating filtration efficiency of venturi scrubber by numerical tools, the behavior of droplet inside the venturi scrubber is simulated. Due to the pressure difference inside and outside of the throat, the liquid would be sucked and injected through the holes. The behavior that the liquid is injected through the holes, accelerated by the gas flow and atomized into small sized particles has been observed

  7. Numerical analysis of residual stresses reconstruction for axisymmetric glass components

    Science.gov (United States)

    Tao, Bo; Xu, Shuang; Yao, Honghui

    2018-01-01

    A non-destructive measurement method for 3D stress state in a glass cylinder using photoelasticity has been analyzed by simulation in this research. Based on simulated stresses in a glass cylinder, intensity of the cylinder in a circular polariscope can be calculated by Jones calculus. Therefore, the isoclinic angle and optical retardation can be obtained by six steps phase shifting technique. Through the isoclinic angle and optical retardation, the magnitude and distribution of residual stresses inside the glass cylinder in cylindrical coordinate system can be reconstructed. Comparing the reconstructed stresses with numerical simulated stresses, the results verify this non-destructive method can be used to reconstruct the 3D stresses. However, there are some mismatches in axial stress, radial stress and circumferential stress.

  8. Numerical Analysis for Dynamic Instability of Electrodynamic Maglev Systems

    Directory of Open Access Journals (Sweden)

    Y. Cai

    1995-01-01

    Full Text Available Suspension instabilities in an electrodynamic maglev system with three- and five-degrees-of-freedom DOF vehicles traveling on a double L-shaped set of guideway conductors were investigated with various experimentally measured magnetic force data incorporated into theoretical models. Divergence and flutter were obtained from both analytical and numerical solutions for coupled vibration of the three-DOF maglev vehicle model. Instabilities of five direction motion (heave, slip, roll, pitch, and yaw were observed for the five-DOF vehicle model. The results demonstrate that system parameters such as system damping, vehicle geometry, and coupling effects among five different motions play very important roles in the occurrence of dynamic instabilities of maglev vehicles.

  9. Mathematical analysis and numerical methods for science and technology

    CERN Document Server

    Dautray, Robert

    These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which ...

  10. A numerical analysis of the British Experimental Rotor Program blade

    Science.gov (United States)

    Duque, Earl P. N.

    1989-01-01

    Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.

  11. Numerical analysis of quasiperiodic perturbations for the Alfven wave

    International Nuclear Information System (INIS)

    Yamakoshi, Y.; Muto, K.; Yoshida, Z.

    1994-01-01

    The Alfven wave may have a localized eigenfunction when it propagates on a chaotic magnetic field. The Arnold-Beltrami-Childress (ABC) flow is a paradigm of chaotic stream lines and is a simple exact solution to the three-dimensional force-free plasma equilibrium equations. The three-dimensional structure of the magnetic field is represented by sinusoidal quasiperiodic modulation. The short wavelength Alfven wave equation for the ABC-flow magnetic field has a quasiperiodic potential term, which induces interference among ''Bragg-reflected'' waves with irregular phases. Then the eigenfunction decays at long distance and a point spectrum occurs. Two different types of short wavelength modes have numerically analyzed to demonstrate the existence of localized Alfven wave eigenmodes

  12. Numerical analysis of whole-body cryotherapy chamber design improvement

    Science.gov (United States)

    Yerezhep, D.; Tukmakova, A. S.; Fomin, V. E.; Masalimov, A.; Asach, A. V.; Novotelnova, A. V.; Baranov, A. Yu

    2018-05-01

    Whole body cryotherapy is a state-of-the-art method that uses cold for treatment and prevention of diseases. The process implies the impact of cryogenic gas on a human body that implements in a special cryochamber. The temperature field in the chamber is of great importance since local integument over-cooling may occur. Numerical simulation of WBC has been carried out. Chamber design modification has been proposed in order to increase the uniformity of the internal temperature field. The results have been compared with the ones obtained for a standard chamber design. The value of temperature gradient formed in the chamber containing curved wall with certain height has been decreased almost twice in comparison with the results obtained for the standard design. The modification proposed may increase both safety and comfort of cryotherapy.

  13. Numerical analysis of Sakiadis flow problem considering Maxwell nanofluid

    Directory of Open Access Journals (Sweden)

    Mustafa Meraj

    2017-01-01

    Full Text Available This article investigates the flow of Maxwell nanofluid over a moving plate in a calm fluid. Novel aspects of Brownian motion and thermophoresis are taken into consideration. Revised model for passive control of nanoparticle volume fraction at the plate is used in this study. The formulated differential system is solved numerically by employing shooting approach together with fourth-fifth-order-Runge-Kutta integration procedure and Newton’s method. The solutions are greatly influenced with the variation of embedded parameters which include the local Deborah number, the Brownian motion parameter, the thermophoresis parameter, the Prandtl number, and the Schmidt number. We found that the variation in velocity distribution with an increase in local Deborah number is non-monotonic. Moreover, the reduced Nusselt number has a linear and direct relationship with the local Deborah number.

  14. Numerical analysis of wet separation of particles by density differences

    Science.gov (United States)

    Markauskas, D.; Kruggel-Emden, H.

    2017-07-01

    Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.

  15. Keep me posted! Human and machine learning analysis of Facebook updates

    Directory of Open Access Journals (Sweden)

    Franco Delogu

    2015-08-01

    Full Text Available The key element of Facebook social network platform is the status updates, in which the user can upload text or other media such as pictures and videos. In this study, we manually classified more than 3500 Facebook status updates (FSUs by the subject, the emotional activation, the medium used, the originality and the self-centeredness. We then cross-tabulated that information with demographic factors such as gender and occupation. Thirty students participated in the categorization task, each annotating more than 100 FSUs of their Facebook friends’ FSUs. Statistical and supervised machine learning analysis was then applied to the categorized features. The text itself was not analyzed further after the annotation for the purpose of preserving the privacy and anonymity of the FSU authors. Results show that FSUs vary in subject, emotional connotation and structure as a function of demographic factors like gender and occupation of the poster. Statistical analysis and supervised machine learning are able to predict the demographic and emotional expressions based on the other features annotated by the participants.

  16. Comparison of different incremental analysis update schemes in a realistic assimilation system with Ensemble Kalman Filter

    Science.gov (United States)

    Yan, Y.; Barth, A.; Beckers, J. M.; Brankart, J. M.; Brasseur, P.; Candille, G.

    2017-07-01

    In this paper, three incremental analysis update schemes (IAU 0, IAU 50 and IAU 100) are compared in the same assimilation experiments with a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. The difference between the three IAU schemes lies on the position of the increment update window. The relevance of each IAU scheme is evaluated through analyses on both thermohaline and dynamical variables. The validation of the assimilation results is performed according to both deterministic and probabilistic metrics against different sources of observations. For deterministic validation, the ensemble mean and the ensemble spread are compared to the observations. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centred random variable (RCRV) score. The obtained results show that 1) the IAU 50 scheme has the same performance as the IAU 100 scheme 2) the IAU 50/100 schemes outperform the IAU 0 scheme in error covariance propagation for thermohaline variables in relatively stable region, while the IAU 0 scheme outperforms the IAU 50/100 schemes in dynamical variables estimation in dynamically active region 3) in case with sufficient number of observations and good error specification, the impact of IAU schemes is negligible. The differences between the IAU 0 scheme and the IAU 50/100 schemes are mainly due to different model integration time and different instability (density inversion, large vertical velocity, etc.) induced by the increment update. The longer model integration time with the IAU 50/100 schemes, especially the free model integration, on one hand, allows for better re-establishment of the equilibrium model state, on the other hand, smooths the strong gradients in dynamically active region.

  17. Analysis of stresses on buried pipeline subjected to landslide based on numerical simulation and regression analysis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bing; Jing, Hongyuan; Liu, Jianping; Wu, Zhangzhong [PetroChina Pipeline RandD Center, Langfang, Hebei (China); Hao, Jianbin [School of Petroleum Engineering, Southwest Petroleum University, Chengdu, Sichuan (China)

    2010-07-01

    Landslides have a serious impact on the integrity of oil and gas pipelines in the tough terrain of Western China. This paper introduces a solving method of axial stress, which uses numerical simulation and regression analysis for the pipelines subjected to landslides. Numerical simulation is performed to analyze the change regularity of pipe stresses for the five vulnerability assessment indexes, which are: the distance between pipeline and landslide tail; the thickness of landslide; the inclination angle of landslide; the pipeline length passing through landslide; and the buried depth of pipeline. A pipeline passing through a certain landslide in southwest China was selected as an example to verify the feasibility and effectiveness of this method. This method has practical applicability, but it would need large numbers of examples to better verify its reliability and should be modified accordingly. Also, it only considers the case where the direction of the pipeline is perpendicular to the primary slip direction of the landslide.

  18. Numerical Analysis of Thermal Comfort at Urban Environment

    Science.gov (United States)

    Papakonstantinou, K.; Belias, C.

    2009-08-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (athletic park), named "Serafeio Athletic and Cultural Centre," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  19. Numerical Analysis of Thermal Comfort at Open Air Spaces

    Science.gov (United States)

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  20. Interaction of debris with a solid obstacle: Numerical analysis

    International Nuclear Information System (INIS)

    Kosinska, Anna

    2010-01-01

    The subject of this research is the propagation of a cloud of solid particles formed from an explosion-damaged construction. The main objective is the interaction of the cloud (debris) with a solid beam located at some distance from the explosion. The mathematical model involves the flow of the gas using standard conservation equations, and this part of the model is solved numerically. The solid particles are treated as a system of solid points (so-called Lagrangian approach), whose motion is the result of the flowing gas as well as collisions with obstacles. These two issues are described respectively by Newton's second law and the hard-sphere model. The model is used to simulate various cases where the influence of different parameters like the value of the pressure of the explosion, the particle size, the number of particles and the obstacle location are investigated. The results are presented as snapshots of particle location, and also as the particle total momentum during collision with the beam.

  1. Interaction of debris with a solid obstacle: numerical analysis.

    Science.gov (United States)

    Kosinska, Anna

    2010-05-15

    The subject of this research is the propagation of a cloud of solid particles formed from an explosion-damaged construction. The main objective is the interaction of the cloud (debris) with a solid beam located at some distance from the explosion. The mathematical model involves the flow of the gas using standard conservation equations, and this part of the model is solved numerically. The solid particles are treated as a system of solid points (so-called Lagrangian approach), whose motion is the result of the flowing gas as well as collisions with obstacles. These two issues are described respectively by Newton's second law and the hard-sphere model. The model is used to simulate various cases where the influence of different parameters like the value of the pressure of the explosion, the particle size, the number of particles and the obstacle location are investigated. The results are presented as snapshots of particle location, and also as the particle total momentum during collision with the beam. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  2. Study on the numerical analysis of nuclear reactor kinetics equations

    International Nuclear Information System (INIS)

    Yang, J.C.

    1980-01-01

    A two-step alternating direction explict method is proposed for the solution of the space-and time-dependent diffusion theory reactor kinetics equations in two space dimensions as a special case of the general class of alternating direction implicit method and the truncation error of this method is estimated. To test the validity of this method it is applied to the Pressurized Water Reactor and CANDU-PHW reactor which have been operating and underconstructing in Korea. The time dependent neutron flux of the PWR reactor during control rod insertion and time dependent neutronic power of CANDU-PHW reactor in the case of postulated loss of coolant accident are obtained from the numerical calculation results. The results of the PWR reactor problem are shown the close agreement between implicit-difference method used in the TWIGL program and this method, and the results of the CANDU-PHW reactor are compared with the results of improved quasistic method and modal method. (Author)

  3. NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A PRISMATIC ENCLOSURE

    Directory of Open Access Journals (Sweden)

    Walid AICH

    2011-01-01

    Full Text Available Natural convection heat transfer and fluid flow have been examined numerically using the control-volume finite-element method in an isosceles prismatic cavity, submitted to a uniform heat flux from below when inclined sides are maintained isothermal and vertical walls are assumed to be perfect thermal insulators, without symmetry assumptions for the flow structure. The aim of the study is to examine a pitchfork bifurcation occurrence. Governing parameters on heat transfer and flow fields are the Rayleigh number and the aspect ratio of the enclosure. It has been found that the heated wall is not isothermal and the flow structure is sensitive to the aspect ratio. It is also found that heat transfer increases with increasing of Rayleigh number and decreases with increasing aspect ratio. The effects of aspect ratio become significant especially for higher values of Rayleigh number. Eventually the obtained results show that a pitchfork bifurcation occurs at a critical Rayleigh number, above which the symmetric solutions becomes unstable and asymmetric solutions are instead obtained.

  4. Numerical analysis on centrifugal compressor with membrane type dryer

    Science.gov (United States)

    Razali, M. A.; Zulkafli, M. F.; Mat Isa, N.; Subari, Z.

    2017-09-01

    Moisture content is a common phenomenon in industrial processes especially in oil and gas industries. This contaminant has a lot of disadvantages which can lead to mechanical failure DEC (Deposition, Erosion & Corrosion) problems. To overcome DEC problem, this study proposed to design a centrifugal compressor with a membrane type dryer to reduce moisture content of a gas. The effectiveness of such design has been analyzed in this study using Computational Fluid Dynamics (CFD) approach. Numerical scheme based on multiphase flow technique is used in ANSYS Fluent software to evaluate the moisture content of the gas. Through this technique, two kind of centrifugal compressor, with and without membrane type dryer has been tested. The results show that the effects of pressure on dew point temperature of the gas change the composition of its moisture content, where high value lead more condensation to occur. However, with the injection of cool dry gas through membrane type dryer in the centrifugal compressor, the pressure and temperature of moisture content as well as mass fraction of H2O in centrifugal compressor show significant reduction.

  5. A numerical analysis of crack growth in brittle microcracking composites

    International Nuclear Information System (INIS)

    Biner, S.B.

    1993-01-01

    A set of numerical analyses of crack growth was performed to elucidate the mechanism of microcracking on the observed fracture behavior of brittle solids and composites. The random nucleation, orientation and size effects of discrete microcracks and resulting interactions are fully accounted for in a hybrid finite element model. The results indicate that the energy expenditure due the microcrack nucleation seems not to contribute significantly to the resistance to crack growth. The main controlling parameter appears to be elastic interaction of the microcracks with the main crack in the absence of a reinforcing phase; therefore, the microcrack density plays an important role. In the case of the composites, the interaction of the main crack with the stress fields of the reinforcing phase, rather than interaction of microcracks, is the controlling parameter for the resistance to the crack growth even in the presence of a large population of microcracks. It will be also shown that the crack branching and crack kinking can readily develop as a result of microcracking

  6. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  7. Numerical analysis of hypersonic turbulent film cooling flows

    Science.gov (United States)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  8. Numerical analysis of the bubble detachment diameter in nucleate boiling

    International Nuclear Information System (INIS)

    Lamas, M I; Sáiz Jabardo, J M; Arce, A; Fariñas, P

    2012-01-01

    The present paper presents a tri-dimensional CFD (Computational Fluid Dynamics) model to investigate the fluid flow around bubbles attached to heated walls. Transient solutions of the governing field equations in a domain containing the bubbles and the surrounding liquid have been obtained. The nucleation, growing and detachment processes have been analyzed. Concerning the software, the open source OpenFOAM has been used. Special attention has been given to the bubble detachment diameter. Two mechanisms have been considered as physically related to the detachment: surface tension and buoyancy. As expected, it has been verified that the bubble detachment diameter depends on the contact angle, operating pressure and properties of the fluid. Several fluids have been considered (water, R134a, ammonia and R123), as well as several operating pressures (between 0.1 and 10 bar) and contact angles (between 10 and 80°). It has been concluded that the detachment diameter depends strongly on the contact angle and fluid properties and slightly on the pressure. A correlation for the bubble detachment diameter has been developed based on the obtained numerical results. Data from this expression compare reasonably well with those from other correlations from the literature.

  9. ChAMP: updated methylation analysis pipeline for Illumina BeadChips.

    Science.gov (United States)

    Tian, Yuan; Morris, Tiffany J; Webster, Amy P; Yang, Zhen; Beck, Stephan; Feber, Andrew; Teschendorff, Andrew E

    2017-12-15

    The Illumina Infinium HumanMethylationEPIC BeadChip is the new platform for high-throughput DNA methylation analysis, effectively doubling the coverage compared to the older 450 K array. Here we present a significantly updated and improved version of the Bioconductor package ChAMP, which can be used to analyze EPIC and 450k data. Many enhanced functionalities have been added, including correction for cell-type heterogeneity, network analysis and a series of interactive graphical user interfaces. ChAMP is a BioC package available from https://bioconductor.org/packages/release/bioc/html/ChAMP.html. a.teschendorff@ucl.ac.uk or s.beck@ucl.ac.uk or a.feber@ucl.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  10. Updating an empirical analysis on the proton’s central opacity and asymptotia

    International Nuclear Information System (INIS)

    Fagundes, D A; Menon, M J; Silva, P V R G

    2016-01-01

    We present an updated empirical analysis on the ratio of the elastic (integrated) to the total cross section in the c.m. energy interval from 5 GeV to 8 TeV. As in a previous work, we use a suitable analytical parametrization for that ratio (depending on only four free fit parameters) and investigate three asymptotic scenarios: either the black disk limit or scenarios above or below that limit. The dataset includes now the datum at 7 TeV, recently reported by the ATLAS Collaboration. Our analysis favors, once more, a scenario below the black disk, providing an asymptotic ratio consistent with the rational value 1/3, namely a gray disk limit. Upper bounds for the ratio of the diffractive (dissociative) to the inelastic cross section are also presented. (paper)

  11. Numerical model for the analysis of unbounded prestressed structures using the hybrid type finite element method

    International Nuclear Information System (INIS)

    Barbieri, R.A.; Gastal, F.P.S.L.; Filho, A.C.

    2005-01-01

    Unbounded prestressed concrete has a growing importance all over the world and may be an useful technique for the structures involved in the construction of nuclear facilities. The absence of bonding means no strain compatibility so that equations developed for reinforced concrete are no longer valid. Practical estimates about the ultimate stress in the unbounded tendons may be obtained with empirical or numerical methods only. In order to contribute to the understanding on the behaviour of unbounded prestressed concrete members, a numerical model has been developed using a hybrid type finite element formulation for planar frame structures. Instead of short elements, as in the conventional finite element formulation, long elements may be used, improving computational efficiency. A further advantage is that the curvature variation within the element is obtained with higher accuracy if compared to the traditional formulation. This feature is important for unbounded tendons since its stresses depend on the whole member deformation. Second order effects in the planar frame are considered with either Updated or Partially Updated Lagrangian approaches. Instantaneous and time dependent behaviour as well as cyclic loads are considered too. Comparison with experimental results for prestressed concrete beams shows the adequacy of the proposed model. (authors)

  12. A general numerical analysis program for the superconducting quasiparticle mixer

    Science.gov (United States)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1986-01-01

    A user-oriented computer program SISCAP (SIS Computer Analysis Program) for analyzing SIS mixers is described. The program allows arbitrary impedance terminations to be specified at all LO harmonics and sideband frequencies. It is therefore able to treat a much more general class of SIS mixers than the widely used three-frequency analysis, for which the harmonics are assumed to be short-circuited. An additional program, GETCHI, provides the necessary input data to program SISCAP. The SISCAP program performs a nonlinear analysis to determine the SIS junction voltage waveform produced by the local oscillator. The quantum theory of mixing is used in its most general form, treating the large signal properties of the mixer in the time domain. A small signal linear analysis is then used to find the conversion loss and port impedances. The noise analysis includes thermal noise from the termination resistances and shot noise from the periodic LO current. Quantum noise is not considered. Many aspects of the program have been adequately verified and found accurate.

  13. Numeric Analysis for Relationship-Aware Scalable Streaming Scheme

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2014-01-01

    Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.

  14. Numerical analysis of a reciprocating active magnetic regenerator

    International Nuclear Information System (INIS)

    Lionte, Sergiu; Vasile, Carmen; Siroux, Monica

    2015-01-01

    A time-dependent, two-dimensional mathematical model of a configuration system for magnetic refrigeration has been developed, based on a reciprocating active magnetic regenerator operating at room temperature. The model's geometry is made of parallel plates of magnetocaloric material separated by microchannels. Through the microchannels, the flow of a heat transfer fluid has also been simulated. Water has been used as heat transfer fluid and as magnetocaloric material we have used the benchmark material gadolinium. The heat transfer inside the regenerator and the fluid flow are modelled separately and the magnetocaloric effect is taken into account by the inclusion of a variable source term in the energy equation. The model simulates the steps of the active magnetic regenerative refrigeration cycle and evaluates the performance in terms of cooling load, COP, temperature span and pressure drop for the parallel-plate configuration. The model has been validated by comparing the numerical results with the results obtained from an experimental device made by a partner. This parametric study allows us to identify the most important characteristics that have a significant influence on the thermal behaviour of the active magnetic regenerator. Several simulation results are discussed and some optimal solutions are presented. - Highlights: • We have developed a 2D model of an active magnetic regenerator. • The MCE is included as a source term with data from experimental measurements. • A validation of the model with experimental data is included. • We analysed the temperature span, the cooling power, the COP and the pressure drop of the system

  15. Protocol: An updated integrated methodology for analysis of metabolites and enzyme activities of ethylene biosynthesis

    Directory of Open Access Journals (Sweden)

    Geeraerd Annemie H

    2011-06-01

    Full Text Available Abstract Background The foundations for ethylene research were laid many years ago by researchers such as Lizada, Yang and Hoffman. Nowadays, most of the methods developed by them are still being used. Technological developments since then have led to small but significant improvements, contributing to a more efficient workflow. Despite this, many of these improvements have never been properly documented. Results This article provides an updated, integrated set of protocols suitable for the assembly of a complete picture of ethylene biosynthesis, including the measurement of ethylene itself. The original protocols for the metabolites 1-aminocyclopropane-1-carboxylic acid and 1-(malonylaminocyclopropane-1-carboxylic acid have been updated and downscaled, while protocols to determine in vitro activities of the key enzymes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase have been optimised for efficiency, repeatability and accuracy. All the protocols described were optimised for apple fruit, but have been proven to be suitable for the analysis of tomato fruit as well. Conclusions This work collates an integrated set of detailed protocols for the measurement of components of the ethylene biosynthetic pathway, starting from well-established methods. These protocols have been optimised for smaller sample volumes, increased efficiency, repeatability and accuracy. The detailed protocol allows other scientists to rapidly implement these methods in their own laboratories in a consistent and efficient way.

  16. A Numerical Procedure for Analysis of W/R Contact Using Explicit Finite Element Methods

    NARCIS (Netherlands)

    Ma, Y.; Markine, V.L.

    2015-01-01

    Since no effective experimental approaches have been proposed to assess wheel and rail (W/R) contact performance till now, numerical computational analysis is known as an alternative to approximately simulate the W/R interaction. In this paper, one numerical procedure is proposed on the basis of

  17. Numerical Fracture Analysis of Cryogenically Treated Alloy Steel Weldments

    International Nuclear Information System (INIS)

    Rasool Mohideen, S; Thamizhmanii, S; Muhammed Abdul Fatah, M.M; Saidin, W. Najmuddin W.

    2016-01-01

    Cryogenic treatment is being used commercially in the industries in the last two decades for improving the life of many engineering component such as bearings and cutting tools. Though their influence in improving the wear resistance of tool materials is well established, the effect of treatment on weldments is not much investigated. In the present work, a two dimensional finite element analysis was carried out on the compact tension specimen model for simulating the treatment process and to study the fracture behaviour. The weldments were modelled by thermo- mechanical coupled field analysis for simulating he temperature distribution in the model during weld pool cooling and introducing thermal stresses due to uneven contraction and cooling. The model was subjected to cryogenic treatment by adopting radiation effect. The fracture analysis was carried out using Rice's J- Integral approach. The analysis produced a similar outcome of experimental results i.e. Increase in the fracture toughness of the specimen after cryogenic treatment in the heat affected zone of weldment. (paper)

  18. Numerical analysis of electromigration in thin film VLSI interconnections

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Schoenmaker, W.; Angelescu, S.; Vissarion, R.; Dima, G.; Wallinga, Hans; Profirescu, M.D.

    1995-01-01

    Due to the continuing downscaling of the dimensions in VLSI circuits, electromigration is becoming a serious reliability hazard. A software tool based on finite element analysis has been developed to solve the two partial differential equations of the two particle vacancy/imperfection model.

  19. PWR control rod ejection analysis with the numerical nuclear reactor

    International Nuclear Information System (INIS)

    Hursin, M.; Kochunas, B.; Downar, T. J.

    2008-01-01

    During the past several years, a comprehensive high fidelity reactor LWR core modeling capability has been developed and is referred to as the Numerical Nuclear Reactor (NNR). The NNR achieves high fidelity by integrating whole core neutron transport solution and ultra fine mesh computational fluid dynamics/heat transfer solution. The work described in this paper is a preliminary demonstration of the ability of NNR to provide a detailed intra pin power distribution during a control rod ejection accident. The motivation of the work is to quantify the impact on the fuel performance calculation of a more physically accurate representation of the power distribution within the fuel rod during the transient. The paper addresses first, the validation of the transient capability of the neutronic module of the NNR code system, DeCART. For this purpose, a 'mini core' problem consisting of a 3x3 array of typical PWR fuel assemblies is considered. The initial state of the 'mini core' is hot zero power with a control rod partially inserted into the central assembly which is fresh fuel and is adjacent to once and twice burned fuel representative of a realistic PWR arrangement. The thermal hydraulic feedbacks are provided by a simplified fluids and heat conduction solver consistent for both PARCS and DeCART. The control rod is ejected from the central assembly and the transient calculation is performed with DeCART and compared with the results of the U.S. NRC core simulation code PARCS. Because the pin power reconstruction in PARCS is based on steady state intra assembly pin power distributions which do not account for thermal feedback during the transient and which do not take into account neutron leakage from neighboring assemblies during the transient, there are some small differences in the PARCS and DeCART pin power prediction. Intra pin power density information obtained with DeCART represents new information not available with previous generation of methods. The paper then

  20. Numerical analysis of stiffener for hybrid drive unite

    Directory of Open Access Journals (Sweden)

    Jakubovičová Lenka

    2018-01-01

    Full Text Available The matter of this article is a stress-strain analysis of hybrid drive prototype unit connected directly to convention Concrete Transit Mixer Gearbox. The unite was developed with intention to do field test on existing convection machines with possibility to use existing interfaces. The hybrid drive unit consists from electric and hydrostatic motor connected through addition mechanical transmission gearbox. The question is if today standard interface is good enough or need additional support a “stiffener”. Two engineering design were analysed. The first one includes using the stiffener to fixate the construction of hybrid drive unite connected to the planetary gear. The second one is without the stiffener. For strain-stress analysis, a finite element software ANSYS Workbench was used.

  1. Numerical analysis of the non-contacting gas face seals

    Science.gov (United States)

    Blasiak, S.

    2017-08-01

    The non-contacting gas face seals are used in high-performance devices where the main requirements are safety and reliability. Compliance with these requirements is made possible by careful research and analysis of physical processes related to, inter alia, fluid flow through the radial gap and ring oscillations susceptible to being housed in the enclosure under the influence of rotor kinematic forces. Elaborating and developing mathematical models describing these phenomena allows for more and more accurate analysis results. The paper presents results of studies on stationary ring oscillations made of different types of materials. The presented results of the research allow to determine which of the materials used causes the greatest amplitude of the vibration of the system fluid film-working rings.

