WorldWideScience

Sample records for upconversion emission bands

  1. Investigation of luminescence properties in SiO2: Tb, Yb upconversion inverse opal

    International Nuclear Information System (INIS)

    Yang Zhengwen; Yan Dong; Song Zhiguo; Zhou Dacheng; Yu Xue; Yang Yong; Yin Zhaoyi; Yan Lei; Wang Rongfei; Wu Hangjun; Qiu Jianbei

    2012-01-01

    The SiO 2 : Tb, Yb inverse opals with photonic band gap at 465 or 543 nm were prepared, and an effect of photonic band gap on upconversion spontaneous emission from Tb 3+ was investigated. The results show that the photonic band gap has a significant influence on the upconversion emission of the SiO 2 : Tb, Yb inverse opals. The upconversion luminescence of the Tb 3+ ions is suppressed in the inverse opal compared with the luminescence of that of the reference sample. - Highlights: ► Upconversion emission from Tb 3+ was observed in the SiO 2 : Tb, Yb inverse opal. ► UC emission of Tb 3+ was modulated by controlling the structure of inverse opal. ► UC emission of Tb 3+ was depressed in the inverse opal.

  2. Upconversion emission study of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method

    International Nuclear Information System (INIS)

    Mahata, M.K.; Dey, R.; Kumar, K.; Rai, V.K.; Rai, S.B.

    2012-01-01

    In the present work we have successfully synthesized the Er 3+ , Yb 3+ doped barium titanate phosphor via co-precipitation synthesis method. Under 980 nm excitation, tri-color upconversion fluorescence has been observed. The Fourier Transform Infrared measurement was done to check the presence of organic impurities. In order to find out how many photons are involved in each emission band, the variation of UC emission intensity of the codoped phosphor is studied with increase in excitation power. Upconversion emission spectra show that as the annealing temperature of the powder is increased, intensity of red emission decreases and intensity of green emission increases due to the decrease in maximum phonon frequency of the host material. (author)

  3. Violet and visible up-conversion emission in Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanmin, E-mail: mihuyym@163.co [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Zhang Meixin [Forensic Science Lab, Hebei University, Baoding 071002 (China); Yang Zhiping [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Fu Zuoling [Key Laboratory of Coherent Light, Atomic and Molecular Spectroscopy, College of physics, Jilin University, Ministry of Education, Changchun 130023 (China)

    2010-10-15

    The up-conversion emission properties of Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses have been investigated with 980 nm excitation. The violet, blue, green and red emission bands at about 350, 485, 544 and 653 nm can be identified, respectively. Experimental results indicated that the relative intensity ratios of the peaks I{sub Red}/I{sub Green} increased with increasing B{sub 2}O{sub 3} concentration, which led to changing color of up-conversion emission from green at x=0 to yellow at x=40, to red at x=60. The violet emission at 350 nm was first reported in germanium-borate glass host and up-conversion mechanisms of the emissions were discussed. The Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses could be an alternative for the generation of violet and primary colors for application in solid-state displays.

  4. Enhancing upconversion emission of Er, Yb co-doped highly transparent YF3 films by synergistic tuning nano-textured morphology and crystallinity

    International Nuclear Information System (INIS)

    Qu, Ming-Hao; Wang, Ru-Zhi; Chen, Yan; Zhang, Ying; Li, Kai-Yu; Zhou, Hua; Yan, Hui

    2014-01-01

    Highly transparent Er, Yb codoped YF 3 upconversion films were successfully prepared by electron beam deposition method. The effects of the substrate temperature on the morphology, crystallinity and emission characteristics of Er, Yb codoped YF 3 films were studied carefully. It was found that the morphology and crystallinity varied from smooth amorphous to root-intertwined polycrystalline structure with the substrate temperature increase. Besides, the emission characteristics of the films can be modulated by the synergy of their surface morphologies and crystallinities. Remarkably, a large enhancement of the upconversion emission, up to five decades while only an insignificant decrease of the optical transmittance (10% at most), was achieved by forming root-intertwined polycrystalline structures. These highly transparent upconversion films may have good potential for enhancing the conversion efficiency of wide band-gap solar cells. -- Highlights: • Er, Yb co-dopedYF 3 upconversion films have been successfully prepared. • The upconversion property can be modulated by morphology and crystallinity. • The upconversion transparent YF 3 films are promising for solar cells applications

  5. Color Tunable and Upconversion Luminescence in Yb-Tm Co-Doped Yttrium Phosphate Inverse Opal Photonic Crystals.

    Science.gov (United States)

    Wang, Siqin; Qiu, Jianbei; Wang, Qi; Zhou, Dacheng; Yang, Zhengwen

    2016-04-01

    For this paper, YPO4: Tm, Yb inverse opals with the photonic band gaps at 475 nm and 655 nm were prepared by polystyrene colloidal crystal templates. We investigated the influence of photonic band gaps on the Tm-Yb upconversion emission which was in the YPO4: Tm Yb inverse opal photonic crystals. Comparing with the reference sample, significant suppression of both the blue and red upconversion luminescence of Tm3+ ions were observed in the inverse opals. The color purity of the blue emission was improved in the inverse opal by the suppression of red upconversion emission. Additionally, mechanism of upconversion emission in the inverse opal was discussed. We believe that the present work will be valuable for not only the foundational study of upconversion emission modification but also the development of new optical devices in upconversion lighting and display.

  6. NIR to VIS frequency upconversion luminescence properties of Er{sup 3+}-doped YPO{sub 4} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnaiah, R. [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Dong Woo [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Yi, Soung Soo, E-mail: ssyi@silla.ac.k [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Kim, Sung Hoon [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Moon, Byung Kee; Jeong, Jung Hyun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2010-09-01

    Different concentrations of Er{sup 3+}-doped YPO{sub 4}:Er powder phosphors have been synthesized by the conventional solid state reaction method and are characterized by X-ray diffraction (XRD), field emission scanning electronic microscopy (FESEM), and upconversion emission measurements. An intense red emission band and a weak green emission band are observed under NIR excitation at 975 nm in case of samples with high dopant concentration while no upconversion emission was observed at lower Er{sup 3+} ion concentrations. The possible mechanisms involved in the upconversion process have been discussed in comparison to results with similar reported works.

  7. UV, blue and red upconversion emission in Tm3+ doped Y2O3 phosphor

    International Nuclear Information System (INIS)

    Pandey, Anurag; Kaushal Kumar; Rai, Vineet Kumar

    2012-01-01

    Optimized solution combustion route has been adopted to prepare Tm 3+ doped Y 2 O 3 phosphor. The X-ray diffraction analysis of the doped phosphor for getting the structural information has been performed. Intense UV, blue and red emissions exhibiting narrow band have been monitored using 980 nm diode laser excitation. The origin of UV, blue and red upconversion emissions has been explained based on the available data. (author)

  8. IR Image upconversion using band-limited ASE illumination fiber sources.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Capmany, J

    2016-04-18

    We study the field-of-view (FOV) of an upconversion imaging system that employs an Amplified Spontaneous Emission (ASE) fiber source to illuminate a transmission target. As an intermediate case between narrowband laser and thermal illumination, an ASE fiber source allows for higher spectral intensity than thermal illumination and still keeps a broad wavelength spectrum to take advantage of an increased non-collinear phase-matching angle acceptance that enlarges the FOV of the upconversion system when compared to using narrowband laser illumination. A model is presented to predict the angular acceptance of the upconverter in terms of focusing and ASE spectral width and allocation. The model is experimentally checked in case of 1550-630 nm upconversion.

  9. Er{sup 3+}-doped Y{sub 2}O{sub 3} obtained by polymeric precursor: Synthesis, structure and upconversion emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Perrella, Rafael V.; Santos, Daniela P. dos [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del-Rei, MG (Brazil); Poirier, Gael Y. [Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas, Cidade Universitária, 37715400 Poços de Caldas, MG (Brazil); Góes, Márcio S. [Universidade Federal da Integração Latino-Americana (UNILA), Av. Tancredo Neves, 6731 – Bloco 4, Cx P. 2044, CEP: 85867-970 Foz do Iguaçu, PR (Brazil); Ribeiro, Sidney José L. [Instituto de Química, UNESP, P.O. Box 355, 14800-970 Araraquara, SP (Brazil); Schiavon, Marco A. [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del-Rei, MG (Brazil); and others

    2014-05-01

    The relentless pursuit for materials containing rare earth ions with photoluminescent properties has led to several studies with applications in the development of new technologies. The main focus of this work is the preparation of Er{sup 3+}-doped polycrystalline Y{sub 2}O{sub 3} with photoluminescent properties using PEG as an organic precursor and heat-treated at different temperatures. The methodology used in this synthesis is highly attractive due to its high feasibility for improved technology and low cost for preparing materials. The behavior of the viscous resin has been evaluated and the final compounds exhibited the formation of a cubic polycrystalline phase, which is able to support variations in Er{sup 3+} doping concentrations up to 10 mol%, without significant changes in the polycrystalline parameters. The values of the nanocrystallite size calculated by Scherrer's equation showed direct dependence on the heat-treatment temperature as well as the Er{sup 3+} concentration. Intense emission in the visible region under excitation at 980 nm was attributed to an upconversion phenomenon assigned to the intraconfigurational f–f transitions of Er{sup 3+} ions. The upconversion mechanism was investigated and it was demonstrated that the higher intense emission in the red region in comparison to the emission in the green region is related to the crystallite size. The studies about the intensity showed the dependence of upconversion emission of power source, indicating that two-photon are responsible for the green and red photoluminescence. These polycrystalline materials exhibit properties that make them promising for use in solar energy systems, C-telecom band or solid-state laser devices. - Highlights: • Intense red upconversion emission. • Very easy way to prepare the material. • Potential application in solar cells. • Application for C-telecom band.

  10. Enhanced green and red upconversion emissions in Er3+-doped boro-tellurite glass containing gold nanoparticles

    Science.gov (United States)

    Dousti, M. Reza; Amjad, Raja J.; Mahraz, Zahra Ashur S.

    2015-01-01

    Increasing the cross-section of upconversion emissions from the rare earth ions doped materials is a challenging issue. In this work, we report on the enhancement of the up-converted emissions of Er3+-doped boro-tellurite glasses containing gold nanoparticles which have been prepared by a conventional melt-quench technique. Seven absorption bands and three emission lines are observed using the UV-Vis-IR and photoluminescence spectroscopic techniques, respectively. Red emission is enhanced up to 30 times in a sample having 1 wt% of Au nanoparticles. The presence of the gold nanoparticles with average size of ∼5.74 nm is confirmed by transmission electron microscopy and corresponding surface plasmon band is observed at 630 nm in a singly-doped Au-nanoparticles embedded glass sample. A model to determine the enhancement factor of the emissions is suggested which could not describe the phenomenon for high concentrations of nanoparticles. Enhancement is attributed to the increased local field around the metal, and the results are discussed in details.

  11. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles.

    Science.gov (United States)

    Zhan, Qiuqiang; Liu, Haichun; Wang, Baoju; Wu, Qiusheng; Pu, Rui; Zhou, Chao; Huang, Bingru; Peng, Xingyun; Ågren, Hans; He, Sailing

    2017-10-20

    Stimulated emission depletion microscopy provides a powerful sub-diffraction imaging modality for life science studies. Conventionally, stimulated emission depletion requires a relatively high light intensity to obtain an adequate depletion efficiency through only light-matter interaction. Here we show efficient emission depletion for a class of lanthanide-doped upconversion nanoparticles with the assistance of interionic cross relaxation, which significantly lowers the laser intensity requirements of optical depletion. We demonstrate two-color super-resolution imaging using upconversion nanoparticles (resolution ~ 66 nm) with a single pair of excitation/depletion beams. In addition, we show super-resolution imaging of immunostained cytoskeleton structures of fixed cells (resolution ~ 82 nm) using upconversion nanoparticles. These achievements provide a new perspective for the development of photoswitchable luminescent probes and will broaden the applications of lanthanide-doped nanoparticles for sub-diffraction microscopic imaging.

  12. Frequency upconversion in Er3+ doped tungsten tellurite glass containing Ag nanoparticles

    Science.gov (United States)

    Mahajan, S. K.; Parashar, J.

    2018-05-01

    The frequency upconversion emission in Er3+ doped TeO2-WO3-Li2O containing Ag nanoparticle (TWLEOAG) glasses at 980nm excitation is reported. The absorption spectra reveal not only the peaks due to Er3+ ions, but also the surface plasmon resonance band of silver NPs located around 525nm and 650 nm. The spherical AgNPs with average size ˜38 nm in the glassy matrix is evidenced from the TEM measurement. Under 980nm laser excitation upconversion emission spectra show two major emission at 550nm and 638nm originating from 4S3/2 and 4F9/2 energy levels of the Er3+ ions, respectively was observed. Upconversion emission enhancement factor 7 fold has been measured for sample heat treated during 40h. However for 18h heat treated TWLEOAG sample under 980 nm flash lamp excitation produced Intense green compare to red emission. Since the 980nm frequency is far from the AgNPs surface plasmon resonance frequency, visible emission ehancement is attributed to local field increase in proximity of the Ag NPs and not energy tranfer from NPs to emitters. Possible energy transfer upconversion mechanism has been also discussed.

  13. A modified energy transfer model for determination of upconversion emission of β-NaYF{sub 4}:Yb,Er: Role of self-quenching effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongyuan [The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi’an 710049 (China); Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 (China); Lin, Min, E-mail: minlin@mail.xjtu.edu.cn [The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi’an 710049 (China); Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 (China); Jin, Guorui [The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi’an 710049 (China); Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 (China); Lu, Tian Jian [Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Feng [The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi’an 710049 (China); Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 (China)

    2017-05-15

    A modified energy transfer model by incorporating self-quenching effect is introduced to determine upconversion emission of β-NaYF{sub 4}:Yb,Er. The simulation results agree well with existing experimental results, demonstrating the critical role of self-quenching effect in upconversion emission. Our results confirm that a 4.4-fold increase of green upconversion and 86-fold increase in the intensity of red upconversion emission could be realized by suppressing self-quenching. In addition, the optimal doping concentrations for integral emission intensity are found to be independent of excitation power, while the green to red ratio is found to rely significantly on excitation power. Our model offers mechanistic insight into upconversion emission processes and provides inspirations in improving upconversion emission efficiency through optimization of energy transfer pathways in different types of matrix sub-lattice.

  14. Study of upconversion fluorescence property of novel Er3+/Yb3+ co-doped tellurite glasses.

    Science.gov (United States)

    Xu, Tie-Feng; Li, Guang-Po; Nie, Qiu-Hua; Shen, Xiang

    2006-06-01

    Er3+/Yb3+ co-doped TeO2-B2O3-Nb2O5-ZnO (TBN) glasses were prepared. The absorption spectra and upconversion luminescence spectra of TBN glasses were measured and analyzed. The upconversion emission bands centered at 530, 546 and 658 nm were observed under the excitation at 975 nm, corresponding to the transitions of 2H11/2-->4I15/2, 4S3/2-->4I15/2 and 4F9/2-->4I15/2 respectively. The ratio of red emission to green emission increases with an increasing of Yb3+ ions concentration. According to the quadratic dependence on excitation power, the possible upconversion mechanisms and processes were discussed.

  15. The modulation of upconversion in BaTiO{sub 3}:Yb{sup 3+}, Er{sup 3+} inverse opal structures

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Tianya; Han, Yazhou; Zhang, Chunyu; Ji, Yanan; Zhang, Fan; Chen, Qiang; Wang, Chun; Mei, Yong; Xu, Panfeng; Li, Lina [College of Physics, Liaoning University, Shenyang 110036 (China); Zhu, Yongsheng, E-mail: yongshengzhu0001@163.com [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061 (China); Wang, Jiwei, E-mail: jiweiwang6688@yahoo.com [College of Physics, Liaoning University, Shenyang 110036 (China)

    2017-03-15

    Under 980 nm excitation, it is observed that green upconversion emission is suppressed whereas red emission is enhanced when the photonic band gap (PBG) covers the spectral region of green emission in the BaTiO{sub 3}: Yb{sup 3+}, Er{sup 3+} inverse opal structure. The investigation of the PBG effect on upconversion dynamics reveals that the population of the low level {sup 4}I{sub 13/2} is increased by both cross relaxation and energy back transfer processes when spontaneous emission of higher levels is suppressed. Then, following energy transfer or excited state absorption processes starting from {sup 4}I{sub 13/2}, the intensity of red emission is enhanced. The ratio of 525 nm versus 550 nm emission presents the temperature of samples when the PBG complete or absent covers the green emission band. However, the branching ratio deviates the temperature index in condition of a part of overlap between PBG and green emission band.

  16. Scalable Direct Writing of Lanthanide-Doped KMnF3 Perovskite Nanowires into Aligned Arrays with Polarized Up-Conversion Emission.

    Science.gov (United States)

    Shi, Shuo; Sun, Ling-Dong; Xue, Ying-Xian; Dong, Hao; Wu, Ke; Guo, Shi-Chen; Wu, Bo-Tao; Yan, Chun-Hua

    2018-05-09

    The use of one-dimensional nano- and microstructured semiconductor and lanthanide materials is attractive for polarized-light-emission studies. Up-conversion emission from single-nanorod or anisotropic nanoparticles with a degree of polarization has also been discussed. However, microscale arrays of nanoparticles, especially well-aligned one-dimensional nanostructures as well as their up-conversion polarization characterization, have not been investigated yet. Herein, we present a novel and facile paradigm for preparing highly aligned arrays of lanthanide-doped KMnF 3 (KMnF 3 :Ln) perovskite nanowires, which are good candidates for polarized up-conversion emission studies. These perovskite nanowires, with a width of 10 nm and length of a few micrometers, are formed through the oriented attachment of KMnF 3 :Ln nanocubes along the [001] direction. By the employment of KMnF 3 :Ln nanowire gel as nanoink, a direct-writing method is developed to obtain diverse types of aligned patterns from the nanoscale to the wafer scale. Up-conversion emissions from the highly aligned nanowire arrays are polarized along the array direction with a polarization degree up to 60%. Taking advantage of microscopic nanowire arrays, these polarized up-conversion emissions should offer potential applications in light or information transportation.

  17. Infrared to visible upconversion luminescence in Er3+/Yb3+ co-doped CeO2 inverse opal

    International Nuclear Information System (INIS)

    Yang, Zhengwen; Wu, Hangjun; Liao, Jiayan; Li, Wucai; Song, Zhiguo; Yang, Yong; Zhou, Dacheng; Wang, Rongfei; Qiu, Jianbei

    2013-01-01

    Highlights: • UC emission of Er 3+ was modified by introducing the structure of inverse opal. • Color tuning of CeO 2 :Yb, Er inverse opal was realized by inhibition of UC emission. • Two-photon excitation processes were observed in CeO 2 :Yb, Er inverse opal. -- Abstract: Infrared to visible upconversion luminescence has been investigated in Er 3+ /Yb 3+ co-doped CeO 2 inverse opal. Under the excitation of 980 nm diode lasers, visible emissions centered at 525, 547, 561, 660 and 680 nm are observed, which are assigned to the Er 3+ transitions of 2 H 11/2 → 4 I 15/2 (525 nm), 4 S 3/2 → 4 I 15/2 (547, 561 nm), 4 F 9/2 → 4 I 15/2 (660 and 680 nm), respectively. The effect of photonic band gap on the upconversion luminescence intensity was also obtained. Additionally, the upconversion luminescence mechanism was studied. The dependence of Er 3+ upconversion emission intensity on pump power reveals that it is a two-photon excitation process

  18. Enhancement of red upconversion emission of cubic phase NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei, E-mail: gaowei@xupt.edu.com; Dong, Jun, E-mail: dongjun@xupt.edu.cn; Liu, Jihong; Yan, Xuewen

    2016-08-15

    Highlights: • The upconversion emission of Ho{sup 3+} ions was tuned from green to red. • The upconversion mechanism of Ho{sup 3+} ions was discussed based on emission spectrum. • The conversion efficiency between Ho{sup 3+} and Ce{sup 3+} were studied and calculated. - Abstract: The red upconversion emission of lanthanide-doped fluoride nanocrystals have great potential applications in color display and anticounterfeiting applications, especially for biological imaging and biomedical. In this work, a significant enhancement of red upconversion emission of Ho{sup 3+} ions was successfully obtained in the cubic phase NaLuF{sub 4} nanocrystals through codoping Ce{sup 3+} ions under NIR 980 nm excitation. The ratio of red-to-green emission of Ho{sup 3+} ions was enhanced about 10-fold, which is due to two efficient cross relaxation processes derived from Ho{sup 3+} and Ce{sup 3+} ions promoted the red emission and quenched the green emission. The upconversion emission and luminescent colors of NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+} nanocrystals were carefully investigated by a confocal microscopy setup. The possible upconversion emission mechanism and conversion efficiency of cross relaxation between Ho{sup 3+} and Ce{sup 3+} ions were discussed in detail. The current study suggests that strong red emission of NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} nanomaterials can be used for color display and anticounterfeiting techniques.

  19. Visible Discrimination of Broadband Infrared Light by Dye-Enhanced Upconversion in Lanthanide-Doped Nanocrystals

    Directory of Open Access Journals (Sweden)

    Charles G. Dupuy

    2014-01-01

    Full Text Available Optical upconversion of near infrared light to visible light is an attractive way to capture the optical energy or optical information contained in low-energy photons that is otherwise lost to the human eye or to certain photodetectors and solar cells. Until the recent application of broadband absorbing optical antennas, upconversion efficiency in lanthanide-doped nanocrystals was limited by the weak, narrow atomic absorption of a handful of sensitizer elements. In this work, we extend the role of the optical antenna to provide false-color, visible discrimination between bands of infrared radiation. By pairing different optical antenna dyes to specific nanoparticle compositions, unique visible emission is associated with different bands of infrared excitation. In one material set, the peak emission was increased 10-fold, and the width of the spectral response was increased more than 10-fold.

  20. NIR upconversion emission of Tm{sup 3+} doped glassceramics for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Mendoza, U.R., E-mail: urguez@ull.edu.es [Departamento de Física, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Lahoz, F. [Departamento de Física, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Instituto Universitario de Estudios Avanzados en Atómica, Molecular y Fotónica, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain)

    2016-11-15

    The Tm{sup 3+} 800 nm upconversion emission corresponding to the {sup 3}H{sub 4}→{sup 3}H{sub 6} transition has been obtained upon infrared sub-Si bandgap excitation at 1210 nm in Tm{sup 3+} doped transparent glasses and glass ceramics with composition SiO{sub 2}–Al{sub 2}O{sub 3}–CdF{sub 2}–PbF{sub 2}–YF{sub 3}. Possible energy transfer mechanisms have been carefully studied through different experimental measurements such as the excitation spectrum, decay rate of the emission and laser pump power versus integrated emission. The results suggest that energy transfer upconversion (ETU) mechanism is responsible for the emission. It is based on the following process: Tm{sup 3+}({sup 3}F{sub 4})+Tm{sup 3+}({sup 3}F{sub 4})→Tm{sup 3+}({sup 3}H{sub 6})+Tm{sup 3+}({sup 3}H{sub 4}). The upconverted emission is about three times more intense in the glass ceramic samples than in the precursor glasses. This emission can be used to enhance the performances in crystalline silicon (c-Si) solar cells.

  1. Sub-Band Gap Turn-On Near-Infrared-to-Visible Up-Conversion Device Enabled by an Organic-Inorganic Hybrid Perovskite Photovoltaic Absorber.

    Science.gov (United States)

    Yu, By Hyeonggeun; Cheng, Yuanhang; Li, Menglin; Tsang, Sai-Wing; So, Franky

    2018-05-09

    Direct integration of an infrared (IR) photodetector with an organic light-emitting diode (OLED) enables low-cost, pixel-free IR imaging. However, the operation voltage of the resulting IR-to-visible up-conversion is large because of the series device architecture. Here, we report a low-voltage near-IR (NIR)-to-visible up-conversion device using formamidinium lead iodide as a NIR absorber integrated with a phosphorescent OLED. Because of the efficient photocarrier injection from the hybrid perovskite layer to the OLED, we observed a sub-band gap turn-on of the OLED under NIR illumination. The device showed a NIR-to-visible up-conversion efficiency of 3% and a luminance on/off ratio of 10 3 at only 5 V. Finally, we demonstrate pixel-free NIR imaging using the up-conversion device.

  2. Ho3+-Yb3+ codoped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion

    Science.gov (United States)

    Azam, Mohd; Rai, Vineet Kumar

    2017-04-01

    The optical absorption and frequency upconversion emission in the Ho3+/Yb3+ codoped TeO2-ZnO (TZ), TeO2-ZnO-WO3 (TZW) and TeO2-ZnO-WO3-TiO2 (TZWTi) glasses prepared by melting and quenching method has been studied. Judd-Ofelt theory has been used to calculate the Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6), transition probabilities, radiative lifetimes, absorption cross sections and the branching ratios. Upconversion (UC) emission bands centered at ∼ 549 nm, ∼658 nm and ∼754 nm are observed upon 980 nm excitation. On codoping with the Yb3+ ions at 3.0 mol% the upconversion emission intensity enhancement of about ∼57 times, ∼342 times and ∼480 times for the green band whereas for the red band arising from the Ho3+ ions it is about ∼71 times, ∼438 times and ∼707 times respectively have been observed. The enhancement observed in the UC emission intensity is explained on the basis of efficient energy transfer from Yb3+ to Ho3+, larger absorption cross section, larger oscillator strengths and increase in the local field corrections factor. The spectroscopic quality factor Ω4/Ω6 has been calculated to get the information about the developed materials for laser applications. The upconversion emission cross section determined on the basis of Judd-Ofelt analysis is found to be maximum for Ho-Yb-TZWTi glass. The nephelauxetic ratio, bonding and covalency parameters have been calculated to know the nature of bonding between the rare earth ions and neighbouring oxygen atoms. The high color purity 83.8% has been reported in the codoped glasses at ∼81.2 W/cm2 pump power density.

  3. Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Lu Weili; Cheng Lihong; Zhong Haiyang; Sun Jiashi; Wan Jing; Tian Yue; Chen Baojiu

    2010-01-01

    Yttrium molybdate phosphors with fixed Er 3+ and various Yb 3+ concentrations were synthesized via a co-precipitation method. The crystal structure and the morphology of the phosphor were characterized by means of x-ray diffraction and field-emission scanning electron microscopy. Under 980 nm excitation, red and green upconversion emissions centred at 660, 553 and 530 nm were observed. Quantitative analyses on the dependence of upconversion emission intensity on the working current of a laser diode (LD) indicated that two-photon processes are responsible for both red and green upconversion emissions in both cases of low and high Yb 3+ concentrations. The relationship between the emission intensity ratio of 2 H 11/2 → 4 I 15/2 to 4 S 3/2 → 4 I 15/2 and the working current of the LD was studied for the samples doped with low and high Yb 3+ concentrations. Finally, a set of rate equations was established based on the possible upconversion mechanism, and an empirical formula was proposed to describe the Yb 3+ concentration dependence of upconversion emission intensity; the empirical formula fits well with the experimental data.

  4. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials.

    Science.gov (United States)

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-10-27

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed.

  5. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    Directory of Open Access Journals (Sweden)

    Yunfei Shang

    2015-10-01

    Full Text Available Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous, gallium arsenide (GaAs solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed

  6. Color-tunable up-conversion emission of luminescent-plasmonic, core/shell nanomaterials – KY{sub 3}F{sub 10}:Yb{sup 3+},Tm{sup 3+}/SiO{sub 2}-NH{sub 2}/Au

    Energy Technology Data Exchange (ETDEWEB)

    Runowski, Marcin, E-mail: runowski@amu.edu.pl

    2017-06-15

    Multifunctional luminescent-plasmonic KY{sub 3}F{sub 10}:Yb{sup 3+},Tm{sup 3+}/SiO{sub 2}-NH{sub 2}/Au nanomaterials were successfully obtained. The lanthanide-doped fluoride nanoparticles (NPs), synthesized under hydrothermal conditions exhibited bright blue up-conversion luminescence (λ{sub ex}=980 nm). Such lanthanide nanocrystals (20–40 nm) were coated with amine modified silica shell, forming core/shell nanostructures. Their surface was further uniformly covered with ultra-small gold NPs (4–7 nm). The as-prepared luminescent-plasmonic core/shell nanomaterials exhibited tunable up-conversion emission, due to the interactions between plasmonic and luminescent phases. The emission of Tm{sup 3+} ion was affected by the surface Au NPs, which exhibited strong plasmonic absorption in the visible range (450–650 nm). The increasing amount of the surface Au NPs, led to the significant alterations in a ratio of the Tm{sup 3+} emission bands. The NIR band ({sup 3}H{sub 4}→{sup 3}H{sub 6}) was unchanged, whereas the ratio and relative intensity of the bands in a visible range ({sup 1}G{sub 4}→{sup 3}H{sub 6} and {sup 1}G{sub 4}→{sup 3}F{sub 4}) was altered. This led to the significant change of the emission spectra shape and influenced color of emission, tuning it from bright blue to blue-violet. The products obtained were characterized by transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), powder X-ray diffraction (XRD), UV–vis absorption spectroscopy and luminescence spectroscopy (excitation/emission spectra and luminescence decay curves).

  7. The Intersection of CMOS Microsystems and Upconversion Nanoparticles for Luminescence Bioimaging and Bioassays

    Directory of Open Access Journals (Sweden)

    Liping Wei

    2014-09-01

    Full Text Available Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies.

  8. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng; Deng, Renren; Wang, Juan; Wang, Qingxiao; Han, Yu; Zhu, Haomiao; Chen, Xueyuan; Liu, Xiaogang

    2011-01-01

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  9. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng

    2011-10-23

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  10. Enhanced broadband upconversion emission and 23 dB optical gain at 780 nm in Tm3+/Nd3+ codoped optical fiber

    International Nuclear Information System (INIS)

    Fan, Weiwei; Chen, Shuyue; Htein, Lin; Han, Won-Taek

    2015-01-01

    Maximum gain of 23 dB at 780 nm and a broadband optical gain with full width at half maximum (FWHM) of 88 nm (761–849 nm) were obtained from the Tm 3+ /Nd 3+ codoped fiber upon pumping at 1550 nm. The enhancement of the upconversion emission stretching from 730 to 970 nm was observed in the Tm 3+ /Nd 3+ codoped fiber due to the energy transfer from Tm 3+ to Nd 3+ ions. - Highlights: • We fabricated the Tm 3+ /Nd 3+ codoped silica based fiber. • The broadband upconversion emission was observed with 1550 nm pumping. • Maximum gain of 23 dB was observed at 780 nm from the Tm 3+ /Nd 3+ codoped fiber. • The gain bandwidth of the upconversion emission was largely increased due to energy transfer process

  11. Light-Harvesting Organic Nanocrystals Capable of Photon Upconversion.

    Science.gov (United States)

    Li, Li; Zeng, Yi; Yu, Tianjun; Chen, Jinping; Yang, Guoqiang; Li, Yi

    2017-11-23

    Harvesting and converting low energy photons into higher ones through upconversion have great potential in solar energy conversion. A light-harvesting nanocrystal assembled from 9,10-distyrylanthracene and palladium(II) meso-tetraphenyltetrabenzoporphyrin as the acceptor and the sensitizer, respectively effects red-to-green upconversion under incoherent excitation of low power density. An upconversion quantum yield of 0.29±0.02 % is obtained upon excitation with 640 nm laser of 120 mW cm -2 . The well-organized packing of acceptor molecules with aggregation-induced emission in the nanocrystals dramatically reduces the nonradiative decay of the excited acceptor, benefits the triplet-triplet annihilation (TTA) upconversion and guides the consequent upconverted emission. This work provides a straightforward strategy to develop light-harvesting nanocrystals based on TTA upconversion, which is attractive for energy conversion and photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Additives and solvents-induced phase and morphology modification of NaYF_4 for improving up-conversion emission

    International Nuclear Information System (INIS)

    Zhuang, Jianle; Yang, Xianfeng; Wang, Jing; Lei, Bingfu; Liu, Yingliang; Wu, Mingmei

    2016-01-01

    Both cubic and hexagonal NaYF_4 were synthesized in different reaction systems via hydro/solvo-thermal route. The effects of reaction temperature, solvents, and additives on the synthesis of NaYF_4 have been studied in detail. It has been shown that phase transformation from cubic NaYF_4 to hexagonal NaYF_4 always occurred. The sequence of the ability for inducing the phase transformation was ethanol>H_2O>acetic acid. It is found that ethanol can not only facilitate the formation of hexagonal NaYF_4 but also control the growth of the crystal. This is quite unusual for the growth of H-NaYF_4. The up-conversion emission properties of Yb/Er co-doped NaYF_4 have also been investigated and the results demonstrated some general principles for improving up-conversion emission. - Graphical abstract: Additives and solvents can induce the phase transformation of NaYF_4, typically the use of organic sodium salt and ethanol. - Highlights: • The effect of additives and solvents on the synthesis of NaYF_4 was studied in detail. • Ethanol can facilitate the formation of H-NaYF_4 while acetic acid restrain it. • Three general principles for improving up-conversion emission were summarized.

  13. Broadened band C-telecom and intense upconversion emission of Er{sup 3+}/Yb{sup 3+} co-doped CaYAlO{sub 4} luminescent material obtained by an easy route

    Energy Technology Data Exchange (ETDEWEB)

    Perrella, R.V.; Schiavon, M.A. [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del Rei, MG (Brazil); Pecoraro, E.; Ribeiro, S.J.L. [UNESP, Institute of Chemistry, P.O. Box 355, 14800-970 Araraquara, SP (Brazil); Ferrari, J.L., E-mail: ferrari@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del Rei, MG (Brazil)

    2016-10-15

    This work reports on photoluminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped CaYAlO{sub 4} in powder form, synthesized by an easy route using citric acid as ligand to form complex precursor. The 1.2 mol% of Yb{sup 3+} was fixed, while the amount of Er{sup 3+} changed in 0.5, 1.5 and 3 mol% in order to evaluate the photoluminescence properties as a function of the Er{sup 3+} concentration. The structural and thermal properties of the viscous solutions and powder materials obtained after the heat-treatment at 1000, 1100 and 1200 °C for 4 h were evaluated by XRD, FTIR and TG/DTA analysis. The results showed the formation of pure CaYAlO{sub 4} tetragonal crystalline phase after heat-treatment at 1100 °C and 1200 °C. Intense emission in the visible region under excitation at 980 nm was attributed to upconversion process, from Er{sup 3+} intra-configurational f–f transitions. The emissions were assigned to the transitions {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} (green region), and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} (red region) energy levels. The ratio between emission band integrated areas assigned to the red and green emissions increased as a function of Er{sup 3+} concentration. Under excitation at 980 nm with 100 mW of power pump, the materials also showed intense and broadening emission with maximum at 1520 nm with FWHM of 84.74 nm for the sample CaYAlO{sub 4}:1.5% Er{sup 3+}/1.2% Yb{sup 3+} heat-treated at 1000 °C for 4 h. The photoluminescence properties showed that these materials are promising for use in C-telecom band as optical amplifier biological marker or/and solid-state laser devices under excitation at 980 nm.

  14. Effect of Tm{sup 3+} codoping on the near-infrared and upconversion emissions of Er{sup 3+} in TeO{sub 2}–ZnO–ZnF{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, A. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU,Alda. Urquijo s/n, 48013 Bilbao (Spain); Arriandiaga, M.A. [Departamento de Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Apartado 644, Bilbao (Spain); Morea, R. [Instituto de Optica, Consejo Superior de Investigaciones Científicas CSIC, Serrano 121, 28006 Madrid (Spain); Fernandez, J. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU,Alda. Urquijo s/n, 48013 Bilbao (Spain); Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018 San Sebastian (Spain); Gonzalo, J. [Instituto de Optica, Consejo Superior de Investigaciones Científicas CSIC, Serrano 121, 28006 Madrid (Spain); Balda, R., E-mail: wupbacrr@bi.ehu.es [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU,Alda. Urquijo s/n, 48013 Bilbao (Spain); Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018 San Sebastian (Spain)

    2014-10-15

    In this work, we report the near-infrared emission and upconversion of Er{sup 3+}–Tm{sup 3+} codoped fluorotellurite TeO{sub 2}–ZnO–ZnF{sub 2} glasses for different Tm{sup 3+} concentrations by using steady-state and time-resolved spectroscopy. A broad emission from 1350 to 1700 nm corresponding to the {sup 3}H{sub 4}→{sup 3}F{sub 4} (Tm{sup 3+}) and {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} (Er{sup 3+}) emissions which cover the complete telecommunication window of the wavelength-division-multiplexing transmission systems is observed. The full width at half-maximum of this broadband increases with increasing Tm{sup 3+}/Er{sup 3+} concentration ratio up to a value of∼150 nm. Energy transfer between Er{sup 3+} and Tm{sup 3+} ions is also observed and analyzed by both the temporal behavior of the near-infrared luminescence and the effect of Tm{sup 3+} codoping on the visible upconversion of Er{sup 3+} ions. The addition of Tm{sup 3+} reduces the upconverted green emission due to Er{sup 3+}→Tm{sup 3+} energy transfer whereas the red emission is enhanced due to the cross-relaxation {sup 3}F{sub 4}→{sup 3}H{sub 6}(Tm{sup 3+}):{sup 4}I{sub 11/2}→{sup 4}F{sub 9/2}(Er{sup 3+}) process. - Highlights: • Broadband emission covering the bands S, C+L and U of the optical telecommunications. • The effect of Tm{sup 3+} concentration were investigated in Er{sup 3+}–Tm{sup 3+} codoped fluorotellurite glasses. • Efficient Er{sup 3+}↔Tm{sup 3+} energy transfer in fluorotellurite glasses. • Increase of the red upconversion emission with Tm{sup 3+} concentration due to cross-relaxation processes.

  15. Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor.

    Science.gov (United States)

    Ruan, Jiufeng; Yang, Zhengwen; Huang, Anjun; Zhang, Hailu; Qiu, Jianbei; Song, Zhiguo

    2018-05-02

    Reversible luminescence modulation of upconversion phosphors has the potential applications as photoswitches and optical memory and data storage devices. Previously, the photochromic reaction was extensively used for the realization of reversible luminescence modulation. It is very necessary to develop other approaches such as thermomchromic reaction to obtain the reversible upconversion luminescence modulation. In this work, the WO 3 :Yb 3+ ,Er 3+ phosphors with various colors were prepared at various temperatures, exhibiting tunable upconversion luminescence attributed to the formation of oxygen vacancies in the host. Upon heat treatment in the reducing atmosphere or air, the WO 3 :Yb 3+ ,Er 3+ phosphors show a reversible thermomchromic property. The reversible upconversion luminescence modulation of WO 3 :Yb 3+ ,Er 3+ phosphors was observed based on thermomchromic reaction. Additionally, the upconversion luminescence modulation is maintained after several cycles, indicating its excellent stability. The WO 3 :Yb 3+ ,Er 3+ phosphors with reversible upconversion luminescence and excellent reproducibility have potential applications as the photoswitches and optical memory and data storage devices.

  16. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    Science.gov (United States)

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  17. Near infrared emission and multicolor tunability of enhanced upconversion emission from Er{sup 3+}–Yb{sup 3+} co-doped Nb{sub 2}O{sub 5} nanocrystals embedded in silica-based nanocomposite and planar waveguides for photonics

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Felipe Thomaz [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Ferrari, Jefferson Luis [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João Del Rei, MG (Brazil); Maia, Lauro June Queiroz [Grupo Física de Materiais, Instituto de Física, Universidade Federal de Goiás, Campus II, C.P. 131, CEP 74001-970, Goiânia, GO (Brazil); Ribeiro, Sidney José Lima [Institute of Chemistry- São Paulo State University- UNESP, Araraquara, SP 14800-900 (Brazil); Ferrier, Alban [PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); and others

    2016-02-15

    This work reports on the Yb{sup 3+} ion addition effect on the near infrared emission and infrared-to-visible up conversion from planar waveguides based on Er{sup 3+}–Yb{sup 3+} co-doped Nb{sub 2}O{sub 5} nanocrystals embedded in SiO{sub 2}-based nanocomposite prepared by a sol–gel process with controlled crystallization in situ. Planar waveguides and xerogels containing Si/Nb molar ratio of 90:10 up to 50:50 were prepared. Spherical-like orthorhombic or monoclinic Nb{sub 2}O{sub 5} nanocrystals were grown in the amorphous SiO{sub 2}-based host depending on the niobium content and annealing temperature, resulting in transparent glass ceramics. Crystallization process was intensely affected by rare earth content increase. Enhancement and broadening of the NIR emission has been achieved depending on the rare earth content, niobium content and annealing temperature. Effective Yb{sup 3+}→Er{sup 3+} energy transfer and a high-intensity broad band emission in the near infrared region assigned to the Er{sup 3+} ions {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition, and longer {sup 4}I{sub 13/2} lifetimes were observed for samples containing orthorhombic Nb{sub 2}O{sub 5} nanocrystals. Intense green and red emissions were registered for all Er{sup 3+}–Yb{sup 3+} co-doped waveguides under 980 nm excitation, assigned to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} (525 nm),{sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} (545nm) and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} (670 nm) transitions, respectively. Different relative green and red intensities emissions were observed, depending upon niobium oxide content and the laser power. Upconversion dynamics were determined by the photons number, evidencing that ESA or ETU mechanisms are probably occurring. The 1931 CIE chromaticity diagrams indicated interesting color tunability based on the waveguides composition and pump power. The nanocomposite waveguides are promising materials for photonic applications as optical amplifiers and

  18. Up-conversion luminescence of Er3+/Yb3+/Nd3+-codoped tellurite glasses

    International Nuclear Information System (INIS)

    Lu Longjun; Nie Qiuhua; Xu Tiefeng; Dai Shixun; Shen Xiang; Zhang Xianghua

    2007-01-01

    Up-conversion luminescence and energy transfer (ET) processes in Nd 3+ -Yb 3+ -Er 3+ triply doped TeO 2 -ZnO-Na 2 O glasses have been studied under 800 nm excitation. Intense green up-conversion emissions around 549 nm, which can be attributed to the Er 3+ : 4 S 3/2 →4 I 15/2 transition, are observed in triply doped samples. In contrast, the green emissions are hardly observed in Er 3+ singly doped and Er 3+ -Yb 3+ codoped samples under the same condition. Up-conversion luminescence intensity exhibits dependence of Yb 2 O 3 -concentration and Nd 2 O 3 -concentration. Up-conversion mechanism in the triply doped glasses under 800 nm pump is discussed by analyzing the ET among Nd 3+ , Yb 3+ and Er 3+ . And a possible up-conversion mechanism based on sequential ET from Nd 3+ to Er 3+ through Yb 3+ is proposed for green and red up-conversion emission processes

  19. Down- and up-conversion emissions in Er{sup 3+}–Yb{sup 3+} codoped TeO{sub 2}–ZnO–ZnF{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, A. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n, 48013 Bilbao (Spain); Arriandiaga, M.A. [Departamento de Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Apartado 644, Bilbao (Spain); Morea, R. [Instituto de Optica, Consejo Superior de Investigaciones Científicas CSIC, Serrano 121, 28006 Madrid (Spain); Fernandez, J. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n, 48013 Bilbao (Spain); Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018 San Sebastian (Spain); Gonzalo, J. [Instituto de Optica, Consejo Superior de Investigaciones Científicas CSIC, Serrano 121, 28006 Madrid (Spain); Balda, R., E-mail: wupbacrr@bi.ehu.es [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n, 48013 Bilbao (Spain); Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018 San Sebastian (Spain)

    2015-02-15

    In this work, we report the near infrared and upconversion emissions of Er{sup 3+}–Yb{sup 3+} codoped fluorotellurite TeO{sub 2}–ZnO–ZnF{sub 2} glasses for different YbF{sub 3} concentrations ranging between 0.5 and 2 wt%. The study includes absorption and emission spectra and lifetime measurements for the infrared and visible fluorescence. The energy transfer between Yb{sup 3+} and Er{sup 3+} ions is confirmed by the temporal behavior of the near-infrared luminescence of Yb{sup 3+} ions as well as by the enhancement of the 1532 nm emission of Er{sup 3+} ions in the codoped samples. The Yb{sup 3+}→Er{sup 3+} energy transfer efficiency is calculated from the Yb{sup 3+} lifetimes in single and codoped samples. Back transfer from Er{sup 3+} to Yb{sup 3+} ions is present under near infrared and visible excitation of Er{sup 3+} ions at 798 and 488 nm respectively. An enhancement of the visible upconversion fluorescence is also observed in the codoped samples due to energy transfer from Yb{sup 3+} to Er{sup 3+} ions. The standardized value for the efficiency of the green upconversion emission is 1.06×10{sup −4} for the codoped sample with 2 wt% of YbF{sub 3} which is comparable to that reported in lead–zinc–tellurite glasses. The possible upconversion processes and mechanisms leading to the population of several excited levels are discussed. - Highlights: • The effect of Yb{sup 3+} concentration on the NIR and VIS emissions of Er{sup 3+}ions is studied. • TheYb{sup 3+}↔Er{sup 3+} energy transfer in fluorotellurite glasses is demonstrated. • Increase of the green upconversion emission with Yb{sup 3+} concentration due to Yb{sup 3+}→Er{sup 3+} energy transfer. • The ratio of red to green upconversion emissions depends on the concentration of Yb{sup 3+} ions.

  20. Additives and solvents-induced phase and morphology modification of NaYF{sub 4} for improving up-conversion emission

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Jianle, E-mail: zhuangjianle@126.com [Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Yang, Xianfeng; Wang, Jing [MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Lei, Bingfu; Liu, Yingliang [Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Wu, Mingmei, E-mail: ceswmm@mail.sysu.edu.cn [MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2016-01-15

    Both cubic and hexagonal NaYF{sub 4} were synthesized in different reaction systems via hydro/solvo-thermal route. The effects of reaction temperature, solvents, and additives on the synthesis of NaYF{sub 4} have been studied in detail. It has been shown that phase transformation from cubic NaYF{sub 4} to hexagonal NaYF{sub 4} always occurred. The sequence of the ability for inducing the phase transformation was ethanol>H{sub 2}O>acetic acid. It is found that ethanol can not only facilitate the formation of hexagonal NaYF{sub 4} but also control the growth of the crystal. This is quite unusual for the growth of H-NaYF{sub 4}. The up-conversion emission properties of Yb/Er co-doped NaYF{sub 4} have also been investigated and the results demonstrated some general principles for improving up-conversion emission. - Graphical abstract: Additives and solvents can induce the phase transformation of NaYF{sub 4}, typically the use of organic sodium salt and ethanol. - Highlights: • The effect of additives and solvents on the synthesis of NaYF{sub 4} was studied in detail. • Ethanol can facilitate the formation of H-NaYF{sub 4} while acetic acid restrain it. • Three general principles for improving up-conversion emission were summarized.

  1. Spectroscopy and visible frequency upconversion in Er3+-Yb3+: TeO2-ZnO glass.

    Science.gov (United States)

    Mohanty, Deepak Kumar; Rai, Vineet Kumar

    2014-01-01

    The UV-Vis-NIR absorption studies of the Er(3+)/Er(3+)-Yb(3+) doped/codoped TeO2-ZnO (TZO) glasses fabricated by the melting and quenching method has been performed. The spectroscopic radiative parameters viz. radiative transition probabilities, branching ratios and lifetimes have been determined from the absorption spectrum by using Judd-Ofelt theory. The near infrared (NIR) to visible frequency upconversion (UC) have been monitored by using an excitation of 976 nm wavelength radiation from a CW diode laser. The effect of codoping with Yb(3+) ions on the intensity of the UC emission bands from the Er(3+) ions throughout visible region has been studied. The mechanism responsible for the observed upconversion emissions in the prepared samples have been explained on the basis of excited state absorption and efficient energy transfer processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses

    International Nuclear Information System (INIS)

    Rodriguez-Mendoza, U.R.; Lalla, E.A.; Caceres, J.M.; Rivera-Lopez, F.; Leon-Luis, S.F.; Lavin, V.

    2011-01-01

    The optical properties of Er 3+ ions in a novel glass based on TeO 2 -PbF 2 -AlF 3 oxyfluoride tellurites have been investigated using steady-state and time-resolved spectroscopies as a function of the rare-earth doping concentration. Basic optical characterizations have been performed measuring and calculating the absorption and emission spectra and the cross-sections, the Judd-Ofelt intensity parameters, the radiative probabilities and the fluorescence decays and lifetimes. Special attention has been devoted to the broad 4 I 13/2 → 4 I 15/2 emission transition at around 1.53 μm since, with a wide broadening of around 70 nm and a relative long lifetime of around 3 ms compared to others glass hosts, it shows potential applications in the design of erbium-doped fiber amplifiers. The absorption, the stimulated emission and the gain cross-sections of this transition have been obtained and compared with that obtained in different hosts. Finally, infrared-to-visible upconversion processes exciting at around 800 nm have been analyzed and different mechanisms involved in the energy conversion have been proposed. - Research highlights: → Broadened emission bands and high absorption and emission cross-sections for the transition 4 I 15/2 → 4 I 13/2 suitable for EDFAs. → Efficient green upconverted emission. → High value of C DA (6) energy transfer parameter.

  3. Upconversion dynamics in Yb3+-Ho3+-doped fluoroindate glasses

    International Nuclear Information System (INIS)

    Martin, I.R.; Rodriguez, V.D.; Lavin, V.; Rodriguez-Mendoza, U.R.

    1998-01-01

    The mechanisms and dynamics of the upconversion emissions in Yb 3+ -Ho 3+ -doped fluoroindate glasses by exciting at 975 nm have been analysed. The upconversion efficiencies have been measured as a function of temperature in the range from 12 to 295 K. The temporal evolution of the 545- and 650-nm upconversion emissions obtained under flash excitation at 975 nm in codoped samples with 2.25 mol.% of Yb 3+ and 0.75 mol.% of Ho 3+ cannot be described using the energy migration model. This indicates that at this concentration of Yb 3+ the rapid migration regimen between these ions has not been reached. A model is proposed in order to explain the temporal evolution of these emissions taking into account energy migration between donors and backtransfer processes. (orig.)

  4. Multispectral mid-infrared imaging using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Jensen, Ole Bjarlin

    2013-01-01

    It has recently been shown that it is possible to upconvert infrared images to the near infrared region with high quantum efficiency and low noise by three-wave mixing with a laser field [1]. If the mixing laser is single-frequency, the upconverted image is simply a band-pass filtered version...... parameter, allowing for fast tuning and hence potentially fast image acquisition, paving the way for upconversion based real time multispectral imaging. In the present realization the upconversion module consists of an external cavity tapered diode laser in a Littrow configuration with a computer controlled...

  5. Plasmonic enhancement in upconversion emission of La2O3:Er3+/Yb3+ phosphor via introducing silver metal nanoparticles

    Science.gov (United States)

    Tiwari, S. P.; Kumar, K.; Rai, V. K.

    2015-11-01

    In the present work, authors have synthesized silver (Ag) nanoparticle (NP) embedded La2O3:Er3+/Yb3+ powder phosphor. The synthesis method has resulted in silver oxide-lanthanum oxide composite material. Through subsequent heat treatment of sample in pellet form, the silver metal nanoparticles were formed. The presence of plasmonic Ag NPs in the matrix is confirmed by various techniques. Large enhancement in downconversion as well as upconversion emission intensity of Er3+ ions at various concentrations of Ag NPs is obtained. Large enhancement in the upconversion emission intensity is correlated to the reduction in decay time of 4S3/2 level in the presence of Ag NPs, and possible reasons for intensity enhancement are discussed. The application of phosphor in fingermark detection is demonstrated.

  6. The upconversion luminescence and magnetism in Yb3+/Ho3+ co-doped LaF3 nanocrystals for potential bimodal imaging

    Science.gov (United States)

    Syamchand, Sasidharanpillai S.; George, Sony

    2016-12-01

    Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb3+ and Ho3+) doped LaF3 nanocrystals (LaF3 Yb3+/Ho3+) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF3 nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb3+ and Ho3+ as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to 5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho3+ and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity ( r 1) of 0.12 s-1 mM-1 and transverse relaxivity ( r 2) of 28.18 s-1 mM-1, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF3 Yb3+/Ho3+ nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as morphological studies in HeLa cells. The upconversion luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nanoprobe for potential

  7. Synthesis, Structural Characterization and Up-Conversion Luminescence Properties of NaYF4:Er3+,Yb3+@MOFs Nanocomposites

    Science.gov (United States)

    Giang, Lam Thi Kieu; Marciniak, Lukasz; Huy, Tran Quang; Vu, Nguyen; Le, Ngo Thi Hong; Binh, Nguyen Thanh; Lam, Tran Dai; Minh, Le Quoc

    2017-10-01

    This paper describes a facile synthesis of NaYF4:Er3+,Yb3+ nanoparticles embraced in metal-organic frameworks (MOFs), known as NaYF4:Er3+, Yb3+@MOFs core/shell nanostructures, by using iron(III) carboxylate (MIL-100) and zeolitic imidazolate frameworks (ZIF-8). Morphological, structural and optical characterization of these nanostructures were investigated by field emission-scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, and up-conversion luminescence measurements. Results showed that spherical-shaped NaYF4:Er3+,Yb3+@MIL-100 nanocomposites with diameters of 150-250 nm, and rod-shaped NaYF4:Er3+,Yb3+@ZIF-8 nanocomposites with lengths of 300-550 nm, were successfully synthesized. Under a 980-nm laser excitation at room temperature, the NaYF4:Er3+,Yb3+@MOFs nanocomposites exhibited strong up-conversion luminescence with two emission bands in the green part of spectrum at 520 nm and 540 nm corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ ions, respectively, and a red emission band at 655 nm corresponding to the 4F9/2 → 4I15/2 transition of Er3+ ions. The above properties of NaYF4:Er3+,Yb3+@MOFs make them promising candidates for applications in biotechnology.

  8. Upconversion in rare earth ions doped TeO2-ZnO glass

    International Nuclear Information System (INIS)

    Mohanty, Deepak Kumar; Rai, Vineet Kumar

    2012-01-01

    The Er 3+ /Yb 3+ doped/codoped TeO 2 -ZnO glasses have been fabricated by conventional melt and quenching technique. The absorption spectra of the doped/codoped glasses have been performed. The visible upconversion emissions of both doped and codoped glasses have been observed using 808 nm diode laser excitation. The process involved in upconversion emissions has been discussed in detail. (author)

  9. Near-Infrared to Visible Organic Upconversion Devices Based on Organic Light-Emitting Field Effect Transistors.

    Science.gov (United States)

    Li, Dongwei; Hu, Yongsheng; Zhang, Nan; Lv, Ying; Lin, Jie; Guo, Xiaoyang; Fan, Yi; Luo, Jinsong; Liu, Xingyuan

    2017-10-18

    The near-infrared (NIR) to visible upconversion devices have attracted great attention because of their potential applications in the fields of night vision, medical imaging, and military security. Herein, a novel all-organic upconversion device architecture has been first proposed and developed by incorporating a NIR absorption layer between the carrier transport layer and the emission layer in heterostructured organic light-emitting field effect transistors (OLEFETs). The as-prepared devices show a typical photon-to-photon upconversion efficiency as high as 7% (maximum of 28.7% under low incident NIR power intensity) and millisecond-scale response time, which are the highest upconversion efficiency and one of the fastest response time among organic upconversion devices as referred to the previous reports up to now. The high upconversion performance mainly originates from the gain mechanism of field-effect transistor structures and the unique advantage of OLEFETs to balance between the photodetection and light emission. Meanwhile, the strategy of OLEFETs also offers the advantage of high integration so that no extra OLED is needed in the organic upconversion devices. The results would pave way for low-cost, flexible and portable organic upconversion devices with high efficiency and simplified processing.

  10. A facile synthesis approach and impact of shell formation on morphological structure and luminescent properties of aqueous dispersible NaGdF{sub 4}:Yb/Er upconversion nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Anees A., E-mail: aneesaansari@gmail.com [King Saud University, King Abdullah Institute for Nanotechnology (Saudi Arabia); Yadav, Ranvijay; Rai, S. B. [Banaras Hindu University, Department of Physics (India)

    2016-12-15

    A general facile synthesis approach was used for fabrication of highly emissive aqueous dispersible hexagonal phase upconversion luminescent NaGdF{sub 4}:Yb/Er nanorods (core NRs) through metal complex decomposition process. An inert NaGdF{sub 4} and porous silica layers were grafted surrounding the surface of each and every NRs to enhance their luminescence efficiency and colloidal dispersibility in aqueous environment. Optical properties in terms of band gap energy of core, core/shell, and silica-coated core/shell/SiO{sub 2} nanorods were observed to investigate the influence of surface coating, which was gradually decreased after surface coating because of increase crystalline size after growth of inert and silica shells. The inert shell formation before silica surface grafting, upconversion luminescence intensity was greatly improved by about 20 times, owing to the effective surface passivation of the seed core and, therefore, protection of Er{sup 3+} ion in the core from the nonradiative decay caused by surface defects. Moreover, after silica coating, core/shell nanorods shows strong upconversion luminescence property similar to the hexagonal upconversion core NRs. It is expected that these NaGdF{sub 4}:Yb/Er@NaGdF{sub 4}@SiO{sub 2} (core/shell/SiO{sub 2}) NRs including highly upconversion emissive and aqueous dispersible properties make them an ideal materials for various photonic-based potential applications such as in upconversion luminescent bioimaging, magnetic resonance imaging, and photodynamic therapy.

  11. Multicolor upconversion emission of dispersed ultrasmall cubic Sr2LuF7 nanocrystals synthesized by a solvothermal process

    International Nuclear Information System (INIS)

    Gong, Lunjun; Ma, Mo; Xu, Changfu; Li, Xujun; Wang, Suiping; Lin, Jianguo; Yang, Qibin

    2013-01-01

    Lanthanide (Ln 3+ ) doped Sr 2 LuF 7 (Ln 3+ =Er 3+ /Tm 3+ /Yb 3+ ) nanocrystals (NCs) were synthesized via a solvothermal process using oleate as stabilizing agent. The as-synthesized NCs with a mean diameter of sub-20 nm can be well dispersed in cyclohexane and show a pure cubic phase structure with space group Fm3 ¯ m. Following appropriate lanthanide ion doping, the NCs show intense red, green, blue and white-color upconversion emission (UC) under the excitation of a 980 nm laser. Predominant near-infrared UC can also be obtained in the Yb 3+ /Tm 3+ doped Sr 2 LuF 7 NCs. The energy transfer UC mechanisms for the fluorescent intensity were also investigated. The desirable property of the ultrasmall dispersed NCs makes them promising materials for the applications in miniaturized solid-state light sources, multicolor three-dimensional display devices and fluorescent labels for biomedical imaging. - Highlights: ► Cubic-structure (Fm3 ¯ m) Sr 2 LuF 7 nanocrystals were synthesized for the first time. ► Nanocrystals (sub-20 nm) with cubic or spherical shape can be well dispersed. ► By doping properly, the nanocrystals show intense multicolor upconversion. ► Predominant near-infrared upconversion can be obtained in Sr 2 LuF 7 nanocrystals. ► Upconversion mechanism for the fluorescent intensity is mainly energy transfer.

  12. Multiple Temperature-Sensing Behavior of Green and Red Upconversion Emissions from Stark Sublevels of Er3+

    Directory of Open Access Journals (Sweden)

    Baosheng Cao

    2015-12-01

    Full Text Available Upconversion luminescence properties from the emissions of Stark sublevels of Er3+ were investigated in Er3+-Yb3+-Mo6+-codoped TiO2 phosphors in this study. According to the energy levels split from Er3+, green and red emissions from the transitions of four coupled energy levels, 2H11/2(I/2H11/2(II, 4S3/2(I/4S3/2(II, 4F9/2(I/4F9/2(II, and 2H11/2(I + 2H11/2(II/4S3/2(I + 4S3/2(II, were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er3+-Yb3+-Mo6+-codoped TiO2 phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system.

  13. Synthesis and up-conversion luminescence of Yb 3+

    Indian Academy of Sciences (India)

    1.5Na0.5)F6 nanorods synthesized by employing a facile hydrothermal method. Numbers of Ho3+ ion up-conversion emissions have been observed under 980 nm infrared diode laser excitation. Three UC emissions of interest, ultraviolet, ...

  14. Optical thermometry based on green upconversion emission in Er3+/Yb3+ codoped BaGdF5 glass ceramics

    Science.gov (United States)

    Wu, Ting; Zhao, Shilong; Lei, Ruoshan; Huang, Lihui; Xu, Shiqing

    2018-02-01

    Er3+/Yb3+ codoped BaGdF5 glass ceramics have been prepared and used to develop a portable all-fiber temperature sensor based on fluorescence intensity ratio technique. XRD and TEM results affirm the generation of BaGdF5 nanocrystals in the borosilicate glass. Eu3+ ions are used as spectral probe to investigate external environment around rare earth (RE) ions. Intense green upconversion emissions from Er3+ ions are detected in the BaGdF5 glass ceramics and their intensity are enhanced about three orders of magnitude after heat treatment, which is attributed to the enrichment of RE ions in the BaGdF5 phase. Based on green upconversion emission from Er3+ ions, the temperature sensing property of the portable all-fiber temperature sensor is studied. The maximum absolute sensitivity is 15.5 × 10-4 K-1 at 567 K and the relative sensitivity is 1.28% K-1 at 298 K, respectively.

  15. Localized surface plasmons modulated nonlinear optical processes in metal film-coupled and upconversion nanocrystals-coated nanoparticles (Conference Presentation)

    Science.gov (United States)

    Lei, Dangyuan

    2016-09-01

    In the first part of this talk, I will show our experimental investigation on the linear and nonlinear optical properties of metal film-coupled nanosphere monomers and dimers both with nanometric gaps. We have developed a new methodology - polarization resolved spectral decomposition and color decoding to "visualizing" unambiguously the spectral and radiation properties of the complex plasmonic gap modes in these hybrid nanostructures. Single-particle spectroscopic measurements indicate that these hybrid nanostructures can simultaneously enhance several nonlinear optical processes, such as second harmonic generation, two-photon absorption induced luminescence, and hyper-Raman scattering. In the second part, I will show how the polarization state of the emissions from sub-10 nm upconversion nanocrystals (UCNCs) can be modulated when they form a hybrid complex with a gold nanorod (GNR). Our single-particle scattering experiments expose how an interplay between excitation polarization and GNR orientation gives rise to an extraordinary polarized nature of the upconversion emissions from an individual hybrid nanostructure. We support our results by numerical simulations and, using Förster resonance energy transfer theory, we uncover how an overlap between the UCNC emission and GNR extinction bands as well as the mutual orientation between emission and plasmonic dipoles jointly determine the polarization state of the UC emissions.

  16. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.

    Science.gov (United States)

    Shao, Bo; Yang, Zhengwen; Wang, Yida; Li, Jun; Yang, Jianzhi; Qiu, Jianbei; Song, Zhiguo

    2015-11-18

    Rare-earth-ion-doped upconversion (UC) nanoparticles have generated considerable interest because of their potential application in solar cells, biological labeling, therapeutics, and imaging. However, the applications of UC nanoparticles were still limited because of their low emission efficiency. Photonic crystals and noble metal nanoparticles are applied extensively to enhance the UC emission of rare earth ions. In the present work, a novel substrate consisting of inverse opal photonic crystals and Ag nanoparticles was prepared by the template-assisted method, which was used to enhance the UC emission of NaYF4: Yb(3+), Er(3+) nanoparticles. The red or green UC emissions of NaYF4: Yb(3+), Er(3+) nanoparticles were selectively enhanced on the inverse opal substrates because of the Bragg reflection of the photonic band gap. Additionally, the UC emission enhancement of NaYF4: Yb(3+), Er(3+) nanoparticles induced by the coupling of metal nanoparticle plasmons and photonic crystal effects was realized on the Ag nanoparticles included in the inverse opal substrate. The present results demonstrated that coupling of Ag nanoparticle with inverse opal photonic crystals provides a useful strategy to enhance UC emission of rare-earth-ion-doped nanoparticles.

  17. Intense upconversion luminescence in ytterbium-sensitized thulium-doped oxychloride germanate glass

    International Nuclear Information System (INIS)

    Sun Hongtao; Zhanga Liyan; Zhang Junjie; Wen Lei; Yu Chunlei; Duan Zhongchao; Dai Shixun; Hu Lili; Jiang Zhonghong

    2005-01-01

    Structural and upconversion fluorescence properties in ytterbium-sensitized thulium-doped oxychloride germanate glass have been studied. The structure of oxychloride germanate glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. The Raman spectrum investigation indicates that PbCl 2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1 G 4 → 3 H 6 and 1 G 4 → 3 H 4 , respectively, were observed at room temperature. The possible upconversion mechanisms are discussed and estimated. Intense upconversion luminescence indicates that oxychloride germanate glass can be used as potential host material for upconversion lasers

  18. Efficient green and red up-conversion emissions in Er/Yb co-doped TiO{sub 2} nanopowders prepared by hydrothermal-assisted sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, Rached, E-mail: salhi_rached@yahoo.fr [Laboratoire de chimie industrielle, Ecole Nationale d’ingénieurs de Sfax, Université de Sfax, 3018 Sfax (Tunisia); Deschanvres, Jean-Luc [Laboratoire des Matériaux et du Génie Physique, 3 Parvis Louis Néel, BP 257, 38016 Grenoble (France)

    2016-08-15

    In this work, erbium and ytterbium co-doped titanium dioxide (Er–Yb:TiO{sub 2}) nanopowders have been successfully prepared by hydrothermal-assisted sol–gel method using supercritical drying of ethyl alcohol and annealing at 500 °C for 1 h. Nanopowders were prepared with fixed 5 mol% Erbium concentration and various Ytterbium concentrations of 5 and 10 mol%. The powders were characterized by studying their structural, morphology and photo-luminescent properties. The annealing treatment at 500 °C was found to enhance the crystallinity of the TiO{sub 2} anatase structure and the upconversion (UC) emission of the nanopowders. UC emissions were investigated under 980 nm excitation, and the Er–Yb:TiO{sub 2} nanopowders exhibited the intense green (520–570 nm) and red (640–690 nm) upconverted emissions of Er ions originating from an efficient Yb–Er energy transfer process. The absolute upconversion quantum yield (UC-QY) of each nanopowders was measured for the UC emissions centered at 525, 550 and 655 nm at varying excitation power densities. UC-QY analysis has revealed that 5 mol% Er–5 mol% Yb:TiO{sub 2} nanopowders possess the highest total quantum yield of 2.8±0.1% with a power density of 16.7 W/cm{sup 2}. These results make these nanopowders promising materials for efficient upconversion in photonic applications.

