WorldWideScience

Sample records for unsupervised learning algorithms

  1. Unsupervised learning algorithms

    CERN Document Server

    Aydin, Kemal

    2016-01-01

    This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering,...

  2. Semi-supervised and unsupervised extreme learning machines.

    Science.gov (United States)

    Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng

    2014-12-01

    Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.

  3. Unsupervised Classification Using Immune Algorithm

    OpenAIRE

    Al-Muallim, M. T.; El-Kouatly, R.

    2012-01-01

    Unsupervised classification algorithm based on clonal selection principle named Unsupervised Clonal Selection Classification (UCSC) is proposed in this paper. The new proposed algorithm is data driven and self-adaptive, it adjusts its parameters to the data to make the classification operation as fast as possible. The performance of UCSC is evaluated by comparing it with the well known K-means algorithm using several artificial and real-life data sets. The experiments show that the proposed U...

  4. Unsupervised Learning Through Randomized Algorithms for High-Volume High-Velocity Data (ULTRA-HV).

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolda, Tamara G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Wake Forest Univ., Winston-Salem, MA (United States); Ballard, Grey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mahoney, Michael [Univ. of California, Berkeley, CA (United States)

    2018-01-01

    Through long-term investments in computing, algorithms, facilities, and instrumentation, DOE is an established leader in massive-scale, high-fidelity simulations, as well as science-leading experimentation. In both cases, DOE is generating more data than it can analyze and the problem is intensifying quickly. The need for advanced algorithms that can automatically convert the abundance of data into a wealth of useful information by discovering hidden structures is well recognized. Such efforts however, are hindered by the massive volume of the data and its high velocity. Here, the challenge is developing unsupervised learning methods to discover hidden structure in high-volume, high-velocity data.

  5. Unsupervised learning of facial emotion decoding skills.

    Science.gov (United States)

    Huelle, Jan O; Sack, Benjamin; Broer, Katja; Komlewa, Irina; Anders, Silke

    2014-01-01

    Research on the mechanisms underlying human facial emotion recognition has long focussed on genetically determined neural algorithms and often neglected the question of how these algorithms might be tuned by social learning. Here we show that facial emotion decoding skills can be significantly and sustainably improved by practice without an external teaching signal. Participants saw video clips of dynamic facial expressions of five different women and were asked to decide which of four possible emotions (anger, disgust, fear, and sadness) was shown in each clip. Although no external information about the correctness of the participant's response or the sender's true affective state was provided, participants showed a significant increase of facial emotion recognition accuracy both within and across two training sessions two days to several weeks apart. We discuss several similarities and differences between the unsupervised improvement of facial decoding skills observed in the current study, unsupervised perceptual learning of simple stimuli described in previous studies and practice effects often observed in cognitive tasks.

  6. Unsupervised learning of facial emotion decoding skills

    Directory of Open Access Journals (Sweden)

    Jan Oliver Huelle

    2014-02-01

    Full Text Available Research on the mechanisms underlying human facial emotion recognition has long focussed on genetically determined neural algorithms and often neglected the question of how these algorithms might be tuned by social learning. Here we show that facial emotion decoding skills can be significantly and sustainably improved by practise without an external teaching signal. Participants saw video clips of dynamic facial expressions of five different women and were asked to decide which of four possible emotions (anger, disgust, fear and sadness was shown in each clip. Although no external information about the correctness of the participant’s response or the sender’s true affective state was provided, participants showed a significant increase of facial emotion recognition accuracy both within and across two training sessions two days to several weeks apart. We discuss several similarities and differences between the unsupervised improvement of facial decoding skills observed in the current study, unsupervised perceptual learning of simple stimuli described in previous studies and practise effects often observed in cognitive tasks.

  7. Unsupervised Learning and Generalization

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Larsen, Jan

    1996-01-01

    The concept of generalization is defined for a general class of unsupervised learning machines. The generalization error is a straightforward extension of the corresponding concept for supervised learning, and may be estimated empirically using a test set or by statistical means-in close analogy ...... with supervised learning. The empirical and analytical estimates are compared for principal component analysis and for K-means clustering based density estimation......The concept of generalization is defined for a general class of unsupervised learning machines. The generalization error is a straightforward extension of the corresponding concept for supervised learning, and may be estimated empirically using a test set or by statistical means-in close analogy...

  8. Unsupervised spike sorting based on discriminative subspace learning.

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2014-01-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. In this paper, we present two unsupervised spike sorting algorithms based on discriminative subspace learning. The first algorithm simultaneously learns the discriminative feature subspace and performs clustering. It uses histogram of features in the most discriminative projection to detect the number of neurons. The second algorithm performs hierarchical divisive clustering that learns a discriminative 1-dimensional subspace for clustering in each level of the hierarchy until achieving almost unimodal distribution in the subspace. The algorithms are tested on synthetic and in-vivo data, and are compared against two widely used spike sorting methods. The comparative results demonstrate that our spike sorting methods can achieve substantially higher accuracy in lower dimensional feature space, and they are highly robust to noise. Moreover, they provide significantly better cluster separability in the learned subspace than in the subspace obtained by principal component analysis or wavelet transform.