  2. The updated network meta-analysis of neoadjuvant therapy for HER2-positive breast cancer.

    Science.gov (United States)

    Nakashoji, Ayako; Hayashida, Tetsu; Yokoe, Takamichi; Maeda, Hinako; Toyota, Tomoka; Kikuchi, Masayuki; Watanuki, Rurina; Nagayama, Aiko; Seki, Tomoko; Takahashi, Maiko; Abe, Takayuki; Kitagawa, Yuko

    2018-01-01

    We previously described a systematic assessment of the neoadjuvant therapies for human epidermal growth factor receptor-2 (HER2) positive breast cancer, using network meta-analysis. Accumulation of new clinical data has compelled us to update the analysis. Randomized trials comparing different anti-HER2 regimens in the neoadjuvant setting were included, and odds ratio for pathologic complete response (pCR) in seven treatment arms were assessed by pooling effect sizes. Direct and indirect comparisons using a Bayesian statistical model were performed. All statistical tests were two-sided. A database search identified 993 articles with 13 studies meeting the eligibility criteria, including three new studies with lapatinib (lpnb). In an indirect comparison, dual anti-HER2 agents with CT achieved a better pCR rate than other arms. The credibility intervals of CT + tzmb + lpnb arm were largely reduced compared to our former report, which we added sufficient clinical evidence by this update. Values of surface under the cumulative ranking (SUCRA) suggested that CT + tzmb + pzmb had the highest probability of being the best treatment arm for pCR, widening the difference between the top two dual-HER2 blockade arms compared to our former report. The overall consistency with our first report enhanced the credibility of the results. Network meta-analysis using new clinical data firmly establish that combining two anti-HER2 agents with CT is most effective against HER2-positive breast cancer in the neoadjuvant setting. New pzmb related trials are required to fully determine the best neoadjuvant dual-HER2 blockade regimen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. DESIGN ANALYSIS OF ELECTRICAL MACHINES THROUGH INTEGRATED NUMERICAL APPROACH

    Directory of Open Access Journals (Sweden)

    ARAVIND C.V.

    2016-02-01

    Full Text Available An integrated design platform for the newer type of machines is presented in this work. The machine parameters are evaluated out using developed modelling tool. With the machine parameters, the machine is modelled using computer aided tool. The designed machine is brought to simulation tool to perform electromagnetic and electromechanical analysis. In the simulation, conditions setting are performed to setup the materials, meshes, rotational speed and the excitation circuit. Electromagnetic analysis is carried out to predict the behavior of the machine based on the movement of flux in the machines. Besides, electromechanical analysis is carried out to analyse the speed-torque characteristic, the current-torque characteristic and the phase angle-torque characteristic. After all the results are analysed, the designed machine is used to generate S block function that is compatible with MATLAB/SIMULINK tool for the dynamic operational characteristics. This allows the integration of existing drive system into the new machines designed in the modelling tool. An example of the machine design is presented to validate the usage of such a tool.

  4. Pathway enrichment analysis approach based on topological structure and updated annotation of pathway.

    Science.gov (United States)

    Yang, Qian; Wang, Shuyuan; Dai, Enyu; Zhou, Shunheng; Liu, Dianming; Liu, Haizhou; Meng, Qianqian; Jiang, Bin; Jiang, Wei

    2017-08-16

    Pathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways. We compared TPEA with four widely used pathway enrichment analysis tools, including database for annotation, visualization and integrated discovery (DAVID), gene set enrichment analysis (GSEA), centrality-based pathway enrichment (CePa) and signaling pathway impact analysis (SPIA), through analyzing six gene expression profiles of three tumor types (colorectal cancer, thyroid cancer and endometrial cancer). As a result, we identified several well-known cancer risk pathways that could not be obtained by the existing tools, and the results of TPEA were more stable than that of the other tools in analyzing different data sets of the same cancer. Ultimately, we developed an R package to implement TPEA, which could online update KEGG pathway information and is available at the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/TPEA/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Numerical analysis of magnetoelastic coupled buckling of fusion reactor components

    International Nuclear Information System (INIS)

    Demachi, K.; Yoshida, Y.; Miya, K.

    1994-01-01

    For a tokamak fusion reactor, it is one of the most important subjects to establish the structural design in which its components can stand for strong magnetic force induced by plasma disruption. A number of magnetostructural analysis of the fusion reactor components were done recently. However, in these researches the structural behavior was calculated based on the small deformation theory where the nonlinearity was neglected. But it is known that some kinds of structures easily exceed the geometrical nonlinearity. In this paper, the deflection and the magnetoelastic buckling load of fusion reactor components during plasma disruption were calculated

  6. Numerical Modeling and Analysis of Transient Electromagnetic Wave Propagation and Scattering

    National Research Council Canada - National Science Library

    Petropoulos, Peter

    2000-01-01

    .... We are continuing with analysis and numerical comparisons with exact ABC's in ABC's instead of the simpler Dirichlet boundary condition to terminate the sponge layers in the time-domain is desirable...

  7. Numerical analysis of fluid flow and heat transfer in a helical ...

    African Journals Online (AJOL)

    DR OKE

    International Journal of Engineering, Science and Technology ... Numerical analysis of fluid flow and heat transfer in a helical rectangular .... by comparing the results of a conical spiral tube bundle modeled using the same software with that of.

  8. Deterministic sensitivity analysis for the numerical simulation of contaminants transport

    International Nuclear Information System (INIS)

    Marchand, E.

    2007-12-01

    The questions of safety and uncertainty are central to feasibility studies for an underground nuclear waste storage site, in particular the evaluation of uncertainties about safety indicators which are due to uncertainties concerning properties of the subsoil or of the contaminants. The global approach through probabilistic Monte Carlo methods gives good results, but it requires a large number of simulations. The deterministic method investigated here is complementary. Based on the Singular Value Decomposition of the derivative of the model, it gives only local information, but it is much less demanding in computing time. The flow model follows Darcy's law and the transport of radionuclides around the storage site follows a linear convection-diffusion equation. Manual and automatic differentiation are compared for these models using direct and adjoint modes. A comparative study of both probabilistic and deterministic approaches for the sensitivity analysis of fluxes of contaminants through outlet channels with respect to variations of input parameters is carried out with realistic data provided by ANDRA. Generic tools for sensitivity analysis and code coupling are developed in the Caml language. The user of these generic platforms has only to provide the specific part of the application in any language of his choice. We also present a study about two-phase air/water partially saturated flows in hydrogeology concerning the limitations of the Richards approximation and of the global pressure formulation used in petroleum engineering. (author)

  9. Structural Analysis of Composite Laminates using Analytical and Numerical Techniques

    Directory of Open Access Journals (Sweden)

    Sanghi Divya

    2016-01-01

    Full Text Available A laminated composite material consists of different layers of matrix and fibres. Its properties can vary a lot with each layer’s or ply’s orientation, material property and the number of layers itself. The present paper focuses on a novel approach of incorporating an analytical method to arrive at a preliminary ply layup order of a composite laminate, which acts as a feeder data for the further detailed analysis done on FEA tools. The equations used in our MATLAB are based on analytical study code and supply results that are remarkably close to the final optimized layup found through extensive FEA analysis with a high probabilistic degree. This reduces significant computing time and saves considerable FEA processing to obtain efficient results quickly. The result output by our method also provides the user with the conditions that predicts the successive failure sequence of the composite plies, a result option which is not even available in popular FEM tools. The predicted results are further verified by testing the laminates in the laboratory and the results are found in good agreement.

  10. Sensitivity analysis of numerical model of prestressed concrete containment

    Energy Technology Data Exchange (ETDEWEB)

    Bílý, Petr, E-mail: petr.bily@fsv.cvut.cz; Kohoutková, Alena, E-mail: akohout@fsv.cvut.cz

    2015-12-15

    Graphical abstract: - Highlights: • FEM model of prestressed concrete containment with steel liner was created. • Sensitivity analysis of changes in geometry and loads was conducted. • Steel liner and temperature effects are the most important factors. • Creep and shrinkage parameters are essential for the long time analysis. • Prestressing schedule is a key factor in the early stages. - Abstract: Safety is always the main consideration in the design of containment of nuclear power plant. However, efficiency of the design process should be also taken into consideration. Despite the advances in computational abilities in recent years, simplified analyses may be found useful for preliminary scoping or trade studies. In the paper, a study on sensitivity of finite element model of prestressed concrete containment to changes in geometry, loads and other factors is presented. Importance of steel liner, reinforcement, prestressing process, temperature changes, nonlinearity of materials as well as density of finite elements mesh is assessed in the main stages of life cycle of the containment. Although the modeling adjustments have not produced any significant changes in computation time, it was found that in some cases simplified modeling process can lead to significant reduction of work time without degradation of the results.

  11. Development of the Nonstationary Incremental Analysis Update Algorithm for Sequential Data Assimilation System

    Directory of Open Access Journals (Sweden)

    Yoo-Geun Ham

    2016-01-01

    Full Text Available This study introduces a modified version of the incremental analysis updates (IAU, called the nonstationary IAU (NIAU method, to improve the assimilation accuracy of the IAU while keeping the continuity of the analysis. Similar to the IAU, the NIAU is designed to add analysis increments at every model time step to improve the continuity in the intermittent data assimilation. However, unlike the IAU, the NIAU procedure uses time-evolved forcing using the forward operator as corrections to the model. The solution of the NIAU is superior to that of the forward IAU, of which analysis is performed at the beginning of the time window for adding the IAU forcing, in terms of the accuracy of the analysis field. It is because, in the linear systems, the NIAU solution equals that in an intermittent data assimilation method at the end of the assimilation interval. To have the filtering property in the NIAU, a forward operator to propagate the increment is reconstructed with only dominant singular vectors. An illustration of those advantages of the NIAU is given using the simple 40-variable Lorenz model.

  12. An updated analysis of the Lucas Heights climatology 1991-2003

    International Nuclear Information System (INIS)

    Clark, G.H.

    2003-12-01

    Meteorological data collected from 1991 to 2003 in the Lucas Heights region have been summarised to provide an update on the climatology. This report represents analysis of data collected at the Lucas Heights Science and Technology Centre since 1991 when an advanced digital recording system was installed. The small network of meteorological stations installed in the surrounding region since 1993 has allowed an investigation of the influence of complex terrain on wind flow and atmospheric dispersion patterns. For a period between 1999 and 2001 a Bureau of Meteorology disdrometer was installed at Lucas Heights to investigate raindrop size distributions. A large number of statistical summaries for all meteorological data are presented in in two appendices at the end of the report as a resource for reference purposes

  13. Containment and Surveillance and Physical Protection Updates for Proliferation Resistance Analysis Using PRAETOR

    International Nuclear Information System (INIS)

    Chirayath, S.; Charlton, W.; Elmore, R.

    2015-01-01

    The Proliferation Resistance Analysis and Evaluation Tool for Observed Risk (PRAETOR) software code assesses the proliferation resistance (PR) of nuclear fuel cycle (NFC) systems. The Nuclear Security Science and Policy Institute (NSSPI) at Texas A&M University developed PRAETOR based on the well-established multi-attribute utility analysis (MAUA) methodology. MAUA methods facilitate compiling multiple PR characteristics into tiered PRAETOR output PR metrics enabling easier decision making at the analyst, program manager, and policy maker levels. PRAETOR uses intrinsic and extrinsic PR attributes to evaluate NFC systems. The PRAETOR 1.0 code originally had 63 attribute inputs representing the NFC system. The attribute input values assigned by the user are mapped to a utility value between 0 and 1 using utility functions. Each attribute has an associated weight obtained through a survey. Larger PRAETOR utility values indicate higher NFC system PR. An updated version of PRAETOR (Version 2.0) added seven more attribute inputs representing the nuclear security PR aspects of: (1) physical protection systems (PPS) and (2) containment and surveillance (C&S). The applicability of PRAETOR is demonstrated through a set of case studies. Two cases of Pressurized Water Reactor (PWR)used fuel assemblies with different cooling times were considered in this paper: (a) non-cooled fuel assemblies, and (b) 30-year cooled fuel assemblies. The case studies consider the new PPS and C&S attributes with low and high utility values. The PR results for the case studies with the updated PRAETOR were compared with those without the PPS and C&S attributes. The new attributes increased overall PR value by about 10% for case (a) and decreased it by about 3% in case (b). The importance of adding new attributes capturing physical protection and containment & surveillance is established. (author)

  14. SU-F-R-18: Updates to the Computational Environment for Radiological Research for Image Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Aditya P.; Deasy, Joseph O. [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: To present new tools in CERR for Texture Analysis and Visualization. Method: (1) Quantitative Image Analysis: We added the ability to compute Haralick texture features based on local neighbourhood. The Texture features depend on many parameters used in their derivation. For example: (a) directionality, (b) quantization of image, (c) patch-size for the neighborhood, (d) handling of the edge voxels within the region of interest, (e) Averaging co-occurance matrix vs texture features for different directions etc. A graphical user interface was built to set these parameters and then visualize their impact on the resulting texture maps. The entire functionality was written in Matlab. Array indexing was used to speed up the texture calculation. The computation speed is very competitive with the ITK library. Moreover, our implementation works with multiple CPUs and the computation time can be further reduced by using multiple processor threads. In order to reduce the Haralick texture maps into scalar features, we propose the use of Texture Volume Histograms. This lets users make use of the entire distribution of texture values within the region of interest rather than using just the mean and the standard deviations. (2) Qualitative/Visualization tools: The derived texture maps are stored as a new scan (derived) within CERR’s planC data structure. A display that compares various scans was built to show the raw image and the derived texture maps side-by-side. These images are positionally linked and can be navigated together. CERR’s graphics handling was updated and sped-up to be compatible with the newer Matlab versions. As a result, the users can use (a) different window levels and colormaps for different viewports, (b) click-and-drag or use mouse scroll-wheel to navigate slices. Results: The new features and updates are available via https://www.github.com/adityaapte/cerr . Conclusion: Features added to CERR increase its utility in Radiomics and Outcomes

  15. COMBUSTION STAGE NUMERICAL ANALYSIS OF A MARINE ENGINE

    Directory of Open Access Journals (Sweden)

    DOREL DUMITRU VELCEA

    2016-06-01

    Full Text Available The primary goal of engine design is to maximize each efficiency factor, in order to extract the most power from the least amount of fuel. In terms of fluid dynamics, the volumetric and combustion efficiency are dependent on the fluid dynamics in the engine manifolds and cylinders. Cold flow analysis involves modeling the airflow in the transient engine cycle without reactions. The goal is to capture the mixture formation process by accurately accounting for the interaction of moving geometry with the fluid dynamics of the induction process. The changing characteristics of the air flow jet that tumbles into the cylinder with swirl via intake valves and the exhaust jet through the exhaust valves as they open and close can be determined, along with the turbulence production from swirl and tumble due to compression and squish. The target of this paper was to show how, by using the reverse engineering techniques, one may replicate and simulate the functioning conditions and parameters of an existing marine engine. The departing information were rather scarce in terms of real processes taking place in the combustion stage, but at the end we managed to have a full picture of the main parameters evolution during the combustion phase inside this existing marine engine

  16. Numerical Analysis of Microwave Heating on Saponification Reaction

    Science.gov (United States)

    Huang, Kama; Jia, Kun

    2005-01-01

    Currently, microwave is widely used in chemical industry to accelerate chemical reactions. Saponification reaction has important applications in industry; some research results have shown that microwave heating can significantly accelerate the reaction [1]. But so far, no efficient method has been reported for the analysis of the heating process and design of an efficient reactor powered by microwave. In this paper, we present a method to study the microwave heating process on saponification reaction, where the reactant in a test tube is considered as a mixture of dilute solution. According to the preliminary measurement results, the effective permittivity of the mixture is approximately the permittivity of water, but the conductivity, which could change with the reaction, is derived from the reaction equation (RE). The electromagnetic field equation and reaction equation are coupled by the conductivity. Following that, the whole heating processes, which is described by Maxwell's equations, the reaction equation and heat transport equation (HTE), is analyzed by finite difference time domain (FDTD) method. The temperature rising in the test tube are measured and compared with the computational results. Good agreement can be seen between the measured and calculated results.

  17. Numerical Analysis on Transient of Steam-gas Pressurizer

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Lee, Yeon-Gun; Park, Goon-Cherl

    2008-01-01

    In nuclear reactors, various pressurizers are adopted to satisfy their characteristics and uses. The additional active systems such as heater, pressurizer cooler, spray and insulator are essential for a steam or a gas pressurizer. With a steam-gas pressurizer, additional systems are not required due to the use of steam and non-condensable gas as pressure-buffering materials. The steam-gas pressurizer in integrated small reactors experiences very complicated thermal-hydraulic phenomena. To ensure the integrity of this pressurizer type, the analysis on the transient behavior of the steam-gas pressure is indispensable. For this purpose, the steam-gas pressurizer model is introduced to predict the accurate system pressure. The proposed model includes bulk flashing, rainout, inter-region heat and mass transfer and wall condensation with non-condensable gas. However, the ideal gas law is not applied because of significant interaction at high pressure between steam and non-condensable gas. The results obtained from this proposed model agree with those from pressurizer tests. (authors)

  18. Separate direct injection of diesel and ethanol: A numerical analysis

    Directory of Open Access Journals (Sweden)

    Burnete Nicolae V.

    2017-01-01

    Full Text Available The purpose of this study is to investigate the theoretical possibility of using a pilot diesel injection for the auto-ignition of a main ethanol injection in a compression ignition engine. To this effect a predictive simulation model has been built based on experimental results for a diesel cycle (pilot and main injection at 1500 and 2500 min–1, respectively. For every engine speed, in addition to the diesel reference cycle, two more simulations were done: one with the same amount of fuel injected into the cylinder and one with the same amount of energy, which required an increase in the quantity of ethanol proportional to the ratio of its lower heating value and that of diesel. The simulations showed that in all cases the pilot diesel led to the auto-ignition of ethanol. The analysis of the in-cylinder traces at 1500 min–1 showed that combustion efficiency is improved, the peak temperature value decrease with approximately 240 K and, as a result, the NO emissions are 3.5-4 times lower. The CO and CO2 values depend on the amount of fuel injected into the cylinder. At 2500 min–1 there are similar trends but with the following observations: the ignition delay increases, while the pressure and temperature are lower.

  19. Numerical analysis on infiltration-driven decarbonation during skarnification

    Science.gov (United States)

    Chu, X.; Lee, C. T.; Dasgupta, R.

    2017-12-01

    analysis should be viewed as a lower-limit estimate. [1] Lee et al (2013) Geosphere 9. [2] Balashov & Yardley (1998) Am J Sci 298. [3] Joesten & Fisher (1988) GSA Bull 100. [4] Lasaga & Rye (1993) Am J Sci 293. [5] Crisp (1984) J Volcanol Geotherm Res 20. [6] Allard et al (1991) Nature 351.

  20. Major update of Safety Analysis Report for Thai Research Reactor-1/Modification 1

    Energy Technology Data Exchange (ETDEWEB)

    Tippayakul, Chanatip [Thailand Institute of Nuclear Technology, Bangkok (Thailand)

    2013-07-01

    Thai Research Reactor-1/Modification 1 (TRR-1/M1) was converted from a Material Testing Reactor in 1975 and it had been operated by Office of Atom for Peace (OAP) since 1977 until 2007. During the period, Office of Atom for Peace had two duties for the reactor, that is, to operate and to regulate the reactor. However, in 2007, there was governmental office reformation which resulted in the separation of the reactor operating organization from the regulatory body in order to comply with international standard. The new organization is called Thailand Institute of Nuclear Technology (TINT) which has the mission to promote peaceful utilization of nuclear technology while OAP remains essentially the regulatory body. After the separation, a new ministerial regulation was enforced reflecting a new licensing scheme in which TINT has to apply for a license to operate the reactor. The safety analysis report (SAR) shall be submitted as part of the license application. The ministerial regulation stipulates the outlines of the SAR almost equivalent to IAEA standard 35-G1. Comparing to the IAEA 35-G1 standard, there were several incomplete and missing chapters in the original SAR of TRR1/M1. The major update of the SAR was therefore conducted and took approximately one year. The update work included detail safety evaluation of core configuration which used two fuel element types, the classification of systems, structures and components (SSC), the compilation of detail descriptions of all SSCs and the review and evaluation of radiation protection program, emergency plan and emergency procedure. Additionally, the code of conduct and operating limits and conditions were revised and finalized in this work. A lot of new information was added to the SAR as well, for example, the description of commissioning program, information on environmental impact assessment, decommissioning program, quality assurance program and etc. Due to the complexity of this work, extensive knowledge was

  1. Sensitivity analysis of numerical results of one- and two-dimensional advection-diffusion problems

    International Nuclear Information System (INIS)

    Motoyama, Yasunori; Tanaka, Nobuatsu

    2005-01-01

    Numerical simulation has been playing an increasingly important role in the fields of science and engineering. However, every numerical result contains errors such as modeling, truncation, and computing errors, and the magnitude of the errors that are quantitatively contained in the results is unknown. This situation causes a large design margin in designing by analyses and prevents further cost reduction by optimizing design. To overcome this situation, we developed a new method to numerically analyze the quantitative error of a numerical solution by using the sensitivity analysis method and modified equation approach. If a reference case of typical parameters is calculated once by this method, then no additional calculation is required to estimate the results of other numerical parameters such as those of parameters with higher resolutions. Furthermore, we can predict the exact solution from the sensitivity analysis results and can quantitatively evaluate the error of numerical solutions. Since the method incorporates the features of the conventional sensitivity analysis method, it can evaluate the effect of the modeling error as well as the truncation error. In this study, we confirm the effectiveness of the method through some numerical benchmark problems of one- and two-dimensional advection-diffusion problems. (author)

  2. The Recreational Fee Demonstration Program on the national forests: and updated analysis of public attitudes and beliefs, 1996-2001.

    Science.gov (United States)

    David N. Bengston; David P. Fan

    2002-01-01

    Analyzes trends in favorable and unfavorable attitudes toward the Recreational Fee Demonstration Program (RFDP) in the national forests, updating an earlier study using computer content analysis of the public debate. About 65 percent of the attitudes toward the RFDP were favorable, comparable to the findings of survey research.

  3. 77 FR 24941 - Vantage Wind Energy LLC; Order Accepting Updated Market Power Analysis and Providing Direction on...

    Science.gov (United States)

    2012-04-26

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-956-003] Vantage Wind.... 1. In this order, the Commission accepts an updated market power analysis filed by Vantage Wind Energy LLC (Vantage Wind). As discussed below, the Commission concludes that Vantage Wind continues to...

  4. Aggregate analysis of regulatory authority assessors' comments to improve the quality of periodic safety update reports.

    Science.gov (United States)

    Jullian, Sandra; Jaskiewicz, Lukasz; Pfannkuche, Hans-Jürgen; Parker, Jeremy; Lalande-Luesink, Isabelle; Lewis, David J; Close, Philippe

    2015-09-01

    Marketing authorization holders (MAHs) are expected to provide high-quality periodic safety update reports (PSURs) on their pharmaceutical products to health authorities (HAs). We present a novel instrument aiming at improving quality of PSURs based on standardized analysis of PSUR assessment reports (ARs) received from the European Union HAs across products and therapeutic areas. All HA comments were classified into one of three categories: "Request for regulatory actions," "Request for medical and scientific information," or "Data deficiencies." The comments were graded according to their impact on patients' safety, the drug's benefit-risk profile, and the MAH's pharmacovigilance system. A total of 476 comments were identified through the analysis of 63 PSUR HA ARs received in 2013 and 2014; 47 (10%) were classified as "Requests for regulatory actions," 309 (65%) as "Requests for medical and scientific information," and 118 (25%) comments were related to "Data deficiencies." The most frequent comments were requests for labeling changes (35 HA comments in 19 ARs). The aggregate analysis revealed commonly raised issues and prompted changes of the MAH's procedures related to the preparation of PSURs. The authors believe that this novel instrument based on the evaluation of PSUR HA ARs serves as a valuable mechanism to enhance the quality of PSURs and decisions about optimization of the use of the products and, therefore, contributes to improve further the MAH's pharmacovigilance system and patient safety. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Stress Analysis of Non-Ferrous Metals Welds by Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Kravarikova Helena

    2017-01-01

    Full Text Available Thermal energy welded material unevenly heated and thus supports the creation of tension. During the fusing process welding transient tensions generated in the welded material. Generation of the transient tensions depends on the thermal expansion and fixed permanently welded parts. Tensions are the result of the interaction of material particles. For welded parts and constructions it is necessary to know the size and direction of application of tensions. The emerging tensions can cause local change or a total deformation of welded materials. Deformations and residual stresses impair the performance of a welded construction, reduces the stability of the parts. To reduce or eliminate of action or a screening direction stresses and strains it is necessary to know the mechanism of their emergence. It is now possible to examine the emergence of tensions numerical experiments on any model using numerical simulation using FEM. Results of numerical experiment is the analysis of stress and deformation course. In the plane the tension it divided into normal σ and τ tangential folders. Decomposition stress on components simplifies the stress analysis. The results obtained from numerical analysis are correct to predict the stress distribution and size. The paper presents the results of numerical experiments stress analysis solutions fillet welds using FEM numerical simulation of welding of non-ferrous metals.

  6. Comparison of scale analysis and numerical simulation for saturated zone convective mixing processes

    International Nuclear Information System (INIS)

    Oldenburg, C.M.

    1998-01-01

    Scale analysis can be used to predict a variety of quantities arising from natural systems where processes are described by partial differential equations. For example, scale analysis can be applied to estimate the effectiveness of convective missing on the dilution of contaminants in groundwater. Scale analysis involves substituting simple quotients for partial derivatives and identifying and equating the dominant terms in an order-of-magnitude sense. For free convection due to sidewall heating of saturated porous media, scale analysis shows that vertical convective velocity in the thermal boundary layer region is proportional to the Rayleigh number, horizontal convective velocity is proportional to the square root of the Rayleigh number, and thermal boundary layer thickness is proportional to the inverse square root of the Rayleigh number. These scale analysis estimates are corroborated by numerical simulations of an idealized system. A scale analysis estimate of mixing time for a tracer mixing by hydrodynamic dispersion in a convection cell also agrees well with numerical simulation for two different Rayleigh numbers. Scale analysis for the heating-from-below scenario produces estimates of maximum velocity one-half as large as the sidewall case. At small values of the Rayleigh number, this estimate is confirmed by numerical simulation. For larger Rayleigh numbers, simulation results suggest maximum velocities are similar to the sidewall heating scenario. In general, agreement between scale analysis estimates and numerical simulation results serves to validate the method of scale analysis. Application is to radioactive repositories

  7. Numerical stability for velocity-based 2-phase formulation for geotechnical dynamic analysis

    OpenAIRE

    Mieremet, M.M.J.

    2015-01-01

    As a master student in AppliedMathematics at the Delft University of Technology I am highly educated in Numerical Analysis. My interest in this field even mademe choose elective courses such as Advanced Numerical Methods, Applied Finite Elements and Computational Fluid Dynamics. In my search for a challenging graduationproject I chose a research proposal on the material point method, an extension of the finite element method that is well-suited for problems involving large deformations. The p...

  8. Numerical analysis of the thermally induced flow in a strongly rotating gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.

    1982-04-01

    The present work is concerned with the numerical analysis of the thermally induced flow in a rapidly gas centrifuge. The primary purpose for this work is to investigate the dependence of the flow field on the thermal boundary conditions, angular speed, aspect ratio of the cylinder, holdup. Some of our results are compared with the predictions of asymptotic theories, particularly those of Sakurai-Mtsuda and Brouwers, and with the numerical results of Dickinson-Jones.