  19. Advances in highly doped upconversion nanoparticles.

    Science.gov (United States)

    Wen, Shihui; Zhou, Jiajia; Zheng, Kezhi; Bednarkiewicz, Artur; Liu, Xiaogang; Jin, Dayong

    2018-06-20

    Lanthanide-doped upconversion nanoparticles (UCNPs) are capable of converting near-infra-red excitation into visible and ultraviolet emission. Their unique optical properties have advanced a broad range of applications, such as fluorescent microscopy, deep-tissue bioimaging, nanomedicine, optogenetics, security labelling and volumetric display. However, the constraint of concentration quenching on upconversion luminescence has hampered the nanoscience community to develop bright UCNPs with a large number of dopants. This review surveys recent advances in developing highly doped UCNPs, highlights the strategies that bypass the concentration quenching effect, and discusses new optical properties as well as emerging applications enabled by these nanoparticles.

  20. Growth of hexagonal NaGdF{sub 4} nanocrystals based on cubic Ln{sup 3+}: CaF{sub 2} precursors and the multi-color upconversion emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Lei; Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn; Yu, Yunlong; Zhang, Rui; Ling, Hang; Xu, Ju; Huang, Feng; Wang, Yuansheng, E-mail: yswang@fjirsm.ac.cn

    2014-04-05

    Graphical abstract: We reported a novel hetero-valence cation exchange route to synthesize Ln: NaGdF4 upconversion nanocrystals for the first time. -- Highlights: • The Ln3+: NaGdF4 nanocrystals were synthesized based on the Ln3+: CaF2 precursors. • The microstructures of nanocrystals were characterized. • The multi-color upconversion emissions were easily realized. -- Abstract: Lanthanide-doped upconversion nanomaterials have attracted great attention recently for their potential applications in the fields of bio-label, three-dimensional display, solar cell and so on. In this article, we report a new strategy to prepare hexagonal Ln{sup 3+}:NaGdF{sub 4} upconversion nanocrystals. Unlike the routine way of synthesizing NaGdF{sub 4} nanocrystals through nucleation and growth, the formation of hexagonal NaGdF{sub 4} nanocrystals herein is realized based on the Ln{sup 3+}-doped cubic CaF{sub 2} precursors, following a hetero-valence cation exchange process between Gd{sup 3+}/Na{sup +} and Ca{sup 2+}. Evidently, Ln{sup 3+} dopants in the CaF{sub 2} precursors are retained in the finally formed hexagonal NaGdF{sub 4} nanocrystals and, subsequently, multi-color upconversion emissions are easily realized by simply adjusting the Ln{sup 3+} dopant species and contents in the CaF{sub 2} precursors. This novel hetero-valence cation exchange route may open up a new pathway to synthesize nanomaterials that cannot be fabricated directly.

  1. The concentration effect of upconversion luminescence properties in Er3+/Yb3+-codoped Y2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Lu Weili; Cheng Lihong; Sun Jiashi; Zhong Haiyang; Li Xiangping; Tian Yue; Wan Jing; Zheng Yanfeng; Huang Libo; Yu Tingting; Yu Hongquan; Chen Baojiu

    2010-01-01

    Y 2 (MoO 4 ) 3 :Er 3+ /Yb 3+ phosphors with fixed (varied) Er 3+ and varied (fixed) Yb 3+ concentrations were synthesized by a conventional solid-state reaction. The crystal structure of the phosphors was characterized by means of X-ray diffraction (XRD). Upon 980 nm excitation, very weak blue emission, and strong green and red upconversion emissions centered at 485, 525, 545 and 656 nm were observed. The two-photon process was confirmed to be responsible for both the green and red upconversion emissions. The effects of green upconversion emission intensity ratio ( 2 H 11/2 → 4 I 15/2 versus 4 S 3/2 → 4 I 15/2 ) and the integrated upconversion emission intensity on the Yb 3+ and Er 3+ concentrations were studied.

  2. Enhancing multiphoton upconversion through energy clustering at sublattice level

    Science.gov (United States)

    Wang, Juan; Deng, Renren; MacDonald, Mark A.; Chen, Bolei; Yuan, Jikang; Wang, Feng; Chi, Dongzhi; Andy Hor, Tzi Sum; Zhang, Peng; Liu, Guokui; Han, Yu; Liu, Xiaogang

    2014-02-01

    The applications of lanthanide-doped upconversionnanocrystals in biological imaging, photonics, photovoltaics and therapeutics have fuelled a growing demand for rational control over the emission profiles of the nanocrystals. A common strategy for tuning upconversion luminescence is to control the doping concentration of lanthanide ions. However, the phenomenon of concentration quenching of the excited state at high doping levels poses a significant constraint. Thus, the lanthanide ions have to be stringently kept at relatively low concentrations to minimize luminescence quenching. Here we describe a new class of upconversion nanocrystals adopting an orthorhombic crystallographic structure in which the lanthanide ions are distributed in arrays of tetrad clusters. Importantly, this unique arrangement enables the preservation of excitation energy within the sublattice domain and effectively minimizes the migration of excitation energy to defects, even in stoichiometric compounds with a high Yb3+ content (calculated as 98 mol%). This allows us to generate an unusual four-photon-promoted violet upconversion emission from Er3+ with an intensity that is more than eight times higher than previously reported. Our results highlight that the approach to enhancing upconversion through energy clustering at the sublattice level may provide new opportunities for light-triggered biological reactions and photodynamic therapy.

  3. Enhancing multiphoton upconversion through energy clustering at sublattice level

    KAUST Repository

    Wang, Juan

    2013-11-24

    The applications of lanthanide-doped upconversionnanocrystals in biological imaging, photonics, photovoltaics and therapeutics have fuelled a growing demand for rational control over the emission profiles of the nanocrystals. A common strategy for tuning upconversion luminescence is to control the doping concentration of lanthanide ions. However, the phenomenon of concentration quenching of the excited state at high doping levels poses a significant constraint. Thus, the lanthanide ions have to be stringently kept at relatively low concentrations to minimize luminescence quenching. Here we describe a new class of upconversion nanocrystals adopting an orthorhombic crystallographic structure in which the lanthanide ions are distributed in arrays of tetrad clusters. Importantly, this unique arrangement enables the preservation of excitation energy within the sublattice domain and effectively minimizes the migration of excitation energy to defects, even in stoichiometric compounds with a high Yb 3+ content (calculated as 98 mol%). This allows us to generate an unusual four-photon-promoted violet upconversion emission from Er 3+ with an intensity that is more than eight times higher than previously reported. Our results highlight that the approach to enhancing upconversion through energy clustering at the sublattice level may provide new opportunities for light-triggered biological reactions and photodynamic therapy. © 2014 Macmillan Publishers Limited. All rights reserved.

  4. Solar-Pumping Upconversion of Interfacial Coordination Nanoparticles.

    Science.gov (United States)

    Ishii, Ayumi; Hasegawa, Miki

    2017-01-30

    An interfacial coordination nanoparticle successfully exhibited an upconversion blue emission excited by very low-power light irradiation, such as sunlight. The interfacial complex was composed of Yb ions and indigo dye, which formed a nano-ordered thin shell layer on a Tm 2 O 3 nanoparticle. At the surface of the Tm 2 O 3 particle, the indigo dye can be excited by non-laser excitation at 640 nm, following the intramolecular energy transfer from the indigo dye to the Yb ions. Additionally, the excitation energy of the Yb ion was upconverted to the blue emission of the Tm ion at 475 nm. This upconversion blue emission was achieved by excitation with a CW Xe lamp at an excitation power of 0.14 mW/cm 2 , which is significantly lower than the solar irradiation power of 1.4 mW/cm 2 at 640 ± 5 nm.

  5. Synthesis of green emission upconversion phosphor nanosheets (LaNb{sub 2}O{sub 7}) doped with Er{sup 3+} and Yb{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Takasugi, Soichi [Course of Science and Technology, Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Iida, Riku [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Tomita, Koji, E-mail: tomita@keyaki.cc.u-tokai.ac.jp [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Iwaoka, Michio [Course of Science and Technology, Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Katagiri, Kiyofumi [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Osada, Minoru [International Center for Materials Nano architectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Kakihana, Masato [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2016-05-15

    LaNb{sub 2}O{sub 7}:Er{sup 3+},Yb{sup 3+} upconversion (UPC) phosphor nanosheets were prepared by exfoliating a KLaNb{sub 2}O{sub 7}:Er{sup 3+},Yb{sup 3+} layered compound. Highly crystalline nanosheets with a thickness and lateral size of 3.91 nm and approximately 300 nm, respectively, were obtained. The UPC emission intensity of the nanosheets was 7.6 times greater than that of mechanically milled particles (100–500 nm) of bulk KLaNb{sub 2}O{sub 7}:Er{sup 3+},Yb{sup 3+}. The UPC emission intensities of the nanosheets dispersed in different solvents (H{sub 2}O, D{sub 2}O, CH{sub 3}OH, CH{sub 2}Cl{sub 2}, and CCl{sub 4}) were measured, and the intensities were observed to decrease in the order CCl{sub 4}>CH{sub 2}Cl{sub 2}>D{sub 2}O>CH{sub 3}OH>H{sub 2}O. Because of the large surface area of the nanosheets, their emission intensity was decreased depending on the solvent's vibrational energy. - Highlights: • La{sub 0.45}Er{sub 0.05}Yb{sub 0.5}Nb{sub 2}O{sub 7} nanosheets were synthesized by a soft breakdown method (exfoliation). • The lateral size and thickness of the nanosheets were approximately 300 nm and approximately 3.91 nm, respectively. • The exfoliated nanosheets exhibited bright upconversion emission 7.6 times more intense than that of the milled sample (100–500 nm). • The nanosheets dispersed in solvents exhibited greatly different upconversion emission intensities depending on the solvent's vibrational energy.

  6. Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce"3"+ doping

    International Nuclear Information System (INIS)

    Yi, Zhigao; Zeng, Tianmei; Xu, Yaru; Qian, Chao; Liu, Hongrong; Zeng, Songjun; Lu, Wei; Hao, Jianhua

    2015-01-01

    A simple strategy of Ce"3"+ doping is proposed to realize multicolor tuning and predominant red emission in BaLnF_5:Yb"3"+/Ho"3"+ (Ln"3"+ = Gd"3"+, Y"3"+, Yb"3"+) systems. A tunable upconversion (UC) multicolor output from green/yellow to red can be readily achieved in a fixed Yb"3"+/Ho"3"+ composition by doping Ce"3"+, providing an effective route for multicolor tuning widely used for various optical components. Moreover, compared with Ce"3"+-free UC nanoparticles (UCNPs), a remarkable enhancement of the red-to-green (R/G) ratio is observed by doping 30% Ce"3"+, arising from the two largely promoted cross-relaxation (CR) processes between Ce"3"+ and Ho"3"+. UCNPs with pure red emission are selected as in vivo UC bioimaging agents, demonstrating the merits of deep penetration depth, the absence of autofluorescence and high contrast in small animal bioimaging. Moreover, such fluorescence imaging nanoprobes can also be used as contrast agents for three-dimensional (3D) x-ray bioimaging by taking advantage of the high K-edge values and x-ray absorption coefficients of Ba"2"+, Gd"3"+, and Ce"3"+ in our designed nanoprobes. Thus, the simultaneous realization of multicolor output, highly enhanced R/G ratio, and predominant red emission makes the Ce"3"+-doped UCNPs very useful for widespread applications in optical components and bioimaging. (paper)

  7. Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce(3+) doping.

    Science.gov (United States)

    Yi, Zhigao; Zeng, Tianmei; Xu, Yaru; Lu, Wei; Qian, Chao; Liu, Hongrong; Zeng, Songjun; Hao, Jianhua

    2015-09-25

    A simple strategy of Ce(3+) doping is proposed to realize multicolor tuning and predominant red emission in BaLnF5:Yb(3+)/Ho(3+) (Ln(3+) = Gd(3+), Y(3+), Yb(3+)) systems. A tunable upconversion (UC) multicolor output from green/yellow to red can be readily achieved in a fixed Yb(3+)/Ho(3+) composition by doping Ce(3+), providing an effective route for multicolor tuning widely used for various optical components. Moreover, compared with Ce(3+)-free UC nanoparticles (UCNPs), a remarkable enhancement of the red-to-green (R/G) ratio is observed by doping 30% Ce(3+), arising from the two largely promoted cross-relaxation (CR) processes between Ce(3+) and Ho(3+). UCNPs with pure red emission are selected as in vivo UC bioimaging agents, demonstrating the merits of deep penetration depth, the absence of autofluorescence and high contrast in small animal bioimaging. Moreover, such fluorescence imaging nanoprobes can also be used as contrast agents for three-dimensional (3D) x-ray bioimaging by taking advantage of the high K-edge values and x-ray absorption coefficients of Ba(2+), Gd(3+), and Ce(3+) in our designed nanoprobes. Thus, the simultaneous realization of multicolor output, highly enhanced R/G ratio, and predominant red emission makes the Ce(3+)-doped UCNPs very useful for widespread applications in optical components and bioimaging.

  8. Controllable synthesis and upconversion emission of ultrasmall near-monodisperse lanthanide-doped Sr2LaF7 nanocrystals

    International Nuclear Information System (INIS)

    Mao, Yifu; Ma, Mo; Gong, Lunjun; Xu, Changfu; Ren, Guozhong; Yang, Qibin

    2014-01-01

    Highlights: • Apropos NaOH content facilitates the growth of pure phase Sr 2 LaF 7 NCs. • Yb 3+ doping is favorable to the formation of Sr 2 LaF 7 NCs with uniform size. • Ultrasmall near-monodispersed Sr 2 LaF 7 NCs(sub-10 nm) were synthesized for the first time. • Intense multicolor upconversion can be obtained by properly lanthanide doping. - Abstract: Fluorite phase Sr 2 LaF 7 nanocrystals (NCs) were synthesized via solvothermal method using oleic acid as capping ligands. The effects of preparing conditions on the phase structure, crystal size, morphology, and upconversion (UC) emission properties of the products were studied. The results reveal that just apropos NaOH content facilitates the growth of near-monodispersed pure phase Sr 2 LaF 7 NCs, and Yb 3+ doping is favorable to the formation of pure Sr 2 LaF 7 phase with more uniform size distribution. The average crystalline size of the products can be controlled less than 10 nm. Following appropriate lanthanide ions doping, the NCs show intense blue, yellow, and white-color UC emission under the excitation of a 980 nm laser. The energy transfer UC mechanisms for the fluorescent intensity were also investigated

  9. Yb3+ sensitized Tm3+ upconversion in tellurite lead oxide glass.

    Science.gov (United States)

    Mohanty, Deepak Kumar; Rai, Vineet Kumar; Dwivedi, Y

    2012-04-01

    Triply ionized thulium/thulium--ytterbium doped/codoped TeO2-Pb3O4 (TPO) glasses have been fabricated by classical quenching method. The upconversion emission spectra in the Tm3+/Tm3+-Yb3+ doped/codoped glasses upon excitation with a diode laser lasing at ∼980 nm has been studied. Effect of the addition of the Yb3+ on the upconversion emission intensity in the visible and near infrared regions of the Tm3+ doped in TPO glass has been studied and the processes involved explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Multimodal emissions from Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, A.; Yadav, R.S.; Yadav, R.V.; Rai, S.B., E-mail: sbrai49@yahoo.co.in

    2017-02-15

    This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} and Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3+}/Yb{sup 3

  11. Upconversion excitations in Pr3+-doped BaY2F8 crystal

    Science.gov (United States)

    Piramidowicz, R.; Mahiou, R.; Boutinaud, P.; Malinowski, M.

    2011-09-01

    We report the orange-to-blue and infrared-(IR)-to-blue wavelengths upconversion luminescence in Pr3+:BaY2F8 crystals. Mechanism of the orange light upconversion into blue 3P0 state emission was confirmed to be energy transfer between two Pr3+ ions in the 1D2 state. IR-to-blue upconversion has only been observed under two different color IR pumping. The first resonant step was the 3H4→1G4 ground state absorption transition, and the second resonant transition was the excited state absorption from the 1G4 to 1I6 and 3PJ levels. A comparison of the efficiency of the IR-to-blue upconversion in several praseodymium activated host is presented and discussed. A model of the IR pumped upconversion praseodymium blue laser is presented and the population inversion conditions are calculated.

  12. Near-infrared emission and upconversion in Er{sup 3+}-doped TeO{sub 2}–ZnO–ZnF{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, A. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n 48013 Bilbao (Spain); Morea, R.; Gonzalo, J. [Instituto de Optica, Consejo Superior de Investigaciones Científicas CSIC, Serrano 121, 28006 Madrid (Spain); Arriandiaga, M.A. [Departamento de Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Apartado 644, Bilbao (Spain); Fernandez, J. [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n 48013 Bilbao (Spain); Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018 San Sebastian (Spain); Balda, R., E-mail: wupbacrr@bi.ehu.es [Departamento de Física Aplicada I, Escuela Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alda. Urquijo s/n 48013 Bilbao (Spain); Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center, 20018 San Sebastian (Spain)

    2013-08-15

    We have investigated the near infrared emission and upconversion of Er{sup 3+} ions in two different compositions of glasses based on TeO{sub 2}, ZnO, and ZnF{sub 2} for different ErF{sub 3} concentrations (0.5, 1, 2, and 3 wt%). Judd–Ofelt intensity parameters have been determined and used to calculate the radiative transition probabilities and radiative lifetimes. The infrared emission at around 1532 nm corresponding to the {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition is broader by nearly 30 nm if compared to silica based glasses. The stimulated emission cross section is higher for the glass with the lowest content of ZnF{sub 2} which also shows higher values of the figure of merit for bandwidth. On the other hand, the lifetimes of the excited states are longer for the glass with the highest content of ZnF{sub 2}. Green and red emissions corresponding to transitions ({sup 2}H{sub 11/2},{sup 4}S{sub 3/2})→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} have been observed under excitation at 801 nm and attributed to a two photon process. The temporal evolution of the green emission suggests the presence of excited state absorption and energy transfer upconversion processes to populate the {sup 4}S{sub 3/2} level. In the case of the red emission, its increase as ErF{sub 3} concentration increases together with its temporal behavior indicate that for ErF{sub 3} concentrations higher than 0.5 wt%, level {sup 4}F{sub 9/2} is populated by multiphonon relaxation from level {sup 4}S{sub 3/2} and energy transfer processes. -- Highlights: ► High absorption and emission cross-sections for the {sup 4}I{sub 13/2}↔{sup 4}I{sub 15/2} transition suitable for EDFAs. ► The increase of fluorine content leads to longer lifetimes of excited levels of Er{sup 3+} ions. ► Increase of the red upconversion emission with concentration due to ETU processes.

  13. Effect of various surfactants on changes in the emission color chromaticity in upconversion YVO4: Yb3+, Er3+ nanoparticles

    Science.gov (United States)

    Woźny, Przemysław; Szczeszak, Agata; Lis, Stefan

    2018-02-01

    YVO4: Yb3+,Er3+ upconverting nanocrystals were synthesized via a hydrothermal method using different compounds as surfactants. Structure and morphology of the nanocrystals were investigated by X-ray diffraction and transmission electron microscopy. Tetragonal crystal structure of the nanocrystals appeared irrespective of the type of surfactant used. The average crystallite size was estimated by TEM images. The obtained products were composed of small nanoparticles, in the size range of 10-60 nm, depending on the surfactant used. The morphology of the nanoparticles was also regulated by the type of surfactant. Spectroscopic analysis of the materials obtained was carried out by measuring the emission and excitation spectra and the intensity of luminescence as a function of laser energy and luminescence decays. The nanocrystals prepared exhibited a green upconversion emission attributed to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+, under NIR (985 nm) pulse laser irradiation, and their emission lifetimes were in the range 3.84-4.90 μs. On the basis of the spectroscopic investigation, the upconversion mechanism was proposed and chromaticity coordinates were calculated. Surfactants were found to influence on chromaticity of luminescence.

  14. Bright white upconversion luminescence from Er3+/Tm3+/Yb3+-doped titanate-based glasses prepared by aerodynamic levitation method

    Science.gov (United States)

    Zhang, Minghui; Yu, Jianding; Jiang, Wan; Liu, Yan; Ai, Fei; Wen, Haiqin; Jiang, Meng; Yu, Huimei; Pan, Xiuhong; Tang, Meibo; Gai, Lijun

    2017-10-01

    Aerodynamic levitation method was employed to prepare Er3+/Tm3+/Yb3+-doped titanate-based glasses. DTA results show that the glass performs high thermal stability with the glass transition temperature of 799 °C. The interaction among rare earth ions has been discussed by adjusting the relative concentration. Er3+ ions can quench the upconversion luminescence of Tm3+ ions. Tm3+ ions play a strong role in quenching the emissions of Er3+ and Tm3+ when the content of Tm3+ ions is greater than or equal 0.05. From the view of the ratio of red emission to green emission, Tm3+ ions can improve the red emission of Er3+ ions to some extent in contrast with the green emissions of Er3+ ions. 980 nm incident laser can be efficiently absorbed by Yb3+ ions. The relative intensity of red, green, and blue upconversion luminescence has been tuned to obtain white light. The composition with white upconversion luminescence of the color coordinate (0.291, 0.3292) has been found. Moreover, white upconversion luminescence mechanism is a two-photon process of ET, ESA, and cooperative sensitization. Rare earth ions doped titanate-based glasses with bright upconversion luminescence perform potential applications in color display, back light, et al.

  15. Tuning into single-band red upconversion luminescence in Yb(3+)/Ho(3+) activated nano-glass-ceramics through Ce(3+) doping.

    Science.gov (United States)

    Chen, Daqin; Zhou, Yang; Wan, Zhongyi; Ji, Zhenguo; Huang, Ping

    2015-03-28

    Yb(3+)/Ho(3+) activated glass ceramics containing β-YF3 nanocrystals were successfully fabricated. The green ((5)S2/(5)F4→(5)I8) upconversion emission is dominant in the glass ceramics and is about 160 times stronger than that of the precursor glass, resulting from the partition of lanthanide activators into a low-phonon-energy crystalline lattice and the subsequent low probability of multi-phonon nonradiative relaxation from the (5)S2/(5)F4 and (5)I6 states to the lower ones. Upon the introduction of Ce(3+) ions into nano-glass-ceramics, two efficient cross-relaxation processes between Ho(3+) and Ce(3+), i.e., Ho(3+):(5)S2/(5)F4 + Ce(3+):(2)F5/2→Ho(3+):(5)F5 + Ce(3+):(2)F7/2 and Ho(3+):(5)I6 + Ce(3+):(2)F5/2→Ho(3+):(5)I7 + Ce(3+):(2)F7/2, are demonstrated to greatly suppress the population of the green-emitting (5)S2/(5)F4 state and to enhance the population of the red-emitting (5)F5 one, leading to the intense single-band red UC radiation of Ho(3+).

  16. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  17. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  18. Synthesis and characterization of new bifunctional nanocomposites possessing upconversion and oxygen-sensing properties

    International Nuclear Information System (INIS)

    Liu Lina; Li Bin; Qin Ruifei; Zhao Haifeng; Ren Xinguang; Su Zhongmin

    2010-01-01

    A new type of bifunctional nanocomposites for biomedical applications, upconversion NaY F 4 :Y b 3+ , Tm 3+ nanoparticles coated with Ru(II) complex chemically doped SiO 2 , has been developed by combining the useful functions of upconversion and oxygen-sensing properties into one nanoparticle. NaY F 4 :Y b 3+ , Tm 3+ nanoparticles were successfully coated with an Ru(II) complex doped SiO 2 shell with a thickness of ∼ 30 nm, and the surface of the SiO 2 was functionalized with amines. The obtained nanocomposites exhibited bright blue upconversion emission, and the luminescent emission intensity of the Ru(II) complex in the nanocomposites was sensitive to oxygen. Compared with the simple mixture of Ru(II) complex and SiO 2 , the core-shell nanocomposites showed better linearity between emission intensity of Ru(II) complex and oxygen concentrations. These bifunctional nanocomposites may find applications in biochemical and biomedical fields, such as biolabels and optical oxygen sensors, which can measure the oxygen concentrations in biological fluids.

  19. Enhanced frequency upconversion study in Er3+/Yb3+ doped/codoped TWTi glasses

    Science.gov (United States)

    Azam, Mohd; Rai, Vineet Kumar

    2018-04-01

    Er3+/Yb3+ doped/codoped TeO2-WO3-TiO2 (TWTi) glasses have been prepared by using the melt-quenching technique. The upconversion (UC) emission spectra of the developed glasses have been recorded upon 980 nm laser excitation. Three intense UC emission bands have been observed within the green and red region centered at ˜532 nm, ˜553 nm and ˜669 nm corresponding to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions respectively in the singly Er3+ doped glass. On introducing Yb3+ ions in the singly Er3+ doped glass, an enhancement of about ˜ 12 times and ˜50 times in the green and red bands respectively have been observed even at low pump power ˜ 364 mW followed by two photon absorption process. Colour tunability from yellowish green to pure green colour region has been observed on varying the pump power. The prepared glass can be used to produce NIR to green upconverter and colour tunable display devices.

  20. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra.

    Science.gov (United States)

    Sun, Ling-Dong; Wang, Ye-Fu; Yan, Chun-Hua

    2014-04-15

    Rare earth (RE) materials, which are excited in the ultraviolet and emit in the visible light spectrum, are widely used as phosphors for lamps and displays. In the 1960's, researchers reported an abnormal emission phenomenon where photons emitted from a RE element carried more energy than those absorbed, owing to the sequential energy transfer between two RE ions--Yb(3+)-sensitized Er(3+) or Tm(3+)--in the solid state. After further study, researchers named this abnormal emission phenomenon upconversion (UC) emission. More recent approaches take advantage of solution-based synthesis, which allows creation of homogenous RE nanoparticles (NPs) with controlled size and structure that are capable of UC emission. Such nanoparticles are useful for many applications, especially in biology. For these applications, researchers seek small NPs with high upconversion emission intensity. These UCNPs have the potential to have multicolor and tunable emissions via various activators. A vast potential for future development remains by developing molecular antennas and energy transfer within RE ions. We expect UCNPs with optimized spectra behavior to meet the increasing demand of potential applications in bioimaging, biological detection, and light conversion. This Account focuses on efforts to control the size and modulate the spectra of UCNPs. We first review efforts in size control. One method is careful control of the synthesis conditions to manipulate particle nucleation and growth, but more recently researchers have learned that the doping conditions can affect the size of UCNPs. In addition, constructing homogeneous core/shell structures can control nanoparticle size by adjusting the shell thickness. After reviewing size control, we consider how diverse applications impose different requirements on excitation and/or emission photons and review recent developments on tuning of UC spectral profiles, especially the extension of excitation/emission wavelengths and the adjustment

  1. Energy transfer and infrared-to-visible upconversion luminescence of Er3+/Yb3+-codoped halide modified tellurite glasses

    International Nuclear Information System (INIS)

    Zhang, Q.Y.; Feng, Z.M.; Yang, Z.M.; Jiang, Z.H.

    2006-01-01

    We report on the energy transfer and frequency upconversion spectroscopic properties of Er 3+ -doped and Er 3+ /Yb 3+ -codoped TeO 2 -ZnO-Na 2 O-PbCl 2 halide modified tellurite glasses upon excitation with 808 and 978 nm laser diode. Three intense emissions centered at around 529, 546 and 657 nm, alongwith a very weak blue emission at 410 nm have clearly been observed for the Er 3+ /Yb 3+ -codoped halide modified tellurite glasses upon excitation at 978 nm and the involved mechanisms are explained. The quadratic dependence of fluorescence on excitation laser power confirms the fact that the two-photon contribute to the infrared to green-red upconversion emissions. And the blue upconversion at 410 nm involved a sequential three-photon absorption process

  2. Enhancing multiphoton upconversion through energy clustering at sublattice level

    KAUST Repository

    Wang, Juan; Deng, Renren; Macdonald, Mark A B; Chen, Bolei; Yuan, Jikang; Wang, Feng; Chi, Dongzhi; Hor, Andy Sum Andy; Zhang, Peng; Liu, Guokui; Han, Yu; Liu, Xiaogang

    2013-01-01

    (calculated as 98 mol%). This allows us to generate an unusual four-photon-promoted violet upconversion emission from Er 3+ with an intensity that is more than eight times higher than previously reported. Our results highlight that the approach to enhancing

  3. Tuning crystal field symmetry of hexagonal NaY0.92Yb0.05Er0.03F4 by Ti4+ codoping for high-performance upconversion

    International Nuclear Information System (INIS)

    Yu, Han; Huang, Qingming; Ma, En; Zhang, Xinqi; Yu, Jianchang

    2014-01-01

    Highlights: • Upconversion emission of Er 3+ was obviously enhanced by Ti 4+ codoped in NaYF 4 . • The upconversion luminescence lifetime was also obviously prolonged. • Na + could be induced to occupy Y 3+ sites if Ti 4+ was codoped with appropriate concentration. • The crystal field asymmetry was enhanced for better upconversion performance. • Crystal growth was prevented and small-sized NaYF 4 were obtained. - Abstract: 378 nm, 408 nm and 521 nm upconversion emissions of Er 3+ ions were obviously enhanced by Ti 4+ codoped with Yb 3+ /Er 3+ in hexagonal NaYF 4 , and the corresponding upconversion luminescence lifetimes were also prolonged, especially for 378 nm and 408 nm emissions. X-ray powder diffraction, field emission scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy and upconversion emission spectra were employed to explore the relationships of the structure and properties. From these characterizations we made a novel discovery that Na + could be induced to occupy Y 3+ sites for establishing valence balance of the system if Ti 4+ ions were codoped with appropriate concentration. As a result the crystal field asymmetry of NaY 0.92 Yb 0.05 Er 0.03 F 4 was enhanced and then its upconversion properties were improved because the hypersensitive electron transition of Yb 3+ /Er 3+ ions was promoted greatly. At the same time, the crystal sizes of the codoped NaYF 4 became smaller because the crystal growth was prevented by more negative charges gathering at the crystal surface. This study provides an exploration of the relationship among impurity doping, structural changes and upconversion performance, which may be useful for design and synthesis of high-performance upconversion codoping materials

  4. The upconversion luminescence and magnetism in Yb{sup 3+}/Ho{sup 3+} co-doped LaF{sub 3} nanocrystals for potential bimodal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, Sasidharanpillai S., E-mail: syamchand.ss@gmail.com; George, Sony, E-mail: emailtosony@gmail.com [University of Kerala, Department of Chemistry (India)

    2016-12-15

    Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb{sup 3+} and Ho{sup 3+}) doped LaF{sub 3} nanocrystals (LaF{sub 3} Yb{sup 3+}/Ho{sup 3+}) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF{sub 3} nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb{sup 3+} and Ho{sup 3+} as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to {sup 5}S{sub 2} → {sup 5}I{sub 8} and {sup 5}F{sub 5} → {sup 5}I{sub 8} transitions of Ho{sup 3+}, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho{sup 3+} and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity (r{sub 1}) of 0.12 s{sup −1} mM{sup −1} and transverse relaxivity (r{sub 2}) of 28.18 s{sup −1} mM{sup −1}, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF{sub 3} Yb{sup 3+}/Ho{sup 3+} nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as

  5. 3D Rare earth porous coordination frameworks with formamide generated in situ syntheses: Crystal structure and down- and up-conversion luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xue [Department of Chemistry, Capital Normal University, Beijing 100048 (China); Tian, Jing [Department of Chemistry, Capital Normal University, Beijing 100048 (China); Experiment and Teaching Resource Management Centre, Yibin University, Yibin, 644000 (China); Yang, Hong-Y.; Zhao, Kai [Department of Chemistry, Capital Normal University, Beijing 100048 (China); Li, Xia, E-mail: xiali@mail.cnu.edu.cn [Department of Chemistry, Capital Normal University, Beijing 100048 (China)

    2013-05-01

    The reaction of RE(NO)₃·6H₂O and formamide yielded the coordination polymers, [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ (RE=Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Er 6, and Yb 7). They possess 3D porous frameworks with the 1D rhombic channels occupied by [NH₂CHNH₂]⁺ cations. Complexes 2 and 4 display the characteristic down-conversion emissions corresponding to ⁵D₀→⁷FJ (J=1–4) transitions of Eu(III) ion and ⁵D₄→⁷FJ (J=6–3) transitions of Tb(III) ion, respectively. Longer lifetime values of 2.128±0.002 ms (⁵D₀) for 2 and 2.132±0.002 ms (⁵D₄) for 4 have been observed. The up-conversion spectra of the Y:Yb,Er and Gd:Yb,Er codoped complexes exhibit three emission bands around 410 (⁴H9/2→⁴I15/2, blue), 518–570 (⁴S3/2, ²H11/2→⁴I15/2, green), and 655 nm (⁴F9/2→⁴I15/2, red). - Graphical Abstract: The complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ possess 3D porous frameworks. Eu(III) and Tb(III) complexes show characteristic emission of Ln(III) ions. The up-conversion emission of the Y:Yb,Er and Gd:Yb,Er codoped complexes was observed. Highlights: •The reaction of RE(NO)₃·6H₂O and formamide produced complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺. • The complexes possess 3D frameworks with the 1D channels occupied by [NH₂CHNH₂]+ cations. • Eu(III)/Tb(III) complexes display the characteristic down-conversion emission of Ln(III) ions. • The Y:Yb,Er and Gd:Yb,Er doped complexes exhibit the up-conversion emission.

  6. Biocompatible Er, Yb co-doped fluoroapatite upconversion nanoparticles for imaging applications

    Science.gov (United States)

    Anjana, R.; K. M., Kurias; M. K., Jayaraj

    2017-08-01

    Upconversion luminescence, visible emission on infra red (IR) excitation was achieved in a biocompatible material, fluoroapatite. Fluoroapatite crystals are well known biomaterials, which is a component of tooth enamel. Also it can be considered as an excellent host material for lanthanide doping since the ionic radii of lanthanide is similar to that of calcium ion(Ca2+) hence successful incorporation of dopants within the lattice is possible. Erbium (Er), Ytterbium (Yb) co-doped fluorapatite (FAp) nanoparticles were prepared by precipitation method. The particles show intense visible emission when excited with 980 nm laser. Since upconversion luminescence is a multiphoton process the excitation power dependence on emission will give number of photons involved in the emission of single photon. Excitation power dependence studies show that two photons are involved in the emission of single photons. The value of slope was different for different emission peak because of the difference in intermediate energy level involved. The crystal structure and morphology of the particle were determined using X-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM). These particles with surface functionalisation can be used for live cell imaging.

  7. Upconversion emission and cathodoluminescence of Er"3"+-doped NaYbF_4 nanoparticles for low-temperature thermometry and field emission displays

    International Nuclear Information System (INIS)

    Du, Peng; Yu, Jae Su; Luo, Laihui

    2017-01-01

    The Er"3"+-doped NaYbF_4 nanoparticles were fabricated by a hydrothermal method. The green and red emissions located at around 525, 542 and 657 nm corresponding to the "2H_1_1_/_2 → "4I_1_5_/_2, "4S_3_/_2 → "4I_1_5_/_2 and "4F_9_/_2 → "4I_1_5_/_2 transitions of Er"3"+ ions, respectively, were observed when pumped at 980 nm light. Furthermore, with the help of the fluorescence intensity ratio technique, the thermometric properties of as-prepared products from the thermally coupled "2H_1_1_/_2 and "4S_3_/_2 levels of Er"3"+ ions were studied by analyzing temperature-dependent upconversion (UC) emission spectra. The maximum sensitivity for the Er"3"+-doped NaYbF_4 nanoparticles was found to be around 0.0043 K"- "1 with a temperature range of 93-293 K. In addition, the cathodoluminescence (CL) spectrum of the synthesized nanoparticles was nearly the same as the UC emission spectrum and the CL emission intensity did not exhibit saturation with the increase of accelerating voltage and filament current. (orig.)

  8. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles.

    Science.gov (United States)

    Kshetri, Yuwaraj K; Regmi, Chhabilal; Kim, Hak-Soo; Lee, Soo Wohn; Kim, Tae-Ho

    2018-05-18

    Yb 3+ and Er 3+ doped YVO 4 (Yb 3+ /Er 3+ :YVO 4 ) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb 3+ /Er 3+ :YVO 4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2 H 11/2 , 4 S 3/2 to 4 I 15/2 and 4 F 9/2 to 4 I 15/2 transitions of Er 3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb 3+ . The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.

  9. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles

    Science.gov (United States)

    Kshetri, Yuwaraj K.; Regmi, Chhabilal; Kim, Hak-Soo; Wohn Lee, Soo; Kim, Tae-Ho

    2018-05-01

    Yb3+ and Er3+ doped YVO4 (Yb3+/Er3+:YVO4) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb3+/Er3+:YVO4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2H11/2, 4S3/2 to 4I15/2 and 4F9/2 to 4I15/2 transitions of Er3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb3+. The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.

  10. Solar upconversion with plasmon-enhanced bimolecular complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, Jennifer [Stanford Univ., CA (United States)

    2017-04-14

    Upconversion of sub-bandgap photons is a promising approach to exceed the Shockley-Queisser limit in solar technologies. However, due to the low quantum efficiencies and narrow absorption bandwidths of upconverters, existing systems have only led to fractional percent improvements in photovoltaic devices (~0.01%). In this project, we aimed to develop an efficient upconverting material that could improve cell efficiencies by at least one absolute percent. To achieve this goal, we first used thermodynamic calculations to determine cell efficiencies with realistic upconverting materials. Then, we designed, synthesized, and characterized nanoantennas that promise >100x enhancement in both the upconverter absorption cross-section and emissive radiative rate. Concurrently, we optimized the upconverer by designing new ionic and molecular complexes that promise efficient solid-state upconversion. Lastly, with Bosch, we simulated record-efficiency semi-transparent cells that will allow for ready incorporation of our upconverting materials. While we were not successful in designing record efficiency upconverters during our three years of funding, we gained significant insight into the existing limitations of upconverters and how to best address these challenges. Ongoing work is aimed at addressing these limitations, to make upconversion a cost-competitive solar technology in future years.

  11. Spectroscopy and near infrared upconversion of Er{sup 3+}-doped TZNT glasses

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Krishnaiah, K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Marques-Hueso, J. [Institute of Sensors, Signals and Systems & Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Suresh, K.; Venkataiah, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Richards, B.S. [Light Technology Institute (LTI), Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe (Germany); Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Jayasankar, C.K., E-mail: ckjaya@yahoo.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2016-01-15

    In this paper we report on the near infrared (NIR) upconversion (UC) and spectroscopic properties of erbium (Er{sup 3+})-doped TeO{sub 2}–ZnO–Nb{sub 2}O{sub 5}–TiO{sub 2} (TZNT) oxide glasses. Judd–Ofelt theory has been applied to investigate the intensity parameters (Ω{sub λ}, λ=2, 4 and 6) which are used to derive radiative properties of the fluorescent levels. The different glasses present high refractive indices, low dispersion and Abbe numbers, as determined by variable angle spectroscopic ellipsometry. Under 980 nm excitation, the NIR emission profile and full width at half maximum have been studied in a broad range of Er{sup 3+} concentrations (0.01–3.0 mol%). On the other side, NIR UC has been obtained by exciting at 1523 nm, showing an increase of the intensity with Er{sup 3+} ion density in the studied range. The decay curves of the {sup 4}I{sub 13/2} level exhibit single exponential nature for all the different concentrations. The lifetime of the {sup 4}I{sub 13/2} level has been found to decrease (3.73–1.20 ms) after an initial increase (3.65–3.73 ms) with increasing of Er{sup 3+} ion concentration. The TZNT samples show broadband UC emission at 1.0 µm, which match with the band gap of silicon. This reveals that the investigated glasses could find application in photonics, for example non-linear optics and photovoltaic’s. - Highlights: • The Er{sup 3+}:TZNT glasses have been synthesized and optically characterized. • Refractive index and Abbe number of the TZNT glasses were measured by Ellipsometry. • Near infrared emission (1400–1600 nm) has been obtained under 980 nm excitation. • Near infrared upconversion at 980 nm has been investigated under 1523 nm excitation.

  12. Up-conversion emission of Er{sup 3+}/Yb{sup 3+}co-doped BaBi{sub 2}Nb{sub 2}O{sub 9} (BBN) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Façanha, M.X., E-mail: marcello.facanha@uece.br [Departamento de Química, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, Ceará (Brazil); Faculdade de Educação de Crateús (FAEC), Universidade Estadual do Ceará (UECE), Fortaleza, Ceará (Brazil); Laboratório de Telecomunicações e Ciências e Engenharia de Materiais (LOCEM), Universidade Federal do Ceará (UFC), Fortaleza, Ceará (Brazil); Nascimento, J.P.C. do [Departamento de Química, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, Ceará (Brazil); Laboratório de Telecomunicações e Ciências e Engenharia de Materiais (LOCEM), Universidade Federal do Ceará (UFC), Fortaleza, Ceará (Brazil); Silva, M.A.S., E-mail: marceloassilva@yahoo.com.br [Laboratório de Telecomunicações e Ciências e Engenharia de Materiais (LOCEM), Universidade Federal do Ceará (UFC), Fortaleza, Ceará (Brazil); and others

    2017-03-15

    On this paper, polycrystalline samples of the tetragonal systems BaBi{sub 2}Nb{sub 2}O{sub 9} (BBN) and BBN co-doped with Er{sup 3+}/Yb{sup 3+} (BBN: 0.04Er{sup 3+}yYb{sup 3+}, where y=0.02, 0.04, 0.06 and 0.08 mol%) were synthesized by the solid state method. The crystalline structure and photoluminescent properties of the ceramic phosphors were investigated by powder X-ray diffraction (PXRD), Raman spectroscopy and spectral analysis of up-conversion (UC) emission. The results reveal that all compositions crystallize in the I4/mmm space group at room temperature, and show UC green emissions (centered at 525 nm and 550 nm) and red (around 660 nm) coming from ({sup 2}H{sub 11/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2}) and ({sup 4}F{sub 9/2}→{sup 4}I{sub 15/2}) transitions, respectively, under excitation at 980 nm. Increasing variations of the Yb{sup 3+} sensitizer concentration in the host BBN, lead to a significant intensity increase in both UC emissions due to the efficiency of the energy-transfer process. The BBN: 0.04 mol%Er{sup 3+}0.08 mol%Yb{sup 3+} composition showed the higher intensity bands, thus establishing the BBN as an alternative host material for luminescent centers.

  13. Defect-mediated photoluminescence up-conversion in cadmium sulfide nanobelts (Conference Presentation)

    Science.gov (United States)

    Morozov, Yurii; Kuno, Masaru K.

    2017-02-01

    The concept of optical cooling of solids has existed for nearly 90 years ever since Pringsheim proposed a way to cool solids through the annihilation of phonons via phonon-assisted photoluminescence (PL) up-conversion. In this process, energy is removed from the solid by the emission of photons with energies larger than those of incident photons. However, actually realizing optical cooling requires exacting parameters from the condensed phase medium such as near unity external quantum efficiencies as well as existence of a low background absorption. Until recently, laser cooling has only been successfully realized in rare earth doped solids. In semiconductors, optical cooling has very recently been demonstrated in cadmium sulfide (CdS) nanobelts as well as in hybrid lead halide perovskites. For the former, large internal quantum efficiencies, sub-wavelength thicknesses, which decrease light trapping, and low background absorption, all make near unity external quantum yields possible. Net cooling by as much as 40 K has therefore been possible with CdS nanobelts. In this study, we describe a detailed investigation of the nature of efficient anti-Stokes photoluminescence (ASPL) in CdS nanobelts. Temperature-dependent PL up-conversion and optical absorption studies on individual NBs together with frequency-dependent up-converted PL intensity spectroscopies suggest that ASPL in CdS nanobelts is defect-mediated through involvement of defect levels below the band gap.

  14. Ultrafast Dynamics of Sb-Corroles: A Combined Vis-Pump Supercontinuum Probe and Broadband Fluorescence Up-Conversion Study

    Directory of Open Access Journals (Sweden)

    Clark Zahn

    2017-07-01

    Full Text Available Corroles are a developing class of tetrapyrrole-based molecules with significant chemical potential and relatively unexplored photophysical properties. We combined femtosecond broadband fluorescence up-conversion and fs broadband Vis-pump Vis-probe spectroscopy to comprehensively characterize the photoreaction of 5,10,15-tris-pentafluorophenyl-corrolato-antimony(V-trans-difluoride (Sb-tpfc-F2. Upon fs Soret band excitation at ~400 nm, the energy relaxed almost completely to Q band electronic excited states with a time constant of 500 ± 100 fs; this is evident from the decay of Soret band fluorescence at around 430 nm and the rise time of Q band fluorescence, as well as from Q band stimulated emission signals at 600 and 650 nm with the same time constant. Relaxation processes on a time scale of 10 and 20 ps were observed in the fluorescence and absorption signals. Triplet formation showed a time constant of 400 ps, with an intersystem crossing yield from the Q band to the triplet manifold of between 95% and 99%. This efficient triplet formation is due to the spin-orbit coupling of the antimony ion.

  15. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping

    KAUST Repository

    Wang, Feng; Han, Yu; Lim, Chinseong; Lu, Yunhao; Wang, Juan; Xu, Jun; Chen, Hongyu; Zhang, Chun; Hong, Minghui; Liu, Xiaogang

    2010-01-01

    or hexagonal) and upconversion emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal

  16. Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+,Er3+ phosphors.

    Science.gov (United States)

    Cho, Youngho; Song, Si Won; Lim, Soo Yeong; Kim, Jae Hun; Park, Chan Ryang; Kim, Hyung Min

    2017-03-08

    Although upconversion phosphors have been widely used in nanomedicine, laser engineering, bioimaging, and solar cell technology, the upconversion luminescence mechanism of the phosphors has been fiercely debated. A comprehensive understanding of upconversion photophysics has been significantly impeded because the number of photons incorporated in the process in different competitive pathways could not be resolved. Few convincing results to estimate the contribution of each of the two-, three-, and four-photon channels of near-infrared (NIR) energy have been reported in yielding upconverted visible luminescence. In this study, we present the energy upconversion process occurring in NaYF 4 :Yb 3+ ,Er 3+ phosphors as a function of excitation frequency and power density. We investigated the upconversion mechanism of lanthanide phosphors by comparing UV/VIS one-photon excitation spectra and NIR multi-photon spectra. A detailed analysis of minor transitions in one-photon spectra and luminescence decay enables us to assign electronic origins of individual bands in multi-photon upconversion luminescence and provides characteristic transitions representing the corresponding upconversion channel. Furthermore, we estimated the quantitative contribution of multiple channels with respect to irradiation power and excitation energy.

  17. Upconversion improvement in KLaF{sub 4}:Yb{sup 3+}/Er{sup 3+} nanoparticles by doping Al{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haifang [Fuzhou University, School of Physics and Information Engineering, and Institute of Micro-Nano Devices and Solar Cells, Fuzhou (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, Jiangsu (China); Wang, Xiechun; Lai, Yunfeng; Cheng, Shuying; Zheng, Qiao; Yu, Jinlin [Fuzhou University, School of Physics and Information Engineering, and Institute of Micro-Nano Devices and Solar Cells, Fuzhou (China)

    2017-10-15

    Rare-earth ion-doped upconversion (UC) materials show great potential applications in optical and optoelectronic devices due to their novel optical properties. In this work, hexagonal KLaF{sub 4}:Yb{sup 3+}/Er{sup 3+} nanoparticles (NPs) were successfully synthesized by a hydrothermal method, and remarkably enhanced upconversion luminescence in green and red emission bands in KLaF{sub 4}:Yb{sup 3+}/Er{sup 3+} NPs has been achieved by doping Al{sup 3+} ions under 980 nm excitation. Compared to the aluminum-free KLaF{sub 4}:Yb{sup 3+}/Er{sup 3+} NPs sample, the UC fluorescence intensities of the green and red emissions of NPs doped with 10 at.% Al{sup 3+} ions were significantly enhanced by 5.9 and 7.3 times, respectively. Longer lifetimes of the doped samples were observed for the {sup 4}S{sub 3/2} state and {sup 4}F{sub 9/2} state. The underlying reason for the UC enhancement by doping Al{sup 3+} ions was mainly ascribed to distortion of the local symmetry around Er{sup 3+} ions and adsorption reduction of organic ligands on the surface of NPs. In addition, the influence of doping Al{sup 3+} ions on the structure and morphology of the NPs samples was also discussed. (orig.)

  18. Study of the focusing effect of silica microspheres on the upconversion of Er3+–Yb3+ codoped glass ceramics

    International Nuclear Information System (INIS)

    Pérez-Rodríguez, C.; Imanieh, M.H.; Martín, L.L; Ríos, S.; Martín, I.R.; Yekta, Bijan Eftekhari

    2013-01-01

    Highlights: •Silica microspheres have been located on the surface of glass and glass ceramics samples codoped with Er and Yb. •Microspheres act as microlens of the 950 nm excitation light resulting in focalized excited regions in the samples with sizes under the micron. •Intense red upconversion is achieved in the focalized areas. •Microspheres collect the upconversion emission light, scoping with the together microlensing properties an enhancement of the detected signal in a 3x factor. •Performed Finite-Difference Time-Domain simulations predict the size of the focalized regions in good agreement with the experimental measurements. -- Abstract: The upconversion emission properties of Er 3+ –Yb 3+ codoped glass and glass ceramic samples with different Si/Al ratios and thermal treatments were analyzed by covering their surfaces with silica microspheres (3.8 μm diameter). A 950 nm laser beam is focused by the microspheres producing a set of photonic nanojets near the surface of the samples. After the upconversion processes of the Er 3+ ions located in each microsphere focus area, these ions emit light in the green and red regions. The red emission from each sample was measured, yielding an upconversion intensity in the focal areas three times higher than the emission from the bare substrate. To estimate the real size of the red emission area under a single microsphere, a deconvolution of the measured focal spots with the Point Spread Function of the experimental setup was performed, resulting in a Full Width at Half Maximum of 330 nm. The results obtained by Finite-Difference Time-Domain simulations are in good agreement with the experimental values

  19. Upconversion channels in Er3+ ZBLALiP fluoride glass microspheres

    NARCIS (Netherlands)

    O'Shea, D. G.; Ward, J. M.; Shortt, B. J.; Mortier, M.; Feron, P.; Chormaic, S. Nic

    We present results on the realization of a multicolour microspherical glass light source fabricated from the erbium doped fluoride glass ZBLALiP. Whispering gallery mode lasing and upconversion processes give rise to laser and fluorescent emissions at multiple wavelengths from the ultraviolet to the

  20. Tuning crystal field symmetry of hexagonal NaY{sub 0.92}Yb{sub 0.05}Er{sub 0.03}F{sub 4} by Ti{sup 4+} codoping for high-performance upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Han, E-mail: fjfzyh@fzu.edu.cn [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Huang, Qingming [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Ma, En [Fujian Institue of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhang, Xinqi [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Yu, Jianchang [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China)

    2014-11-15

    Highlights: • Upconversion emission of Er{sup 3+} was obviously enhanced by Ti{sup 4+} codoped in NaYF{sub 4}. • The upconversion luminescence lifetime was also obviously prolonged. • Na{sup +} could be induced to occupy Y{sup 3+} sites if Ti{sup 4+} was codoped with appropriate concentration. • The crystal field asymmetry was enhanced for better upconversion performance. • Crystal growth was prevented and small-sized NaYF{sub 4} were obtained. - Abstract: 378 nm, 408 nm and 521 nm upconversion emissions of Er{sup 3+} ions were obviously enhanced by Ti{sup 4+} codoped with Yb{sup 3+}/Er{sup 3+} in hexagonal NaYF{sub 4}, and the corresponding upconversion luminescence lifetimes were also prolonged, especially for 378 nm and 408 nm emissions. X-ray powder diffraction, field emission scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy and upconversion emission spectra were employed to explore the relationships of the structure and properties. From these characterizations we made a novel discovery that Na{sup +} could be induced to occupy Y{sup 3+} sites for establishing valence balance of the system if Ti{sup 4+} ions were codoped with appropriate concentration. As a result the crystal field asymmetry of NaY{sub 0.92}Yb{sub 0.05}Er{sub 0.03}F{sub 4} was enhanced and then its upconversion properties were improved because the hypersensitive electron transition of Yb{sup 3+}/Er{sup 3+} ions was promoted greatly. At the same time, the crystal sizes of the codoped NaYF{sub 4} became smaller because the crystal growth was prevented by more negative charges gathering at the crystal surface. This study provides an exploration of the relationship among impurity doping, structural changes and upconversion performance, which may be useful for design and synthesis of high-performance upconversion codoping materials.

  1. Bright upconversion luminescence and increased Tc in CaBi2Ta2O9:Er high temperature piezoelectric ceramics

    International Nuclear Information System (INIS)

    Peng Dengfeng; Wang Xusheng; Yao Xi; Xu Chaonan; Lin Jian; Sun Tiantuo

    2012-01-01

    Er 3+ doped CaBi 2 Ta 2 O 9 (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er 3+ doped CBT ceramics were investigated as a function of Er 3+ concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from 4 S 3/2 and 4 F 9/2 to 4 I 15/2 , respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  2. Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method

    Science.gov (United States)

    Gunaseelan, M.; Yamini, S.; Kumar, G. A.; Senthilselvan, J.

    2018-01-01

    A new reverse microemulsion system is proposed for the first time to synthesize NaYF4:Yb,Er nanocrystals, which demonstrated high upconversion emission in 550 and 662 nm at 980 nm diode laser excitation. The reverse microemulsion (μEs) system is comprised of CTAB and oleic acid as surfactant and 1-butanol co-surfactant and isooctane oil phase. The surfactant to water ratio is able to tune the microemulsion droplet size from 14 to 220 nm, which eventually controls the crystallinity and particulate morphology of NaYF4:Yb,Er. Also, the microemulsion precursor and calcination temperature plays certain role in transforming the cubic NaYF4:Yb,Er to highly luminescent hexagonal crystal structured upconversion material. Single phase hexagonal NaYF4:YbEr nanorod prepared by water-in-oil reverse microemulsion (μEs) gives intense red upconversion emission. Both nanosphere and nanorod shaped NaYF4:Yb,Er was obtained, but nanorod morphology resulted an enhanced upconversion luminescence. The structural, morphological, thermal and optical luminescence properties of the NaYF4:Yb,Er nanoparticles are discussed in detail by employing powder X-ray diffraction, dynamic light scattering, high resolution electron microscopy, TGA-DTA, UV-DRS, FTIR and photoluminescence spectroscopy. Intense upconversion emission achieved in the microemulsion synthesized NaYF4:Yb3+,Er3+ nanocrystal can make it as useful optical phosphor for solar cell applications.

  3. Upconversion studies in rare earth ions-doped lanthanide materials

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... studied samples in order to get the visible upconversion emission on 976 nm excitation. References. [1] F Azuel, Chem. Rev. 104, 139 (2004). [2] W M Yen, S Shionoya and H Yamamoto (eds), Practical applications of phosphors (CRC. Press, Taylor and Francis Group, 2006). [3] F Wang and X Liu, Chem.

  4. Dependence of the up-conversion emission of Li+ co-doped Y2O3:Er3+ films with dopant concentration

    International Nuclear Information System (INIS)

    Meza-Rocha, A.N.; Huerta, E.F.; Caldiño, U.; Carmona-Téllez, S.; Bettinelli, M.; Speghini, A.; Pelli, S.; Righini, G.C.

    2015-01-01

    The effect of dopant concentration on the up-conversion emission, and in particular on the Er 3+ related green and red emissions of spray pyrolysis deposited films of Y 2 O 3 :Er 3+ co-doped with Li + , is reported. Er 3+ concentrations in the films in the range of 1.1–5.6 at% (1.5–14 at% Er 3+ in the spraying solution) were studied, as well as the effect of co-doping them with Li + . Large concentrations of Er 3+ favor the red emission, especially for contents higher than 10 at% in the spraying solution. Li + co-doping improves the green and red emissions up to 365 and 171 times, respectively, depending on the Er 3+ and Li + concentrations. - Highlights: Up-converting Y 2 O 3 :Er 3+ and Y 2 O 3 :Er 3+ , Li + films were deposited by spray pyrolysis. The effect of Li + co-doping on the green and red UC Er 3+ emission is reported. Li + co-doping improves the green and red emission up to 365 and 171 times

  5. Synthesis of novel branched β-NaLuF4: Yb/Er upconversion luminescence material and investigation of its optical properties

    Science.gov (United States)

    Ding, Yanli; Yang, Tonghui; Yin, Naiqiang; Shu, Fangjie; Zhao, Ying; Zhang, Xiaodan

    2018-05-01

    Branched β-NaLuF4: Yb/Er was synthesized using a simple hydrothermal method by controlling the NaF/Ln molar ratio. In contrast to the β-NaYF4: Yb/Er hexagonal disks, the branched β-NaLuF4: Yb/Er has stronger emission intensity. The integrated intensities of green and red emission bands were as 6.2 and 3.3 times as that of NaYF4, respectively. The branched β-NaLuF4: Yb/Er has the smaller unit cell volume, the higher absorption intensity around 980 nm and the lower crystal field symmetry than NaYF4, which made a significant contribution to the stronger upconversion (UC) fluorescence emissions. The results indicate that the branched β-NaLuF4: Yb/Er is an excellent UC luminescence material. The current research has a great potential in improving near-infrared conversion efficiency of solar cells.

  6. Study of the focusing effect of silica microspheres on the upconversion of Er{sup 3+}–Yb{sup 3+} codoped glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Rodríguez, C., E-mail: cjperez@ull.edu.es [Dpto. Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n E-38206 La Laguna, Tenerife (Spain); Imanieh, M.H. [Department of Chemical and Environmental Engineering, University of Toledo, Toledo, OH (United States); Department of Materials, Ceramic Division, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Martín, L.L [Dpto. Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n E-38206 La Laguna, Tenerife (Spain); Ríos, S. [Dpto. de Física Básica, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n E-38206 La Laguna, Tenerife (Spain); Martín, I.R. [Dpto. Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n E-38206 La Laguna, Tenerife (Spain); MALTA Consolider Team, Av. Astrofísico Francisco Sánchez, s/n E-38206 La Laguna, Tenerife (Spain); Yekta, Bijan Eftekhari [Department of Materials, Ceramic Division, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-11-05

    Highlights: •Silica microspheres have been located on the surface of glass and glass ceramics samples codoped with Er and Yb. •Microspheres act as microlens of the 950 nm excitation light resulting in focalized excited regions in the samples with sizes under the micron. •Intense red upconversion is achieved in the focalized areas. •Microspheres collect the upconversion emission light, scoping with the together microlensing properties an enhancement of the detected signal in a 3x factor. •Performed Finite-Difference Time-Domain simulations predict the size of the focalized regions in good agreement with the experimental measurements. -- Abstract: The upconversion emission properties of Er{sup 3+}–Yb{sup 3+} codoped glass and glass ceramic samples with different Si/Al ratios and thermal treatments were analyzed by covering their surfaces with silica microspheres (3.8 μm diameter). A 950 nm laser beam is focused by the microspheres producing a set of photonic nanojets near the surface of the samples. After the upconversion processes of the Er{sup 3+} ions located in each microsphere focus area, these ions emit light in the green and red regions. The red emission from each sample was measured, yielding an upconversion intensity in the focal areas three times higher than the emission from the bare substrate. To estimate the real size of the red emission area under a single microsphere, a deconvolution of the measured focal spots with the Point Spread Function of the experimental setup was performed, resulting in a Full Width at Half Maximum of 330 nm. The results obtained by Finite-Difference Time-Domain simulations are in good agreement with the experimental values.

  7. Measuring upconversion nanoparticles photoluminescence lifetime with FastFLIM and phasor plots

    Science.gov (United States)

    Sun, Yuansheng; Lee, Hsien-Ming; Qiu, Hailin; Liao, Shih-Chu Jeff; Coskun, Ulas; Barbieri, Beniamino

    2018-02-01

    Photon upconversion is a nonlinear process in which the sequential of absorption of two or more photons leads to the anti-stoke emission. Different than the conventional multiphoton excitation process, upconversion can be efficiently performed at low excitation densities. Recent developments in lanthanide-doped upconversion nanoparticles (UCNPs) have led to a diversity of applications, including detecting and sensing of biomolecules, imaging of live cells, tissues and animals, cancer diagnostic and therapy, etc. Measuring the upconversion lifetime provides a new dimension of its imaging and opens a new window for its applications. Due to the long metastable intermediate excited state, UCNP typically has a long excited state lifetime ranging from sub-microseconds to milliseconds. Here, we present a novel development using the FastFLIM technique to measure UCNP lifetime by laser scanning confocal microscopy. FastFLIM is capable of measuring lifetime from 100 ps to 100 ms and features the high data collection efficiency (up to 140-million counts per second). Other than the traditional nonlinear least-square fitting analysis, the raw data acquired by FastFLIM can be directly processed by the model-free phasor plots approach for instant and unbiased lifetime results, providing the ideal routine for the UCNP photoluminescence lifetime microscopy imaging.

  8. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-10-01

    Full Text Available The intensive up-conversion (UC photoluminescence and temperature sensing behavior of Er3+-doped Bi7Ti4NbO21(BTN ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.

  9. Comparative studies of upconversion luminescence characteristics and cell bioimaging based on one-step synthesized upconversion nanoparticles capped with different functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ming-Kiu [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Chan, Chi-Fai; Wong, Ka-Leung [Department of Chemistry, Hong Kong Baptist University (Hong Kong); Hao, Jianhua, E-mail: jh.hao@polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China)

    2015-01-15

    Herein, three types of upconverting NaGdF{sub 4}:Yb/Er nanoparticles (UCNPs) have been synthesized via one-step hydrothermal synthesis with polyethylene glycol (PEG), polyethylenimine (PEI) and 6-aminocapronic acid (6AA) functionalization. To evident the presence of these groups, FTIR spectra and ζ-potentials were measured to support the successful capping of PEG, PEI and 6AA on the UCNPs. The regular morphology and cubic phase of these functionalized UCNPs were attributed to the capping effect of the surfactants. Tunable upconversion luminescence (UCL) from red to green were observed under 980 nm laser excitation and the UCL tuning was attributed to the presence of various surface ligands. Moreover, surface group dependent UCL bioimaging was performed in HeLa cells. The enhanced UCL bioimaging demonstrated by PEI functionalized UCNPs evident high cell uptake. The significant cell uptake is explained by the electrostatic attraction between the amino groups (–NH{sub 2}) and the cell membrane. Moreover, the functionalized UCNPs demonstrated low cytotoxicity in MTT assay. Additional, paramagnetic property was presented by these UCNPs under magnetic field. - Highlights: • Tunable upconversion emission by capped functional groups under fixed composition. • Surface dependent upconversion luminescence bioimaging in HeLa cells. • Low cytotoxicity. • Additional paramagnetic property due to Gd{sup 3+} ions.

  10. Upconversion emission and cathodoluminescence of Er{sup 3+}-doped NaYbF{sub 4} nanoparticles for low-temperature thermometry and field emission displays

    Energy Technology Data Exchange (ETDEWEB)

    Du, Peng; Yu, Jae Su [Kyung Hee University, Department of Electronics and Radio Engineering, Yongin (Korea, Republic of); Luo, Laihui [Ningbo University, Department of Microelectronic Science and Engineering, Ningbo (China)

    2017-03-15

    The Er{sup 3+}-doped NaYbF{sub 4} nanoparticles were fabricated by a hydrothermal method. The green and red emissions located at around 525, 542 and 657 nm corresponding to the {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2}, {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} transitions of Er{sup 3+} ions, respectively, were observed when pumped at 980 nm light. Furthermore, with the help of the fluorescence intensity ratio technique, the thermometric properties of as-prepared products from the thermally coupled {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} levels of Er{sup 3+} ions were studied by analyzing temperature-dependent upconversion (UC) emission spectra. The maximum sensitivity for the Er{sup 3+}-doped NaYbF{sub 4} nanoparticles was found to be around 0.0043 K{sup -} {sup 1} with a temperature range of 93-293 K. In addition, the cathodoluminescence (CL) spectrum of the synthesized nanoparticles was nearly the same as the UC emission spectrum and the CL emission intensity did not exhibit saturation with the increase of accelerating voltage and filament current. (orig.)

  11. Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphates-LaPO4/YPO4:Yb3+-Tm3.

    Science.gov (United States)

    Runowski, Marcin; Shyichuk, Andrii; Tymiński, Artur; Grzyb, Tomasz; Lavín, Víctor; Lis, Stefan

    2018-05-23

    Upconversion luminescence of nano-sized Yb 3+ and Tm 3+ codoped rare earth phosphates, that is, LaPO 4 and YPO 4 , has been investigated under high-pressure (HP, up to ∼25 GPa) and high-temperature (293-773 K) conditions. The pressure-dependent luminescence properties of the nanocrystals, that is, energy red shift of the band centroids, changes of the band ratios, shortening of upconversion lifetimes, and so forth, make the studied nanomaterials suitable for optical pressure sensing in nanomanometry. Furthermore, thanks to the large energy difference (∼1800 cm -1 ), the thermalized states of Tm 3+ ions are spectrally well-separated, providing high-temperature resolution, required in optical nanothermometry. The temperature of the system containing such active nanomaterials can be determined on the basis of the thermally induced changes of the Tm 3+ band ratio ( 3 F 2,3 → 3 H 6 / 3 H 4 → 3 H 6 ), observed in the emission spectra. The advantage of such upconverting optical sensors is the use of near-infrared light, which is highly penetrable for many materials. The investigated nanomanometers/nanothermometers have been successfully applied, as a proof-of-concept of a novel bimodal optical gauge, for the determination of the temperature of the heated system (473 K), which was simultaneously compressed under HP (1.5 and 5 GPa).

  12. Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3:Er(3+)/Yb(3+) nano-crystalline phosphor.

    Science.gov (United States)

    Joshi, C; Dwivedi, A; Rai, S B

    2014-08-14

    Infrared-to-visible upconverting rare earths Er(3+)/Yb(3+) co-doped Y2O3 nano-crystalline phosphor samples have been prepared by solution combustion method followed by post-heat treatment at higher temperatures. A slight increase in average crystallite size has been found on calcinations verified by X-ray analysis. Transmission electron microscopy (TEM) confirms the nano-crystalline nature of the as-prepared and calcinated samples. Fourier transform infrared (FTIR) analysis shows the structural changes in as-prepared and calcinated samples. Upconversion and downconversion emission recorded using 976 and 532 nm laser sources clearly demonstrates a better luminescence properties in the calcinated samples as compared to as-prepared sample. Upconversion emission has been quantified in terms of standard chromaticity diagram (CIE) showing a shift in overall upconversion emission of as-prepared and calcinated samples. Temperature sensing behaviour of this material has also been investigated by measurement of fluorescence intensity ratio (FIR) of various signals in green emission in the temperature range of 315 to 555 K under 976 nm laser excitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Influence of excitation light on the frequency upconversion of trivalent lanthanide ions

    International Nuclear Information System (INIS)

    Fu Zhenxing; Zheng Hairong; Tian Yu; Zhang Zhenglong; Cui Min

    2010-01-01

    The upconversion mechanisms of the 1 D 2 level of Tm 3+ ion under different excitation lights were analyzed. The influences of the excitation lights on the upconversion process, nonradiative relaxation from level 3 F 2 to 3 H 4 and fluorescence properties were investigated. It was shown that the one-color cw excitation could affect the profile of fluorescence, while information of the nonradiative relaxation could not be extracted. The nonradiative relaxation rate measured with the one-color pulsed excitation in crystal phase was in agreement with what was obtained in the free-standing nanometer crystal particles through the two-color pulsed excitation. The characteristics of the fluorescent emissions of Tm 3+ ions doped in various host materials were also discussed under different excitation lights. As a result of the discussion, a possible way to obtain nonradiative relaxation rate directly from a spectroscopic method in frequency domain was proposed. The study can be extended to other trivalent lanthanide ions that have upconversion through excited state absorption.

  14. Thermal noise in mid-infrared broadband upconversion detectors

    DEFF Research Database (Denmark)

    Barh, Ajanta; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2018-01-01

    Low noise detection with state-of-the-art mid-infrared (MIR) detectors (e.g., PbS, PbSe, InSb, HgCdTe) is a primary challenge owing to the intrinsic thermal background radiation of the low bandgap detector material itself. However, researchers have employed frequency upconversion based detectors...... of the noise-equivalent power of an UCD system. In this article, we rigorously analyze the optical power generated by frequency upconversion of the intrinsic black-body radiation in the nonlinear material itself due to the crystals residual emissivity, i.e. absorption. The thermal radiation is particularly...... prominent at the optical absorption edge of the nonlinear material even at room temperature. We consider a conventional periodically poled lithium niobate (PPLN) based MIR-UCD for the investigation. The UCD is designed to cover a broad spectral range, overlapping with the entire absorption edge of the PPLN...

  15. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  16. Synthesis, Tunable Multicolor Output, and High Pure Red Upconversion Emission of Lanthanide-Doped Lu2O3 Nanosheets

    Directory of Open Access Journals (Sweden)

    Lingzhen Yin

    2013-01-01

    Full Text Available Yb3+ and Ln3+ (Ln = Er, Ho codoped Lu2O3 square nanocubic sheets were successfully synthesized via a facile hydrothermal method followed by a subsequent dehydration process. The crystal phase, morphology, and composition of hydroxide precursors and target oxides were characterized by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, and energy-dispersive X-ray spectroscope (EDS. Results present the as-prepared Lu2O3 crystallized in cubic phase, and the monodispersed square nanosheets were maintained both in hydroxide and oxides. Moreover, under 980 nm laser diode (LD excitation, multicolor output from red to yellow was realized by codoped different lanthanide ions in Lu2O3. It is noteworthy that high pure strong red upconversion emission with red to green ratio of 443.3 of Er-containing nanocrystals was obtained, which is beneficial for in vivo optical bioimaging.

  17. Activation of visible up-conversion luminescence in transparent and conducting ZnO:Er:Yb films by laser annealing

    International Nuclear Information System (INIS)

    Lluscà, M.; López-Vidrier, J.; Lauzurica, S.; Sánchez-Aniorte, M.I.; Antony, A.; Molpeceres, C.; Hernández, S.; Garrido, B.; Bertomeu, J.

    2015-01-01

    Transparent and conducting ZnO:Er:Yb thin films with visible up-conversion (660-nm emission under 980-nm excitation) were fabricated by RF magnetron sputtering. The as-deposited films were found to be transparent and conducting and the activation of the Er ions in these films to produce up-conversion luminescence was achieved by different post-deposition annealing treatments in air, vacuum or by laser annealing using a Nd:YVO 4 laser. The structural, electrical and optical properties and the up-conversion efficiency of these films were found to be strongly influenced by the annealing method, and a detailed study is reported in this paper. It has been demonstrated that, although the air annealing was the most efficient in terms of up-conversion, laser annealing was the only method capable of activating Er ions while preserving the electrical conductivity of the doped films. It has been shown that a minimum energy was needed in laser annealing to optically activate the rare earth ions in the ZnO host material to produce up-conversion. Up-converting and transparent conducting ZnO:Er:Yb films with an electrical resistivity of 5×10 −2 Ω cm and transparency ~80% in the visible wavelength range has been achieved by laser annealing. - Highlights: • Transparent and conducting ZnO:Er:Yb films were grown via magnetron sputtering. • Post-annealing ZnO:Er:Yb is needed to optically activate Er ions. • Visible up-conversion emission at 660 nm is observed under 980 nm excitation. • A transparent and conducting up-converter is achieved by laser annealing

  18. Laser-diode-excited blue upconversion in Tm3+/Yb3+ -codoped TeO2-Ga2O3-R2O (R=Li, Na, K) glasses.

    Science.gov (United States)

    Zhao, Chun; Zhang, Qinyuan; Yang, Gangfeng; Jiang, Zhonghong

    2008-01-01

    This paper reports on intense blue upconversion in Tm(3+)/Yb(3+) codoped TeO(2)-Ga(2)O(3)-R(2)O(R=Li, Na, K) glasses upon excitation with commercial available laser diode (LD). Effects of alkali ions on the Raman spectra, thermal stability and spectroscopic properties of the tellurite-gallium glasses have also been investigated. Energy transfer and the involved upconversion mechanisms have been discussed. Intense blue upconversion emission centered at 476 nm along with a weak red emission at 650 nm has been observed upon excitation of 977 nm LD, assigned to the transitions of 1G4-->3H6, and 1G4-->3H4 and/or 3F(2,3)-->3H6 of Tm(3+), respectively. The blue upconversion intensity has a cubelike dependence on incident pump laser power, indicating a three-photon process. However, a quadratic dependence of the 476 nm upconversion intensity on the incident pump laser power has been observed when samples under excitation of 808 nm LD due to a two-photon absorption process. Enhanced upconversion luminescence have been observed with replacing K(+) for Na(+) and Li(+).

  19. The infrared emission bands. III. Southern IRAS sources.

    Science.gov (United States)

    Cohen, M; Tielens, A G; Bregman, J; Witteborn, F C; Rank, D M; Allamandola, L J; Wooden, D H; de Muizon, M

    1989-06-01

    We present airborne 5-8 micrometers spectra of southern IRAS sources which reveal strong polycyclic aromatic hydrocarbon (PAH) emission features. The good correlation between the bands, in particular the dominant 6.2 and "7.7" micrometers features, strongly imply a common carrier, reinforcing the PAH hypothesis. However, small but detectable spectral variations exist. Planetaries have a distinctly different ratio of I(6.2)/I(7.7) than other nebulae, accompanied by a redward shift in the actual wavelength of the "7.7" micrometers peak. Further, we have detected a new feature, previously predicted from laboratory spectra of PAH molecules, at 5.2 micrometers in many of these sources. Spectra of two rare [WC 10] planetary nebular nuclei indicate a very prominent plateau of emission, linking the 6.2 and 7.7 micrometers bands. Several of our sources show definite evidence for emission structure between 14 and 23 micrometers in their IRAS Low-Resolution Spectral Atlas spectra: we attribute this structure to PAH bands. too. We have defined the "generic" spectrum of emission bands relating the mean intensities of each band to that of the strongest, near 7.7 micrometers. We have added three more planetary or protoplanetary nebulae to our correlation between 7.7 micrometers band intensity and nebular gas phase C/O ratio, namely NGC 6302, HR 4049, and the highly carbon-rich [WC 10] nucleus, CPD--56 degrees 8032. For the latter we have determined a ratio for C/O of approximately 4.8 from IUE observations. The good correlation between the intensity ratio of the "7.7" micrometers feature relative to the far-infrared dust continuum and nebular C/O also supports a carbonaceous carrier for these emission features.

  20. Near infrared and upconversion luminescence behaviour of Er3+/Yb3+ codoped boro-tellurite glasses

    Science.gov (United States)

    Maheshvaran, K.; Arunkumar, S.; Vijayakumar, R.; Marimuthu, K.

    2014-04-01

    The broadband NIR and upconversion luminescence behavior in a new series of Er3+/Yb3+ codoped TeO2-B2O3-SrO-BaO-Li2O-LiF glasses have been studied exciting at a wavelength of 980 nm using semiconductor laser. A broadband emission is observed from 1450 to 1650 nm with a full width at half maximum (FWHM) around 165 nm in 0.5wt% Yb3+ ion content E0.5YLTB glass. The radiative parameters such as transition probability (A), stimulated emission cross-section (σE), experimental and calculated branching ratios (βR), optical gain width (σp×FWHM) and radiative lifetime (τcal) have been calculated for the 4I13/2→4I15/2 NIR emission. Upconversion luminescence spectra of the prepared glasses have been studied and the ESA & ET processes have also been discussed and reported.

  1. Upconversion NaYF4 Nanoparticles for Size Dependent Cell Imaging and Concentration Dependent Detection of Rhodamine B

    Directory of Open Access Journals (Sweden)

    Shigang Hu

    2015-01-01

    Full Text Available Upconversion nanoparticles (UCNPs based on NaYF4 nanocrystals with strong upconversion luminescence are synthesized by the solvothermal method. The emission color of these NaYF4 upconversion nanoparticles can be easily modulated by the doping. These NaYF4 upconversion nanocrystals can be employed as fluorescence donors to pump fluorescent organic molecules. For example, the efficient luminescence resonant energy transfer (LRET can be achieved by controlling the distance between NaYF4:Yb3+/Er3+ UCNPs and Rhodamine B (RB. NaYF4:Yb3+/Er3+ UCNPs can emit green light at the wavelength of ~540 nm while RB can efficiently absorb the green light of ~540 nm to emit red light of 610 nm. The LRET efficiency is highly dependent on the concentration of NaYF4 upconversion fluorescent donors. For the fixed concentration of 3.2 µg/mL RB, the optimal concentration of NaYF4:Yb3+/Er3+ UCNPs is equal to 4 mg/mL which generates the highest LRET signal ratio. In addition, it is addressed that the upconversion nanoparticles with diameter of 200 nm are suitable for imaging the cells larger than 10 µm with clear differentiation between cell walls and cytoplasm.

  2. Upconversion in solar cells

    Science.gov (United States)

    2013-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

  3. Optical transitions of Ho(3+) in oxyfluoride glasses and upconversion luminescence of Ho(3+)/Yb(3+)-codoped oxyfluoride glasses.

    Science.gov (United States)

    Feng, Li; Wu, Yinsu

    2015-05-05

    Optical properties of Ho(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Ho(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980nm excitation. The effects of composition, concentration of the doping ions, and excitation pump power on the upconversion emissions were also systematically studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Parametric study of up-conversion efficiency in Er-doped ceria nanoparticles under 780 nm excitation

    International Nuclear Information System (INIS)

    Shehata, N.; Kandas, I.; Samir, E.; Meehan, K.; Aldacher, M.

    2016-01-01

    This paper presents a new parametric study of the optical up-conversion process in ceria nanoparticles doped with erbium (Er-CeO 2 NPs). Under 780 nm excitation, both the possible transitions that occur between Er 3+ ions and up-conversion rate model simulation are presented. Ceria nanoparticles (CeO 2 NPs) doped with erbium are experimentally synthesized using chemical precipitation technique with post-annealing up to 900 °C with different weight ratios of erbium dopant. We found that the synthesized nanoparticles can emit both green and red emissions under 780 nm laser excitation via two-photon absorption mechanism. Then, the quantum efficiencies of both colored emissions are theoretically investigated with different parameters related to the optical conversion process and the studied material. In addition, this work offer suggested ranges for the optimum values of the studied parameters which could improve the quantum yield efficiency. Einstein coefficients for erbium hosted in ceria are discussed in details using Judd–Ofelt analysis. This promising study could be helpful in improving the up-conversion efficiency of Er-ceria nanoparticles for applications such as bio-imaging and optical-based sensors.

  5. Effect of Er3+ Concentration on Upconversion in Hexagonal-Phase NaYF4:Er3+ Nanocrystals

    International Nuclear Information System (INIS)

    Luo, X J; Yuminami, R; Sakurai, T; Akimoto, K

    2013-01-01

    A facile synthesis method was developed to produce hexagonal-phase of NaYF 4 nanocrystals (NCs) doped with Er 3+ in different concentration, which showed upconversion (UC) emission from infrared to visible spectral region. This proposed method is simple and less toxic compared with generally used method so far. It was found that up-conversion emission spectra of NaYF 4 :Er 3+ NCs, excited at 1550 nm, included four peaks at about 980 nm, 800 nm, 660 nm and 540 nm. The effect of Er 3+ concentration on UC in β-phase NaYF 4 :Er 3+ NCs were discussed based on the excitation power dependence. The optimum Er 3+ concentration for 2-step and 3-step UC was found to be around 10∼30%.

  6. Preparation and up-conversion luminescence of SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Hua, Ruinian, E-mail: rnhua@dlnu.edu.cn [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Zhang, Wei; Feng, Zhiqing; Tang, Dongxin; Na, Liyan [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)

    2014-03-05

    Graphical abstract: The SrAlF{sub 5} nanorods co-doped with various Yb{sup 3+}/Er{sup 3+} concentrations was synthetized via a microemulsion-hydrothermal process for the first time. It was found that the optimum doping concentration of Yb{sup 3+} and Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence. Highlights: • SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods were synthesized via a microemulsion-hydrothermal process. • Crystal structure and morphology were characterized by using XRD and FESEM. • The upconversion luminescence intensity depend on LD working current was studied. • The post heat-treatment could greatly improve upconversion luminescence. -- Abstract: Yb{sup 3+} and Er{sup 3+} co-doped SrAlF{sub 5} nanorods with average diameter of 35 nm and average length of 400 nm were synthesized via a microemulsion-hydrothermal process, and their crystal structure and morphology were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The optimum doping concentration of Yb{sup 3+}/Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. The upconversion luminescence intensity dependence on the laser diode (LD) working current was studied and the possible upconversion mechanism was analyzed. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence.

  7. Tunable green/red luminescence by infrared upconversion in biocompatible forsterite nanoparticles with high erbium doping uptake

    Science.gov (United States)

    Zampiva, Rúbia Young Sun; Acauan, Luiz Henrique; Venturini, Janio; Garcia, Jose Augusto Martins; da Silva, Diego Silverio; Han, Zhaohong; Kassab, Luciana Reyes Pires; Wetter, Niklaus Ursus; Agarwal, Anuradha; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2018-02-01

    Nanoparticles represent a promising platform for diagnostics and therapy of human diseases. For biomedical applications, these nanoparticles are usually coated with photosensitizers regularly activated in a spectral window of 530-700 nm. The emissions at 530 nm (green) and 660 nm (red) are of particular interest for imaging and photodynamic therapy, respectively. This work presents the Mg2SiO4:Er3+ system, produced by reverse strike co-precipitation, with up to 10% dopant and no secondary phase formation. These nanoparticles when excited at 985 nm show upconversion emission with peaks around 530 and 660 nm, although excitation at 808 nm leads to only a single emission peak at around 530 nm. The direct upconversion of this biomaterial without a co-dopant, and its tunability by the excitation source, renders Mg2SiO4:Er3+ nanoparticles a promising system for biomedical applications.

  8. Emission properties of hydrothermal Yb3+, Er3+ and Yb3+, Tm3+-codoped Lu2O3 nanorods: upconversion, cathodoluminescence and assessment of waveguide behavior

    International Nuclear Information System (INIS)

    Barrera, Elixir William; Pujol, MarIa Cinta; DIaz, Francesc; Choi, Soo Bong; Rotermund, Fabian; Park, Kyung Ho; Jeong, Mun Seok; Cascales, Concepcion

    2011-01-01

    Yb 3+ and Ln 3+ (Ln 3+ = Er 3+ or Tm 3+ ) codoped Lu 2 O 3 nanorods with cubic Ia3-bar symmetry have been prepared by low temperature hydrothermal procedures, and their luminescence properties and waveguide behavior analyzed by means of scanning near-field optical microscopy (SNOM). Room temperature upconversion (UC) under excitation at 980 nm and cathodoluminescence (CL) spectra were studied as a function of the Yb + concentration in the prepared nanorods. UC spectra revealed the strong development of Er 3+4 F 9/2 → 4I 15/2 (red) and Tm 3+1 G 4 → 3 H 6 (blue) bands, which became the pre-eminent and even unique emissions for corresponding nanorods with the higher Yb 3+ concentration. Favored by the presence of large phonons in current nanorods, UC mechanisms that privilege the population of 4 F 9/2 and 1 G 4 emitting levels through phonon-assisted energy transfer and non-radiative relaxations account for these observed UC luminescence features. CL spectra show much more moderate development of the intensity ratio between the Er 3+4 F 9/2 → 4 I 15/2 (red) and 2 H 11/2 , 4 S 3/2 → 4 I 15/2 (green) emissions with the increase in the Yb 3+ content, while for Yb 3+ , Tm 3+ -codoped Lu 2 O 3 nanorods the dominant CL emission is Tm 3+1 D 2 → 3 F 4 (deep-blue). Uniform light emission along Yb 3+ , Er 3+ -codoped Lu 2 O 3 rods has been observed by using SNOM photoluminescence images; however, the rods seem to be too thin for propagation of light.

  9. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe.

    Science.gov (United States)

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-09

    Accurate quantitation of intracellular pH (pH i ) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pH i sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pH i . Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pH i , in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF 4 :Yb 3+ , Tm 3+ UCNPs were used as pH i response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pH i value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pH i related areas and development of the intracellular drug delivery systems.

  10. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping

    KAUST Repository

    Wang, Feng

    2010-02-25

    Doping is a widely applied technological process in materials science that involves incorporating atoms or ions of appropriate elements into host lattices to yield hybrid materials with desirable properties and functions. For nanocrystalline materials, doping is of fundamental importance in stabilizing a specific crystallographic phase, modifying electronic properties, modulating magnetism as well as tuning emission properties. Here we describe a material system in which doping influences the growth process to give simultaneous control over the crystallographic phase, size and optical emission properties of the resulting nanocrystals. We show that NaYF 4 nanocrystals can be rationally tuned in size (down to ten nanometres), phase (cubic or hexagonal) and upconversion emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal phase and size arises from a strong dependence on the size and dipole polarizability of the substitutional dopant ion. Our results suggest that the doping-induced structural and size transition, demonstrated here in NaYF 4 upconversion nanocrystals, could be extended to other lanthanide-doped nanocrystal systems for applications ranging from luminescent biological labels to volumetric three-dimensional displays. © 2010 Macmillan Publishers Limited. All rights reserved.

  11. Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S:Er{sup 3+} amorphous chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Strizik, L., E-mail: lukas.strizik@centrum.cz [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Zhang, J. [Division of Advanced Nuclear Engineering, Center for Information Materials, Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Wagner, T. [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Oswald, J. [Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, 16200 Prague (Czech Republic); Kohoutek, T. [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Walsh, B.M. [NASA Langley Research Center, Hampton, VA 23681 (United States); Prikryl, J. [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Svoboda, R. [Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Liu, C. [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Hongshan, Wuhan, Hubei 430070 (China); Frumarova, B. [Institute of Macromolecular Chemistry of Czech Academy of Sciences, v.v.i., Heyrovskeho nam. 2, Prague (Czech Republic); Frumar, M. [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Pavlista, M. [Department of Applied Physics and Mathematics, Faculty of Chemical Technology, University of Pardubice, Studentska 84, 53210 Pardubice (Czech Republic); and others

    2014-03-15

    We report on compositional tuning in Er{sup 3+} ions doped Ga–Ge–Sb–S glassy system allowing for effective {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} (530 nm), {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} (550 nm), {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} (660 nm), {sup 4}I{sub 9/2}→{sup 4}I{sub 15/2} (810 nm), {sup 4}I{sub 11/2}→{sup 4}I{sub 15/2} (990 nm) intra-4f electronic transition emissions of Er{sup 3+} ions under 808 nm, 980 nm or 1550 nm laser pumping. We changed the composition of well-known Ge{sub 20}Ga{sub 5}Sb{sub 10}S{sub 65} glass to Ge{sub 25}Ga{sub 10−x}Sb{sub x}S{sub 65}, where x=0.5 at%, 2.5 at% or 5.0 at% and doped it with 0.5 at% of Er{sup 3+} ions. The short-wavelength absorption edge of the studied glassy hosts is blue-shifted by substitution of Sb with Ga to ∼500 nm making the green emission at 530 nm and 550 nm and even 495 nm ({sup 4}F{sub 7/2}→{sup 4}I{sub 15/2}) observable, while the glass stability was kept high characterized with the difference of T{sub c}−T{sub g}>100 K and mean coordination numbers 2.67–2.71. Up-conversion emission decay times of all anti-Stokes emissions were in the range of 0.2–2.1 ms. The influence of Ga substitution with Sb on the structure and the optical properties was investigated. The spectroscopic parameters for Er{sup 3+} ions with local environment change were analyzed based on Judd–Ofelt theory. -- Highlights: • Compositional tuning of Ga–Ge–Sb–S:Er{sup 3+} phosphor leads to efficient photon up-conversion under 808 nm, 980 nm and 1550 nm laser pumping. • The 530 nm, 550 nm, 660 nm, 810 nm and 990 nm up-conversion emission bands were detected and their lifetimes determined. • Judd–Ofelt theory was used to study the Er{sup 3+} local environment in Ga–Ge–Sb–S glassy host matrix. • Thermally stable chalcogenide Ga–Ge–Sb–S:Er{sup 3+} phosphors are proposed as candidates for up-converting layers enhancing the silicon solar cell efficiency.

  12. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    Science.gov (United States)

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Band-to-Band Tunneling-Dominated Thermo-Enhanced Field Electron Emission from p-Si/ZnO Nanoemitters.

    Science.gov (United States)

    Huang, Zhizhen; Huang, Yifeng; Xu, Ningsheng; Chen, Jun; She, Juncong; Deng, Shaozhi

    2018-06-13

    Thermo-enhancement is an effective way to achieve high performance field electron emitters, and enables the individually tuning on the emission current by temperature and the electron energy by voltage. The field emission current from metal or n-doped semiconductor emitter at a relatively lower temperature (i.e., current saturation was observed in the thermo-enhanced field emission measurements. The emission current density showed about ten-time enhancement (from 1.31 to 12.11 mA/cm 2 at 60.6 MV/m) by increasing the temperature from 323 to 623 K. The distinctive performance did not agree with the interband excitation mechanism but well-fit to the band-to-band tunneling model. The strong thermo-enhancement was proposed to be benefit from the increase of band-to-band tunneling probability at the surface portion of the p-Si/ZnO nanojunction. This work provides promising cathode for portable X-ray tubes/panel, ionization vacuum gauges and low energy electron beam lithography, in where electron-dose control at a fixed energy is needed.

  14. E- and W-band high-capacity hybrid fiber-wireless link

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along with transm...... in mobile backhaul/fronthaul applications, dense distributed antenna systems and fiber-over-radio scenarios.......In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along...... with transmission over different type of optical fibers and for a number of values for the wireless link distance. Hybrid wireless-optical links can be composed of mature and resilient technology available off-the-shelf, and provide functionalities that can add value to optical access networks, specifically...

  15. Synthesis of Er(III)/Yb(III)-doped BiF3 upconversion nanoparticles for use in optical thermometry.

    Science.gov (United States)

    Du, Peng; Yu, Jae Su

    2018-03-23

    The authors describe an ethylene glycol assisted precipitation method for synthesis of Er(III)/Yb(III)-doped BiF 3 nanoparticles (NPs) at room temperature. Under 980-nm light irradiation, the NPs emit upconversion (UC) emission of Er(III) ions as a result of a two-photon absorption process. The temperature-dependent green emissions (peaking at 525 and 545 nm) are used to establish an unambiguous relationship between the ratio of fluorescence intensities and temperature. The NPs have a maximum sensitivity of 6.5 × 10 -3  K -1 at 619 K and can be applied over the 291-691 K temperature range. The results indicate that these NPs are a promising candidate for optical thermometry. Graphical abstract Schematic of the room-temperature preparation of Er(III)/Yb(III)-doped BiF 3 nanoparticles with strongly temperature-dependent upconversion emission.

  16. Bright upconversion luminescence and increased Tc in CaBi{sub 2}Ta{sub 2}O{sub 9}:Er high temperature piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peng Dengfeng [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Wang Xusheng; Yao Xi [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xu Chaonan [National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Lin Jian; Sun Tiantuo [College of Material Science and Engineering, Tongji University, 4800 Cao' an Highway, Shanghai 201804 (China)

    2012-05-15

    Er{sup 3+} doped CaBi{sub 2}Ta{sub 2}O{sub 9} (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er{sup 3+} doped CBT ceramics were investigated as a function of Er{sup 3+} concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  17. Photoelectric emission from negative-electron-affinity diamond (111) surfaces: Exciton breakup versus conduction-band emission

    International Nuclear Information System (INIS)

    Bandis, C.; Pate, B.B.

    1995-01-01

    We have recently reported that bound electron-hole pairs (Mott-Wannier excitons) are the dominant source of photoelectron emission from specially prepared [''as-polished'' C(111)-(1x1):H] negative-electron-affinity diamond surfaces for near-band-gap excitation up to 0.5 eV above threshold [C. Bandis and B. B. Pate, Phys. Rev. Lett. 74, 777 (1995)]. It was found that photoexcited excitons transport to the surface, break up, and emit their electron. In this paper, we extend the study of exciton-derived emission to include partial yield (constant final-state) analysis as well as angular distribution measurements of the photoelectric emission. In addition, we find that exciton-derived emission does not always dominate. Photoelectric emission properties of the in situ ''rehydrogenated'' (111)-(1x1):H diamond surface are characteristically different than emission observed from the as-polished (111)-(1x1):H surface. The rehydrogenated surface has additional downward band bending as compared to the as-polished surface. In confirmation of the assignment of photoelectric yield to exciton breakup emission, we find a significant enhancement of the total electron yield when the downward band bending of the hydrogenated surface is increased. The functional form of the observed total electron yield demonstrates that, in contrast to the as-polished surface, conduction-band electrons are a significant component of the observed photoelectric yield from the in situ hydrogenated (111)-(1x1):H surface. Furthermore, electron emission characteristics of the rehydrogenated surface confirms our assignment of a Fan phonon-cascade mechanism for thermalization of excitons

  18. A programmable ultra-low noise X-band exciter.

    Science.gov (United States)

    MacMullen, A; Hoover, L R; Justice, R D; Callahan, B S

    2001-07-01

    A programmable ultra-low noise X-band exciter has been developed using commercial off-the-shelf components. Its phase noise is more than 10 dB below the best available microwave synthesizers. It covers a 7% frequency band with 0.1-Hz resolution. The X-band output at +23 dBm is a combination of signals from an X-band sapphire-loaded cavity oscillator (SLCO), a low noise UHF frequency synthesizer, and special-purpose frequency translation and up-conversion circuitry.

  19. Near infrared and upconversion luminescence behaviour of Er{sup 3+}/Yb{sup 3+} codoped boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Maheshvaran, K. [Department of Physics, Gandhigram Rural Institute - Deemed University, Gandhigram - 624302, India and Department of Physics, K.S. Rangasamy College of Technology, Trichengode - 637215 (India); Arunkumar, S., E-mail: mari-ram2000@yahoo.com; Vijayakumar, R., E-mail: mari-ram2000@yahoo.com; Marimuthu, K., E-mail: mari-ram2000@yahoo.com [Department of Physics, Gandhigram Rural Institute − Deemed University, Gandhigram - 624302 (India)

    2014-04-24

    The broadband NIR and upconversion luminescence behavior in a new series of Er{sup 3+}/Yb{sup 3+} codoped TeO{sub 2}-B{sub 2}O{sub 3}-SrO-BaO-Li{sub 2}O-LiF glasses have been studied exciting at a wavelength of 980 nm using semiconductor laser. A broadband emission is observed from 1450 to 1650 nm with a full width at half maximum (FWHM) around 165 nm in 0.5wt% Yb{sup 3+} ion content E0.5YLTB glass. The radiative parameters such as transition probability (A), stimulated emission cross-section (σ{sup E}), experimental and calculated branching ratios (β{sub R}), optical gain width (σ{sub p}×FWHM) and radiative lifetime (τ{sub cal}) have been calculated for the {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} NIR emission. Upconversion luminescence spectra of the prepared glasses have been studied and the ESA and ET processes have also been discussed and reported.

  20. Upconversion mechanisms of Er{sup 3+}:NaYF{sub 4} and thermal effects induced by incident photon on the green luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ran; Zhang, Xinlu; Liu, Feng; Xiao, Luying [Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001 (China); School of Science, Harbin Engineering University, Harbin 150001 (China); Chen, Yujin [Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001 (China); School of Science, Harbin Engineering University, Harbin 150001 (China); College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Liu, Lu, E-mail: liulu@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001 (China); School of Science, Harbin Engineering University, Harbin 150001 (China); College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2016-07-15

    Wide range concentrations of Er{sup 3+} doped NaYF{sub 4} nanocrystals are synthesized. Upconversion mechanisms are discussed under 976 nm NIR laser excitation on the basis of the fluorescence spectra and lifetimes data of Er{sup 3+}. It is found that the heat induced by incident laser results in an evident increase of the slope of emission from {sup 2}H{sub 11/2} energy level in the pump power dependence. Emission color of samples is investigated and stable chromaticity under different pump power from low and heavy doping samples are found. In addition, upconversion mechanisms are also investigated under 966 nm excitation.

  1. DISCOVERY OF SiO BAND EMISSION FROM GALACTIC B[e] SUPERGIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, M. [Astronomický ústav, Akademie věd České republiky, Fričova 298, 251 65 Ondřejov (Czech Republic); Oksala, M. E. [LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen, F-92190, Meudon (France); Cidale, L. S.; Arias, M. L.; Torres, A. F. [Departamento de Espectroscopía Estelar, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata (Argentina); Fernandes, M. Borges, E-mail: michaela.kraus@asu.cas.cz [Observatório Nacional, Rua General José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro (Brazil)

    2015-02-20

    B[e] supergiants (B[e]SGs) are evolved massive stars in a short-lived transition phase. During this phase, these objects eject large amounts of material, which accumulate in a circumstellar disk-like structure. The expelled material is typically dense and cool, providing the cradle for molecule and dust condensation and for a rich, ongoing chemistry. Very little is known about the chemical composition of these disks, beyond the emission from dust and CO revolving around the star on Keplerian orbits. As massive stars preserve an oxygen-rich surface composition throughout their life, other oxygen-based molecules can be expected to form. As SiO is the second most stable oxygen compound, we initiated an observing campaign to search for first-overtone SiO emission bands. We obtained high-resolution near-infrared L-band spectra for a sample of Galactic B[e]SGs with reported CO band emission. We clearly detect emission from the SiO first-overtone bands in CPD-52 9243 and indications for faint emission in HD 62623, HD 327083, and CPD-57 2874. From model fits, we find that in all these stars the SiO bands are rotationally broadened with a velocity lower than observed in the CO band forming regions, suggesting that SiO forms at larger distances from the star. Hence, searching for and analyzing these bands is crucial for studying the structure and kinematics of circumstellar disks, because they trace complementary regions to the CO band formation zone. Moreover, since SiO molecules are the building blocks for silicate dust, their study might provide insight in the early stage of dust formation.

  2. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2014-01-01

    morphological and spectral imaging. Recent developments in nonlinear frequency upconversion, have demonstrated the potential to perform both imaging and spectroscopy in the mid-IR range at unparalleled low levels of illumination, the low upconversion detector noise being orders of magnitude below competing...... technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion...

  3. Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2012-02-01

    Full Text Available Upconversion is an optical process that involves the conversion of lower-energy photons into higher-energy photons. It has been extensively studied since mid-1960s and widely applied in optical devices. Over the past decade, high-quality rare earth-doped upconversion nanoparticles have been successfully synthesized with the rapid development of nanotechnology and are becoming more prominent in biological sciences. The synthesis methods are usually phase-based processes, such as thermal decomposition, hydrothermal reaction, and ionic liquids-based synthesis. The main difference between upconversion nanoparticles and other nanomaterials is that they can emit visible light under near infrared irradiation. The near infrared irradiation leads to low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this review, the synthesis of upconversion nanoparticles and the mechanisms of upconversion process will be discussed, followed by their applications in different areas, especially in the biological field for biosensing.

  4. Enhancement of 800 nm upconversion emission in a thulium doped tellurite microstructured fiber pumped by a 1560 nm femtosecond fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhixu; Zheng, Kezhi [State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company, Wuhan 430073 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Yao, Chuanfei; Wang, Shunbin; Qin, Guanshi, E-mail: qings@jlu.edu.cn; Qin, Weiping, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Xiong, Liangming; Luo, Jie; Lv, Dajuan [State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company, Wuhan 430073 (China); Ohishi, Yasutake [Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468–8511 (Japan)

    2016-04-28

    We report enhanced upconversion (UC) fluorescence in Tm{sup 3+} doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ∼1050 to ∼2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the {sup 3}H{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ∼4.1 times. The enhancement was due to the spectral broadening in the TDTMF under the pumping of the 1560 nm femtosecond fiber laser.

  5. Topology optimized gold nanostrips for enhanced near-infrared photon upconversion

    DEFF Research Database (Denmark)

    Vester-Petersen, Joakim; Christiansen, Rasmus Ellebæk; Julsgaard, Brian

    2017-01-01

    This letter presents a topology optimization study of metal nanostructures optimized for electric-field enhancement in the infrared spectrum. Coupling of such nanostructures with suitable ions allows for an increased photon-upconversion yield, with one application being an increased solar-cell...... efficiency by exploiting the long-wavelength part of the solar spectrum. In this work, topology optimization is used to design a periodic array of two-dimensional gold nanostrips for electric-field enhancements in a thin film doped with upconverting erbium ions. The infrared absorption band of erbium...

  6. Designed Er(3+)-singly doped NaYF4 with double excitation bands for simultaneous deep macroscopic and microscopic upconverting bioimaging.

    Science.gov (United States)

    Wen, Xuanyuan; Wang, Baoju; Wu, Ruitao; Li, Nana; He, Sailing; Zhan, Qiuqiang

    2016-06-01

    Simultaneous deep macroscopic imaging and microscopic imaging is in urgent demand, but is challenging to achieve experimentally due to the lack of proper fluorescent probes. Herein, we have designed and successfully synthesized simplex Er(3+)-doped upconversion nanoparticles (UCNPs) with double excitation bands for simultaneous deep macroscopic and microscopic imaging. The material structure and the excitation wavelength of Er(3+)-singly doped UCNPs were further optimized to enhance the upconversion emission efficiency. After optimization, we found that NaYF4:30%Er(3+)@NaYF4:2%Er(3+) could simultaneously achieve efficient two-photon excitation (2PE) macroscopic tissue imaging and three-photon excitation (3PE) deep microscopic when excited by 808 nm continuous wave (CW) and 1480 nm CW lasers, respectively. In vitro cell imaging and in vivo imaging have also been implemented to demonstrate the feasibility and potential of the proposed simplex Er(3+)-doped UCNPs as bioprobe.

  7. Energy transfer dynamics of Er3+/Nd3+ embedded SiO2-Al2O3-Na2CO3-SrF2-CaF2 glasses for optical communications

    Science.gov (United States)

    Gelija, Devarajulu; Kadathala, Linganna; Borelli, Deva Prasad Raju

    2018-04-01

    The fluorescence and upconversion studies of Er3+ doped and Er3+/Nd3+ co-doped silicate based oxyfluoride glasses have been systematically analyzed. The broad band NIR emissions (830-1700 nm), includes optical bands like O, E, S, C and L were observed in the Er3+-Nd3+ co-doped glasses. The NIR emission intensity peaks centered at 876, 1057, 1329 and 1534 nm were observed for the Er3+-Nd3+ co-doped glasses. In the co-doped samples the strongest emission intensity at 1534 nm increased up to 0.5 mol % and then decreased to 3.0 mol % of Nd3+ ions under the excitation of 980 nm. The upconversion studies of the co-doped samples were recorded under the excitation of 980 and 808 nm and found the upconversion emission peaks centered at 524, 530, 547, 590 and 656 nm. The energy transfer processes between the relevant excitation levels of Er3+ and Nd3+ ions and energy transfer efficiency were discussed. The obtained results indicate that Nd3+ can be an efficient sensitizer for Er3+ to enhance upconversion emission at green laser transition for sensors and NIR emission at 1534 nm for optical communication applications.

  8. Multifunctional BaYbF{sub 5}: Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaolong; Yi, Zhigao; Xue, Zhenluan; Zeng, Songjun, E-mail: songjunz@hunnu.edu.cn; Liu, Hongrong, E-mail: hrliu@hunnu.edu.cn

    2017-06-01

    Development of high-quality upconversion nanoparticles (UCNPs) with combination of the merits of multiple molecular imaging techniques, such as, upconversion luminescence (UCL) imaging, X-ray computed tomography (CT), and magnetic resonance (MR) imaging, could significantly improve the accuracy of biological diagnosis. In this work, multifunctional BaYbF{sub 5}: Gd/Er (50:2 mol%) UCNPs were synthesized via a solvothermal method using oleic acid (OA) as surface ligands (denoted as OA-UCNPs). The OA-UCNPs were further treated by diluted HCl to form ligand-free UCNPs (LF-UCNPs) for later bioimaging applications. The cytotoxicity assay in HeLa cells shows low cell toxicity of these LF-UCNPs. Owing to the efficient UCL of BaYbF{sub 5}: Gd/Er, the LF-UCNPs were successfully used as luminescent bioprobe in UCL bioimaging. And, X-ray CT imaging reveals that BaYbF{sub 5}: Gd/Er UCNPs can act as potential contrast agents for detection of the liver and spleen in the live mice owing to the high-Z elements (e.g., Ba, Yb, and Gd) in host matrix. Moreover, with the addition of Gd, the as-designed UCNPs exhibit additional positive contrast enhancement in T{sub 1}-weighted MR imaging. These findings demonstrate that BaYbF{sub 5}: Gd/Er UCNPs are potential candidates for tri-modal imaging. - Graphical abstract: Multifunctional BaYbF{sub 5}: Gd/Er upconversion nanoparticles with efficient upconversion emission, high absorption coefficient, predominant paramagnetic behavior, and low biological toxicity were demonstrated for tri-modality in vivo UCL, CT and MR imaging. Display Omitted - Highlights: • The multifunctional UCNPs with high monodispersity were synthesized. • The UCNPs present large r{sub 1} value and binary CT contrast agents. • These UCNPs were demonstrated as optimal probes for tri-modal bioimaging.

  9. Optical transitions of Tm3+ in oxyfluoride glasses and compositional and thermal effect on upconversion luminescence of Tm3+/Yb3+-codoped oxyfluoride glasses.

    Science.gov (United States)

    Feng, Li; Wu, Yinsu; Liu, Zhuo; Guo, Tao

    2014-01-24

    Optical properties of Tm(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Tm(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980 nm excitation. The effects of composition, concentration of the doping ions, temperature, and excitation pump power on the upconversion emissions were also systematically studied. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Anisotropic emission of the X-ray K-emission band of nitrogen in hexagonal boron nitride

    International Nuclear Information System (INIS)

    Tegeler, E.; Kosuch, N.; Wiech, G.; Faessler, A.

    1977-05-01

    The intensity distribution of the N K-emission band of hexagonal boron nitride samples with partially orientated crystallites was found to be strongly dependent upon the take-off angle of the emitted radiation. The observed emission bands can be separated unambiguously into a sigma- and a π-subband. On the basis of the directional characteristic of radiating dipoles within the layers (sigma-bondings) and perpendicular to the layers (π-bonding) the angular dependence of the intensity of the subbands is quantitatively explained. In addition the degree of orientation of the crystallites on the sample can be determined. The intensity distributions of the emission bands to be expected for single crystals and for samples without any texture are determined; in the latter case the results are found to be in good agreement with experimental results. (orig.) [de

  11. High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation

    International Nuclear Information System (INIS)

    Li, Yongjin; Song, Zhiguo; Li, Chen; Wan, Ronghua; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Yang, Yong; Zhou, Dacheng; Wang, Qi

    2013-01-01

    Under 980 nm excitation, high multi-photon upconversion (UC) emission from the 2 H 11/2 / 4 S 3/2 (green) and 4 F 9/2 (red) levels of Er 3+ ions were observed from Er 3+ singly doped BiOCl microcrystals. These high-energy excited states were populated by a three to ten photon UC process conditionally, which depended on the pump power density and the Er 3+ ion doping concentration, characterizing as a hetero-looping enhanced energy transfer avalanche UC process. UC emission lifetime and Raman analysis suggest that the unusual UC phenomena are initiated by the new and intense phonon vibration modes of BiOCl lattices due to Er 3+ ions doping

  12. Upcoversion performance improvement of NaYF4:Yb, Er by Sn codoping: Enhanced emission intensity and reduced decay time

    International Nuclear Information System (INIS)

    Yu, Han; Cao, Wenbing; Huang, Qingming; Ma, En; Zhang, Xinqi; Yu, Jianchang

    2013-01-01

    In this manuscript we report a phenomenon that upconversion emission intensity of Er 3+ was enhanced while decay time constant was decreased obviously by Sn codoping with Yb/Er into hexagonal NaYF 4 synchronously. X-ray powder diffiraction, field emission scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, electron spin-resonance spectroscopy and upconversion emission spectra were employed to explore the relation of crystal structure and properties. From these characterizations we found that symmetry of the rare earth ion local crystal field could be tuned by different Sn codoping concentration. For the variable valence property of Sn the local crystal field asymmetry and emission intensity of NaYF 4 :Yb, Er arrived to the maximum when 3 mol% Sn was codoped, while decay time was reduced. The study of this changing tends of upconversion emission intensity and decay time constant may be helpful for design and fabrication of high performance upconversion materials. - Graphical abstract: Variable-valenced Sn is introduced with Yb/Er into NaFY 4 to tune structure and local crystal field. Upconversion emission intensity of Er 3+ was enhanced while decay time constant was decreased. Display Omitted - Highlights: • NaYF 4 : Yb, Er was codoped with different concentration Sn. • Upconversion emission intensity was enhanced while decay time constant was decreased. • Introduction of variable-valenced Sn is effective to tune structure and crystal field of NaFY 4

  13. Nature of the emission band of Dergaon meteorite in the region ...

    Indian Academy of Sciences (India)

    available colour film is used to photograph the spectrum. 3. Results and discussion. Figure 1 demonstrates the general feature of the emission band system in the region. 5700–6700 Å along with the Ar+ lasing line at 5145 Å. The emission band system and its densitometer tracing as shown in figure 2 indicate the diffuse ...

  14. Origin of Spectral Band Patterns in the Cosmic Unidentified Infrared Emission

    Science.gov (United States)

    Álvaro Galué, Héctor; Díaz Leines, Grisell

    2017-10-01

    The cosmic unidentified infrared emission (UIE) band phenomenon is generally considered as indicative of free-flying polycyclic aromatic hydrocarbon molecules in space. However, a coherent explanation of emission spectral band patterns depending on astrophysical source is yet to be resolved under this attribution. Meanwhile astronomers have restored the alternative origin as due to amorphous carbon particles, but assigning spectral patterns to specific structural elements of particles is equally challenging. Here we report a physical principle in which inclusion of nonplanar structural defects in aromatic core molecular structures (π domains) induces spectral patterns typical of the phenomenon. We show that defects in model π domains modulate the electronic-vibration coupling that activates the delocalized π -electron contribution to aromatic vibrational modes. The modulation naturally disperses C =C stretch modes in band patterns that readily resemble the UIE bands in the elusive 6 - 9 μ m range. The electron-vibration interaction mechanics governing the defect-induced band patterns underscores the importance of π delocalization in the emergence of UIE bands. We discuss the global UIE band regularity of this range as compatible with an emission from the delocalized s p2 phase, as π domains, confined in disordered carbon mixed-phase aggregates.

  15. White light emission and effect of annealing on the Ho3+–Yb3+ codoped BaCa2Al8O15 phosphor

    International Nuclear Information System (INIS)

    Kumari, Astha; Rai, Vineet Kumar

    2015-01-01

    Graphical abstract: The upconversion emission spectra of the Ho 3+ /Yb 3+ doped/codoped BaCa 2 Al 8 O 15 phosphors with different doping concentrations of Ho 3+ /Yb 3+ ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa 2 Al 8 O 15 phosphors codoped with Ho 3+ –Yb 3+ have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pump power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa 2 Al 8 O 15 (BCAO) phosphors codoped with suitable Ho 3+ –Yb 3+ dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.

  16. Upcoversion performance improvement of NaYF{sub 4}:Yb, Er by Sn codoping: Enhanced emission intensity and reduced decay time

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Han, E-mail: fjfzyh@fzu.edu.cn [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Cao, Wenbing [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Huang, Qingming [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Ma, En [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhang, Xinqi [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Yu, Jianchang [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China)

    2013-11-15

    In this manuscript we report a phenomenon that upconversion emission intensity of Er{sup 3+} was enhanced while decay time constant was decreased obviously by Sn codoping with Yb/Er into hexagonal NaYF{sub 4} synchronously. X-ray powder diffiraction, field emission scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, electron spin-resonance spectroscopy and upconversion emission spectra were employed to explore the relation of crystal structure and properties. From these characterizations we found that symmetry of the rare earth ion local crystal field could be tuned by different Sn codoping concentration. For the variable valence property of Sn the local crystal field asymmetry and emission intensity of NaYF{sub 4}:Yb, Er arrived to the maximum when 3 mol% Sn was codoped, while decay time was reduced. The study of this changing tends of upconversion emission intensity and decay time constant may be helpful for design and fabrication of high performance upconversion materials. - Graphical abstract: Variable-valenced Sn is introduced with Yb/Er into NaFY{sub 4} to tune structure and local crystal field. Upconversion emission intensity of Er{sup 3+} was enhanced while decay time constant was decreased. Display Omitted - Highlights: • NaYF{sub 4}: Yb, Er was codoped with different concentration Sn. • Upconversion emission intensity was enhanced while decay time constant was decreased. • Introduction of variable-valenced Sn is effective to tune structure and crystal field of NaFY{sub 4}.

  17. One-Step Protein Conjugation to Upconversion Nanoparticles.

    Science.gov (United States)

    Lu, Jie; Chen, Yinghui; Liu, Deming; Ren, Wei; Lu, Yiqing; Shi, Yu; Piper, James; Paulsen, Ian; Jin, Dayong

    2015-10-20

    The emerging upconversion nanoparticles offer a fascinating library of ultrasensitive luminescent probes for a range of biotechnology applications from biomarker discovery to single molecule tracking, early disease diagnosis, deep tissue imaging, and drug delivery and therapies. The effective bioconjugation of inorganic nanoparticles to the molecule-specific proteins, free of agglomeration, nonspecific binding, or biomolecule deactivation, is crucial for molecular recognition of target molecules or cells. The current available protocols require multiple steps which can lead to low probe stability, specificity, and reproducibility. Here we report a simple and rapid protein bioconjugation method based on a one-step ligand exchange using the DNAs as the linker. Our method benefits from the robust DNA-protein conjugates as well as from multiple ions binding capability. Protein can be preconjugated via an amino group at the 3' end of a synthetic DNA molecule, so that the 5' end phosphoric acid group and multiple phosphate oxygen atoms in the phosphodiester bonds are exposed to replace the oleic acid ligands on the surface of upconversion nanoparticles due to their stronger chelating capability to lanthanides. We demonstrated that our method can efficiently pull out the upconversion nanoparticles from organic solvent into an aqueous phase. The upconversion nanoparticles then become hydrophilic, stable, and specific biomolecules recognition. This allows us to successfully functionalize the upconversion nanoparticles with horseradish peroxidise (HRP) for catalytic colorimetric assay and for streptavidin (SA)-biotin immunoassays.

  18. High-resolution mid-IR spectrometer based on frequency upconversion

    DEFF Research Database (Denmark)

    Hu, Qi; Dam, Jeppe Seidelin; Pedersen, Christian

    2012-01-01

    We demonstrate a novel approach for high-resolution spectroscopy based on frequency upconversion and postfiltering by means of a scanning Fabryx2013;Perot interferometer. The system is based on sum-frequency mixing, shifting the spectral content from the mid-infrared to the near-visible region al......-frequency 1064xA0;nm laser. We investigate water vapor emission lines from a butane burner and compare the measured results to model data. The presented method we suggest to be used for real-time monitoring of specific gas lines and reference signals....

  19. Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Joshi, C.; Rai, R.N.; Rai, S.B.

    2012-01-01

    Glass-ceramics and ceramics containing nano-crystals of different phases doped with Er 3+ /Yb 3+ ions have been successfully prepared by heat treatment of the precursor oxyhalide glasses synthesized by the melt-quench method. X-ray diffraction patterns and transmission electron microscopy (TEM) images verify the precipitation of nano-crystals. Emission of Er 3+ enhances several times when Yb 3+ ion is added with the matrix. The Stark splitting and the intensity of different emission bands increase to a great extent when we approach to ceramics from glasses via glass-ceramics. The intensity of the blue and green emission bands increases much faster than the red and NIR emission bands. Intense upconversion emission observed by the naked eye has been quantified in terms of standard chromaticity diagram (CIE). Power dependence study shows that the upconversion of NIR radiation to visible radiation takes place mainly via photon avalanche (PA) process.

  20. Energy transfer upconversion in Er3+-Tm3+ codoped sodium silicate glass

    Science.gov (United States)

    Kumar, Vinod; Pandey, Anurag; Ntwaeaborwa, O. M.; Swart, H. C.

    2018-04-01

    Er3+/Tm3+ doped and codoped Na2O-SiO2-ZnO (NSZO) glasses were prepared by the conventional melt-quenching method. The amorphous nature of the prepared glasses was confirmed by the X-ray diffraction analysis. The optical absorption spectrum displayed several peaks, which correspond to Er3+ and Tm3+ dopant ions embedded into the NSZO glass. Both dopants experienced upconversion emission under 980 nm excitation. Efficient energy transfer from Er3+ to Tm3+ was observed in the co-doped samples to enhance the near infrared emission of the Tm3+ ions.

  1. A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods

    International Nuclear Information System (INIS)

    Dai, Shaoliang; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2016-01-01

    The authors describe a turn-on luminescence resonance energy transfer (LRET) method for the detection of the mycotoxin Ochratoxin A (OTA). It utilizes upconversion nanoparticles (UCNPs) of the type NaYF_4: Yb, Er as the energy donor and gold nanorods (Au NRs) as the acceptor. Biotin-labeled OTA aptamers were bound to the surface of the avidin-functionalized UCNPs. The AuNRs, in turn, were modified with thiolated OTA aptamer cDNA via thiol chemistry. The emission band of the UCNPs under 980-nm laser excitation has a maximum peaking at 657 nm and overlaps the absorption band of the AuNRs which peaks at 660 nm. Quenching of luminescence occurs because the hybridization actions shorten the distance between UCNPs and AuNRs. If, however, OTA is added, the two kinds of particles separate again because of the high affinity between OTA and the OTA aptamer. As a result, luminescence is recovered. The calibration plot is linear in the 0.05 to 100 ng mL"−"1 OTA concentration range, and the limit of detection is 27 pg mL"−"1. The method was successfully applied to the determination of OTA in beer. (author)

  2. Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders

    Science.gov (United States)

    Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.

    2018-04-01

    Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.

  3. Upconversion detector for methane atmospheric sensor

    DEFF Research Database (Denmark)

    Meng, Lichun; Fix, Andreas; Høgstedt, Lasse

    2017-01-01

    We demonstrate an efficient upconversion detector (UCD) for a methane (CH4) atmospheric sensor. The UCD shows comparable performance with a conventional detector when measuring the backscattered signal from the hard target located 2.3 km away.......We demonstrate an efficient upconversion detector (UCD) for a methane (CH4) atmospheric sensor. The UCD shows comparable performance with a conventional detector when measuring the backscattered signal from the hard target located 2.3 km away....

  4. Upconversion luminescence, ferroelectrics and piezoelectrics of Er Doped SrBi{sub 4}Ti{sub 4}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Peng Dengfeng [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Zou Hua; Wang Xusheng; Yao Xi [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xu Chaonan [National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Lin Jian; Sun Tiantuo [School of Material Science and Engineering, Tongji University, 4800 Cao' an Highway, Shanghai 201804 (China)

    2012-12-15

    Er{sup 3+} doped SrBi{sub 4}Ti{sub 4}O{sub 15} (SBT) bismuth layered-structure ferroelectric ceramics were synthesized by the traditional solid-state method, and their upconversion photoluminescent (UC) properties were investigated as a function of Er{sup 3+} concentration and incident pump power. Green (555 nm) and red (670 nm) emission bands were obtained under 980 nm excitation at room temperature, which corresponded to the radiative transitions from {sup 4}S{sub 3/2}, and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The emission color of the samples could be changed with moderating the doping concentrations. The dependence of UC intensity on pumping power indicated a two-photon emission process. Studies on dielectric properties indicated that the introduction of Er increased the ferroelectric-paraelectric phase transition temperature (Tc) of SBT, thus making this ceramic suitable for piezoelectric sensor applications at higher temperatures. Piezoelectric measurement showed that the doped SBT had a relative higher piezoelectric constant d{sub 33} compared with the non-doped ceramics. The thermal annealing behaviors of the doped sample revealed a stable piezoelectric property. The doped SBT showed bright UC emission while simultaneously having increased Tc and d{sub 33}. As a multifunctional material, Er doped SBT ferroelectric oxide showed great potential in application of sensor, future optical-electro integration and coupling devices.

  5. Tunneling emission of electrons from semiconductors' valence bands in high electric fields

    International Nuclear Information System (INIS)

    Kalganov, V. D.; Mileshkina, N. V.; Ostroumova, E. V.

    2006-01-01

    Tunneling emission currents of electrons from semiconductors to vacuum (needle-shaped GaAs photodetectors) and to a metal (silicon metal-insulator-semiconductor diodes with a tunneling-transparent insulator layer) are studied in high and ultrahigh electric fields. It is shown that, in semiconductors with the n-type conductivity, the major contribution to the emission current is made by the tunneling emission of electrons from the valence band of the semiconductor, rather than from the conduction band

  6. Size-independent peak shift between normal and upconversion ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... In this article, we report size-dependent measurement of the shift in peak of upconversion photoluminescence spectra compared to that of normal photoluminescence using a 800 nm femtosecond laser and its second harmonic. It has been shown that the upconversion photoluminescence is always ...

  7. Color tunability in green, red and infra-red upconversion emission in Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} with potential application for improvement of efficiency in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz G.A.; Rocha, Leonardo A.; Buarque, Juliana M.M. [Laboratório de Materiais Inorgânicos Fotoluminescentes e Polímeros Biodegradáveis (LAFOP), Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João Del Rei, MG (Brazil); Gonçalves, Rogéria Rocha [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP (Brazil); Nascimento Jr, Clébio S. [Laboratório de Química Teórica e Computacional – (LQTC), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del-Rei, MG (Brazil); and others

    2015-03-15

    The preparation of Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} prepared by the precipitation method using ammonium hydroxide as a precursor is presented. By X-ray diffraction the materials show the phase-type of fluorite structure and the crystallite sizes were calculated by the Scherrer's equation. No other phase was observed evincing that the rare earth ions were inserted into the fluorite phase as substitutional or interstitial dopants. The microstrain calculated by the Williamson–Hall method do not show significant changes in their values, indicating that the inclusion of rare earths does not causes structural changes in the CeO{sub 2} used as a host matrix. All material showed intense upconversion emission at red and green region under excitation with diode laser at 980 nm. The color of emission changes from green to red with increasing excitation power pump. The materials showed suitable photoluminescent properties for applications as a laser source, solar cells, and great emitter at 800 nm. - Highlights: • Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} prepared by the simple way. • Intense upconversion emission regions and the tunability of emission color by the laser power pump. • The materials showed suitable photoluminescent properties for different applications.

  8. Upconversion in Nd3+-doped glasses: Microscopic theory and spectroscopic measurements

    International Nuclear Information System (INIS)

    Oliveira, S. L.; Sousa, D. F. de; Andrade, A. A.; Nunes, L. A. O.; Catunda, T.

    2008-01-01

    In this work, we report a systematic investigation of upconversion losses and their effects on fluorescence quantum efficiency and fractional thermal loading in Nd 3+ -doped fluoride glasses. The energy transfer upconversion (γ up ) parameter, which describes upconversion losses, was experimentally determined using different methods: thermal lens (TL) technique and steady state luminescence (SSL) measurements. Additionally, the upconversion parameter was also obtained from energy transfer models and excited state absorption measurements. The results reveal that the microscopic treatment provided by the energy transfer models is similar to the macroscopic ones achieved from the TL and SSL measurements because similar γ up parameters were obtained. Besides, the achieved results also point out the migration-assisted energy transfer according to diffusion-limited regime rather than hopping regime as responsible for the upconversion losses in Nd-doped glasses

  9. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    International Nuclear Information System (INIS)

    Jin, Birui; Lin, Min; You, Minli; Xu, Feng; Lu, Tianjian; Zong, Yujin; Wan, Mingxi; Duan, Zhenfeng

    2015-01-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy. (paper)

  10. Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Amjad, Raja J., E-mail: rajajunaid25@gmail.com [Advanced Optical Material Research Group, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor bahru 81310 (Malaysia); Centre for Solid State Physics, University of the Punjab, QAC, Lahore 54590 (Pakistan); Sahar, M.R.; Ghoshal, S.K.; Dousti, M.R. [Advanced Optical Material Research Group, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor bahru 81310 (Malaysia); Riaz, S. [Centre for Solid State Physics, University of the Punjab, QAC, Lahore 54590 (Pakistan); Samavati, A.R.; Arifin, R. [Advanced Optical Material Research Group, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor bahru 81310 (Malaysia); Naseem, S. [Centre for Solid State Physics, University of the Punjab, QAC, Lahore 54590 (Pakistan)

    2013-04-15

    Silver nanoparticles (NPs) embedded Er{sup 3+} ions doped magnesium–tellurite glasses are prepared using melt quenching technique. Heat treatment with different time intervals above the glass transition temperature is applied in order to reduce the silver ions (Ag{sup +}) to silver NPs (Ag{sup o}). The transmission electron microscopy (TEM), differential thermal analyses (DTA), UV–vis-NIR absorption spectroscopy and photoluminescence (PL) spectroscopy are used to examine annealing time dependent structural and optical properties. The characteristics temperatures such as glass transition temperature (T{sub g}), crystallization temperature (T{sub c}) and melting temperature (T{sub m}) obtained from DTA for an as prepared sample are 322 °C, 450 °C and 580 °C, respectively. TEM image clearly shows the homogeneous distribution of silver NPs with an average diameter ∼12 nm. The observed localized surface plasmon resonance (LSPR) band is evidenced at 534 nm. Furthermore, the infrared to visible frequency up-conversion (UC) emission under 786 nm excitation exhibits three emission bands centered at 532 nm, 554 nm and 634 nm corresponding to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions of Er{sup 3+}, respectively. Intensity of all the bands is found to enhance by increasing the annealing time up to 24 h. However, further increase in the annealing time duration (∼40 h) reduces the intensity. Enhancement in the luminescence intensity is understood in terms of the local field effect of the silver NPs whereas the quenching is attributed to the energy transfer from Er{sup 3+} ions to silver NPs. -- Highlights: ► Er{sup 3+}-doped silver NPs embedded magnesium–tellurite glasses are prepared. ► TEM confirms the successful precipitation of spherical NPs by heat treatment (HT). ► Luminescence is enhanced due to the growth of NPs after HT up to 24 h. ► With HT>24 h (40 h

  11. White light emission and effect of annealing on the Ho{sup 3+}–Yb{sup 3+} codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Astha; Rai, Vineet Kumar, E-mail: vineetkrrai@yahoo.co.in

    2015-12-15

    Graphical abstract: The upconversion emission spectra of the Ho{sup 3+}/Yb{sup 3+} doped/codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphors with different doping concentrations of Ho{sup 3+}/Yb{sup 3+} ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa{sub 2}Al{sub 8}O{sub 15} phosphors codoped with Ho{sup 3+}–Yb{sup 3+} have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pump power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa{sub 2}Al{sub 8}O{sub 15} (BCAO) phosphors codoped with suitable Ho{sup 3+}–Yb{sup 3+} dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.

  12. Fabrication of Up-Conversion Phosphor Films on Flexible Substrates Using a Nanostructured Organo-Silicon.

    Science.gov (United States)

    Jeon, Young-Sun; Kim, Tae-Un; Kim, Seon-Hoon; Lee, Young-Hwan; Choi, Pil-Son; Hwang, Kyu-Seog

    2018-03-01

    Up-conversion phosphors have attracted considerable attention because of their applications in solid-state lasers, optical communications, flat-panel displays, photovoltaic cells, and biological labels. Among them, NaYF4 is reported as one of the most efficient hosts for infrared to visible photon up-conversion of Yb3+ and Er3+ ions. However, a low-temperature method is required for industrial scale fabrication of photonic and optoelectronic devices on flexible organic substrates. In this study, hexagonal β-NaYF4: 3 mol% Yb3+, 3 mol% Er3+ up-conversion phosphor using Ca2+ was prepared by chemical solution method. Then, we synthesized a nanostructured organo-silicon compound from methyl tri-methoxysilane and 3-glycidoxy-propyl-trimethoxy-silane. The transmittance of the organo-silicon compound was found to be over 90% in the wavelength range of 400~1500 nm. Then we prepared a fluoride-based phosphor paste by mixing the organo-silicon compound with Na(Ca)YF4:Yb3+, Er3+. Subsequently, this paste was coated on polyethylene terephthalate, followed by heat-treatment at 120 °C. The visible emission of the infrared detection card was found to be at 655 nm and 661 nm an excitation wavelength of 980 nm.

  13. Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ikehata, Tomohiro; Onodera, Yuji; Nunokawa, Takashi [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Hirano, Tomohisa; Ogura, Shun-ichiro; Kamachi, Toshiaki [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Odawara, Osamu [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Wada, Hiroyuki, E-mail: wada.h.ac@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-09-01

    Highlights: • Highly crystalline upconversion nanoparticles were prepared by laser ablation in liquid. • Highly transparent near-IR irradiation generated singlet oxygen. • Viability of cancer cells was significantly decreased by near-IR irradiation. - Abstract: Upconversion nanoparticles were prepared by laser ablation in liquid, and the potential use of the nanoparticles for cancer treatment was investigated. A Nd:YAG/SHG laser (532 nm, 13 ns, 10 Hz) was used for ablation, and the cancer treatment studied was photodynamic therapy (PDT). Morphology and crystallinity of prepared nanoparticles were examined by transmission electron microscopy and X-ray diffraction. Red and green emissions resulting from near-infrared excitation were observed by a fluorescence spectrophotometer. Generation of singlet oxygen was confirmed by a photochemical method using 1,3-diphenylisobenzofuran (DPBF). In vitro experiments using cultivated cancer cells were conducted to investigate PDT effects. Uptake of the photosensitizer by cancer cells and cytotoxicities of cancer cells were also examined. We conclude that the combination of PDT and highly crystalline nanoparticles, which were prepared by laser ablation in liquid, is an effective cancer treatment.