  9. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations

    OpenAIRE

    Boudin , Laurent; Grec , Bérénice; Salvarani , Francesco

    2012-01-01

    International audience; We consider the Maxwell-Stefan model of diffusion in a multicomponent gaseous mixture. After focusing on the main differences with the Fickian diffusion model, we study the equations governing a three-component gas mixture. We provide a qualitative and quantitative mathematical analysis of the model. The main properties of the standard explicit numerical scheme are also analyzed. We eventually include some numerical simulations pointing out the uphill diffusion phenome...

  10. Consumption of garlic and risk of colorectal cancer: an updated meta-analysis of prospective studies.

    Science.gov (United States)

    Hu, Ji-Yi; Hu, Yi-Wang; Zhou, Jiao-Jiao; Zhang, Meng-Wen; Li, Dan; Zheng, Shu

    2014-11-07

    To conduct an updated meta-analysis of prospective studies addressing the association between garlic consumption and colorectal cancer. Eligible cohort studies were identified by searching MEDLINE (PubMed) and screening the references of related articles published up to October 2013. Meta-analyses were conducted for colorectal cancer in relation to consumption of raw and cooked (RC) garlic and garlic supplements, separately. The summary relative risks (RR) with 95%CI were calculated using fixed-effects or random-effects model depending on the heterogeneity among studies. A total of 5 prospective cohort studies were identified. In contrast to the previous meta-analysis, no significant associations were found between consumption of RC garlic (RR: 1.06; 95%CI: 0.95-1.19) or garlic supplements (RR: 1.12; 95%CI: 0.96-1.31) and risk of colorectal cancer. A non-significant protective effect of garlic supplement intake against colorectal cancer was observed in females (RR: 0.84; 95%CI: 0.64-1.11), but the opposite was the case in males (RR: 1.24; 95%CI: 0.96-1.59). Consumption of RC garlic or garlic supplements is not significantly associated with reduced colorectal cancer risk.

  11. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis

    Science.gov (United States)

    Schwingshackl, Lukas; Schwedhelm, Carolina; Galbete, Cecilia; Hoffmann, Georg

    2017-01-01

    The aim of the present systematic review and meta-analysis was to gain further insight into the effects of adherence to Mediterranean Diet (MedD) on risk of overall cancer mortality, risk of different types of cancer, and cancer mortality and recurrence risk in cancer survivors. Literature search was performed using the electronic databases PubMed, and Scopus until 25 August 2017. We included randomized trials (RCTs), cohort (for specific tumors only incidence cases were used) studies, and case-control studies. Study-specific risk ratios, hazard ratios, and odds ratios (RR/HR/OR) were pooled using a random effects model. Observational studies (cohort and case-control studies), and intervention trials were meta-analyzed separately. The updated review process showed 27 studies that were not included in the previous meta-analysis (total number of studies evaluated: 83 studies). An overall population of 2,130,753 subjects was included in the present update. The highest adherence score to a MedD was inversely associated with a lower risk of cancer mortality (RRcohort: 0.86, 95% CI 0.81 to 0.91, I2 = 82%; n = 14 studies), colorectal cancer (RRobservational: 0.82, 95% CI 0.75 to 0.88, I2 = 73%; n = 11 studies), breast cancer (RRRCT: 0.43, 95% CI 0.21 to 0.88, n = 1 study) (RRobservational: 0.92, 95% CI 0.87 to 0.96, I2 = 22%, n = 16 studies), gastric cancer (RRobservational: 0.72, 95% CI 0.60 to 0.86, I2 = 55%; n = 4 studies), liver cancer (RRobservational: 0.58, 95% CI 0.46 to 0.73, I2 = 0%; n = 2 studies), head and neck cancer (RRobservational: 0.49, 95% CI 0.37 to 0.66, I2 = 87%; n = 7 studies), and prostate cancer (RRobservational: 0.96, 95% CI 0.92 to 1.00, I2 = 0%; n = 6 studies). Among cancer survivors, the association between the adherence to the highest MedD category and risk of cancer mortality, and cancer recurrence was not statistically significant. Pooled analyses of individual components of the MedD revealed that the protective effects appear to be most

  12. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Lukas Schwingshackl

    2017-09-01

    Full Text Available The aim of the present systematic review and meta-analysis was to gain further insight into the effects of adherence to Mediterranean Diet (MedD on risk of overall cancer mortality, risk of different types of cancer, and cancer mortality and recurrence risk in cancer survivors. Literature search was performed using the electronic databases PubMed, and Scopus until 25 August 2017. We included randomized trials (RCTs, cohort (for specific tumors only incidence cases were used studies, and case-control studies. Study-specific risk ratios, hazard ratios, and odds ratios (RR/HR/OR were pooled using a random effects model. Observational studies (cohort and case-control studies, and intervention trials were meta-analyzed separately. The updated review process showed 27 studies that were not included in the previous meta-analysis (total number of studies evaluated: 83 studies. An overall population of 2,130,753 subjects was included in the present update. The highest adherence score to a MedD was inversely associated with a lower risk of cancer mortality (RRcohort: 0.86, 95% CI 0.81 to 0.91, I2 = 82%; n = 14 studies, colorectal cancer (RRobservational: 0.82, 95% CI 0.75 to 0.88, I2 = 73%; n = 11 studies, breast cancer (RRRCT: 0.43, 95% CI 0.21 to 0.88, n = 1 study (RRobservational: 0.92, 95% CI 0.87 to 0.96, I2 = 22%, n = 16 studies, gastric cancer (RRobservational: 0.72, 95% CI 0.60 to 0.86, I2 = 55%; n = 4 studies, liver cancer (RRobservational: 0.58, 95% CI 0.46 to 0.73, I2 = 0%; n = 2 studies, head and neck cancer (RRobservational: 0.49, 95% CI 0.37 to 0.66, I2 = 87%; n = 7 studies, and prostate cancer (RRobservational: 0.96, 95% CI 0.92 to 1.00, I2 = 0%; n = 6 studies. Among cancer survivors, the association between the adherence to the highest MedD category and risk of cancer mortality, and cancer recurrence was not statistically significant. Pooled analyses of individual components of the MedD revealed that the protective effects appear to be

  13. Numerical Analysis Of Hooke Jeeves-Runge Kutta To Determine Reaction Rate Equation In Pyrrole Polymerization

    International Nuclear Information System (INIS)

    Gunawan, Indra; Sulistyo, Harry; Rochmad

    2001-01-01

    The numerical analysis of Hooke Jeeves Methods combined with Runge Kutta Methods is used to determine the exact model of reaction rate equation of pyrrole polymerization. Chemical polymerization of pyrrole was conducted with FeCI 3 / pyrrole solution at concentration ratio of 1.62 mole / mole and 2.18 mole / mole with varrying temperature of 28, 40, 50, and 60 o C. FeCl 3 acts as an oxidation agent to form pyrrole cation that will polymerize. The numerical analysis was done to examine the exact model of reaction rate equation which is derived from reaction equation of initiation, propagation, and termination. From its numerical analysis, it is found that the pyrrole polymerization follows third order of pyrrole cation concentration

  14. Development of sodium droplet combustion analysis methodology using direct numerical simulation in 3-dimensional coordinate (COMET)

    International Nuclear Information System (INIS)

    Okano, Yasushi; Ohira, Hiroaki

    1998-08-01

    In the early stage of sodium leak event of liquid metal fast breeder reactor, LMFBR, liquid sodium flows out from a piping, and ignition and combustion of liquid sodium droplet might occur under certain environmental condition. Compressible forced air flow, diffusion of chemical species, liquid sodium droplet behavior, chemical reactions and thermodynamic properties should be evaluated with considering physical dependence and numerical connection among them for analyzing combustion of sodium liquid droplet. A direct numerical simulation code was developed for numerical analysis of sodium liquid droplet in forced convection air flow. The numerical code named COMET, 'Sodium Droplet COmbustion Analysis METhodology using Direct Numerical Simulation in 3-Dimensional Coordinate'. The extended MAC method was used to calculate compressible forced air flow. Counter diffusion among chemical species is also calculated. Transport models of mass and energy between droplet and surrounding atmospheric air were developed. Equation-solving methods were used for computing multiphase equilibrium between sodium and air. Thermodynamic properties of chemical species were evaluated using dynamic theory of gases. Combustion of single sphere liquid sodium droplet in forced convection, constant velocity, uniform air flow was numerically simulated using COMET. Change of droplet diameter with time was closely agree with d 2 -law of droplet combustion theory. Spatial distributions of combustion rate and heat generation and formation, decomposition and movement of chemical species were analyzed. Quantitative calculations of heat generation and chemical species formation in spray combustion are enabled for various kinds of environmental condition by simulating liquid sodium droplet combustion using COMET. (author)

  15. Optimum design of vaporizer fin with liquefied natural gas by numerical analysis

    International Nuclear Information System (INIS)

    Jeong, Hyo Min; Chung, Han Shik; Lee, Sang Chul; Kong, Tae Woo; Yi, Chung Seub

    2006-01-01

    Generally, the temperature drop under 0 .deg. C on vaporizer surface creates frozen dews. This problem seems to increase as the time progress and humidity rises. In addition, the frozen dews create frost deposition. Consequently, heat transfer on vaporizer decreases because frost deposition causes adiabatic condition. Therefore, it is very important to solve this problem. This paper aims to study of the optimum design of used vaporizer at local LNG station. In this paper, experimental results were compared with numerical results. Geometries of numerical and experimental vaporizers were identical. Studied parameters of vaporizer are angle between two fins (Φ) and fin thickness (TH F ). Numerical analysis results were presented through the correlations between the ice layer thickness (TH ICE ) on the vaporizer surface to the temperature distribution of inside vaporizer (T IN ), fin thickness (TH F ), and angle between two fins (Φ). Numerical result shows good agreement with experimental outcome. Finally, the correlations for optimum design of vaporizer are proposed on this paper

  16. Mathematical and numerical analysis of hyper-elastic systems and introduction of plasticity

    International Nuclear Information System (INIS)

    Kluth, G.

    2008-12-01

    The goal is to model mathematically and numerically the dynamic phenomenons for solids in finite plasticity. We suggest a model that we call hyper-elasto-plastic based on hyper-elastic systems of conservation laws and on the use of an equation of state that we have constructed so as to achieve the plastic yield criterion of Von Mises. This model gives exact (analytic) solutions with shock split to flyer-plate experiments. The mathematical analysis of this model is done (hyperbolicity, characteristic fields, involutions and entropy). In the numerical part, we give 1D and 2D Lagrangian schemes which satisfy an entropy criterion. Moreover, thanks to a special discretization of the equations on deformation gradient, we satisfy some discrete involutions. In this work, the degeneracy of the solid model into hydrodynamic models is studied at the continuous level, and achieved at the numerical one. On different problems, we show the validity of our model and our numerical schemes. (author)

  17. Rigid-body-spring model numerical analysis of joint performance of engineered cementitious composites and concrete

    Science.gov (United States)

    Khmurovska, Y.; Štemberk, P.; Křístek, V.

    2017-09-01

    This paper presents a numerical investigation of effectiveness of using engineered cementitious composites with polyvinyl alcohol fibers for concrete cover layer repair. A numerical model of a monolithic concaved L-shaped concrete structural detail which is strengthened with an engineered cementitious composite layer with polyvinyl alcohol fibers is created and loaded with bending moment. The numerical analysis employs nonlinear 3-D Rigid-Body-Spring Model. The proposed material model shows reliable results and can be used in further studies. The engineered cementitious composite shows extremely good performance in tension due to the strain-hardening effect. Since durability of the bond can be decreased significantly by its degradation due to the thermal loading, this effect should be also taken into account in the future work, as well as the experimental investigation, which should be performed for validation of the proposed numerical model.

  18. BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis.

    Science.gov (United States)

    Sermondade, N; Faure, C; Fezeu, L; Shayeb, A G; Bonde, J P; Jensen, T K; Van Wely, M; Cao, J; Martini, A C; Eskandar, M; Chavarro, J E; Koloszar, S; Twigt, J M; Ramlau-Hansen, C H; Borges, E; Lotti, F; Steegers-Theunissen, R P M; Zorn, B; Polotsky, A J; La Vignera, S; Eskenazi, B; Tremellen, K; Magnusdottir, E V; Fejes, I; Hercberg, S; Lévy, R; Czernichow, S

    2013-01-01

    BACKGROUND The global obesity epidemic has paralleled a decrease in semen quality. Yet, the association between obesity and sperm parameters remains controversial. The purpose of this report was to update the evidence on the association between BMI and sperm count through a systematic review with meta-analysis. METHODS A systematic review of available literature (with no language restriction) was performed to investigate the impact of BMI on sperm count. Relevant studies published until June 2012 were identified from a Pubmed and EMBASE search. We also included unpublished data (n = 717 men) obtained from the Infertility Center of Bondy, France. Abstracts of relevant articles were examined and studies that could be included in this review were retrieved. Authors of relevant studies for the meta-analysis were contacted by email and asked to provide standardized data. RESULTS A total of 21 studies were included in the meta-analysis, resulting in a sample of 13 077 men from the general population and attending fertility clinics. Data were stratified according to the total sperm count as normozoospermia, oligozoospermia and azoospermia. Standardized weighted mean differences in sperm concentration did not differ significantly across BMI categories. There was a J-shaped relationship between BMI categories and risk of oligozoospermia or azoospermia. Compared with men of normal weight, the odds ratio (95% confidence interval) for oligozoospermia or azoospermia was 1.15 (0.93-1.43) for underweight, 1.11 (1.01-1.21) for overweight, 1.28 (1.06-1.55) for obese and 2.04 (1.59-2.62) for morbidly obese men. CONCLUSIONS Overweight and obesity were associated with an increased prevalence of azoospermia or oligozoospermia. The main limitation of this report is that studied populations varied, with men recruited from both the general population and infertile couples. Whether weight normalization could improve sperm parameters should be evaluated further.

  19. Migraine Headache and Ischemic Stroke Risk: An Updated Meta-analysis

    Science.gov (United States)

    Spector, June T.; Kahn, Susan R.; Jones, Miranda R.; Jayakumar, Monisha; Dalal, Deepan; Nazarian, Saman

    2010-01-01

    Background Observational studies, including recent large cohort studies which were unavailable for prior meta-analysis, have suggested an association between migraine headache and ischemic stroke. We performed an updated meta-analysis to quantitatively summarize the strength of association between migraine and ischemic stroke risk. Methods We systematically searched electronic databases, including MEDLINE and EMBASE, through February 2009 for studies of human subjects in the English language. Study selection using a priori selection criteria, data extraction, and assessment of study quality were conducted independently by reviewer pairs using standardized forms. Results Twenty-one (60%) of 35 studies met the selection criteria, for a total of 622,381 participants (13 case-control, 8 cohort studies) included in the meta-analysis. The pooled adjusted odds ratio of ischemic stroke comparing migraineurs to non-migraineurs using a random effects model was 2.30 (95% confidence interval [CI], 1.91-2.76). The pooled adjusted effect estimates for studies that reported relative risks and hazard ratios, respectively, were 2.41 (95% CI, 1.81-3.20) and 1.52 (95% CI, 0.99-2.35). The overall pooled effect estimate was 2.04 (95% CI, 1.72-2.43). Results were robust to sensitivity analyses excluding lower quality studies. Conclusions Migraine is associated with increased ischemic stroke risk. These findings underscore the importance of identifying high-risk migraineurs with other modifiable stroke risk factors. Future studies of the effect of migraine treatment and modifiable risk factor reduction on stroke risk in migraineurs are warranted. PMID:20493462

  20. Long-Term Safety Analysis of Baldone Radioactive Waste Repository and Updating of Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2001-12-01

    The main objective of the project was to provide advice to the Latvian authorities on the safety enhancements and waste acceptance criteria for near surface radioactive waste disposal facilities of the Baldone repository. The project included the following main activities: Analysis of the current status of the management of radioactive waste in Latvia in general and, at the Baldone repository in particular Development of the short and long-term safety analysis of the Baldone repository, including: the planned increasing of capacity for disposal and long term storage, the radiological analysis for the post-closure period Development of the Environment Impact Statement, for the new foreseen installations, considering the non radiological components Proposal of recommendations for future updating of radioactive waste acceptance criteria Proposal of recommendations for safety upgrades to the facility. The work programme has been developed in phases and main tasks as follows. Phase 0: Project inception, Phase 1: Establishment of current status, plans and practices (Legislation, regulation and standards, Radioactive waste management, Waste acceptance criteria), Phase 2: Development of future strategies for long-term safety management and recommendations for safety enhancements. The project team found the general approach use at the installation, the basic design and the operating practices appropriate to international standards. Nevertheless, a number of items subject to potential improvements were also identified. These upgrading recommendations deal with general aspects of the management (mainly storage versus disposal of long-lived sources), site and environmental surveillance, packaging (qualification of containers, waste characterization requirements), the design of an engineered cap and strategies for capping. (author)

  1. Numerical analysis of heat transfer of canned liquid foods containing fibers or particles during sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.Z.; Sakai, N.; Hanzawa, T. [Tokyo Univ. of Fisheries, Tokyo (Japan). Dept. of Food Science and Tech.

    2000-10-01

    The velocity profile, temperature distribution, and the slowest heating point of a canned liquid food containing fibers or particles were calculated numerically by using fundamental equations that take account of the effect of free convection in the can at an unsteady state under the assumption of imaginary fluid with apparent physical properties. To check these calculated results, the temperature distribution in the can was measured experimentally under the same operating conditions as those of the theoretical analysis. The calculated results agree closely with the experimental ones. Adaptable ranges of present numerical analysis and the positional characteristics of the slowest heating point are shown. (author)

  2. Measurement of the Operating Parameters and Numerical Analysis of the Mechanical Subsystem

    Directory of Open Access Journals (Sweden)

    Božek Pavol

    2014-08-01

    Full Text Available Submission is focused on completing the information system about quality, operation, automatic testing and new evaluating method of vehicle subsystem. Numeric analysis is carried out on the base of automatic collection and systematic recording of commercial car operation. Proposed new information system about operation and trial process allows verification according to the proposed method. Critical components verified in laboratory conditions are detected by numeric analysis of reliability. Quality level increasing not only for final product, but also related automatic test laboratory for cars is the result of respecting these principles.

  3. Measurement of the Operating Parameters and Numerical Analysis of the Mechanical Subsystem

    Science.gov (United States)

    Božek, Pavol; Turygin, Yuri

    2014-08-01

    Submission is focused on completing the information system about quality, operation, automatic testing and new evaluating method of vehicle subsystem. Numeric analysis is carried out on the base of automatic collection and systematic recording of commercial car operation. Proposed new information system about operation and trial process allows verification according to the proposed method. Critical components verified in laboratory conditions are detected by numeric analysis of reliability. Quality level increasing not only for final product, but also related automatic test laboratory for cars is the result of respecting these principles.

  4. Interactive Numerical and Symbolic Analysis: A New Paradigm for Teaching Electronics

    Directory of Open Access Journals (Sweden)

    Jean-Claude Thomassian

    2008-09-01

    Full Text Available Analog Insydes, Mathematica’s symbolic circuit analysis toolbox, uses modern algorithms of expression simplification depending on comparisons with a numerical reference solution of the circuit under investigation. Some insight is offered on how the complexity of an expression barrier is overcome followed by two classical examples, a BJT emitter follower and a MOSFET common-gate amplifier stage to illustrate the proposed method at work. A concluding section discusses that time spent teaching introductory electronics by computer-aided circuit analysis, interactive numerical and symbolic, is a worthwhile investment.

  5. Solutions manual to accompany An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2014-01-01

    A solutions manual to accompany An Introduction to Numerical Methods and Analysis, Second Edition An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, sp

  6. Updates on the web-based VIOLIN vaccine database and analysis system.

    Science.gov (United States)

    He, Yongqun; Racz, Rebecca; Sayers, Samantha; Lin, Yu; Todd, Thomas; Hur, Junguk; Li, Xinna; Patel, Mukti; Zhao, Boyang; Chung, Monica; Ostrow, Joseph; Sylora, Andrew; Dungarani, Priya; Ulysse, Guerlain; Kochhar, Kanika; Vidri, Boris; Strait, Kelsey; Jourdian, George W; Xiang, Zuoshuang

    2014-01-01

    The integrative Vaccine Investigation and Online Information Network (VIOLIN) vaccine research database and analysis system (http://www.violinet.org) curates, stores, analyses and integrates various vaccine-associated research data. Since its first publication in NAR in 2008, significant updates have been made. Starting from 211 vaccines annotated at the end of 2007, VIOLIN now includes over 3240 vaccines for 192 infectious diseases and eight noninfectious diseases (e.g. cancers and allergies). Under the umbrella of VIOLIN, >10 relatively independent programs are developed. For example, Protegen stores over 800 protective antigens experimentally proven valid for vaccine development. VirmugenDB annotated over 200 'virmugens', a term coined by us to represent those virulence factor genes that can be mutated to generate successful live attenuated vaccines. Specific patterns were identified from the genes collected in Protegen and VirmugenDB. VIOLIN also includes Vaxign, the first web-based vaccine candidate prediction program based on reverse vaccinology. VIOLIN collects and analyzes different vaccine components including vaccine adjuvants (Vaxjo) and DNA vaccine plasmids (DNAVaxDB). VIOLIN includes licensed human vaccines (Huvax) and veterinary vaccines (Vevax). The Vaccine Ontology is applied to standardize and integrate various data in VIOLIN. VIOLIN also hosts the Ontology of Vaccine Adverse Events (OVAE) that logically represents adverse events associated with licensed human vaccines.

  7. Guidance on health effects of toxic chemicals. Safety Analysis Report Update Program

    Energy Technology Data Exchange (ETDEWEB)

    Foust, C.B.; Griffin, G.D.; Munro, N.B.; Socolof, M.L.

    1994-02-01

    Martin Marietta Energy Systems, Inc. (MMES), and Martin Marietta Utility Services, Inc. (MMUS), are engaged in phased programs to update the safety documentation for the existing US Department of Energy (DOE)-owned facilities. The safety analysis of potential toxic hazards requires a methodology for evaluating human health effects of predicted toxic exposures. This report provides a consistent set of health effects and documents toxicity estimates corresponding to these health effects for some of the more important chemicals found within MMES and MMUS. The estimates are based on published toxicity information and apply to acute exposures for an ``average`` individual. The health effects (toxicological endpoints) used in this report are (1) the detection threshold; (2) the no-observed adverse effect level; (3) the onset of irritation/reversible effects; (4) the onset of irreversible effects; and (5) a lethal exposure, defined to be the 50% lethal level. An irreversible effect is defined as a significant effect on a person`s quality of life, e.g., serious injury. Predicted consequences are evaluated on the basis of concentration and exposure time.

  8. Statistical Analysis of Deccan Basalt Geochemistry: An Updated Look at Deccan Chemostratigraphy

    Science.gov (United States)

    Vanderkluysen, L.; Barber, N.; Woloszynek, S.; O'Connor, M. P.; Mittal, T.; Sealing, C. R.; Sprain, C. J.; Renne, P. R.

    2017-12-01

    The Deccan Traps are a continental Large Igneous Province covering large swaths of west-central India, with onshore erupted lava volumes that may have exceeded one million cubic kilometers. Although the total duration of magmatism is a matter of debate, recent geochronological work has demonstrated that the vast majority of volcanism occurred in a short (architecture, temporal evolution, and feeder system. However, the usefulness of the chemostratigraphy has been put into doubt when expanding it beyond the type sections of the Western Ghats, and the validity of interpreting units as true chronological markers has been questioned. The original statistical analysis focused on elements readily available via X-ray fluorescence: SiO2, Al2O3, TiO2, CaO, K2O, P2O5, Ni, Ba, Sr, Zr, and Nb. However, issues caused by variable degrees of alteration and, particularly, fractional crystallization, have not been addressed, which has limited the predictive power of the geochemical clusters as currently defined. Here, we propose a modernization of the chemostratigraphic scheme that takes into account a much greater suite of elements now commonly analyzed, thanks to advances in analytical capabilities. We present preliminary results of statistical analyses of an updated Deccan sample database, discussing random forests and classification and regression trees as the basis for a more robust chemostratigraphy of Deccan lavas.

  9. BE-2004: International meeting on updates in best estimate methods in nuclear installation safety analysis. Proceedings

    International Nuclear Information System (INIS)

    2004-01-01

    BE-2004 is the second in a series of embedded conferences that focus on generating and sustaining the dialogue regarding the use of best estimate plus uncertainty tools to license operational and advanced nuclear systems. The first conference in the series was held during the 2000 American Nuclear Society Winter Meeting in Washington. BE-2004 is international in scope, as evidenced by the multinational sources of the papers, and is intended to serve as an opportunity for information exchange between research scientists, practicing engineers, and regulators. However, as appropriate to a follow-on conference, the primary theme of BE-2004 is to provide updates reflecting the progress in best estimate methodologies in the last four years. Examples include research activities that evolved from the current Generation-IV initiative and other new designs [Nuclear Energy Research Initiative (NERI), etc.], core design and neutronic calculations that support best estimate analysis, use of advanced methodologies to produce plant licensing procedures competitive with best estimate methods, and of course current philosophical and technical issues that need to be considered in implementing best estimate codes as an established part of the international licensing framework

  10. A bibliometric analysis of research updates and tendencies on steroid biotransformation

    Science.gov (United States)

    Song, Zhaoyu

    2018-03-01

    Steroid biotransformation, as a powerful tool for generation of steroid active pharmaceutical ingredients and key intermediates, has received widespread attention with increasing market demand for steroid-based drugs. In our study, a bibliometric analysis of steroid biotransformation was performed to trace the research updates and tendencies from 1993 to 2016, based on the Science Citation Index Expanded (SCIE) database. Results showed a notable growth trend in publication outputs. Although the USA was the most productive country between 1993 and 2016, developing nations, including China and India, contributed the prominent growth in recent years (2005–2016). Steroids was the leading journal in this field, and the research outputs had notably increased in the field of ‘Chemistry’, ‘Pharmacology and Pharmacy’ and ‘Biotechnology and Applied Microbiology’. Finally, research focused mainly on the efficient production of novel steroid active pharmaceutical ingredients and key intermediates through steroid biotransformation. Furthermore, cytochrome P450 involved in the side-chain oxidation of sterols has gradually become a hotspot issue in recent years.

  11. Meta-analysis: antibiotic prophylaxis for cirrhotic patients with upper gastrointestinal bleeding - an updated Cochrane review

    DEFF Research Database (Denmark)

    Chavez-Tapia, N C; Barrientos-Gutierrez, T; Tellez-Avila, F

    2011-01-01

    Antibiotic prophylaxis seems to decrease the incidence of bacterial infections in patients with cirrhosis and upper gastrointestinal bleeding and is considered standard of care. However, there is no updated information regarding the effects of this intervention.......Antibiotic prophylaxis seems to decrease the incidence of bacterial infections in patients with cirrhosis and upper gastrointestinal bleeding and is considered standard of care. However, there is no updated information regarding the effects of this intervention....

  12. Semi Automated Land Cover Layer Updating Process Utilizing Spectral Analysis and GIS Data Fusion

    Science.gov (United States)

    Cohen, L.; Keinan, E.; Yaniv, M.; Tal, Y.; Felus, A.; Regev, R.

    2018-04-01

    Technological improvements made in recent years of mass data gathering and analyzing, influenced the traditional methods of updating and forming of the national topographic database. It has brought a significant increase in the number of use cases and detailed geo information demands. Processes which its purpose is to alternate traditional data collection methods developed in many National Mapping and Cadaster Agencies. There has been significant progress in semi-automated methodologies aiming to facilitate updating of a topographic national geodatabase. Implementation of those is expected to allow a considerable reduction of updating costs and operation times. Our previous activity has focused on building automatic extraction (Keinan, Zilberstein et al, 2015). Before semiautomatic updating method, it was common that interpreter identification has to be as detailed as possible to hold most reliable database eventually. When using semi-automatic updating methodologies, the ability to insert human insights based knowledge is limited. Therefore, our motivations were to reduce the created gap by allowing end-users to add their data inputs to the basic geometric database. In this article, we will present a simple Land cover database updating method which combines insights extracted from the analyzed image, and a given spatial data of vector layers. The main stages of the advanced practice are multispectral image segmentation and supervised classification together with given vector data geometric fusion while maintaining the principle of low shape editorial work to be done. All coding was done utilizing open source software components.

  13. Analysis by numerical simulations of non-linear phenomenons in vertical pump rotor dynamic

    International Nuclear Information System (INIS)

    Bediou, J.; Pasqualini, G.

    1992-01-01

    Controlling dynamical behavior of main coolant pumps shaftlines is an interesting subject for the user and the constructor. The first is mainly concerned by the interpretation of on field observed behavior, monitoring, reliability and preventive maintenance of his machines. The second must in addition manage with sometimes contradictory requirements related to mechanical design and performances optimization (shaft diameter reduction, clearance,...). The use of numerical modeling is now a classical technique for simple analysis (rough prediction of critical speeds for instance) but is still limited, in particular for vertical shaftline especially when equipped with hydrodynamic bearings, due to the complexity of encountered phenomenons in that type of machine. The vertical position of the shaftline seems to be the origin of non linear dynamical behavior, the analysis of which, as presented in the following discussion, requires specific modelization of fluid film, particularly for hydrodynamic bearings. The low static load generally no longer allows use of stiffness and damping coefficients classically calculated by linearizing fluid film equations near a stable static equilibrium position. For the analysis of such machines, specific numerical models have been developed at Electricite de France in a package for general rotordynamics analysis. Numerical models are briefly described. Then an example is precisely presented and discussed to illustrate some considered phenomenons and their consequences on machine behavior. In this example, the authors interpret the observed behavior by using numerical models, and demonstrate the advantage of such analysis for better understanding of vertical pumps rotordynamic

  14. Updated tomographic analysis of the integrated Sachs-Wolfe effect and implications for dark energy

    Science.gov (United States)

    Stölzner, Benjamin; Cuoco, Alessandro; Lesgourgues, Julien; Bilicki, Maciej

    2018-03-01

    We derive updated constraints on the integrated Sachs-Wolfe (ISW) effect through cross-correlation of the cosmic microwave background with galaxy surveys. We improve with respect to similar previous analyses in several ways. First, we use the most recent versions of extragalactic object catalogs, SDSS DR12 photometric redshift (photo-z ) and 2MASS Photo-z data sets, as well as those employed earlier for ISW, SDSS QSO photo-z and NVSS samples. Second, we use for the first time the WISE × SuperCOSMOS catalog, which allows us to perform an all-sky analysis of the ISW up to z ˜0.4 . Third, thanks to the use of photo-z s , we separate each data set into different redshift bins, deriving the cross-correlation in each bin. This last step leads to a significant improvement in sensitivity. We remove cross-correlation between catalogs using masks which mutually exclude common regions of the sky. We use two methods to quantify the significance of the ISW effect. In the first one, we fix the cosmological model, derive linear galaxy biases of the catalogs, and then evaluate the significance of the ISW using a single parameter. In the second approach we perform a global fit of the ISW and of the galaxy biases varying the cosmological model. We find significances of the ISW in the range 4.7 - 5.0 σ thus reaching, for the first time in such an analysis, the threshold of 5 σ . Without the redshift tomography we find a significance of ˜4.0 σ , which shows the importance of the binning method. Finally we use the ISW data to infer constraints on the dark energy redshift evolution and equation of state. We find that the redshift range covered by the catalogs is still not optimal to derive strong constraints, although this goal will be likely reached using future datasets such as from Euclid, LSST, and SKA.

  15. Updated meta-analysis of the relation between heart disease and androgenic alopecia or alopecia areata

    Directory of Open Access Journals (Sweden)

    Misato Amamoto

    2018-01-01

    Full Text Available Background The relationship between baldness and heart disease is still controversial. We performed an updated meta-analysis of observational studies to evaluate the relation between heart disease and androgenic alopecia or alopecia areata. Aims To evaluate the relation between heart disease and androgenic alopecia or alopecia areata. Methods Studies were identified by searching Medline and Embase up to October 20, 2017 without language restriction. Metaanalysis was performed by using a random-effects model. Results Nine studies were included in the meta-analysis (eight on androgenic alopecia and one on alopecia areata: 44,806 participants. Compared to men without baldness, men with androgenic alopecia had an increased risk of heart disease (relative risk (RR: 1.32, 95 per cent CI: 1.08 to 1.63, p=0.01, I2 =25 per cent, and younger men (<55 or ≤60 years showed a stronger association (RR: 1.44, 95 per cent CI: 1.11 to 1.86, p=0.01, I2 =0 per cent. The positive relation depended on the severity of baldness and decreased in order of severe vertex (RR: 1.60, 95 per cent CI: 1.19 to 2.16, p=0.002, moderate vertex (RR: 1.41, 95 per cent CI: 1.22 to 1.64, p<0.001, mild vertex (RR: 1.18, 95 per cent CI: 1.05 to 1.33, p=0.007, and frontal baldness (RR: 1.10, 95 per cent CI: 0.92 to 1.32, p=0.28. In contrast, there was no significant relation between alopecia areata and heart disease (RR: 0.91, 95 per cent CI: 0.60 to 1.39, p=0.66. Conclusion Androgenic alopecia is associated with heart disease, but alopecia areata is not.

  16. Exploring association between statin use and breast cancer risk: an updated meta-analysis.

    Science.gov (United States)

    Islam, Md Mohaimenul; Yang, Hsuan-Chia; Nguyen, Phung-Anh; Poly, Tahmina Nasrin; Huang, Chih-Wei; Kekade, Shwetambara; Khalfan, Abdulwahed Mohammed; Debnath, Tonmoy; Li, Yu-Chuan Jack; Abdul, Shabbir Syed

    2017-12-01

    The benefits of statin treatment for preventing cardiac disease are well established. However, preclinical studies suggested that statins may influence mammary cancer growth, but the clinical evidence is still inconsistent. We, therefore, performed an updated meta-analysis to provide a precise estimate of the risk of breast cancer in individuals undergoing statin therapy. For this meta-analysis, we searched PubMed, the Cochrane Library, Web of Science, Embase, and CINAHL for published studies up to January 31, 2017. Articles were included if they (1) were published in English; (2) had an observational study design with individual-level exposure and outcome data, examined the effect of statin therapy, and reported the incidence of breast cancer; and (3) reported estimates of either the relative risk, odds ratios, or hazard ratios with 95% confidence intervals (CIs). We used random-effect models to pool the estimates. Of 2754 unique abstracts, 39 were selected for full-text review, and 36 studies reporting on 121,399 patients met all inclusion criteria. The overall pooled risks of breast cancer in patients using statins were 0.94 (95% CI 0.86-1.03) in random-effect models with significant heterogeneity between estimates (I 2  = 83.79%, p = 0.0001). However, we also stratified by region, the duration of statin therapy, methodological design, statin properties, and individual stain use. Our results suggest that there is no association between statin use and breast cancer risk. However, observational studies cannot clarify whether the observed epidemiologic association is a causal effect or the result of some unmeasured confounding variable. Therefore, more research is needed.

  17. Analysis of thermal-plastic response of shells of revolution by numerical integration

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    An economic technique for the numerical analysis of the elasto-plastic behaviour of shells of revolution would be of considerable value in the nuclear reactor industry. A numerical method based on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motion are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behaviour, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. (Auth.)

  18. Research in progress in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1990-01-01

    Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.

  19. Numerical analysis of thermoluminescence glow curves; Analisis numerico de las cruvas de termoluminiscencia

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Ros, J M; Delgado, A

    1989-07-01

    This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs.

  20. The Role of Numerical Methods in the Sensitivity Analysis of a ...

    African Journals Online (AJOL)

    The mathematical modelling of physiochemical interaction in the framework of industrial and environmental physics which relies on an initial value problem is defined by a first order ordinary differential equation. Two numerical methods of studying sensitivity analysis of physiochemical interaction data are developed.

  1. Numerical analysis for fatigue life prediction on railroad RCF crack initiation

    NARCIS (Netherlands)

    Ma, Y.; Markine, V.L.

    2015-01-01

    In the present paper, a numerical procedure for surface crack initiation analysis based on the critical plane approach is proposed. The complex stress/strain state of wheel and rail (W/R) contact is analysed by means of submodelling approach together with the transient contact nodal loads obtained

  2. The Numerical Analysis of Monopolistically Competitive Markets: The Case of a New York Fresh Apple Packer

    OpenAIRE

    Starbird, Sterling A.; Milligan, Robert A.

    1987-01-01

    The hypothesis is adduced that in some monopolistically competitive markets a firm's demand schedule evolves faster than the firm's marketing policies can adjust. A probabilistic model of this phenomenon is introduced. The numerical analysis of a New York fresh apple packer's inventory control policies illustrates the model's usefulness.

  3. Structure of unilamellar vesicles: Numerical analysis based on small-angle neutron scattering data

    International Nuclear Information System (INIS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zbytovska, J.; Almasy, L.; Aswal, V. K.; Strunz, P.; Wartewig, S.; Neubert, R.

    2006-01-01

    The structure of polydispersed populations of unilamellar vesicles is studied by small-angle neutron scattering for three types of lipid systems, namely, single-, two-and four-component vesicular systems. Results of the numerical analysis based on the separated-form-factor model are reported

  4. Numerical analysis of the construction of Odelouca Dam using a Subloading Surface Soil Model

    OpenAIRE

    Brito, A.; Maranha, J. R.; Caldeira, L.

    2014-01-01

    Odelouca dam is an embankment dam, with 76 m height, recently constructed in the south of Portugal. It is zoned with a core consisting of colluvial and residual schist soil, and with soil-rockfill mixtures making up the shells (weathered schist with a significant fraction of coarse sized particles). This paper presents a numerical analysis of Odelouca dam construction. In this analysis the explicit finite difference program FLAC is used. An unconventional elastoplastic soil model, a Subloadin...

  5. About numerical analysis of electromagnetic field induce in gear wheels during hardening process

    Directory of Open Access Journals (Sweden)

    Gabriel Cheregi

    2008-05-01

    Full Text Available The paper presents the results of a numericalsimulation using finite element analysis for a coupledmagneto-thermal problem, specific for inductionhardening processes. The analysis takes into account therelative movement between inductor and the heated part.Numerical simulation allows to determine accurately thethermal regime of the induction heating process and theoptimal parameters which offer maximum efficiency.Therefore the experiments number in designing processcan be decreased and a better knowledge of the processcan be obtained.

  6. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  7. Three dimensional modelling and numerical analysis of super-radiant harmonic emission in FEL (optical klystron)

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.; Luccio, A.

    1986-09-01

    A full 3-D Analysis of super-radiant (bunched electron) free electron harmonic radiation is presented. A generalized form of the FEL pendulum equation was derived and numerically solved. Both spectral and phasor formulation were developed to treat the radiation in the time domain. In space the radiation field is expanded in terms of either a set of free space discrete modes or plane waves. The numerical solutions reveal some new distinctly 3-D effects to which we provide a physical explanation. 12 refs., 9 figs., 5 tabs

  8. Numerical analysis for multi-group neutron-diffusion equation using Radial Point Interpolation Method (RPIM)

    International Nuclear Information System (INIS)

    Kim, Kyung-O; Jeong, Hae Sun; Jo, Daeseong

    2017-01-01

    Highlights: • Employing the Radial Point Interpolation Method (RPIM) in numerical analysis of multi-group neutron-diffusion equation. • Establishing mathematical formation of modified multi-group neutron-diffusion equation by RPIM. • Performing the numerical analysis for 2D critical problem. - Abstract: A mesh-free method is introduced to overcome the drawbacks (e.g., mesh generation and connectivity definition between the meshes) of mesh-based (nodal) methods such as the finite-element method and finite-difference method. In particular, the Point Interpolation Method (PIM) using a radial basis function is employed in the numerical analysis for the multi-group neutron-diffusion equation. The benchmark calculations are performed for the 2D homogeneous and heterogeneous problems, and the Multiquadrics (MQ) and Gaussian (EXP) functions are employed to analyze the effect of the radial basis function on the numerical solution. Additionally, the effect of the dimensionless shape parameter in those functions on the calculation accuracy is evaluated. According to the results, the radial PIM (RPIM) can provide a highly accurate solution for the multiplication eigenvalue and the neutron flux distribution, and the numerical solution with the MQ radial basis function exhibits the stable accuracy with respect to the reference solutions compared with the other solution. The dimensionless shape parameter directly affects the calculation accuracy and computing time. Values between 1.87 and 3.0 for the benchmark problems considered in this study lead to the most accurate solution. The difference between the analytical and numerical results for the neutron flux is significantly increased in the edge of the problem geometry, even though the maximum difference is lower than 4%. This phenomenon seems to arise from the derivative boundary condition at (x,0) and (0,y) positions, and it may be necessary to introduce additional strategy (e.g., the method using fictitious points and

  9. Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis

    CERN Document Server

    Qian, Shizhi

    2012-01-01

    Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect

  10. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    Science.gov (United States)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  11. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    Science.gov (United States)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  12. Update from the Analysis of High Resolution Propane Spectra and the Interpretation of Titan's Infrared Spectra

    Science.gov (United States)

    Klavans, V.; Nixon, C.; Hewagama, T.; Jennings, D. E.

    2012-01-01

    Titan has an extremely thick atmosphere dominated by nitrogen, but includes a range of trace species such as hydrocarbons and nitriles. One such hydrocarbon is propane (C3H8). Propane has 21 active IR bands covering broad regions of the mid-infrared. Therefore, its ubiquitous signature may potentially mask weaker signatures of other undetected species with important roles in Titan's chemistry. Cassini's Composite Infrared Spectrometer (CIRS) observations of Titan's atmosphere hint at the presence of such molecules. Unfortunately, C3H8 line atlases for the vibration bands V(sub 8), V(sub 21), V(sub 20), and V(sub 7) (869, 922, 1054, and 1157 per centimeter, respectively) are not currently available for subtracting the C3H8 signal to reveal, or constrain, the signature of underlying chemical species. Using spectra previously obtained by Jennings, D. E., et al. at the McMath-Pierce FTIR at Kitt Peak, AZ, as the source and automated analysis utilities developed for this application, we are compiling an atlas of spectroscopic parameters for propane that characterize the ro-vibrational transitions in the above bands. In this paper, we will discuss our efforts for inspecting and fitting the aforementioned bands, present updated results for spectroscopic parameters including absolute line intensities and transition frequencies in HITRAN and GEISA formats, and show how these optical constants will be used in searching for other trace chemical species in Titan's atmosphere. Our line atlas for the V(sub 21) band contains a total number of 2971 lines. The band integrated strength calculated for the V(sub 21) band is 1.003 per centimeter per (centimeter-atm).

  13. Long term pharmacotherapy for obesity and overweight: updated meta-analysis

    Science.gov (United States)

    2007-01-01

    Objective To summarise the long term efficacy of anti-obesity drugs in reducing weight and improving health status. Design Updated meta-analysis of randomised trials. Data sources Medline, Embase, the Cochrane controlled trials register, the Current Science meta-register of controlled trials, and reference lists of identified articles. All data sources were searched from December 2002 (end date of last search) to December 2006. Studies reviewed Double blind randomised placebo controlled trials of approved anti-obesity dugs used in adults (age over 18) for one year or longer. Results 30 trials of one to four years’ duration met the inclusion criteria: 16 orlistat (n=10 631 participants), 10 sibutramine (n=2623), and four rimonabant (n=6365). Of these, 14 trials were new and 16 had previously been identified. Attrition rates averaged 30-40%. Compared with placebo, orlistat reduced weight by 2.9 kg (95% confidence interval 2.5 kg to 3.2 kg), sibutramine by 4.2 kg (3.6 kg to 4.7 kg), and rimonabant by 4.7 kg (4.1 kg to 5.3 kg). Patients receiving active drug treatment were significantly more likely to achieve 5% and 10% weight loss thresholds. Orlistat reduced the incidence of diabetes and improved concentrations of total cholesterol and low density lipoprotein cholesterol, blood pressure, and glycaemic control in patients with diabetes but increased rates of gastrointestinal side effects and slightly lowered concentrations of high density lipoprotein. Sibutramine lowered concentrations of high density lipoprotein cholesterol and triglycerides but raised blood pressure and pulse rate. Rimonabant improved concentrations of high density lipoprotein cholesterol and triglycerides, blood pressure, and glycaemic control in patients with diabetes but increased the risk of mood disorders. Conclusions Orlistat, sibutramine, and rimonabant modestly reduce weight, have differing effects on cardiovascular risk profiles, and have specific adverse effects. PMID:18006966

  14. Sensitivity of a numerical wave model on wind re-analysis datasets

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel

    2017-03-01

    Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.

  15. Numerical analysis of the performance of rock weirs: Effects of structure configuration on local hydraulics

    Science.gov (United States)

    Holmquist-Johnson, C. L.

    2009-01-01

    River spanning rock structures are being constructed for water delivery as well as to enable fish passage at barriers and provide or improve the aquatic habitat for endangered fish species. Current design methods are based upon anecdotal information applicable to a narrow range of channel conditions. The complex flow patterns and performance of rock weirs is not well understood. Without accurate understanding of their hydraulics, designers cannot address the failure mechanisms of these structures. Flow characteristics such as jets, near bed velocities, recirculation, eddies, and plunging flow govern scour pool development. These detailed flow patterns can be replicated using a 3D numerical model. Numerical studies inexpensively simulate a large number of cases resulting in an increased range of applicability in order to develop design tools and predictive capability for analysis and design. The analysis and results of the numerical modeling, laboratory modeling, and field data provide a process-based method for understanding how structure geometry affects flow characteristics, scour development, fish passage, water delivery, and overall structure stability. Results of the numerical modeling allow designers to utilize results of the analysis to determine the appropriate geometry for generating desirable flow parameters. The end product of this research will develop tools and guidelines for more robust structure design or retrofits based upon predictable engineering and hydraulic performance criteria. ?? 2009 ASCE.

  16. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  17. Cinnamon Use in Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis

    Science.gov (United States)

    Allen, Robert W.; Schwartzman, Emmanuelle; Baker, William L.; Coleman, Craig I.; Phung, Olivia J.

    2013-01-01

    PURPOSE Cinnamon has been studied in randomized controlled trials (RCTs) for its glycemic-lowering effects, but studies have been small and show conflicting results. A prior meta-analysis did not show significant results, but several RCTs have been published since then. We conducted an updated systematic review and meta-analysis of RCTs evaluating cinnamon’s effect on glycemia and lipid levels. METHODS MEDLINE, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) were searched through February 2012. Included RCTs evaluated cinnamon compared with control in patients with type 2 diabetes and reported at least one of the following: glycated hemoglobin (A1c), fasting plasma glucose, total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), or triglycerides. Weighted mean differences (with 95% confidence intervals) for endpoints were calculated using random-effects models. RESULTS In a meta-analysis of 10 RCTs (n = 543 patients), cinnamon doses of 120 mg/d to 6 g/d for 4 to 18 weeks reduced levels of fasting plasma glucose (−24.59 mg/dL; 95% CI, −40.52 to −8.67 mg/dL), total cholesterol (−15.60 mg/dL; 95% CI, −29.76 to −1.44 mg/dL), LDL-C (−9.42 mg/dL; 95% CI, −17.21 to −1.63 mg/dL), and triglycerides (−29.59 mg/dL; 95% CI, −48.27 to −10.91 mg/dL). Cinnamon also increased levels of HDL-C (1.66 mg/dL; 95% CI, 1.09 to 2.24 mg/dL). No significant effect on hemoglobin A1c levels (−0.16%; 95%, CI −0.39% to 0.02%) was seen. High degrees of heterogeneity were present for all analyses except HDL-C (I2 ranging from 66.5% to 94.72%). CONCLUSIONS The consumption of cinnamon is associated with a statistically significant decrease in levels of fasting plasma glucose, total cholesterol, LDL-C, and triglyceride levels, and an increase in HDL-C levels; however, no significant effect on hemoglobin A1c was found. The high degree of heterogeneity may limit the ability to apply these results

  18. Analysis of data relative to the update of diagnostic reference levels in radiology and nuclear medicine. 2011-2012 review

    International Nuclear Information System (INIS)

    2014-01-01

    Applying the Order of 24 October 2011 on diagnostic reference levels, departments of radiology and nuclear medicine must send a sample of 'patient' dosimetric data to the IRSN each year. The results of the analysis of dosimetric data performed between the 1 January 2011 and the 31 December 2012 presented in this report should enable the authority to define the needs for updating regulations. Professional involvement in DRLs improved globally over the 2011-2012 period but is heterogeneous according to the imaging area considered. The participation of conventional radiology professionals is still low, with less than 30% against over 75% in CT and 85% in nuclear medicine. Data collection in pediatrics, considering all the fields of medical imaging, remains extremely limited. This shows almost no dose assessment for children by imaging departments, and has the effect of not allowing authorities to provide professionals with DRLs representative of pediatric practices. The analysis of radiology doses and nuclear medicine administered activities by IRSN shows an overall decrease of statistical indicators on which DRLs are indexed. These results lead to proposals for updating reference values for a large number of examinations. In addition to the analysis of data collected for examinations currently mentioned in regulatory texts, IRSN recommends to update DRLs in a more general way by changing the strategy for collecting and updating pediatric DRLs, by including interventional radiology - specialty in which the radiation protection presents a major challenge - by introducing a more ambitious indicator than the 75. percentile in conventional radiology and nuclear medicine - the 25. percentile statistical indicator, and by taking into account new technologies inducing additional exposures to the patient as CT-scan associated with the PET. (authors)

  19. Numerical and experimental analysis of a horizontal ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, University of Firat, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, University of Firat, 23119 Elazig (Turkey)

    2007-03-15

    The main objective of this work is to evaluate a heat pump system using the ground as a source of heat. A ground-coupled heat pump (GCHP) system has been installed and tested at the test room, University of Firat, Elazig, Turkey. Results obtained during experimental testing are presented and discussed here. The coefficient of performance (COP{sub sys}) of the GCHP system is determined from the measured data. A numerical model of heat transfer in the ground was developed for determining the temperature distribution in the vicinity of the pipe. The finite difference approximation is used for numerical analysis. It is observed that the numerical results agree with the experimental results. (author) (author)

  20. Scalability on LHS (Latin Hypercube Sampling) samples for use in uncertainty analysis of large numerical models

    International Nuclear Information System (INIS)

    Baron, Jorge H.; Nunez Mac Leod, J.E.

    2000-01-01

    The present paper deals with the utilization of advanced sampling statistical methods to perform uncertainty and sensitivity analysis on numerical models. Such models may represent physical phenomena, logical structures (such as boolean expressions) or other systems, and various of their intrinsic parameters and/or input variables are usually treated as random variables simultaneously. In the present paper a simple method to scale-up Latin Hypercube Sampling (LHS) samples is presented, starting with a small sample and duplicating its size at each step, making it possible to use the already run numerical model results with the smaller sample. The method does not distort the statistical properties of the random variables and does not add any bias to the samples. The results is a significant reduction in numerical models running time can be achieved (by re-using the previously run samples), keeping all the advantages of LHS, until an acceptable representation level is achieved in the output variables. (author)

  1. Body mass index and hand osteoarthritis susceptibility: an updated meta-analysis.

    Science.gov (United States)

    Jiang, Liying; Xie, Xiaohua; Wang, Yidan; Wang, Yingchen; Lu, Yihua; Tian, Tian; Chu, Minjie; Shen, Yi

    2016-12-01

    Numerous epidemiologic studies have evaluated the association between overweight and hand osteoarthritis; However, the existing results are inconsistent. Systematic searches were performed and reference lists from the retrieved trials were searched. This meta-analysis and meta-regression was executed to identify all English-language articles that quantitatively assess the strength of associations between body mass index and hand osteoarthritis risk. Study-specific incremental estimates were standardized to determine the risk associated with a 5 kg/m 2 increase in body mass index. We conducted the study according to the guidelines for the meta-analysis of observational studies in epidemiology. Of the 21 studies included, 13 were cross-sectional studies, three were case control studies and five were cohort studies. The pooled summary estimates were 1.10 (95%CI: 0.98-1.24) with no significant difference (P = 0.09). Subgroup analysis shows that body mass index was positively associated with hand osteoarthritis in cross-sectional studies (1.05 [95%CI: 1.02-1.08] P osteoarthritis risk was found. The summary estimates were 1.06 (95%CI: 1.02-1.10) in studies defined by radiography and 1.25 (95%CI: 1.06-1.49) by radiography and clinically (P osteoarthritis, as defined radiographically and/or radiographically and clinically. The effects vary by study design and osteoarthritis definition. © 2016 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  2. Numerical determination of lateral loss coefficients for subchannel analysis in nuclear fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Sin Kim; Goon-Cherl Park [Seoul National Univ., Seoul (Korea, Republic of)

    1995-09-01

    An accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number {kappa}-{epsilon} turbulence model has been adopted in two adjacent subchannels with cross-flow. The secondary flow is estimated accurately by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity field in such subchannel domain, an analytical correlation of the lateral loss coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral flow velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.

  3. Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hwan; Yoon, Jun Kyu [Gachon Univ., Seongnam (Korea, Republic of)

    2013-04-15

    In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (A R), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CAD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1.5 m/s. RCM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the A R and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

  4. Present status of numerical analysis on transient two-phase flow

    International Nuclear Information System (INIS)

    Akimoto, Masayuki; Hirano, Masashi; Nariai, Hideki.

    1987-01-01

    The Special Committee for Numerical Analysis of Thermal Flow has recently been established under the Japan Atomic Energy Association. Here, some methods currently used for numerical analysis of transient two-phase flow are described citing some information given in the first report of the above-mentioned committee. Many analytical models for transient two-phase flow have been proposed, each of which is designed to describe a flow by using differential equations associated with conservation of mass, momentum and energy in a continuous two-phase flow system together with constructive equations that represent transportation of mass, momentum and energy though a gas-liquid interface or between a liquid flow and the channel wall. The author has developed an analysis code, called MINCS, that serves for systematic examination of conservation equation and constructive equations for two-phase flow models. A one-dimensional, non-equilibrium two-liquid flow model that is used as the basic model for the code is described. Actual procedures for numerical analysis is shown and some problems concerning transient two-phase analysis are described. (Nogami, K.)

  5. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    Science.gov (United States)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  6. Analysis of thermal-plastic response of shells of revolution by numerical integration

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    A numerical method based instead on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motions are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behavior, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. The elasto-plastic constitutive relations adopted are in accordance with currently recommended constitutive equations for inelastic design analysis of FFTF Components. The Von Mises yield criteria and associated flow rule is used and the kinematic hardening law is followed. Examples are considered in which stainless steels common to LMFBR application are used

  7. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update.