  14. Size dependence of upconversion photoluminescence in MPA capped CdTe quantum dots: Existence of upconversion bright point

    Energy Technology Data Exchange (ETDEWEB)

    Ananthakumar, S. [Crystal Growth Centre, Anna University, Chennai 600025 (India); Jayabalan, J., E-mail: jjaya@rrcat.gov.in [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Singh, Asha; Khan, Salahuddin [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Babu, S. Moorthy [Crystal Growth Centre, Anna University, Chennai 600025 (India); Chari, Rama [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-01-15

    The photoluminescence (PL) from semiconductor quantum dots can show a “PL bright point”, that is the PL from as prepared quantum dots is maximum at a particular size. In this work we show that, for CdTe quantum dots, upconversion photoluminescence (UCPL) originating from nonlinear absorption shows a similar “UCPL bright point”. The PL and UCPL bright points occur at nearly the same size. The existence of a UCPL bright point has important implications for upconversion microscopy applications. - Highlights: • The size dependence of the upconversion photoluminescence (UCPL) spectrum of CdTe quantum dots has been reported. • We show that the UCPL from the CdTe quantum dots is highest at a particular size. • Thus the occurrence of a 'UCPL bright point' in CdTe quantum dots has been demonstrated. • It has been shown that the UCPL bright point occurs at nearly the same size as a normal bright point.

  15. Size dependence of upconversion photoluminescence in MPA capped CdTe quantum dots: Existence of upconversion bright point

    International Nuclear Information System (INIS)

    Ananthakumar, S.; Jayabalan, J.; Singh, Asha; Khan, Salahuddin; Babu, S. Moorthy; Chari, Rama

    2016-01-01

    The photoluminescence (PL) from semiconductor quantum dots can show a “PL bright point”, that is the PL from as prepared quantum dots is maximum at a particular size. In this work we show that, for CdTe quantum dots, upconversion photoluminescence (UCPL) originating from nonlinear absorption shows a similar “UCPL bright point”. The PL and UCPL bright points occur at nearly the same size. The existence of a UCPL bright point has important implications for upconversion microscopy applications. - Highlights: • The size dependence of the upconversion photoluminescence (UCPL) spectrum of CdTe quantum dots has been reported. • We show that the UCPL from the CdTe quantum dots is highest at a particular size. • Thus the occurrence of a "UCPL bright point" in CdTe quantum dots has been demonstrated. • It has been shown that the UCPL bright point occurs at nearly the same size as a normal bright point.

  16. Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Wu, Zengyang

    2016-08-18

    In this paper, spray combustion of diesel (No. 2) and diesel-gasoline blend (dieseline: 80% diesel and 20% gasoline by volume) were investigated in an optically accessible constant volume combustion chamber. Effects of ambient conditions on flame emissions were studied. Ambient oxygen concentration was varied from 12% to 21% and three ambient temperatures were selected: 800 K, 1000 K and 1200 K. An intensified CCD camera coupled with bandpass filters was employed to capture the quasi-steady state flame emissions at 430 nm and 470 nm bands. Under non-sooting conditions, the narrow-band flame emissions at 430 nm and 470 nm can be used as indicators of CH∗ (methylidyne) and HCHO∗ (formaldehyde), respectively. The lift-off length was measured by imaging the OH∗ chemiluminescence at 310 nm. Flame emission structure and intensity distribution were compared between dieseline and diesel at wavelength bands. Flame emission images show that both narrow band emissions become shorter, thinner and stronger with higher oxygen concentration and higher ambient temperature for both fuels. Areas of weak intensity are observed at the flame periphery and the upstream for both fuels under all ambient conditions. Average flame emission intensity and area were calculated for 430 nm and 470 nm narrow-band emissions. At a lower ambient temperature the average intensity increases with increasing ambient oxygen concentration. However, at the 1200 K ambient temperature condition, the average intensity is not increasing monotonically for both fuels. For most of the conditions, diesel has a stronger average flame emission intensity than dieseline for the 430 nm band, and similar phenomena can be observed for the 470 nm band with 800 K and 1200 K ambient temperatures. However, for the 1000 K ambient temperature cases, dieseline has stronger average flame emission intensities than diesel for all oxygen concentrations at 470 nm band. Flame emissions for the two bands have a

  17. Ultra-violet emission in Ho:ZBLAN fiber

    International Nuclear Information System (INIS)

    Kowalska, M.; Klocek, G.; Piramidowicz, R.; Malinowski, M.

    2004-01-01

    We report on the short wavelength (green, blue, and ultra-violet (UV)) emission in trivalent holmium doped fluoro-zirconate fiber (Ho 3+ :ZBLAN) under direct and upconversion pumping. Efficient red to UV upconversion has been observed using 647 nm cw pumping by krypton ion laser. A close to cubic UV signal intensity dependence on incident red pump power was determined, confirming the three-photon character of the observed process. The responsible upconversion mechanisms were investigated and shown to be excited state absorption (ESA) via low-lying 5 I 7 and 5 I 6 sates. Dynamics of the involved excited states have been studied under pulsed laser excitation

  18. High multi-photon visible upconversion emissions of Er{sup 3+} singly doped BiOCl microcrystals: A photon avalanche of Er{sup 3+} induced by 980 nm excitation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongjin; Song, Zhiguo, E-mail: songzg@kmust.edu.cn; Li, Chen; Wan, Ronghua; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Yang, Yong; Zhou, Dacheng; Wang, Qi [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2013-12-02

    Under 980 nm excitation, high multi-photon upconversion (UC) emission from the {sup 2}H{sub 11/2}/{sup 4}S{sub 3/2} (green) and {sup 4}F{sub 9/2} (red) levels of Er{sup 3+} ions were observed from Er{sup 3+} singly doped BiOCl microcrystals. These high-energy excited states were populated by a three to ten photon UC process conditionally, which depended on the pump power density and the Er{sup 3+} ion doping concentration, characterizing as a hetero-looping enhanced energy transfer avalanche UC process. UC emission lifetime and Raman analysis suggest that the unusual UC phenomena are initiated by the new and intense phonon vibration modes of BiOCl lattices due to Er{sup 3+} ions doping.

  19. Visible-to-UVC upconversion efficiency and mechanisms of Lu{sub 7}O{sub 6}F{sub 9}:Pr{sup 3+} and Y{sub 2}SiO{sub 5}:Pr{sup 3+} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, Ezra L. [Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625 (United States); Center for Optical Materials Science and Engineering Technologies, Clemson University, Anderson, SC 29625 (United States); Wilkinson, Angus P. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Kim, Jae-Hong, E-mail: jaehong.kim@yale.edu [Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511 (United States)

    2015-04-15

    Visible-to-UVC upconversion (UC) by Pr{sup 3+}-doped materials is a promising candidate for application to sustainable disinfection technologies, including light-activated antimicrobial surfaces and solar water treatment. In this work, we studied Pr{sup 3+} upconversion in an oxyfluoride host system for the first time, employing Lu{sub 7}O{sub 6}F{sub 9}:Pr{sup 3+} ceramics. Compared to the previously studied Y{sub 2}SiO{sub 5}:Pr{sup 3+} reference material, the oxyfluoride host resulted in a 5-fold increase in intermediate state lifetime, likely due to a lower maximum phonon energy; however, only a 60% gain in UC intensity was observed. To explain this discrepancy, luminescence spectral distribution and decay kinetics were studied in both phosphor systems. The Pr{sup 3+} 4f5d band energy distribution in each phosphor was found to play a key role by allowing or disallowing the occurrence of a previously unexplored UC mechanism, which had a significant impact on overall efficiency. - Highlights: • Visible-to-UVC upconversion by Pr{sup 3+} was studied in an oxyfluoride host matrix for the first time. • Lu{sub 7}O{sub 6}F{sub 9}:Pr{sup 3+} ceramics were synthesized and characterized. • Lu{sub 7}O{sub 6}F{sub 9}:Pr{sup 3+} shows more intense UV upconversion than Y{sub 2}SiO{sub 5}:Pr{sup 3+}, with differing mechanisms. • 4f5d band energy and {sup 1}D{sub 2} involvement are important in maximizing upconversion efficiency.

  20. High resolution 2D image upconversion of incoherent light

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    infrared (NIR) portion of the electromagnetic spectrum. The key is optimization of the upconversion process. This include Quasi-Phase-Matching leading to higher effective nonlinearities and elimination of walk-off, an intra-cavity design enhancing the upconversion process, and finally the use of modern NIR...

  1. Photoswitching of triplet-triplet annihilation upconversion with photo-generated radical from hexaphenylbiimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Zafar [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Toffoletti, Antonio [Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131 Padova (Italy); Zhao, Jianzhang, E-mail: zhaojzh@dlut.edu.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Barbon, Antonio, E-mail: antonio.barbon@unipd.it [Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131 Padova (Italy)

    2017-03-15

    Photoirradiation generated radical from hexaphenyl-biimidazole (HPBI) was used for reversible switching of triplet-triplet annihilation (TTA) upconversion, based on quenching of the photosensitizer triplet state by radical-triplet pair mechanism. Upon 365 nm irradiation, the TTA upconversion in a system composed by a boron-dipyrromethene (BODIPY) derivative and perylene, was completely switched off due to quenching of triplet state of photosensitizer by photogenerated radical from HPBI. The upconversion was recovered after leaving the samples in darkness, due to regeneration of HPBI Dimer. The photophysical process involved in the photochromism and photoswitching of TTA upconversion were studied with steady-state UV–vis absorption spectroscopy, nanosecond transient absorption spectroscopy and EPR spectroscopy. - Graphical abstract: Radical-switched TTA upconversion was achieved with reversible quenching of the triplet state by photo-generated stable organic radical from photochromic hexaphenylbiimidazole.

  2. Frequency upconversion fluorescence studies of Er{sup 3+}/Yb{sup 3+}-codoped KNbO{sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnaiah, R. [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Kim, Dong Woo [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Yi, Soung Soo, E-mail: ssyi@silla.ac.k [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Kim, Kwang Duk; Kim, Sung Hoon [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jeong, Jung Hyun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2009-05-29

    Different concentrations of Er{sup 3+} and Yb{sup 3+} ions-doped potassium niobate (K{sub 0.9}NbO{sub 3}:Yb{sub (x)}Er{sub (0.1-x)} for x = 0, 0.01, 0.05, 0.09 and 0.1) polycrystalline powder phosphors were prepared by the conventional solid state reaction method and were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Energy transfer and upconversion fluorescence properties of the Yb{sup 3+} and Er{sup 3+}-codoped phosphors have been discussed. The XRD data has shown mono-phase for pure KNbO{sub 3} while the doped samples represented additional phase formation. The SEM micrographs represented the rectangular crystal growth habit for the KNbO{sub 3} phosphors when doped with 0.1 mol of Er{sup 3+} ions. An intense green emission at 557 nm along with a red emission at 674 nm was observed when the doped samples were excited with 975 nm IR radiation. The upconversion mechanism has been discussed based on the excited state absorption and energy transfer mechanisms.

  3. Spectroscopy and enhanced frequency upconversion in Nd3+-Yb3+ codoped TPO glasses: energy transfer and NIR to visible upconverter

    Science.gov (United States)

    Azam, Mohd; Rai, Vineet Kumar; Mohanty, Deepak Kumar

    2017-09-01

    TeO2-Pb3O4 (TPO) glasses codoped with Nd3+ and Yb3+ ions have been fabricated by conventional melting technique. The absorption, emission and excitation spectra of the samples have been recorded. The optical band gap in both the doped/codoped glasses is found to be ˜3.31 eV. Judd-Ofelt analysis has been carried out by using the absorption spectrum of 0.8 mol% Nd3+ doped glass to determine the radiative properties viz radiative transition probabilities, branching ratios, radiative lifetimes, quality factor and emission cross sections of some emitting levels for Nd3+ ions. The radiative transition probability for the 4G7/2 → 4I9/2 transition (˜1926 Hz) is found to be maximum compared to other 4G5/2 → 4I9/2 (˜1622 Hz) and 4F5/2 → 4I9/2 (˜865 Hz) transitions. Upconversion (UC) luminescence of the samples has been examined by the 980 nm CW diode laser excitation. Effect of addition of Yb3+ ions in the Nd3+ doped glasses on UC emission intensity has been discussed. The UC emission intensity corresponding to the green, red and NIR bands in the codoped glass has been enhanced by ˜17, ˜12 and ˜42 times as compared to that of the Nd3+ singly doped glass. The quantum efficiency for the 4G7/2 level is found to be ˜32%. The nephelauxetic ratio, bonding parameter and covalency of Nd3+ ions have been found positive which represents the covalent bonding between Nd3+ ion and oxygen atom. The colour tunability from yellowish-green to dominant green region has been obtained in the optimized codoped TPO glass.

  4. Highly efficient red upconversion fluorescence emission in Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} codoped LaF{sub 3} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei, E-mail: gaowei@xupt.edu.cn; Dong, Jun; Liu, Jihong; Yan, Xuewen

    2016-11-15

    The Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} codoped LaF{sub 3} nanocrystals have been successfully prepared via a facile hydrothermal method. The significant enhancement in the red upconversion emission of Ho{sup 3+} is successfully obtained in LaF{sub 3}:Yb{sup 3+}/Ho{sup 3+} nanocrystals through introducing of Ce{sup 3+} under NIR excitation at 980 nm. The red-to-green emission ratio of Ho{sup 3+} is enhanced 18.9-fold with Ce{sup 3+} concentration increasing to 12%, which is due to the two efficient cross relaxation processes of {sup 5}I{sub 6} (Ho{sup 3+})+{sup 2}F{sub 5/2} (Ce{sup 3+})→{sup 5}I{sub 7} (Ho{sup 3+})+{sup 2}F{sub 7/2} (Ce{sup 3+}) and {sup 5}S{sub 2}/{sup 5}F{sub 4} (Ho{sup 3+})+{sup 2}F{sub 5/2} (Ce{sup 3+})→{sup 5}F{sub 5} (Ho{sup 3+})+{sup 2}F{sub 7/2} (Ce{sup 3+}) between Ho{sup 3+} and Ce{sup 3+} ions. The enhancement mechanism of red emission and conversion efficiency between Ho{sup 3+} and Ce{sup 3+} are investigated in detail.

  5. Photon upconversion towards applications in energy conversion and bioimaging

    Science.gov (United States)

    Sun, Qi-C.; Ding, Yuchen C.; Sagar, Dodderi M.; Nagpal, Prashant

    2017-12-01

    The field of plasmonics can play an important role in developing novel devices for application in energy and healthcare. In this review article, we consider the progress made in design and fabrication of upconverting nanoparticles and metal nanostructures for precisely manipulating light photons, with a wavelength of several hundred nanometers, at nanometer length scales, and describe how to tailor their interactions with molecules and surfaces so that two or more lower energy photons can be used to generate a single higher energy photon in a process called photon upconversion. This review begins by introducing the current state-of-the-art in upconverting nanoparticle synthesis and achievements in color tuning and upconversion enhancement. Through understanding and tailoring physical processes, color tuning and strong upconversion enhancement have been demonstrated by coupling with surface plasmon polariton waves, especially for low intensity or diffuse infrared radiation. Since more than 30% of incident sunlight is not utilized in most photovoltaic cells, this photon upconversion is one of the promising approaches to break the so-called Shockley-Queisser thermodynamic limit for a single junction solar cell. Furthermore, since the low energy photons typically cover the biological window of optical transparency, this approach can also be particularly beneficial for novel biosensing and bioimaging techniques. Taken together, the recent research boosts the applications of photon upconversion using designed metal nanostructures and nanoparticles for green energy, bioimaging, and therapy.

  6. NIR Ratiometric Luminescence Detection of pH Fluctuation in Living Cells with Hemicyanine Derivative-Assembled Upconversion Nanophosphors.

    Science.gov (United States)

    Li, Haixia; Dong, Hao; Yu, Mingming; Liu, Chunxia; Li, Zhanxian; Wei, Liuhe; Sun, Ling-Dong; Zhang, Hongyan

    2017-09-05

    It is crucial for cell physiology to keep the homeostasis of pH, and it is highly demanded yet challenging to develop luminescence resonance energy transfer (LRET)-based near-infrared (NIR) ratiometric luminescent sensor for the detection of pH fluctuation with NIR excitation. As promising energy donors for LRET, upconversion nanoparticles (UCNPs) have been widely used to fabricate nanosensors, but the relatively low LRET efficiency limits their application in bioassay. To improve the LRET efficiency, core/shell/shell structured β-NaGdF 4 @NaYF 4 :Yb,Tm@NaYF 4 UCNPs were prepared and decorated with hemicyanine dyes as an LRET-based NIR ratiometric luminescent pH fluctuation-nanosensor for the first time. The as-developed nanosensor not only exhibits good antidisturbance ability, but it also can reversibly sense pH and linearly sense pH in a range of 6.0-9.0 and 6.8-9.0 from absorption and upconversion emission spectra, respectively. In addition, the nanosensor displays low dark toxicity under physiological temperature, indicating good biocompatibility. Furthermore, live cell imaging results revealed that the sensor can selectively monitor pH fluctuation via ratiometric upconversion luminescence behavior.

  7. An upconversion nanoparticle - Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy

    NARCIS (Netherlands)

    Xia, L.; Kong, X.; Liu, X.; Tu, L.; Zhang, Y.; Chang, Y.; Liu, K.; Shen, D.; Zhao, H.; Zhang, H.

    2014-01-01

    Recent advances in NIR triggering upconversion-based photodynamic therapy have led to substantial improvements in upconversion-based nanophotosensitizers. How to obtain the high efficiency of singlet oxygen generation under low 980 nm radiation dosage still remains a challenge. A highly efficient

  8. Enhancement of luminescence properties in Er3+ doped TeO2-Na2O-PbX (X=O and F) ternary glasses.

    Science.gov (United States)

    Kumar, Kaushal; Rai, S B; Rai, D K

    2007-04-01

    An enhancement of luminescence properties in Er3+ doped ternary glasses is observed on the addition of PbO/PbF2. The infrared to visible upconversion emission bands are observed at 410, 525, 550 and 658 nm, due to the 2H9/2-->4I15/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 transitions respectively, on excitation with 797 nm laser line. A detailed study reveals that the 2H9/2-->4I15/2 transition arises due to three step upconversion process while other transitions arise due to two step absorption. On excitation with 532 nm radiation, ultraviolet and violet upconversion bands centered at 380, 404, 410 and 475 nm wavelengths are observed along with one photon luminescence bands at 525, 550, 658 and 843 nm wavelengths. These bands are found due to the 4G11/2-->4I15/2, 2P3/2-->4I13/2, 2H9/2-->4I15/2, 2P3/2-->4I11/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 and 4S3/2-->4I13/2 transitions, respectively. Though incorporation of PbO and PbF2 both enhances fluorescence intensities however, PbF2 content has an important influence on upconversion luminescence emission. The incorporation of PbF2 enhances the red emission (658 nm) intensity by 1.5 times and the violet emission (410 nm) intensity by 2.0 times. A concentration dependence study of fluorescence reveals the rapid increase in the red (4F9/2-->4I15/2) emission intensity relative to the green (4S3/2-->4I15/2) emission with increase in the Er3+ ion concentration. This behaviour has been explained in terms of an energy transfer by relaxation between excited ions.

  9. Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals.

    Science.gov (United States)

    Johnson, Craig M; Reece, Peter J; Conibeer, Gavin J

    2011-10-15

    We present an approach to realizing enhanced upconversion efficiency in erbium (Er)-doped photonic crystals. Slow-light-mode pumping of the first Er excited state transition can result in enhanced emission from higher-energy levels that may lead to finite subbandgap external quantum efficiency in crystalline silicon solar cells. Using a straightforward electromagnetic model, we calculate potential field enhancements of more than 18× within he slow-light mode of a one-dimensional photonic crystal and discuss design trade-offs and considerations for photovoltaics.

  10. Novel Sr{sub 2}LuF{sub 7}–SiO{sub 2} nano-glass-ceramics: Structure and up-conversion luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Yanes, A.C.; Castillo, J. del, E-mail: fjvargas@ull.edu.es; Luis, D.; Puentes, J.

    2016-02-15

    Novel transparent nano-glass-ceramics comprising RE-doped Sr{sub 2}LuF{sub 7} nanocrystals have been obtained by thermal treatment of precursor sol–gel glasses. The precipitated Sr{sub 2}LuF{sub 7} nanocrystals with sizes from 4.5 to 11.5 nm, confirmed by X-Ray Diffraction and Transmission Electron Microscopy images, show a cubic phase structure. The luminescent features of Eu{sup 3+} ions, used as structural probes, evidence the distribution of RE ions into the fluoride nanocrystals. Under 980 nm laser excitation, intense UV, vis and NIR up-conversion emissions were observed and studied in Yb{sup 3+}–Tm{sup 3+}, Yb{sup 3+}–Er{sup 3+} and Yb{sup 3+}–Ho{sup 3+} co-doped nano-glass-ceramics. These results suggest considering these nano-glass-ceramics for potential optical applications as high efficient UV up-conversion materials in UV solid state lasers, infrared tuneable phosphors and photonic integrated devices. - Highlights: • Novel sol-gel glass-ceramics with RE{sup 3+}-Sr{sub 2}LuF{sub 7} doped nanocrystals were obtained. • Eu{sup 3+} probe ion was used to distinguish between amorphous and crystalline environments. • The incorporation of an important fraction of RE ions into nanocrystals was confirmed. • Under 980 nm excitation, intense UV-vis-NIR up-conversion emissions were observed.

  11. Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-02-01

    Full Text Available The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF4:Yb3+/Ln3+@CaF2 (Ln = Er, Ho, Tm upconversion nanocrystals (UCNCs based on the newly established host lattice of sodium lutetium fluoride (NaLuF4. We exploited the liquid-solid-solution method to synthesize the NaLuF4 core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF2 shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm. We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals.

  12. Emission bands of phosphorus and calculation of band structure of rare earth phosphides

    International Nuclear Information System (INIS)

    Al'perovich, G.I.; Gusatinskij, A.N.; Geguzin, I.I.; Blokhin, M.A.; Torbov, V.I.; Chukalin, V.I.; AN SSSR, Moscow. Inst. Novykh Khimicheskikh Problem)

    1977-01-01

    The method of x-ray emission spectroscopy has been used to investigate the electronic structure of monophosphides of rare-earth metals (REM). The fluorescence K bands of phosphorus have been obtained in LaP, PrP, SmP, GdP, TbP, DyP, HoP, ErP, TmP, YbP, and LuP and also the Lsub(2,3) bands of phosphorus in ErP, TmP, YbP, and LuP. Using the Green function technique involving the muffin-tin potential, the energy spectrum for ErP has been calculated in the single-electron approximation. The hystogram of electronic state distribution N(E) is compared with the experimental K and Lsub(2,3) bands of phosphorus in ErP. The agreement between the main details of N(E) and that of x-ray spectra allows to state that the model used provides a good description of the electron density distribution in crystals of REM monophosphides. In accordance with the character of the N(E) distribution the compounds under study are classified as semimetals or semiconductors with a very narrow forbidden band

  13. Near-infrared emission bands of TeH and TeD

    Science.gov (United States)

    Fink, E. H.; Setzer, K. D.; Ramsay, D. A.; Vervloet, M.

    1989-11-01

    High-resolution emission spectra of TeH and TeD have been obtained in the region 4200 to 3600 cm -1 using a Bomem DA3.002 Fourier transform spectrometer. Analyses are given for the 0-0 and 1-1 bands of the X 22Π{1}/{2}-X 12Π{3}/{2} system of TeH and for the 0-0 band of TeD. In addition the 2-0 vibrational overtone bands of 130TeH, 128TeH, and 126TeH are observed and analyzed. Accurate molecular constants are given for the first time.

  14. Enhanced Power Conversion Efficiency of Perovskite Solar Cells with an Up-Conversion Material of Er3+-Yb3+-Li+ Tri-doped TiO2.

    Science.gov (United States)

    Zhang, Zhenlong; Qin, Jianqiang; Shi, Wenjia; Liu, Yanyan; Zhang, Yan; Liu, Yuefeng; Gao, Huiping; Mao, Yanli

    2018-05-11

    In this paper, Er 3+ -Yb 3+ -Li + tri-doped TiO 2 (UC-TiO 2 ) was prepared by an addition of Li + to Er 3+ -Yb 3+ co-doped TiO 2 . The UC-TiO 2 presented an enhanced up-conversion emission compared with Er 3+ -Yb 3+ co-doped TiO 2 . The UC-TiO 2 was applied to the perovskite solar cells. The power conversion efficiency (PCE) of the solar cells without UC-TiO 2 was 14.0%, while the PCE of the solar cells with UC-TiO 2 was increased to 16.5%, which presented an increase of 19%. The results suggested that UC-TiO 2 is an effective up-conversion material. And this study provided a route to expand the spectral absorption of perovskite solar cells from visible light to near-infrared using up-conversion materials.

  15. Monte Carlo simulations of homogeneous upconversion in erbium-doped silica glasses

    DEFF Research Database (Denmark)

    Philipsen, Jacob Lundgreen; Bjarklev, Anders Overgaard

    1997-01-01

    Quenching of Er3+ ions by homogeneous energy-transfer upconversion in high-concentration erbium-doped silica glasses has been theoretically investigated, The results indicate that at Er3+ concentrations of 1.0-2.0·1026 m-3 or below, the kinetic limit of strong migration is not reached, and hence...... the widely accepted quadratic upconversion model is not generally valid. Nevertheless, the results offer an explanation of the experimental observations of quadratic upconversion. Furthermore, it has been shown that at a given population inversion, the quenching rate depends on the rate of exchange...

  16. Up-conversion mechanisms in Er{sup 3+} doped YbAG crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczkan, Marcin; Borowska, Maja [Institute of Microelectronics and Optoelectronics PW, Warsaw (Poland); Malinowski, Michal [Institute of Microelectronics and Optoelectronics PW, Warsaw (Poland); Institute of Electronic Materials Technology, Warsaw (Poland); Lukasiewicz, Tadeusz; Kolodziejak, Katarzyna [Institute of Electronic Materials Technology, Warsaw (Poland)

    2009-07-15

    Up-conversion phenomena leading to the red, green and violet emissions in erbium doped ytterbium-aluminum garnet (YbAG) are investigated. Absorption and emission spectra and luminescence dynamics from various excited states of YbAG:Er{sup 3+} were registered. The low temperature absorption spectra were used to determine Stark levels energies of Er{sup 3+} ion in the investigated host. Emissions from the high lying excited states {sup 2}G{sub 9/2}, {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} of Er{sup 3+} were characterized under pulsed multi-photon IR excitation in the region of wavelength corresponding to the strong {sup 2}F{sub 7/2} {yields} {sup 2}F{sub 5/2} absorption transition of Yb{sup 3+} ions. Using the rate equations formalism the dynamics of the observed emissions were modeled. From the comparison of the measured and calculated decays the energy transfer rates between Yb{sup 3+} and Er{sup 3+} ions were evaluated. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Photo field emission spectroscopy of the tantalum band structure

    International Nuclear Information System (INIS)

    Kleint, Ch.; Radon, T.

    1978-01-01

    Photo field emission (PFE) currents of clean and barium covered tantalum tips have been measured with single lines of the mercury arc spectrum and phase-sensitive detection. Field strength and work function were determined from Fowler-Nordheim plots of the FE currents. Shoulders in the PFE current-voltage characteristics could be correlated to transitions in the band structure of tantalum according to a recently proposed two-step PFE model. A comparison with the relativistic calculations of Mattheiss and the nonrelativistic bands of Petroff and Viswanathan shows that Mattheiss' bands are more appropriate. Beside direct transitions several nondirect transitions from the different features composing the upper two density of states maxima below the Fermi edge of tantalum have been found. (Auth.)

  18. Compact blue laser devices based on nonlinear frequency upconversion

    International Nuclear Information System (INIS)

    Risk, W.P.

    1989-01-01

    This paper reports how miniature sources of coherent blue radiation can be produced by using nonlinear optical materials for frequency upconversion of the infrared radiation emitted by laser diodes. Direct upconversion of laser diode radiation is possible, but there are several advantages to using the diode laser to pump a solid-state laser which is then upconverted. In either case, the challenge is to find combinations of nonlinear materials and laser for efficient frequency upconversion. Several examples have been demonstrated. These include intracavity frequency doubling of a diode-pumped 946-nm Nd:YAG laser, intracavity frequency mixing of a 809-nm GaAlAs laser diode with a diode- pumped 1064-nm Nd:YAG laser, and direct frequency doubling of a 994-nm strained-layer InGaAs laser diode

  19. Terahertz emission from CdHgTe/HgTe quantum wells with an inverted band structure

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, Yu. B., E-mail: Yu.Vasilyev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Mikhailov, N. N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Vasilyeva, G. Yu.; Ivánov, Yu. L.; Zakhar’in, A. O.; Andrianov, A. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Vorobiev, L. E.; Firsov, D. A. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation); Grigoriev, M. N. [Ustinov Baltic State Technical University “VOENMEKh” (Russian Federation); Antonov, A. V.; Ikonnikov, A. V.; Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-07-15

    The terahertz electroluminescence from Cd{sub 0.7}Hg{sub 0.3}Te/HgTe quantum wells with an inverted band structure in lateral electric fields is experimentally detected and studied. The emission-spectrum maximum for wells 6.5 and 7 nm wide is near 6 meV which corresponds to interband optical transitions. The emission is explained by state depletion in the valence band and conduction band filling due to Zener tunneling, which is confirmed by power-law current–voltage characteristics.

  20. Rain effect on Aquarius L-band Emissivity and Backscatter Model Functions

    Science.gov (United States)

    Tang, W.; Yueh, S. H.; Fore, A.; Neumann, G.; Hayashi, A.

    2012-12-01

    Remote sensing of sea surface salinity (SSS) is being performed by Aquarius and SMOS missions, which are using L-band radiometry to sense the microwave emissions from sea surfaces. To enable accurate SSS retrieval, it is essential to correct the impact of sea surface roughness on L-band brightness temperatures. In addition, the impact of rain has to be carefully assessed and accounted for. Although the atmospheric attenuation caused by raindrops are likely negligible at 1.4GHz, other factors must be considered because they may have indirect but important contribution to the surface roughness and consequently L-band brightness temperatures. For example, the wind speed dependent roughness correction will be corrupted when rain striking the water, creating rings, stalks, and crowns from which the signal scatters. It is also unknown how long the freshwater stays at surface while through the oceanic mixing process at various regions over global oceans. We collocated the Aquarius L-band data with various wind products, including SSM/I, NCEP, ASCAT and WindSAT, as well as the SSM/I and WindSAT rain products. During the first four months of Aquarius mission, near 1.9 million pixels are identified under rain conditions by either SSM/I or WindSAT. We derived the L-band emissivity and backscatter geophysical model functions (GMF), parameterized by SSM/I and NCEP winds for rain-free conditions. However, the residual ocean surface emissivity (the Aquarius measured minus the rain-free model predictions) reveals profound resemblance with global precipitation pattern. In region dominated by rain, e.g. ITCZ, northern hemisphere storm track, and Indian Ocean partially under the influence of summer monsoon, the GMF built using rain free data underestimates excess emissivity about 0.5 to 1 K. The dependence of residual of emissivity and backscatter is shown as a function of wind speed and rain rate. A modified GMF is developed including rain rate as one of the parameters. Due to

  1. Mixing up-conversion excitation behaviors in Er3+/Yb3+-codoped aluminum germanate glasses for visible waveguide devices

    International Nuclear Information System (INIS)

    Gong, H.; Lin, L.; Zhao, X.; Pun, E.Y.B.; Yang, D.L.; Lin, H.

    2010-01-01

    A mixing up-conversion excitation phenomenon in Er 3+ /Yb 3+ -codoped aluminum germanate (Na 2 O-MgO-Al 2 O 3 -GeO 2 , NMAG for short) glasses for K + -Na + ion-exchanged waveguides was observed and characterized. The green and red up-conversion luminescence of Er 3+ is due to a two-photon excitation process under low-power excitation of a 974 nm diode laser, however, with increasing the pumping power, the green emission turns to follow a combination of two- and three-photon excitation effects while the red one still agrees with a two-photon excitation law. Under high-power pumping, owing to potential thermal effect, the population ratio between the 2 H 11/2 and 4 S 3/2 levels adjusts acutely, which results in a distinct exhibition in 2 H 11/2 → 4 I 15/2 and 4 S 3/2 → 4 I 15/2 emission transitions. Green transmission trace has been observed in K + -Na + ion-exchanged Er 3+ /Yb 3+ -codoped NMAG glass waveguide and it provides an original reference in developing visible waveguide amplifiers and lasers.

  2. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting

    Science.gov (United States)

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-01

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a

  3. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications.

    Science.gov (United States)

    Yang, Jianping; Shen, Dengke; Li, Xiaomin; Li, Wei; Fang, Yin; Wei, Yong; Yao, Chi; Tu, Bo; Zhang, Fan; Zhao, Dongyuan

    2012-10-22

    In this paper, we report a facile one-step hydrothermal method to synthesize phase-, size-, and shape-controlled carboxyl-functionalized rare-earth fluorescence upconversion phosphors by using a small-molecule binary acid, such as malonic acid, oxalic acid, succinic acid, or tartaric acid as capping agent. The crystals, from nano- to microstructures with diverse shapes that include nanospheres, microrods, hexagonal prisms, microtubes, microdisks, polygonal columns, and hexagonal tablets, can be obtained with different reaction times, reaction temperatures, molar ratios of capping agent to sodium hydroxide, and by varying the binary acids. Fourier transform infrared, thermogravimetric analysis, and upconversion luminescence spectra measurements indicate that the synthesized NaYF(4):Yb/Er products with hydrophilic carboxyl-functionalized surface offer efficient upconversion luminescent performance. Furthermore, the antibody/secondary antibody conjugation can be realized by the carboxyl-functionalized surfaces of the upconversion phosphors, thus indicating the potential bioapplications of these kinds of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Upconversion studies of Er3+/Yb3+ doped SrO.TiO2 borosilicate glass ceramic system

    International Nuclear Information System (INIS)

    Maheshwari, Aditya; Om Prakash; Kumar, Devendra; Rai, S.B.

    2011-01-01

    Upconversion behaviour has been studied in various matrices and fine powders of SrTiO 3 by previous workers. In present work, Er 3+ /Yb 3+ were doped in appropriate ratio in SrO.TiO 2 borosilicate glass ceramic system to study the upconversion phenomenon. Dielectric properties of this class of glass ceramic system have been extensively investigated by Thakur et al. It has been observed that both upconversion efficiency and dielectric constant increases with transformation of glass into glass ceramic. Therefore, present investigation is based upon the study of optical as well as the electrical properties of same glass ceramic system. In order to prepare different crystalline matrices, two different Er 3+ /Yb 3+ :SrO.TiO 2 borosilicate glasses with same amount of Er 2 O 3 and Yb 2 O 3 were prepared by melt quench method. Glasses were transparent with light-wine colour. Glass ceramics were prepared from the glasses by heat treatment based on DTA (Differential thermal analysis) results. Glass ceramics were fully opaque with brownish-cream colour. Powder X-ray diffraction (XRD) patterns confirmed that two different crystalline matrices, Sr 3 Ti 2 O 7 , Ti 10 O 19 and SrTiO 3 , TiO 2 were present in two glass ceramic samples respectively. Luminescence properties of glass and glass ceramic samples with 976nm laser irradiation showed that the intensities of the green and red emission increased multiple times in glass ceramic than that of the glass. Possible mechanisms responsible for upconversion eg. Energy Transfer (ET) and Excited State Absorption (ESA), were studied through laser pumping power log dependence

  5. Up to 40 Gb/s wireless signal generation and demodulation in 75-110 GHz band using photonic techniques

    DEFF Research Database (Denmark)

    Sambaraju, R.; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    Record wireless signal capacity of up to 40 Gb/s is demonstrated in the 75-110 GHz band. All-optical OFDM and photonic up-conversion are used for generation and digital coherent detection for demodulation....

  6. LUMINESCENCE DIAGNOSTICS OF TUMORS WITH UPCONVERSION NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    V. V. Rocheva

    2016-01-01

    Full Text Available Background: To improve quality of surgery in oncology, it is necessary to completely remove the tumor, including its metastases, to minimize injury to normal tissues and to reduce duration of an intervention. Modern methods of detection based on radiological computerized tomography and magnetic resonance imaging can identify a tumor after its volume has become big enough, i.e. it contains more than 10 billion cells. Therefore, an improvement of sensitivity and resolution ability of diagnostic tools to identify early stages of malignant neoplasms seems of utmost importance. Aim: To demonstrate the potential of a new class of anti-Stokes luminescence nanoparticles for deep optical imaging with high contrast of malignant tumors. Materials and methods: Upconversion nanoparticles with narrow dispersion and a  size of 70 to 80  nm, with a  core/shell structure of NaYF4:Yb3+:Tm3+/NaYF4 were used in the study. The nanoparticles have an intensive band of anti-Stokes photoluminescence at a wavelength of 800  nm under irradiation with a  wavelength of 975  nm (both wavelengths are within the transparency window for biological tissues. The conversion coefficient of the excitation radiation into the anti-Stokes luminescence was 9%. To increase the time during which nanoparticles can circulate in blood flow of small animals, the nanoparticles were covered by a  biocompatible amphiphilic polymer shell. As a  tumor model we used Lewis epidermoid carcinoma transfected to mice. Results: We were able to obtain stable water colloids of nanoparticles covered with amphiphilic polymer that could preserve their initial size at least for one month. The use of upconversion nanoparticles with a  hydrophilic shell made of intermittent maleic anhydride and octadecene co-polymer with subsequent coating with diglycidyl polyethylene glycol ether allowed for reduction of non-specific reaction of nanoparticles with plasma proteins. In its turn, it resulted in an

  7. Ag2O dependent up-conversion luminescence properties in Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glasses

    International Nuclear Information System (INIS)

    Hu, Yuebo; Qiu, Jianbei; Song, Zhiguo; Zhou, Dacheng

    2014-01-01

    Up-conversion (UC) luminescence properties of Ag/Tm 3+ /Er 3+ /Yb 3+ co-doped oxyfluorogermanate glasses have been studied to assess the effective role of silver nanoparticles as a sensitizer for Tm 3+ and Er 3+ ions. The X-ray diffraction patterns obtained in this work do not reveal any crystalline phase in the glass. However, the absorption spectra reveal that surface plasmons resonance band of Ag undergoes a distinct split with two maxima and a very broad absorption peak with a background that extends toward the near infrared (NIR) with the increasing of Ag 2 O added concentration. Transmission electron microscope images confirm that silver nanoparticles have been precipitated from matrix glasses and show their distribution, size, and shapes. In addition, changes in UC luminescence intensity of four emission bands 476, 524, 546, and 658 nm corresponding to 1 G 4 → 3 H 6 (Tm 3+ ), ( 2 H 11/2 , 4 S 3/2 ) → 4 I 15/2 (Er 3+ ), and 4 F 9/2 → 4 I 15/2 (Er 3+ ) transitions, respectively, as a function of silver addition to the base composition have been measured under 980 nm excitation. It is confirmed that Ag 2 O added concentration plays an important role in increasing the UC luminescence intensity; however, further increase in Ag 2 O added concentration reduces the intensity

  8. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    Science.gov (United States)

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  9. Construction of a system for up-conversion detection in vitroceramics doped with rare earths

    International Nuclear Information System (INIS)

    Santa Cruz, P.A.; Azevedo, W.M. de; Sa, G.F. de

    1983-01-01

    A system capable of detecting up-conversion processes by energy transference or cooperative luminescence was developed. Pulverized vitroceramic samples containing PbF 2 and GeO 2 , doped with Yb 2 O 3 as sensitizer and Tm 2 O 3 or Er 2 O 3 as activator, were used. A diagram of the detection system, as well as graphs showing the variation of the emission intensity of these doped vitroceramics as a function of excitation intensity (970 mn), are presented. (C.L.B.) [pt

  10. NIR to visible frequency upconversion in Er3+ and Yb3+ codoped ZrO2 phosphor

    International Nuclear Information System (INIS)

    Singh, Vijay; Kim, Sang Hwan; Rai, Vineet Kumar; Al-Shamery, Katharina; Haase, Markus

    2013-01-01

    The ZrO 2 :Er 3+ codoped with Yb 3+ phosphor powders have been prepared by the urea combustion route. Formation of the compounds ZrO 2 :Er 3+ and ZrO 2 :Er 3+ , Yb 3+ was confirmed by XRD. The frequency upconversion emissions in the green and red regions upon excitation with a CW diode laser at ∝978 nm are reported. Codoping with Yb 3+ enhances the emission intensities of the triply ionized erbium in the green and red spectral regions by about ∝130 and ∝820 times respectively. The emission properties of the ZrO 2 :Er 3+ phosphor powders are discussed on the basis of excited state absorption, energy transfer, and cross-relaxation energy transfer mechanisms. (orig.)

  11. Emission properties of hydrothermal Yb{sup 3+}, Er{sup 3+} and Yb{sup 3+}, Tm{sup 3+}-codoped Lu{sub 2}O{sub 3} nanorods: upconversion, cathodoluminescence and assessment of waveguide behavior

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Elixir William; Pujol, MarIa Cinta; DIaz, Francesc [Fisica i Cristal.lografia de Materials, Universitat Rovira i Virgili, Campus Sescelades c/ Marcel.lI Domingo s/n, E-43007 Tarragona (Spain); Choi, Soo Bong; Rotermund, Fabian [Division of Energy Systems Research, Ajou University, 443-749 Suwon (Korea, Republic of); Park, Kyung Ho [Korea Advanced Nano Fab Center, 443-270 Suwon (Korea, Republic of); Jeong, Mun Seok [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 500-712 Gwangju (Korea, Republic of); Cascales, Concepcion, E-mail: ccascales@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, c/Sor Juana Ines de la Cruz, 3 Cantoblanco, E-28049 Madrid (Spain)

    2011-02-18

    Yb{sup 3+} and Ln{sup 3+} (Ln{sup 3+} = Er{sup 3+} or Tm{sup 3+}) codoped Lu{sub 2}O{sub 3} nanorods with cubic Ia3-bar symmetry have been prepared by low temperature hydrothermal procedures, and their luminescence properties and waveguide behavior analyzed by means of scanning near-field optical microscopy (SNOM). Room temperature upconversion (UC) under excitation at 980 nm and cathodoluminescence (CL) spectra were studied as a function of the Yb{sup +} concentration in the prepared nanorods. UC spectra revealed the strong development of Er{sup 3+4}F{sub 9/2} {yields} 4I{sub 15/2} (red) and Tm{sup 3+1}G{sub 4} {yields} {sup 3}H{sub 6} (blue) bands, which became the pre-eminent and even unique emissions for corresponding nanorods with the higher Yb{sup 3+} concentration. Favored by the presence of large phonons in current nanorods, UC mechanisms that privilege the population of {sup 4}F{sub 9/2} and {sup 1}G{sub 4} emitting levels through phonon-assisted energy transfer and non-radiative relaxations account for these observed UC luminescence features. CL spectra show much more moderate development of the intensity ratio between the Er{sup 3+4}F{sub 9/2} {yields}{sup 4}I{sub 15/2} (red) and {sup 2}H{sub 11/2}, {sup 4}S{sub 3/2} {yields} {sup 4}I{sub 15/2} (green) emissions with the increase in the Yb{sup 3+} content, while for Yb{sup 3+}, Tm{sup 3+}-codoped Lu{sub 2}O{sub 3} nanorods the dominant CL emission is Tm{sup 3+1}D{sub 2} {yields} {sup 3}F{sub 4} (deep-blue). Uniform light emission along Yb{sup 3+}, Er{sup 3+}-codoped Lu{sub 2}O{sub 3} rods has been observed by using SNOM photoluminescence images; however, the rods seem to be too thin for propagation of light.

  12. Photonic band edge assisted spontaneous emission enhancement from all Er3+ 1-D photonic band gap structure

    Science.gov (United States)

    Chiasera, A.; Meroni, C.; Varas, S.; Valligatla, S.; Scotognella, F.; Boucher, Y. G.; Lukowiak, A.; Zur, L.; Righini, G. C.; Ferrari, M.

    2018-06-01

    All Er3+ doped dielectric 1-D Photonic Band Gap Structure was fabricated by rf-sputtering technique. The structure was constituted by of twenty pairs of SiO2/TiO2 alternated layers doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements put in evidence the stop band in the range 1500 nm-1950 nm. The photoluminescence measurements were obtained by optically exciting the sample and detecting the emitted light in the 1.5 μm region at different detection angles. Luminescence spectra and luminescence decay curves put in evidence that the presence of the stop band modify the emission features of the Er3+ ions.

  13. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    International Nuclear Information System (INIS)

    Kunj, Saurabh; Sreenivas, K.

    2016-01-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O_2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  14. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Science.gov (United States)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  15. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Kunj, Saurabh; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 INDIA (India)

    2016-05-06

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O{sub 2}) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  16. Nonlinear upconversion based infrared spectroscopy on ZSM-5 zeolite

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Beato, Pablo; Tidemand-Lichtenberg, Peter

    2017-01-01

    We present a spectroscopic measurement of zeolite ZSM-5 in the mid-IR following the methanol attachment to active sites at 200 °C. The spectra are measured using nonlinear frequency upconversion to the near-IR spectral region.......We present a spectroscopic measurement of zeolite ZSM-5 in the mid-IR following the methanol attachment to active sites at 200 °C. The spectra are measured using nonlinear frequency upconversion to the near-IR spectral region....

  17. Triplet-triplet annihilation photon-upconversion: towards solar energy applications.

    Science.gov (United States)

    Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper

    2014-06-14

    Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.

  18. Luminescence resonance energy transfer (LRET) aptasensor for ochratoxin A detection using upconversion nanoparticles

    Science.gov (United States)

    Jo, Eun-Jung; Byun, Ju-Young; Mun, Hyoyoung; Kim, Min-Gon

    2017-07-01

    We report an aptasensor for homogeneous ochratoxin A (OTA) detection based on luminescence resonance energy transfer (LRET). This system uses upconversion nanoparticles (UCNPs), such as NaYF4:Yb3+, Er 3+, as the donor. The aptamer includes the optimum-length linker (5-mer-length DNA) and OTA-specific aptamer sequences. Black hole quencher 1 (BHQ1), as the acceptor, was modified at the 3' end of the aptamer sequence. BHQ1 plays as a quencher in LRET aptasensor and shows absorption at 543 nm, which overlaps with well the emission of the UCNPs. When OTA is added, the BHQ1-labeled OTA aptamer was folded due to the formation of the G-quadruplex-OTA complex, which induced the BHQ1 close to the UCNPs. Consequently, resonance energy transfer between UCNPs (donor) and BHQ1 (acceptor) enables quenching of upconversion luminescence signals under laser irradiation of 980 nm. Our results showed that the LRET-based aptasensor allows specific OTA analysis with a limit of detection of 0.03 ng/mL. These results demonstrated that the OTA in diverse foods can be detected specifically and sensitively in a homogeneous manner.

  19. LOW POWER UPCONVERSION FOR SOLAR FUELS PHOTOCHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, Felix N. [Bowling Green State University

    2013-08-05

    Earth abundant copper(I) diimine complexes represent a renewable and economically feasible alternative to commonly used heavy metal containing chromophores. In the metal-to-ligand charge transfer (MLCT) excited state, copper(I) diimine complexes typically undergo a significant structural rearrangement, leading to molecules with large Stokes shifts and very short excited state lifetimes, thereby limiting their usefulness as sensitizers in bimolecular electron and triplet energy transfer reactions. Strategically placed bulky substituents on the coordinating phenanthroline ligands have proven useful in restricting the transiently produced excited state Jahn-Teller distortion, leading to longer-lived excited states. By combining bulky sec-butyl groups in the 2- and 9- positions with methyl groups in the 3-,4-, 7-, and 8- positions, a remarkably long-lived (2.8 μs in DCM) copper(I) bis-phenanthroline complex, [Cu(dsbtmp)2]+, has been synthesized and characterized. Unlike other copper(I) diimine complexes, [Cu(dsbtmp)2]+ also retains a μs lifetime in coordinating solvents such as acetonitrile and water as a result of the cooperative sterics inherent in the molecular design. Preliminary results on the use of this complex in hydrogen-forming homogeneous photocatalysis is presented. Photon upconversion based on sensitized triplet-triplet annihilation (TTA) represents a photochemical means to generate high-energy photons (or high-energy chemical products) from low-energy excitation, having potential applications in solar energy conversion and solar fuels producing devices. For the first time, synthetically facile and earth abundant Cu(I) MLCT sensitizers have been successfully incorporated into two distinct photochemical upconversion schemes, affording both red-to-green and orange-to-blue wavelength conversions. Preliminary results on aqueous-based photochemical upconversion as well as intramolecular Sn(IV) porphyrins containing axially coordinated aromatic hydrocarbon

  20. A comprehensive phononics of phonon assisted energy transfer in the Yb3+ aided upconversion luminescence of Tm3+ and Ho3+ in solids

    International Nuclear Information System (INIS)

    Debnath, Radhaballabh; Bose, Saptasree

    2015-01-01

    The theory of phonon assisted energy transfer is being widely used to explain the Yb 3+ ion aided normal and upconversion emission of various rare earth ions in different Yb 3+ co-doped solids. The reported phonon dynamics in many of these studies are either incomplete or erroneous. Here we report Yb 3+ aided upconversion luminescence properties of Tm 3+ and Ho 3+ in (Yb 3+ /Tm 3+ ) and (Yb 3+ /Ho 3+ ) co-doped two BaO–tellurite glasses and explain their phononics in the light of Dexter's theory by proposing a comprehensive scheme. The approach is valid for other systems of different phonon structures. - Highlights: • Yb 3+ aided upconversion luminescence properties of Tm 3+ and Ho 3+ in (Yb 3+ /Tm 3+ ) and (Yb 3+ /Ho 3+ ) co-doped two BaO–tellurite glasses, are reported. • Phonon assisted energy transfer in these systems are explained in the light of Dexter's theory by proposing a comprehensive scheme of phononics. • The approach is valid for other systems of different phonon structures

  1. Influences of Er3+ content on structure and upconversion emission of oxyfluoride glass ceramics containing CaF2 nanocrystals

    International Nuclear Information System (INIS)

    Chen Daqin; Wang Yuansheng; Yu Yunlong; Ma En; Bao Feng; Hu Zhongjian; Cheng Yao

    2006-01-01

    Transparent 45SiO 2 -25Al 2 O 3 -5CaO-10NaF-15CaF 2 glass ceramics doped with different content of erbium ion (Er 3+ ) were prepared. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses evidenced the spherical CaF 2 nanocrystals homogeneously embedded among the glassy matrix. With increasing of Er 3+ content, the size of CaF 2 nanocrystals decreased while the number density increased. The crystallization kinetics studies revealed that CaF 2 crystallization was a diffusion-controlled growth process from small dimensions with decreasing nucleation rate. Er 3+ could act as nucleating agent to lower down crystallization temperature, while some of them may stay at the crystal surfaces to retard the growth of crystal. Intense red and weak green upconversion emissions were recorded for glass ceramics and their intensities increased with the increasing of Er 3+ content under 980 nm excitation. However, the concentration quenching effect appeared when Er 3+ doping reached 2 mol%. These results could be attributed to the change of ligand field of Er 3+ ions due to the incorporation of Er 3+ ions into precipitated fluoride nanocrystals

  2. CdS/ZnS core-shell nanocrystal photosensitizers for visible to UV upconversion.

    Science.gov (United States)

    Gray, Victor; Xia, Pan; Huang, Zhiyuan; Moses, Emily; Fast, Alexander; Fishman, Dmitry A; Vullev, Valentine I; Abrahamsson, Maria; Moth-Poulsen, Kasper; Lee Tang, Ming

    2017-08-01

    Herein we report the first example of nanocrystal (NC) sensitized triplet-triplet annihilation based photon upconversion from the visible to ultraviolet (vis-to-UV). Many photocatalyzed reactions, such as water splitting, require UV photons in order to function efficiently. Upconversion is one possible means of extending the usable range of photons into the visible. Vis-to-UV upconversion is achieved with CdS/ZnS core-shell NCs as the sensitizer and 2,5-diphenyloxazole (PPO) as annihilator and emitter. The ZnS shell was crucial in order to achieve any appreciable upconversion. From time resolved photoluminescence and transient absorption measurements we conclude that the ZnS shell affects the NC and triplet energy transfer (TET) from NC to PPO in two distinct ways. Upon ZnS growth the surface traps are passivated thus increasing the TET. The shell, however, also acts as a tunneling barrier for TET, reducing the efficiency. This leads to an optimal shell thickness where the upconversion quantum yield ( Φ ' UC ) is maximized. Here the maximum Φ ' UC was determined to be 5.2 ± 0.5% for 4 monolayers of ZnS shell on CdS NCs.

  3. White light emission from Er2O3 nano-powder excited by infrared radiation

    Science.gov (United States)

    Tabanli, Sevcan; Eryurek, Gonul; Di Bartolo, Baldassare

    2017-07-01

    Phosphors of Er2O3 nano-crystalline powders were synthesized by the thermal decomposition method. The structural properties of the nano-powders were investigated with XRD and HRTEM measurements. The cubic phase with a = 10.540 Å was the only phase observed. The average crystalline sizes and the widths of the grain size distribution curves were determined to be 27.2, 18.7 and 9.7 nm, respectively. The spectroscopic properties of the Er2O3 nano-powder were studied by measuring the luminescence, decay and rise patterns under 808 and 975 nm diode laser excitations. A peculiar effect of the pressure was observed since an optically active ion (Er) is part of the complex and not a dopant. A broad band of the white light emission combined with blue, green and red up-conversion emission bands of Er3+ ions were observed at 0.03 mbar pressure under both excitation wavelengths. Only, an intense broad band white light emission was observed from these nanocrystals at atmospheric pressure. Rising patterns show that the white light intensity reaches its maximum value more rapidly under 975 nm excitation although it decays slower than that of 808 nm excitation. The color quality parameters such as the color coordinate (CRI), correlated color temperature and the color rendering index were found to vary with both the excitation wavelength and the ambient pressure indicating that these nanocrystals could be considered good white light emitting source under the infrared excitations.

  4. Bulk band gaps in divalent hexaborides: A soft x-ray emission study

    International Nuclear Information System (INIS)

    Denlinger, Jonathan D.; Gweon, Gey-Hong; Allen, James W.; Bianchi, Andrea D.; Fisk, Zachary

    2001-01-01

    Boron K-edge soft x-ray emission and absorption are used to address the fundamental question of whether divalent hexaborides are intrinsic semimetals or defect-doped bandgap insulators. These bulk sensitive measurements, complementary and consistent with surface-sensitive angle-resolved photoemission experiments, confirm the existence of a bulk band gap and the location of the chemical potential at the bottom of the conduction band

  5. Energy Pooling Upconversion in Free Space and Optical Cavities

    Science.gov (United States)

    LaCount, Michael D.

    energy pooling rate efficiency of 99%. This demonstrates that the energy pooling rate can be made faster than its competing processes. Based on the results of this study, a set of design rules was developed to optimize the rate efficiency of energy pooling. Prior to this research, no attempt had been made to determine if energy pooling could be made to out-pace competing processes--i.e. whether or not a molecular system could be designed to utilize energy pooling as an efficient means of upconversion. This initial investigation was part of a larger effort involving a team of researchers at the University of Colorado, Boulder and at the National Renewable Energy Laboratory. After establishing our computational proof-of-concept, we collectively used the new design rules to select an improved system for energy pooling. This consisted of rhodamine 6G and stilbene-420. These molecules were fabricated into a thin film, and the maximum internal quantum yield was measured to be 36% under sufficiently high intensity light. To further increase the efficiency of energy pooling, encapsulation within optical cavities was considered as a way of changing the rate of processes characterized by electric dipole-dipole coupling. This was carried out using a combination of classical electromagnetism, quantum electrodynamics, and perturbation theory. It was found that, in the near field, if the distance of the energy transfer is smaller than the distance from the energy transfer site and the cavity wall, then the electric dipole-dipole coupling tensor is not influenced by the cavity environment and the rates of energy transfer processes are the same as those in free space. Any increase in energy transfer efficiencies that are experimentally measured must therefore be caused by changing the rate of light absorption and emission. This is an important finding because earlier, less rigorous studies had concluded otherwise. It has been previously demonstrated that an optical cavity can be used to

  6. Hg(II) sensing platforms with improved photostability: The combination of rhodamine derived chemosensors and up-conversion nanocrystals.

    Science.gov (United States)

    Song, Kai; Mo, Jingang; Lu, Chengwen

    2017-05-15

    This paper reported two nanocomposite sensing platforms for Hg(II) detection with improved photostability, using two rhodamine derivatives as chemosensors and up-conversion nanocrystals as excitation host, respectively. There existed a secondary energy transfer from this excitation host to these chemosensors, which was confirmed by spectral analysis, energy transfer radius calculation and emission decay lifetime comparison. In this case, chemosensor photostability was greatly improved. Further analysis suggested that these chemosensors recognized Hg(II) following a simple binding stoichiometry of 1:1. Hg(II) sensing performance of these sensing platforms was analyzed through their emission spectra upon various Hg(II) concentrations. Emission spectral response, Stern-Volmer equation, emission stability and sensing selectivity were discussed in detail. It was finally concluded that these chemosensors showed emission turn on effect towards Hg(II), with high photostability, good selectivity and linear response. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Sub-band gap photo-enhanced secondary electron emission from high-purity single-crystal chemical-vapor-deposited diamond

    International Nuclear Information System (INIS)

    Yater, J. E.; Shaw, J. L.; Pate, B. B.; Feygelson, T. I.

    2016-01-01

    Secondary-electron-emission (SEE) current measured from high-purity, single-crystal (100) chemical-vapor-deposited diamond is found to increase when sub-band gap (3.06 eV) photons are incident on the hydrogenated surface. Although the light does not produce photoemission directly, the SEE current increases by more than a factor of 2 before saturating with increasing laser power. In energy distribution curves (EDCs), the emission peak shows a corresponding increase in intensity with increasing laser power. However, the emission-onset energy in the EDCs remains constant, indicating that the bands are pinned at the surface. On the other hand, changes are observed on the high-energy side of the distribution as the laser power increases, with a well-defined shoulder becoming more pronounced. From an analysis of this feature in the EDCs, it is deduced that upward band bending is present in the near-surface region during the SEE measurements and this band bending suppresses the SEE yield. However, sub-band gap photon illumination reduces the band bending and thereby increases the SEE current. Because the bands are pinned at the surface, we conclude that the changes in the band levels occur below the surface in the electron transport region. Sample heating produces similar effects as observed with sub-band gap photon illumination, namely, an increase in SEE current and a reduction in band bending. However, the upward band bending is not fully removed by either increasing laser power or temperature, and a minimum band bending of ∼0.8 eV is established in both cases. The sub-band gap photo-excitation mechanism is under further investigation, although it appears likely at present that defect or gap states play a role in the photo-enhanced SEE process. In the meantime, the study demonstrates the ability of visible light to modify the electronic properties of diamond and enhance the emission capabilities, which may have potential impact for diamond-based vacuum electron

  8. Performance analysis for W-band antenna alignment using accurate mechanical beam steering

    DEFF Research Database (Denmark)

    Morales Vicente, Alvaro; Rodríguez Páez, Juan Sebastián; Gallardo, Omar

    2017-01-01

    This article presents a study of antenna alignment impact on bit error rate for a wireless link between two directive W-band horn antennas where one of them is mechanically steered by a Stewart platform. Such a technique is applied to find the optimal alignment between transmitter and receiver...... with an accuracy of 18 both in azimuth and elevation angles. The maximum degree of misalignment which can be tolerated is also reported for different values of optical power in the generation of W-band signals by photonic up-conversion. (C) 2017 Wiley Periodicals, Inc....

  9. Upconversion based spectral imaging in 6 to 8 μm spectral regime

    DEFF Research Database (Denmark)

    Junaid, Saher; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-01-01

    Spectral imaging in the 6 to 8μm range has great potential for medical diagnostics. Here a novel technique based on frequency upconversion of the infrared images to the near visible for subsequent acquisition using a Si-CCD camera is investigated. The upconversion unit consists of an AgGaS2 crystal...

  10. Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes

    Directory of Open Access Journals (Sweden)

    E. Kasper

    2012-01-01

    Full Text Available Room temperature direct band gap emission is observed for Si-substrate-based Ge p-i-n heterojunction photodiode structures operated under forward bias. Comparisons of electroluminescence with photoluminescence spectra allow separating emission from intrinsic Ge (0.8 eV and highly doped Ge (0.73 eV. Electroluminescence stems from carrier injection into the intrinsic layer, whereas photoluminescence originates from the highly n-doped top layer because the exciting visible laser wavelength is strongly absorbed in Ge. High doping levels led to an apparent band gap narrowing from carrier-impurity interaction. The emission shifts to higher wavelengths with increasing current level which is explained by device heating. The heterostructure layer sequence and the light emitting device are similar to earlier presented photodetectors. This is an important aspect for monolithic integration of silicon microelectronics and silicon photonics.

  11. PROBING THE IONIZATION STATES OF POLYCYCLIC AROMATIC HYDROCARBONS VIA THE 15–20 μm EMISSION BANDS

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, M. J.; Stock, D. J.; Peeters, E., E-mail: mshann3@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2015-10-01

    We report new correlations between ratios of band intensities of the 15–20 μm emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of 57 sources observed with the Spitzer/Infrared Spectrograph. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the Spitzer Infrared Nearby Galaxies Survey survey, two Galactic interstellar medium cirrus sources, and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4, and 17.8 μm band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate with the 11.0 and 12.7 μm band intensities. The 15.8 μm band correlates only with the 15–18 μm plateau and the 11.2 μm emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4, and 17.8 μm bands; the 11.2, 15.8 μm bands and the 15–18 μm plateau; and the 11.0 and 17.4 μm bands. We also find that the spatial distribution of the 12.7, 16.4, and 17.8 μm bands can be reconstructed by averaging the spatial distributions of the cationic 11.0 μm and neutral 11.2 μm bands. We conclude that the 17.4 μm band is dominated by cations, the 15.8 μm band by neutral species, and the 12.7, 16.4, and 17.8 μm bands by a combination of the two. These results highlight the importance of PAH ionization for spatially differentiating sub-populations by their 15–20 μm emission variability.

  12. Use of IRI to Model the Effect of Ionosphere Emission on Earth Remote Sensing at L-Band

    Science.gov (United States)

    Abraham, Saji; LeVine, David M.

    2004-01-01

    Microwave remote sensing in the window at 1.413 GHz (L-band) set aside for passive use only is important for monitoring sea surface salinity and soil moisture. These parameters are important for understanding ocean dynamics and energy exchange between the surface and atmosphere, and both NASA and ESA plan to launch satellite sensors to monitor these parameters at L-band (Aquarius, Hydros and SMOS). The ionosphere is an important source of error for passive remote sensing at this frequency. In addition to Faraday rotation, emission from the ionosphere is also a potential source of error at L-band. As an aid for correcting for emission, a regression model is presented that relates ionosphere emission to the integrated electron density (TEC). The goal is to use TEC from sources such as TOPEX, JASON or GPS to obtain estimates of emission over the oceans where the electron density profiles needed to compute emission are not available. In addition, data will also be presented to evaluate the use of the IRI for computing emission over the ocean.

  13. Accounting for many-body correlation effects in the calculation of the valence band photoelectron emission spectra of ferromagnets

    International Nuclear Information System (INIS)

    Minar, J.; Chadov, S.; Ebert, H.; Chioncel, L.; Lichtenstein, A.; De Nadai, C.; Brookes, N.B.

    2005-01-01

    The influence of dynamical correlation effects on the valence band photoelectron emission of ferromagnetic Fe, Co and Ni has been investigated. Angle-resolved as well as angle-integrated valence band photoelectron emission spectra were calculated on the basis of the one-particle Green's function, which was obtained by using the fully relativistic Korringa-Kohn-Rostoker method. The correlation effects have been included in terms of the electronic self-energy which was calculated self-consistently within Dynamical Mean-Field Theory (DMFT). In addition a theoretical approach to calculate high-energy angle-resolved valence band photoelectron emission spectra is presented

  14. Universal Multifunctional Nanoplatform Based on Target-Induced in Situ Promoting Au Seeds Growth to Quench Fluorescence of Upconversion Nanoparticles.