    Science.gov (United States)

    Tian, Tian; Liu, Yue; Yan, Hengyu; You, Qi; Yi, Xin; Du, Zhou; Xu, Wenying; Su, Zhen

    2017-07-03

    The agriGO platform, which has been serving the scientific community for >10 years, specifically focuses on gene ontology (GO) enrichment analyses of plant and agricultural species. We continuously maintain and update the databases and accommodate the various requests of our global users. Here, we present our updated agriGO that has a largely expanded number of supporting species (394) and datatypes (865). In addition, a larger number of species have been classified into groups covering crops, vegetables, fish, birds and insects closely related to the agricultural community. We further improved the computational efficiency, including the batch analysis and P-value distribution (PVD), and the user-friendliness of the web pages. More visualization features were added to the platform, including SEACOMPARE (cross comparison of singular enrichment analysis), direct acyclic graph (DAG) and Scatter Plots, which can be merged by choosing any significant GO term. The updated platform agriGO v2.0 is now publicly accessible at http://systemsbiology.cau.edu.cn/agriGOv2/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Numerical modeling assistance system in finite element analysis for the structure of an assembly

    International Nuclear Information System (INIS)

    Nakajima, Norihiro; Nishida, Akemi; Kawakami, Yoshiaki; Suzuki, Yoshio; Sawa, Kazuhiro; Iigaki, Kazuhiko

    2015-01-01

    The objective of structural analysis and seismic response analysis are well recognized and utilized as one of sophisticated analysis tools for design objects in the nuclear engineering. The way to design nuclear facilities is always in compromising with many index, such as costs, performance, robustness and so on, but the most important issues is the safety. It is true the structural analysis and seismic response analysis plays an important role to insure the safety, since it is well known that Japan is always facing to the earthquake. In this paper, a numerical analysis's controlling and managing system is implemented on a supercomputer, which controls the modelling process and data treating for structural robustness, although a numerical analysis's manager only controls a structural analysis by finite element method. The modeling process is described by the list of function ID and its procedures in a data base. The analytical modeling manager executes the process by order of the lists for simulation procedures. The manager controls the intention of an analysis by changing the analytical process one to another. Modeling process was experimentally found that may subject to the intention of designing index. The numerical experiments were carried out with static analyses and dynamic analyses. The results of its experiment introduce reasonable discussion to understand the accuracy of simulation. In the numerical experiments, K, supercomputer is utilized by using parallel computing resource with the controlling and managing system. The structural analysis and seismic response analysis are done by the FIEST, finite element analysis for the structure of an assembly, which carries out the simulation by gathering components. As components are attached to one another to build an assembly, and, therefore, the interactions between the components due to differences in material properties and their connection conditions considerably affect the behavior of an assembly. FIESTA is

  9. Exercise to prevent falls in older adults: an updated systematic review and meta-analysis.

    Science.gov (United States)

    Sherrington, Catherine; Michaleff, Zoe A; Fairhall, Nicola; Paul, Serene S; Tiedemann, Anne; Whitney, Julie; Cumming, Robert G; Herbert, Robert D; Close, Jacqueline C T; Lord, Stephen R

    2017-12-01

    Previous meta-analyses have found that exercise prevents falls in older people. This study aimed to test whether this effect is still present when new trials are added, and it explores whether characteristics of the trial design, sample or intervention are associated with greater fall prevention effects. Update of a systematic review with random effects meta-analysis and meta-regression. Cochrane Library, CINAHL, MEDLINE, EMBASE, PubMed, PEDro and SafetyLit were searched from January 2010 to January 2016. We included randomised controlled trials that compared fall rates in older people randomised to receive exercise as a single intervention with fall rates in those randomised to a control group. 99 comparisons from 88 trials with 19 478 participants were available for meta-analysis. Overall, exercise reduced the rate of falls in community-dwelling older people by 21% (pooled rate ratio 0.79, 95% CI 0.73 to 0.85, pexercise programmes that challenged balance and involved more than 3 hours/week of exercise. These variables explained 76% of the between-trial heterogeneity and in combination led to a 39% reduction in falls (incident rate ratio 0.61, 95% CI 0.53 to 0.72, pExercise also had a fall prevention effect in community-dwelling people with Parkinson's disease (pooled rate ratio 0.47, 95% CI 0.30 to 0.73, p=0.001, I 2 65%, 6 comparisons) or cognitive impairment (pooled rate ratio 0.55, 95% CI 0.37 to 0.83, p=0.004, I 2 21%, 3 comparisons). There was no evidence of a fall prevention effect of exercise in residential care settings or among stroke survivors or people recently discharged from hospital. Exercise as a single intervention can prevent falls in community-dwelling older people. Exercise programmes that challenge balance and are of a higher dose have larger effects. The impact of exercise as a single intervention in clinical groups and aged care facility residents requires further investigation, but promising results are evident for people with Parkinson

  10. Treatment of Latent Tuberculosis Infection: An Updated Network Meta-analysis.

    Science.gov (United States)

    Zenner, Dominik; Beer, Netta; Harris, Ross J; Lipman, Marc C; Stagg, Helen R; van der Werf, Marieke J

    2017-08-15

    Treatment of latent tuberculosis infection (LTBI) is an important component of tuberculosis (TB) control, and this study updates a previous network meta-analysis of the best LTBI treatment options to inform public health action and programmatic management of LTBI. To evaluate the comparative efficacy and harms of LTBI treatment regimens aimed at preventing active TB among adults and children. PubMed, Embase, and Web of Science from indexing to 8 May 2017; clinical trial registries; and conference abstracts. No language restrictions were applied. Randomized controlled trials that evaluated human LTBI treatments and recorded at least 1 of 2 prespecified end points (hepatotoxicity and prevention of active TB). 2 investigators independently extracted data from eligible studies and assessed study quality according to a standard protocol. The network meta-analysis of 8 new and 53 previously included studies showed that isoniazid regimens of 6 months (odds ratio [OR], 0.65 [95% credible interval {CrI}, 0.50 to 0.83]) or 12 to 72 months (OR, 0.50 [CrI, 0.41 to 0.62]), rifampicin-only regimens (OR, 0.41 [CrI, 0.19 to 0.85]), rifampicin-isoniazid regimens of 3 to 4 months (OR, 0.53 [CrI, 0.36 to 0.78]), rifampicin-isoniazid-pyrazinamide regimens (OR, 0.35 [CrI, 0.19 to 0.61]), and rifampicin-pyrazinamide regimens (OR, 0.53 [CrI, 0.33 to 0.84]) were efficacious compared with placebo. Evidence existed for efficacy of weekly rifapentine-isoniazid regimens compared with no treatment (OR, 0.36 [CrI, 0.18 to 0.73]). No conclusive evidence showed that HIV status altered treatment efficacy. Evidence was sparse for many comparisons and hepatotoxicity outcomes, and risk of bias was high or unknown for many studies. Evidence exists for the efficacy and safety of 6-month isoniazid monotherapy, rifampicin monotherapy, and combination therapies with 3 to 4 months of isoniazid and rifampicin. U.K. National Institute for Health Research. (PROSPERO: CRD42016037871).

  11. Contributions to mathematical analysis and to numerical approximation in plasma physics

    International Nuclear Information System (INIS)

    Besse, N.

    2009-01-01

    The author's scientific works deal with numerical analysis and the simulation of the partial differential equations that intervene in the transport of charged particles and in plasma physics. In the chapters 2 and 3, a reduction of the Vlasov equation is presented, this method is based on the Liouville geometric invariants and it leads to a mathematical model named water-bag model that can be coupled with various equations of the electromagnetic field: the Poisson equation, the quasi-neutral equation or Maxwell equations. In the chapter 3 this reduction method is applied to the Vlasov gyro-kinetic equation to form the gyro-water-bag model. The mathematical analysis of this model produces interesting analytical results such as: threshold instabilities, instability growth rate, transport coefficient and non-linear turbulence mechanisms. Simulations have been performed to study turbulence in magnetized plasmas. In these plasmas occurred numerous instabilities due to the presence of high density and temperature gradients. These instabilities generate turbulence that deteriorates plasma confinement conditions required for thermonuclear fusion. The numerical calculation of turbulent thermal diffusivities is important since confinement time is determined by these transport coefficients. The chapter 4 gathers mathematical analysis issues like convergence or prior knowledge of errors concerning several high-order numerical methods used to solve Vlasov-Poisson or Vlasov-Einstein equation systems as well as the induction equation of an idealistic MHD system. The chapter 5 presents original numerical methods to solve several non-linear Vlasov equations such as Vlasov-Poisswell, Vlasov-Darwin, Vlasov-Maxwell and Vlasov-gyrokinetic that are involved either in inertial fusion or in magnetic confinement fusion

  12. Numerical analysis of melting/solidification phenomena using a moving boundary problem analysis method X-FEM

    International Nuclear Information System (INIS)

    Uchibori, Akihiro; Ohshima, Hiroyuki

    2008-01-01

    A numerical analysis method for melting/solidification phenomena has been developed to evaluate a feasibility of several candidate techniques in the nuclear fuel cycle. Our method is based on the eXtended Finite Element Method (X-FEM) which has been used for moving boundary problems. Key technique of the X-FEM is to incorporate signed distance function into finite element interpolation to represent a discontinuous gradient of the temperature at a moving solid-liquid interface. Construction of the finite element equation, the technique of quadrature and the method to solve the equation are reported here. The numerical solutions of the one-dimensional Stefan problem, solidification in a two-dimensional square corner and melting of pure gallium are compared to the exact solutions or to the experimental data. Through these analyses, validity of the newly developed numerical analysis method has been demonstrated. (author)

  13. BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis

    NARCIS (Netherlands)

    Sermondade, N.; Faure, C.; Fezeu, L.; Shayeb, A. G.; Bonde, J. P.; Jensen, T. K.; van Wely, M.; Cao, J.; Martini, A. C.; Eskandar, M.; Chavarro, J. E.; Koloszar, S.; Twigt, J. M.; Ramlau-Hansen, C. H.; Borges, E.; Lotti, F.; Steegers-Theunissen, R. P. M.; Zorn, B.; Polotsky, A. J.; La Vignera, S.; Eskenazi, B.; Tremellen, K.; Magnusdottir, E. V.; Fejes, I.; Hercberg, S.; Lévy, R.; Czernichow, S.

    2013-01-01

    BACKGROUND The global obesity epidemic has paralleled a decrease in semen quality. Yet, the association between obesity and sperm parameters remains controversial. The purpose of this report was to update the evidence on the association between BMI and sperm count through a systematic review with

  14. Regression analysis of censored data using pseudo-observations: An update

    DEFF Research Database (Denmark)

    Overgaard, Morten; Andersen, Per Kragh; Parner, Erik Thorlund

    2015-01-01

    competing risks, the restricted mean survival-time function, and the cause-specific lost-lifetime function. The pseudo-observations can be used to assess the effects of covariates on their respective functions at different times by fitting generalized linear models to the pseudo-observations. The updated...

  15. Resilience Analysis of Key Update Strategies for Resource-Constrained Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2011-01-01

    Severe resource limitations in certain types of networks lead to various open issues in security. Since such networks usually operate in unattended or hostile environments, revoking the cryptographic keys and establishing (also distributing) new keys – which we refer to as key update – is a criti...

  16. Development of a numerical model for vehicle-bridge interaction analysis of railway bridges

    Science.gov (United States)

    Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon

    2016-04-01

    In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).

  17. Numerical analysis of mixing process of two component gases in vertical fluid layer

    International Nuclear Information System (INIS)

    Hatori, Hirofumi; Takeda, Tetsuaki; Funatani, Shumpei

    2015-01-01

    When the depressurization accident occurs in the Very-High-Temperature Reactor (VHTR), it is expected that air enter into the reactor core. Therefore, it is important to know a mixing process of different kind of gases in the stable or unstable stratified fluid layer. Especially, it is also important to examine an influence of localized natural convection and molecular diffusion on mixing process from a viewpoint of safety. In order to research the mixing process of two component gases and flow characteristics of the localized natural convection, we have carried out numerical analysis using three dimensional CFD code. The numerical model was consisted of a storage tank and a reverse U-shaped vertical slot. They were separated by a partition plate. One side of the left vertical fluid layer was heated and the other side was cooled. The right vertical fluid layer was also cooled. The procedure of numerical analysis is as follows. Firstly, the storage tank was filled with heavy gas and the reverse U-shaped vertical slot was filled with light gas. In the left vertical fluid layer, the localized natural convection was generated by the temperature difference between the vertical walls. The flow characteristics were obtained by a steady state analysis. The unsteady state analysis was started when the partition plate was opened. The gases were mixed by molecular diffusion and natural convection. After the time elapsed, natural circulation occurred. The result obtained in this numerical analysis is as follows. The temperature difference of the left vertical fluid layer was set to 100 K. The combination of the mixed gas was nitrogen and argon. After 76 minutes elapsed, natural circulation occurred. (author)

  18. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    International Nuclear Information System (INIS)

    Zhou, Xiafeng; Guo, Jiong; Li, Fu

    2015-01-01

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  19. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

    2015-12-15

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  20. Clinical applications of scanning electron microscopy and energy dispersive X-ray analysis in dermatology--an up-date

    International Nuclear Information System (INIS)

    Forslind, B.

    1988-01-01

    Dermatological papers comprising scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis data published 1983 through 1986 in international journals are reviewed, as an update to our 1984 paper on Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology. The present paper not only deals with a review of recent publications in this area but also presents the application of microincineration to hair and cryosectioned freeze-dried skin specimens. Examples of the increased contrast obtained in hair cross sections are presented and a discussion on the feasibility of microincineration at analysis of hair and skin cross sections is given. Particle probe analysis (EDX: energy dispersive X-ray analysis and PMP: proton microprobe analysis) as applied to hair and skin samples are presented with stress put on the proton probe analysis. The complementarity of EDX and PMP is demonstrated and future applications are suggested. 75 references

  1. Numerical analysis of a PCM thermal storage system with varying wall temperature

    International Nuclear Information System (INIS)

    Halawa, E.; Bruno, F.; Saman, W.

    2005-01-01

    Numerical analysis of melting and freezing of a PCM thermal storage unit (TSU) with varying wall temperature is presented. The TSU under analysis consists of several layers of thin slabs of a PCM subjected to convective boundary conditions where air flows between the slabs. The model employed takes into account the variations in wall temperature along the direction of air flow as well as the sensible heat. The paper discusses typical characteristics of the melting/freezing of PCM slabs in an air stream and presents some results of the numerical simulation in terms of air outlet temperatures and heat transfer rates during the whole periods of melting and freezing. Considerations in the design of the TSU are also given

  2. Advances in variational and hemivariational inequalities theory, numerical analysis, and applications

    CERN Document Server

    Migórski, Stanisław; Sofonea, Mircea

    2015-01-01

    Highlighting recent advances in variational and hemivariational inequalities with an emphasis on theory, numerical analysis and applications, this volume serves as an indispensable resource to graduate students and researchers interested in the latest results from recognized scholars in this relatively young and rapidly-growing field. Particularly, readers will find that the volume’s results and analysis present valuable insights into the fields of pure and applied mathematics, as well as civil, aeronautical, and mechanical engineering. Researchers and students will find new results on well posedness to stationary and evolutionary inequalities and their rigorous proofs. In addition to results on modeling and abstract problems, the book contains new results on the numerical methods for variational and hemivariational inequalities. Finally, the applications presented illustrate the use of these results in the study of miscellaneous mathematical models which describe the contact between deformable bodies and a...

  3. Stability analysis of single-phase thermosyphon loops by finite difference numerical methods

    International Nuclear Information System (INIS)

    Ambrosini, W.

    1998-01-01

    In this paper, examples of the application of finite difference numerical methods in the analysis of stability of single-phase natural circulation loops are reported. The problem is here addressed for its relevance for thermal-hydraulic system code applications, in the aim to point out the effect of truncation error on stability prediction. The methodology adopted for analysing in a systematic way the effect of various finite difference discretization can be considered the numerical analogue of the usual techniques adopted for PDE stability analysis. Three different single-phase loop configurations are considered involving various kinds of boundary conditions. In one of these cases, an original dimensionless form of the governing equations is proposed, adopting the Reynolds number as a flow variable. This allows for an appropriate consideration of transition between laminar and turbulent regimes, which is not possible with other dimensionless forms, thus enlarging the field of validity of model assumptions. (author). 14 refs., 8 figs

  4. Development of high velocity gas gun with a new trigger system-numerical analysis

    Science.gov (United States)

    Husin, Z.; Homma, H.

    2018-02-01

    In development of high performance armor vests, we need to carry out well controlled experiments using bullet speed of more than 900 m/sec. After reviewing trigger systems used for high velocity gas guns, this research intends to develop a new trigger system, which can realize precise and reproducible impact tests at impact velocity of more than 900 m/sec. A new trigger system developed here is called a projectile trap. A projectile trap is placed between a reservoir and a barrel. A projectile trap has two functions of a sealing disk and triggering. Polyamidimide is selected for the trap material and dimensions of the projectile trap are determined by numerical analysis for several levels of launching pressure to change the projectile velocity. Numerical analysis results show that projectile trap designed here can operate reasonably and stresses caused during launching operation are less than material strength. It means a projectile trap can be reused for the next shooting.

  5. Application of numerical analysis technique to make up for pipe wall thinning prediction program

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Jin, Tae Eun; Park, Won; Oh, Dong Hoon

    2009-01-01

    Flow Accelerated Corrosion (FAC) leads to wall thinning of steel piping exposed to flowing water or wet steam. Experience has shown that FAC damage to piping at fossil and nuclear plants can lead to costly outages and repairs and can affect plant reliability and safety. CHEWORKS have been utilized in domestic nuclear plants as a predictive tool to assist FAC engineers in planning inspections and evaluating the inspection data to prevent piping failures caused by FAC. However, CHECWORKS may be occasionally left out local susceptible portions owing to predicting FAC damage by pipeline group after constructing a database for all secondary side piping in nuclear plants. This paper describes the methodologies that can complement CHECWORKS and the verifications of the CHECWORKS prediction results in terms of numerical analysis. FAC susceptible locations based on CHECWORKS for the two pipeline groups of a nuclear plant was compared with those of numerical analysis based on FLUENT.

  6. Supplementation of Flow Accelerated Corrosion Prediction Program Using Numerical Analysis Technique

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Jin, Tae Eun; Park, Won; Oh, Dong Hoon

    2010-01-01

    Flow-accelerated corrosion (FAC) leads to thinning of steel pipe walls that are exposed to flowing water or wet steam. From experience, it is seen that FAC damage to piping at fossil and nuclear plants can result in outages that require expensive repairs and can affect plant reliability and safety. CHECWORKS have been utilized in domestic nuclear plants as a predictive tool to assist FAC engineers in planning inspections and evaluating the inspection data so that piping failures caused by FAC can be prevented. However, CHECWORKS may be occasionally ignore local susceptible portions when predicting FAC damage in a group of pipelines after constructing a database for all the secondary side piping in nuclear plants. This paper describes the methodologies that can complement CHECWORKS and the verifications of CHECWORKS prediction results using numerical analysis. FAC susceptible locations determined using CHECWORKS for two pipeline groups of a nuclear plant was compared with determined using the numerical-analysis-based FLUENT

  7. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  8. Effect Of Turbulence Modelling In Numerical Analysis Of Melting Process In An Induction Furnace

    Directory of Open Access Journals (Sweden)

    Buliński P.

    2015-09-01

    Full Text Available In this paper, the velocity field and turbulence effects that occur inside a crucible of a typical induction furnace were investigated. In the first part of this work, a free surface shape of the liquid metal was measured in a ceramic crucible. Then a numerical model of aluminium melting process was developed. It took into account coupling of electromagnetic and thermofluid fields that was performed using commercial codes. In the next step, the sensitivity analysis of turbulence modelling in the liquid domain was performed. The obtained numerical results were compared with the measurement data. The performed analysis can be treated as a preliminary approach for more complex mathematical modelling for the melting process optimisation in crucible induction furnaces of different types.

  9. A Numerical Analysis on the Local Deformation of a Spacer Grid Structure for Nuclear Fuel Cells

    International Nuclear Information System (INIS)

    Jang, Myung-Geun; Na, Geum Ju; Kim, Jong-Bong; Shin, Hyunho

    2016-01-01

    The result of a preliminary numerical investigation on local deformation characteristics of a multi-layered spacer-grid structure with five guide tubes is reported based on implicit finite element analysis. For the numerical analysis, displacements of top and bottom cross sections of each guide tube in a single-layer model were constrained while a lateral displacement was imposed on the single layer. Unlike the impact hammer test that is generally employed to characterize the deformation characteristics of the space-grid structure, the buckling phenomenon occurs locally in this study; it takes place at the inner grids around each tube and the degree of bucking is more apparent for tubes near the lateral surface where the lateral displacement was imposed. (paper)

  10. An update on the "empirical turn" in bioethics: analysis of empirical research in nine bioethics journals.

    Science.gov (United States)

    Wangmo, Tenzin; Hauri, Sirin; Gennet, Eloise; Anane-Sarpong, Evelyn; Provoost, Veerle; Elger, Bernice S

    2018-02-07

    A review of literature published a decade ago noted a significant increase in empirical papers across nine bioethics journals. This study provides an update on the presence of empirical papers in the same nine journals. It first evaluates whether the empirical trend is continuing as noted in the previous study, and second, how it is changing, that is, what are the characteristics of the empirical works published in these nine bioethics journals. A review of the same nine journals (Bioethics; Journal of Medical Ethics; Journal of Clinical Ethics; Nursing Ethics; Cambridge Quarterly of Healthcare Ethics; Hastings Center Report; Theoretical Medicine and Bioethics; Christian Bioethics; and Kennedy Institute of Ethics Journal) was conducted for a 12-year period from 2004 to 2015. Data obtained was analysed descriptively and using a non-parametric Chi-square test. Of the total number of original papers (N = 5567) published in the nine bioethics journals, 18.1% (n = 1007) collected and analysed empirical data. Journal of Medical Ethics and Nursing Ethics led the empirical publications, accounting for 89.4% of all empirical papers. The former published significantly more quantitative papers than qualitative, whereas the latter published more qualitative papers. Our analysis reveals no significant difference (χ2 = 2.857; p = 0.091) between the proportion of empirical papers published in 2004-2009 and 2010-2015. However, the increasing empirical trend has continued in these journals with the proportion of empirical papers increasing from 14.9% in 2004 to 17.8% in 2015. This study presents the current state of affairs regarding empirical research published nine bioethics journals. In the quarter century of data that is available about the nine bioethics journals studied in two reviews, the proportion of empirical publications continues to increase, signifying a trend towards empirical research in bioethics. The growing volume is mainly attributable to two

  11. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis

    Science.gov (United States)

    Rajasingham, Radha; Smith, Rachel M; Park, Benjamin J; Jarvis, Joseph N; Govender, Nelesh P; Chiller, Tom M; Denning, David W; Loyse, Angela; Boulware, David R

    2018-01-01

    Summary Background Cryptococcus is the most common cause of meningitis in adults living with HIV in sub-Saharan Africa. Global burden estimates are crucial to guide prevention strategies and to determine treatment needs, and we aimed to provide an updated estimate of global incidence of HIV-associated cryptococcal disease. Methods We used 2014 Joint UN Programme on HIV and AIDS estimates of adults (aged >15 years) with HIV and antiretroviral therapy (ART) coverage. Estimates of CD4 less than 100 cells per µL, virological failure incidence, and loss to follow-up were from published multinational cohorts in low-income and middle-income countries. We calculated those at risk for cryptococcal infection, specifically those with CD4 less than 100 cells/µL not on ART, and those with CD4 less than 100 cells per µL on ART but lost to follow-up or with virological failure. Cryptococcal antigenaemia prevalence by country was derived from 46 studies globally. Based on cryptococcal antigenaemia prevalence in each country and region, we estimated the annual numbers of people who are developing and dying from cryptococcal meningitis. Findings We estimated an average global cryptococcal antigenaemia prevalence of 6·0% (95% CI 5·8–6·2) among people with a CD4 cell count of less than 100 cells per µL, with 278 000 (95% CI 195 500–340 600) people positive for cryptococcal antigen globally and 223 100 (95% CI 150 600–282 400) incident cases of cryptococcal meningitis globally in 2014. Sub-Saharan Africa accounted for 73% of the estimated cryptococcal meningitis cases in 2014 (162 500 cases [95% CI 113 600–193 900]). Annual global deaths from cryptococcal meningitis were estimated at 181 100 (95% CI 119 400–234 300), with 135 900 (75%; [95% CI 93 900–163 900]) deaths in sub-Saharan Africa. Globally, cryptococcal meningitis was responsible for 15% of AIDS-related deaths (95% CI 10–19). Interpretation Our analysis highlights the substantial ongoing burden of HIV

  12. Four generations versus left-right symmetry. A comparative numerical analysis

    International Nuclear Information System (INIS)

    Heidsieck, Tillmann J.

    2012-01-01

    In this work, we present a comparative numerical analysis of the Standard Model (SM) with a sequential fourth generation (SM4) and the left-right symmetric Standard model (LRM). We focus on the constraints induced by flavour violating ΔF=2 processes in the K and B system while the results of studies of collider bounds and electroweak precision tests are taken into account as external inputs. In contrast to many previous studies of both models considered in this work, we do make not any ad-hoc assumptions on the structure of the relevant mixing matrices. Therefore, we employ powerful Monte Carlo methods in order to approximate the viable parameter space of the models. In preparation of our numerical analysis, we present all relevant formulae and review the different numerical methods used in this work. In order to better understand the patterns of new effects in ΔF=2 processes, we perform a fit including all relevant ΔF=2 constraints in the context of the Standard Model. The result of this fit is then used in a general discussion on new effects in ΔF=2 processes in the context of generic extensions of the Standard Model. Our numerical analysis of the SM4 and the LRM demonstrates that in both models the existing anomalies in Δ=2 processes can easily be resolved. We transparently show how the different observables are connected to each other by their dependence on combinations of mixing parameters. In our analysis of rare decays in the SM4, we establish patterns of flavour violation that could in principle be used to disprove this model on the basis of ΔF=1 processes alone. In the LRM, we discuss the importance of the contributions originating from the exchange of heavy, flavour changing, neutral Higgs bosons as well as the inability of the LRM to entirely solve the V ub problem.

  13. A Numerical Method for Blast Shock Wave Analysis of Missile Launch from Aircraft

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2015-01-01

    Full Text Available An efficient empirical approach was developed to accurately represent the blast shock wave loading resulting from the launch of a missile from a military aircraft to be used in numerical analyses. Based on experimental test series of missile launches in laboratory environment and from a helicopter, equations were derived to predict the time- and position-dependent overpressure. The method was finally applied and validated in a structural analysis of a helicopter tail boom under missile launch shock wave loading.

  14. Four generations versus left-right symmetry. A comparative numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heidsieck, Tillmann J.

    2012-06-18

    In this work, we present a comparative numerical analysis of the Standard Model (SM) with a sequential fourth generation (SM4) and the left-right symmetric Standard model (LRM). We focus on the constraints induced by flavour violating {Delta}F=2 processes in the K and B system while the results of studies of collider bounds and electroweak precision tests are taken into account as external inputs. In contrast to many previous studies of both models considered in this work, we do make not any ad-hoc assumptions on the structure of the relevant mixing matrices. Therefore, we employ powerful Monte Carlo methods in order to approximate the viable parameter space of the models. In preparation of our numerical analysis, we present all relevant formulae and review the different numerical methods used in this work. In order to better understand the patterns of new effects in {Delta}F=2 processes, we perform a fit including all relevant {Delta}F=2 constraints in the context of the Standard Model. The result of this fit is then used in a general discussion on new effects in {Delta}F=2 processes in the context of generic extensions of the Standard Model. Our numerical analysis of the SM4 and the LRM demonstrates that in both models the existing anomalies in {Delta}=2 processes can easily be resolved. We transparently show how the different observables are connected to each other by their dependence on combinations of mixing parameters. In our analysis of rare decays in the SM4, we establish patterns of flavour violation that could in principle be used to disprove this model on the basis of {Delta}F=1 processes alone. In the LRM, we discuss the importance of the contributions originating from the exchange of heavy, flavour changing, neutral Higgs bosons as well as the inability of the LRM to entirely solve the V{sub ub} problem.

  15. Some aspects of numerical analysis of turbulent gaseous and spray combustion

    International Nuclear Information System (INIS)

    Takagi, T.

    1991-01-01

    In this paper numerical calculations and analysis on turbulent non-premixed gaseous and spray combustion are reviewed. Attentions were paid to the turbulent flow and combustion modeling applicable to predicting the flow, mixing and combustion of gaseous fuels and sprays. Some of the computed results of turbulent gaseous non-premixed (diffusion) flames with and without swirl and transient spray combustion were compared with experimental ones to understand the processes in the flame and to assure how the computations predict the experiments

  16. Numerical analysis of temperature field during hardfacing process and comparison with experimental results

    Directory of Open Access Journals (Sweden)

    Lazić Vukić N.

    2014-01-01

    Full Text Available The three-dimensional transient nonlinear thermal analysis of the hard facing process is performed by using the finite element method. The simulations were executed on the open source Salome platform using the open source finite element solver Code_Aster. The Gaussian double ellipsoid was selected in order to enable greater possibilities for the calculation of the moving heat source. The numerical results were compared with available experimental results.

  17. Numerical Analysis of a Centrifugal Fan for Improved Performance using Splitter Vanes

    OpenAIRE

    N. Yagnesh Sharma; K. Vasudeva Karanth

    2009-01-01

    The flow field in a centrifugal fan is highly complex with flow reversal taking place on the suction side of impeller and diffuser vanes. Generally performance of the centrifugal fan could be enhanced by judiciously introducing splitter vanes so as to improve the diffusion process. An extensive numerical whole field analysis on the effect of splitter vanes placed in discrete regions of suspected separation points is possible using CFD. This paper examines the effect of sp...

  18. Elucidation of self-induced sloshing occurrence mechanism using numerical analysis

    International Nuclear Information System (INIS)

    Saeki, Soichi; Madarame, Haruki; Okamoto, Koji; Tanaka, Nobukazu.

    1995-01-01

    In liquid metal-cooled fast breeder reactors, there is free liquid surface in a reactor vessel and others, and by reducing the size of the reactor vessel and others, it is necessary to increase the flow velocity of liquid sodium coolant. In the free liquid surface in which fast circulating flow exists, undesirable phenomena like waving and bubble catching are feared. The self-induced sloshing taken up in this study is one of these phenomena. Since the actual machine has complex three-dimensional structure, in order to forecast the occurrence of sloshing, it is necessary to elucidate the mechanism of vibration occurrence. The mechanism of occurrence of self-induced sloshing due to horizontal and vertical plane jets has been explained a number of times so far. In this study, by applying the model of the occurrence mechanism of Fukaya to horizontal plane jet, the self-induced sloshing due to horizontal plane jet was simulated by numerical analysis. Based on the results, it was attempted to examine the vibration energy supplied to sloshing in a whole flow field and the dependence of sloshing region on water depth and flow velocity. The numerical simulation, the analysis of the occurrence mechanism by using the numerical analysis code and the results are reported. (K.I.)

  19. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Dong-Yoon; Kang, Moon-Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-06-15

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  20. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    International Nuclear Information System (INIS)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho; Kim, Dong-Yoon; Kang, Moon-Jin

    2017-01-01

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  1. On the Validation of a Numerical Model for the Analysis of Soil-Structure Interaction Problems

    Directory of Open Access Journals (Sweden)

    Jorge Luis Palomino Tamayo

    Full Text Available Abstract Modeling and simulation of mechanical response of structures, relies on the use of computational models. Therefore, verification and validation procedures are the primary means of assessing accuracy, confidence and credibility in modeling. This paper is concerned with the validation of a three dimensional numerical model based on the finite element method suitable for the dynamic analysis of soil-structure interaction problems. The soil mass, structure, structure's foundation and the appropriate boundary conditions can be represented altogether in a single model by using a direct approach. The theory of porous media of Biot is used to represent the soil mass as a two-phase material which is considered to be fully saturated with water; meanwhile other parts of the system are treated as one-phase materials. Plasticity of the soil mass is the main source of non-linearity in the problem and therefore an iterative-incremental algorithm based on the Newton-Raphson procedure is used to solve the nonlinear equilibrium equations. For discretization in time, the Generalized Newmark-β method is used. The soil is represented by a plasticity-based, effective-stress constitutive model suitable for liquefaction. Validation of the present numerical model is done by comparing analytical and centrifuge test results of soil and soil-pile systems with those results obtained with the present numerical model. A soil-pile-structure interaction problem is also presented in order to shown the potentiality of the numerical tool.

  2. Numerical analysis of non-stationary free surface flow in a Pelton bucket

    Energy Technology Data Exchange (ETDEWEB)

    Hana, Morten

    1999-07-01

    Computation and analysis of flow in Pelton buckets have been carried out. First a graphical method is investigated and partially improved. In order to decide whether to improve the method further or disregard it in favour of commercial computational fluid dynamics (CFD) codes, a study on numerical methods for free surface flow was carried out. This part of this work concentrates on the theoretical background for different numerical methods, and describes some practical considerations. Although small programs were created based on the literature survey, but only one reported herein, it was soon found that commonly available numerical codes were favourable in use. A code, RIPPLE, was acquired to study the Volume of Fluid (VOF) method in detail. The commercial codes used were Flow-3D and CFX-4. These programs were used in three different cases. First, a simplified 2-dimensional case was verified experimentally. Next, a 3-dimensional fixed jet calculation was carried out. Finally, numerical calculations with relative motion between the jet and buckets were carried out with CFX-4. The conclusion is that commercial CFD codes can replace the graphical method. But careful implementation is needed in order to resolve the special features of Pelton turbines, which are the free surface, the complex geometry and the relative motion between the jet and the bucket.

  3. Exploring the use of numerical relativity waveforms in burst analysis of precessing black hole mergers

    International Nuclear Information System (INIS)

    Fischetti, Sebastian; Cadonati, Laura; Mohapatra, Satyanarayan R. P.; Healy, James; London, Lionel; Shoemaker, Deirdre

    2011-01-01

    Recent years have witnessed tremendous progress in numerical relativity and an ever improving performance of ground-based interferometric gravitational wave detectors. In preparation for the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO) and a new era in gravitational wave astronomy, the numerical relativity and gravitational wave data analysis communities are collaborating to ascertain the most useful role for numerical relativity waveforms in the detection and characterization of binary black hole coalescences. In this paper, we explore the detectability of equal mass, merging black hole binaries with precessing spins and total mass M T (set-membership sign)[80,350]M · , using numerical relativity waveforms and templateless search algorithms designed for gravitational wave bursts. In particular, we present a systematic study using waveforms produced by the MayaKranc code that are added to colored, Gaussian noise and analyzed with the Omega burst search algorithm. Detection efficiency is weighed against the orientation of one of the black-hole's spin axes. We find a strong correlation between the detection efficiency and the radiated energy and angular momentum, and that the inclusion of the l=2, m=±1, 0 modes, at a minimum, is necessary to account for the full dynamics of precessing systems.

  4. Numerical analysis of experiments modeling LWR sump cooling by natural convection

    International Nuclear Information System (INIS)

    2002-01-01

    An optional sump cooling concept for the European pressurized water reactor EPR was investigated at the Research Center Karlsruhe. This concept foresees to utilize single phase natural convection in water to remove the decay heat from the core melt. The natural convection was investigated by the SUCOS-2D and -3D scaled experiments. A numerical investigation and interpretation of these experiments was performed by means of the computer code FLUTAN. In this paper, the numerical investigation of SUCOS-3D is summarized. Following the results of the former 2d experiments and the numerical analysis of both experiments, an unexpected temperature distribution is found in this 3d experiment. Basing on the experimental data it had to be postulated that one of the horizontal coolers was slightly tilled against the main flow direction. Additional numerical investigations show that a slope of only one percent would explain the experimental flow field. Conclusions are also drawn on the limits of scalability and transferability of the experimental results to a reactor sump. A detailed transformation will only be possible by applying well validated CFD-codes and experienced code users. As the flow in the reactor sump will be turbulent and this flow is strongly three-dimensional and time-dependent, only the method of Large Eddy Simulation is considered of being an adequate tool for reliable trans formation of the gained experience to analyses for the reactor sump at 1:1 scales. (author)

  5. Memory updating and mental arithmetic

    Directory of Open Access Journals (Sweden)

    Cheng-Ching eHan

    2016-02-01

    Full Text Available Is domain-general memory updating ability predictive of calculation skills or are such skills better predicted by the capacity for updating specifically numerical information? Here, we used multidigit mental multiplication (MMM as a measure for calculating skill as this operation requires the accurate maintenance and updating of information in addition to skills needed for arithmetic more generally. In Experiment 1, we found that only individual differences with regard to a task updating numerical information following addition (MUcalc could predict the performance of MMM, perhaps owing to common elements between the task and MMM. In Experiment 2, new updating tasks were designed to clarify this: a spatial updating task with no numbers, a numerical task with no calculation, and a word task. The results showed that both MUcalc and the spatial task were able to predict the performance of MMM but only with the more difficult problems, while other updating tasks did not predict performance. It is concluded that relevant processes involved in updating the contents of working memory support mental arithmetic in adults.

  6. Numerical method for time-dependent localized corrosion analysis with moving boundaries by combining the finite volume method and voxel method

    International Nuclear Information System (INIS)

    Onishi, Yuki; Takiyasu, Jumpei; Amaya, Kenji; Yakuwa, Hiroshi; Hayabusa, Keisuke

    2012-01-01

    Highlights: ► A novel numerical method to analyze time dependent localized corrosion is developed. ► It takes electromigration, mass diffusion, chemical reactions, and moving boundaries. ► Our method perfectly satisfies the conservation of mass and electroneutrality. ► The behavior of typical crevice corrosion is successfully simulated. ► Both verification and validation of our method are carried out. - Abstract: A novel numerical method for time-dependent localized corrosion analysis is presented. Electromigration, mass diffusion, chemical reactions, and moving boundaries are considered in the numerical simulation of localized corrosion of engineering alloys in an underwater environment. Our method combines the finite volume method (FVM) and the voxel method. The FVM is adopted in the corrosion rate calculation so that the conservation of mass is satisfied. A newly developed decoupled algorithm with a projection method is introduced in the FVM to decouple the multiphysics problem into the electrostatic, mass transport, and chemical reaction analyses with electroneutrality maintained. The polarization curves for the corroding metal are used as boundary conditions for the metal surfaces to calculate the corrosion rates. The voxel method is adopted in updating the moving boundaries of cavities without remeshing and mesh-to-mesh solution mapping. Some modifications of the standard voxel method, which represents the boundaries as zigzag-shaped surfaces, are introduced to generate smooth surfaces. Our method successfully reproduces the numerical and experimental results of a capillary electrophoresis problem. Furthermore, the numerical results are qualitatively consistent with the experimental results for several examples of crevice corrosion.

  7. Developing group investigation-based book on numerical analysis to increase critical thinking student’s ability

    Science.gov (United States)

    Maharani, S.; Suprapto, E.

    2018-03-01

    Critical thinking is very important in Mathematics; it can make student more understanding mathematics concept. Critical thinking is also needed in numerical analysis. The Numerical analysis's book is not yet including critical thinking in them. This research aims to develop group investigation-based book on numerical analysis to increase critical thinking student’s ability, to know the quality of the group investigation-based book on numerical analysis is valid, practical, and effective. The research method is Research and Development (R&D) with the subject are 30 student college department of Mathematics education at Universitas PGRI Madiun. The development model used is 4-D modified to 3-D until the stage development. The type of data used is descriptive qualitative data. Instruments used are sheets of validation, test, and questionnaire. Development results indicate that group investigation-based book on numerical analysis in the category of valid a value 84.25%. Students response to the books very positive, so group investigation-based book on numerical analysis category practical, i.e., 86.00%. The use of group investigation-based book on numerical analysis has been meeting the completeness criteria classical learning that is 84.32 %. Based on research result of this study concluded that group investigation-based book on numerical analysis is feasible because it meets the criteria valid, practical, and effective. So, the book can be used by every mathematics academician. The next research can be observed that book based group investigation in other subjects.

  8. Numerical Model and Analysis of Peak Temperature Reduction in LiFePO4 Battery Packs Using Phase Change Materials

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials......Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials...

  9. Experimental and Numerical Analysis of Screw Fixation in Anterior Cruciate Ligament Reconstruction

    Science.gov (United States)

    Chizari, Mahmoud; Wang, Bin; Snow, Martyn; Barrett, Mel

    2008-09-01

    This paper reports the results of an experimental and finite element analysis of tibial screw fixation in anterior cruciate ligament (ACL) reconstruction. The mechanical properties of the bone and tendon graft are obtained from experiments using porcine bone and bovine tendon. The results of the numerical study are compared with those from mechanical testing. Analysis shows that the model may be used to establish the optimum placement of the tunnel in anterior cruciate ligament reconstruction by predicting mechanical parameters such as stress, strain and displacement at regions in the tunnel wall.

  10. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry; Kasimov, Aslan R.

    2018-01-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  11. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry I.

    2017-12-08

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  12. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry

    2018-03-20

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  13. The Development and Numerical Analysis of the Conical Radiator Extrusion Process

    Directory of Open Access Journals (Sweden)

    Michalczyk J.

    2017-12-01

    Full Text Available The article presents a newly developed method for single-operation extrusion of conical radiators. This is the author’s radiator manufacturing method being the subject of a patent application. The proposed method enables the manufacture of radiators either with or without an inner opening and with an integral plate. Selected results of numerical computations made within Forge®3D, a finite element method (FEM-based software program, were presented during the analysis of the process. A comparative analysis of the proposed manufacturing method using the double-sided extrusion method was also made.

  14. Experimental and numerical analysis of interlocking rib formation at sheet metal blanking

    Science.gov (United States)

    Bolka, Špela; Bratuš, Vitoslav; Starman, Bojan; Mole, Nikolaj

    2018-05-01

    Cores for electrical motors are typically produced by blanking of laminations and then stacking them together, with, for instance, interlocking ribs or welding. Strict geometrical tolerances, both on the lamination and on the stack, combined with complex part geometry and harder steel strip material, call for use of predictive methods to optimize the process before actual blanking to reduce the costs and speed up the process. One of the major influences on the final stack geometry is the quality of the interlocking ribs. A rib is formed in one step and joined with the rib of the preceding lamination in the next. The quality of the joint determines the firmness of the stack and also influences its. The geometrical and positional accuracy is thus crucial in rib formation process. In this study, a complex experimental and numerical analysis of interlocking rib formation has been performed. The aim of the analysis is to numerically predict the shape of the rib in order to perform a numerical simulation of the stack formation in the next step of the process. A detailed experimental research has been performed in order to characterize influential parameters on the rib formation and the geometry of the ribs itself, using classical and 3D laser microscopy. The formation of the interlocking rib is then simulated using Abaqus Explicit. The Hilll 48 constitutive material model is based on extensive and novel material characterization process, combining data from in-plane and out-of-plane material tests to perform a 3D analysis of both, rib formation and rib joining. The study shows good correlation between the experimental and numerical results.

  15. Analysis of effects of updated decay and fission yield data on ORIGEN 2 results

    International Nuclear Information System (INIS)

    Daniel, P.R.

    1993-01-01

    Work has been performed to improve the accuracy of ORIGEN2 results by updating both the decay library and the fission yield data in the cross-section library. This effort was performed under the auspices of Oak Ridge National Laboratory (ORNL) to ensure that ORIGEN2 uses the most up-to-date data. The impact of the new data was then quantitatively evaluated by solving a set of standard light water reactor (LWR) problems solved with ORIGEN2. The ORIGEN code, developed at ORNL in the late 1960's, is a point depletion code used to determine the composition and characteristics of spent fuel. The results from calculations performed with the code often form the basis for the study and design of reprocessing plants, spent-fuel shipping casks, waste treatment systems, and disposal facilities. The decay data were updated using data from ENDF/B-VI; fission yield data were updated using data from ENDF/B-V. The impact of these new data was then evaluated

  16. Analysis of data relative to the update of diagnostic reference levels in radiology and nuclear medicine. 2013-2015 review

    International Nuclear Information System (INIS)

    2016-11-01

    Applying the Order of 24 October 2011 on diagnostic reference levels, departments of radiology and nuclear medicine must send a sample of 'patient' dosimetric data to the IRSN each year. The results of the analysis of dosimetric data performed between the 1 January 2013 and the 31 December 2015 presented in this report should enable the authority to define the needs for updating regulation. This assessment takes place in a national and international context particularly rich and active since the last years. More than 20 years after the official introduction of the DRL concept by ICRP and the first regulation requirements at a European level, the good and the bad sides of the DRLs systems implemented by several countries, including France, has shown the necessity of complementary actions regarding some specific practices (pediatrics, interventional radiology). On one hand, from a national point of view, the current collection and analysis system is highly efficient for evaluation of practices in France and for DRL update ability. On the other hand, as an optimization implementation tool, regarding the lack of professionals involvement, the current system should not be considered as fully effective in radiology. However, when the professionals carry out DRL data collection and analysis, optimization actions are implemented for nearly all the cases. During the 2013-2015 period, professionals involvement in DRLs globally improved but is heterogeneous according to the imaging area considered. The participation of conventional radiology professionals is still low, with less than 30% against about 80% in CT and more than 85% in nuclear medicine. From a dosimetric point of view, the national analysis shows an overall decrease of statistical indicators in radiology, computed tomography and nuclear medicine on which DRLs are indexed. These results lead to proposals for updating reference values for a large number of examinations. In addition to the analysis of data collected

  17. MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions.

    Directory of Open Access Journals (Sweden)

    Matthew J Wade

    Full Text Available Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady-state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.

  18. MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions.

    Science.gov (United States)

    Wade, Matthew J; Oakley, Jordan; Harbisher, Sophie; Parker, Nicholas G; Dolfing, Jan

    2017-01-01

    Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady-state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.

  19. Numerical analysis of thermal impact on hydro-mechanical properties of clay

    Directory of Open Access Journals (Sweden)

    Xuerui Wang

    2014-10-01

    Full Text Available As is known, high-level radioactive waste (HLW is commonly heat-emitting. Heat output from HLW will dissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical (THMC processes. In highly consolidated clayey rocks, thermal effects are particularly significant because of their very low permeability and water-saturated state. Thermal impact on the integrity of the geological barriers is of most importance with regard to the long-term safety of repositories. This study focuses on numerical analysis of thermal effects on hydro-mechanical properties of clayey rock using a coupled thermo-mechanical multiphase flow (TH2M model which is implemented in the finite element programme OpenGeoSys (OGS. The material properties of the numerical model are characterised by a transversal isotropic elastic model based on Hooke's law, a non-isothermal multiphase flow model based on van Genuchten function and Darcy's law, and a transversal isotropic heat transport model based on Fourier's law. In the numerical approaches, special attention has been paid to the thermal expansion of three different phases: gas, fluid and solid, which could induce changes in pore pressure and porosity. Furthermore, the strong swelling and shrinkage behaviours of clayey material are also considered in the present model. The model has been applied to simulate a laboratory heating experiment on claystone. The numerical model gives a satisfactory representation of the observed material behaviour in the laboratory experiment. The comparison of the calculated results with the laboratory findings verifies that the simulation with the present numerical model could provide a deeper understanding of the observed effects.

  20. NUMERICAL AND EXPERIMENTAL ANALYSIS OF UNSTEADY WORK OF U-SHAPE BOREHOLE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    S. A. Filatau

    2014-01-01

    Full Text Available Unsteady numerical model of borehole heat exchanger heat regime was developed. General numerical modeling results are borehole heat flux, heat carrier inlet temperature and average soil temperature distribution. Proposed model is based on solution of heat conduction equation in transient plane axially symmetric formulation with boundary conditions for borehole heat exchanger and undisturbed soil domain. Solution method is finite difference method. Numerical model is verified with comparisons numerical results and experimental data from developed laboratory installation for simulation unsteady heat regime of horizontal positioned U-shape ground heat exchanger in sand medium.Cooling of water is organized in ground exchanger in experiment. Experiment includes two steps. Thermal properties of sand is determined at the first stage. Thermal conductivity of sand is determined by stationary plate method, thermal diffusivity is determined by regular regime method using cylindrical calorimeter. Determined properties are used further in processing of experimental results at second step for analysis of transient work of ground heat exchanger. Results of four experiments are analyzed with different duration and time behavior of mass flow and heat carrier temperature. Divergences of experimental and simulated results for temperature of heat carrier changes in the range 0,5–1,8 %, for sand temperature in the range 1,0–2,3 %, for heat flux in the range 3,6–5,4 %. Experimental results can be used for validation of other simulation methods of ground heat exchangers. Presented numerical model can be used for analyzing of heat supply systems with heat pumps.

  1. To Examine effect of Flow Zone Generation Techniques for Numerical Flow Analysis in Hydraulic Turbine

    International Nuclear Information System (INIS)

    Hussain, M.; Khan, J.A.

    2004-01-01

    A numerical study of flow in distributor of Francis Turbine is carried out by using two different techniques of flow zone generation. Distributor of GAMM Francis Turbine is used for present calculation. In present work, flow is assumed to be periodic around the distributor in steady state conditions, therefore computational domain consists of only one blade channel (one stay vane and one guide vane). The distributor computational domain is bounded up stream by cylindrical and downstream by conical patches. The first one corresponds to the spiral casing outflow section, while the second one is considered to be the distributor outlet or runner inlet. Upper and lower surfaces are generated by the revolution of hub and shroud edges. Single connected and multiple connected techniques are considered to generate distributor flow zone for numerical flow analysis of GAMM Francis turbine. The tetrahedral meshes are generated in both the flow zones. Same boundary conditions are applied for both the equivalent flow zones. The three dimensional, laminar flow analysis for both the distributor flow zones of the GAMM Francis turbine operating at the best efficiency point is performed. Gambit and G- Turbo are used as a preprocessor while calculations are done by using Fluent. Finally, numerical results obtained on the distributor outlet are compared with the available experimental data to validate the two different methodologies and examine their accuracy. (author)

  2. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    Directory of Open Access Journals (Sweden)

    J. P. Lin

    2014-01-01

    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  3. Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection

    International Nuclear Information System (INIS)

    Wang Chi; Zhou Yu-Qiu; Shen Gao-Wei; Wu Wen-Wen; Ding Wei

    2013-01-01

    The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the ''soil-mine'' system could be equivalent to a damping ''mass-spring'' resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil—mine system could be investigated by changing the parameter setup in a flexible manner. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Numerical Analysis of Prefabricated Steel-Concrete Composite Floor in Typical Lipsk Building

    Directory of Open Access Journals (Sweden)

    Lacki Piotr

    2017-12-01

    Full Text Available The aim of the work was to perform numerical analysis of a steel-concrete composite floor located in a LIPSK type building. A numerical model of the analytically designed floor was performed. The floor was in a six-storey, retail and service building. The thickness of a prefabricated slab was 100 mm. The two-row, crisscrossed reinforcement of the slab was made from φ16 mm rods with a spacing of 150 x 200 mm. The span of the beams made of steel IPE 160 profiles was 6.00 m and they were spaced every 1.20 m. The steelconcrete composite was obtained using 80×16 Nelson fasteners. The numerical analysis was carried out using the ADINA System based on the Finite Element Method. The stresses and strains in the steel and concrete elements, the distribution of the forces in the reinforcement bars and cracking in concrete were evaluated. The FEM model was made from 3D-solid finite elements (IPE profile and concrete slab and truss elements (reinforcement bars. The adopted steel material model takes into consideration the plastic state, while the adopted concrete material model takes into account material cracks.

  5. Experimental and numerical analysis of behavior of electromagnetic annular linear induction pump

    International Nuclear Information System (INIS)

    Goldsteins, Linards

    2015-01-01

    The research explores the issue of magnetohydrodynamic (MHD) instability in electromagnetic induction pumps with focus on the regimes of high slip Reynolds magnetic number (Rm s ) in Annular Linear Induction Pumps (ALIP) operating with liquid sodium. The context of the thesis is French GEN IV Sodium Fast Reactor research and development program for ASTRID in a framework of which the use of high discharge ALIP in the secondary cooling loops is being studied. CEA has designed, realized and will exploit PEMDYN facility, able to represent MHD instability in high discharge ALIP. In the thesis stability of an ideal ALIP is elaborated theoretically using linear stability analysis. Analysis revealed that strong amplification of perturbation is expected after convective stability threshold is reached. Theory is supported with numerical results and experiments reported in literature. Stable operation and stabilization technique operating with two frequencies in case of an ideal ALIP is discussed and necessary conditions derived. Detailed numerical models of flat linear induction pump (FLIP) taking into account effects of a real pump are developed. New technique of magnetic field measurements has been introduced and experimental results demonstrate a qualitative agreement with numerical models capturing all principal phenomena such as oscillation of magnetic field and perturbed velocity profiles. These results give significantly more profound insight in the phenomenon of MHD instability and can be used as a reference in further studies. (author) [fr

  6. Updated numerical model with uncertainty assessment of 1950-56 drought conditions on brackish-water movement within the Edwards aquifer, San Antonio, Texas

    Science.gov (United States)

    Brakefield, Linzy K.; White, Jeremy T.; Houston, Natalie A.; Thomas, Jonathan V.

    2015-01-01

    In 2010, the U.S. Geological Survey, in cooperation with the San Antonio Water System, began a study to assess the brackish-water movement within the Edwards aquifer (more specifically the potential for brackish-water encroachment into wells near the interface between the freshwater and brackish-water transition zones, referred to in this report as the transition-zone interface) and effects on spring discharge at Comal and San Marcos Springs under drought conditions using a numerical model. The quantitative targets of this study are to predict the effects of higher-than-average groundwater withdrawals from wells and drought-of-record rainfall conditions of 1950–56 on (1) dissolved-solids concentration changes at production wells near the transition-zone interface, (2) total spring discharge at Comal and San Marcos Springs, and (3) the groundwater head (head) at Bexar County index well J-17. The predictions of interest, and the parameters implemented into the model, were evaluated to quantify their uncertainty so the results of the predictions could be presented in terms of a 95-percent credible interval.

  7. Application of numerical analysis techniques to eddy current testing for steam generator tubes

    International Nuclear Information System (INIS)

    Morimoto, Kazuo; Satake, Koji; Araki, Yasui; Morimura, Koichi; Tanaka, Michio; Shimizu, Naoya; Iwahashi, Yoichi

    1994-01-01

    This paper describes the application of numerical analysis to eddy current testing (ECT) for steam generator tubes. A symmetrical and three-dimensional sinusoidal steady state eddy current analysis code was developed. This code is formulated by future element method-boundary element method coupling techniques, in order not to regenerate the mesh data in the tube domain at every movement of the probe. The calculations were carried out under various conditions including those for various probe types, defect orientations and so on. Compared with the experimental data, it was shown that it is feasible to apply this code to actual use. Furthermore, we have developed a total eddy current analysis system which consists of an ECT calculation code, an automatic mesh generator for analysis, a database and display software for calculated results. ((orig.))

  8. Three dimensional, numerical analysis of an elasto hydrodynamic lubrication using fluid structure interaction (FSI) approach

    Science.gov (United States)

    Hanoca, P.; Ramakrishna, H. V.