    Science.gov (United States)

    Wu, Qiongqiong; Chen, Hongyu; Fang, Aijin; Wu, Xinyang; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2017-12-22

    Construction of a new multifunctional chemo/biosensing platform for small biomolecules and tumor markers is of great importance in analytical chemistry. Herein, a novel universal multifunctional nanoplatform for biomolecules and enzyme activity detection was proposed based on fluorescence resonance energy transfer (FRET) between upconversion nanoparticles (UCNPs) and target-inducing enlarged gold nanoparticles (AuNPs). The reductive molecule such as H 2 O 2 can act as the reductant to reduce HAuCl 4 , which will make the Au seeds grow. The enlarged AuNPs can effectively quench the fluorescence of UCNPs owing to the good spectral overlap between the absorption band of the AuNPs and the emission band of the UCNPs. Utilizing the FRET between the UCNPs and enlarged AuNPs, good linear relationship between the fluorescence of UCNPs and the concentration of H 2 O 2 can be found. Based on this strategy, H 2 O 2 related molecules such as l-lactate, glucose, and uric acid can also be quantified. On the basis of UCNPs and PVP/HAuCl 4 , a general strategy for other reductants such as ascorbic acid (AA), dopamine (DA), or enzyme activity can be established. Therefore, the universal multifunctional nanoplatform based on UCNPs and the target-inducing in situ enlarged Au NPs will show its potential as a simple method for the detection of some life related reductive molecules, enzyme substrates, as well as enzyme activity.

  15. Visible sub-band gap photoelectron emission from nitrogen doped and undoped polycrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Elfimchev, S., E-mail: sergeyel@tx.technion.ac.il; Chandran, M.; Akhvlediani, R.; Hoffman, A.

    2017-07-15

    Highlights: • Nitrogen related centers in diamond film are mainly responsible for visible sub-band-gap photoelectron emission. • The influence of film thickness and substrate on the measured photoelectron emission yields was not found. • Nanocrystalline diamonds have low electron emission yields most likely because of high amount of defects. • Visible sub-band gap photoelectron emission may increase with temperature due to electron trapping/detrapping processes. - Abstract: In this study the origin of visible sub-band gap photoelectron emission (PEE) from polycrystalline diamond films is investigated. The PEE yields as a function of temperature were studied in the wavelengths range of 360–520 nm. Based on the comparison of electron emission yields from diamond films deposited on silicon and molybdenum substrates, with different thicknesses and nitrogen doping levels, we suggested that photoelectrons are generated from nitrogen related centers in diamond. Our results show that diamond film thickness and substrate material have no significant influence on the PEE yield. We found that nanocrystalline diamond films have low electron emission yields, compared to microcrystalline diamond, due to the presence of high amount of defects in the former, which trap excited electrons before escaping into the vacuum. However, the low PEE yield of nanocrystalline diamond films was found to increase with temperature. The phenomenon was explained by the trap assisted photon enhanced thermionic emission (ta-PETE) model. According to the ta-PETE model, photoelectrons are trapped by shallow traps, followed by thermal excitation at elevated temperatures and escape into the vacuum. Activation energies of trap levels were estimated for undoped nanocrystalline, undoped microcrystalline and N-doped diamond films using the Richardson-Dushman equation, which gives 0.13, 0.39 and 0.04 eV, respectively. Such low activation energy of trap levels makes the ta-PETE process very

  16. Luminescence properties of Tm3+ ions single-doped YF3 materials in an unconventional excitation region.

    Science.gov (United States)

    Chen, Yuan; Liu, Qing; Lin, Han; Yan, Xiaohong

    2018-05-01

    According to the spectral distribution of solar radiation at the earth's surface, under the excitation region of 1150 to 1350 nm, the up-conversion luminescence of Tm 3+ ions was investigated. The emission bands were matched well with the spectral response region of silicon solar cells, achieved by Tm 3+ ions single-doped yttrium fluoride (YF 3 ) phosphor, which was different from the conventional Tm 3+ /Yb 3+ ion couple co-doped materials. Additionally, the similar emission bands of Tm 3+ ions were achieved under excitation in the ultraviolet region. It is expected that via up-conversion and down-conversion routes, Tm 3+ -sensitized materials could convert photons to the desired wavelengths in order to reduce the energy loss of silicon solar cells, thereby enhancing the photovoltaic efficiency. Copyright © 2018 John Wiley & Sons, Ltd.

  17. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform

    Science.gov (United States)

    Liu, Xiaomin; Que, Ivo; Kong, Xianggui; Zhang, Youlin; Tu, Langping; Chang, Yulei; Wang, Tong Tong; Chan, Alan; Löwik, Clemens W. G. M.; Zhang, Hong

    2015-09-01

    A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, 1O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm-2) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy.A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii

  18. Up-conversion luminescence application in Er3+: TiO2 thin film prepared by dip coating sol-gel route

    International Nuclear Information System (INIS)

    Badr, Y.; Battisha, I.K.; Salah, A.; Salem, M.A.

    2008-01-01

    Sol-gel derived nano-crystalline titanium dioxide films doped with 1 up to 5% Er 3+ ions were prepared by dip coating sol-gel method. The coating sol was obtained by hydrolysis of Ti(OC 4 H 9 ) 4 in ethanol/HCI solution. The FT-Raman and the X-ray diffraction (XRD) were carried out to determine the crystal structure of the prepared samples. The morphology SEM and the cross-sectional of the film were used to characterize the microstructure and the thickness of the prepared film. It is shown that relative homogeneous, crack-free and transparent film was achieved via dipping process at 500 deg C. After the excitation with laser diode at wavelength 808 nm, visible (Vis) and infrared (IR) up-conversion emissions were evidenced in the thin film samples under investigation. The up-conversion was found to depend strongly on the Er 3+ ion concentrations. The visible emission was found to be at 540, 560, 590 and 640 nm for thin film. They are attributed to intra-4f transition of Er 3+ ions and assigned to the ( 2 H 11/2 + 4 S 3/2 ) and 4 F 9/2 , which are populated through excited state absorption (ESA) for 808 nm excitation. (author)

  19. Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography

    KAUST Repository

    Li, Feifei

    2013-05-21

    Lanthanide-doped core-shell upconversion nanocrystals (UCNCs) have tremendous potential for applications in many fields, especially in bio-imaging and medical therapy. As core-shell UCNCs are mostly synthesized in organic solvents, tedious organic-aqueous phase transfer processes are usually needed for their use in bio-applications. Herein, we demonstrate the first example of one-step synthesis of highly luminescent core-shell UCNCs in the "aqueous" phase under mild conditions using innocuous reagents. A microwave-assisted approach allowed for layer-by-layer epitaxial growth of a hydrophilic NaGdF4 shell on NaYF4:Yb, Er cores. During this process, surface defects of the nanocrystals could be gradually passivated by the homogeneous shell deposition, resulting in obvious enhancement in the overall upconversion emission efficiency. In addition, the up-down conversion dual-mode luminescent NaYF4:Yb, Er@NaGdF4:Ce, Ln (Eu, Tb, Sm, Dy) nanocrystals were also synthesized to further validate the successful formation of the core-shell structure. More significantly, based on their superior solubility and stability in water solution, high upconversion efficiency and Gd-doped predominant X-ray absorption, the as-prepared NaYF4:Yb, Er@NaGdF4 core-shell UCNCs exhibited high contrast in in vitro cell imaging and in vivo X-ray computed tomography (CT) imaging, demonstrating great potential as multiplexed luminescent biolabels and CT contrast agents.

  20. Study on upconversion luminescence and thermal properties of Ho{sup 3+}/Yb{sup 3+} co-doped La{sub 2}O{sub 3}–TiO{sub 2}–ZrO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minghui; Wen, Haiqin [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Yu, Huimei [Analysis and Testing Center of Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Ai, Fei [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Shao, Hui [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 (China); Pan, Xiuhong; Tang, Meibo; Yu, Jianding; Gai, Lijun [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Liu, Yan, E-mail: liuyan@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China)

    2016-07-05

    Bulk Ho{sup 3+}/Yb{sup 3+} co-doped La{sub 2}O{sub 3}–TiO{sub 2}–ZrO{sub 2} glass spheres were fabricated by aerodynamic levitation method. High concentration of Yb{sup 3+} ions was successfully doped in glasses. The effects of Yb{sup 3+} concentration on mechanical properties, Raman, absorption spectra, thermal stability, and glass forming ability were studied systematically. Green, red, and infrared emissions centered at 550, 662, and 758 nm were obtained at 980 nm excitation. Yellow light from glass spheres can be easily observed by naked eyes. As Yb{sup 3+} concentration increases, the upconversion luminescence can be improved obviously. The upconversion luminescence mechanism is a two-photon process of energy transfer, excited state absorption, and energy back transfer. The emission intensity can be enhanced in the samples with high Yb{sup 3+} concentration, since the absorption for the incident laser and the energy transfer efficiency are increased, and the nonradiative relaxation probability is reduced. The light color referring to the ratio for red to green emissions can be tuned by Yb{sup 3+} concentration. Ho{sup 3+}/Yb{sup 3+} co-doped La{sub 2}O{sub 3}–TiO{sub 2}–ZrO{sub 2} glasses show promising comprehensive properties and are helpful to speed the application of upconversion luminescence materials. - Highlights: • Ho{sup 3+}/Yb{sup 3+} doped titanate glasses are prepared by containerless processing. • The effects of Yb{sup 3+} on thermal and mechanical properties have been studied. • High concentration of Yb{sup 3+} is favorable to upconversion luminescence. • The mechanisms are energy transfer, excited state absorption, energy back transfer.

  1. Co-precipitation synthesis and upconversion luminescence ...

    Indian Academy of Sciences (India)

    Introduction. Researches of rare-earth-doped upconversion (UC) materials as fluorescent labels, temperature-sensing probes, solid-state lasers and new generation television screens have recently started to be considered1,2 due to their enhanced luminescent properties induced by the small size. UC process is the gener-.

  2. Intracavity upconversion for IR absorption lidar: Comparison of linear and ring cavity designs

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    Upconversion detection is a promising technology for measurement of IR signals in the 1.5 μm–2 μm region used for lidar remote sensing [1-2]. In comparison to conventional InGaAs detector, the upconversion detector can achieve IR detection with better signal-to-noise ratio (SNR), not only due...

  3. Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers

    International Nuclear Information System (INIS)

    Kik, P.G.; Polman, A.

    2003-01-01

    Erbium doped Al 2 O 3 waveguide amplifiers were fabricated using two different doping methods, namely Er ion implantation into sputter deposited Al 2 O 3 , and co-sputtering from an Er 2 O 3 /Al 2 O 3 target. Although the Er concentration in both materials is almost identical (0.28 and 0.31 at. %), the amplifiers show a completely different behavior. Upon pumping with 1.48 μm, the co-sputtered waveguide shows a strong green luminescence from the 4 S 3/2 level, indicating efficient cooperative upconversion in this material. This is confirmed by pump power dependent measurements of the optical transmission at 1.53 μm and the spontaneous emission at 1.53 and 0.98 μm. All measurements can be accurately modeled using a set of rate equations that include first order and second order cooperative upconversion. The first order cooperative upconversion coefficient C 24 is found to be 3.5x10 -16 cm 3 s -1 in the co-sputtered material, two orders of magnitude higher than the value obtained in Er implanted Al 2 O 3 of 4.1x10 -18 cm 3 s -1 . It is concluded that the co-sputtering process results in a strongly inhomogeneous atomic scale spatial distribution of the Er ions. As a result, the co-sputtered waveguides do not show optical gain, while the implanted waveguides do

  4. Pressure-induced emission band separation of the hybridized local and charge transfer excited state in a TPE-based crystal.

    Science.gov (United States)

    Liu, Xuedan; Li, Aisen; Xu, Weiqing; Ma, Zhiyong; Jia, Xinru

    2018-05-08

    We herein report a newly synthesized simple molecule, named TPE[double bond, length as m-dash]C4, with twisted D-A structure. TPE[double bond, length as m-dash]C4 showed two intrinsic emission bands ascribed to the locally excited (LE) state and the intramolecular charge transfer (ICT) state, respectively. In the crystal state, the LE emission band is usually observed. However, by applying hydrostatic pressure to the powder sample and the single crystal sample of TPE[double bond, length as m-dash]C4, dual-fluorescence (445 nm and 532 nm) was emerged under high pressure, owing to the pressure-induced emission band separation of the hybridized local and charge transfer excited state (HLCT). It is found that the emission of TPE[double bond, length as m-dash]C4 is generally determined by the ratio of the LE state to the ICT state. The ICT emission band is much more sensitive to the external pressure than the LE emission band. The HLCT state leads to a sample with different responsiveness to grinding and hydrostatic pressure. This study is of significance in the molecular design of such D-A type molecules and in the control of photoluminescence features by molecular structure. Such results are expected to pave a new way to further understand the relationship between the D-A molecular structure and stimuli-responsive properties.

  5. Fabrication and evaluation of chitosan/NaYF4:Yb3+/Tm3+ upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets.

    Science.gov (United States)

    Yan, Huiqiong; Chen, Xiuqiong; Shi, Jia; Shi, Zaifeng; Sun, Wei; Lin, Qiang; Wang, Xianghui; Dai, Zihao

    2017-02-01

    The rare earth ion doped upconversion nanoparticles (UCNPs) synthesized by hydrophobic organic ligands possess poor solubility and low fluorescence quantum yield in aqueous media. To conquer this issue, NaYF 4 :Yb 3+ /Tm 3+ UCNPs, synthesized by a hydrothermal method, were coated with F127 and then assembled with chitosan to fabricate the chitosan/NaYF 4 :Yb 3+ /Tm 3+ composite beads (CS/NaYF 4 :Yb 3+ /Tm 3+ CBs) by Pickering emulsion system. The characterization results revealed that the as-synthesized NaYF 4 :Yb 3+ /Tm 3+ UCNPs with an average size of 20nm exhibited spherical morphology, high crystallinity and characteristic emission upconversion fluorescence with an overall blue color output. The NaYF 4 :Yb 3+ /Tm 3+ UCNPs were successfully conjugated on the surface of chitosan beads by the gelling of emulsion droplets. The resultant CS/NaYF 4 :Yb 3+ /Tm 3+ CBs showed good upconversion luminescent property, drug-loading capacity, release performance and excellent biocompatibility, exhibiting great potentials in targeted drug delivery and tissue engineering with potential tracking capability and lasting release performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  7. Limitations on the upconversion of ion sound to Langmuir turbulence

    Science.gov (United States)

    Vlahos, L.; Papadopoulos, K.

    1982-01-01

    The weak turbulence theory of Tsytovich, Stenflo and Wilhelmsson (1981) for evaluation of the nonlinear transfer of ion acoustic waves to Langmuir waves is shown to be limited in its region of validity to the level of ion acoustic waves. It is also demonstrated that, in applying the upconversion of ion sound to Langmuir waves for electron acceleration, nonlinear scattering should be self-consistently included, with a suppression of the upconversion process resulting. The impossibility of accelerating electrons by such a process for any reasonable physical system is thereby reaffirmed.

  8. Upconversion and pump saturation mechanisms in Er3+/Yb3+ co-doped Y2Ti2O7 nanocrystals

    International Nuclear Information System (INIS)

    Wang, Fengxiao; Song, Feng; Zhang, Gong; Han, Yingdong; Li, Qiong; Tian, Jianguo; Ming, Chengguo

    2014-01-01

    The Er 3+ /Yb 3+ co-doped Y 2 Ti 2 O 7 nanocrystals were synthesized by the sol–gel method. X-ray diffraction, transmission electronic microscopy, and photoluminescence spectra were measured to verify the Y 2 Ti 2 O 7 nanocrystalline produced in the sample annealed at 800 °C. The anomalous slopes of the fitted line in the log-log plots for upconversion emissions and the pump-saturation effect of near-infrared emission were observed in the nanocrystalline samples. A theoretical model of practical Er 3+ /Yb 3+ co-doped system based on the rate equations were put forward and explained the experimental phenomena well

  9. Inherent Limitations in Mid-Wave and Long-Wave-IR Upconversion Detector

    DEFF Research Database (Denmark)

    Barh, Ajanta; Tseng, Yu-Pei; Pedersen, Christian

    2017-01-01

    Inherent limitations in terms of optical losses, selection of nonlinear crystal(s), detection efficiency and pumping conditions in mid-wave (3-5 µm) and long-wave (8-12 µm) infrared frequency upconversion modules are investigated in this paper.......Inherent limitations in terms of optical losses, selection of nonlinear crystal(s), detection efficiency and pumping conditions in mid-wave (3-5 µm) and long-wave (8-12 µm) infrared frequency upconversion modules are investigated in this paper....

  10. Highly Efficient LiYF4:Yb(3+), Er(3+) Upconversion Single Crystal under Solar Cell Spectrum Excitation and Photovoltaic Application.

    Science.gov (United States)

    Chen, Xu; Xu, Wen; Song, Hongwei; Chen, Cong; Xia, Haiping; Zhu, Yongsheng; Zhou, Donglei; Cui, Shaobo; Dai, Qilin; Zhang, Jiazhong

    2016-04-13

    Luminescent upconversion is a promising way to harvest near-infrared (NIR) sunlight and transforms it into visible light that can be directly absorbed by active materials of solar cells and improve their power conversion efficiency (PCE). However, it is still a great challenge to effectively improve the PCE of solar cells with the assistance of upconversion. In this work, we demonstrate the application of the transparent LiYF4:Yb(3+), Er(3+) single crystal as an independent luminescent upconverter to improve the PCE of perovskite solar cells. The LiYF4:Yb(3+), Er(3+) single crystal is prepared by an improved Bridgman method, and its internal quantum efficiency approached to 5.72% under 6.2 W cm(-2) 980 nm excitation. The power-dependent upconversion luminescence indicated that under the excitation of simulated sunlight the (4)F(9/2)-(4)I(15/2) red emission originally results from the cooperation of a 1540 nm photon and a 980 nm photon. Furthermore, when the single crystal is placed in front of the perovskite solar cells, the PCE is enhanced by 7.9% under the irradiation of simulated sunlight by 7-8 solar constants. This work implies the upconverter not only can serve as proof of principle for improving PCE of solar cells but also is helpful to practical application.

  11. Upconversion imaging using short-wave infrared picosecond pulses

    DEFF Research Database (Denmark)

    Mathez, Morgan David; Rodrigo, Peter John; Tidemand-Lichtenberg, Peter

    2017-01-01

    beam diameter to upconvert a wider range of signal spatial frequencies in the crystal. The 1877 nm signal is converted into 849 nm—enabling an image to be acquired by a silicon CCD camera. The measured size of the smallest resolvable element of this imaging system is consistent with the value predicted...... repetition rate of 21.7 MHz. Due to synchronization of high peak-power pulses, efficient upconversion is achieved in a single-pass setup that employs a bulk lithium niobate crystal. Optimizing the temporal overlap of the pulses for high upconversion efficiency enables us to exploit a relatively large pump...... by an improved model that considers the combined image blurring effect due to finite pump beam size, thick nonlinear crystal, and polychromatic infrared illumination....

  12. Wavelength-tuned light emission via modifying the band edge symmetry: Doped SnO2 as an example

    KAUST Repository

    Zhou, Hang

    2014-03-27

    We report the observation of ultraviolet photoluminescence and electroluminescence in indium-doped SnO2 thin films with modified "forbidden" bandgap. With increasing indium concentration in SnO 2, dominant visible light emission evolves into the ultraviolet regime in photoluminescence. Hybrid functional first-principles calculations demonstrate that the complex of indium dopant and oxygen vacancy breaks "forbidden" band gap to form allowed transition states. Furthermore, undoped and 10% indium-doped SnO2 layers are synthesized on p-type GaN substrates to obtain SnO2-based heterojunction light-emitting diodes. A dominant visible emission band is observed in the undoped SnO 2-based heterojunction, whereas strong near-ultraviolet emission peak at 398 nm is observed in the indium-doped SnO2-based heterojunction. Our results demonstrate an unprecedented doping-based approach toward tailoring the symmetry of band edge states and recovering ultraviolet light emission in wide-bandgap oxides. © 2014 American Chemical Society.

  13. Effects of the Ho{sup 3+}/Yb{sup 3+} concentration ratio on the structure and photoluminescence of ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Boxu [School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Wang, Pei [Auditing Department, Tianjin Polytechnic University, Tianjin 300387 (China); Meng, Xiaoqi; Zou, Kaishun [School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Liu, Juncheng, E-mail: jchliu@tjpu.edu.cn [School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-07-15

    To improve the efficiency of photoluminescent films, this study investigates the effects of the Ho{sup 3+}/Yb{sup 3+} concentration ratio on the structure and up-conversion photoluminescence of ZnO films prepared by the sol–gel method and the spin-coating technique. ZnO maintained its hexagonal wurtzite structure after doping with rare earth ions. The ZnO films consist of round granules, the average size of which increases as the Ho{sup 3+}/Yb{sup 3+} concentration ratio increases. Once the ratio exceeds 1:2, the film's granules significantly coarsen, and the surface roughness slightly increases. When the film is pumped with a 980-nm laser, two intense emission bands are observed in the up-conversion emission spectrum, with a green band centered at 550 nm and a red band centered at 660 nm, corresponding to the Ho{sup 3+}: {sup 5}S{sub 2}/{sup 5}F{sub 4}→{sup 5}I{sub 8}, and {sup 5}F{sub 5}→{sup 5}I{sub 8} transitions, respectively. In addition, as the Ho{sup 3+}/Yb{sup 3+} concentration ratio increases, the intensity of the film's upconversion luminescence first increases and then decreases, reaching a maximum at a concentration ratio of 1:2, with a peak of about four times the minimum value.

  14. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation.

    Science.gov (United States)

    Jiang, Zhen; Xu, Ming; Li, Fuyou; Yu, Yanlei

    2013-11-06

    A red-light-controllable soft actuator has been achieved, driven by low-power excited triplet-triplet annihilation-based upconversion luminescence (TTA-UCL). First, a red-to-blue TTA-based upconversion system with a high absolute quantum yield of 9.3 ± 0.5% was prepared by utilizing platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP) as the sensitizer and 9,10-bis(diphenylphosphoryl)anthracene (BDPPA) as the annihilator. In order to be employed as a highly effective phototrigger of photodeformable cross-linked liquid-crystal polymers (CLCPs), the PtTPBP&BDPPA system was incorporated into a rubbery polyurethane film and then assembled with an azotolane-containing CLCP film. The generating assembly film bent toward the light source when irradiated with a 635 nm laser at low power density of 200 mW cm(-2) because the TTA-UCL was effectively utilized by the azotolane moieties in the CLCP film, inducing their trans-cis photoisomerization and an alignment change of the mesogens via an emission-reabsorption process. It is the first example of a soft actuator in which the TTA-UCL is trapped and utilized to create photomechanical effect. Such advantages of using this novel red-light-controllable soft actuator in potential biological applications have also been demonstrated as negligible thermal effect and its excellent penetration ability into tissues. This work not only provides a novel photomanipulated soft actuation material system based on the TTA-UCL technology but also introduces a new technological application of the TTA-based upconversion system in photonic devices.

  15. Redox-induced reversible luminescence switching of cerium-doped upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanan [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xiao, Qingbo, E-mail: qbxiao2011@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Wang, Jian [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xi, Yonglan [Laboratory for Agricultural Wastes Treatment and Recycling Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing 210014 (China); Li, Fujin [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Feng, Yamin [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Shi, Liyi [College of Sciences, Shanghai University, Shanghai 200444 (China); Lin, Hongzhen, E-mail: hzlin2010@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China)

    2016-05-15

    Smart upconversion nanophosphors (UCNPs) that can be reversibly switched between two or more luminescent states by certain external stimuli have attracted considerable attention due to their great potential in biological applications. Here we report for the first time a type of redox-switchable UCNPs by codoping NaGdF{sub 4}:Yb/Er nanorods with the redox-active Ce{sup 3+}/Ce{sup 4+} ion pairs. A reversible switching of their UC luminescence intensity was observed upon the variation of the surrounding redox environments. We show solid proof that the luminescence switching is caused by the tailoring of the NaGdF{sub 4} host crystal structure in response to changing redox state of the codoped cerium ions. A proof-of-concept example is further demonstrated by using these UCNPs for probing the dynamical variation of redox environments in biological tissues. - Highlights: • Synthesis of upconversion nanoparticles doped with Ce{sup 3+}/Ce{sup 4+} ions. • The precise and reversible modification of crystal structure by redox reactions. • Tuning the upconversion luminescence by tailoring the crystal structure.

  16. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A., E-mail: baldo@mit.edu [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-07-20

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator is 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.

  17. W-Band Real-Time Transmission Utilizing a Reconfigurable RAU for NG-PON Networks

    DEFF Research Database (Denmark)

    Chorchos, Łukasz; Turkiewicz, Jarosław P.; Rommel, Simon

    2016-01-01

    In this article, we propose and test a reconfigurable Remote Access Unit (RAU) to interface optical and W-band wireless communication links (75–110 GHz), utilizing optical heterodyne signal upconversion. The RAU is composed of a tunable local oscillator, narrow optical filter and a control unit....... The RAU can be software-reconfigured to select a specific dense wavelength division multiplexed (DWDM) channel. Real-time tests with 100 GHz spaced DWDM signals have been performed. Real-time 2.5 Gbit/s error free radio transmission in the 75 GHz to 95 GHz range of the W-band was achieved after 15 km...

  18. Upconversion-based receivers for quantum hacking-resistant quantum key distribution

    Science.gov (United States)

    Jain, Nitin; Kanter, Gregory S.

    2016-07-01

    We propose a novel upconversion (sum frequency generation)-based quantum-optical system design that can be employed as a receiver (Bob) in practical quantum key distribution systems. The pump governing the upconversion process is produced and utilized inside the physical receiver, making its access or control unrealistic for an external adversary (Eve). This pump facilitates several properties which permit Bob to define and control the modes that can participate in the quantum measurement. Furthermore, by manipulating and monitoring the characteristics of the pump pulses, Bob can detect a wide range of quantum hacking attacks launched by Eve.

  19. Upconversion luminescence properties of Y2O3:Yb3+, Er3+ nanostructures

    International Nuclear Information System (INIS)

    De Gejihu; Qin Weiping; Zhang Jishen; Zhang Jishuang; Wang, Yan; Cao Chunyan; Cui Yang

    2006-01-01

    Cubic Y 2 O 3 nanostructures doped with Yb 3+ and Er 3+ ions were synthesized by a facile hydrothermal method. Three distinct shapes such as nanotubes, nanospheres and nanoflakes formed in the products by adjusting the pH value of reacting solution. Powder X-ray diffraction analyses indicate that all the three nanostructures are pure cubic phase, while electron microscopy measurements confirm the formation of different morphologies. These nanostructures exhibit strong visible upconversion luminescence under the excitation of a 978-nm diode laser. In Yb 3+ - and Er 3+ - codoped Y 2 O 3 nanocrystals, the relative intensity of green emission became stronger as the size and morphology of sample changed from tubes to flakes

  20. Broad-band tunable visible emission of sol-gel derived SiBOC ceramic thin films

    International Nuclear Information System (INIS)

    Karakuscu, Aylin; Guider, Romain; Pavesi, Lorenzo; Soraru, Gian Domenico

    2011-01-01

    Strong broad band tunable visible emission of SiBOC ceramic films is reported and the results are compared with one of boron free SiOC ceramic films. The insertion of boron into the SiOC network is verified by Fourier-Transform Infrared Spectroscopy. Optical properties are studied by photoluminescence and ultraviolet-visible spectroscopy measurements. Boron addition causes a decrease in the emission intensity attributed to defect states and shifts the emission to the visible range at lower temperatures (800-900 o C) leading to a very broad tunable emission with high external quantum efficiency.

  1. Competitive upconversion-linked immunosorbent assay for the\

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Antonín; Farka, Z.; Hübner, M.; Horňáková, V.; Němeček, D.; Niessner, R.; Skládal, P.; Knopp, D.; Gorris, H H.

    2016-01-01

    Roč. 88, č. 11 (2016), s. 6011-6017 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : photon-upconversion * diclofenac * immunoassay Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.320, year: 2016

  2. Competitive upconversion-linked immunosorbent assay for the\

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Antonín; Farka, Z.; Hübner, M.; Horňáková, V.; Němeček, D.; Niessner, R.; Skládal, P.; Knopp, D.; Gorris, H H.

    2016-01-01

    Roč. 88, č. 11 (2016), s. 6011-6017 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : photon-upconversion * diclofenac * immunoassay Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 6.320, year: 2016

  3. Improved space bandwidth product in image upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2012-01-01

    We present a technique increasing the space bandwidth product of a nonlinear image upconversion process used for spectral imaging. The technique exploits the strong dependency of the phase-matching condition in sum frequency generation (SFG) on the angle of propagation of the interacting fields...

  4. Experimental Demonstration of Nonlinearity and Phase Noise Tolerant 16-QAM OFDM W-Band (75–110 GHz) Signal Over Fiber System

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    We propose a nonlinearity and phase noise tolerant orthogonal frequency division multiplexing (OFDM) W-band signal over fiber system based on phase modulation and photonic heterodyne up-conversion techniques. By heterodyne mixing the phase-modulated optical OFDM signal with a free-running laser i...

  5. Fabrication and evaluation of chitosan/NaYF4:Yb3+/Tm3+ upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets

    International Nuclear Information System (INIS)

    Yan, Huiqiong; Chen, Xiuqiong; Shi, Jia; Shi, Zaifeng; Sun, Wei; Lin, Qiang; Wang, Xianghui; Dai, Zihao

    2017-01-01

    The rare earth ion doped upconversion nanoparticles (UCNPs) synthesized by hydrophobic organic ligands possess poor solubility and low fluorescence quantum yield in aqueous media. To conquer this issue, NaYF 4 :Yb 3+ /Tm 3+ UCNPs, synthesized by a hydrothermal method, were coated with F127 and then assembled with chitosan to fabricate the chitosan/NaYF 4 :Yb 3+ /Tm 3+ composite beads (CS/NaYF 4 :Yb 3+ /Tm 3+ CBs) by Pickering emulsion system. The characterization results revealed that the as-synthesized NaYF 4 :Yb 3+ /Tm 3+ UCNPs with an average size of 20 nm exhibited spherical morphology, high crystallinity and characteristic emission upconversion fluorescence with an overall blue color output. The NaYF 4 :Yb 3+ /Tm 3+ UCNPs were successfully conjugated on the surface of chitosan beads by the gelling of emulsion droplets. The resultant CS/NaYF 4 :Yb 3+ /Tm 3+ CBs showed good upconversion luminescent property, drug-loading capacity, release performance and excellent biocompatibility, exhibiting great potentials in targeted drug delivery and tissue engineering with potential tracking capability and lasting release performance. - Highlights: • NaYF 4 :Yb 3+ /Tm 3+ UCNPs were coated by F127 to improve aqueous dispersibility. • NaYF 4 :Yb 3+ /Tm 3+ UCNPs were assembled with chitosan to fabricate the composite beads (CMs). • Pickering emulsions stabilized by UCNPs exhibited uniform and satisfactory emulsion droplets. • The CMs prepared by the gelling of emulsion droplet preserved upconversion luminescent property. • The resultant CMs showed good drug-loading capacity, release performance and biocompatibility.

  6. Co-precipitation synthesis and upconversion luminescence ...

    Indian Academy of Sciences (India)

    ... light: strong green (539 nm), weak red (670 nm) and near-infrared (760 nm). The upconversion luminescence is based on two-photon absorption by the energy transfer from the donor (Yb3+) to the acceptor (Ho3+). All the results indicate that ZrO2:Yb3+-Ho3+ phosphors could be a promising biological labelling material.

  7. Strong enhancement of the upconversion emission in ZrO{sub 2}: Yb{sup 3+}, Er{sup 3+}, Gd{sup 3+} nanocubes synthesized with Na{sub 2}S

    Energy Technology Data Exchange (ETDEWEB)

    Urbina-Frías, Alejandra; López-Luke, Tzarara; Oliva, Jorge [Centro de Investigaciones en Óptica, A.P. 1-948, León, Guanajuato 37150 (Mexico); Salas, Pedro [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, A.P. 1-1010, Querétaro 76000 (Mexico); Torres-Castro, Alejandro [Universidad Autónoma de Nuevo León, A.P. 126-F, Monterrey, NeNuevo Leon 66450 (Mexico); De la Rosa, Elder, E-mail: elder@cio.mx [Centro de Investigaciones en Óptica, A.P. 1-948, León, Guanajuato 37150 (Mexico)

    2016-04-15

    In this work, the structural, morphological and luminescent characterization of ZrO{sub 2}:Yb{sup 3+},Er{sup 3+}, Gd{sup 3+} nanocrystals prepared with Na{sub 2}S by precipitation method is reported. The XRD spectra showed a mixture of tetragonal (88%) and monoclinic phases (12%) in samples fabricated with and without Na{sub 2}S. The tetragonal phase (100%) was stabilized by the introduction of the Gd{sup 3+}. According to TEM images, samples showed a cubic morphology with an average size of 150 nm, when both, Na{sub 2}S and Gd{sup 3+} were added. Red (678 nm), green (545 nm) and ultraviolet (275, 285 nm) emissions were obtained as a result of the upconversion process due to the energy transfer between Yb{sup 3+}–Er{sup 3+}–Gd{sup 3+} ions, under 970 nm of excitation. The integrated red band showed an increment of 40% and 125%, for samples prepared with Na{sub 2}S and combined with Gd{sup 3+}, respectively, compared to the ZrO{sub 2}:Yb{sup 3+}–Er{sup 3+} sample. Such increments are explained in terms of the surface pasivation by using Na{sub 2}S during the synthesis process and the role of Gd{sup 3+} as a reservoir of energy from Er{sup 3+}. - Highlights: • ZrO{sub 2}:Yb,Er nanoparticles were synthesized by a precipitation method. • ZrO{sub 2}:Yb,Er nanoparticles were prepared with Na{sub 2}S and sensitized with Gd{sup 3+}. • An increment of 40% in luminescence occurred in samples prepared with Na{sub 2}S. • An increment of 125% were obtained by the synergistic effect between Na{sub 2}S and Gd3{sup +}.

  8. Upconversion applied for mid-IR hyperspectral image acquisition

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Kehlet, Louis Martinus; Sanders, Nicolai Højer

    2015-01-01

    Different schemes for upconversion mid-IR hyperspectral imaging is implemented and compared in terms of spectral coverage, spectral resolution, speed and noise. Phasematch scanning and scanning of the object within the field of view is considered....

  9. A comprehensive phononics of phonon assisted energy transfer in the Yb{sup 3+} aided upconversion luminescence of Tm{sup 3+} and Ho{sup 3+} in solids

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Radhaballabh, E-mail: drdebnathr@gmail.com; Bose, Saptasree

    2015-05-15

    The theory of phonon assisted energy transfer is being widely used to explain the Yb{sup 3+} ion aided normal and upconversion emission of various rare earth ions in different Yb{sup 3+} co-doped solids. The reported phonon dynamics in many of these studies are either incomplete or erroneous. Here we report Yb{sup 3+} aided upconversion luminescence properties of Tm{sup 3+} and Ho{sup 3+} in (Yb{sup 3+}/Tm{sup 3+}) and (Yb{sup 3+}/Ho{sup 3+}) co-doped two BaO–tellurite glasses and explain their phononics in the light of Dexter's theory by proposing a comprehensive scheme. The approach is valid for other systems of different phonon structures. - Highlights: • Yb{sup 3+} aided upconversion luminescence properties of Tm{sup 3+} and Ho{sup 3+} in (Yb{sup 3+}/Tm{sup 3+}) and (Yb{sup 3+}/Ho{sup 3+}) co-doped two BaO–tellurite glasses, are reported. • Phonon assisted energy transfer in these systems are explained in the light of Dexter's theory by proposing a comprehensive scheme of phononics. • The approach is valid for other systems of different phonon structures.

  10. Spectrally shaped broadband study of up-conversion in Y2O3:Er3+

    International Nuclear Information System (INIS)

    Lytle, A.L.; Gagnon, E.; Tulchinsky, L.; Krebs, J.K.

    2014-01-01

    We present a novel scheme for studying up-conversion through excited state absorption (ESA) by using a broadband excitation source with spectral shaping capabilities. Up-conversion processes have typically been investigated using a single, narrowband excitation source, when the two steps of the process are coincident in frequency, which is often made possible by broadening mechanisms of the intermediate excited state manifolds. Thus, narrowband sources are limited in the systems they can excite and what material information they can provide. With broadband light, we are able to drive up-conversion with non-coincident frequencies as well. Finally, by windowing the spectrum, we determine the optimal excitation bandwidth for low-concentration (1%) Y 2 O 3 :Er 3+ nanocrystals. - Highlights: • Broadband excitation light is used to drive up-conversion in Y 2 O 3 :Er 3+ . • Broadband light excites all available transitions in the two-photon process. • A spectral shaping technique is used to alter the excitation frequencies present. • The optimal excitation bandwidth is measured by windowing the spectrum. • Broadband excitation reveals information inaccessible by narrowband sources

  11. Photon correlation in single-photon frequency upconversion.

    Science.gov (United States)

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  12. Size-independent peak shift between normal and upconversion ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... 1Crystal Growth Centre, Anna University, Chennai 600 025, India. 2Laser Physics ... the power-dependent upconversion photoluminescence (UCPL), it has been shown that the origin of UCPL ... For the past few years, studies.

  13. Mid infrared upconversion spectroscopy using diffuse reflectance

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Kehlet, Louis M.; Dam, Jeppe Seidelin

    2014-01-01

    specifically that upconversion methods can be deployed using a diffuse reflectance setup where the test sample is irradiated by a thermal light source, i.e. a globar. The diffuse reflectance geometry is particularly well suited when a transmission setup cannot be used. This situation may happen for highly...

  14. Sensing using rare-earth-doped upconversion nanoparticles.

    Science.gov (United States)

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit.

  15. Specific Visualization of Tumor Cells Using Upconversion Nanophosphors

    Science.gov (United States)

    Grebenik, E. A.; Generalova, A. N.; Nechaev, A. V.; Khaydukov, E.V.; Mironova, K. E.; Stremovskiy, O. A.; Lebedenko, E.N.; Zvyagin, A. V.; Deyev, S. M.

    2014-01-01

    The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct. High selectivity for the binding of the two-component 4D5 scFv-Bn : UCNP-Bs construct to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2 was demonstrated. This approach provides an opportunity to produce similar constructs for the visualization of different specific markers in pathogenic tissues, including malignant tumors. PMID:25558394

  16. NIR to visible upconversion in Er3+/Yb3+ co-doped CaYAl3O7 phosphor obtained by solution combustion process

    International Nuclear Information System (INIS)

    Singh, Vijay; Rai, Vineet Kumar; Al-Shamery, Katharina; Nordmann, Joerg; Haase, Markus

    2011-01-01

    Using the combustion synthesis, CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared at low temperatures (550 o C) in a few minutes. Formation of the compound was confirmed by X-ray powder diffraction. Near-infrared to visible upconversion fluorescence emission in the Er 3+ doped CaYAl 3 O 7 phosphor powder has been observed. The effect of co-doping with triply ionized ytterbium in the CaYAl 3 O 7 :Er 3+ phosphor has been studied and the process involved is discussed. - Highlights: → The green emitting up-conversion CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared by easy combustion method. → The combustion method is a simple, energy saving, fast and economical viable process. → The luminescence intensity in the co-doped phosphor is enhanced by several times compared to that of the singly (Er 3+ ) doped phosphor.

  17. Upconversion photoluminescence of epitaxial Yb{sup 3+}/Er{sup 3+} codoped ferroelectric Pb(Zr,Ti)O{sub 3} films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang, E-mail: zhangy_acd@hotmail.com [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kämpfe, Thomas [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Bai, Gongxun [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Mietschke, Michael; Yuan, Feifei; Zopf, Michael [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Abel, Stefan [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Eng, Lukas M. [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Hühne, Ruben [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Fompeyrine, Jean [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Ding, Fei, E-mail: f.ding@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schmidt, Oliver G. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer strasse 70, 09107 Chemnitz (Germany)

    2016-05-31

    Thin films of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} (PZT:Yb/Er) have been epitaxially grown on the SrTiO{sub 3} buffered Si wafer by pulsed laser deposition. Strong upconversion photoluminescence was observed in the PZT:Yb/Er thin film. Using piezoresponse force microscopy, polar domains in the PZT:Yb/Er film can be reversibly switched with a phase change of 180°. Ferroelectric hysteresis loop shape with a well-saturated response was observed. The epitaxially grown lanthanide-doped PZT on silicon opens up a promising route to the integration of luminescent functional oxides on the silicon platform. - Highlights: • Epitaxial growth of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} films on SrTiO{sub 3} buffered silicon • Upconversion emissions were obtained from the lanthanide ion doped thin films. • Saturated ferroelectric hysteresis loops were observed. • Polar domains were switched by PFM with a phase change of 180°.

  18. Functionalized upconversion nanoparticles for cancer imaging and therapy

    NARCIS (Netherlands)

    Liu, K.

    2014-01-01

    Near infrared (NIR) light administrated fluorescence imaging and photodynamic therapy (PDT) have shown great promising in cancer diagnosis and treatment. Especially with the recent development of the rare earth ions doped upconversion nanoparticles (UCNPs), much attentions have been attracted in

  19. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    the performance of today's state of the art IR detectors for the visible/near-IR region shows a striking contrast, as the latter can have dark currents in the range of 0.001 electrons per second. Demonstrated performance of waveguide upconversion techniques still show considerable dark noise, even when working...

  20. Mid-IR Imaging: Upconversion imager improves IR gas sensing

    DEFF Research Database (Denmark)

    Sahlberg, Anna-Lena; Li, Zhongshan; Høgstedt, Lasse

    2014-01-01

    A nonlinear upconversion detector shows near-shot-noise-limited performance and compares favorably—while adding additional imaging information—to conventional cryogenic detectors in the measurement of trace-level gases at atmospheric pressure....

  1. NIR to visible frequency upconversion in Er{sup 3+} and Yb{sup 3+} codoped ZrO{sub 2} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijay; Kim, Sang Hwan [Konkuk University, Department of Chemical Engineering, Seoul (Korea, Republic of); Rai, Vineet Kumar [Indian School of Mines, Department of Applied Physics, Dhanbad (India); Al-Shamery, Katharina [University of Oldenburg, Physical Chemistry, Institute for Pure and Applied Chemistry and Center of Interface Science, Oldenburg (Germany); Haase, Markus [University of Osnabrueck, Department of Inorganic Chemistry I-Materials Research, Institute of Chemistry, Osnabrueck (Germany)

    2013-11-15

    The ZrO{sub 2}:Er{sup 3+} codoped with Yb{sup 3+} phosphor powders have been prepared by the urea combustion route. Formation of the compounds ZrO{sub 2}:Er{sup 3+} and ZrO{sub 2}:Er{sup 3+}, Yb{sup 3+} was confirmed by XRD. The frequency upconversion emissions in the green and red regions upon excitation with a CW diode laser at {proportional_to}978 nm are reported. Codoping with Yb{sup 3+} enhances the emission intensities of the triply ionized erbium in the green and red spectral regions by about {proportional_to}130 and {proportional_to}820 times respectively. The emission properties of the ZrO{sub 2}:Er{sup 3+} phosphor powders are discussed on the basis of excited state absorption, energy transfer, and cross-relaxation energy transfer mechanisms. (orig.)

  2. ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Tomoya; Matsumoto, Naoko [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka-shi, Tokyo 181-8588 (Japan); Machida, Masahiro N.; Matsushita, Yuko [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395 (Japan); Motogi, Kazuhito; Honma, Mareki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Hoshigaoka2-12, Mizusawa-ku, Oshu-shi, Iwate 023-0861 (Japan); Kim, Mi Kyoung [Korea Astronomy and Space Science Institute, Hwaam-dong 61-1, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Burns, Ross A., E-mail: tomoya.hirota@nao.ac.jp [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA, Dwingeloo (Netherlands)

    2016-12-20

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperature is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.

  3. Red, green, blue and white light upconversion emission in Yb3+/Tm3+/Ho3+ co-doped tellurite glasses

    International Nuclear Information System (INIS)

    Desirena, H; De la Rosa, E; Meza, O; Salas, P

    2011-01-01

    Several Yb 3+ /Tm 3+ /Ho 3+ co-doped transparent TeO 2 -ZnO-Na 2 O-Yb 2 O 3 -Ho 2 O 3 -Tm 2 O 3 glasses were prepared and luminescence properties were characterized. Simultaneous red, green and blue (RGB) emission were obtained after excitation at 970 nm. Colour emission was tuned from multicolour to white light with colour coordinate (0.32, 0.33) matching very well with the white reference (0.33, 0.33). Changes in colour emission were obtained by varying the intensity ratios between RGB bands that are strongly concentration dependent because of the interaction of co-dopants. The colour tunability, high quality of white light and high intensity of the emitted signal make these transparent glasses excellent candidates for applications in solid-state lighting.

  4. Narrow-band tunable terahertz emission from ferrimagnetic Mn{sub 3-x}Ga thin films

    Energy Technology Data Exchange (ETDEWEB)

    Awari, N. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); University of Groningen, 9747 AG Groningen (Netherlands); Kovalev, S., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Fowley, C., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Green, B.; Yildirim, O.; Lindner, J.; Fassbender, J.; Deac, A. M.; Gensch, M. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Rode, K., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Lau, Y.-C.; Betto, D.; Thiyagarajah, N.; Coey, J. M. D. [CRANN, AMBER and School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Gallardo, R. A. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparíso (Chile)

    2016-07-18

    Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn{sub 3-x}Ga Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20–0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.

  5. Laser induced broad band anti-Stokes white emission from LiYbF4 nanocrystals

    Institute of Scientific and Technical Information of China (English)

    L. Marciniak; R. Tomala; M. Stefanski; D. Hreniak; W. Strek

    2016-01-01

    Spectroscopic properties of tetragonal LiYbF4 nanocrystals under high dense NIR excitation at vacuum condition were in-vestigated. White, broad band emission covering whole visible part of the spectrum from LiYbF4 nanocrystals was observed. Its in-tensity strongly depended on the excitation power, excitation wavelength and ambient pressure. Temperature of the nanocrystals un-der 975 nm excitation was determined as a function of excitation power. Strong photo-induced current was observed from LiYbF4 pallet. The emission kinetic was analyzed. The mechanism of the anti-Stokes white emission was discussed in terms of the la-ser-induced charge transfer emission from Yb2+ states.

  6. Upconversion of ion-sound to Langmuir turbulence

    International Nuclear Information System (INIS)

    Vlahos, L.; Papadopoulos, K.

    1979-01-01

    It is shown that upconversion of ion sound to Langmuir waves is impossible in a plasma with upsilon/sub d/< upsilon/sub e/. Previous conclusions to the opposite were in error, owing to neglect of the reverse process (i.e., reabsorbtion of Langmuir waves), which always dominates for upsilon/sub d/< upsilon/sub e/

  7. Infrared upconversion hyperspectral imaging

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin

    2015-01-01

    In this Letter, hyperspectral imaging in the mid-IR spectral region is demonstrated based on nonlinear frequency upconversion and subsequent imaging using a standard Si-based CCD camera. A series of upconverted images are acquired with different phase match conditions for the nonlinear frequency...... conversion process. From this, a sequence of monochromatic images in the 3.2-3.4 mu m range is generated. The imaged object consists of a standard United States Air Force resolution target combined with a polystyrene film, resulting in the presence of both spatial and spectral information in the infrared...... image. (C) 2015 Optical Society of America...

  8. Ballistic-electron-emission spectroscopy of AlxGa1-xAs/GaAs heterostructures: Conduction-band offsets, transport mechanisms, and band-structure effects

    International Nuclear Information System (INIS)

    OShea, J.J.; Brazel, E.G.; Rubin, M.E.; Bhargava, S.; Chin, M.A.; Narayanamurti, V.

    1997-01-01

    We report an extensive investigation of semiconductor band-structure effects in single-barrier Al x Ga 1-x As/GaAs heterostructures using ballistic-electron-emission spectroscopy (BEES). The transport mechanisms in these single-barrier structures were studied systematically as a function of temperature and Al composition over the full compositional range (0≤x≤1). The initial (Γ) BEES thresholds for Al x Ga 1-x As single barriers with 0≤x≤0.42 were extracted using a model which includes the complete transmission probability of the metal-semiconductor interface and the semiconductor heterostructure. Band offsets measured by BEES are in good agreement with previous measurements by other techniques which demonstrates the accuracy of this technique. BEES measurements at 77 K give the same band-offset values as at room temperature. When a reverse bias is applied to the heterostructures, the BEES thresholds shift to lower voltages in good agreement with the expected bias-induced band-bending. In the indirect band-gap regime (x>0.45), spectra show a weak ballistic-electron-emission microscopy current contribution due to intervalley scattering through Al x Ga 1-x As X valley states. Low-temperature spectra show a marked reduction in this intervalley current component, indicating that intervalley phonon scattering at the GaAs/Al x Ga 1-x As interface produces a significant fraction of thisX valley current. A comparison of the BEES thresholds with the expected composition dependence of the Al x Ga 1-x As Γ, L, and X points yields good agreement over the entire composition range. copyright 1997 The American Physical Society

  9. Infrared hyperspectral upconversion imaging using spatial object translation

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Sanders, Nicolai Højer; Tidemand-Lichtenberg, Peter

    2015-01-01

    In this paper hyperspectral imaging in the mid-infrared wavelength region is realised using nonlinear frequency upconversion. The infrared light is converted to the near-infrared region for detection with a Si-based CCD camera. The object is translated in a predefined grid by motorized actuators...

  10. Otoacoustic emissions in young adults exposed to drums noise of a college band

    Directory of Open Access Journals (Sweden)

    Paula Botelho da Silva

    Full Text Available ABSTRACT Purpose: to identify cochlear dysfunction and occurrence of tinnitus in young adults exposed to drums noise of a college band. Methods: the sample included 50 subjects: 25 musicians (study group and 25 non-musicians (control group. The procedures included anamnesis, pure tone audiometry, acoustic impedance and Transient Evoked Otoacoustic Emissions, Distortion Product Otoacoustic Emissions and Distortion Product Otoacoustic Emissions Input-Output function. Results: positive correlation between the occurrence of tinnitus and the variables exposure time and use of personal stereos was found. Overall, the study group showed significantly lower Transient Evoked Otoacoustic Emissions, when compared to the control group. In the study group, there was a tendency toward worse response in 6 kHz(f2 in Distortion Product Otoacoustic Emissions in both ears. The Distortion Product Otoacoustic Emissions Input-Output function did not differ between groups nor did its slope. Conclusion: in general, otoacoustic emissions were worse in noise-exposed young people (study group when compared to the unexposed (control group, indicating that the test may be important in early identification of cochlear changes.

  11. Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging.

    Science.gov (United States)

    Zhou, Jing; Zhu, Xingjun; Chen, Min; Sun, Yun; Li, Fuyou

    2012-09-01

    Multimodal imaging is rapidly becoming an important tool for biomedical applications because it can compensate for the deficiencies of individual imaging modalities. Herein, multifunctional NaLuF(4)-based upconversion nanoparticles (Lu-UCNPs) were synthesized though a facile one-step microemulsion method under ambient condition. The doping of lanthanide ions (Gd(3+), Yb(3+) and Er(3+)/Tm(3+)) endows the Lu-UCNPs with high T(1)-enhancement, bright upconversion luminescence (UCL) emissions, and excellent X-ray absorption coefficient. Moreover, the as-prepared Lu-UCNPs are stable in water for more than six months, due to the protection of sodium glutamate and diethylene triamine pentacetate acid (DTPA) coordinating ligands on the surface. Lu-UCNPs have been successfully applied to the trimodal CT/MR/UCL lymphatic imaging on the modal of small animals. It is worth noting that Lu-UCNPs could be used for imaging even after preserving for over six months. In vitro transmission electron microscope (TEM), methyl thiazolyl tetrazolium (MTT) assay and histological analysis demonstrated that Lu-UCNPs exhibited low toxicity on living systems. Therefore, Lu-UCNPs could be multimodal agents for CT/MR/UCL imaging, and the concept can be served as a platform technology for the next-generation of probes for multimodal imaging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. EXAMINING THE BROADBAND EMISSION SPECTRUM OF WASP-19b: A NEW z-BAND ECLIPSE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, George; Bayliss, Daniel D. R. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd, Weston Creek, ACT 2611 (Australia); Kedziora-Chudczer, Lucyna; Bailey, Jeremy, E-mail: george@mso.anu.edu.au [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia)

    2013-09-10

    WASP-19b is one of the most irradiated hot-Jupiters known. Its secondary eclipse is the deepest of all transiting planets and has been measured in multiple optical and infrared bands. We obtained a z-band eclipse observation with a measured depth of 0.080% {+-} 0.029%, using the 2 m Faulkes Telescope South, which is consistent with the results of previous observations. We combined our measurement of the z-band eclipse with previous observations to explore atmosphere models of WASP-19b that are consistent with its broadband spectrum. We use the VSTAR radiative transfer code to examine the effect of varying pressure-temperature profiles and C/O abundance ratios on the emission spectrum of the planet. We find that models with super-solar carbon enrichment best match the observations, which is consistent with previous model retrieval studies. We also include upper atmosphere haze as another dimension in the interpretation of exoplanet emission spectra and find that particles <0.5 {mu}m in size are unlikely to be present in WASP-19b.

  13. Atmospheric dayglow diagnostics involving the O2(b-X) Atmospheric band emission: Global Oxygen and Temperature (GOAT) mapping

    Science.gov (United States)

    Slanger, T. G.; Pejaković, D. A.; Kostko, O.; Matsiev, D.; Kalogerakis, K. S.

    2017-03-01

    The terrestrial dayglow displays prominent emission features from the 0-0 and 1-1 bands of the O2 Atmospheric band system in the 760-780 nm region. We present an analysis of observations in this wavelength region recorded by the Space Shuttle during the Arizona Airglow Experiment. A major conclusion is that the dominant product of O(1D) + O2 energy transfer is O2(b, v = 1), a result that corroborates our previous laboratory studies. Moreover, critical to the interpretation of dayglow is the possible interference by N2 and N2+ bands in the 760-780 nm region, where the single-most important component is the N2 1PG 3-1 band that overlaps with the O2(b-X) 0-0 band. When present, this background must be accounted for to reveal the O2(b-X) 0-0 and 1-1 bands for altitudes at which the O2 and N2/N2+ emissions coincide. Finally, we exploit the very different collisional behavior of the two lowest O2(b) vibrational levels to outline a remote sensing technique that provides information on Atmospheric composition and temperature from space-based observations of the 0-0 and 1-1 O2 atmospheric bands.

  14. Infrared to near-infrared and visible upconversion mechanisms in LiYF 4: Yb3+, Ho3+

    NARCIS (Netherlands)

    Martín-Rodríguez, R.; Meijerink, A.|info:eu-repo/dai/nl/075044986

    2014-01-01

    Upconversion materials have regained interest in recent years due to their potential to enhance the efficiency of solar cells. The research has focused on lanthanide based upconverters, especially Er3+- and Yb 3+-doped materials. In this paper we report Ho3+ and Yb3+ upconversion after excitation

  15. Room-temperature mid-infrared single-photon imaging using upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2014-01-01

    The mid-wave infrared (MWIR) region is a fast developing research area due to many possible applications. Indeed a lot of research has been put into the development of novel light sources in the MWIR. This has led to very powerful sources such as quantum cascade lasers (QCL) and optical parametric...... detectors, when compared to silicon based detectors available for the visible and near visible spectral range. In fact, camera sensitivities down to the single photon level have been developed for sub-μm wavelengths. This discrepancy in sensitivity makes it attractive to perform wavelength upconversion...... upconversion efficiencies of 20 % for polarized collinear MWIR light. To make the module truly portable the laser cavity is assembled in a closed mechanical unit which ensures that visible light cannot enter from the outside, and provides a very stable mount for the optical components. Figure 1 depicts...

  16. Up-conversion routines of Er{sup 3+}–Yb{sup 3+} doped Y{sub 6}O{sub 5}F{sub 8} and YOF phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangmoon, E-mail: spark@silla.ac.kr [Center for Green Fusion Technology and Department of Engineering in Energy & Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Yang, Wonseok; Park, Chu-Young; Noh, Minhee; Choi, Seulki [Center for Green Fusion Technology and Department of Engineering in Energy & Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Park, Dahye; Jang, Ho Seong; Cho, So-Hye [Center for Materials Architecturing, Institute of Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of)

    2015-11-15

    Highlights: • Single-phase optical materials of Y{sub 6}O{sub 5}F{sub 8}:Er and YOF:Er were prepared. • Effective spectral converting properties were observed in Y{sub 6}O{sub 5}F{sub 8}:Er,Yb. • 980 nm diode laser was irradiated for up-converting analysis. • A multi-photon process in the phosphors was investigated. - Abstract: Optical materials composed of a Y{sub 6(1−p−q)}Er{sub 6p}Yb{sub 6q}O{sub 5}F{sub 8} (p = 0.001–0.1, q = 0.005–0.1) solid solution with Y{sub 0.99}Er{sub 0.01}OF were prepared via a solid-state reaction using excess NH{sub 4}F flux at 950 °C for 30 min. X-ray diffraction patterns of Y{sub 6(1−p−q)}Er{sub 6p}Yb{sub 6q}O{sub 5}F{sub 8} and Y{sub 0.99}Er{sub 0.01}OF were compared upon altering the synthesis temperature and the molar ratio of the NH{sub 4}F flux to the Y{sup 3+} (Er{sup 3+}, Yb{sup 3+}) ions. The effective spectral-conversion properties of Er{sup 3+} and Er{sup 3+}–Yb{sup 3+} ions in Y{sub 6}O{sub 5}F{sub 8} phosphors were monitored during excitation with a 980 nm wavelength diode-laser. Selection of appropriate Er{sup 3+} and/or Yb{sup 3+} concentrations in the Y{sub 6}O{sub 5}F{sub 8} structure led to achievement of the desired up-conversion emission, from the green to the red regions of the spectra. Furthermore, the mechanism of up-conversion in the phosphors was described by an energy-level schematic. Up-conversion emission spectra and the dependence of the emission intensity on pump power (between 193 and 310 mW) in the Y{sub 6(0.995−q)}Er{sub 0.03}Yb{sub 6q}O{sub 5}F{sub 8} phosphors were also investigated.

  17. L-Band Microwave Emission of Soil Freeze-Thaw Process in the Third Pole Environment

    NARCIS (Netherlands)

    Zheng, Donghai; van der Velde, R.; Su, Z.; Zeng, Y.

    2017-01-01

    Soil freeze-thaw transition monitoring is essential for quantifying climate change and hydrologic dynamics over cold regions, for instance, the Third Pole. We investigate the L-band (1.4 GHz) microwave emission characteristics of soil freeze-thaw cycle via analysis of tower-based brightness

  18. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    Directory of Open Access Journals (Sweden)

    L. R. Corr

    2016-08-01

    Full Text Available Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  19. Influence of Er3+/Yb3+ concentration ratio on the down-conversion and up-conversion luminescence and lifetime in GdVO4:Er3+/Yb3+ microcrystals

    Directory of Open Access Journals (Sweden)

    Gavrilović T.V.

    2015-01-01

    Full Text Available In this paper, we studied the effects of Er3+/Yb3+ concentration ratio on structural, morphological and luminescence properties of GdVO4:Er3+/Yb3+ green phosphors prepared by a high-temperature solid state method. The samples with different concentrations (between 0.5 to 2 mol% of dopant Er3+ emitting ions and different concentrations (between 5 to 20 mol% of sensitizer ions (Yb3+ were studied. The phosphors were characterized by the X-ray diffraction (XRD, scanning electron microscopy (SEM and photoluminescence spectroscopy. For all samples, XRD diffraction patterns confirmed a formation of a pure GdVO4 phase, while the SEM showed that the materials are comprised of chunks of deformed particles with an average diameter ranging from approximately 2 μm to 8 μm. Both, down-conversion and up-conversion emission spectra of GdVO4:Er3+/Yb3+ samples, under near UV and IR excitations, exhibit two strong emission bands in the green spectral region at 525 nm and 552 nm wavelengths corresponding to 2H11/2 →4I15/2 and 4S3/2 → 4I15/2 electronic transitions of Er3+ ions. The intensity of the green emission was changed by changing the Er3+/Yb3+ concentration ratio. This dual-mode luminescence makes these materials ideal as green phosphors for a wide variety of applications in the fields of bioanalysis and biomedical. [Projekat Ministarstva nauke Republike Srbije, br. 45020 i br. 172056

  20. AlxGa1--xN/GaN band offsets determined by deep-level emission

    International Nuclear Information System (INIS)

    Hang, D. R.; Chen, C. H.; Chen, Y. F.; Jiang, H. X.; Lin, J. Y.

    2001-01-01

    We present studies of the compositional dependence of the optical properties of Al x Ga 1-x N(0 x Ga 1-x N. As aluminum concentration increases, the color of the band changes from yellow (2.2 eV) to blue (2.6 eV). The shift was less than that of the band gap. Together with previously published studies, it implies that the deep acceptor level is pinned to a common reference level to both materials, thus the deep level responsible for the yellow emission is used as a common reference level to determine the band alignment in Al x Ga 1-x N/GaN heterojunctions. Combining with the near-band-edge modulation spectra, the estimated ratio of conduction-to-valence band discontinuity is 65:35. Our results are close to the values obtained from PL measurements on Al 0.14 Ga 0.86 N/GaN quantum wells and those calculated by linear muffin-tin orbital method and linearized augmented plane wave method. copyright 2001 American Institute of Physics

  1. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    International Nuclear Information System (INIS)

    Jiang Shan; Zhang Yong; Lim, Kian Meng; Sim, Eugene K W; Ye Lei

    2009-01-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF 4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  2. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    Science.gov (United States)

    Jiang, Shan; Zhang, Yong; Lim, Kian Meng; Sim, Eugene K. W.; Ye, Lei

    2009-04-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  3. Broadband sensitized photon up-conversion at subsolar irradiance (Conference Presentation)

    Science.gov (United States)

    Pedrini, Jacopo; Monguzzi, Angelo; Meinardi, Francesco

    2016-09-01

    A crucial limit of solar devices is their inability to harvest the full solar spectrum. Currently, sensitized up-conversion based on triplet-tripled annihilation (STTA-UC) in bi-component organic systems is the most promising technique to recover sub-bandgap photons, showing good efficiencies also at excitation intensities comparable to the solar irradiance. In STTA-UC, high-energy light is generated through annihilation of metastable triplet states of molecules acting as emitters, which are populated via resonant energy transfer from a light-harvesting sensitizer. However, suitable sensitizers show narrow absorption bands, limiting the fraction of recoverable photons, therefore preventing the application of STTA-UC to real-world devices. Here we demonstrate how to overcome the described limit by using multiple sensitizers that work cooperatively to broaden the overall system absorption band. This is obtained using an additional sensitizer that transfers the extra harvested energy to the main one (sensitization of the sensitizer), or a set of properly designed complementary absorbing sensitizers all able to excite simultaneously the same emitter (multi-sensitizers). In both cases STTA-UC performances result strongly enhanced compared to the corresponding mono-sensitizer system, increasing the up-converted light intensity generated at AM 1.5 up to two times. Remarkably, by coupling our light converters to a DSSC we prove its operation by exploiting exclusively sub-bandgap photons. A detailed modeling of the photophysical processes involved in these complex systems allows us to draw the guidelines for the design of the next generation STTA-UC materials, encouraging their application to photovoltaic technologies.

  4. Multi-band emission in a wide wavelength range from tin oxide/Au nanocomposites grown on porous anodic alumina substrate (AAO)

    International Nuclear Information System (INIS)

    Norek, Małgorzata; Michalska-Domańska, Marta; Stępniowski, Wojciech J.; Ayala, Israel; Bombalska, Aneta; Budner, Bogusław

    2013-01-01

    The photoluminescence (PL) properties of tin oxide nanostructures are investigated. Three samples of different morphology, induced by deposition process and various geometrical features of nanoporous anodic aluminum oxide (AAO) substrate, are analyzed. X-ray photoelectronic spectroscopy (XPS) analysis reveals the presence of two forms of tin oxide on the surface of all studied samples: SnO and SnO 2 . The former form is typical for reduced surface with bridging oxygen atoms and every other row of in-plane oxygen atoms removed. The oxygen defects give rise to a strong emission in visible region. Two intense PL peaks are observed centered at about 540 (band I) and 620 (band II) nm. The origin of these bands was ascribed to the recombination of electrons from the conduction band (band I) and shallow traps levels (band II) to the surface oxygen vacancy levels. Upon deposition of Au nanoparticles on the top of tin oxide nanostructures the emission at 540 and 620 nm disappears and a new band (band III) occurs in the range >760 nm. The PL mechanism operating in the studied systems is discussed. The tin oxide/Au nanocomposites can be used as efficient multi-band light emitters in a wide (from visible to near infrared) wavelength range.

  5. Up-conversion monodispersed spheres of NaYF4:Yb3+/Er3+: green and red emission tailoring mediated by heating temperature, and greatly enhanced luminescence by Mn2+ doping.

    Science.gov (United States)

    Zhu, Qi; Song, Caiyun; Li, Xiaodong; Sun, Xudong; Li, Ji-Guang

    2018-04-09

    Submicron sized, monodispersed spheres of Mn2+, Yb3+/Er3+ and Mn2+/Yb3+/Er3+ doped α-NaYF4 were easily autoclaved from mixed solutions of the component nitrates and ammonium fluoride (NH4F), in the presence of EDTA-2Na. Detailed characterizations of the resultant phosphors were obtained using XRD, Raman spectroscopy, FE-SEM, HR-TEM, STEM, PLE/PL spectroscopy, and fluorescence decay analysis. Finer structure and better crystal perfection was observed at a higher calcination temperature, and the spherical shape and excellent dispersion of the original particles was retained at temperatures up to 600 °C. Under the 980 nm infrared excitation, the Yb3+/Er3+-doped sample (calcined at 400 °C) exhibits a stronger green emission centered at ∼524 nm (2H11/2 → 4I15/2 transition of Er3+) and a weaker red emission centered at ∼657 nm (4F9/2 → 4I15/2 transition of Er3+). A 200 °C increase in the temperature from 400 °C to 600 °C resulted in the dominant red emission originating from the 4F9/2 → 4I15/2 transition of Er3+, instead of the previously dominant green one. Mn2+ doping induced a remarkable more enhanced intensity at ∼657 nm and ∼667 nm (red emission area) than that at ∼524 nm and ∼546 nm (green emission area), because of the non-radiative energy transfer between Mn2+ and Er3+. However, a poor thermal stability was induced by Mn2+ doping. The observed upconversion luminescence of the samples calcined at 400 °C and 600 °C followed the two photon process and the four photon process, respectively.