    2018-03-01

    This work is related to develop a methodology to model and simulate the TEHD using the sequential application of CFD and CSD. The FSI analyses are carried out using ANSYS Workbench. In this analysis steady state, 3D Navier-Stoke equations along with energy equation are solved. Liquid properties are introduced where the viscosity and density are the function of pressure and temperature. The cavitation phenomenon is adopted in the analysis. Numerical analysis has been carried at different speeds and surfaces temperatures. During the analysis, it was found that as speed increases, hydrodynamic pressures will also increases. The pressure profile obtained from the Roelands equation is more sensitive to the temperature as compared to the Barus equation. The stress distributions specify the significant positions in the bearing structure. The developed method is capable of giving latest approaching into the physics of elasto hydrodynamic lubrication.

  9. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    International Nuclear Information System (INIS)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M

    2009-01-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K 1 values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  10. Numerical and experimental analysis of the impact of a nuclear spent fuel cask

    Energy Technology Data Exchange (ETDEWEB)

    Aquaro, D. [Department of Mechanical, Nuclear and Production Engineering (DIMNP), Pisa University, Via Diotisalvi, Pisa (Italy); Zaccari, N., E-mail: nicola.zaccari@enel.i [Department of Mechanical, Nuclear and Production Engineering (DIMNP), Pisa University, Via Diotisalvi, Pisa (Italy); Di Prinzio, M.; Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering (DIMNP), Pisa University, Via Diotisalvi, Pisa (Italy)

    2010-04-15

    This paper deals with the numerical and experimental analyses of a shell type shock absorber for a nuclear spent fuel cask. Nine-meter free drop tests performed on reduced scale models are described. The results are compared with numerical simulations performed with FEM computer codes, considering reduced scale models as well as the prototype. The paper shows the results of a similitude analysis, with which the data obtained by means of the reduced scale models can be extrapolated to the prototype. Small discrepancies were obtained using large-scale models (1:2 and 1:6), while small-scale models (1:12) did not give reliable results. A 1:9 scale model provided useful information with a less than 20% error.

  11. Numerical analysis of nonlinear behavior of steel-concrete composite structures

    Directory of Open Access Journals (Sweden)

    Í.J.M. LEMES

    Full Text Available Abstract This paper presents the development of an effective numerical formulation for the analysis of steel-concrete composite structures considering geometric and materials nonlinear effects. Thus, a methodology based on Refined Plastic Hinge Method (RPHM was developed and the stiffness parameters were obtained by homogenization of cross-section. The evaluation of structural elements strength is done through the Strain Compatibility Method (SCM. The Newton-Raphson Method with path-following strategies is adopted to solve nonlinear global and local (in cross-section level equations. The results are compared with experimental and numerical database presents in literature and a good accuracy is observed in composite cross sections, composite columns, and composite portal frames.

  12. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico); Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M, E-mail: rrodriguezm@ipn.m, E-mail: urrio332@hotmail.co, E-mail: guiurri@hotmail.co, E-mail: luishector56@hotmail.co, E-mail: eamerchan@gmail.co, E-mail: ricname@hotmail.co, E-mail: jsandovalp@ipn.m [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Unidad profesional, AZCAPOTZALCO, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. (Mexico)

    2009-08-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K{sub 1} values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  13. Numerical analysis of two pile caps with sockets embedded, subject the eccentric compression load

    Directory of Open Access Journals (Sweden)

    R. G. Delalibera

    Full Text Available The structural behavior of pile caps with sockets embedded is influenced by interface of column-socket, which can be smooth or rough. With intent to analyze the behavior of two pile caps with embedded socket, considering the friction between the column and the socket, with eccentric normal load, the numerical simulations were carried out, using a program based on the Finite Element Methods (FEM. In the numerical analysis the non-linear behavior of materials was considered, also the friction between the column and the socket. It was considered perfect bond between the reinforcement and the concrete around. It was observed that the embedded length is preponderant factor in the structural behavior of the analyzed element.

  14. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations

    KAUST Repository

    Pietschmann, Jan-Frederik

    2011-11-01

    In this paper we study the continuum limit of a cellular automaton model used for simulating human crowds with herding behaviour. We derive a system of non-linear partial differential equations resembling the Keller-Segel model for chemotaxis, however with a non-monotone interaction. The latter has interesting consequences on the behaviour of the model\\'s solutions, which we highlight in its analysis. In particular we study the possibility of stationary states, the formation of clusters and explore their connection to congestion. We also introduce an efficient numerical simulation approach based on an appropriate hybrid discontinuous Galerkin method, which in particular allows flexible treatment of complicated geometries. Extensive numerical studies also provide a better understanding of the strengths and shortcomings of the herding model, in particular we examine trapping effects of crowds behind nonconvex obstacles. © American Institute of Mathematical Sciences.

  15. Numerical bifurcation analysis of delay differential equations arising from physiological modeling.

    Science.gov (United States)

    Engelborghs, K; Lemaire, V; Bélair, J; Roose, D

    2001-04-01

    This paper has a dual purpose. First, we describe numerical methods for continuation and bifurcation analysis of steady state solutions and periodic solutions of systems of delay differential equations with an arbitrary number of fixed, discrete delays. Second, we demonstrate how these methods can be used to obtain insight into complex biological regulatory systems in which interactions occur with time delays: for this, we consider a system of two equations for the plasma glucose and insulin concentrations in a diabetic patient subject to a system of external assistance. The model has two delays: the technological delay of the external system, and the physiological delay of the patient's liver. We compute stability of the steady state solution as a function of two parameters, compare with analytical results and compute several branches of periodic solutions and their stability. These numerical results allow to infer two categories of diabetic patients for which the external system has different efficiency.

  16. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222, Terrassa, Barcelona (Spain); de Goey, L.P.H. [Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2008-04-15

    The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)

  17. Numerical analysis of the beam position monitor pickup for the Iranian light source facility

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, M., E-mail: mehdish@ipm.ir [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Feghhi, S.A.H. [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Rahighi, J. [Iranian Light Source Facility (ILSF), Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)

    2017-03-01

    In this paper, we describe the design of a button type Beam Position Monitor (BPM) for the low emittance storage ring of the Iranian Light Source Facility (ILSF). First, we calculate sensitivities, induced power and intrinsic resolution based on solving Laplace equation numerically by finite element method (FEM), in order to find the potential at each point of BPM's electrode surface. After the optimization of the designed BPM, trapped high order modes (HOM), wakefield and thermal loss effects are calculated. Finally, after fabrication of BPM, it is experimentally tested by using a test-stand. The results depict that the designed BPM has a linear response in the area of 2×4 mm{sup 2} inside the beam pipe and the sensitivity of 0.080 and 0.087 mm{sup −1} in horizontal and vertical directions. Experimental results also depict that they are in a good agreement with numerical analysis.

  18. Numerical analysis and comparison of three types of herringbone frame structure for highway subgrade slopes protection

    Science.gov (United States)

    Nie, Yihua; Tang, Saiqian; Xu, Yang; Mao, Kunli

    2018-04-01

    In order to obtain mechanical response distribution of herringbone frame structure for highway subgrade slopes protection and select the best structure type, 3D numerical models of three types herringbone frame structure were established and analyzed in finite element software ANSYS. Indoor physical model of soil slope protected by herringbone frame structure was built and mechanical response of the frame structure was measured by loading tests. Numerical results indicate slope foot is the stress most disadvantageous location. Comparative analysis shows that structure composed of mortar rubble base layer and precast concrete blocks paving layer is the best one for resisting deformation and structure with cement mortar base layer and precast concrete blocks paving layer is the best one for being of low stress.

  19. Numerical Analysis on Failure Modes and Mechanisms of Mine Pillars under Shear Loading

    Directory of Open Access Journals (Sweden)

    Tianhui Ma

    2016-01-01

    Full Text Available Severe damage occurs frequently in mine pillars subjected to shear stresses. The empirical design charts or formulas for mine pillars are not applicable to orebodies under shear. In this paper, the failure process of pillars under shear stresses was investigated by numerical simulations using the rock failure process analysis (RFPA 2D software. The numerical simulation results indicate that the strength of mine pillars and the corresponding failure mode vary with different width-to-height ratios and dip angles. With increasing dip angle, stress concentration first occurs at the intersection between the pillar and the roof, leading to formation of microcracks. Damage gradually develops from the surface to the core of the pillar. The damage process is tracked with acoustic emission monitoring. The study in this paper can provide an effective means for understanding the failure mechanism, planning, and design of mine pillars.

  20. Numerical model analysis of the shaded dye-sensitized solar cell module

    International Nuclear Information System (INIS)

    Chen Shuanghong; Weng Jian; Huang Yang; Zhang Changneng; Hu Linhua; Kong Fantai; Wang Lijun; Dai Songyuan

    2010-01-01

    On the basis of a numerical model analysis, the photovoltaic performance of a partially shadowed dye-sensitized solar cell (DSC) module is investigated. In this model, the electron continuity equation and the Butler-Vollmer equation are applied considering electron transfer via the interface of transparent conducting oxide/electrolyte in the shaded DSC. The simulation results based on this model are consistent with experimental results. The influence of shading ratio, connection types and the intensity of irradiance has been analysed according to experiments and numerical simulation. It is found that the performance of the DSC obviously declines with an increase in the shaded area due to electron recombination at the TCO/electrolyte interface and that the output power loss of the shadowed DSC modules in series is much larger than that in parallel due to the 'breakdown' occurring at the TCO/electrolyte interface. The impact of shadow on the DSC performance is stronger with increase in irradiation intensity.

  1. Experimental and numerical analysis of vibration stability for a high-Tc superconducting levitation system

    International Nuclear Information System (INIS)

    Wen Zheng; Liu Yu; Yang Wenjiang; Qiu Ming

    2007-01-01

    In this paper, we present a study of the quasi-static and dynamic behaviour of high-T c superconductors (HTS hereafter) using a model suspension vibration testing system based on the magnetic launch assistance concept. The stiffness and damping of the levitation system under specified vibration circumstances was calculated by drawing on harmonic response analysis and half-power points method. Also, the equation of motion of the suspension system was presented in this paper, and with an attempt to analyse and predict mechanical characteristics of HTS in dynamic conditions. The obtained results of the suspending motion behaviour by numerical calculation are compared with experimental analytical results. Experimental technique combined with a numerical simulation method is a useful tool for measuring and analysing motion-dependent magnetic forces for the prediction and control of suspension systems

  2. Field-based dynamic light scattering microscopy: theory and numerical analysis.

    Science.gov (United States)

    Joo, Chulmin; de Boer, Johannes F

    2013-11-01

    We present a theoretical framework for field-based dynamic light scattering microscopy based on a spectral-domain optical coherence phase microscopy (SD-OCPM) platform. SD-OCPM is an interferometric microscope capable of quantitative measurement of amplitude and phase of scattered light with high phase stability. Field-based dynamic light scattering (F-DLS) analysis allows for direct evaluation of complex-valued field autocorrelation function and measurement of localized diffusive and directional dynamic properties of biological and material samples with high spatial resolution. In order to gain insight into the information provided by F-DLS microscopy, theoretical and numerical analyses are performed to evaluate the effect of numerical aperture of the imaging optics. We demonstrate that sharp focusing of fields affects the measured diffusive and transport velocity, which leads to smaller values for the dynamic properties in the sample. An approach for accurately determining the dynamic properties of the samples is discussed.

  3. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations

    KAUST Repository

    Pietschmann, Jan-Frederik; Markowich, Peter Alexander; Burger, Martin

    2011-01-01

    In this paper we study the continuum limit of a cellular automaton model used for simulating human crowds with herding behaviour. We derive a system of non-linear partial differential equations resembling the Keller-Segel model for chemotaxis, however with a non-monotone interaction. The latter has interesting consequences on the behaviour of the model's solutions, which we highlight in its analysis. In particular we study the possibility of stationary states, the formation of clusters and explore their connection to congestion. We also introduce an efficient numerical simulation approach based on an appropriate hybrid discontinuous Galerkin method, which in particular allows flexible treatment of complicated geometries. Extensive numerical studies also provide a better understanding of the strengths and shortcomings of the herding model, in particular we examine trapping effects of crowds behind nonconvex obstacles. © American Institute of Mathematical Sciences.

  4. RC structures strengthened by metal shear panels: experimental and numerical analysis

    International Nuclear Information System (INIS)

    De Matteis, G.; Formisano, A.; Mazzolani, F. M.

    2008-01-01

    Metal shear panels (MSPs) may be effectively used as a lateral load resisting system for framed structures. In the present paper, such a technique is applied for the seismic protection of existing RC buildings, by setting up a specific design procedure, which has been developed on the basis of preliminary full-scale experimental tests. The obtained results allowed the development of both simplified and advanced numerical models of both the upgraded structure and the applied shear panels. Also, the proposed design methodology, which is framed in the performance base design philosophy, has been implemented for the structural upgrading of a real Greek existing multi-storey RC building. The results of the numerical analysis confirmed the effectiveness of the proposed technique, also emphasising the efficiency of the implemented design methodology

  5. A 3-D model of superfluid helium suitable for numerical analysis

    CERN Document Server

    Darve, C; Van Sciver, S W

    2009-01-01

    The two-fluid description is a very successful phenomenological representation of the properties of Helium II. A 3-D model suitable for numerical analysis based on the Landau-Khalatnikov description of Helium II is proposed. In this paper we introduce a system of partial differential equations that is both complete and consistent as well as practical, to be used for a 3-D solution of the flow of Helium II. The development of a 3-D numerical model for Helium II is motivated by the need to validate experimental results obtained by observing the normal component velocity distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique.

  6. Vibro-Acoustic Numerical Analysis for the Chain Cover of a Car Engine

    Directory of Open Access Journals (Sweden)

    Enrico Armentani

    2017-06-01

    Full Text Available In this work, a vibro-acoustic numerical and experimental analysis was carried out for the chain cover of a low powered four-cylinder four-stroke diesel engine, belonging to the FPT (FCA Power Train family called SDE (Small Diesel Engine. By applying a methodology used in the acoustic optimization of new FPT engine components, firstly a finite element model (FEM of the engine was defined, then a vibration analysis was performed for the whole engine (modal analysis, and finally a forced response analysis was developed for the only chain cover (separated from the overall engine. The boundary conditions applied to the chain cover were the accelerations experimentally measured by accelerometers located at the points of connection among chain cover, head cover, and crankcase. Subsequently, a boundary element (BE model of the only chain cover was realized to determine the chain cover noise emission, starting from the previously calculated structural vibrations. The numerical vibro-acoustic outcomes were compared with those experimentally observed, obtaining a good correlation. All the information thus obtained allowed the identification of those critical areas, in terms of noise generation, in which to undertake necessary improvements.

  7. Numerical and on-site experimental dynamic analysis of the Italian PEC fast reactor building

    International Nuclear Information System (INIS)

    Castoldi, A.; Muzzi, F.; Orsi, R.; Panzeri, P.; Pezzoli, P.; Ruggeri, G.; Martelli, A.; Masoni, P.; Brancati, V.

    1988-01-01

    On-site dynamic tests and three-dimensional numerical analysis have been performed by ISMES on behalf of ENEA on the building of the Italian PEC fast reactor test facility. These studies aimed at evaluating the safety margins in the PEC reactor seismic analysis and at providing data for the optimization of the PEC seismic monitoring system. The paper describes the on-site dynamic tests carried out using various excitation methods (two eccentric back-rotating-mass mechanical vibrator, blasting in bore-hole and hydraulic actuators at the building foundations). It highlights the purposes of the four tests campaigns performed at various construction stages and reports the main experimental results. In connection with the experimental tests, a detailed 3D finite element model was set up for fixed base analysis; from the results of the 3D model a simplified equivalent model of the structure was then derived for soil-structure interaction analysis. The mathematical model was validated and calibrated by using the results of the experimental dynamic tests. The main numerical results and the comparisons with the experimental data are presented. (author)

  8. An independent assessment of the technical feasibility of the Mars One mission plan - Updated analysis

    Science.gov (United States)

    Do, Sydney; Owens, Andrew; Ho, Koki; Schreiner, Samuel; de Weck, Olivier

    2016-03-01

    In recent years, the Mars One program has gained significant publicity for its plans to colonize the red planet. Beginning in 2025, the program plans to land four people on Mars every 26 months via a series of one-way missions, using exclusively existing technology. This one-way approach has frequently been cited as a key enabler of accelerating the first crewed landing on Mars. While the Mars One program has received considerable attention, little has been published in the technical literature regarding the formulation of its mission architecture. In light of this, we perform an independent analysis of the technical feasibility of the Mars One mission plan, focusing on the architecture of the life support and in-situ resource utilization (ISRU) systems, and their impact on sparing and space logistics. To perform this analysis, we adopt an iterative analysis approach in which we model and simulate the mission architecture, assess its feasibility, implement any applicable modifications while attempting to remain within the constraints set forth by Mars One, and then resimulate and reanalyze the revised version of the mission architecture. Where required information regarding the Mars One mission architecture is not available, we assume numerical values derived from standard spaceflight design handbooks and documents. Through four iterations of this process, our analysis finds that the Mars One mission plan, as publicly described, is not feasible. This conclusion is obtained from analyses based on mission assumptions derived from and constrained by statements made by Mars One, and is the result of the following findings: (1) several technologies including ISRU, life support, and entry, descent, and landing (EDL) are not currently "existing, validated and available" as claimed by Mars One; (2) the crop growth area described by Mars One is insufficient to feed their crew; (3) increasing the crop growth area to provide sufficient food for the crew leads to atmospheric

  9. Numerical model for atmospheric diffusion analysis and evaluation of effective dose for safety analysis

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi; Komiyama, Sumito

    2009-01-01

    A numerical simulation method has been developed to predict atmospheric flow and stack gas diffusion, considering the buildings and complex terrain located near and relatively far from a stack, respectively. The turbulence closure technique was used for flow calculation, some calculation grids on the ground near a stack were treated as buildings, and stack gas diffusion was predicted using the Lagrangian particle model. The calculated flow and stack gas diffusion results were compared with those obtained by wind tunnel experiments under actual terrain containing buildings. Effective stack height was estimated by comparing the surface concentration along the plume axis with those under a flat-plate condition, and it was apparent that the effective stack heights estimated by calculations were almost the same as those obtained by the wind tunnel experiment. Then, the effective dose and relative concentration of stack gas were calculated using the effective stack heights obtained by a numerical model. Almost the same effective dose and relative concentration were obtained when compared with those using the effective stack height obtained by wind tunnel experiment. (author)

  10. Updating representation of land surface-atmosphere feedbacks in airborne campaign modeling analysis

    Science.gov (United States)

    Huang, M.; Carmichael, G. R.; Crawford, J. H.; Chan, S.; Xu, X.; Fisher, J. A.

    2017-12-01

    An updated modeling system to support airborne field campaigns is being built at NASA Ames Pleiades, with focus on adjusting the representation of land surface-atmosphere feedbacks. The main updates, referring to previous experiences with ARCTAS-CARB and CalNex in the western US to study air pollution inflows, include: 1) migrating the WRF (Weather Research and Forecasting) coupled land surface model from Noah to improved/more complex models especially Noah-MP and Rapid Update Cycle; 2) enabling the WRF land initialization with suitably spun-up land model output; 3) incorporating satellite land cover, vegetation dynamics, and soil moisture data (i.e., assimilating Soil Moisture Active Passive data using the ensemble Kalman filter approach) into WRF. Examples are given of comparing the model fields with available aircraft observations during spring-summer 2016 field campaigns taken place at the eastern side of continents (KORUS-AQ in South Korea and ACT-America in the eastern US), the air pollution export regions. Under fair weather and stormy conditions, air pollution vertical distributions and column amounts, as well as the impact from land surface, are compared. These help identify challenges and opportunities for LEO/GEO satellite remote sensing and modeling of air quality in the northern hemisphere. Finally, we briefly show applications of this system on simulating Australian conditions, which would explore the needs for further development of the observing system in the southern hemisphere and inform the Clean Air and Urban Landscapes (https://www.nespurban.edu.au) modelers.

  11. An updated analysis of the Lucas Heights Climatology - 1975 to 1996

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.H

    1997-06-01

    Meteorological data collected from 1975 to 1996 in the Lucas Heights region have been summarised to provide an update on the climatology. Initially data were recorded in analogue form but since 1991 advanced digital recording systems have allowed more accurate and extensive statistics to be analysed. Since 1993 a network of meteorological stations has been installed through the surrounding area to investigate the influence of complex terrain on wind flow and atmospheric dispersion patterns. A large data volumes is presented together with some initial interpretation of these complex terrain influences on the Lucas Heights region climatolology. 33 refs., 25 tabs., 45 figs.

  12. The property investigation of the numerical code TIGER for the uncertain analysis

    International Nuclear Information System (INIS)

    Ebina, Takanori; Ohi, Takao

    2008-03-01

    In order to obtain the information concerning the safety of the geological disposal under various geological environments, the sensitivity analysis that considers the uncertainty of parameters resulting from the insufficiency of knowledge and information plays an important role. The numerical code TIGER allows the physical and chemical properties within the system to vary with time in the radionuclide migration analysis from vitrified glass to rock and these function is useful for understanding the effect of the property change of each barrier in such sensitivity analysis. Therefore, at this study, some typical processing methods with the engineered barrier system and the host rock were developed at fast, and through the comparison with the calculation time, the step of preprocessing and postprocessing, the most suitable method was considered. After this consideration, the interrelation between the calculation accuracy and the calculation time at the most suitable method was examined for the purpose of using this method to the uncertain analysis. In addition, the STRIDER that was the program to make the input file for the uncertain analysis with setting random parameter and do the preprocessing and the postprocessing, was improved for the uncertain analysis. Through this consideration, the information of the best processing method, the calculation accuracy, and the analysis tool was arranged for an uncertain analysis using TIGER. (author)

  13. An experimental-numerical method for comparative analysis of joint prosthesis

    International Nuclear Information System (INIS)

    Claramunt, R.; Rincon, E.; Zubizarreta, V.; Ros, A.

    2001-01-01

    The difficulty that exists in the analysis of mechanical stresses in bones is high due to its complex mechanical and morphological characteristics. This complexity makes generalists modelling and conclusions derived from prototype tests very questionable. In this article a relatively simple comparative analysis systematic method that allow us to establish some behaviour differences in different kind of prosthesis is presented. The method, applicable in principle to any joint problem, is based on analysing perturbations produced in natural stress states of a bone after insertion of a joint prosthesis and combines numerical analysis using a 3-D finite element model and experimental studies based on photoelastic coating and electric extensometry. The experimental method is applied to compare two total hip prosthesis cement-free femoral stems of different philosophy. One anatomic of new generation, being of oblique setting over cancellous bone and the other madreporique of trochantero-diaphyseal support over cortical bone. (Author) 4 refs

  14. An evaluation of directional analysis techniques for multidirectional, partially reflected waves .1. numerical investigations

    DEFF Research Database (Denmark)

    Ilic, C; Chadwick, A; Helm-Petersen, Jacob

    2000-01-01

    , non-phased locked methods are more appropriate. In this paper, the accuracy of two non-phased locked methods of directional analysis, the maximum likelihood method (MLM) and the Bayesian directional method (BDM) have been quantitatively evaluated using numerical simulations for the case...... of multidirectional waves with partial reflections. It is shown that the results are influenced by the ratio of distance from the reflector (L) to the length of the time series (S) used in the spectral analysis. Both methods are found to be capable of determining the incident and reflective wave fields when US > 0......Recent studies of advanced directional analysis techniques have mainly centred on incident wave fields. In the study of coastal structures, however, partially reflective wave fields are commonly present. In the near structure field, phase locked methods can be successfully applied. In the far field...

  15. Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes

    Science.gov (United States)

    Yanqing, HUANG; Tianyang, XIA; Bin, GUI

    2018-04-01

    The linear analysis of the influence of diamagnetic effect and toroidal rotation at the edge of tokamak plasmas with BOUT++ is discussed in this paper. This analysis is done by solving the dispersion relation, which is calculated through the numerical integration of the terms with different physics. This method is able to reveal the contributions of the different terms to the total growth rate. The diamagnetic effect stabilizes the ideal ballooning modes through inhibiting the contribution of curvature. The toroidal rotation effect is also able to suppress the curvature-driving term, and the stronger shearing rate leads to a stronger stabilization effect. In addition, through linear analysis using the energy form, the curvature-driving term provides the free energy absorbed by the line-bending term, diamagnetic term and convective term.

  16. Numerical methods and analysis of the nonlinear Vlasov equation on unstructured meshes of phase space

    International Nuclear Information System (INIS)

    Besse, Nicolas

    2003-01-01

    This work is dedicated to the mathematical and numerical studies of the Vlasov equation on phase-space unstructured meshes. In the first part, new semi-Lagrangian methods are developed to solve the Vlasov equation on unstructured meshes of phase space. As the Vlasov equation describes multi-scale phenomena, we also propose original methods based on a wavelet multi-resolution analysis. The resulting algorithm leads to an adaptive mesh-refinement strategy. The new massively-parallel computers allow to use these methods with several phase-space dimensions. Particularly, these numerical schemes are applied to plasma physics and charged particle beams in the case of two-, three-, and four-dimensional Vlasov-Poisson systems. In the second part we prove the convergence and give error estimates for several numerical schemes applied to the Vlasov-Poisson system when strong and classical solutions are considered. First we show the convergence of a semi-Lagrangian scheme on an unstructured mesh of phase space, when the regularity hypotheses for the initial data are minimal. Then we demonstrate the convergence of classes of high-order semi-Lagrangian schemes in the framework of the regular classical solution. In order to reconstruct the distribution function, we consider symmetrical Lagrange polynomials, B-Splines and wavelets bases. Finally we prove the convergence of a semi-Lagrangian scheme with propagation of gradients yielding a high-order and stable reconstruction of the solution. (author) [fr

  17. Numerical analysis of free surface instabilities in the IFMIF lithium target

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Moeslang, A.

    2007-01-01

    The International Fusion Materials Facility (IFMIF) facility uses a high speed (10-20 m/s) Lithium (Li) jet flow as a target for two 40 MeV/125 mA deuteron beams. The major function of the Li target is to provide a stable Li jet for the production of an intense neutron flux. For the understanding the lithium jet behaviour and elimination of the free-surface flow instabilities a detailed analysis of the Li jet flow is necessary. Different kinds of instability mechanisms in the liquid jet flow have been evaluated and classified based on analytical and experimental data. Numerical investigations of the target free surface flow have been performed. Previous numerical investigations have shown in principle the suitability of CFD code Star- CD for the simulation of the Li-target flow. The main objective of this study is detailed numerical analysis of instabilities in the Li-jet flow caused by boundary layer relaxation near the nozzle exit, transition to the turbulence flow and back wall curvature. A number of CFD models are developed to investigate the formation of instabilities on the target surface. Turbulence models are validated on the experimental data. Experimental observations have shown that the change of the nozzle geometry at the outlet such as a slight divergence of the nozzle surfaces or nozzle edge defects causes the flow separation and occurrence of longitudinal periodic structures on the free surface with an amplitude up to 5 mm. Target surface fluctuations of this magnitude can lead to the penetration of the deuteron beam in the target structure and cause the local overheating of the back plat. Analysis of large instabilities in the Li-target flow combined with the heat distribution in lithium depending on the free surface shape is performed in this study. (orig.)

  18. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    Science.gov (United States)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  19. Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies. PART II - numerical realization, limit analysis

    Czech Academy of Sciences Publication Activity Database

    Čermák, M.; Haslinger, Jaroslav; Kozubek, T.; Sysala, Stanislav

    2015-01-01

    Roč. 95, č. 12 (2015), s. 1348-1371 ISSN 0044-2267 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:68145535 Keywords : frictionless contact * alternating direction method of multipliers * limit load analysis * elastic-perfect analplasticity Subject RIV: BA - General Mathematics Impact factor: 1.293, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201400069/epdf

  20. Numerical analysis of fundamental characteristics of superconducting magnetic bearings for a polarization modulator

    International Nuclear Information System (INIS)

    Terachi, Yusuke; Terao, Yutaka; Ohsaki, Hiroyuki; Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Utsunomiya, Shin; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We have carried out numerical analysis of mechanical properties of a superconducting magnetic bearing (SMB). A contactless bearing operating at below 10 K with low rotational energy loss is an attractive feature to be used as a rotational mechanism of a polarization modulator for a cosmic microwave background experiment. In such application, a rotor diameter of about 400 mm forces us to employ a segmented magnet. As a result, there is inevitable spatial gap between the segments. In order to understand the path towards the design optimizations, 2D and 3D FEM analyses were carried out to examine fundamental characteristics of the SMBs for a polarization modulator. Two axial flux type SMBs were dealt with in the analysis: (a) the SMB with axially magnetized permanent magnets (PMs), and (b) the SMB with radially magnetized PMs and steel components for magnetic flux paths. Magnetic flux lines and density distributions, electromagnetic force characteristics, spring constants, etc. were compared among some variations of the SMBs. From the numerical analysis results, it is discussed what type, configuration and design of SMBs are more suitable for a polarization modulator. (paper)

  1. Numerical analysis of all flow state lubrication performance of water-lubricated thrust bearing

    International Nuclear Information System (INIS)

    Deng Xiao; Deng Liping; Huang Wei; Liu Lizhi; Zhao Xuecen; Liu Songya

    2015-01-01

    A model enabling all different flow state lubrication performance simulation and analysis for water-lubricated thrust bearing is presented, considering the temperature influence and elastic deformation. Lubrication state in the model is changed directly from laminar lubrication to turbulent lubrication once Reynolds number exceeds the critical Reynolds number. The model is numerically solved and results show that temperature variation is too little to influence the lubrication performance; the elastic deformation can slightly reduce the load carrying capacity of the thrust bearing; and the turbulent lubrication can remarkably improve the load carrying capacity. (authors)

  2. Numerical flow analysis of axial flow compressor for steady and unsteady flow cases

    Science.gov (United States)

    Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.

    2017-07-01

    Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.

  3. Numerical analysis of natural convection in a double-layer immiscible system

    International Nuclear Information System (INIS)

    Gubaidullin, A.A.; Sehgal, B.R.

    2001-01-01

    In the present paper numerical analysis has been applied to study the natural convection heat transfer in a system composed of two immiscible fluids with uniform internal heat generation in the lower layer or in both layers enclosed in a rectangular or in a semi-circular vessel. The objective of the work is to perform a parametric study to assess the effect of physical properties on the heat transfer characteristics as well as to complement results obtained from experiments by means of CFD simulations for a range of lower Rayleigh number and combine the experimental data and the computational results. (author)

  4. Numerical analysis of MHD Carreau fluid flow over a stretching cylinder with homogenous-heterogeneous reactions

    Science.gov (United States)

    Khan, Imad; Ullah, Shafquat; Malik, M. Y.; Hussain, Arif

    2018-06-01

    The current analysis concentrates on the numerical solution of MHD Carreau fluid flow over a stretching cylinder under the influences of homogeneous-heterogeneous reactions. Modelled non-linear partial differential equations are converted into ordinary differential equations by using suitable transformations. The resulting system of equations is solved with the aid of shooting algorithm supported by fifth order Runge-Kutta integration scheme. The impact of non-dimensional governing parameters on the velocity, temperature, skin friction coefficient and local Nusselt number are comprehensively delineated with the help of graphs and tables.

  5. Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals

    Science.gov (United States)

    Zou, Jibin; Li, Xuehui; Lu, Yongping; Hu, Jianhui

    2002-11-01

    The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively.

  6. Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals

    International Nuclear Information System (INIS)

    Zou Jibin; Li Xuehui; Lu Yongping; Hu Jianhui

    2002-01-01

    The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively

  7. Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding

    Science.gov (United States)

    Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling

    2018-03-01

    In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.

  8. Numerical model analysis of thermal performance for a dye-sensitized solar cell module

    International Nuclear Information System (INIS)

    Chen, Shuanghong; Huang, Yang; Weng, Jian; Fan, Xiaqin; Mo, Lie; Pan, Bin; Dai, Songyuan

    2013-01-01

    Temperature is one of the major factors that influence a dye-sensitized solar cell's (DSC's) photovoltaic efficiency. Temperature control is very important when solar cell modules are designed. In the present paper, a numerical model of a DSC module is built for the simulation of the solar cell's temperature. In this model, energy balance and three methods of heat transfer (conduction, convection, and radiation) are taken into account, and the simulation results are consistent with the experimental results. The influence of wind speeds and interfacial thermal resistance on the temperature inside the DSC modules is discussed in detail based on theoretical analysis. (paper)

  9. Numerical analysis of gas puff modulation experiment on JT-60U

    International Nuclear Information System (INIS)

    Nagashima, Keisuke; Sakasai, Akira

    1992-03-01

    In tokamak transport physics, source modulation experiments are one of the most effective methods. For an analysis of these modulation experiments, a simple numerical method was developed to solve the general transport equations. This method was applied to gas puff modulation experiments on JT-60U. From the comparison between the measured and calculated density perturbations, it was found that the particle diffusion coefficient is about 0.8 m 2 /sec in the edge region and 0.1-0.2 m 2 /sec in the central region. (author)

  10. Error analysis of numerical gravitational waveforms from coalescing binary black holes

    Science.gov (United States)

    Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.

  11. FREQFIT: Computer program which performs numerical regression and statistical chi-squared goodness of fit analysis

    International Nuclear Information System (INIS)

    Hofland, G.S.; Barton, C.C.

    1990-01-01

    The computer program FREQFIT is designed to perform regression and statistical chi-squared goodness of fit analysis on one-dimensional or two-dimensional data. The program features an interactive user dialogue, numerous help messages, an option for screen or line printer output, and the flexibility to use practically any commercially available graphics package to create plots of the program's results. FREQFIT is written in Microsoft QuickBASIC, for IBM-PC compatible computers. A listing of the QuickBASIC source code for the FREQFIT program, a user manual, and sample input data, output, and plots are included. 6 refs., 1 fig

  12. Numerical analysis of single and multiple particles of Belchatow lignite dried in superheated steam

    Science.gov (United States)

    Zakrzewski, Marcin; Sciazko, Anna; Komatsu, Yosuke; Akiyama, Taro; Hashimoto, Akira; Kaneko, Shozo; Kimijima, Shinji; Szmyd, Janusz S.; Kobayashi, Yoshinori

    2018-03-01

    Low production costs have contributed to the important role of lignite in the energy mixes of numerous countries worldwide. High moisture content, though, diminishes the applicability of lignite in power generation. Superheated steam drying is a prospective method of raising the calorific value of this fuel. This study describes the numerical model of superheated steam drying of lignite from the Belchatow mine in Poland in two aspects: single and multi-particle. The experimental investigation preceded the numerical analysis and provided the necessary data for the preparation and verification of the model. Spheres of 2.5 to 30 mm in diameter were exposed to the drying medium at the temperature range of 110 to 170 °C. The drying kinetics were described in the form of moisture content, drying rate and temperature profile curves against time. Basic coal properties, such as density or specific heat, as well as the mechanisms of heat and mass transfer in the particular stages of the process laid the foundations for the model construction. The model illustrated the drying behavior of a single particle in the entire range of steam temperature as well as the sample diameter. Furthermore, the numerical analyses of coal batches containing particles of various sizes were conducted to reflect the operating conditions of the dryer. They were followed by deliberation on the calorific value improvement achieved by drying, in terms of coal ingredients, power plant efficiency and dryer input composition. The initial period of drying was found crucial for upgrading the quality of coal. The accuracy of the model is capable of further improvement regarding the process parameters.

  13. Mathematical and numerical analysis of systems of compressible hydrodynamics and photonics with polar coordinates

    International Nuclear Information System (INIS)

    Meltz, Bertrand

    2015-01-01

    This thesis deals with the mathematical and numerical analysis of the systems of compressible hydrodynamics and radiative transfer. More precisely, we study the derivation of numerical methods with 2D polar coordinates (one for the radius, one for the angle) where equations are discretized on regular polar grids. On one hand, these methods are well-suited for the simulation of flows with polar symmetries since they preserve these symmetries by construction. On the other hand, such coordinates systems introduce geometrical singularities as well as geometrical source terms which must be carefully treated. The first part of this document is devoted to the study of hydrodynamics equations, or Euler equations. We propose a new class of arbitrary high-order numerical schemes in both space and time and rely on directional splitting methods for the resolution of 2D equations. Each sub-system is solved using a Lagrange+Remap solver. We study the influence of the r=0 geometrical singularities of the cylindrical and spherical coordinates systems on the precision of the 2D numerical solutions. The second part of this document is devoted to the study of radiative transfer equations. In these equations, the unknowns depend on a large number of variables and a stiff source term is involved. The main difficulty consists in capturing the correct asymptotic behavior on coarse grids. We first construct a class of models where the radiative intensity is projected on a truncated spherical harmonics basis in order to lower the number of mathematical dimensions. Then we propose an Asymptotic Preserving scheme built in polar coordinates and we show that the scheme capture the correct diffusion limit in the radial direction as well as in the polar direction. (author) [fr

  14. Antiretroviral treatment cohort analysis using time-updated CD4 counts: assessment of bias with different analytic methods.

    Directory of Open Access Journals (Sweden)

    Katharina Kranzer

    Full Text Available Survival analysis using time-updated CD4+ counts during antiretroviral therapy is frequently employed to determine risk of clinical events. The time-point when the CD4+ count is assumed to change potentially biases effect estimates but methods used to estimate this are infrequently reported.This study examined the effect of three different estimation methods: assuming i a constant CD4+ count from date of measurement until the date of next measurement, ii a constant CD4+ count from the midpoint of the preceding interval until the midpoint of the subsequent interval and iii a linear interpolation between consecutive CD4+ measurements to provide additional midpoint measurements. Person-time, tuberculosis rates and hazard ratios by CD4+ stratum were compared using all available CD4+ counts (measurement frequency 1-3 months and 6 monthly measurements from a clinical cohort. Simulated data were used to compare the extent of bias introduced by these methods.The midpoint method gave the closest fit to person-time spent with low CD4+ counts and for hazard ratios for outcomes both in the clinical dataset and the simulated data.The midpoint method presents a simple option to reduce bias in time-updated CD4+ analysis, particularly at low CD4 cell counts and rapidly increasing counts after ART initiation.

  15. Collinearity analysis of Brassica A and C genomes based on an updated inferred unigene order

    Directory of Open Access Journals (Sweden)

    Ian Bancroft

    2015-06-01

    Full Text Available This data article includes SNP scoring across lines of the Brassica napus TNDH population based on Illumina sequencing of mRNA, expanded to 75 lines. The 21, 323 mapped markers defined 887 recombination bins, representing an updated genetic linkage map for the species. Based on this new map, 5 genome sequence scaffolds were split and the order and orientation of scaffolds updated to establish a new pseudomolecule specification. The order of unigenes and SNP array probes within these pseudomolecules was determined. Unigenes were assessed for sequence similarity to the A and C genomes. The 57, 246 that mapped to both enabled the collinearity of the A and C genomes to be illustrated graphically. Although the great majority was in collinear positions, some were not. Analyses of 60 such instances are presented, suggesting that the breakdown in collinearity was largely due to either the absence of the homoeologue on one genome (resulting in sequence match to a paralogue or multiple similar sequences being present. The mRNAseq datasets for the TNDH lines are available from the SRA repository (ERA283648; the remaining datasets are supplied with this article.

  16. Predicting Depression From Language-Based Emotion Dynamics: Longitudinal Analysis of Facebook and Twitter Status Updates

    Science.gov (United States)

    Kern, Margaret L; Fulcher, Ben D; Rickard, Nikki S

    2018-01-01

    Background Frequent expression of negative emotion words on social media has been linked to depression. However, metrics have relied on average values, not dynamic measures of emotional volatility. Objective The aim of this study was to report on the associations between depression severity and the variability (time-unstructured) and instability (time-structured) in emotion word expression on Facebook and Twitter across status updates. Methods Status updates and depression severity ratings of 29 Facebook users and 49 Twitter users were collected through the app MoodPrism. The average proportion of positive and negative emotion words used, within-person variability, and instability were computed. Results Negative emotion word instability was a significant predictor of greater depression severity on Facebook (rs(29)=.44, P=.02, 95% CI 0.09-0.69), even after controlling for the average proportion of negative emotion words used (partial rs(26)=.51, P=.006) and within-person variability (partial rs(26)=.49, P=.009). A different pattern emerged on Twitter where greater negative emotion word variability indicated lower depression severity (rs(49)=−.34, P=.01, 95% CI −0.58 to 0.09). Differences between Facebook and Twitter users in their emotion word patterns and psychological characteristics were also explored. Conclusions The findings suggest that negative emotion word instability may be a simple yet sensitive measure of time-structured variability, useful when screening for depression through social media, though its usefulness may depend on the social media platform. PMID:29739736

  17. An empirical Bayes method for updating inferences in analysis of quantitative trait loci using information from related genome scans.

    Science.gov (United States)

    Zhang, Kui; Wiener, Howard; Beasley, Mark; George, Varghese; Amos, Christopher I; Allison, David B

    2006-08-01

    Individual genome scans for quantitative trait loci (QTL) mapping often suffer from low statistical power and imprecise estimates of QTL location and effect. This lack of precision yields large confidence intervals for QTL location, which are problematic for subsequent fine mapping and positional cloning. In prioritizing areas for follow-up after an initial genome scan and in evaluating the credibility of apparent linkage signals, investigators typically examine the results of other genome scans of the same phenotype and informally update their beliefs about which linkage signals in their scan most merit confidence and follow-up via a subjective-intuitive integration approach. A method that acknowledges the wisdom of this general paradigm but formally borrows information from other scans to increase confidence in objectivity would be a benefit. We developed an empirical Bayes analytic method to integrate information from multiple genome scans. The linkage statistic obtained from a single genome scan study is updated by incorporating statistics from other genome scans as prior information. This technique does not require that all studies have an identical marker map or a common estimated QTL effect. The updated linkage statistic can then be used for the estimation of QTL location and effect. We evaluate the performance of our method by using extensive simulations based on actual marker spacing and allele frequencies from available data. Results indicate that the empirical Bayes method can account for between-study heterogeneity, estimate the QTL location and effect more precisely, and provide narrower confidence intervals than results from any single individual study. We also compared the empirical Bayes method with a method originally developed for meta-analysis (a closely related but distinct purpose). In the face of marked heterogeneity among studies, the empirical Bayes method outperforms the comparator.

  18. Development of a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage

    DEFF Research Database (Denmark)

    Chen, Hao; Christensen, Erik Damgaard

    2017-01-01

    In the present work, we developed a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage. The numerical model is based on the coupling between the porous media model and the lumped mass structural model. A novel interface was implemented...

  19. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  20. Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam-Bashforth method

    Science.gov (United States)

    Jain, Sonal

    2018-01-01

    In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.

  1. Numerical combination for nonlinear analysis of structures coupled to layered soils

    Directory of Open Access Journals (Sweden)

    Wagner Queiroz Silva

    Full Text Available This paper presents an alternative coupling strategy between the Boundary Element Method (BEM and the Finite Element Method (FEM in order to create a computational code for the analysis of geometrical nonlinear 2D frames coupled to layered soils. The soil is modeled via BEM, considering multiple inclusions and internal load lines, through an alternative formulation to eliminate traction variables on subregions interfaces. A total Lagrangean formulation based on positions is adopted for the consideration of the geometric nonlinear behavior of frame structures with exact kinematics. The numerical coupling is performed by an algebraic strategy that extracts and condenses the equivalent soil's stiffness matrix and contact forces to be introduced into the frame structures hessian matrix and internal force vector, respectively. The formulation covers the analysis of shallow foundation structures and piles in any direction. Furthermore, the piles can pass through different layers. Numerical examples are shown in order to illustrate and confirm the accuracy and applicability of the proposed technique.

  2. Numerical analysis of thermal environment control in high density data center

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Kyung; Kim, Hyeon Joong; Cha, Dong An [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2012-08-15

    Increasing heat generation in CPUs can hamper effective recirculation and by pass because of the large temperature difference between the exhaust and the intake air through a server room. This increases the overall temperature inside a data center and decreases the efficiency of the data center's cooling system. The purpose of the data center's cooling system is to separate the intake and exhaust air by controlling the computer room air conditioner(CRAC). In this study, ICEPAK is used to conduct a numerical analysis of a data center's cooling system. The temperature distribution and the entire room are analyzed for different volumetric flow rates. The optimized volumetric flow rate is found for each CPU power. The heat removal and temperature distribution for CPU powers of 100, 120, and 140W are found to be the best for a volumetric flow rate of 0.15m'3'/s. The numerical analysis is verified through RTI indicators, and the results appear to be the most reliable when the RTI value is 81.

  3. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    Science.gov (United States)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  4. Numerical experiment on variance biases and Monte Carlo neutronics analysis with thermal hydraulic feedback

    International Nuclear Information System (INIS)

    Hyung, Jin Shim; Beom, Seok Han; Chang, Hyo Kim

    2003-01-01

    Monte Carlo (MC) power method based on the fixed number of fission sites at the beginning of each cycle is known to cause biases in the variances of the k-eigenvalue (keff) and the fission reaction rate estimates. Because of the biases, the apparent variances of keff and the fission reaction rate estimates from a single MC run tend to be smaller or larger than the real variances of the corresponding quantities, depending on the degree of the inter-generational correlation of the sample. We demonstrate this through a numerical experiment involving 100 independent MC runs for the neutronics analysis of a 17 x 17 fuel assembly of a pressurized water reactor (PWR). We also demonstrate through the numerical experiment that Gelbard and Prael's batch method and Ueki et al's covariance estimation method enable one to estimate the approximate real variances of keff and the fission reaction rate estimates from a single MC run. We then show that the use of the approximate real variances from the two-bias predicting methods instead of the apparent variances provides an efficient MC power iteration scheme that is required in the MC neutronics analysis of a real system to determine the pin power distribution consistent with the thermal hydraulic (TH) conditions of individual pins of the system. (authors)

  5. Parameter sampling capabilities of sequential and simultaneous data assimilation: II. Statistical analysis of numerical results

    International Nuclear Information System (INIS)

    Fossum, Kristian; Mannseth, Trond

    2014-01-01

    We assess and compare parameter sampling capabilities of one sequential and one simultaneous Bayesian, ensemble-based, joint state-parameter (JS) estimation method. In the companion paper, part I (Fossum and Mannseth 2014 Inverse Problems 30 114002), analytical investigations lead us to propose three claims, essentially stating that the sequential method can be expected to outperform the simultaneous method for weakly nonlinear forward models. Here, we assess the reliability and robustness of these claims through statistical analysis of results from a range of numerical experiments. Samples generated by the two approximate JS methods are compared to samples from the posterior distribution generated by a Markov chain Monte Carlo method, using four approximate measures of distance between probability distributions. Forward-model nonlinearity is assessed from a stochastic nonlinearity measure allowing for sufficiently large model dimensions. Both toy models (with low computational complexity, and where the nonlinearity is fairly easy to control) and two-phase porous-media flow models (corresponding to down-scaled versions of problems to which the JS methods have been frequently applied recently) are considered in the numerical experiments. Results from the statistical analysis show strong support of all three claims stated in part I. (paper)

  6. Numerical analysis and experiment research on fluid orbital performance of vane type propellant management device

    International Nuclear Information System (INIS)

    Hu, Q; Li, Y; Pan, H L; Liu, J T; Zhuang, B T

    2015-01-01

    Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment

  7. Numerical Analysis of an H1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

    Directory of Open Access Journals (Sweden)

    Jinfeng Wang

    2014-01-01

    Full Text Available We discuss and analyze an H1-Galerkin mixed finite element (H1-GMFE method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H1-GMFE method. Based on the discussion on the theoretical error analysis in L2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H1-norm. Moreover, we derive and analyze the stability of H1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.

  8. Mathematical and numerical analysis of PN models for photons transport problems

    International Nuclear Information System (INIS)

    Valentin, Xavier

    2015-01-01

    Computational costs for direct numerical simulations of photon transport problems are very high in terms of CPU time and memory. One way to tackle this issue is to develop reduced models that a cheaper to solve numerically. There exists number of these models: moments models, discrete ordinates models (S N ), diffusion-like models... In this thesis, we focus on P N models in which the transport operator is approached by mean of a truncated development on the spherical harmonics basis. These models are arbitrary accurate in the angular dimension and are rotationally invariants (in multiple space dimensions). The latter point is fundamental when one wants to simulate inertial confinement fusion (ICF) experiments where the spherical symmetry plays an important part in the accuracy of the numerical solutions. We study the mathematical structure of the PN models and construct a new numerical method in the special case of a one dimensional space dimension with spherical symmetry photon transport problems. We first focus on a linear transport problem in the vacuum. Even in this simple case, it appears in the P N equations geometrical source terms that are stiff in the neighborhood of r = 0 and thus hard to discretize. Existing numerical methods are not satisfactory for multiple reasons: (1) inaccuracy in the neighborhood of r = 0 ('flux-dip'), (2) do not capture steady states (well-balanced scheme), (3) no stability proof. Following recent works, we develop a new well-balanced scheme for which we show the L 2 stability. We then extend the scheme for photon transport problems within a no moving media, the linear Boltzmann equation, and interest ourselves on its behavior in the diffusion limit (asymptotic-preserving property). In a second part, we consider radiation hydrodynamics problems. Since modelization of these problems is still under discussion in the literature, we compare a set of existing models by mean of mathematical analysis and establish a hierarchy

  9. Analysis of data relative to the update of diagnosis reference levels in radiology and nuclear medicine. Situation 2004-2006

    International Nuclear Information System (INIS)

    2008-01-01

    This report presents the results of the analysis of patients dosimetry data the radiology and nuclear medicine institutions have to transmit yearly to I.R.S.N. in application of the 12. february decree disposal relative to the diagnosis reference levels in radiology and nuclear medicine. The analysed dosimetry data concern the evaluations realised between the date of decree publication, the 16. march 2004 and 31. december 2006. The so considered results have to allow to the Nuclear Safety Authority to define the evolution needs of the regulation. Particularly, the analysis of delivered doses in radiology and the activities given in nuclear medicine lead to propositions on the possible update of reference values of some examination types. (N.C.)

  10. NUMERICAL ANALYSIS OF AIRFLOW AND METHANE EMITTED FROM THE MINE FACE IN A BLIND DOG HEADING

    Directory of Open Access Journals (Sweden)

    Jarosław BRODNY

    2015-04-01

    Full Text Available Ventilation is one of the most common presented problems during the driving of dog headings. During driving such heading has only one connection with air stream routes, which significantly make difficult the process of its ventilation. In a case of its driving in coal in the methane seam, this heading is endangered also to methane emission. In such case process of its ventilation is much more difficult. In the paper there are presented results of numerical analysis of ventila-tion of blind dog headings using air-duct forcing the air into its mine face. The analysis was performed for four different velocities of the air at the outlet from air-duct. The calculations were made for the excavation of heading with heading machine and conveyor belt.

  11. Temperature Regulation of Photovoltaic Module Using Phase Change Material: A Numerical Analysis and Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Hasan Mahamudul

    2016-01-01

    Full Text Available This work represents an effective design of a temperature regulated PV module by integrating phase change materials for Malaysian weather condition. Through the numerical analysis and experimental investigation it has been shown that if a PCM layer of width 0.02 m of RT 35 is used as a cooling arrangement with a PV module, the surface temperature of the module is reduced by 10°C, which remains constant for a period of 4–6 hours. This reduction of temperature implies the increase in conversion efficiency of the module. Experiment as well as investigation has been carried out considering typical Malaysian weather. Obtained result has been validated by using experimental prototype and comparative analysis.

  12. Accuracy and Numerical Stabilty Analysis of Lattice Boltzmann Method with Multiple Relaxation Time for Incompressible Flows

    Science.gov (United States)

    Pradipto; Purqon, Acep

    2017-07-01

    Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.

  13. A Numerical Analysis of the Resistance and Stiffness of the Timber and Concrete Composite Beam

    Science.gov (United States)

    Szumigała, Ewa; Szumigała, Maciej; Polus, Łukasz

    2015-03-01

    The article presents the results of a numerical analysis of the load capacity and stiffness of the composite timber and concrete beam. Timber and concrete structures are relatively new, they have not been thoroughly tested and they are rarely used because of technological constraints. One of the obstacles to using them is difficulty with finding a method which would allow successful cooperation between concrete and timber, which has been proposed by the authors of the present article. The modern idea of sustainable construction design requires the use of new more environmentally-friendly solutions. Wood as an ecological material is easily accessible, less energy-consuming, and under certain conditions more corrosion-resistant than steel. The analysis presented in the article showed that cooperation between a wooden beam and a concrete slab on profiled steel sheeting is possible. The analysed composite beam has a greater load capacity and stiffness than the wooden beam.

  14. A Numerical Analysis of the Resistance and Stiffness of the Timber and Concrete Composite Beam

    Directory of Open Access Journals (Sweden)

    Szumigała Ewa

    2015-03-01

    Full Text Available The article presents the results of a numerical analysis of the load capacity and stiffness of the composite timber and concrete beam. Timber and concrete structures are relatively new, they have not been thoroughly tested and they are rarely used because of technological constraints. One of the obstacles to using them is difficulty with finding a method which would allow successful cooperation between concrete and timber, which has been proposed by the authors of the present article. The modern idea of sustainable construction design requires the use of new more environmentally-friendly solutions. Wood as an ecological material is easily accessible, less energy-consuming, and under certain conditions more corrosion-resistant than steel. The analysis presented in the article showed that cooperation between a wooden beam and a concrete slab on profiled steel sheeting is possible. The analysed composite beam has a greater load capacity and stiffness than the wooden beam.

  15. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    International Nuclear Information System (INIS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-01-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems

  16. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  17. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    Science.gov (United States)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  18. Numerical studies for the analysis of damage caused by gas explosions

    International Nuclear Information System (INIS)

    Rischbieter, F.; Horneff, W.; Michelmann, K.; Schaepermeier, E.

    1981-08-01

    Within the framework of the establishment of an immediate safety programme for the Nuclear Process Heat Project, analyses and data available from former explosion accidents are to be reviewed for the derivation of information to be included in the safety concept for the nuclear process heat system. This system is characterised by a close linkage, both in terms of function and spatial arrangement, of the explosive process unit and the nuclear unit of the process heat system. The study in hand deals with the numerical investigation of the deflagrational damage analysis. It is arranged into two parts: (1) Analysis of selected aspects of the explosion accident at Flixborough by means of comparative assessment of various scenarios. (2) Computer-aided calculation of the characteristics of damage to window panes as one of very common structural elements of accident analyses. (orig./DG) [de

  19. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ge; Wang, Jun [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Fang, Wen, E-mail: fangwen@bjtu.edu.cn [School of Economics and Management, Beijing Jiaotong University, Beijing 100044 (China)

    2015-04-15

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  20. Circular Updates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Circular Updates are periodic sequentially numbered instructions to debriefing staff and observers informing them of changes or additions to scientific and specimen...