  6. Non-collinear upconversion of infrared light

    DEFF Research Database (Denmark)

    Pedersen, Christian; Hu, Qi; Høgstedt, Lasse

    2014-01-01

    Two dimensional mid-infrared upconversion imaging provides unique spectral and spatial information showing good potential for mid- infrared spectroscopy and hyperspectral imaging. However, to extract spectral or spatial information from the upconverted images an elaborate model is needed, which...... includes non-collinear interaction. We derive here a general theory providing the far field of the upconverted light when two arbitrary fields interact inside a non linear crystal. Theoretical predictions are experimentally verified for incoherent radiation and subsequently applied to previously published...

  7. Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres.

    Science.gov (United States)

    Suo, Hao; Zhao, Xiaoqi; Zhang, Zhiyu; Shi, Rui; Wu, Yanfang; Xiang, Jinmeng; Guo, Chongfeng

    2018-05-17

    It is essential to simultaneously boost the luminescence intensity and thermometric sensitivity of up-converted optical thermometers towards potential biomedical sensing applications. Herein, the effects of local site symmetry on the up-conversion (UC) emission and thermal sensing ability in trigonal-phased La2O3:Er3+/Yb3+ nanospheres were qualitatively explored using cubic-phased Lu2O3 and Y2O3 with a similar shape and phonon energy as contrasts. Under 980 nm light excitation, much stronger UC emissions were detected in La2O3 samples than that in cubic Lu2O3 and Y2O3 samples, and the possible mechanisms were elaborately proposed using Eu3+ as a luminescent probe. Thermo-responsive emission intensity from 2H11/2/4S3/2 levels was monitored to evaluate the absolute sensitivity of three samples, which strongly depends on the dopant-induced local site symmetric distortions according to the Judd-Ofelt theory. The potentiality of La2O3:Er3+/Yb3+ for sub-tissue thermometry was also validated by ex vivo experiments. Results open a promising avenue for realizing highly sensitive thermometry with a large signal-to-noise ratio in sub-tissues via finely tailoring the local site symmetry.

  8. Enhancement of the up-conversion luminescence from NaYF{sub 4}:Yb{sup 3+},Tb{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Hölsä, Jorma, E-mail: jholsa@utu.fi [University of Turku, Department of Chemistry, FI-20014 Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland); Universidade de São Paulo, Instituto de Química, São Paulo-SP (Brazil); Laihinen, Tero [University of Turku, Department of Chemistry, FI-20014 Turku (Finland); Laamanen, Taneli; Lastusaari, Mika [University of Turku, Department of Chemistry, FI-20014 Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland); Pihlgren, Laura [University of Turku, Department of Chemistry, FI-20014 Turku (Finland); Graduate School of Materials Research (GSMR), Turku (Finland); Rodrigues, Lucas C.V. [University of Turku, Department of Chemistry, FI-20014 Turku (Finland); Universidade de São Paulo, Instituto de Química, São Paulo-SP (Brazil); Soukka, Tero [University of Turku, Department of Biochemistry, FI-20014 Turku (Finland)

    2014-04-15

    The synthesis conditions of the Yb{sup 3+} and Tb{sup 3+} co-doped NaYF{sub 4} were optimized by reducing the number of washings to include only ethanol. The avoidance of the loss of amorphous NaF prior to post-annealing of the as-prepared materials resulted in the enhancement of the otherwise rather weak up-conversion from Tb{sup 3+} by 1–2 orders of magnitude. At the same time, the temperature of formation of the hexagonal NaRF{sub 4} phase with high up-conversion could be lowered by 100 °C down to 350 °C. This improvement in up-conversion was concluded to result from the better stoichiometry of the material without washing with water. The deficit of Na{sup +} would result in the excess of fluoride which, although not as fatal to the luminescence as the fluoride vacancies, has serious implications to the up-conversion intensity. A further enhancement in the up-conversion luminescence was observed to be due to the Er{sup 3+} ion impurity frequently associated with high-concentration Yb{sup 3+} materials. The mechanism involving the unintentional Er{sup 3+} sensitizer and the resonance energy transfer in the Yb{sup 3+}–Er{sup 3+}–Tb{sup 3+} co-doped NaYF{sub 4} were discussed based on the energy level schemes of the Yb{sup 3+}, Er{sup 3+}, and Tb{sup 3+} ions in NaYF{sub 4}.

  9. MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid (MYD21A2.006). A new suite of MODIS Land Surface Temperature (LST) and Emissivity...

  10. MODIS/Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid (MOD21A2.006). A new suite of MODIS Land Surface Temperature (LST) and Emissivity...

  11. A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion

    International Nuclear Information System (INIS)

    Fu, Hailing; Yeatman, Eric M.

    2017-01-01

    Energy harvesting from vibration for low-power electronics has been investigated intensively in recent years, but rotational energy harvesting is less investigated and still has some challenges. In this paper, a methodology for low-speed rotational energy harvesting using piezoelectric transduction and frequency up-conversion is analysed. The system consists of a piezoelectric cantilever beam with a tip magnet and a rotating magnet on a revolving host. The angular kinetic energy of the host is transferred to the vibration energy of the piezoelectric beam via magnetic coupling between the magnets. Frequency up-conversion is achieved by magnetic plucking, converting low frequency rotation into high frequency vibration of the piezoelectric beam. A distributed-parameter theoretical model is presented to analyse the electromechanical behaviour of the rotational energy harvester. Different configurations and design parameters were investigated to improve the output power of the device. Experimental studies were conducted to validate the theoretical estimation. The results illustrate that the proposed method is a feasible solution to collecting low-speed rotational energy from ambient hosts, such as vehicle tires, micro-turbines and wristwatches. - Highlights: • A topology to harvest low-frequency broad-band rotational energy is studied. • Different configurations were considered; arrangement (a)-repulsive was the best. • Theoretical analysis shows the harvester has a wide bandwidth at low frequency. • The ripples of output power are related to the beam's natural frequency. • Experimental results show a good performance (over 20 μW) from 15 Hz to 35 Hz.

  12. Upconversion study of singly activator ions doped La2O3 nanoparticle synthesized via optimized solvothermal method

    Science.gov (United States)

    Tiwari, S. P.; Singh, S.; Kumar, A.; Kumar, K.

    2016-05-01

    In present work, an optimized solvothermal method has been chosen to synthesize the singly doped Er3+ activator ions with La2O3 host matrix. The sample is annealed at 500 °C in order to remove the moisture and other organic impurities. The sample is characterized by using XRD and FESEM to find out the phase and surface morphology. The observed particle size is found almost 80 nm with spherical agglomerated shape. Upconversion spectra are recorded at room temperature using 976 nm diode laser excitation sources and consequently the emission peaks in green and red region are observed. The color coordinate diagram shows the results that the present material may be applicable in different light emitting sources.

  13. Magnetic nanosensor particles in luminescence upconversion capability.

    Science.gov (United States)

    Wilhelm, Stefan; Hirsch, Thomas; Scheucher, Elisabeth; Mayr, Torsten; Wolfbeis, Otto S

    2011-09-05

    Nanoparticles (NPs) exhibit interesting size-dependent electrical, optical, magnetic, and chemical properties that cannot be observed in their bulk counterparts. The synthesis of NPs (i.e., crystalline particles ranging in size from 1 to 100 nm) has been intensely studied in the past decades. Magnetic nanoparticles (MNPs) form a particularly attractive class of NPs and have found numerous applications such as in magnetic resonance imaging to visualize cancer, cardiovascular, neurological and other diseases. Other uses include drug targeting, tissue imaging, magnetic immobilization, hyperthermia, and magnetic resonance imaging. MNPs, due to their magnetic properties, can be easily separated from (often complex) matrices and manipulated by applying external magnetic field. Near-infrared to visible upconversion luminescent nanoparticles (UCLNPs) form another type of unusual nanoparticles. They are capable of emitting visible light upon NIR light excitation. Lanthanide-doped (Yb, Er) hexagonal NaYF₄ UCLNPs are the most efficient upconversion phosphors known up to now. The use of UCLNPs for in vitro imaging of cancer cells and in vivo imaging in tissues has been demonstrated. UCLNPs show great potential as a new class of luminophores for biological, biomedical, and sensor applications. We are reporting here on our first results on the combination of MNP and UCLNP technology within an ongoing project supported by the DFG and the FWF (Austria).

  14. Visible and near infrared up-conversion luminescence in Yb3+/Tm3+ co-doped yttria-alumino-silicate glass based optical fibers

    International Nuclear Information System (INIS)

    Halder, Arindam; Chandra Paul, Mukul; Wadi Harun, Sulaiman; Kumar Bhadra, Shyamal; Bysakh, Sandip; Das, Shyamal; Pal, Mrinmay

    2013-01-01

    We report blue light up-conversion (UC) emission in Yb–Tm co-doped nano-phase separated yttria-alumino-silicate (YAS) glass based D-shaped with low-index cladding optical fibers. Y 2 O 3 creates an environment of nano structured YAS glass phases with Yb and Tm rich zone into the core glass which confirmed from TEM analyses. This kind of glass host assists in distributing of Yb and Tm rich zone uniformly throughout the core region. Yb and Tm doped regions exist mainly into nano YAS phases, defined as RE rich nano YAS-RE phases. All samples exhibit UC luminescence peaks at 483 nm, 650 nm and 817 nm for Tm 3+ and 1044 nm for Yb 3+ under excitation by 975 nm laser light. In such type of nano-engineered glass–ceramic based host, almost all the Yb ions transferred its energy to the nearer Tm ions. In particular 483 nm emission is attributed to 1 G 4 → 3 H 6 transition through a three step resonance energy transfer (ET) from excited Yb 3+ . The highest emission intensity is obtained with a concentration of 0.5 wt% Tm 3+ and 2.0 wt% Yb 3+ . The ET between Yb 3+ and Tm 3+ is increased with increase of Yb 3+ concentration with respect to Tm 3+ . The experimental fluorescence life-times of Tm 3+ upconversion emission at visible wavelengths into such kind of fiber is reported under 975 nm pump excitation. The present study is important for development of an efficient tunable 483 nm fluorescence light source. -- Highlights: • We report nano-phase separated YAS glass host based Yb–Tm co-doped optical fibers. • Almost all the Yb transferred its energy to the neighboring Tm ions. • We report strong UC luminescence peaks at 483 nm and 817 nm wavelengths. • We report third ET coefficient as 1.6723 Hz for such kind of Yb–Tm codoped fiber. • We report suitable fiber as an efficient tunable 483 nm fluorescence light source

  15. A chip-scale, telecommunications-band frequency conversion interface for quantum emitters.

    Science.gov (United States)

    Agha, Imad; Ates, Serkan; Davanço, Marcelo; Srinivasan, Kartik

    2013-09-09

    We describe a chip-scale, telecommunications-band frequency conversion interface designed for low-noise operation at wavelengths desirable for common single photon emitters. Four-wave-mixing Bragg scattering in silicon nitride waveguides is used to demonstrate frequency upconversion and downconversion between the 980 nm and 1550 nm wavelength regions, with signal-to-background levels > 10 and conversion efficiency of ≈ -60 dB at low continuous wave input pump powers ( 25 % in existing geometries. Finally, we present waveguide designs that can be used to connect shorter wavelength (637 nm to 852 nm) quantum emitters with 1550 nm.

  16. Fabrication and evaluation of chitosan/NaYF{sub 4}:Yb{sup 3+}/Tm{sup 3+} upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Huiqiong; Chen, Xiuqiong; Shi, Jia; Shi, Zaifeng; Sun, Wei; Lin, Qiang, E-mail: linqianggroup@163.com; Wang, Xianghui; Dai, Zihao

    2017-02-01

    The rare earth ion doped upconversion nanoparticles (UCNPs) synthesized by hydrophobic organic ligands possess poor solubility and low fluorescence quantum yield in aqueous media. To conquer this issue, NaYF{sub 4}:Yb{sup 3+}/Tm{sup 3+} UCNPs, synthesized by a hydrothermal method, were coated with F127 and then assembled with chitosan to fabricate the chitosan/NaYF{sub 4}:Yb{sup 3+}/Tm{sup 3+} composite beads (CS/NaYF{sub 4}:Yb{sup 3+}/Tm{sup 3+} CBs) by Pickering emulsion system. The characterization results revealed that the as-synthesized NaYF{sub 4}:Yb{sup 3+}/Tm{sup 3+} UCNPs with an average size of 20 nm exhibited spherical morphology, high crystallinity and characteristic emission upconversion fluorescence with an overall blue color output. The NaYF{sub 4}:Yb{sup 3+}/Tm{sup 3+} UCNPs were successfully conjugated on the surface of chitosan beads by the gelling of emulsion droplets. The resultant CS/NaYF{sub 4}:Yb{sup 3+}/Tm{sup 3+} CBs showed good upconversion luminescent property, drug-loading capacity, release performance and excellent biocompatibility, exhibiting great potentials in targeted drug delivery and tissue engineering with potential tracking capability and lasting release performance. - Highlights: • NaYF{sub 4}:Yb{sup 3+}/Tm{sup 3+} UCNPs were coated by F127 to improve aqueous dispersibility. • NaYF{sub 4}:Yb{sup 3+}/Tm{sup 3+} UCNPs were assembled with chitosan to fabricate the composite beads (CMs). • Pickering emulsions stabilized by UCNPs exhibited uniform and satisfactory emulsion droplets. • The CMs prepared by the gelling of emulsion droplet preserved upconversion luminescent property. • The resultant CMs showed good drug-loading capacity, release performance and biocompatibility.

  17. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles

    OpenAIRE

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near ...

  18. Light-Emitting Photon-Upconversion Nanoparticles in the Generation of Transdermal Reactive-Oxygen Species.

    Science.gov (United States)

    Prieto, Martin; Rwei, Alina Y; Alejo, Teresa; Wei, Tuo; Lopez-Franco, Maria Teresa; Mendoza, Gracia; Sebastian, Victor; Kohane, Daniel S; Arruebo, Manuel

    2017-12-06

    Common photosensitizers used in photodynamic therapy do not penetrate the skin effectively. In addition, the visible blue and red lights used to excite such photosensitizers have shallow penetration depths through tissue. To overcome these limitations, we have synthesized ultraviolet- and visible-light-emitting, energy-transfer-based upconversion nanoparticles and coencapsulated them inside PLGA-PEG (methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)) nanoparticles with the photosensitizer protoporphyrin IX. Nd 3+ has been introduced as a sensitizer in the upconversion nanostructure to allow its excitation at 808 nm. The subcytotoxic doses of the hybrid nanoparticles have been evaluated on different cell lines (i.e., fibroblasts, HaCaT, THP-1 monocytic cell line, U251MG (glioblastoma cell line), and mMSCs (murine mesenchymal stem cells). Upon NIR (near infrared)-light excitation, the upconversion nanoparticles emitted UV and VIS light, which consequently activated the generation of reactive-oxygen species (ROS). In addition, after irradiating at 808 nm, the resulting hybrid nanoparticles containing both upconversion nanoparticles and protoporphyrin IX generated 3.4 times more ROS than PLGA-PEG nanoparticles containing just the same dose of protoporphyrin IX. Their photodynamic effect was also assayed on different cell cultures, demonstrating their efficacy in selectively killing treated and irradiated cells. Compared to the topical application of the free photosensitizer, enhanced skin permeation and penetration were observed for the nanoparticulate formulation, using an ex vivo human-skin-permeation experiment. Whereas free protoporphyrin IX remained located at the outer layer of the skin, nanoparticle-encapsulated protoporphyrin IX was able to penetrate through the epidermal layer slightly into the dermis.

  19. Enhanced 2D-image upconversion using solid-state lasers

    DEFF Research Database (Denmark)

    Pedersen, Christian; Karamehmedovic, Emir; Dam, Jeppe Seidelin

    2009-01-01

    the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO4 laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high...

  20. Red shift of near band edge emission in cerium implanted GaN

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar

    2009-01-01

    Rare earth (RE) doping in GaN is a promising technology to control the optical properties. However, there are no reports on doping of cerium (Ce) into GaN, which is a very unique RE element. In this paper, we performed photoluminescence (PL) and optical transmission measurements on Ce-doped GaN for the first time. A significant red shift of about 120 meV was observed in the PL peak position of the donor bound excitons. This red shift of near band emission was corroborated by the red shift of the absorption edge related to GaN in the optical transmission measurements. This observation is attributed to the band gap narrowing in GaN heavily doped with Ce. The activation energy of the Ce-related shallow donor is found to be 21.9 meV in GaN.

  1. Red shift of near band edge emission in cerium implanted GaN

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar, E-mail: abdulmajid40@yahoo.co, E-mail: akbar@qau.edu.p [Advance Materials Physics Laboratory, Physics Department, Quaid-i-Azam University, Islamabad (Pakistan)

    2009-02-21

    Rare earth (RE) doping in GaN is a promising technology to control the optical properties. However, there are no reports on doping of cerium (Ce) into GaN, which is a very unique RE element. In this paper, we performed photoluminescence (PL) and optical transmission measurements on Ce-doped GaN for the first time. A significant red shift of about 120 meV was observed in the PL peak position of the donor bound excitons. This red shift of near band emission was corroborated by the red shift of the absorption edge related to GaN in the optical transmission measurements. This observation is attributed to the band gap narrowing in GaN heavily doped with Ce. The activation energy of the Ce-related shallow donor is found to be 21.9 meV in GaN.

  2. Switching mechanism due to the spontaneous emission cancellation in photonic band gap materials doped with nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Canada N6A 3K7 (Canada)]. E-mail: msingh@uwo.ca

    2007-03-26

    We have investigated the switching mechanism due to the spontaneous emission cancellation in a photonic band gap (PBG) material doped with an ensemble of four-level nano-particles. The effect of the dipole-dipole interaction has also been studied. The linear susceptibility has been calculated in the mean field theory. Numerical simulations for the imaginary susceptibility are performed for a PBG material which is made from periodic dielectric spheres. It is predicted that the system can be switched between the absorbing state and the non-absorbing state by changing the resonance energy within the energy bands of the photonic band gap material.0.

  3. The ALI-ARMS Code for Modeling Atmospheric non-LTE Molecular Band Emissions: Current Status and Applications

    Science.gov (United States)

    Kutepov, A. A.; Feofilov, A. G.; Manuilova, R. O.; Yankovsky, V. A.; Rezac, L.; Pesnell, W. D.; Goldberg, R. A.

    2008-01-01

    The Accelerated Lambda Iteration (ALI) technique was developed in stellar astrophysics at the beginning of 1990s for solving the non-LTE radiative transfer problem in atomic lines and multiplets in stellar atmospheres. It was later successfully applied to modeling the non-LTE emissions and radiative cooling/heating in the vibrational-rotational bands of molecules in planetary atmospheres. Similar to the standard lambda iterations ALI operates with the matrices of minimal dimension. However, it provides higher convergence rate and stability due to removing from the iterating process the photons trapped in the optically thick line cores. In the current ALI-ARMS (ALI for Atmospheric Radiation and Molecular Spectra) code version additional acceleration of calculations is provided by utilizing the opacity distribution function (ODF) approach and "decoupling". The former allows replacing the band branches by single lines of special shape, whereas the latter treats non-linearity caused by strong near-resonant vibration-vibrational level coupling without additional linearizing the statistical equilibrium equations. Latest code application for the non-LTE diagnostics of the molecular band emissions of Earth's and Martian atmospheres as well as for the non-LTE IR cooling/heating calculations are discussed.

  4. Upconversion luminescent logic gates and turn-on sensing of glutathione based on two-photon excited quantum dots conjugated with dopamine.

    Science.gov (United States)

    Gui, Rijun; Jin, Hui; Liu, Xifeng; Wang, Zonghua; Zhang, Feifei; Xia, Jianfei; Yang, Min; Bi, Sai

    2014-12-07

    Under the two-photon excitation, upconversion luminescent "INHIBIT" and "OR" logic gates of water-dispersed CdTe quantum dots (QDs) were constituted by conjugating the QDs with dopamine. This facilitated the development of a novel QDs-based upconversion luminescent probe for efficient turn-on sensing of glutathione.

  5. Enhanced green upconversion by controlled ceramization of Er3+–Yb3+ co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    International Nuclear Information System (INIS)

    Suresh Kumar, J.; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-01-01

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na 1.4 Nb 3 Te 4.9 O 18 ) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er 3+ –Yb 3+ co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er 3+ ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied

  6. Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals.

    Science.gov (United States)

    Zhou, Xue; Li, Mingzhu; Wang, Kang; Li, Huizeng; Li, Yanan; Li, Chang; Yan, Yongli; Zhao, Yongsheng; Song, Yanlin

    2018-03-25

    Stimulated emission in perovskite-embedded polymer opal structures is investigated. A polymer opal structure is filled with a perovskite, and perovskite photonic crystals are prepared. The spontaneous emission of the perovskite embedded in the polymer opal structures exhibits clear signatures of amplified spontaneous emission (ASE) via gain modulation. The difference in refractive-index contrast between the perovskite and the polymer opal is large enough for retaining photonic-crystals properties. The photonic band gap has a strong effect on the fluorescence emission intensity and lifetime. The stimulated emission spectrum exhibits a narrow ASE rather than a wide fluorescence peak in the thin film. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Intense blue upconversion emission and intrinsic optical bistability in Tm3+/Yb3+/Zn2+ tridoped YVO4 phosphors

    Science.gov (United States)

    Yadav, Manglesh; Mondal, Manisha; Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-04-01

    Tm3+/Yb3+/Zn2+:yttrium metavanadate (YVO4) phosphors prepared through chemical coprecipitation and the solid state reaction method have been structurally characterized by an x-ray diffraction (XRD) study. Photoluminescence study of the developed phosphors under ultraviolet (UV) and near infrared (NIR) excitation has been performed. The excitation spectrum of the tetragonal zircon type YVO4 phosphors corresponding to the emission at ˜476 nm exhibits a broad excitation peak in the 250-350 nm region, which is due to charge distribution in the {{{{VO}}}4}3- group. Under 980 nm CW diode laser excitation, enhancements of about ˜3000 times and ˜40 times have been observed for the blue band in the tridoped Tm3+Yb3+Zn2+:YVO4 phosphors compared to those of the Tm3+:YVO4 singly and Tm3+/Yb3+:YVO4 codoped phosphors, respectively. A downconversion (DC) emission study shows an enhancement of about ˜50 times for the blue band in the tridoped phosphors compared to that of the singly doped phosphors. Optical bistability (OB) behavior of the developed phosphors has been also investigated upon 980 nm excitation. The calculated Commission Internationale de l’Éclairage (CIE) color coordinates lie in the blue region with 96.5% color purity under 980 nm excitation, having a color temperature of ˜3400 K. Our observations show that the developed phosphors may be suitably used in dual mode luminescence spectroscopy, display devices, and UV LED chips.

  8. Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Fei [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Green, Paul J.; Pancoast, Anna; MacLeod, Chelsea L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Morganson, Eric; Shen, Yue [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Brandt, W. N.; Grier, C. J. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Rix, H.-W. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Protopapas, Pavlos [Institute for Applied Computational Science, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Scott, Caroline [Astrophysics, Imperial College London, Blackett Laboratory, London SW7 2AZ (United Kingdom); Burgett, W. S.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu HI 96822 (United States); and others

    2017-02-20

    We study the time lags between the continuum emission of quasars at different wavelengths, based on more than four years of multi-band ( g , r , i , z ) light curves in the Pan-STARRS Medium Deep Fields. As photons from different bands emerge from different radial ranges in the accretion disk, the lags constrain the sizes of the accretion disks. We select 240 quasars with redshifts of z ≈ 1 or z ≈ 0.3 that are relatively emission-line free. The light curves are sampled from day to month timescales, which makes it possible to detect lags on the scale of the light crossing time of the accretion disks. With the code JAVELIN , we detect typical lags of several days in the rest frame between the g band and the riz bands. The detected lags are ∼2–3 times larger than the light crossing time estimated from the standard thin disk model, consistent with the recently measured lag in NGC 5548 and microlensing measurements of quasars. The lags in our sample are found to increase with increasing luminosity. Furthermore, the increase in lags going from g − r to g − i and then to g − z is slower than predicted in the thin disk model, particularly for high-luminosity quasars. The radial temperature profile in the disk must be different from what is assumed. We also find evidence that the lags decrease with increasing line ratios between ultraviolet Fe ii lines and Mg ii, which may point to changes in the accretion disk structure at higher metallicity.

  9. [A study on the concentration quenching of Tm3+ upconversion luminescence].

    Science.gov (United States)

    Chen, B; Wang, H; Huang, S

    2001-06-01

    In this work, we have a designation and preparation of MFT glasses for upconversion, the glasses consisted of TeO2 and fluoride: PbF2, AlF3, BaF2, NaF and the impurity Tm2O3. In this glass system the oxide improve forming ability, the fluorides improve the microscopic environment around RE ions in glasses. In this glass host the content of Tm2O3 achieves to 4% mol and crystallization no occurred. A detail study on the concentration quenching of upconversion luminescence for 1G4-->3H6 and 1D2-->3H4 transitions was completed. The experimental results directed that the quenching concentration was 0.6 mol.% and higher 3 times than in other glasses materials. The cross relaxation and mechanism of concentration quenching were discussed.

  10. Multiple temperature effects on up-conversion fluorescences of Er3+-Y b3+-Mo6+ codoped TiO2 and high thermal sensitivity

    Directory of Open Access Journals (Sweden)

    B. S. Cao

    2015-08-01

    Full Text Available We report multiple temperature effects on green and red up-conversion emissions in Er3+-Y b3+-Mo6+ codoped TiO2 phosphors. With increasing temperature, the decrease of the red emission from 4F9/2→4I15/2, the increase of green emission from 2H11/2→4I15/2 and another unchanged green emission from 4S3/2→4I15/2 were simultaneously observed, which are explained by steady-state rate equations analysis. Due to different evolution with temperature of the two green emissions, higher thermal sensitivity of optical thermal sensor was obtained based on the transitions with the largest fluorescence intensity ratio. Two parameters, maximum theoretical sensitivity (Smax and optimum operating temperature (Tmax are given to describe thermal sensing properties of the produced sensors. The intensity ratio and energy difference ΔE of a pair of energy levels are two main factors for the sensitivity and accuracy of sensors, which should be referred to design sensors with optimized sensing properties.

  11. Spontaneous emission spectrum from a V-type three-level atom in a double-band photonic crystal

    International Nuclear Information System (INIS)

    Zhang Han Zhuang; Tang Sing Hai; Dong Po; He Jun

    2002-01-01

    The spontaneous emission spectrum from a V-type three-level atom embedded in a double-band photonic band gap (PBG) material has been investigated for the first time. Most interestingly it is shown that there is not only a black dark line, but also a narrow spontaneous line near the edges of the double photonic band. The positions of the dark line and narrow spontaneous line are near the transition from an empty upper level to a lower level. The lines stem from destructive and constructive quantum interferences, which induce population transfer between the two upper levels, in the PBG reservoirs. The effects of system parameters on the interference have been discussed in detail

  12. Multi-channel up-conversion infrared spectrometer and method of detecting a spectral distribution of light

    DEFF Research Database (Denmark)

    2015-01-01

    A multi-channel infrared spectrometer for detecting an infrared spectrum of light received from an object. The spectrometer comprises a wavelength converter system comprising a nonlinear material and having an input side and an output side. The wavelength converter system comprises at least a first...... on the first side into light in a second output wavelength range output on the second side. The spectrometer further comprises a demultiplexer configured for demultiplexing light in the first up-conversion channel and light in the second up-conversion channel. The demultiplexer is located on the first side...

  13. Thermal effects on light emission in Yb3+ -sensitized rare-earth doped optical glasses

    International Nuclear Information System (INIS)

    Gouveia, E.A.; Araujo, M.T. de; Gouveia-Neto, A.S.

    2001-01-01

    The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in off-resonance infrared excited Yb 3+ -sensitized rare-earth doped optical glasses is theoretically and experimentally investigated. We have examined samples of Er3+/Yb 3+ -codoped Ga 2 S 3 :La 2 O 3 chalcogenide glasses and germanosilicate optical fibers, and Ga2O3:La 2 O 3 chalcogenide and fluoroindate glasses codoped with Pr 3+ /Yb 3+ , excited off-resonance at 1.064μm. The experimental results revealed thermal induced enhancement in the visible upconversion emission intensity as the samples temperatures were increased within the range of 20 deg C to 260 deg C. The fluorescence emission enhancement is attributed to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium-sensitizer. A theoretical approach that takes into account a sensitizer temperature dependent effective absorption cross section, which depends upon the phonon occupation number in the host matrices, has proven to agree very well with the experimental data. As beneficial applications of the thermal enhancement, a temperature tunable amplifier and a fiber laser with improved power performance are presented. (author)

  14. Synthesis and characterization of Na(Y,Gd)F{sub 4} upconversion nanoparticles and an investigation of their effects on the photophysical properties of an unsubstituted tetrathiophenoxy phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jessica M.; Litwinski, Christian; Nyokong, Tebello; Antunes, Edith M., E-mail: ebeukes@uwc.ac.za [Rhodes University, Department of Chemistry (South Africa)

    2015-02-15

    Sphere- and star-shaped Na(Y,Gd)F{sub 4}:Yb/Er(Tm)upconversion nanoparticles (UCNP) were successfully synthesized utilizing a methanol-assisted thermal decomposition approach and their spectroscopic (absorption, emission and luminescence lifetime) properties fully characterized. The factors affecting the size and shape of the UCNPs were studied and discussed in detail. The size of the nanoparticles was determined using TEM primarily and found to be approximately 19 and 30 nm for the Er and Tm spheres, respectively, while the Er and Tm “stars” were found to be much larger with sizes ranging from 110 to 240 nm, respectively (as determined along the width of the nanoparticle). In addition, their influence on the spectroscopic properties of an unsubstituted tetrathiophenoxy phthalocyanine (H{sub 2}Pc) was investigated. The UCNP were found to produce characteristic upconversion luminescence emissions in the blue, green, red and NIR regions. Simple mixing with an H{sub 2}Pc in toluene was found to exert no obvious changes in the spectroscopic properties of the Pc, although a considerable increase in the radiative lifetimes is observed for the Pc in the presence of the UCNPs. The singlet oxygen generation mediated by the red light excitation of the H{sub 2}Pc mixed with UCNP was found to decrease in the presence of the NPs.

  15. Clustering of germanium atoms in silica glass responsible for the 3.1 eV emission band studied by optical absorption and X-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Yoshida, Tomoko; Muto, Shunsuke; Yuliati, Leny; Yoshida, Hisao; Inada, Yasuhiro

    2009-01-01

    Correlation between the 3.1 eV emission band and local atomic configuration was systematically examined for Ge + implanted silica glass by UV-vis optical absorption spectroscopy and X-ray absorption fine structure (XAFS) analysis. The 2.7 eV emission band, commonly observed in defective silica, was replaced by the sharp and intense 3.1 eV emission band for the Ge + fluence > 2 x 10 16 cm -2 , in which UV-vis absorption spectra suggested clustering of Ge atoms with the size ∼1 nm. XAFS spectroscopy indicated that the Ge atoms were under coordinated with oxygen atoms nearly at a neutral valence state on average. The present results are consistent with the previous ESR study but imply that the small Ge clusters rather than the O=Ge: complexes (point defects) are responsible for the 3.1 eV emission band.

  16. COMPARISON OF TWO TEMPERATURE MEASUREMENT METHODS BY UPCONVERSION FLUORESCENCE SPECTRA OF ERBIUM-DOPED LEAD-FLUORIDE NANO-GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    V. A. Aseev

    2015-05-01

    Full Text Available The study and compare of two temperature measurement methods is performed for the case of a lead-fluoride nano-glassceramics in the range from 317 to 423 K with a view to their application to temperature sensors. A method of temperature measurement by means of violet, green and red upconversion fluorescence spectra regression on latent structures and a method of temperature measurement by two fluorescence bands intensity ratio in green range are considered. It is shown that a four-dimensional space of latent structures is an optimum one in terms of temperature measurement accuracy. It made possible temperature determining with a relative error not larger than 0.15% at temperatures higher than 340 K by making use of fluorescence spectra training set with the step of 10 K. The method using two green bands fluorescence intensity ratio is inferior by the accuracy. Independence of pump power fluctuations is a significant advantage of the second method. To take advantage of the first method a stabilization of the pump power is necessary. The results of the work can be taken into account while developing optical temperature sensors with a better performance (in relation to accuracy and measurement range compared to existing ones which utilize temperature redistribution of fluorescence intensities in two closely-spaced bands or temperature dependence of fluorescence lifetime.

  17. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence.

    Science.gov (United States)

    Cruz, Carlos M; Márquez, Irene R; Mariz, Inês F A; Blanco, Victor; Sánchez-Sánchez, Carlos; Sobrado, Jesús M; Martín-Gago, José A; Cuerva, Juan M; Maçôas, Ermelinda; Campaña, Araceli G

    2018-04-28

    Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp 2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

  18. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.

    Science.gov (United States)

    Wang, Ying; Lin, Xudong; Chen, Xi; Chen, Xian; Xu, Zhen; Zhang, Wenchong; Liao, Qinghai; Duan, Xin; Wang, Xin; Liu, Ming; Wang, Feng; He, Jufang; Shi, Peng

    2017-10-01

    Many nanomaterials can be used as sensors or transducers in biomedical research and they form the essential components of transformative novel biotechnologies. In this study, we present an all-optical method for tetherless remote control of neural activity using fully implantable micro-devices based on upconversion technology. Upconversion nanoparticles (UCNPs) were used as transducers to convert near-infrared (NIR) energy to visible light in order to stimulate neurons expressing different opsin proteins. In our setup, UCNPs were packaged in a glass micro-optrode to form an implantable device with superb long-term biocompatibility. We showed that remotely applied NIR illumination is able to reliably trigger spiking activity in rat brains. In combination with a robotic laser projection system, the upconversion-based tetherless neural stimulation technique was implemented to modulate brain activity in various regions, including the striatum, ventral tegmental area, and visual cortex. Using this system, we were able to achieve behavioral conditioning in freely moving animals. Notably, our microscale device was at least one order of magnitude smaller in size (∼100 μm in diameter) and two orders of magnitude lighter in weight (less than 1 mg) than existing wireless optogenetic devices based on light-emitting diodes. This feature allows simultaneous implantation of multiple UCNP-optrodes to achieve modulation of brain function to control complex animal behavior. We believe that this technology not only represents a novel practical application of upconversion nanomaterials, but also opens up new possibilities for remote control of neural activity in the brains of behaving animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Upconversion properties of Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses.

    Science.gov (United States)

    Su, Fangning; Deng, Zaide

    2006-01-01

    The Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses were prepared by conventional melting procedures, and their upconversion spectra were performed. The dependence of luminescence intensity on the ratio of Yb3+/Er3+ was studied, and the relationship between green upconversion luminescence intensity and Er3+ concentration is discussed in detail. The 546 nm green upconversion luminescence intensity is optimised in the studied glasses either when the Yb3+/Er3+ ratio is 25/1 and Er3+ concentration is 0.1 mol%, or when the Yb3+/Er3+ ratio is 10/1 and Er3+ concentration is 0.15 mol%. These glasses could be one of the potential candidates for LD pumping microchip solid-state lasers.

  20. Synthesis, characterization and upconversion emission properties of the nanocrystals of Yb3+/Er3+-codoped YF3-YOF-Y2O3 system

    International Nuclear Information System (INIS)

    Li Zhihua; Zheng Longzhen; Zhang Luning; Xiong Leyan

    2007-01-01

    Nanocrystalline Yb 3+ , Er 3+ -codoped fluoride (YF 3 ), oxyfluoride (YOF), and oxide (Y 2 O 3 ) phosphors have been synthesized by a facile pyrolysis of a yttrium trifluoroacetate precursor. YF 3 , YOF and Y 2 O 3 nanoparticles were demonstrated to be good host materials for lanthanides. Varied hosts led to different optical properties. Red, green, and blue up-conversion (UC) was observed upon excitation in the NIR spectral range in all synthesized compounds. The UC mechanisms were also analyzed

  1. Performance of Differential-Phase-Shift Keying Protocol Applying 1310 nm Up-Conversion Single-Photon Detector

    International Nuclear Information System (INIS)

    Chen-Xu, Feng; Rong-Zhen, Jiao; Wen-Han, Zhang

    2008-01-01

    The performance of the differential-phase-shift keying (DPSK) protocol applying a 1310 nm up-conversion single-photon detector is analysed. The error rate and the communication rate as a function of distance for three quantum key distribution protocols, the Bennett–Brassard 1984, the Bennett–Brassard–Mermin 1992, and the DPSK, are presented. Then we compare the performance of these three protocols using the 1310nm up-conversion detector. We draw the conclusion that the DPSK protocol applying the detector has significant advantage over the other two protocols. Longer transmission distance and lower error rate can be achieved. (general)

  2. Spontaneous emission near the band edge of a three-dimensional photonic crystal: a fractional calculus approach

    International Nuclear Information System (INIS)

    Cheng, S-C; Wu, J-N; Tsai, M-R; Hsieh, W-F

    2009-01-01

    We suggest a better mathematical method, fractional calculus, for studying the behavior of the atom-field interaction in photonic crystals. By studying the spontaneous emission of an atom in a photonic crystal with a one-band isotropic model, we found that the long-time inducing memory of the spontaneous emission is a fractional phenomenon. This behavior could be well described by fractional calculus. The results show no steady photon-atom bound state for the atomic resonant transition frequency lying in the proximity of the allowed band edge which was encountered in a previous study (Woldeyohannes and John 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R43). The correctness of this result is validated by the 'cut-off smoothing' density of photon states (DOS) with fractional calculus. By obtaining a rigorous solution without the multiple-valued problem for the system, we show that the method of fractional calculus has a logically concise property.

  3. Effective tuning of the ratio of red to green emission of Ho"3"+ ions in single LiLuF_4 microparticle via codoping Ce"3"+ ions

    International Nuclear Information System (INIS)

    Gao, Wei; Dong, Jun; Liu, Jihong; Yan, Xuewen

    2016-01-01

    Yb"3"+/Ho"3"+ codoped LiLuF_4 microparticles have been successfully prepared via a facile hydrothermal method. The crystal phase and morphology of LiLuF_4 microparticles were inspected by x-ray diffraction and scanning electron microscope, respectively. The upconversion emission of single LiLuF_4: Yb"3"+/Ho"3"+ microparticle was carefully studied by a confocal microscopy setup under NIR 980 nm excitation. With the increase of Ce"3"+ ion concentrations of 12%, the ratio of red to green emission of the Ho"3"+ ions of single LiLuF_4 microparticle was boosted about 17-fold, and the output colors were tuned from green to red, which is due to the two efficient cross-relaxation between Ho"3"+ and Ce"3"+ ions enhances the red and suppresses the green in the emission processes. To investigate the optical properties of the single microparticle or nanoparticle through the confocal microscopy setup can effectively avoid the influence of surrounding particle or environment, and could provide more precise information for better exploring the emission mechanisms of rare earth ions. The tunable upconversion emission of Ho"3"+ in single LiLuF_4 microparticle in this work will have great potential applications in the micro optoelectronic devices and color display applications. - Highlights: • The optical properties of the single LiLuF4: Yb3+/Ho3+/Ce3+ microparticle were studied. • The output colors of single LiLuF4 microparticle were tuned from green to red. • The upconversion mechanisms between Ho3+ and Ce3+ ions were discussed based on emission spectrum.

  4. Estimating net rainfall, evaporation and water storage of a bare soil from sequential L-band emissivities

    Science.gov (United States)

    Stroosnijder, L.; Lascano, R. J.; Newton, R. W.; Vanbavel, C. H. M.

    1984-01-01

    A general method to use a time series of L-band emissivities as an input to a hydrological model for continuously monitoring the net rainfall and evaporation as well as the water content over the entire soil profile is proposed. The model requires a sufficiently accurate and general relation between soil emissivity and surface moisture content. A model which requires the soil hydraulic properties as an additional input, but does not need any weather data was developed. The method is shown to be numerically consistent.

  5. Wavelength-tuned light emission via modifying the band edge symmetry: Doped SnO2 as an example

    KAUST Repository

    Zhou, Hang; Deng, Rui; Li, Yongfeng; Yao, Bin; Ding, Zhanhui; Wang, Qingxiao; Han, Yu; Wu, Tao; Liu, Lei

    2014-01-01

    at 398 nm is observed in the indium-doped SnO2-based heterojunction. Our results demonstrate an unprecedented doping-based approach toward tailoring the symmetry of band edge states and recovering ultraviolet light emission in wide-bandgap oxides. © 2014

  6. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    Science.gov (United States)

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  7. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires

    Science.gov (United States)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-04-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  8. NON-DETECTION OF L-BAND LINE EMISSION FROM THE EXOPLANET HD189733b

    International Nuclear Information System (INIS)

    Mandell, Avi M.; Deming, L. Drake; Mumma, Michael J.; Villanueva, Geronimo L.; Blake, Geoffrey A.; Knutson, Heather A.; Salyk, Colette

    2011-01-01

    We attempt to confirm bright non-local thermodynamic equilibrium (non-LTE) emission from the exoplanet HD 189733b at 3.25 μm, as recently reported by Swain et al. based on observations at low spectral resolving power (λ/δλ ∼ 30). Non-LTE emission lines from gas in an exoplanet atmosphere will not be significantly broadened by collisions, so the measured emission intensity per resolution element must be substantially brighter when observed at high spectral resolving power. We observed the planet before, during, and after a secondary eclipse event at a resolving power λ/δλ = 27, 000 using the NIRSPEC spectrometer on the Keck II telescope. Our spectra cover a spectral window near the peak found by Swain et al., and we compare emission cases that could account for the magnitude and wavelength dependence of the Swain et al. result with our final spectral residuals. To model the expected line emission, we use a general non-equilibrium formulation to synthesize emission features from all plausible molecules that emit in this spectral region. In every case, we detect no line emission to a high degree of confidence. After considering possible explanations for the Swain et al. results and the disparity with our own data, we conclude that an astrophysical source for the putative non-LTE emission is unlikely. We note that the wavelength dependence of the signal seen by Swain et al. closely matches the 2ν 2 band of water vapor at 300 K, and we suggest that an imperfect correction for telluric water is the source of the feature claimed by Swain et al.

  9. Controllable synthesis and crystal structure determined upconversion luminescence properties of Tm{sup 3+} (Er{sup 3+}) ions doped YbF{sub 3} and NaYbF{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Qin, Weiping, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhou, Jun [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China)

    2014-04-01

    Graphical abstract: - Highlights: • The synthesis of YbF{sub 3} and NaYbF{sub 4} crystals was successfully fulfilled by hydrothermal method. • The phase and morphology of products were adjusted by changing the hydrothermal conditions. • Relatively enhanced ultraviolet upconversion emissions were observed in YbF{sub 3} nanocrystals. • The crystalline phase impact on the upconversion luminescence was systematically studied. - Abstract: The synthesis of YbF{sub 3} and NaYbF{sub 4} crystals was successfully fulfilled by a facial hydrothermal method. The phase and morphology of the products were adjusted by changing the surfactant additive and fluorine source and tuning the pH value of the initial solution. The products with various morphologies range from octahedral nanoparticles, corn-like nanobundles, nanospheres, microrods, and hollow microprisms were prepared at different conditions. The growth mechanism of these products has been systematically studied. Impressively, relatively enhanced high order ultraviolet (UV) upconversion (UC) luminescence was observed in Tm{sup 3+} (Er{sup 3+}) ions doped YbF{sub 3} nanocrystals (NCs) compared with NaYbF{sub 4} microcrystals under the excitation of 980 nm infrared laser. The investigation results reveal that the crystal symmetry of matrix has significant effect on the spectra and lifetimes of the doping lanthanide ions. The simply synthesized water soluble YbF{sub 3} NCs with efficient UV UC luminescence may find potential application in biochemistry.

  10. Architecture, development and implementation of a SWIR to visible integrated up-conversion imaging device

    Science.gov (United States)

    Sarusi, Gabby; Templeman, Tzvi; Hechster, Elad; Nissim, Nimrod; Vitenberg, Vladimir; Maman, Nitzan; Tal, Amir; Solodar, Assi; Makov, Guy; Abdulhalim, Ibrahim; Visoly-Fisher, Iris; Golan, Yuval

    2016-04-01

    A new concept of short wavelength infrared (SWIR) to visible upconversion integrated imaging device is proposed, modeled and some initial measured results are presented. The device is a hybrid inorganic-organic device that comprises six nano-metric scale sub-layers grown on n-type GaAs substrates. The first layer is a ~300nm thick PbSe nano-columnar absorber layer grown in (111) orientation to the substrate plan (100), with a diameter of 8- 10nm and therefore exhibit quantum confinement effects parallel to the substrate and bulk properties perpendicular to it. The advantage of this structure is the high oscillator strength and hence absorption to incoming SWIR photons while maintaining the high bulk mobility of photo-excited charges along the columns. The top of the PbSe absorber layer is coated with 20nm thick metal layer that serves as a dual sided mirror, as well as a potentially surface plasmon enhanced absorption in the PbSe nano-columns layer. The photo-excited charges (holes and electrons in opposite directions) are drifted under an external applied field to the OLED section (that is composed of a hole transport layer, an emission layer and an electron transport layer) where they recombine with injected electron from the transparent cathode and emit visible light through this cathode. Due to the high absorption and enhanced transport properties this architecture has the potential of high quantum efficiency, low cost and easy implementation in any optical system. As a bench-mark, alternative concept where InGaAs/InP heterojunction couple to liquid crystal optical spatial light modulator (OSLM) structure was built that shows a full upconversion to visible of 1550nm laser light.

  11. Synthesis and upconversion luminescence properties of YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers derived from Y{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Li Dan; Dong Xiangting, E-mail: dongxiangting888@163.com; Yu Wensheng; Wang Jinxian; Liu Guixia [Changchun University of Science and Technology, Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province (China)

    2013-06-15

    YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers were successfully fabricated via fluorination of the relevant Y{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers which were obtained by calcining the electrospun PVP/[Y(NO{sub 3}){sub 3} + Yb(NO{sub 3}){sub 3} + Er(NO{sub 3}){sub 3}] composite nanofibers. The morphology and properties of the products were investigated in detail by X-ray diffraction, scanning electron microscope, transmission electron microscope, and fluorescence spectrometer. YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with mean diameter of 174 {+-} 22 nm, and YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers are composed of nanoparticles with size in the range of 30-60 nm. Upconversion emission spectrum analysis manifested that YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers emitted strong green and weak red upconversion emissions centering at 523, 545, and 654 nm, respectively. The green and red emissions were, respectively, originated from {sup 2}H{sub 11/2}/{sup 4}S{sub 3/2} {yields} {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} {yields} {sup 4}I{sub l5/2} energy levels transitions of the Er{sup 3+} ions. Moreover, the emitting colors of YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers were located in the green region in CIE chromaticity coordinates diagram. This preparation technique could be applied to prepare other rare earth fluoride upconversion luminescence hollow nanofibers.Graphical AbstractYF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers with orthorhombic structure were synthesized by fluorination of the electrospun Y{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers via a double-crucible method using NH{sub 4}HF{sub 2} as fluorinating agent. The mean diameter of YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers was 174 {+-} 22 nm. The fluorination method we proposed here has been proved to be an important method, as it can not only

  12. Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures

    International Nuclear Information System (INIS)

    Zheng, Kezhi; Liu, Zhenyu; Liu, Ye; Song, Weiye; Qin, Weiping

    2013-01-01

    Spherical SiO 2 particles with different sizes (30, 80, 120, and 180 nm) have been coated with Gd 2 O 3 :Yb 3+ /Er 3+ layers by a heterogeneous precipitation method, leading to the formation of core-shell structural Gd 2 O 3 :Yb 3+ /Er 3+ @SiO 2 particles. The samples were characterized by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, upconversion (UC) emission spectra, and fluorescent dynamical analysis. The obtained core-shell particles have perfect spherical shape with narrow size distribution. Under the excitation of 980 nm diode laser, the core-shell samples showed size-dependent upconversion luminescence (UCL) properties. The inner SiO 2 cores in core-shell samples were proved to have limited effect on the total UCL intensities of Er 3+ ions. The UCL intensities of core-shell particles were demonstrated much higher than the values obtained in pure Gd 2 O 3 :Yb 3+ /Er 3+ with the same phosphor volume. The dependence of the specific area of a UCL shell on the size of its inner SiO 2 particle was calculated and analyzed for the first time. It was confirmed that the surface effect came from the outer surfaces of emitting shells is dominant in influencing the UCL property in the core-shell samples. Three-photon UC processes for the green emissions were observed in the samples with small sizes of SiO 2 cores. The results of dynamical analysis illustrated that more nonradiative relaxation occurred in the core-shell samples with smaller SiO 2 core sizes

  13. Emissivity Measurements of Foam-Covered Water Surface at L-Band for Low Water Temperatures

    Directory of Open Access Journals (Sweden)

    En-Bo Wei

    2014-11-01

    Full Text Available For a foam-covered sea surface, it is difficult to retrieve sea surface salinity (SSS with L-band brightness temperature (1.4 GHz because of the effect of a foam layer with wind speeds stronger than 7 m/s, especially at low sea surface temperature (SST. With foam-controlled experiments, emissivities of a foam-covered water surface at low SST (−1.4 °C to 1.7 °C are measured for varying SSS, foam thickness, incidence angle, and polarization. Furthermore, a theoretical model of emissivity is introduced by combining wave approach theory with the effective medium approximation method. Good agreement is obtained upon comparing theoretical emissivities with those of experiments. The results indicate that foam parameters have a strong influence on increasing emissivity of a foam-covered water surface. Increments of experimental emissivities caused by foam thickness of 1 cm increase from about 0.014 to 0.131 for horizontal polarization and 0.022 to 0.150 for vertical polarization with SSS increase and SST decrease. Contributions of the interface between the foam layer and water surface to the foam layer emissivity increments are discussed for frequencies between 1 and 37 GHz.

  14. Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface.

    Science.gov (United States)

    Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi

    2018-01-17

    Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.

  15. Remote Monitoring of a Multi-Component Liquid-Phase Organic Synthesis by Infrared Emission Spectroscopy: The Recovery of Pure Component Emissivities by Band-Target Entropy Minimization

    Czech Academy of Sciences Publication Activity Database

    Cheng, S.; Tjahjono, M.; Rajarathnam, D.; Chuanzhao, L.; Lyapkalo, Ilya; Chen, D.; Garland, M.

    2007-01-01

    Roč. 61, č. 10 (2007), s. 1057-1062 ISSN 0003-7028 Institutional research plan: CEZ:AV0Z40550506 Keywords : infrared emission spectroscopy * liquid phase reaction * band-target entropy minimization * BTEM * emittance Subject RIV: CC - Organic Chemistry Impact factor: 1.902, year: 2007

  16. Synthesis of improved upconversion nanoparticles as ultrasensitive fluorescence probe for mycotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Quansheng, E-mail: q.s.chen@hotmail.com; Hu, Weiwei; Sun, Cuicui; Li, Huanhuan; Ouyang, Qin

    2016-09-28

    Rare earth-doped upconversion nanoparticles (UCNPs) have promising potentials in biodetection due to their unique frequency upconverting capability and high detection sensitivity. This paper reports an improved UCNPs-based fluorescence probe for dual-sensing of Aflatoxin B1 (AFB1) and Deoxynivalenol (DON) using a magnetism-induced separation and the specific formation of antibody-targets complex. Herein, the improved UCNPs, which were namely NaYF{sub 4}:Yb/Ho/Gd and NaYF{sub 4}:Yb/Tm/Gd, were systematically studied based on the optimization of reaction time, temperature and the concentration of dopant ions with simultaneous phase and size controlled NaYF{sub 4} nanoparticles; and the targets were detected using the pattern of competitive combination assay. Under an optimized condition, the advanced fluorescent probes revealed stronger fluorescent properties, broader biological applications and better storage stabilities compared to traditional UCNPs-based ones; and ultrasensitive determinations of AFB1 and DON were achieved under a wide sensing range of 0.001–0.1 ng ml{sup −1} with the limit of detection (LOD) of 0.001 ng ml{sup −1}. Additionally, the applicability of the improved nanosensor for the detection of mycotoxins was also confirmed in adulterated oil samples. - Highlights: • Improved rare earth-doped upconversion nanoparticles were prepared with detailed optimizations. • Setup of an upconversion fluorescence spectrometer. • An advanced UCNPs-based immunosensor for dual-sensing mycotoxins was developed with a LOD of 0.001 ng ml{sup −1}. • Application of this biosensor to detect targets in real samples were confirmed with satisfied results.

  17. Synthesis and up-conversion emissions of Yb , Yb and Yb co-doped ...

    Indian Academy of Sciences (India)

    2017-09-23

    Sep 23, 2017 ... Green/red UC emissions of Er3+, UV/blue/IR UC emissions of Tm3+, and UV UC emissions of Gd3+ ... In the last few decades, rare earth (RE) materials have been ... age, colour displays, IR sensors, environmental monitoring,.

  18. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy.

    Science.gov (United States)

    Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping

    2014-04-01

    The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.

  19. Enhanced green upconversion by controlled ceramization of Er{sup 3+}–Yb{sup 3+} co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Suresh Kumar, J., E-mail: suresh@ua.pt; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-12-25

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na{sub 1.4}Nb{sub 3}Te{sub 4.9}O{sub 18}) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er{sup 3+}–Yb{sup 3+} co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er{sup 3+} ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied.

  20. Critical Shell Thickness of Core/Shell Upconversion Luminescence Nanoplatform for FRET Application

    NARCIS (Netherlands)

    Wang, Yu; Liu, Kai; Liu, Xiaomin; Dohnalova, Katerina; Gregorkiewicz, Tom; Kong, Xianggui; Aalders, Maurice C. G.; Buma, Wybren J.; Zhang, Hong

    2011-01-01

    Almost all the luminescence upconversion nanoparticles used for Forster resonant energy transfer (FRET) applications are bare cores based on the consideration that the energy transfer efficiency is optimized because the distance between energy donors and acceptors is minimized. On the other hand, it

  1. Nanostructured rare earth doped Nb2O5: Structural, optical properties and their correlation with photonic applications

    International Nuclear Information System (INIS)

    Pereira, Rafael Ramiro; Aquino, Felipe Thomaz; Ferrier, Alban; Goldner, Philippe; Gonçalves, Rogéria R.

    2016-01-01

    In the present work, we report on a systematic study on structural and spectroscopic properties Eu 3+ and Er 3+ -doped Nb 2 O 5 prepared by sol–gel method. The Eu 3+ ions were used as structural probe to determine the symmetry sites occupied by lanthanide ions. The Eu 3+ -doped Nb 2 O 5 nanocrystalline powders were annealed at different temperatures to verify how the different Nb 2 O 5 crystalline phases affect the structure and the luminescence properties. Er 3+ -doped Nb 2 O 5 was prepared showing an intense NIR luminescence, and, visible luminescence on the green and red, deriving from upconversion process. The synthetized materials can find widespread applicability in photonics as red luminophor for white LED (with tricolor), optical amplifiers and upconverter materials. - Highlights: • Vis and NIR emission from nanostructured lanthanide doped Nb 2 O 5 . • Eu 3+ -doped Nb 2 O 5 as Red luminophor. • Multicolor tunability of intense upconversion emission from lanthanide doped Nb 2 O 5 . • Potential application as biological markers. • Broad band NIR emission.

  2. Simultaneous measurements of the OH(8,3) band and 015577A airglow emissions

    International Nuclear Information System (INIS)

    Takahashi, H.; Sahai, Y.; Clemesha, B.R.; Simonich, D.M.; Batista, P.P.; Teixeira, N.R.

    1981-01-01

    Simultaneous measurements of the night airglow OH(8,3) band and OI 5577A have been made at Cachoeira Paulista (22.7 0 S, 45,2 0 W) during June-August 1976. Correlations between the nocturnal variations of these emissions and also with the OH rotational temperature are presented. It is found that OH (8,3) is correlated with the rotational temperature but with a time lag of about 1 hour. The variations of 5577A lead the OH (8,3) by about 2 to 3 hours. The rotational temperature co-varies with 5577A, rather than OH (8,3) and there is no significant time lag. Based on the correlation study, the nocturnal variations of the two emissions can be explained by the atmospheric density perturbation caused by solar tides and internal gravity waves. (Author) [pt

  3. Effect of B2O3 on luminescence of erbium doped tellurite glasses.

    Science.gov (United States)

    Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Dai, Shixun; Wang, Xunsi

    2007-02-01

    The B2O3 was introduced into the Er3+ doped TeO2-ZnO-Na2O glass to increase the phonon energy of the host. The effect of B2O3 on the non-radiative rate of the 4I11/2-->4I13/2 transition of Er3+, the lifetime of the 4I11/2 and 4I13/2 levels, the green and red upconversion emissions intensity, and the 4I13/2-->4I15/2 emission intensity was discussed. The results show that the phonon energy of boro-tellurite glass is close to that of germanate glass and is quite smaller than that of borate glass. The lifetime of 4I11/2 level and the upconversion emissions decrease with increasing B2O3 concentration. The higher OH group concentration presented in the boro-tellurite glass may shorten the lifetime of 4I13/2 level and also reduce the quantum efficiency of 4I13/2-->4I15/2 emission. The future dehydrating procedures are suggested to enhance the efficiency of amplification at 1.5 microm band.

  4. NIR optimized dual mode photoluminescence in Nd doped Y{sub 2}O{sub 3} ceramic phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sukul, Prasenjit Prasad; Mahata, Manoj Kumar; Kumar, Kaushal, E-mail: kumar.bhu@gmail.com

    2017-05-15

    Authors here report the dual mode photo luminescence emission in neodymium doped yttrium oxide ceramic phosphor upon 808 nm diode laser excitation. Single cubic phase Nd{sup 3+} doped Y{sub 2}O{sub 3} phosphor was synthesized using urea assisted combustion route. Nd{sup 3+} doped Y{sub 2}O{sub 3} ceramic phosphor has given photoluminescence in a wide wavelength range covering near infrared window (850–1100 nm) to the visible region i.e. green (525 nm) and red (680 nm) upon 808 nm diode laser excitation. The two most intense bands on 808 nm excitation were observed at 750 nm and 1064 nm due to the upconversion and downconversion emission processes. The sample was also tested for emission using 980 nm and intense green emission due to the trace presence of Er{sup 3+} in the raw materials was seen in the sample. The excitation power dependent upconversion measurements have shown that transitions {sup 4}F{sub 9/2}→{sup 4}I{sub 9/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 9/2} are thermally coupled and can be used to estimate the sample temperature using Boltzmann relation.

  5. Ultra-broadband mid-wave-IR upconversion detection

    DEFF Research Database (Denmark)

    Barh, Ajanta; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2017-01-01

    In this Letter, we demonstrate efficient room temperature detection of ultra-broadband mid-wave-infrared (MWIR) light with an almost flat response over more than 1200 nm, exploiting an efficient nonlinear upconversion technique. Black-body radiation from a hot soldering iron rod is used as the IR...... test source. Placing a 20 mm long periodically poled lithium niobate crystal in a compact intra-cavity setup (> 20 WCW pump at 1064 nm), MWIR wavelengths ranging from 3.6 to 4.85 mu m are upconverted to near-infrared (NIR) wavelengths (820-870 nm). The NIR light is detected using a standard low...

  6. Detection of telomerase on upconversion nanoparticle modified cellulose paper.

    Science.gov (United States)

    Wang, Faming; Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2015-07-25

    Herein we report a convenient and sensitive method for the detection of telomerase activity based on upconversion nanoparticle (UCNP) modified cellulose paper. Compared with many solution-phase systems, this paper chip is more stable and easily stores the test results. What's more, the low background fluorescence of the UCNPs increases the sensitivity of this method, and the low telomerase levels in different cell lines can clearly be discriminated by the naked eye.

  7. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications.

    Science.gov (United States)

    Gu, Zhanjun; Yan, Liang; Tian, Gan; Li, Shoujian; Chai, Zhifang; Zhao, Yuliang

    2013-07-26

    Lanthanide (Ln) doped upconversion nanoparticles (UCNPs) have attracted enormous attention in the recent years due to their unique upconversion luminescent properties that enable the conversion of low-energy photons (near infrared photons) into high-energy photons (visible to ultraviolet photons) via the multiphoton processes. This feature makes them ideal for bioimaging applications with attractive advantages such as no autofluorescence from biotissues and a large penetration depth. In addition, by incorporating advanced features, such as specific targeting, multimodality imaging and therapeutic delivery, the application of UCNPs has been dramatically expanded. In this review, we first summarize the recent developments in the fabrication strategies of UCNPs with the desired size, enhanced and tunable upconversion luminescence, as well as the combined multifunctionality. We then discuss the chemical methods applied for UCNPs surface functionalization to make these UCNPs biocompatible and water-soluble, and further highlight some representative examples of using UCNPs for in vivo bioimaging, NIR-triggered drug/gene delivery applications and photodynamic therapy. In the perspectives, we discuss the need of systematically nanotoxicology data for rational designs of UCNPs materials, their surface chemistry in safer biomedical applications. The UCNPs can actually provide an ideal multifunctionalized platform for solutions to many key issues in the front of medical sciences such as theranostics, individualized therapeutics, multimodality medicine, etc. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Role of Gd{sup 3+} ion on downshifting and upconversion emission properties of Pr{sup 3+}, Yb{sup 3+} co-doped YNbO{sub 4} phosphor and sensitization effect of Bi{sup 3+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, A.; Rai, S. B., E-mail: sbrai49@yahoo.co.in [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Mishra, Kavita [Department of Physics, University of Lucknow, Lucknow 226007 (India)

    2016-07-28

    Dual-mode luminescence (downshifting-DS and upconversion-UC) properties of Pr{sup 3+}/Yb{sup 3+} co-doped Y{sub 1−x}Gd{sub x}NbO{sub 4} (x = 0.0, 0.5, and 1.0) phosphors synthesized by solid state reaction technique have been explored with and without Gd{sup 3+} ion. The structural characterizations (XRD, SEM, and FTIR) confirm the pure phase of YNbO{sub 4} phosphor. Further, with the Gd{sup 3+} ion co-doping, the YNbO{sub 4} phosphors having a random shape and the large particle size are found to be transformed into nearly spherical shape particles with the reduced particle size. The optical band gaps (E{sub g}) of Y{sub 1−x}Gd{sub x}NbO{sub 4} (x = 0.00, 0.25, 0.50, and 1.00) calculated from UV-Vis-NIR measurements are ∼3.69, 4.00, 4.38, and 4.44 eV, respectively. Moreover, YNbO{sub 4} phosphor is a promising blue emitting material, whereas Y{sub 1−x−y−z}Pr{sub y}Yb{sub z}Gd{sub x}NbO{sub 4} phosphor gives intense green, blue, and red emissions via dual-mode optical processes. The broad blue emission arises due to (NbO{sub 4}){sup 3−} group of the host with λ{sub ex} = 264 nm, whereas Pr{sup 3+} doped YNbO{sub 4} phosphor gives dominant red and blue emissions along with comparatively weak green emission on excitation with λ{sub ex} = 300 nm and 491 nm. The concentration dependent variation in emission intensity at 491 nm ({sup 3}P{sub 0}→{sup 3}H{sub 4} transition) and 612 nm ({sup 1}D{sub 2}→{sup 3}H{sub 4} transition); at 612 nm ({sup 1}D{sub 2}→{sup 3}H{sub 4} transition) and 658 nm ({sup 3}P{sub 0}→{sup 3}F{sub 2} transition) of Pr{sup 3+} ion in YNbO{sub 4} phosphor with λ{sub ex} = 300 nm and 491 nm excitations, respectively, has been thoroughly explored and explained by the cross-relaxation process through different channels. The sensitization effect of Bi{sup 3+} ion co-doping on DS properties of the phosphor has also been studied. The observed DS results have been optimized by varying the

  9. Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors

    International Nuclear Information System (INIS)

    Diamanti, Eleni; Takesue, Hiroki; Honjo, Toshimori; Inoue, Kyo; Yamamoto, Yoshihisa

    2005-01-01

    We compare the performance of various quantum-key-distribution (QKD) systems using a single-photon detector, which combines frequency up-conversion in a periodically poled lithium niobate waveguide and a silicon avalanche photodiode (APD). The comparison is based on the secure communication rate as a function of distance for three QKD protocols: the Bennett-Brassard 1984, the Bennett-Brassard-Mermin 1992, and the coherent differential-phase-shift keying protocols. We show that the up-conversion detector allows for higher communication rates and longer communication distances than the commonly used InGaAs/InP APD for all three QKD protocols

  10. Femtosecond fluorescence upconversion spectroscopy of vapor-deposited tris(8-hydroxyquinoline) aluminum films.

    NARCIS (Netherlands)

    Humbs, W.; Zhang, H.; Glasbeek, M.

    2000-01-01

    Abstract Vapor-deposited Alq3 is used as the green emitting layer in a class of organic light-emitting diodes. In this paper, the time dependence of the fluorescence from thin Alq3 films has been studied by means of the femtosecond fluorescence upconversion technique. From the temporally resolved

  11. Enhancement of blue upconversion luminescence in hexagonal NaYF{sub 4}:Yb,Tm by using K and Sc ions

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Vishal, E-mail: vishal.kale@utu.fi; Soukka, Tero [University of Turku, Department of Biochemistry and Food Chemistry/Biotechnology (Finland); Hoelsae, Jorma; Lastusaari, Mika [University of Turku, Department of Chemistry (Finland)

    2013-08-15

    Hexagonal ({beta})-NaYF{sub 4} is recognized as one of the most efficient hosts for NIR to blue and green upconversion (UC). A new method to tune the blue UC emission in {beta}-NaYF{sub 4}:Yb,Tm nanocrystals through the possible substitution of the host material with different concentrations of K{sup +} and Sc{sup 3+} ions was investigated in detail. In this work, Na{sub 1-x}K{sub x}YF{sub 4}:Yb,Tm and NaY{sub 1-x}Sc{sub x}F{sub 4}:Yb,Tm nanocrystals were synthesized with varying Na:K and Y:Sc ratios. X-ray diffraction, transmission electron microscopy, and UC luminescence spectroscopy showed that size, morphology, and UC luminescence intensity were affected by the addition of K{sup +} and Sc{sup 3+} ions. Substituted ions disturbed the local symmetry and also resulted in changes in the crystal field. The distance between Yb{sup 3+} and Tm{sup 3+} was affected by different concentration of K{sup +} and Sc{sup 3+} ions, and those differences in the distance are responsible for tuning UC luminescence. This study revealed that when the concentration of K{sup +} and Sc{sup 3+} ions were nominally increased from 20 to 100 mol% during synthesis, hexagonal NaYF{sub 4} changed to structurally different KYF{sub 4} and Na{sub 3}ScF{sub 6} so that the solid solubility became difficult. We also demonstrate that the added K{sup +} does not enter into the NaYF{sub 4} lattice, but it still plays an important role by controlling the Na/R ratio. K{sup +} and Sc{sup 3+} ion concentration of 20 mol% during the synthesis was found to result in materials with size 30-35 nm, and shows ca. four times brighter UC emission than the previously reported lanthanide based nanocrystals. The enhancement in UC luminescence intensity makes upconversion nanophosphors versatile imaging tools for diagnosis.Graphical Abstract.

  12. Effective tuning of the ratio of red to green emission of Ho{sup 3+} ions in single LiLuF{sub 4} microparticle via codoping Ce{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei, E-mail: gaowei@xupt.edu.cn; Dong, Jun; Liu, Jihong; Yan, Xuewen

    2016-09-15

    Yb{sup 3+}/Ho{sup 3+} codoped LiLuF{sub 4} microparticles have been successfully prepared via a facile hydrothermal method. The crystal phase and morphology of LiLuF{sub 4} microparticles were inspected by x-ray diffraction and scanning electron microscope, respectively. The upconversion emission of single LiLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+} microparticle was carefully studied by a confocal microscopy setup under NIR 980 nm excitation. With the increase of Ce{sup 3+} ion concentrations of 12%, the ratio of red to green emission of the Ho{sup 3+} ions of single LiLuF{sub 4} microparticle was boosted about 17-fold, and the output colors were tuned from green to red, which is due to the two efficient cross-relaxation between Ho{sup 3+} and Ce{sup 3+} ions enhances the red and suppresses the green in the emission processes. To investigate the optical properties of the single microparticle or nanoparticle through the confocal microscopy setup can effectively avoid the influence of surrounding particle or environment, and could provide more precise information for better exploring the emission mechanisms of rare earth ions. The tunable upconversion emission of Ho{sup 3+} in single LiLuF{sub 4} microparticle in this work will have great potential applications in the micro optoelectronic devices and color display applications. - Highlights: • The optical properties of the single LiLuF4: Yb3+/Ho3+/Ce3+ microparticle were studied. • The output colors of single LiLuF4 microparticle were tuned from green to red. • The upconversion mechanisms between Ho3+ and Ce3+ ions were discussed based on emission spectrum.

  13. Transparency and spontaneous emission in a densely doped photonic band gap material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)

    2006-12-28

    The susceptibility has been calculated for a photonic crystal in the presence of spontaneous cancellation and dipole-dipole interaction. The crystal is densely doped with an ensemble of four-level nano-particles in Y-type configuration. Probe and a pump laser fields are applied to manipulate the absorption coefficient of the system. The expression of the susceptibility has been calculated in the linear response regime of the probe field but nonlinear terms are included for the pump field. It is found that in the presence of spontaneous emission cancellation there is an increase in the height of the two absorption peaks however the phenomenon of electromagnetically induced transparency (EIT) is not affected. On the other hand, there is a change in the height and location of the two peaks in the presence of dipole-dipole interactions. For certain values the particle density of the system can be switched from the EIT state to the non-EIT state. It is also found that when the resonance energies for two spontaneous emission channels lie close to the band edge, the EIT phenomenon disappears.

  14. Coherent control of spontaneous emission near a photonic band edge

    International Nuclear Information System (INIS)

    Woldeyohannes, Mesfin; John, Sajeev

    2003-01-01

    We demonstrate the coherent control of spontaneous emission for a three-level atom located within a photonic band gap (PBG) material, with one resonant frequency near the edge of the PBG. Spontaneous emission from the three-level atom can be totally suppressed or strongly enhanced depending on the relative phase between the steady-state control laser coupling the two upper levels and the pump laser pulse used to create an excited state of the atom in the form of a coherent superposition of the two upper levels. Unlike the free-space case, the steady-state inversion of the atomic system is strongly dependent on the externally prescribed initial conditions. This non-zero steady-state population is achieved by virtue of the localization of light in the vicinity of the emitting atom. It is robust to decoherence effects provided that the Rabi frequency of the control laser field exceeds the rate of dephasing interactions. As a result, such a system may be relevant for a single-atom, phase-sensitive optical memory device on the atomic scale. The protected electric dipole within the PBG provides a basis for a qubit to encode information for quantum computations. A detailed literature survey on the nature, fabrication and applications of PBG materials is presented to provide context for this research. (phd tutorial)

  15. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MOD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  16. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MYD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  17. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MOD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  18. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MYD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  19. UV emission properties of thulium-doped fluorozirconate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Piramidowicz, R., E-mail: r.piramidowicz@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Telekomunikacja Polska Research and Development Centre, Obrzezna 7, 02-691 Warsaw (Poland); Bok, A.; Klimczak, M.; Malinowski, M. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland)

    2009-12-15

    In this work, we present our latest results on UV emission in bulk ZBLAN glasses doped with thulium ions, broadening knowledge of the short-wavelength optical properties of this system. We examined a set of samples with different activator concentrations (2500, 10,000, 25,000 and 50,000 ppm) in respect of absorption and short-wavelength emission properties. The concentration-dependant spectra of UV emission from the {sup 1}I{sub 6}+{sup 3}P{sub 0} and {sup 1}D{sub 2} levels and fluorescence dynamics profiles have been recorded and carefully examined under direct (one-photon) excitation, enabling discussion of fluorescence quenching mechanisms and determination of appropriate cross-relaxation rates. According to authors' best knowledge, the three-photon red-to-UV up-conversion has been reported for the first time under excitation of a laser diode.

  20. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    Science.gov (United States)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  1. [Research on the emission spectrum of NO molecule's γ-band system by corona discharge].

    Science.gov (United States)

    Zhai, Xiao-dong; Ding, Yan-jun; Peng, Zhi-min; Luo, Rui

    2012-05-01

    The optical emission spectrum of the gamma-band system of NO molecule, A2 sigma+ --> X2 pi(r), has been analyzed and calculated based on the energy structure of NO molecule' doublet states. By employing the theory of diatomic molecular Spectra, some key parameters of equations for the radiative transition intensity were evaluated theoretically, including the potentials of the doublet states of NO molecule's upper and lower energy levels, the electronic transition moments calculated by using r-centroid approximation method, and the Einstein coefficient of different vibrational and rotational levels. The simulated spectrum of the gamma-band system was calculated as a function of different vibrational and rotational temperature. Compared to the theoretical spectroscopy, the measured results were achieved from corona discharge experiments of NO and N2. The vibrational and rotational temperatures were determined approximately by fitting the measured spectral intensities with the calculated ones.

  2. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    Science.gov (United States)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  3. Enhancement of Spontaneous Erbium Emission near the Photonic Band Edge of Distributed Bragg Reflectors Based on a-Si:H/a-SiOx:H

    International Nuclear Information System (INIS)

    Medvedev, A.V.; Feoktistov, N.A.; Pevtsov, A.B.; Golubev, V.G.

    2005-01-01

    Results obtained in an experimental study of spontaneous emission from erbium ions in a spectral range corresponding to the lower photonic band edge of distributed Bragg reflectors (1D photonic crystals) are presented. The photonic crystals were constituted of alternating quarter-wave a-Si:H and a-SiO x :H layers grown by PECVD. Erbium was introduced into the a-Si:H layers by magnetron sputtering of an erbium target in the course of structure growth. The change observed in the intensity of spontaneous emission is due to the nonmonotonic behavior of the density of optical modes near the photonic band edge

  4. NaYF4:Er,Yb/Bi2MoO6 core/shell nanocomposite: A highly efficient visible-light-driven photocatalyst utilizing upconversion

    International Nuclear Information System (INIS)

    Sun, Yuanyuan; Wang, Wenzhong; Sun, Songmei; Zhang, Ling

    2014-01-01

    Highlights: • Design and synthesis of NaYF 4 :Er,Yb/Bi 2 MoO 6 based on upconversion. • NaYF 4 :Er,Yb/Bi 2 MoO 6 nanocomposite was prepared for the first time. • Core–shell structure benefits the properties. • Upconversion contributed to the enhanced photocatalytic activity. • Helps to understand the functionality of new type photocatalysts. - Abstract: NaYF 4 :Er,Yb/Bi 2 MoO 6 core/shell nanocomposite was designed and prepared for the first time based on upconversion. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectra (DRS). The results revealed that the as-synthesized NaYF 4 :Er,Yb/Bi 2 MoO 6 consisted of spheres with a core diameter of about 26 nm and a shell diameter of around 6 nm. The core was upconversion illuminant NaYF 4 :Er,Yb and the shell was Bi 2 MoO 6 around the core, which was confirmed by EDS. The NaYF 4 :Er,Yb/Bi 2 MoO 6 exhibited higher photocatalytic activity for the photodecomposition of Rhodamine B (RhB) under the irradiation of Xe lamp and green light emitting diode (g-LED). The mechanism of the high photocatalytic activity was discussed by photoluminescence spectra (PL), which is mainly attributed to upconversion of NaYF 4 :Er,Yb in the NaYF 4 :Er,Yb/Bi 2 MoO 6 nanocomposite and the core–shell structure

  5. Growth and spectroscopic properties of Er{sup 3+}-doped Li{sub 3}Ba{sub 2}Y{sub 3}(MoO{sub 4}){sub 8} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Song Mingjun, E-mail: smj521@hotmail.com [College of Chemistry and Chemical Engineering, Weifang University, Weifang, Shandong 261061 (China); Wang Lintong [College of Chemistry and Chemical Engineering, Weifang University, Weifang, Shandong 261061 (China); Zhao Wang [Department of Physics, Huainan Normal University, Huainan, Anhui 232001 (China); Wang Guofu [Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhao Meili; Meng Qingguo [College of Chemistry and Chemical Engineering, Weifang University, Weifang, Shandong 261061 (China)

    2011-06-15

    Highlights: > Er{sup 3+}:Li{sub 3}Ba{sub 2}Y{sub 3}(MoO{sub 4}){sub 8} crystal was grown by the top seeded solution growth method and the appearance and composition of the crystal were analyzed. > The spectroscopic parameters were calculated based on the Judd-Ofelt theory. > The lifetime of the crystal and powder sample was measured and the radiation trapping effect was discussed. > The up-conversion fluorescence spectra were measured and the possible up-conversion mechanisms were proposed. - Abstract: Er{sup 3+}:Li{sub 3}Ba{sub 2}Y{sub 3}(MoO{sub 4}){sub 8} crystal has been grown by the top seeded solution growth method (TSSG) from a flux of Li{sub 2}MoO{sub 4} and its morphology was analyzed. The polarized absorption spectra, fluorescence spectra and fluorescence decay curves of the crystal were measured. Based on the Judd-Ofelt (J-O) theory, spectroscopic parameters of Er{sup 3+}:Li{sub 3}Ba{sub 2}Y{sub 3}(MoO{sub 4}){sub 8} crystal, including the oscillator intensity parameters {Omega}{sub t} (t = 2, 4, 6), spontaneous emission probabilities, fluorescence branching ratios, and radiative lifetimes were calculated and analyzed. Stimulated emission cross-sections of the {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} transition were estimated by the reciprocity method (RM) and the Fuchtbauer-Ladenburg (F-L) formula. Five up-conversion fluorescence bands around 490, 530, 550, 660 and 800 nm were observed with 977 nm excitation, and the possible up-conversion mechanisms were proposed.

  6. Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging.

    Science.gov (United States)

    Yang, Yang; Sun, Yun; Cao, Tianye; Peng, Juanjuan; Liu, Ying; Wu, Yongquan; Feng, Wei; Zhang, Yingjian; Li, Fuyou

    2013-01-01

    Upconversion luminescence (UCL) properties and radioactivity have been integrated into NaLuF(4):(153)Sm,Yb,Tm nanoparticles by a facile one-step hydrothermal method, making these nanoparticles potential candidates for UCL and single-photon emission computed tomography (SPECT) dual-modal bioimaging in vivo. The introduction of small amount of radioactive (153)Sm(3+) can hardly vary the upconversion luminescence properties of the nanoparticles. The as-designed nanoparticles showed very low cytotoxicity, no obvious tissue damage in 7 days, and excellent in vitro and in vivo performances in dual-modal bioimaging. By means of a combination of UCL and SPECT imaging in vivo, the distribution of the nanoparticles in living animals has been studied, and the results indicated that these particles were mainly accumulated in the liver and spleen. Therefore, the concept of (153)Sm(3+)/Yb(3+)/Tm(3+) co-doped NaLuF(4) nanoparticles for UCL and SPECT dual-modality imaging in vivo of whole-body animals may serve as a platform for next-generation probes for ultra-sensitive molecular imaging from the cellular scale to whole-body evaluation. It also introduces an easy methodology to quantify in vivo biodistribution of nanomaterials which still needs further understanding as a community. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A 1.1-1.9 GHz SETI SURVEY OF THE KEPLER FIELD. I. A SEARCH FOR NARROW-BAND EMISSION FROM SELECT TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan; Cobb, Jeff; Lebofsky, Matt; Marcy, Geoffrey W. [University of California, Berkeley, 110 Sproul Hall, Berkeley, CA 94720 (United States); Demorest, Paul; Maddalena, Ron J.; Langston, Glen [National Radio Astronomy Observatory, 520 Edgemont Rd Charlottesville, VA 22903 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 640 North A' ohoku Place, 209 Hilo, HI 96720-2700 (United States); Tarter, Jill [SETI Institute, 189 Bernardo Ave 100 Mountain View, CA 94043 (United States)

    2013-04-10

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.

  8. Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers

    NARCIS (Netherlands)

    Chang, Y.; Li, X.; Zhang, L.; Xia, L.; Liu, Xiaomin; Li, C.; Zhang, Y.; Tu, L.; Xue, B.; Zhao, H.; Zhang, H.; Kong, X.

    2017-01-01

    Recent advances in upconversion nanophotosensitizers (UCNPs-PS) excited by near-infrared (NIR) light have led to substantial progress in improving photodynamic therapy (PDT) of cancer. For a successful PDT, subcellular organelles are promising therapeutic targets for reaching a satisfactory

  9. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry

    Science.gov (United States)

    Brites, Carlos D. S.; Xie, Xiaoji; Debasu, Mengistie L.; Qin, Xian; Chen, Runfeng; Huang, Wei; Rocha, João; Liu, Xiaogang; Carlos, Luís D.

    2016-10-01

    Brownian motion is one of the most fascinating phenomena in nature. Its conceptual implications have a profound impact in almost every field of science and even economics, from dissipative processes in thermodynamic systems, gene therapy in biomedical research, artificial motors and galaxy formation to the behaviour of stock prices. However, despite extensive experimental investigations, the basic microscopic knowledge of prototypical systems such as colloidal particles in a fluid is still far from being complete. This is particularly the case for the measurement of the particles' instantaneous velocities, elusive due to the rapid random movements on extremely short timescales. Here, we report the measurement of the instantaneous ballistic velocity of Brownian nanocrystals suspended in both aqueous and organic solvents. To achieve this, we develop a technique based on upconversion nanothermometry. We find that the population of excited electronic states in NaYF4:Yb/Er nanocrystals at thermal equilibrium can be used for temperature mapping of the nanofluid with great thermal sensitivity (1.15% K-1 at 296 K) and a high spatial resolution (<1 μm). A distinct correlation between the heat flux in the nanofluid and the temporal evolution of Er3+ emission allows us to measure the instantaneous velocity of nanocrystals with different sizes and shapes.

  10. High resolution emission Fourier transform infrared spectra of the 4p-5s and 5p-6s bands of ArH.

    Science.gov (United States)

    Baskakov, O I; Civis, S; Kawaguchi, K

    2005-03-15

    In the 2500-8500 cm(-1) region several strong emission bands of (40)ArH were observed by Fourier transform spectroscopy through a dc glow discharge in a mixture of argon and hydrogen. Rotational-electronic transitions of the two previously unstudied 4p-5s and 5p-6s,v = 0-0, bands of (40)ArH were measured and assigned in the 6060 and 3770 cm(-1) regions, respectively. A simultaneous fit of the emission transitions of the 4p-5s and 5p-6s bands and an extended set of transitions of the 6s-4p band observed by Dabrowski, Tokaryk, and Watson [J. Mol. Spectrosc. 189, 95 (1998)] and remeasured in the present work yielded consistent values of the spectroscopic parameters of the electronic states under investigation. In the branch of the 4p-5s band with transitions of type (Q)Q(f(3)e) we observed a narrowing in the linewidths with increasing rotational quantum number N. The rotational dependence of the linewidth is caused by predissociation of the 5s state by the repulsive ground 4s state through homogeneous coupling and changes in overlap integrals of the vibrational wave functions with the rotational level. Analysis was based on the Fermi's golden rule approximation model. In the 4p-5s band region a vibrational sequence ofv(')-v(")=1-1, 2-2, and 3-3 were recorded and a number of transitions belonging to the strongest (Q)Q(f(3)e) form branch of the 1-1 band were analyzed.

  11. Near-field thermal upconversion and energy transfer through a Kerr medium.

    Science.gov (United States)

    Khandekar, Chinmay; Rodriguez, Alejandro W

    2017-09-18

    We present an approach for achieving large Kerr χ (3) -mediated thermal energy transfer at the nanoscale that exploits a general coupled-mode description of triply resonant, four-wave mixing processes. We analyze the efficiency of thermal upconversion and energy transfer from mid- to near-infrared wavelengths in planar geometries involving two slabs supporting far-apart surface plasmon polaritons and separated by a nonlinear χ (3) medium that is irradiated by externally incident light. We study multiple geometric and material configurations and different classes of intervening mediums-either bulk or nanostructured lattices of nanoparticles embedded in nonlinear materials-designed to resonantly enhance the interaction of the incident light with thermal slab resonances. We find that even when the entire system is in thermodynamic equilibrium (at room temperature) and under typical drive intensities ~ W/μm 2 , the resulting upconversion rates can approach and even exceed thermal flux rates achieved in typical symmetric and non-equilibrium configurations of vacuum-separated slabs. The proposed nonlinear scheme could potentially be exploited to achieve thermal cooling and refrigeration at the nanoscale, and to actively control heat transfer between materials with dramatically different resonant responses.

  12. Strategies for the design of bright upconversion nanoparticles for bioanalytical applications

    Science.gov (United States)

    Wiesholler, Lisa M.; Hirsch, Thomas

    2018-06-01

    In recent years upconversion nanoparticles (UCNPs) received great attention because of their outstanding optical properties. Especially in bioanalytical applications this class of materials can overcome limitations of common probes like high background fluorescence or blinking. Nevertheless, the requirements for UCNPs to be applicable in biological samples, e.g. small size, water-dispersibility, excitation at low power density are in contradiction with the demand of high brightness. Therefore, a lot of attention is payed to the enhancement of the upconversion luminescence. This review discuss the recent trends and strategies to boost the brightness of UCNPs, classified in three main directions: a) improving the efficiency of energy absorption by the sensitizer via coupling to plasmonic or photonic structures or via attachment of ligands for light harvesting; b) minimizing non-radiative deactivation by variations in the architecture of UCNPs; and c) changing the excitation wavelength to get bright particles at low excitation power density for applications in aqueous systems. These strategies are critically reviewed including current limitations as well as future perspectives for the design of efficient UCNPs especially for sensing application in biological samples or cells.

  13. MODIS on-orbit thermal emissive bands lifetime performance

    Science.gov (United States)

    Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong

    2016-05-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  14. Plasmon Enhancement of Triplet Exciton Diffusion Revealed by Nanoscale Imaging of Photochemical Fluorescence Upconversion

    Czech Academy of Sciences Publication Activity Database

    Bujak, Lukasz; Narushima, K.; Sharma, D.K.; Hirata, S.; Vácha, M.

    2017-01-01

    Roč. 121, č. 45 (2017), s. 25479-25486 ISSN 1932-7447 Institutional support: RVO:67985882 Keywords : Plasmons * Fluorescence upconversion * Nanostructures Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 4.536, year: 2016

  15. Nanostructured rare earth doped Nb{sub 2}O{sub 5}: Structural, optical properties and their correlation with photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Rafael Ramiro; Aquino, Felipe Thomaz [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP CEP 14040-901 (Brazil); Ferrier, Alban [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); Goldner, Philippe [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Gonçalves, Rogéria R., E-mail: rrgoncalves@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP CEP 14040-901 (Brazil)

    2016-02-15

    In the present work, we report on a systematic study on structural and spectroscopic properties Eu{sup 3+} and Er{sup 3+}-doped Nb{sub 2}O{sub 5} prepared by sol–gel method. The Eu{sup 3+} ions were used as structural probe to determine the symmetry sites occupied by lanthanide ions. The Eu{sup 3+}-doped Nb{sub 2}O{sub 5} nanocrystalline powders were annealed at different temperatures to verify how the different Nb{sub 2}O{sub 5} crystalline phases affect the structure and the luminescence properties. Er{sup 3+}-doped Nb{sub 2}O{sub 5} was prepared showing an intense NIR luminescence, and, visible luminescence on the green and red, deriving from upconversion process. The synthetized materials can find widespread applicability in photonics as red luminophor for white LED (with tricolor), optical amplifiers and upconverter materials. - Highlights: • Vis and NIR emission from nanostructured lanthanide doped Nb{sub 2}O{sub 5}. • Eu{sup 3+}-doped Nb{sub 2}O{sub 5} as Red luminophor. • Multicolor tunability of intense upconversion emission from lanthanide doped Nb{sub 2}O{sub 5}. • Potential application as biological markers. • Broad band NIR emission.

  16. True photonic band-gap mode-control in VCSEL structures

    DEFF Research Database (Denmark)

    Romstad, F.; Madsen, M.; Birkedal, Dan

    2003-01-01

    Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect.......Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....

  17. Polarimetric Emission of Rain Events: Simulation and Experimental Results at X-Band

    Directory of Open Access Journals (Sweden)

    Nuria Duffo

    2009-06-01

    Full Text Available Accurate models are used today for infrared and microwave satellite radiance simulations of the first two Stokes elements in the physical retrieval, data assimilation etc. of surface and atmospheric parameters. Although in the past a number of theoretical and experimental works have studied the polarimetric emission of some natural surfaces, specially the sea surface roughened by the wind (Windsat mission, very limited studies have been conducted on the polarimetric emission of rain cells or other natural surfaces. In this work, the polarimetric emission (four Stokes elements of a rain cell is computed using the polarimetric radiative transfer equation assuming that raindrops are described by Pruppacher-Pitter shapes and that their size distribution follows the Laws-Parsons law. The Boundary Element Method (BEM is used to compute the exact bistatic scattering coefficients for each raindrop shape and different canting angles. Numerical results are compared to the Rayleigh or Mie scattering coefficients, and to Oguchi’s ones, showing that above 1-2 mm raindrop size the exact formulation is required to model properly the scattering. Simulation results using BEM are then compared to the experimental data gathered with a X-band polarimetric radiometer. It is found that the depolarization of the radiation caused by the scattering of non-spherical raindrops induces a non-zero third Stokes parameter, and the differential phase of the scattering coefficients induces a non-zero fourth Stokes parameter.

  18. SPATIALLY RESOLVED M-BAND EMISSION FROM IO’S LOKI PATERA–FIZEAU IMAGING AT THE 22.8 m LBT

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Albert; Veillet, Christian [LBT Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Kleer, Katherine de; Pater, Imke de [University of California at Berkeley, Berkeley, CA 94720 (United States); Leisenring, Jarron; Defrère, Denis; Hinz, Philip; Skemer, Andy [University of Arizona, 1428 E. University Blvd., Tucson, AZ 85721 (United States); Camera, Andrea La; Bertero, Mario; Boccacci, Patrizia [DIBRIS, University of Genoa, Via Dodecaneso 35, I-16146 Genova (Italy); Arcidiacono, Carmelo [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hofmann, Karl-Heinz; Schertl, Dieter; Weigelt, Gerd [Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 Bonn (Germany); Kürster, Martin [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Rathbun, Julie [Planetary Science Institute, 1700 E. Fort Lowell, Tucson, AZ 85719 (United States); Skrutskie, Michael [University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Spencer, John [Southwest Research Institute, 1050 Walnut Ste. Suite 300, Boulder, CO 80302 (United States); Woodward, Charles E., E-mail: aconrad@lbto.org [Minnesota Institute for Astrophysics, 116 Church St., Minneapolis, MN 55455 (United States)

    2015-05-15

    The Large Binocular Telescope Interferometer mid-infrared camera, LMIRcam, imaged Io on the night of 2013 December 24 UT and detected strong M-band (4.8 μm) thermal emission arising from Loki Patera. The 22.8 m baseline of the Large Binocular Telescope provides an angular resolution of ∼32 mas (∼100 km at Io) resolving the Loki Patera emission into two distinct maxima originating from different regions within Loki’s horseshoe lava lake. This observation is consistent with the presence of a high-temperature source observed in previous studies combined with an independent peak arising from cooling crust from recent resurfacing. The deconvolved images also reveal 15 other emission sites on the visible hemisphere of Io including two previously unidentified hot spots.

  19. Multifunctional BaYbF5: Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging.

    Science.gov (United States)

    Li, Xiaolong; Yi, Zhigao; Xue, Zhenluan; Zeng, Songjun; Liu, Hongrong

    2017-06-01

    Development of high-quality upconversion nanoparticles (UCNPs) with combination of the merits of multiple molecular imaging techniques, such as, upconversion luminescence (UCL) imaging, X-ray computed tomography (CT), and magnetic resonance (MR) imaging, could significantly improve the accuracy of biological diagnosis. In this work, multifunctional BaYbF 5 : Gd/Er (50:2mol%) UCNPs were synthesized via a solvothermal method using oleic acid (OA) as surface ligands (denoted as OA-UCNPs). The OA-UCNPs were further treated by diluted HCl to form ligand-free UCNPs (LF-UCNPs) for later bioimaging applications. The cytotoxicity assay in HeLa cells shows low cell toxicity of these LF-UCNPs. Owing to the efficient UCL of BaYbF 5 : Gd/Er, the LF-UCNPs were successfully used as luminescent bioprobe in UCL bioimaging. And, X-ray CT imaging reveals that BaYbF 5 : Gd/Er UCNPs can act as potential contrast agents for detection of the liver and spleen in the live mice owing to the high-Z elements (e.g., Ba, Yb, and Gd) in host matrix. Moreover, with the addition of Gd, the as-designed UCNPs exhibit additional positive contrast enhancement in T 1 -weighted MR imaging. These findings demonstrate that BaYbF 5 : Gd/Er UCNPs are potential candidates for tri-modal imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3-Na2O-ZnO-TeO2 glasses

    Science.gov (United States)

    Sobczyk, Marcin

    2013-04-01

    Telluride glasses of the composition xNd2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2, where (0≤x≤7) were prepared by the melt quench technique. Some physical and optical properties of the glasses were evaluated. The thermal behavior i.e. glass transition and crystallization temperatures were studied by using TGA-DTA technique. Optical properties of Nd3+-doped telluride glasses were investigated between 298 and 700 K. Basing on the obtained values of J-O parameter values (×10-20 cm2: Ω2=4.49±0.84, Ω4=5.03±0.61, Ω6=4.31±0.73), the radiative transition probabilities (AT), radiative lifetimes (τR), fluorescence branching ratios (β) and emission cross-sections (σem) were calculated for the 4F3/2→4IJ/2 (where J=9, 11 and 13) transitions of Nd3+ ions. The τR value of the 4F3/2 level amount to 164 μs and is slightly higher than the measured decay time of 162 μs. With the increasing of Nd2O3 concentration from 0.5 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 162 to 5.6 μs. The estimated quantum efficiency amount to 100%, based on a comparison of τR and the experimental decay time of a slightly doped Nd3+ telluride glass. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The 4F3/2→4I9/2 and 4F5/2→4I9/2 transitions were analyzed with respect to the fluorescence intensity ratio (FIR) and were found to be temperature dependent. Infrared-to-visible up-conversion emissions with a maximum at 603.0 and 635.3 nm were observed at high temperatures using the 804 nm excitation and are due to the 4G5/2→4I9/2 and 4G5/2→4I11/2 transitions of Nd3+ ions, respectively. The near quadratic dependence of fluorescence on excitation laser power confirms that two photons contribute to up-conversion of the orange emissions. The temperature-stimulated up-conversion excitation processes have been analyzed in detail. The optical results indicate that the investigated glasses are potentially applicable as a 1063 nm

  1. Improving pure red upconversion emission of Co-doped Y{sub 2}O{sub 3}:Yb{sup 3+}–Er{sup 3+} nanocrystals with a combination of sodium sulfide and surfactant Pluronic-F127

    Energy Technology Data Exchange (ETDEWEB)

    López-Luke, T., E-mail: tzarara@cio.mx [Centro de Investigaciones en Óptica, A.P. 1-948, León, Gto. 37160, México (Mexico); De la Rosa, E., E-mail: elder@cio.mx [Centro de Investigaciones en Óptica, A.P. 1-948, León, Gto. 37160, México (Mexico); Campos Villalobos, I. [Centro de Investigaciones en Óptica, A.P. 1-948, León, Gto. 37160, México (Mexico); Rodriguez, R.A. [Universidad de Guadalajara, Unidad Lagos, Lagos de Moreno, Jal. 47460, México (Mexico); Ángles-Chávez, C. [Instituto Mexicano del Petróleo, Cd. México, D.F. 07730, México (Mexico); Salas, P. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, A.P. 1-1010, Querétaro, Qro. 76000, México (Mexico); Wheeler, Damon A.; Zhang, J.Z. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064 (United States)

    2014-01-15

    Nanocrystals of Y{sub 2}O{sub 3}:Yb{sup 3+}–Er{sup 3+} (2:1 mol% Yb{sup 3+}:Er{sup 3+}) were prepared by a novel precipitation technique using Na{sub 2}S and Pluronic-F127 (PF127) surfactant. Crystal structure, particle size, red emission intensity and fluorescence decay lifetimes were determined using microscopy and spectroscopy techniques. TEM analysis indicates that the average particle size ranged from 40 to 70 nm. The nanocrystals showed a strong red emission band centered at 663 nm after excitation at 970 nm. The upconverted signal intensity was improved 250% with an optimum concentration of Na{sub 2}S (0.48 M) and PF127 (0.1 mM). The improvement was explained in terms of the reduction of surface contaminants as well as the cubic crystalline phase of the parent Y{sub 2}O{sub 3} material. Interestingly, the formation of sulfates (SO{sub 4}{sup 2−}) is faster than that of O–H, which is responsible for quenching the red and green emissions. The results suggest that Na{sub 2}S and PF127 are good candidates for surface passivation, especially when used in conjunction. The preparation of Y{sub 2}O{sub 3}:Yb{sup 3+}–Er{sup 3+} using Na{sub 2}S with strong red emission band was produced at a lower cost than that of other sulfuration processes. -- Highlights: • . • Strong red emission band centered at 663 nm was obtained after excitation at 970 nm. • Yb-Er codoped Y2O3 nanocrystals with average size ranging from 40 to 70 nm. • Improvement of the red emission in Y2O3:Yb-Er nanocrystals by the introduction of sodium sulfide and pluronic. • Passivation of nanocrystal surface with sodium sulfide and pluoronic.

  2. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    Science.gov (United States)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  3. Unified model of plasma formation, bubble generation and shock wave emission in water for fs to ns laser pulses (Conference Presentation)

    Science.gov (United States)

    Liang, Xiao-Xuan; Freidank, Sebastian; Linz, Norbert; Paltauf, Günther; Zhang, Zhenxi; Vogel, Alfred

    2017-03-01

    We developed modeling tools for optical breakdown events in water that span various phases reaching from breakdown initiation via solvated electron generation, through laser induced-plasma formation and temperature evolution in the focal spot to the later phases of cavitation bubble dynamics and shock wave emission and applied them to a large parameter space of pulse durations, wavelengths, and pulse energies. The rate equation model considers the interplay of linear absorption, photoionization, avalanche ionization and recombination, traces thermalization and temperature evolution during the laser pulse, and portrays the role of thermal ionization that becomes relevant for T > 3000 K. Modeling of free-electron generation includes recent insights on breakdown initiation in water via multiphoton excitation of valence band electrons into a solvated state at Eini = 6.6 eV followed by up-conversion into the conduction band level that is located at 9.5 eV. The ability of tracing the temperature evolution enabled us to link the model of laser-induced plasma formation with a hydrodynamic model of plasma-induced pressure evolution and phase transitions that, in turn, traces bubble generation and dynamics as well as shock wave emission. This way, the amount of nonlinear energy deposition in transparent dielectrics and the resulting material modifications can be assessed as a function of incident laser energy. The unified model of plasma formation and bubble dynamics yields an excellent agreement with experimental results over the entire range of investigated pulse durations (femtosecond to nanosecond), wavelengths (UV to IR) and pulse energies.

  4. Beam steering application for W-band data links with moving targets in 5G wireless networks

    DEFF Research Database (Denmark)

    Morales Vicente, Alvaro; Rodríguez Páez, Juan Sebastián; Gallardo, Omar

    2017-01-01

    to this problem, RoF (Radio-over-Fiber) architectures have been proposed as low-latency, cost-effective candidates. Two elements are introduced to extend the RoF approach. First, the carrier frequency is raised into the W-band (75–110 GHz) to increase the available capacity. Second, a mechanical beam......-steering solution based on a Stewart platform is adopted for the transmitter antenna to allow it to follow a moving receiver along a known path, thereby enhancing the coverage area. The performance of a system transmitting a 2.5 Gbit/s non-return-to-zero signal generated by photonic up-conversion over a wireless...

  5. Up-conversion and near infrared luminescence in Er3+/Yb3+ co-doped glass-ceramic containing MgGa2O4 nano-crystals

    International Nuclear Information System (INIS)

    Sun, Jiaju; Yu, Lixin; Li, Fuhai; Wei, Shuilin; Li, Songchu

    2016-01-01

    The MgO–Ga 2 O 3 –SiO 2 (MG-S) glasses and nanocrystalline glass-ceramics (GCs) containing MgGa 2 O 4 nanocrystals codoped with Er 3+ and Yb 3+ were prepared by a simple sol–gel method. The formation of MgGa 2 O 4 nanocrystals in the GCs was confirmed by the X-ray diffraction (XRD). Their morphology was investigated applying high-resolution transmission electron microscopy (HRTEM). Stark splitting of near infrared (NIR) and up-conversion (UC) emission implies that the Er 3+ is incorporated into MgGa 2 O 4 nanocrystals. The effect of the MgO, Ga 2 O 3 content and sintering temperature on the structure of the prepared samples was systematically studied. Under 980 nm excitation, intense UC and NIR emission (1530 nm) were observed in the MG-S GCs by efficient energy transfer from Yb 3+ to Er 3+ . The two-photon process was confirmed to be responsible for both the green and red UC emissions. - Highlights: • It is interesting that the CIE chromaticity coordinates of the several prepared CaMO 4 :Eu samples by a hydrothermal method are very close to the standard of white light.

  6. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In 2 O 3 nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor–liquid–solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy (VO) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of VO defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  7. Optical properties of Mg2+, Yb3+, and Ho3+ tri-doped LiNbO3 crystals

    Science.gov (United States)

    Dai, Li; Liu, Chun-Rui; Tan, Chao; Yan, Zhe-Hua; Xu, Yu-Heng

    2017-04-01

    A series of LiNbO3 crystals tri-doped with Mg{}2+, Yb{}3+, and Ho{}3+ are grown by the conventional Czochraski technique. The concentrations of Mg{}2+, Yb{}3+, and Ho{}3+ ions in Mg:Yb:Ho:LiNbO3 crystals are measured by using an inductively coupled plasma atomic emission spectrometry. The x-ray diffraction is proposed to determine the lattice constant and analyze the internal structure of the crystal. The light-induced scattering of Mg:Yb:Ho:LiNbO3 crystal is quantitatively described via the threshold effect of incident exposure energy flux. The exposure energy ({E}{{r}}) is calculated to discuss the optical damage resistance ability. The exposure energy of Mg(7 mol):Yb:Ho:LiNbO3 crystal is 709.17 J/cm2, approximately 425 times higher than that of the Mg(1 mol):Yb:Ho:LiNbO3 crystal in magnitude. The blue, red, and very intense green bands of Mg:Yb:Ho:LiNbO3 crystal are observed under the 980-nm laser excitation to evaluate the up-conversion emission properties. The dependence of the emission intensity on pumping power indicates that the up-conversion emission is a two-photon process. The up-conversion emission mechanism is discussed in detail. This study indicates that Mg:Yb:Ho:LiNbO3 crystal can be applied to the fabrication of new multifunctional photoluminescence devices. Project supported by the National Natural Science Foundation of China (Grant No. 51301055), the Youth Science Fund of Heilongjiang Province, China (Grant No. QC2015061), the Special Funds of Harbin Innovation Talents in Science and Technology Research, China (Grant No. 2015RQQXJ045 ), and the Science Funds for the Young Innovative Talents of Harbin University of Science and Technology, China (Grant No. 201501).

  8. Upconversion fluorescence tyrosine doped LaF3:Dy quantum dots useful in biolabeling and biotagging

    Science.gov (United States)

    Singh, Amit T.; Khandpekar, M. M.

    2018-04-01

    Water soluble hexahedral colloidal quantum dots (QDOTs) of Tyrosine doped LaF3:Dy have been synthesized by wet chemical route. The nanoparticles have been irradiated by microwave during synthesis for drying and also to reduce agglomeration. The coating of the LaF3:Dy nanoparticles by the amino acid tyrosine results in colloidal quantum dots. XRD studies indicates hexagonal lattice and confirms JCPDS data. The average particle size obtained by XRD and SEM are 22.89nm and 25.5nm respectively. The average sizes of nanorods obtained from TEM are 55 nm. The presence of elements has been verified with EDAX and ICP-AES technique. The SAED pattern of the samples shows sharp concentric rings indicating the crystalline nature of the synthesized nanoparticles. The FTIR spectra have been used to study the surface modification of the nanoparticles. The optical studies have been done using UV-visible and PL spectra. The PL spectra showed upconversion nature of the synthesized nanoparticles with sharp emission at 618 nm. The nanoparticles synthesized have potential application as biomaterials in bio imaging and biotagging.

  9. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals

    Science.gov (United States)

    Sun, Qi; Mundoor, Haridas; Ribot, Josep; Singh, Vivek; Smalyukh, Ivan; Nagpal, Prashant

    2014-03-01

    Upconversion of infrared radiation into visible light has been investigated for applications in biological imaging and photovoltaics. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb3+) , and slow rate of energy transfer (to Er3+ states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increases the rate of resonant energy transfer from Yb3+ to Er3+ ions by 6 fold. While we do observe strong metal mediated quenching (14 fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared, and hence enhances the nanocrystal UPL. This strong columbic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  10. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals.

    Science.gov (United States)

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant

    2014-01-08

    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  11. Spectroscopic investigation of zinc tellurite glasses doped with Yb(3+) and Er(3+) ions.

    Science.gov (United States)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-05

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80-x-y) TeO2+(0.20) ZnO+xEr2O3+yYb2O3 (x=0, y=0; x=0.004, y=0; x=0, y=0.05 and x=0.004, y=0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er(3+) glasses as erbium doped fiber amplifiers at 1.55μm in infrared emission region. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Near-infrared (NIR) optogenetics using up-conversion system

    Science.gov (United States)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Yawo, Hiromu

    2015-03-01

    Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called `imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.

  13. Intense upconversion luminescence and effect of local environment for Tm3+/Yb3+ co-doped novel TeO2-BiCl3 glass system.

    Science.gov (United States)

    Wang, Guonian; Dai, Shixun; Zhang, Junjie; Wen, Lei; Yang, Jianhu; Jiang, Zhonghong

    2006-05-15

    We present the results of a study that uses theoretical and experimental methods to investigate the characteristics of the upconversion luminescence of Tm3+/Yb3+ codoped TeO2-BiCl3 glass system as a function of the BiCl3 fraction. These glasses are potentially important in the design of upconversion fiber lasers. Effect of local environment around Tm3+ on upconversion fluorescence intensity was analyzed by theoretical calculations. The structure and spectroscopic properties were investigated in the experiments by measuring the Raman spectra, IR transmission spectra, and absorption and fluorescence intensities at room temperature. The results indicate that blue luminescence quantum efficiency increases with increasing BiCl3 content from 10 to 60 mol%, which were interpreted by the increase of asymmetry of glass structure, decrease of phonon energy and removing of OH- groups.

  14. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Li, Shunbo; Wen, Weijia, E-mail: phwen@ust.hk [Department of Physics, KAUST-HKUST Joint Micro/Nanofluidic Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Cao, Wenbin [Nano Science and Technology Program, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2016-02-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited.

  15. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    International Nuclear Information System (INIS)

    Wang, Yu; Li, Shunbo; Wen, Weijia; Cao, Wenbin

    2016-01-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF 4 :Yb 3+ , Er 3+ upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited

  16. Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm.

    Science.gov (United States)

    Torregrosa, A J; Maestre, H; Capmany, J

    2015-11-15

    We report an image wavelength upconversion system. The system mixes an incoming image at around 1550 nm (eye-safe region) illuminated by an amplified spontaneous emission (ASE) fiber source with a Gaussian beam at 1064 nm generated in a continuous-wave diode-pumped Nd(3+):GdVO(4) laser. Mixing takes place in a periodically poled lithium niobate (PPLN) crystal placed intra-cavity. The upconverted image obtained by sum-frequency mixing falls around the 631 nm red spectral region, well within the spectral response of standard silicon focal plane array bi-dimensional sensors, commonly used in charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) video cameras, and of most image intensifiers. The use of ASE illumination benefits from a noticeable increase in the field of view (FOV) that can be upconverted with regard to using coherent laser illumination. The upconverted power allows us to capture real-time video in a standard nonintensified CCD camera.

  17. Recent advances in enhanced luminescence upconversion of lanthanide-doped NaYF4 phosphors

    Science.gov (United States)

    Kumar, Deepak; Verma, Kartikey; Verma, Shefali; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    NaYF4 is regarded as the best upconversion (UC) matrix owing to its low phonon energy, more chemical stability, and a superior refractive index. This review reports on the various synthesis techniques of lanthanide-doped NaYF4 phosphors for UC application. The UC intensity depends on different properties of the matrix and those are discussed in detail. Plasmon-enhanced luminescence UC of the lanthanide-doped NaYF4 core-shells structure is discussed based on a literature survey. The present review provides the information about how the UC intensity can be enhanced. The idea about the UC is then deliberately used for versatile applications such as luminescent materials, display devices, biomedical imaging and different security appliances. In addition, the present review demonstrates the recent trends of NaYF4 UC materials in solar cell devices. The role of NaYF4 phosphor to eradicate the spectral variance among the incident solar spectrum, semiconductor as well as the sub-band gap nature of the semiconductor materials is also discussed in detail. Considering the fact that the research status on NaYF4 phosphor for photovoltaic application is now growing, the present review is therefore very important to the researchers. More importantly, this may promote more interesting research platforms to investigate the realistic use of UC nanophosphors as spectral converters for solar cells.

  18. Investigation of Upconversion, downshifting and quantum –cutting behavior of Eu3+, Yb3+, Bi3+ co-doped LaNbO4 phosphor as a spectral conversion material

    Science.gov (United States)

    Dwivedi, A.; Mishra, K.; Rai, S. B.

    2018-06-01

    This work presents the spectral conversion characteristics [upconversion (UC), downshifting (DS) and quantum–cutting (QC) optical processes] of Eu3+, Yb3+ and Bi3+ co-doped LaNbO4 (LBO) phosphor samples synthesized by solid state reaction technique. The crystal structure and the pure phase formation have been confirmed by x-ray diffraction (XRD) measurements. The surface morphology and particle size are studied by scanning electron microscopy (SEM). The rarely observed intense red UC emission from Eu3+ ion has been successfully obtained in Eu3+/Yb3+ co-doped LaNbO4 phosphor (on excitation with 980 nm) by optimizing the concentrations of Eu3+ and Yb3+ ions. The downshifting (DS) behavior has been studied by photoluminescence (PL) measurements on excitation with 265 nm wavelength from a Xe lamp source. A broad blue emission in the region 300–550 nm with its maximum ∼415 nm due to charge transfer band (CTB) of the host and large number of sharp peaks due to f-f transitions of Eu3+ ion have been observed. The energy transfer has been observed from (NbO4)3‑ to Eu3+ ion and the fluorescence emission has been optimized by varying the concentration of Eu3+ ion. An intense red emission has also been observed corresponding to 5D0 → 7F2 transition of Eu3+ ion at 611 nm in LBO: 0.09Eu3+ phosphor on excitation with 394 nm. The luminescence properties of Eu3+ ion are enhanced further through the sensitization effect of Bi3+ ion. The near infra-red (NIR) quantum cutting (QC) behavior due to Yb3+ ion has been monitored on excitation with 265 as well as 394 nm. The NIR QC is observed due to 2F5/2 → 2F7/2 transition of Yb3+ ion via co-operative energy transfer (CET) process from (NbO4)3‑ as well as Eu3+ ions to Yb3+ ion. This multimodal behavior (UC, DS and QC) makes this a promising phosphor material for multi-purpose spectral converter.

  19. Band rejection filter for measurement of electron cyclotron emission during electron cyclotron heating

    International Nuclear Information System (INIS)

    Iwase, Makoto; Ohkubo, Kunizo; Kubo, Shin; Idei, Hiroshi.

    1996-05-01

    For the measurement of electron cyclotron emission from the high temperature plasma, a band rejection filter in the range of 40-60 GHz is designed to reject the 53.2 GHz signal with large amplitude from the gyrotron for the purpose of plasma electron heating. The filter developed with ten sets of three quarters-wavelength coupled by TE 111 mode of tunable resonant cavity has rejection of 50 dB and 3 dB bandwidth of 500 MHz. The modified model of Tschebysheff type for the prediction of rejection is proposed. It is confirmed that the measured rejection as a function of frequency agrees well with the experimental results for small coupling hole, and also clarified that the rejection ratio increases for the large coupling hole. (author)

  20. O2 atmospheric band measurements with WINDII: Performance of a narrow band filter/wide angle Michelson combination in space

    International Nuclear Information System (INIS)

    Ward, W.E.; Hersom, C.H.; Tai, C.C.; Gault, W.A.; Shepherd, G.G.; Solheim, B.H.

    1994-01-01

    Among the emissions viewed by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0-0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide-angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique will be outlined and the on-orbit behavior since launch summarized

  1. Relations between broad-band linear polarization and Ca II H and K emission in late-type dwarf stars

    Science.gov (United States)

    Huovelin, Juhani; Saar, Steven H.; Tuominen, Ilkka

    1988-01-01

    Broadband UBV linear polarization data acquired for a sample of late-type dwarfs are compared with contemporaneous measurements of Ca II H and K line core emission. A weighted average of the largest values of the polarization degree is shown to be the best parameter for chromospheric activity diagnosis. The average maximum polarization in the UV is found to increase from late-F to late-G stars. It is noted that polarization in the U band is considerably more sensitive to activity variations than that in the B or V bands. The results indicate that stellar magnetic fields and the resulting saturation in the Zeeman-sensitive absorption lines are the most probably source of linear polarization in late-type main-sequence stars.

  2. High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.

    Science.gov (United States)

    Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong

    2018-08-01

    This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.

  3. Preparation and RGB upconversion optic properties of transparent anti-counterfeiting films.

    Science.gov (United States)

    Yao, Weijing; Tian, Qingyong; Liu, Jun; Xue, Qingwen; Li, Mengxiao; Liu, Li; Lu, Qiang; Wu, Wei

    2017-10-26

    Advanced anti-counterfeiting labels have aroused an intensive interest in packaging industry to avoid the serious issue of counterfeit. However, the preparation and cost of the existing labels associated with the drawbacks, including the complex and high-cost equipment, limit the protection of the authenticity of goods. Herein, we developed a series of anti-counterfeiting labels based on multicolor upconversion micro-particles (UCMPs) inks via straightforward and low-cost solutions, including spin-coating, stamping and screen printing. The UCMPs were synthesized through a facile hydrothermal process and displayed tunable red (R), green (G) and blue (B) color by doping different lanthanide ions, which are Er 3+ /Tm 3+ , Yb 3+ /Er 3+ and Yb 3+ /Tm 3+ in NaYF 4 hosts, respectively. The optimal UCMPs inks were deposited on a flexible polyethylene terephthalate (PET) substrate to obtain transparent anti-counterfeiting labels possessing higher transmittance, stronger upconversion fluorescence intensity and good photostability. Under ambient conditions, the patterns and films were transparent, but could exhibit multicolor light under 980 nm laser excitation. They can be used as anti-counterfeiting labels for die-cutting packages to further elevate the security of goods. The tunable and designable transparent anti-counterfeiting labels based on RGB UCMPs inks exhibit the merits of low-cost, easy-manufacture and versatility, underlying the practical application in the field of anti-counterfeiting.

  4. Novel mid-infrared imaging system based on single-mode quantum cascade laser illumination and upconversion

    DEFF Research Database (Denmark)

    Tomko, Jan; Junaid, Saher; Tidemand-Lichtenberg, Peter

    2017-01-01

    Compared to the visible or near-infrared (NIR) spectral regions, there is a lack of very high sensitivity detectors in the mid-infrared (MIR) that operate near room temperature. Upconversion of the MIR light to NIR light that is imaged using affordable, fast, and sensitive NIR detectors or camera...

  5. Study of broadband near-infrared emission in Tm3+-Er3+ codoped TeO2-WO3-PbO glasses.

    Science.gov (United States)

    Balda, R; Fernández, J; Fernández-Navarro, J M

    2009-05-25

    In this work, we report the near-infrared emission properties of Tm(3+)-Er(3+) codoped tellurite TeO(2)-WO(3)-PbO glasses under 794 nm excitation. A broad emission from 1350 to 1750 nm corresponding to the Tm(3+) and Er(3+) emissions is observed. The full width at half-maximum of this broadband increases with increasing [Tm]/[Er] concentration ratio up to a value of ~ 160 nm. The energy transfer between Tm(3+) and Er(3+) ions is evidenced by both the temporal behavior of the near-infrared luminescence and the effect of Tm3+ codoping on the visible upconversion of Er(3+) ions.

  6. An experimentally validated model for geometrically nonlinear plucking-based frequency up-conversion in energy harvesting

    Science.gov (United States)

    Kathpalia, B.; Tan, D.; Stern, I.; Erturk, A.

    2018-01-01

    It is well known that plucking-based frequency up-conversion can enhance the power output in piezoelectric energy harvesting by enabling cyclic free vibration at the fundamental bending mode of the harvester even for very low excitation frequencies. In this work, we present a geometrically nonlinear plucking-based framework for frequency up-conversion in piezoelectric energy harvesting under quasistatic excitations associated with low-frequency stimuli such as walking and similar rigid body motions. Axial shortening of the plectrum is essential to enable plucking excitation, which requires a nonlinear framework relating the plectrum parameters (e.g. overlap length between the plectrum and harvester) to the overall electrical power output. Von Kármán-type geometrically nonlinear deformation of the flexible plectrum cantilever is employed to relate the overlap length between the flexible (nonlinear) plectrum and the stiff (linear) harvester to the transverse quasistatic tip displacement of the plectrum, and thereby the tip load on the linear harvester in each plucking cycle. By combining the nonlinear plectrum mechanics and linear harvester dynamics with two-way electromechanical coupling, the electrical power output is obtained directly in terms of the overlap length. Experimental case studies and validations are presented for various overlap lengths and a set of electrical load resistance values. Further analysis results are reported regarding the combined effects of plectrum thickness and overlap length on the plucking force and harvested power output. The experimentally validated nonlinear plectrum-linear harvester framework proposed herein can be employed to design and optimize frequency up-conversion by properly choosing the plectrum parameters (geometry, material, overlap length, etc) as well as the harvester parameters.

  7. Rocket-borne EUV-visible emission measurements

    International Nuclear Information System (INIS)

    Schmidtke, G.; Baker, K.D.; Stasek, G.

    1982-01-01

    Two rocket-borne experiments for measuring EUV atmospheric emissions have been conducted. The first measured emissions at 391.4 nm and 557.7 nm, and the second measured emissions in the range from 50 to 650 nm. Height profiles of selected auroral emissions from atomic oxygen at 130.4 nm (exhibiting resonant radiation diffusion) and from atomic oxygen at 557.7 nm, and from neutral and ionized molecular nitrogen are shown. Some details of the recorded spectra are given. In the shorter wavelength regions, emissions from atomic oxygen and nitrogen dominate. Over 140 nm, Lyman-Birge-Hopfield bands, second positive bands and Vegard-Kaplan bands of molecular nitrogen contribute most strongly except for some atomic lines. The Lyman-Birge-Hopfield bands of molecular nitrogen are relatively weak during the auroral arc as compared to the diffuse aurora

  8. A pre-protective strategy for precise tumor targeting and efficient photodynamic therapy with a switchable DNA/upconversion nanocomposite.

    Science.gov (United States)

    Yu, Zhengze; Ge, Yegang; Sun, Qiaoqiao; Pan, Wei; Wan, Xiuyan; Li, Na; Tang, Bo

    2018-04-14

    Tumor-specific targeting based on folic acid (FA) is one of the most common and significant approaches in cancer therapy. However, the expression of folate receptors (FRs) in normal tissues will lead to unexpected targeting and unsatisfactory therapeutic effect. To address this issue, we develop a pre-protective strategy for precise tumor targeting and efficient photodynamic therapy (PDT) using a switchable DNA/upconversion nanocomposite, which can be triggered in the acidic tumor microenvironment. The DNA/upconversion nanocomposite is composed of polyacrylic acid (PAA) coated upconversion nanoparticles (UCNPs), the surface of which is modified using FA and chlorin e6 (Ce6) functionalized DNA sequences with different lengths. Initially, FA on the shorter DNA was protected by a longer DNA to prevent the bonding to FRs on normal cells. Once reaching the acidic tumor microenvironment, C base-rich longer DNA forms a C-quadruplex, resulting in the exposure of the FA groups and the bonding of FA and FRs on cancer cell membranes to achieve precise targeting. Simultaneously, the photosensitizer chlorin e6 (Ce6) gets close to the surface of UCNPs, enabling the excitation of Ce6 to generate singlet oxygen ( 1 O 2 ) under near infrared light via Förster resonance energy transfer (FRET). In vivo experiments indicated that higher tumor targeting efficiency was achieved and the tumor growth was greatly inhibited through the pre-protective strategy.

  9. Polycyclic Aromatic Hydrocarbon Emission in Spitzer /IRS Maps. II. A Direct Link between Band Profiles and the Radiation Field Strength

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D. J.; Peeters, E., E-mail: dstock84@gmail.com [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2017-03-10

    We decompose the observed 7.7 μ m polycyclic aromatic hydrocarbon (PAH) emission complexes in a large sample of over 7000 mid-infrared spectra of the interstellar medium using spectral cubes observed with the Spitzer /IRS-SL instrument. In order to fit the 7.7 μ m PAH emission complex we invoke four Gaussian components, which are found to be very stable in terms of their peak positions and widths across all of our spectra, and subsequently define a decomposition with fixed parameters, which gives an acceptable fit for all the spectra. We see a strong environmental dependence on the interrelationships between our band fluxes—in the H ii regions all four components are intercorrelated, while in the reflection nebulae (RNs) the inner and outer pairs of bands correlate in the same manner as previously seen for NGC 2023. We show that this effect arises because the maps of RNs are dominated by emission from strongly irradiated photodissociation regions, while the much larger maps of H ii regions are dominated by emission from regions much more distant from the exciting stars, leading to subtly different spectral behavior. Further investigation of this dichotomy reveals that the ratio of two of these components (centered at 7.6 and 7.8 μ m) is linearly related to the UV-field intensity (log G {sub 0}). We find that this relationship does not hold for sources consisting of circumstellar material, which are known to have variable 7.7 μ m spectral profiles.

  10. The effect of micro-structure on upconversion luminescence of Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glass-ceramics

    Science.gov (United States)

    Zhang, Minghui; Wen, Haiqin; Pan, Xiuhong; Yu, Jianding; Jiang, Meng; Yu, Huimei; Tang, Meibo; Gai, Lijun; Ai, Fei

    2018-03-01

    Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glasses have been prepared by aerodynamic levitation method. The glasses show high refractive index of 2.28 and Abbe number of 18.3. Glass-ceramics heated at 880 °C for 50 min perform the strongest upconversion luminescence. X-ray diffraction patterns of glass-ceramics with different depths indicate that rare earth ions restrain crystallization. Body crystallization mechanism mixed with surface crystallization is confirmed in the heat treatment. Surface crystals achieve priority to grow, resulting in important effects on upconversion luminescence. The results of atomic force microscope and scanning electron microscope indicate that crystal particles with uniform size distribute densely and homogenously on the surface and large amount of glass matrix exists in the glass ceramics heated at 880 °C for 50 min. Crystals in the glass-ceramics present dense structure and strong boundaries, which can reduce the mutual nonradiative relaxation rate among rare earth ions and then improve upconversion luminescence effectively. Based on micro-structural study, the mechanism that upconversion luminescence can be improved by heat treatment has been revealed. The results of micro-structural analysis agree well with the spectra.

  11. Temperature profile retrieval in axisymmetric combustion plumes using multilayer perceptron modeling and spectral feature selection in the infrared CO2 emission band.

    Science.gov (United States)

    García-Cuesta, Esteban; de Castro, Antonio J; Galván, Inés M; López, Fernando

    2014-01-01

    In this work, a methodology based on the combined use of a multilayer perceptron model fed using selected spectral information is presented to invert the radiative transfer equation (RTE) and to recover the spatial temperature profile inside an axisymmetric flame. The spectral information is provided by the measurement of the infrared CO2 emission band in the 3-5 μm spectral region. A guided spectral feature selection was carried out using a joint criterion of principal component analysis and a priori physical knowledge of the radiative problem. After applying this guided feature selection, a subset of 17 wavenumbers was selected. The proposed methodology was applied over synthetic scenarios. Also, an experimental validation was carried out by measuring the spectral emission of the exhaust hot gas plume in a microjet engine with a Fourier transform-based spectroradiometer. Temperatures retrieved using the proposed methodology were compared with classical thermocouple measurements, showing a good agreement between them. Results obtained using the proposed methodology are very promising and can encourage the use of sensor systems based on the spectral measurement of the CO2 emission band in the 3-5 μm spectral window to monitor combustion processes in a nonintrusive way.

  12. Magnetic dichroism in UV photoemission at off-normal emission: Study of the valence bands

    International Nuclear Information System (INIS)

    Venus, D.; Kuch, W.; Lin, M.; Schneider, C.M.; Ebert, H.; Kirschner, J.

    1997-01-01

    Magnetic dichroism of angle-resolved UV photoemission from fcc Co/Cu(001) thin films has been measured using linearly p-polarized light, and a coplanar geometry where the light and photoelectron wave vectors are antiparallel, and both are perpendicular to the in-plane sample magnetization. This geometry emphasizes information about state dispersion due to the crystalline symmetry. An orderly dispersion of the features in the magnetic dichroism over a wide range of off-normal angles of electron emission is related in detail to the bulk band structure of fcc Co. The measurements confirm the practical utility of magnetic dichroism experiments as a relatively simple complement to spin-resolved photoemission. copyright 1997 The American Physical Society

  13. Extreme ultraviolet narrow band emission from electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Zhao, H. Y.; Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Li, X. X.; Zhu, Y. H.; Sheng, L. S.; Zhang, G. B.; Tian, Y. C.

    2008-01-01

    Extreme ultraviolet lithography (EUVL) is considered as the most promising solution at and below dynamic random access memory 32 nm half pitch among the next generation lithography, and EUV light sources with high output power and sufficient lifetime are crucial for the realization of EUVL. However, there is no EUV light source completely meeting the requirements for the commercial application in lithography yet. Therefore, ECR plasma is proposed as a novel concept EUV light source. In order to investigate the feasibility of ECR plasma as a EUV light source, the narrow band EUV power around 13.5 nm emitted by two highly charged ECR ion sources--LECR2M and SECRAL--was measured with a calibrated EUV power measurement tool. Since the emission lines around 13.5 nm can be attributed to the 4d-5p transitions of Xe XI or the 4d-4f unresolved transition array of Sn VIII-XIII, xenon plasma was investigated. The dependence of the EUV throughput and the corresponding conversion efficiency on the parameters of the ion source, such as the rf power and the magnetic confinement configurations, were preliminarily studied

  14. Impact of Antibody Bioconjugation on Emission and Energy Band Profile of CdSeTe/ZnS Quantum Dots

    Science.gov (United States)

    Torchynska, T. V.; Gomez, J. A. Jaramillo; Polupan, G.; Macotela, L. G. Vega

    2018-03-01

    The variation of the photoluminescence (PL) and Raman scattering spectra of CdSeTe/ZnS quantum dots (QDs) on conjugation to an antibody has been investigated. Two types of CdSeTe/ZnS QD with different emission wavelength (705 nm and 800 nm) were studied comparatively before and after conjugation to anti-pseudorabies virus antibody (AB). Nonconjugated QDs were characterized by Gaussian-type PL bands. PL shifts to higher energy and asymmetric shape of PL bands was detected in PL spectra of bioconjugated QDs. The surface-enhanced Raman scattering effect was exhibited by the bioconjugated CdSeTe/ZnS QDs, indicating that the excitation light used in the Raman study generated electric dipoles in the AB molecules. The optical bandgap of the CdSeTe core was calculated numerically as a function of its radius based on an effective mass approximation model. The energy band diagrams for non- and bioconjugated CdSeTe/ZnS QDs were obtained, revealing a type II quantum well in the CdSeTe core. The calculations show that AB dipoles, excited in the bioconjugated QDs, stimulate a change in the energy band diagram of the QDs that alters the PL spectrum. These results could be useful for improving the sensitivity of QD biosensors.

  15. Selective tuning of enhancement in near band edge emission in hydrothermally grown ZnO nanorods coated with gold

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Tejendra, E-mail: phd12110211@iiti.ac.in [Molecular and Nanoelectronics Research Group (MNRG), Department of Electrical Engineering, IIT Indore, Indore, Madhya Pradesh (India); Palani, I.A., E-mail: palaniia@iiti.ac.in [Mechatronics and Instrumentation Lab, Department of Mechanical Engineering, IIT Indore, Indore, Madhya Pradesh (India); Centre of Material Science and Engineering, IIT Indore, Indore, Madhya Pradesh (India); Singh, Vipul, E-mail: vipul@iiti.ac.in [Molecular and Nanoelectronics Research Group (MNRG), Department of Electrical Engineering, IIT Indore, Indore, Madhya Pradesh (India); Centre of Material Science and Engineering, IIT Indore, Indore, Madhya Pradesh (India)

    2016-02-15

    The room-temperature photoluminescence (PL) spectra of hydrothermally grown ZnO nanorods (NRs) coated with Au using dc sputtering and thermal evaporation were systematically investigated. Au coated (via dc sputtering) ZnO NRs were found to exhibit very large near band edge emission enhancement, on the contrary Au coated (via thermal evaporation) ZnO NRs showed suppression in the near band edge emission peak. These observed results were further confirmed by excitation intensity (EI) dependent PL spectra of different samples. Further using Raman spectra it has been observed that the longitudinal optical (LO) phonons exhibit an enhancement and a weakening by the Au coatings, using dc sputtering and thermal evaporation respectively. Finally by controlling the concentration of KMnO{sub 4} as an additive during the hydrothermal growth, selective tuning in the defect density was carried out, which was later utilized to probe the effect of defect density of the Au–ZnO plasmonic coupling. Moreover, our results strongly suggest that the EI dependent PL has a strong dependence on the metal coating technique. The findings presented in this article clearly indicate the dependence of Au–ZnO plasmonic coupling on the overall defect density and the process of Au deposition.

  16. The performance of DC restoration function for MODIS thermal emissive bands

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong Jack; Shrestha, Ashish

    2017-09-01

    The DC restore (DCR) process of MODIS instrument maintains the output of a detector at focal plane assembly (FPA) within the dynamic range of subsequent analog-to-digital converter, by adding a specific offset voltage to the output. The DCR offset value is adjusted per scan, based on the comparison of the detector response in digital number (DN) collected from the blackbody (BB) view with target DN saved as an on-board look-up table. In this work, the MODIS DCR mechanism is revisited, with the trends of DCR offset being provided for thermal emissive bands (TEB). Noticeable changes have been occasionally found which coincide with significant detector gain change due to various instrumental events such as safe-mode anomaly or FPA temperature fluctuation. In general, MODIS DCR functionality has been effective and the change of DCR offset has no impact to the quality of MODIS data. One exception is the Earth view (EV) data saturation of Aqua MODIS LWIR bands 33, 35 ad 36 during BB warm-up cool-down (WUCD) cycle which has been observed since 2008. The BB view of their detectors saturate when the BB temperature is above certain threshold so the DCR cannot work as designed. Therefore, the dark signal DN fluctuates with the cold FPA (CFPA) temperature and saturate for a few hours per WUCD cycle, which also saturate the EV data sector within the scan. The CFPA temperature fluctuation peaked in 2012 and has been reduced in recent years and the saturation phenomenon has been easing accordingly. This study demonstrates the importance of DCR to data generation.

  17. Enhanced performance of dye-sensitized solar cells based on TiO{sub 2} with NIR-absorption and visible upconversion luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Li [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Yulin, Yang, E-mail: ylyang@hit.edu.cn [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Mi, Zhou; Ruiqing, Fan; LeLe, Qiu [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Xin, Wang [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Department of Food and Environmental Engineering, Heilongjiang, East University, Harbin 150086 (China); Lingyun, Zhang [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); School of Chemical Engineering, Northeast Dianli University, Jilin 132012 (China); Xuesong, Zhou; Jianglong, He [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2013-02-15

    TiO{sub 2} with NIR-absorption and visible upconversion luminescence (UC-TiO{sub 2}) is prepared by a sol-gel method and calcined at 700 Degree-Sign C for 6 h. The material broadens the response region of dye sensitized solar cells (DSSCs) from an ultraviolet-visible region to the whole region of the solar spectrum. It shifts NIR sunlight to visible light which matches the strong absorbing region of the dye (N719). DSSCs based on UC-TiO{sub 2} achieved higher conversion efficiency than that on raw TiO{sub 2}. UC-TiO{sub 2} was mixed with commercial raw TiO{sub 2} as additive, and the short-circuit current density, open-circuit voltage and conversion efficiency of the DSSC reached to the optimum values 13.38 mA/cm{sup 2}, 0.78 V and 6.63% (AM1.5 global), comparing with the blank values: 7.99 mA/cm{sup 2}, 0.75 V and 4.07%, respectively. Also the mechanisms of upconversion by multiphoton absorption and energy transfer processes are interpreted in this paper. - Graphical abstract: By introducing TiO{sub 2} with NIR-absorption and visible up-conversion luminescence into DSSC, a signal reflection was explored from ultra-violet region to visible region, and to near-IR region. Highlights: Black-Right-Pointing-Pointer TiO{sub 2} with NIR-absorption and visible up-conversion luminescence (UC-TiO{sub 2}) was prepared by a sol-gel method. Black-Right-Pointing-Pointer A systematic characterization and analysis was carried out to discuss the mechanism. Black-Right-Pointing-Pointer A significantly enhanced performance of DSSC was explored by using UC-TiO{sub 2} as an additive.

  18. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    Science.gov (United States)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  19. ZnMoO4:Er3+,Yb3+ phosphor with controlled morphology and enhanced upconversion through alkali ions doping

    Science.gov (United States)

    Luitel, Hom Nath; Chand, Rumi; Watari, Takanori

    2018-04-01

    A facile hydrothermal method was used to synthesize ZnMoO4:Er3+,Yb3+ nanoparticles. The shapes and sizes of the nanoparticles were well tuned by simply monitoring the pH of the starting solution. Microballs consisting of agglomerated nanograins were observed at strong acidic condition. At mild pH, plates and rectangular particles were realized, while strong basic pH stabilized rods. Further increasing pH to extremely basic conditions (pH > 13), rods changed to fragile hairy structures. The nucleation and growth mechanism of nanograins to form different morphology nanoparticles were studied and illustrated. XRD patterns confirmed well crystalline, triclinic structure despite small amount of aliovalent metal ions doping. Under 980 nm excitation, the ZnMoO4:Er3+,Yb3+ nanophosphor exhibited strong green (centered at 530 and 560 nm) and weak red (centered at 660 nm) upconversion (UC) emissions. Substitution of part of the Zn2+ ions by monovalent alkali ions intensified the UC emission intensities drastically. The order of intensification was K+>Na+>Li+>Rb+>no alkali ion. When Zn2+ ions were substituted with 10 at% K+ ions, the green and red UC emissions intensities increased by more than 50 and 15 folds, respectively. Time dependent measurements confirmed efficient Yb to Er energy transfer in the ZnMoO4:Er3+,Yb3+,K+ nanophosphor. The optimized ZnMoO4:Er3+,Yb3+,K+ phosphor exhibited intense UC emissions with 0.31% quantum yield. The upconverted light is visible to naked eye while pumping by laser of less than 1 mW power and opens door for variety of novel applications.

  20. Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section

    DEFF Research Database (Denmark)

    Buxens Azcoaga, Alvaro Juan; Poulsen, Henrik Nørskov; Clausen, Anders

    2000-01-01

    A novel method is presented for implementing an L-band erbium doped fibre amplifier (EDFA) making use of forward amplified spontaneous emission pumping, from a commercially available c-band EDFA, in an erbium doped fibre. Tuning of the length of erbium doped fibre enables a flat gain characteristic...... to be obtained with a low noise figure over the entire L-band window....

  1. New Kronig-Penney Equation Emphasizing the Band Edge Conditions

    Science.gov (United States)

    Szmulowicz, Frank

    2008-01-01

    The Kronig-Penney problem is a textbook example for discussing band dispersions and band gap formation in periodic layered media. For example, in photonic crystals, the behaviour of bands next to the band edges is important for further discussions of such effects as inhibited light emission, slow light and negative index of refraction. However,…

  2. Up-conversion luminescence and local heating in Er{sup 3+} doped tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Y.; Rai, S.B. [Banaras Hindu University, Laser and Spectroscopy Laboratory, Physics Department, Varanasi, UP (India)

    2012-10-15

    The present article discusses the up-conversion and thermometric properties of Er doped tellurite glass on excitation with 976 nm laser radiation. Temperature has been measured using fluorescence intensity ratio variation, in 528/548 and 801/828 nm, with temperature. Temperature at laser focus spot has been estimated by comparing the intensity ratios at different laser powers with the intensity ratio at different temperatures when sample was heated externally. (orig.)

  3. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    International Nuclear Information System (INIS)

    Liao, Zhenyu; Zhang, Ying; Su, Lin; Chang, Jin; Wang, Hanjie

    2017-01-01

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe_3O_4 nanoparticles (Fe_3O_4 NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  4. Calibration of VIIRS F1 Sensor Fire Detection Band Using lunar Observations

    Science.gov (United States)

    McIntire, Jeff; Efremova, Boryana; Xiong, Xiaoxiong

    2012-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) Fight 1 (Fl) sensor includes a fire detection band at roughly 4 microns. This spectral band has two gain states; fire detection occurs in the low gain state above approximately 345 K. The thermal bands normally utilize an on-board blackbody to provide on-orbit calibration. However, as the maximum temperature of this blackbody is 315 K, the low gain state of the 4 micron band cannot be calibrated in the same manner as the rest of the thermal bands. Regular observations of the moon provide an alternative calibration source. The lunar surface temperature has been recently mapped by the DIVINER sensor on the LRO platform. The periodic on-board high gain calibration along with the DIVINER surface temperatures was used to determine the emissivity and solar reflectance of the lunar surface at 4 microns; these factors and the lunar data are then used to fit the low gain calibration coefficients of the 4 micron band. Furthermore, the emissivity of the lunar surface is well known near 8.5 microns due to the Christiansen feature (an emissivity maximum associated with Si-O stretching vibrations) and the solar reflectance is negligible. Thus, the 8.5 micron band is used for relative calibration with the 4 micron band to de-trend any temporal variations. In addition, the remaining thermal bands are analyzed in a similar fashion, with both calculated emissivities and solar reflectances produced.

  5. Nanocomposites of graphene oxide and upconversion rare-earth nanocrystals with superior optical limiting performance

    KAUST Repository

    Wei, Wei

    2012-04-20

    Upconversion rare-earth nanomaterials (URENs) possess highly efficient near-infrared (NIR), e.g., 980 nm, laser absorption and unique energy upconversion capabilities. On the other hand, graphene and its derivatives, such as graphene oxide (GO), show excellent performance in optical limiting (OL); however, the wavelengths of currently used lasers for OL studies mainly focus on either 532 or 1064 nm. To design new-generation OL materials working at other optical regions, such as the NIR, a novel nanocomposites, GO-URENs, which combines the advantages of both its components, is synthesized by a one-step chemical reaction. Transmission electron microscopy, X-ray diffraction, infrared spectroscopy, and fluorescence studies prove that the α-phase URENs uniformly attach on the GO surface via covalent chemical bonding, which assures highly efficient energy transfer between URENs and GO, and also accounts for the significantly improved OL performance compared to either GO or URENs. The superior OL effect is also observed in the proof-of-concept thin-film product, suggesting immediate applications in making high-performance laser-protecting products and optoelectronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography

    KAUST Repository

    Li, Feifei; Li, Chunguang; Liu, Jianhua; Liu, Xiaomin; Zhao, Lan; Bai, Tianyu; Yuan, Qinghai; Kong, Xianggui; Han, Yu; Shi, Zhan; Feng, Shouhua

    2013-01-01

    Lanthanide-doped core-shell upconversion nanocrystals (UCNCs) have tremendous potential for applications in many fields, especially in bio-imaging and medical therapy. As core-shell UCNCs are mostly synthesized in organic solvents, tedious organic

  7. SCUSS u- BAND EMISSION AS A STAR-FORMATION-RATE INDICATOR

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhimin; Zhou, Xu; Wu, Hong; Fan, Zhou; Jiang, Zhao-Ji; Ma, Jun; Nie, Jun-Dan; Wang, Jia-Li; Wu, Zhen-Yu; Zhang, Tian-Meng; Zou, Hu [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Fan, Xiao-Hui; Lesser, Michael [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Jing, Yi-Peng [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Cheng; Shen, Shi-Yin [Shanghai Astronomical Observatory, Chinese Academy of Science, 80 Nandan Road, Shanghai 200030 (China); Jiang, Lin-Hua, E-mail: zmzhou@bao.ac.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-01-20

    We present and analyze the possibility of using optical u- band luminosities to estimate star-formation rates (SFRs) of galaxies based on the data from the South Galactic Cap u band Sky Survey (SCUSS), which provides a deep u -band photometric survey covering about 5000 deg{sup 2} of the South Galactic Cap. Based on two samples of normal star-forming galaxies selected by the BPT diagram, we explore the correlations between u -band, H α , and IR luminosities by combing SCUSS data with the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer ( WISE ). The attenuation-corrected u -band luminosities are tightly correlated with the Balmer decrement-corrected H α luminosities with an rms scatter of ∼0.17 dex. The IR-corrected u luminosities are derived based on the correlations between the attenuation of u- band luminosities and WISE 12 (or 22) μ m luminosities, and then calibrated with the Balmer-corrected H α luminosities. The systematic residuals of these calibrations are tested against the physical properties over the ranges covered by our sample objects. We find that the best-fitting nonlinear relations are better than the linear ones and recommended to be applied in the measurement of SFRs. The systematic deviations mainly come from the pollution of old stellar population and the effect of dust extinction; therefore, a more detailed analysis is needed in future work.

  8. Near-infrared Spectroscopic Observations of Comet C/2013 R1 (Lovejoy) by WINERED: CN Red-system Band Emission

    Energy Technology Data Exchange (ETDEWEB)

    Shinnaka, Yoshiharu; Yasui, Chikako; Izumi, Natsuko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kawakita, Hideyo; Kondo, Sohei; Ikeda, Yuji; Kobayashi, Naoto; Hamano, Satoshi; Sameshima, Hiroaki; Fukue, Kei; Matsunaga, Noriyuki; Otsubo, Shogo; Takenaka, Keiichi; Watase, Ayaka; Kawanishi, Takafumi; Nakanishi, Kenshi; Nakaoka, Tetsuya [Laboratory of Infrared High-resolution Spectroscopy, Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Mizumoto, Misaki, E-mail: yoshiharu.shinnaka@nao.ac.jp, E-mail: kawakthd@cc.kyoto-su.ac.jp [Department of Astronomy, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-08-01

    Although high-resolution spectra of the CN red-system band are considered useful in cometary sciences, e.g., in the study of isotopic ratios of carbon and nitrogen in cometary volatiles, there have been few reports to date due to the lack of high-resolution ( R  ≡  λ /Δ λ  > 20,000) spectrographs in the near-infrared region around ∼1 μ m. Here, we present the high-resolution emission spectrum of the CN red-system band in comet C/2013 R1 (Lovejoy), acquired by the near-infrared high-resolution spectrograph WINERED mounted on the 1.3 m Araki telescope at the Koyama Astronomical Observatory, Kyoto, Japan. We applied our fluorescence excitation models for CN, based on modern spectroscopic studies, to the observed spectrum of comet C/2013 R1 (Lovejoy) to search for CN isotopologues ({sup 13}C{sup 14}N and {sup 12}C{sup 15}N). We used a CN fluorescence excitation model involving both a “pure” fluorescence excitation model for the outer coma and a “fully collisional” fluorescence excitation model for the inner coma region. Our emission model could reproduce the observed {sup 12}C{sup 14}N red-system band of comet C/2013 R1 (Lovejoy). The derived mixing ratio between the two excitation models was 0.94(+0.02/−0.03):0.06(+0.03/−0.02), corresponding to the radius of the collision-dominant region of ∼800–1600 km from the nucleus. No isotopologues were detected. The observed spectrum is consistent, within error, with previous estimates in comets of {sup 12}C/{sup 13}C (∼90) and {sup 14}N/{sup 15}N (∼150).

  9. Cooperative emission in ion implanted Yb:YAG waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, G V; Desirena, H; De la Rosa, E [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Flores-Romero, E; Rickards, J; Trejo-Luna, R [Instituto de Fisica, UNAM, Apartado Postal 20364, 01000 Mexico, D. F. (Mexico); Marquez, H, E-mail: gvvazquez@cio.mx [Departamento de Optica, CICESE, Km 107 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico)

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb{sup 3+} ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm{sup 3+} and Er{sup 3+} traces. The results include absorption and emission curves as well as decay time rates.

  10. Cooperative emission in ion implanted Yb:YAG waveguides

    International Nuclear Information System (INIS)

    Vazquez, G V; Desirena, H; De la Rosa, E; Flores-Romero, E; Rickards, J; Trejo-Luna, R; Marquez, H

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb 3+ ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm 3+ and Er 3+ traces. The results include absorption and emission curves as well as decay time rates.

  11. Whistler Triggered Upper Band Chorus Observed in Alaska

    Science.gov (United States)

    Hosseini, P.; Golkowski, M.

    2017-12-01

    VLF radiation from lightning discharges is one of several sources of energy injection into the inner magnetosphere from the Earth. Lightning discharges initially produce a broadband impulse or `sferic' but after propagation in the dispersive magnetosphere this waveform soon becomes quasi narrow band with the characteristic spectrographic form of the whistler. Most of the lightning induced VLF wave energy injected into the magnetosphere will be unducted with a k-vector which becomes increasingly oblique. Although unducted radiation is ubiquitous throughout the inner magnetosphere, it is generally of a low amplitude due to Landau damping and is not expected to produce strong nonlinear phenomena such as triggered emissions and chorus waves. However, VLF wave energy ducted or trapped in field-aligned plasma density enhancements can have relatively large amplitudes due to focusing and also linear cyclotron resonance growth. Therefore high amplitude ducted whistler waves can trigger a number of complex nonlinear phenomena. These include the triggering of VLF emissions and triggering of VLF hiss or chorus. Such phenomena are generally considered to result from nonlinear electron cyclotron phase trapping. Observation of such VLF emissions triggered by natural whistlers have been reported since the 1970s in Antarctica. We present observations of whistlers triggered upper band chorus emission from Alaska. Dispersion analyze of whistlers determine the L-shell range to be 4.5 clear frequency band gap between upper and lower band of the observed chorus emissions. The observations point to ducted chorus generation in the vicinity of the plasmapause boundary.

  12. A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer.

    Science.gov (United States)

    Zhou, Feng; Noor, M Omair; Krull, Ulrich J

    2015-09-24

    Bioassays based on cellulose paper substrates are gaining increasing popularity for the development of field portable and low-cost diagnostic applications. Herein, we report a paper-based nucleic acid hybridization assay using immobilized upconversion nanoparticles (UCNPs) as donors in luminescence resonance energy transfer (LRET). UCNPs with intense green emission served as donors with Cy3 dye as the acceptor. The avidin functionalized UCNPs were immobilized on cellulose paper and subsequently bioconjugated to biotinylated oligonucleotide probes. Introduction of unlabeled oligonucleotide targets resulted in a formation of probe-target duplexes. A subsequent hybridization of Cy3 labeled reporter with the remaining single stranded portion of target brought the Cy3 dye in close proximity to the UCNPs to trigger a LRET-sensitized emission from the acceptor dye. The hybridization assays provided a limit of detection (LOD) of 146.0 fmol and exhibited selectivity for one base pair mismatch discrimination. The assay was functional even in undiluted serum samples. This work embodies important progress in developing DNA hybridization assays on paper. Detection of unlabeled targets is achieved using UCNPs as LRET donors, with minimization of background signal from paper substrates owing to the implementation of low energy near-infrared (NIR) excitation.

  13. Planck 2013 results. XIV. Zodiacal emission

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colley, J.-M.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; O'Sullivan, C.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Smoot, G. F.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    The Planck satellite provides a set of all-sky maps at nine frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and diffuse interplanetary dust emission (IPD) are all observed. The IPD can be separated from Galactic and other emissions because Planck views a given point on the celestial sphere multiple times, through different columns of IPD. We use the Planck data to investigate the behaviour of zodiacal emission over the whole sky at sub-millimetre and millimetre wavelengths. We fit the Planck data to find the emissivities of the various components of the COBE zodiacal model -- a diffuse cloud, three asteroidal dust bands, a circumsolar ring, and an Earth-trailing feature. The emissivity of the diffuse cloud decreases with increasing wavelength, as expected from earlier analyses. The emissivities of the dust bands, however, decrease less rapidly, indicating that the properties of the grains in the bands are different from those in the diffuse cloud. We fit the small amount of Galactic emission seen t...

  14. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Zhenyu, E-mail: liaozy08@163.com [Tianjin Product Quality Inspection Technology Research Institute, The National Center of Supervision and Inspection for Quality of Food (China); Zhang, Ying [Tianjin University, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (China); Su, Lin [Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry and Ophthalmology (China); Chang, Jin; Wang, Hanjie, E-mail: wanghj@tju.edu.cn [Tianjin University, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (China)

    2017-02-15

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  15. Analysis of the outlook for using narrow-band spontaneous emission sources for atmospheric air purification

    International Nuclear Information System (INIS)

    Boyarchuk, K A; Karelin, A V; Shirokov, R V

    2003-01-01

    The outlook for using narrow-band spontaneous emission sources for purification of smoke gases from sulphur and nitrogen oxides is demonstrated by calculations based on a nonstationary kinetic model of the N 2 - O 2 - H 2 O - CO 2 - SO 2 mixture. The dependences of the mixture purification efficiency on the UV source power at different wavelengths, the exposure time, and the mixture temperature are calculated. It is shown that the radiation sources proposed in the paper will provide better purification of waste gases in the atmosphere. The most promising is a KrCl* lamp emitting an average power of no less than 100 W at 222 nm. (laser applications and other topics in quantum electronics)

  16. Photoluminescence up-conversion in five Inx(Al0.17Ga0.83)1-xAs/ Al0.17Ga0.83As quantum wells with different x values

    DEFF Research Database (Denmark)

    Machida, S.; Tadakuma, T.; Satake, A.

    Photoluminescence (PL) up-conversion in a unique system with five different quantum wells has been investigated. Anti-Stokes PL intensity observed shows dramatic dependence on where carriers are resonantly photoexcited, indicating nonlinear processes with spatial position dependence.......Photoluminescence (PL) up-conversion in a unique system with five different quantum wells has been investigated. Anti-Stokes PL intensity observed shows dramatic dependence on where carriers are resonantly photoexcited, indicating nonlinear processes with spatial position dependence....

  17. Auroral nitric oxide concentration and infrared emission

    Science.gov (United States)

    Reidy, W. P.; Degges, T. C.; Hurd, A. G.; Stair, A. T., Jr.; Ulwick, J. C.

    1982-05-01

    Rocket-borne measurements of infrared auroral emission by nitric oxide are analyzed. Four rocket flights provided opportunities to measure 5.3- and 2.7-micron NO emission by means of infrared fixed band radiometers and CVF spectrometers, narrow band photometers, and incident energy spectra on various occasions. Analysis of infrared emission profiles and electron flux data indicates the NO density to be significantly enhanced with respect to midlatitude values. NO emission in the fundamental 5.3-micron band is attributed to resonance excitation by warm earth radiation, collisional excitation primarily by O atoms and chemiluminescence from the reaction of N with O2; with an energy efficiency of 0.015. The overtone band emission at 2.7 microns is accounted for by chemiluminescence produced with an energy efficiency of 0.0054. Total photon yield for the chemiluminescence reaction is estimated to range from 1.2 to 2.4 vibrational quanta per NO molecule.

  18. Optimizing the Activation of Chlorin e6 Utilizing Upconversion Energy Transfer

    Science.gov (United States)

    Avalos, Julio C.; Pedraza, Francisco J.; Sardar, Dhiraj K.

    2015-03-01

    Current cancer therapy techniques, such as chemotherapy and radiation therapy, possess several drawbacks including lack of selectivity resulting in harmful side effects. Photodynamic therapy (PDT) is one of the fastest emerging techniques due to its many advantages, including the use of nonionizing radiation, targeted delivery, and controlled doses. In PDT, photosensitizers (PSs) are activated inside targeted cells to produce irreversible damage inducing cell death. Since most PSs operate in the visible range, it is difficult to activate them due to the high attenuation of soft tissue. Upconverting nanoparticles (UCNP) are able to absorb in the NIR region, where light is less attenuated, and emit in the visible range, resulting in deeper tissue penetration. UCNPs are able to assist with the activation of the PS by energy transfer when the PS is conjugated onto the UCNP. Chlorin e6 (Ce6) is a commonly used PSs due to its ability to release reactive oxygen species (ROS), which is one of the main processes utilized in PDT. The UCNP studied contain a combination of rare earth doped ions including Erbium, Thulium, and Holmium precisely doped into the host nanocrystal to improve upconversion emission and energy transfer. The work presented will focus on exploring the factors that affect the activation of Ce6. The results will include the enhancement of Ce6 activation and ROS release when conjugated onto a rare earth-doped UCNP. This research was funded by NSF-PREM Grant No. DMR -0934218 and RISE Grant No. GM 060655.

  19. Photoluminescence study of Sm{sup 3+}–Yb{sup 3+}co-doped tellurite glass embedding silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Reza Dousti, M., E-mail: mrdousti@ifsc.usp.br [Laboratório de Espectroscopia de Materiais Funcionais (LEMAF), Instituto de Fisica de São Carlos, Universidade de São Paulo, Av. Trabalhador So-carlense 400, São Carlos, SP 13566-590 (Brazil); Department of Physics, Tehran-North Branch, Islamic Azad University Tehran (Iran, Islamic Republic of); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Amjad, R.J. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Hosseinian S, R.; Salehi, M.; Sahar, M.R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)

    2015-03-15

    We report on the upconversion emission of Sm{sup 3+} ions doped tellurite glass in the presence of Yb{sup 3+} ions and silver nanoparticles. The enhancement of infrared-to-visible upconversion emissions is achieved under 980 nm excitation wavelength and attributed to the high absorption cross section of Yb{sup 3+} ions and an efficient energy transfer to Sm{sup 3+} ions. Further enhancements are attributed to the plasmonic effect via metallic nanoparticles resulting in the large localized field around rare earth ions. However, under excitation at 406 nm, the addition of Yb{sup 3+} content and heat-treated silver nanoparticles quench the luminescence of Sm{sup 3+} ions likely due to quantum cutting and plasmonic diluent effects, respectively. - Highlights: • Sm{sup 3+} tellurite glasses co-doped with Yb{sup 3+} ions and tri-doped with Yb{sup 3+}:Ag NPs were prepared. • In first step, Yb{sup 3+} ions enhanced the upconversion emissions of Sm{sup 3+} doped samples. • In second step, Ag NPs further enhanced the upconversion emissions in tri-doped glasses. • Finally, the quench in luminescence under 406 nm excitation is observed and discussed.

  20. Upconverting fluorescent nanoparticles for biodetection and photoactivation

    Science.gov (United States)

    Huang, Kai; Li, WenKai; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong

    2013-03-01

    Fluorophores including fluorescent dyes/proteins and quantum dots (QDs) are used for fluorescence-based imaging and detection. These are based on `downconversion fluorescence' and have several drawbacks: photobleaching, autofluorescence, short tissue penetration depth and tissue photo-damage. Upconversion fluorescent nanoparticles (UCNs) emit detectable photons of higher energy in the short wavelength range upon irradiation with near-infrared (NIR) light based on a process termed `upconversion'. UCNs show absolute photostability, negligible autofluorescence, high penetration depth and minimum photodamage to biological tissues. Lanthanide doped nanocrystals with nearinfrared NIR-to-NIR and/or NIR-to-VIS and/or NIR-to-UV upconversion fluorescence emission have been synthesized. The nanocrystals with small size and tunable multi-color emission have been developed. The emission can be tuned by doping different upconverting lanthanide ions into the nanocrystals. The nanocrystals with core-shell structure have also been prepared to tune the emission color. The surfaces of these nanocrystals have been modified to render them water dispersible and biocompatible. They can be used for ultrasensitive interference-free biodetection because most biomolecules do not have upconversion properties. UCNs are also useful for light based therapy with enhanced efficiency, for example, photoactivation.

  1. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    Science.gov (United States)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  2. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer.

    Science.gov (United States)

    Xia, Haiyun; Shangguan, Mingjia; Wang, Chong; Shentu, Guoliang; Qiu, Jiawei; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei

    2016-11-15

    For the first time, to the best of our knowledge, a compact, eye-safe, and versatile direct detection Doppler lidar is developed using an upconversion single-photon detection method at 1.5 μm. An all-fiber and polarization maintaining architecture is realized to guarantee the high optical coupling efficiency and the robust stability. Using integrated-optic components, the conservation of etendue of the optical receiver is achieved by manufacturing a fiber-coupled periodically poled lithium niobate waveguide and an all-fiber Fabry-Perot interferometer (FPI). The double-edge technique is implemented by using a convert single-channel FPI and a single upconversion detector, incorporating a time-division multiplexing method. The backscatter photons at 1548.1 nm are converted into 863 nm via mixing with a pump laser at 1950 nm. The relative error of the system is less than 0.1% over nine weeks. In experiments, atmospheric wind and visibility over 48 h are detected in the boundary layer. The lidar shows good agreement with the ultrasonic wind sensor, with a standard deviation of 1.04 m/s in speed and 12.3° in direction.

  3. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery.

    Science.gov (United States)

    Xu, Huan; Cheng, Liang; Wang, Chao; Ma, Xinxing; Li, Yonggang; Liu, Zhuang

    2011-12-01

    Multimodal imaging and imaging-guided therapies have become a new trend in the current development of cancer theranostics. In this work, we encapsulate hydrophobic upconversion nanoparticles (UCNPs) together with iron oxide nanoparticles (IONPs) by using an amphiphilic block copolymer, poly (styrene-block-allyl alcohol) (PS(16)-b-PAA(10)), via a microemulsion method, obtaining an UC-IO@Polymer multi-functional nanocomposite system. Fluorescent dye and anti-cancer drug molecules can be further loaded inside the UC-IO@Polymer nanocomposite for additional functionalities. Utilizing the Squaraine (SQ) dye loaded nanocomposite (UC-IO@Polymer-SQ), triple-modal upconversion luminescence (UCL)/down-conversion fluorescence (FL)/magnetic resonance (MR) imaging is demonstrated in vitro and in vivo, and also applied for in vivo cancer cell tracking in mice. On the other hand, a chemotherapy drug, doxorubicin, is also loaded into the nanocomposite, forming an UC-IO@Polymer-DOX complex, which enables novel imaging-guided and magnetic targeted drug delivery. Our work provides a method to fabricate a nanocomposite system with highly integrated functionalities for multimodal biomedical imaging and cancer therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers

    Czech Academy of Sciences Publication Activity Database

    Farka, Z.; Matthias, J. M.; Hlaváček, Antonín; Skládal, P.; Gorris, H H.

    2017-01-01

    Roč. 89, NOV (2017), s. 11825-11830 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : photon upconversion * immunoassay * single molecule detection Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 6.320, year: 2016

  5. Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers

    Czech Academy of Sciences Publication Activity Database

    Farka, Z.; Matthias, J. M.; Hlaváček, Antonín; Skládal, P.; Gorris, H H.

    2017-01-01

    Roč. 89, NOV (2017), s. 11825-11830 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : photon upconversion * immunoassay * single molecule detection Subject RIV: CB - Analytical Chemistry , Separation OBOR OECD: Analytical chemistry Impact factor: 6.320, year: 2016

  6. Highly Efficient IR to NIR Upconversion in Gd2O2S: Er3+ for Photovoltaic Applications

    NARCIS (Netherlands)

    Martin Rodriguez, R.; Fischer, S.; Ivaturi, A.; Froehlich, B.; Krämer, K.W.; Goldschmidt, J.C.; Richards, B.S.; Meijerink, A.

    2013-01-01

    Upconversion (UC) is a promising option to enhance the efficiency of solar cells by conversion of sub-bandgap infrared photons to higher energy photons that can be utilized by the solar cell. The UC quantum yield is a key parameter for a successful application. Here the UC luminescence properties of

  7. Optical emission of InAs nanowires

    International Nuclear Information System (INIS)

    Möller, M; De Lima Jr, M M; Cantarero, A; Chiaramonte, T; Cotta, M A; Iikawa, F

    2012-01-01

    Wurtzite InAs nanowire samples grown by chemical beam epitaxy have been analyzed by photoluminescence spectroscopy. The nanowires exhibit two main optical emission bands at low temperatures. They are attributed to the recombination of carriers in quantum well structures, formed by zincblende–wurtzite alternating layers, and to the donor–acceptor pair. The blue-shift observed in the former emission band when the excitation power is increased is in good agreement with the type-II band alignment between the wurtzite and zincblende sections predicted by previous theoretical works. When increasing the temperature and the excitation power successively, an additional band attributed to the band-to-band recombination from wurtzite InAs appears. We estimated a lower bound for the wurtzite band gap energy of approximately 0.46 eV at low temperature. (paper)

  8. Optical emission of InAs nanowires

    Science.gov (United States)

    Möller, M.; de Lima, M. M., Jr.; Cantarero, A.; Chiaramonte, T.; Cotta, M. A.; Iikawa, F.

    2012-09-01

    Wurtzite InAs nanowire samples grown by chemical beam epitaxy have been analyzed by photoluminescence spectroscopy. The nanowires exhibit two main optical emission bands at low temperatures. They are attributed to the recombination of carriers in quantum well structures, formed by zincblende-wurtzite alternating layers, and to the donor-acceptor pair. The blue-shift observed in the former emission band when the excitation power is increased is in good agreement with the type-II band alignment between the wurtzite and zincblende sections predicted by previous theoretical works. When increasing the temperature and the excitation power successively, an additional band attributed to the band-to-band recombination from wurtzite InAs appears. We estimated a lower bound for the wurtzite band gap energy of approximately 0.46 eV at low temperature.

  9. Unidentified bands lambda lambda 6830, 7088 in symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1980-01-01

    About 60 stars are known which show broad emission bands centred at wavelengths of 6830 and 7088 A. The stars are all classified as symbiotic, since they combine high-excitation emission and M-type absorption spectra. From the behaviour of the bands in the evolution of slow novae as they approach the symbiotic phase, and from the occurrence of the bands in stars of different excitation, it is concluded that the ions responsible have ionization potentials near 100 eV. The similarity of behaviour and profile of the two suggests that both arise in the same species. No suitable identification appears possible at this time, because of the lack of data on highly ionized species. Arguments are presented which narrow the range of possibilities, the most notable argument being the absence of O VI emission. It is suggested that Fe VII or Fe VI may be responsible. In particular, it is recommended that transitions from the z/sup 3/P/sup 0/ and z/sup 1/F/sup 0/ levels of Fe VII be examined in detail. The differing, and time-varying profiles of the 6830 and 7088 bands in the stars observed are best explained in terms of velocity broadening. Velocities in excess of 1000 km s/sup -1/ are present. Rotation is a more credible form of the mass motion than expansion, because of the tendency to double profiles in these bands. If rotation is responsible, these velocities imply that the objects central to the emission nebulae are more compact than main sequence stars.

  10. Ultrasensitive Detection of Ebola Virus Oligonucleotide Based on Upconversion Nanoprobe/Nanoporous Membrane System.

    Science.gov (United States)

    Tsang, Ming-Kiu; Ye, WeiWei; Wang, Guojing; Li, Jingming; Yang, Mo; Hao, Jianhua

    2016-01-26

    Ebola outbreaks are currently of great concern, and therefore, development of effective diagnosis methods is urgently needed. The key for lethal virus detection is high sensitivity, since early-stage detection of virus may increase the probability of survival. Here, we propose a luminescence scheme of assay consisting of BaGdF5:Yb/Er upconversion nanoparticles (UCNPs) conjugated with oligonucleotide probe and gold nanoparticles (AuNPs) linked with target Ebola virus oligonucleotide. As a proof of concept, a homogeneous assay was fabricated and tested, yielding a detection limit at picomolar level. The luminescence resonance energy transfer is ascribed to the spectral overlapping of upconversion luminescence and the absorption characteristics of AuNPs. Moreover, we anchored the UCNPs and AuNPs on a nanoporous alumina (NAAO) membrane to form a heterogeneous assay. Importantly, the detection limit was greatly improved, exhibiting a remarkable value at the femtomolar level. The enhancement is attributed to the increased light-matter interaction throughout the nanopore walls of the NAAO membrane. The specificity test suggested that the nanoprobes were specific to Ebola virus oligonucleotides. The strategy combining UCNPs, AuNPs, and NAAO membrane provides new insight into low-cost, rapid, and ultrasensitive detection of different diseases. Furthermore, we explored the feasibility of clinical application by using inactivated Ebola virus samples. The detection results showed great potential of our heterogeneous design for practical application.

  11. Wurtzite gallium phosphide has a direct-band gap

    NARCIS (Netherlands)

    Assali, S.; Zardo, I.; Plissard, S.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    Gallium Phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the emission efficiency. We report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong

  12. Properties of the Variation of the Infrared Emission of OH/IR Stars I. The K Band Light Curves

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2009-09-01

    Full Text Available To study properties of the variation of the infrared emission of OH/IR stars, we collect and analyze the infrared observational data in K band for nine OH/IR stars. We use the observational data obtained for about three decades including recent data from the two micron all sky survey (2MASS and the deep near infrared survey of the southern sky (DENIS. We use Marquardt-Levenberg algorithm to determine the pulsation period and amplitude for each star and compare them with previous results of infrared and radio investigations.

  13. Planck 2013 results. XIV. Zodiacal emission

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    , three asteroidal dust bands, a circumsolar ring, and an Earth-trailing feature. The emissivity of the diuse cloud decreases with increasing wavelength, as expected from earlier analyses. The emissivities of the dust bands, however, decrease less rapidly, indicating that the properties of the grains......The Planck satellite provides a set of all-sky maps at nine frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and diuse interplanetary dust emission (IPD) are all observed. The IPD can be separated from Galactic and other emissions because Planck views a given point on the celestial sphere...

  14. Spatially resolved band alignments at Au-hexadecanethiol monolayer-GaAs(001) interfaces by ballistic electron emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Junay, A.; Guézo, S., E-mail: sophie.guezo@univ-rennes1.fr; Turban, P.; Delhaye, G.; Lépine, B.; Tricot, S.; Ababou-Girard, S.; Solal, F. [Département Matériaux-Nanosciences, Institut de Physique de Rennes, UMR 6251, CNRS-Université de Rennes 1, Campus de Beaulieu, Bât 11E, 35042 Rennes Cedex (France)

    2015-08-28

    We study structural and electronic inhomogeneities in Metal—Organic Molecular monoLayer (OML)—semiconductor interfaces at the sub-nanometer scale by means of in situ Ballistic Electron Emission Microscopy (BEEM). BEEM imaging of Au/1-hexadecanethiols/GaAs(001) heterostructures reveals the evolution of pinholes density as a function of the thickness of the metallic top-contact. Using BEEM in spectroscopic mode in non-short-circuited areas, local electronic fingerprints (barrier height values and corresponding spectral weights) reveal a low-energy tunneling regime through the insulating organic monolayer. At higher energies, BEEM evidences new conduction channels, associated with hot-electron injection in the empty molecular orbitals of the OML. Corresponding band diagrams at buried interfaces can be thus locally described. The energy position of GaAs conduction band minimum in the heterostructure is observed to evolve as a function of the thickness of the deposited metal, and coherently with size-dependent electrostatic effects under the molecular patches. Such BEEM analysis provides a quantitative diagnosis on metallic top-contact formation on organic molecular monolayer and appears as a relevant characterization for its optimization.

  15. InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands.

    Science.gov (United States)

    Han, Yu; Li, Qiang; Ng, Kar Wei; Zhu, Si; Lau, Kei May

    2018-06-01

    We report the growth of vertically stacked InGaAs/InP quantum wires on (001) Si substrates with adjustable room-temperature emission at telecom bands. Based on a self-limiting growth mode in selective area metal-organic chemical vapor deposition, crescent-shaped InGaAs quantum wires with variable dimensions are embedded within InP nano-ridges. With extensive transmission electron microscopy studies, the growth transition and morphology change from quantum wires to ridge quantum wells (QWs) have been revealed. As a result, we are able to decouple the quantum wires from ridge QWs and manipulate their dimensions by scaling the growth time. With minimized lateral dimension and their unique positioning, the InGaAs/InP quantum wires are more immune to dislocations and more efficient in radiative processes, as evidenced by their excellent optical quality at telecom-bands. These promising results thus highlight the potential of combining low-dimensional quantum wire structures with the aspect ratio trapping process for integrating III-V nano-light emitters on mainstream (001) Si substrates.

  16. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Directory of Open Access Journals (Sweden)

    F. L. Freitas

    2016-08-01

    Full Text Available We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal AlxGayIn1–x–yN semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  17. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F. L., E-mail: felipelopesfreitas@gmail.com; Marques, M.; Teles, L. K. [Grupo de Materiais Semicondutores e Nanotecnologia, Instituto Tecnológico de Aeronáutica, 12228-900 São José dos Campos, SP (Brazil)

    2016-08-15

    We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal Al{sub x}Ga{sub y}In{sub 1–x–y}N semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  18. Life-time resolved emission spectra in CdCl2 crystals

    International Nuclear Information System (INIS)

    Kawabata, S.; Nakagawa, H.; Kitaura, M.

    2005-01-01

    The emission spectrum of CdCl 2 is composed of ultraviolet (UV) and yellow (Y) bands peaking at 3.70 and 2.30 eV, respectively. In order to determine the initial states of the Y-luminescence, decay curves of the Y-emission were measured at 8K by varying emission energy in the range from 1.64 eV to 3.13 eV. The observed decay curves are composed of two or three exponential components. The values of lifetime for them were 900, 460 and 60 μs. The emission spectrum for each decay component, i.e., life-time resolved emission spectrum, was analyzed by the observed decay curves. The emission spectrum for the component of 460 μs lifetime exhibits a dominant band at 2.30 eV and a satellite band at 3.03 eV. The emission spectrum for the component of 60 μs lifetime is reproduced by the three Gaussian bands peaking at 2.21, 2.65 and 2.87 eV. For the component of 900 μs lifetime, only a single band appears at 1.73 eV. The origin of the emission bands in life-time resolved emission spectra is briefly discussed, and the initial states of Y-luminescence are explained by the excited states of a [Cd 2+ Cl - 6 ] 4- complex molecular ion. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Tuning from green to red the upconversion emission of Y{sub 2}O{sub 3}:Er{sup 3+}-Yb{sup 3+} nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Torres, L.A. [Centro de Investigaciones en Optica, Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (GEMANA), A. P. 1-948, Leon, GTO (Mexico); Salas, P.; Resendiz-L, E.; Rodriguez-Gonzalez, C. [Universidad Nacional Autonoma de Mexico, Centro de Fisica Aplicada y Tecnologia Avanzada, Apartado Postal 1-1010, Queretaro, QRO (Mexico); Oliva, J. [Conacyt-Facultad Ciencias Quimicas Universidad Autonoma de Coahuila, Saltillo, Coahuila (Mexico); Meza, O. [Benemerita Universidad Autonoma de Puebla, Instituto de Fisica, A.P. J-48, Centro Historico, PUE (Mexico)

    2017-01-15

    In this work, the structural, morphological and luminescent properties of Y{sub 2}O{sub 3} nanophosphors doped with Er{sup 3+} (1 mol%) and different Yb{sup 3+} concentrations (2-12 mol%) have been studied. Those nanophosphors were synthesized using a simple hydrothermal method. XRD analysis indicates that all the samples presented a pure cubic phase even for Yb concentrations as high as 12 mol%. In addition, SEM images show nanoparticles with quasi-spherical shapes with average sizes in the range of 300-340 nm. Photoluminescence measurements obtained after excitation at 967 nm revealed that our samples have strong green (563 nm) and red emissions (660 nm) corresponding to {sup 2}H{sub 11/2} + {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} transitions of Er{sup 3+} ions, respectively. We also observed that the green band is quenched and the red emission enhanced as the Yb concentration increases. In consequence, the CIE coordinates changed from (0.35, 0.64) in the green region to (0.59, 0.39) in the red region. Thus, the tuning properties of Y{sub 2}O{sub 3} nanophosphors suggest that they are good candidates for applications in lighting. (orig.)

  20. Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell

    International Nuclear Information System (INIS)

    Li, Ling; Green, Kory; Hallen, Hans; Lim, Shuang Fang

    2015-01-01

    Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF 4 : Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core. (paper)

  1. Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels.

    Science.gov (United States)

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-03-18

    A highly sensitive and specific multiplex method for the simultaneous detection of three pathogenic bacteria was fabricated using multicolor upconversion nanoparticles (UCNPs) as luminescence labels coupled with aptamers as the molecular recognition elements. Multicolor UCNPs were synthesized via doping with various rare-earth ions to obtain well-separated emission peaks. The aptamer sequences were selected using the systematic evolution of ligands by exponential enrichment (SELEX) strategy for Staphylococcus aureus, Vibrio parahemolyticus, and Salmonella typhimurium. When applied in this method, aptamers can be used for the specific recognition of the bacteria from complex mixtures, including those found in real food matrixes. Aptamers and multicolor UCNPs were employed to selectively capture and simultaneously quantify the three target bacteria on the basis of the independent peaks. Under optimal conditions, the correlation between the concentration of three bacteria and the luminescence signal was found to be linear from 50-10(6) cfu mL(-1). Improved by the magnetic separation and concentration effect of Fe3O4 magnetic nanoparticles, the limits of detection of the developed method were found to be 25, 10, and 15 cfu mL(-1) for S. aureus, V. parahemolyticus, and S. typhimurium, respectively. The capability of the bioassay in real food samples was also investigated, and the results were consistent with experimental results obtained from plate-counting methods. This proposed method for the detection of various pathogenic bacteria based on multicolor UCNPs has great potential in the application of food safety and multiplex nanosensors.

  2. Smart pH-responsive upconversion nanoparticles for enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

    Science.gov (United States)

    Wang, Sheng; Zhang, Lei; Dong, Chunhong; Su, Lin; Wang, Hanjie; Chang, Jin

    2015-01-01

    A smart pH-responsive photodynamic therapy system based on upconversion nanoparticle loaded PEG coated polymeric lipid vesicles (RB-UPPLVs) was designed and prepared. These RB-UPPLVs which are promising agents for deep cancer photodynamic therapy applications can achieve enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

  3. Surface Resonance Bands on (001)W: Experimental Dispersion Relations

    DEFF Research Database (Denmark)

    Willis, R. F.; Feuerbacher, B.; Christensen, N. Egede

    1977-01-01

    A band of unbound surface states (resonances), located in an energy region above the vacuum threshold corresponding to an energy band gap in the electron states of the bulk crystal, has been observed by angle-resolved secondary-electron-emission spectroscopy. The experimental dispersion behavior...... is in agreement with the two-dimensional band structure of a clean (001)W surface recently proposed by Smith and Mittheiss....

  4. Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system.

    Science.gov (United States)

    Wang, Dong; Chen, Chuan; Ke, Xuebin; Kang, Ning; Shen, Yuqing; Liu, Yongliang; Zhou, Xi; Wang, Hongjun; Chen, Changqing; Ren, Lei

    2015-02-11

    A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox). The chemical response of the UCNPs@dopamine-melanin hybrid system exhibited great selectivity and sensitivity toward antioxidants relative to other compounds at 100-fold higher concentration. A satisfactory correlation was established between the ratio of the "anti-quenching" fluorescence intensity and the concentration of antioxidants. Besides the response of the upconversion fluorescence signal, a specific evaluation process for antioxidants could be visualized by the color change from colorless to dark gray accompanied by the spontaneous oxidation of dopamine. The near-infrared (NIR)-excited UCNP-based antioxidant capacity assay platform was further used to evaluate the antioxidant capacity of cell extracts and human plasma, and satisfactory sensitivity, repeatability, and recovery rate were obtained. This approach features easy preparation, fluorescence/visual dual mode detection, high specificity to antioxidants, and enhanced sensitivity with NIR excitation, showing great potential for screening and quantitative evaluation of antioxidants in biological systems.

  5. Variability of OH(3-1) and OH(6-2) emission altitude and volume emission rate from 2003 to 2011

    Science.gov (United States)

    Teiser, Georg; von Savigny, Christian

    2017-08-01

    In this study we report on variability in emission rate and centroid emission altitude of the OH(3-1) and OH(6-2) Meinel bands in the terrestrial nightglow based on spaceborne nightglow measurements with the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument on the Envisat satellite. The SCIAMACHY observations cover the time period from August 2002 to April 2012 and the nighttime observations used in this study are performed at 10:00 p.m. local solar time. Characterizing variability in OH emission altitude - particularly potential long-term variations - is important for an appropriate interpretation of ground-based OH rotational temperature measurements, because simultaneous observations of the vertical OH volume emission rate profile are usually not available for these measurements. OH emission altitude and vertically integrated emission rate time series with daily resolution for the OH(3-1) band and monthly resolution for the OH(6-2) band were analyzed using a standard multilinear regression approach allowing for seasonal variations, QBO-effects (Quasi-Biennial Oscillation), solar cycle (SC) variability and a linear long-term trend. The analysis focuses on low latitudes, where SCIAMACHY nighttime observations are available all year. The dominant sources of variability for both OH emission rate and altitude are the semi-annual and annual variations, with emission rate and altitude being highly anti-correlated. There is some evidence for a 11-year solar cycle signature in the vertically integrated emission rate and in the centroid emission altitude of both the OH(3-1) and OH(6-2) bands.

  6. Development of a Control Banding Tool for Nanomaterials

    OpenAIRE

    Riediker, M.; Ostiguy, C.; Triolet, J.; Troisfontaine, P.; Vernez, D.; Bourdel, G.; Thieriet, N.; Cadène, A.

    2012-01-01

    Control banding (CB) can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial t...

  7. Benchmarking triplet-triplet annihilation photon upconversion schemes.

    Science.gov (United States)

    Gertsen, Anders S; Koerstz, Mads; Mikkelsen, Kurt V

    2018-05-07

    Photon upconversion facilitated by triplet-triplet annihilation in molecular systems is a promising path toward utilization of sub bandgap photons in photovoltaic devices. Prior to the challenging synthesis of new molecules, quantum chemical computations can aid the design process and provide suggestions for new and optimal systems. Here, we benchmark time-dependent density functional methods by their ability to describe relevant photophysical quantities of a range of different types of sensitizer/annihilator pairs to provide guidelines for future computational studies of potential new pairs. Using meta-GGA, hybrid, and range-separated hybrid functionals, we find that the hybrid functionals B3LYP and PBE0 (incorporating low to medium fractions of exact exchange of 20% and 25%, respectively) describe singlet absorptions the best, while triplet energetics are best described by the meta-GGA functionals M06-L and M11-L (incorporating no exact exchange), respectively. Furthermore, we find that the Tamm-Dancoff approximation of time-dependent density functional theory in general does not improve the description of neither singlet nor triplet energies of sensitizer/annihilator pairs.

  8. Investigation of upconversion luminescence in antimony–germanate double-clad two cores optical fiber co-doped with Yb{sup 3+}/Tm{sup 3+} and Yb{sup 3+}/Ho{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Zmojda, J.; Kochanowicz, M.; Miluski, P.; Dorosz, J. [Bialystok University of Technology, Wiejska 45 Street, 15-351 Bialystok (Poland); Pisarska, J.; Pisarski, W.A. [Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice (Poland); Dorosz, D., E-mail: d.dorosz@pb.edu.pl [Bialystok University of Technology, Wiejska 45 Street, 15-351 Bialystok (Poland)

    2016-02-15

    In the paper double-clad optical fiber with two off-set cores co-doped with 1Yb{sub 2}O{sub 3}–0.1Tm{sub 2}O{sub 3} and 1Yb{sub 2}O{sub 3}–0.5Ho{sub 2}O{sub 3} has been investigated. Antimony–germanate glass was melted as a matrix for active cores. The concentration of lanthanides and their ratio have been optimized to achieve maximum upconversion emission intensity at 478 nm ({sup 1}G{sub 4}→{sup 3}H{sub 6}) and 650 nm ({sup 1}G{sub 4}→{sup 3}F{sub 4}) in glasses doped with Tm{sup 3+} ions and 545 nm and 655 nm, corresponding to the {sup 5}F{sub 5}→{sup 5}I{sub 8} and {sup 5}F{sub 4}→{sup 5}I{sub 8} transitions in holmium ions. The energy transfer efficiency in glasses used as optical fiber cores was η{sub Tm}=56% (0.1 mol% Tm{sub 2}O{sub 3}) and η{sub Ho}=85% (0.5 mol% Ho{sub 2}O{sub 3}), respectively. As a result of excitation of the fabricated optical fiber (λ{sub exc}=976 nm), a UC luminescence spectra was obtained. Superposition of three emission bands at the wavelengths of 481 nm (Tm{sup 3+}: blue), 545 nm (Ho{sup 3+}:green) and 665 nm (Tm{sup 3+}, Ho{sup 3+}: red) from two separated cores was measured. Influence of fiber length and excitation power on the color coordinates (CIE-1931) have been also investigated. - Highlights: • Antimony-germanate glasses co-doped with Yb{sup 3+}/Tm{sup 3+} and Yb{sup 3+}/Ho{sup 3+} were presented. • UC luminescence in double-clad, two off-set core co-doped with Yb{sup 3+}/Tm{sup 3+} and Yb{sup 3+}/Ho{sup 3+} optical fiber was presented. • The chromatic coordinates shift in the blue region at CIE scheme as a function of pump power and length of optical fiber was observed.

  9. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics

    Science.gov (United States)

    Chen, Shuo; Weitemier, Adam Z.; Zeng, Xiao; He, Linmeng; Wang, Xiyu; Tao, Yanqiu; Huang, Arthur J. Y.; Hashimotodani, Yuki; Kano, Masanobu; Iwasaki, Hirohide; Parajuli, Laxmi Kumar; Okabe, Shigeo; Teh, Daniel B. Loong; All, Angelo H.; Tsutsui-Kimura, Iku; Tanaka, Kenji F.; Liu, Xiaogang; McHugh, Thomas J.

    2018-02-01

    Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.

  10. Highly Efficient Defect Emission from ZnO:Zn and ZnO:S Powders

    Science.gov (United States)

    Everitt, Henry

    2013-03-01

    Bulk Zinc Oxide (ZnO) is a wide band gap semiconductor with an ultraviolet direct band gap energy of 3.4 eV and a broad, defect-related visible wavelength emission band centered near 2 eV. We have shown that the external quantum efficiency can exceed 50% for this nearly white emission band that closely matches the human dark-adapted visual response. To explore the potential of ZnO as a rare earth-free white light phosphor, we investigated the mechanism of efficient defect emission in three types of ZnO powders: unannealed, annealed, and sulfur-doped. Annealing and sulfur-doping of ZnO greatly increase the strength of defect emission while suppressing the UV band edge emission. Continuous wave and ultrafast one- and two-photon excitation spectroscopy are used to examine the defect emission mechanism. Low temperature photoluminescence (PL) and PL excitation (PLE) spectra were measured for all three compounds, and it was found that bound excitons mediate the defect emission. Temperature-dependent PLE spectra for the defect and band edge emission were measured to estimate trapping and activation energies of the bound excitons and clarify the role they play in the defect emission. Time-resolved techniques were used to ascertain the role of exciton diffusion, the effects of reabsorption, and the spatial distributions of radiative and non-radiative traps. In unannealed ZnO we find that defect emission is suppressed and UV band edge emission is inefficient (reduced, and a high density of defects responsible for the broad visible emission are created near the surface. Interestingly, nearly identical PLE spectra are found for both the band edge and the defect emission, one of many indications that the defect emission is deeply connected to bound excitons. Quantum efficiency, also measured as a function of excitation wavelength, closely mirrors the PLE spectra for both emission bands. Sulfur-doped ZnO exhibits additional PLE and X-ray features indicative of a ZnS-rich surface

  11. Enhancement of the core near-band-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure: the case of SiC/SiO{sub 2} core/shell self-organized nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Filippo; Rossi, Francesca; Attolini, Giovanni; Salviati, Giancarlo; Iannotta, Salvatore [IMEM-CNR Institute, Viale Usberti 37/A, I-43124 Parma (Italy); Aversa, Lucrezia; Verucchi, Roberto; Nardi, Marco [IFN-CNR Institute, Via alla Cascata 56/C-Povo, I-38123 Trento (Italy); Fukata, Naoki [International Center for Materials Nanoarchitectonics, National Institute for Materials Science and PRESTO JST, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Dierre, Benjamin; Sekiguchi, Takashi [Nano Device Characterization Group, Advanced Electronic Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2010-08-27

    We report the influence of the native amorphous SiO{sub 2} shell on the cathodoluminescence emission of 3C-SiC/SiO{sub 2} core/shell nanowires. A shell-induced enhancement of the SiC near-band-edge emission is observed and studied as a function of the silicon dioxide thickness. Since the diameter of the investigated SiC cores rules out any direct bandgap optical transitions due to confinement effects, this enhancement is ascribed to a carrier diffusion from the shell to the core, promoted by the alignment of the SiO{sub 2} and SiC bands in a type I quantum well. An accurate correlation between the optical emission and structural and SiO{sub 2}-SiC interface properties is also reported.

  12. A smart upconversion-based light-triggered polymer for synergetic chemo-photodynamic therapy and dual-modal MR/UCL imaging.

    Science.gov (United States)

    Du, Bin; Han, Shuping; Zhao, Feifei; Lim, Kok Hwa; Xi, Hongwei; Su, Xiangjie; Yao, Hanchun; Zhou, Jie

    2016-10-01

    We have developed a novel nanocomposite to achieve effective therapy and live surveillance of tumor tissue. In this study, fullerene (C 60 ) with iron oxide (Fe 3 O 4 ) nanoparticles and upconversion nanophosphors (UCNPs) was loaded into N-succinyl-N'-4-(2-nitrobenzyloxy)-succinyl-chitosan micelles (SNSC) with good biocompatibility. In addition, hydrophobic anticancer drug docetaxel (DTX) was also loaded into the nanocomposites. The experiments conducted in vitro and in vivo demonstrated that C 60 /Fe 3 O 4 -UCNPs@DTX@SNSC can act synergistically to kill tumor cells by releasing chemotherapy drugs at specific target site as well as generating reactive oxygen using 980nm. In addition, it can also be used for non-invasive deep magnetic resonance and upconversion fluorescence dual-mode imaging. The results indicated that this system provided an efficient method to surmount the drawback of UV or visible light-responsive polymeric systems for controlled drug release and generated reactive oxygen in deep tissues and ultimately realized the integration of dual-modal imaging and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Upconversion luminescence and blackbody radiation in tetragonal YSZ co-doped with Tm(3+) and Yb(3+).

    Science.gov (United States)

    Soares, M R N; Ferro, M; Costa, F M; Monteiro, T

    2015-12-21

    Lanthanide doped inorganic nanoparticles with upconversion luminescence are of utmost importance for biomedical applications, solid state lighting and photovoltaics. In this work we studied the downshifted luminescence, upconversion luminescence (UCL) and blackbody radiation of tetragonal yttrium stabilized zirconia co-doped with Tm(3+) and Yb(3+) single crystals and nanoparticles produced by laser floating zone and laser ablation in liquids, respectively. The photoluminescence (PL) and PL excitation (PLE) were investigated at room temperature (RT). PL spectra exhibit the characteristic lines in UV, blue/green, red and NIR regions of the Tm(3+) (4f(12)) under resonant excitation into the high energy (2S+1)LJ multiplets. Under NIR excitation (980 nm), the samples placed in air display an intense NIR at ∼800 nm due to the (1)G4→(3)H5/(3)H4→(3)H6 transitions. Additionally, red, blue/green and ultraviolet UCL is observed arising from higher excited (1)G4 and (1)D2 multiplets. The power excitation dependence of the UCL intensity indicated that 2-3 low energy absorbed photons are involved in the UCL for low power levels, while for high powers, the identified saturation is dependent on the material size with a enhanced effect on the NPs. The temperature dependence of the UCL was investigated for single crystals and targets used in the ablation. An overall increase of the integrated intensity was found to occur between 12 K and the RT. The thermally activated process is described by activation energies of 10 meV and 30 meV for single crystals and targets, respectively. For the NPs, the UCL was found to be strongly sensitive to pressure conditions. Under vacuum conditions, instead of the narrow lines of the Tm(3+), a wide blackbody radiation was detected, responsible for the change in the emission colour from blue to orange. This phenomenon is totally reversible when the NPs are placed at ambient pressure. The UCL/blackbody radiation in the nanosized material exhibits

  14. Life-time resolved emission spectra in CdI2 crystals

    International Nuclear Information System (INIS)

    Kawabata, Seiji; Nakagawa, Hideyuki

    2007-01-01

    The emission spectrum of CdI 2 is composed of ultraviolet (UV), green (G) and yellow (Y and Y') bands peaking at 3.38, 2.50, 2.16 and 2.25 eV, respectively. In order to determine the initial states of the Y- and G-luminescence, decay curves have been measured at 6 and 80 K by varying emission energy. The observed decay curves are composed of two or three exponential components. These decay components were named τ 1 , τ 2 , τ 3 , τ 3' and τ 4 . The emission spectrum for each decay component, i.e., the life-time resolved emission spectrum, was constructed from the observed decay curves. At 6 K, three bands at 2.12, 2.49 and 2.64 eV are obtained for τ 1 , τ 2 and τ 3 components, respectively. At 80 K, a dominant band for the τ 4 component and a weak band for the τ 3' component appear on the same energy position at 2.25 eV. The origin of each emission band in the life-time resolved emission spectra will be briefly discussed

  15. Study of Ultraviolet Emission Spectra in ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Y. M. Lu

    2013-01-01

    Full Text Available Photoluminescence (PL of ZnO thin films prepared on c-Al2O3 substrates by pulsed laser deposition (PLD are investigated. For all samples, roomtemperature (RT spectra show a strong band-edge ultraviolet (UV emission with a pronounced low-energy band tail. The origin of this UV emission is analyzed by the temperature dependence of PL spectra. The result shows that the UV emission at RT contains different recombination processes. At low temperature donor-bound exciton (D0X emission plays a major role in PL spectra, while the free exciton transition (FX gradually dominates the spectrum with increasing temperatures. It notes that at low temperature an emission band (FA appears in low energy side of D0X and FX and can survive up to RT. Further confirmation shows that the origin of the band FA can be attributed to the transitions of conduction band electrons to acceptors (e, A0, in which the acceptor binding energy is estimated to be approximately 121 meV. It is concluded that at room temperature UV emission originates from the corporate contributions of the free exciton and free electrons-to-acceptor transitions.

  16. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    Science.gov (United States)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  17. Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF{sub 4}:Yb{sup 3+}/Er{sup 3+} nano-/micro-crystals derived from a microwave-assisted hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lili [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Li, Xiangping, E-mail: lixp@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Hua, Ruinian [College of Life Science, Dalian Nationalities University, Dalian 116600 (China); Li, Xuejing; Zheng, Hui; Sun, Jiashi; Zhang, Jinsu; Cheng, Lihong [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian 116026 (China)

    2015-11-15

    Yb{sup 3+}/Er{sup 3+} co-doped α- and β-phase NaYF{sub 4} nano-/micro-crystals were prepared through a microwave-assisted hydrothermal route. The crystal structure and microscopic morphology of the samples were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Frequency upconverted emissions from the two thermally coupled excited state {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} levels of Er{sup 3+} in both phases of phosphors were recorded at temperatures ranging from room temperature to 573 K under 980 nm infrared laser excitation. The time scanning upconversion spectra were investigated in detail to reveal the thermal effect induced by laser irradiation and the luminescent thermal stability of the two phases NaYF{sub 4} polycrystals. Comparison of the upconversion luminescence and the sensitivity between the two phases NaYF{sub 4} polycrystals indicated that β-phase NaYF{sub 4} won much stronger luminescent intensity, better luminescent thermal stability, and higher temperature sensitivity. - Highlights: • Yb{sup 3+}/Er{sup 3+} codoped NaYF{sub 4} were prepared by a microwave-assisted hydrothermal route. • The UC luminescence and temperature sensing properties were studied. • Comparison of the UCL and the sensitivity between α- and β-phase samples were done. • Thermal effect and UCL thermo-stability were studied by time scanning UCL spectra. • β-phase sample won much better luminescent and temperature sensing properties.

  18. Exciplex emission from amphiphilic polysilanes bearing ammonium moieties

    International Nuclear Information System (INIS)

    Yamaki, T.; Nakashiba, Y.; Asai, K.; Ishigure, K.; Shibata, H.

    1997-01-01

    We were the first to observe two emission bands in the visible region for some kinds of ammonium-type amphiphilic polysilanes both in solutions and in thin films. One, a broad emission band at 400-500 nm not due to a σ * →σ transition, was observed only for methylphenylsilane-based polymer solutions. The appearance of this low-energy emission is reasonably explained by considering the intramolecular exciplex formation between a Si-conjugated main chain and an ammonium site in the same monomer unit. The other, an emission band at the longer wavelength (around 560 nm), was found in the solvent-cast films where each molecule is randomly located, in addition to that observed for the solutions. This emission, which was not observed for the oriented LB films, is considered to originate from an intermolecular interaction. (orig.)

  19. Development of a Control Banding Tool for Nanomaterials

    Directory of Open Access Journals (Sweden)

    M. Riediker

    2012-01-01

    Full Text Available Control banding (CB can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial toxicology: translocation across biological barriers, fibrous nature, solubility, and reactivity. Already existing classifications specific to the nanomaterial can be used “as is.” Otherwise, the toxicity of bulk or analogous substances gives an initial hazard band, which is increased if the substance is not easily soluble or if it has a higher reactivity than the substance. The emission potential bands are defined by the nanomaterials' physical form and process characteristics. Quantities, frequencies, and existing control measures are taken into account during the definition of the action plan. Control strategies range from room ventilation to full containment with expert advice. This CB approach, once validated, can be easily embedded in risk management systems. It allows integrating new toxicity data and needs no exposure data.

  20. Optofluidic tuning of photonic crystal band edge lasers

    DEFF Research Database (Denmark)

    Bernal, Felipe; Christiansen, Mads Brøkner; Gersborg-Hansen, Morten

    2007-01-01

    We demonstrate optofluidic tuning of polymer photonic crystal band edge lasers with an imposed rectangular symmetry. The emission wavelength depends on both lattice constant and cladding refractive index. The emission wavelength is shown to change 1 nm with a cladding refractive index change of 10......−2. The rectangular symmetry modification alters the emission characteristics of the devices and the relative emission intensities along the symmetry axes depend on cladding refractive index, suggesting a sensor concept based on detection of intensity rather than wavelength....