  9. Towards Statistical Unsupervised Online Learning for Music Listening with Hearing Devices

    DEFF Research Database (Denmark)

    Purwins, Hendrik; Marchini, Marco; Marxer, Richard

    of sounds into phonetic/instrument categories and learning of instrument event sequences is performed jointly using a Hierarchical Dirichlet Process Hidden Markov Model. Whereas machines often learn by processing a large data base and subsequently updating parameters of the algorithm, humans learn...... and their respective transition counts. We propose to use online learning for the co-evolution of both CI user and machine in (re-)learning musical language. [1] Marco Marchini and Hendrik Purwins. Unsupervised analysis and generation of audio percussion sequences. In International Symposium on Computer Music Modeling...... categories) as well as the temporal context horizon (e.g. storing up to 2-note sequences or up to 10-note sequences) is adaptable. The framework in [1] is based on two cognitively plausible principles: unsupervised learning and statistical learning. Opposed to supervised learning in primary school children...

  10. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning.

    Directory of Open Access Journals (Sweden)

    Jiayi Wu

    Full Text Available Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM. We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.

  11. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning.

    Science.gov (United States)

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.

  12. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    Science.gov (United States)

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  13. Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data

    Directory of Open Access Journals (Sweden)

    Ahmed R. Abas

    2012-07-01

    Full Text Available In this paper, a new algorithm is presented for unsupervised learning of finite mixture models (FMMs using data set with missing values. This algorithm overcomes the local optima problem of the Expectation-Maximization (EM algorithm via integrating the EM algorithm with Particle Swarm Optimization (PSO. In addition, the proposed algorithm overcomes the problem of biased estimation due to overlapping clusters in estimating missing values in the input data set by integrating locally-tuned general regression neural networks with Optimal Completion Strategy (OCS. A comparison study shows the superiority of the proposed algorithm over other algorithms commonly used in the literature in unsupervised learning of FMM parameters that result in minimum mis-classification errors when used in clustering incomplete data set that is generated from overlapping clusters and these clusters are largely different in their sizes.

  14. Integrating the Supervised Information into Unsupervised Learning

    Directory of Open Access Journals (Sweden)

    Ping Ling

    2013-01-01

    Full Text Available This paper presents an assembling unsupervised learning framework that adopts the information coming from the supervised learning process and gives the corresponding implementation algorithm. The algorithm consists of two phases: extracting and clustering data representatives (DRs firstly to obtain labeled training data and then classifying non-DRs based on labeled DRs. The implementation algorithm is called SDSN since it employs the tuning-scaled Support vector domain description to collect DRs, uses spectrum-based method to cluster DRs, and adopts the nearest neighbor classifier to label non-DRs. The validation of the clustering procedure of the first-phase is analyzed theoretically. A new metric is defined data dependently in the second phase to allow the nearest neighbor classifier to work with the informed information. A fast training approach for DRs’ extraction is provided to bring more efficiency. Experimental results on synthetic and real datasets verify that the proposed idea is of correctness and performance and SDSN exhibits higher popularity in practice over the traditional pure clustering procedure.

  15. Concept formation knowledge and experience in unsupervised learning

    CERN Document Server

    Fisher, Douglas H; Langley, Pat

    1991-01-01

    Concept Formation: Knowledge and Experience in Unsupervised Learning presents the interdisciplinary interaction between machine learning and cognitive psychology on unsupervised incremental methods. This book focuses on measures of similarity, strategies for robust incremental learning, and the psychological consistency of various approaches.Organized into three parts encompassing 15 chapters, this book begins with an overview of inductive concept learning in machine learning and psychology, with emphasis on issues that distinguish concept formation from more prevalent supervised methods and f

  16. Automatic microseismic event picking via unsupervised machine learning

    Science.gov (United States)

    Chen, Yangkang

    2018-01-01

    Effective and efficient arrival picking plays an important role in microseismic and earthquake data processing and imaging. Widely used short-term-average long-term-average ratio (STA/LTA) based arrival picking algorithms suffer from the sensitivity to moderate-to-strong random ambient noise. To make the state-of-the-art arrival picking approaches effective, microseismic data need to be first pre-processed, for example, removing sufficient amount of noise, and second analysed by arrival pickers. To conquer the noise issue in arrival picking for weak microseismic or earthquake event, I leverage the machine learning techniques to help recognizing seismic waveforms in microseismic or earthquake data. Because of the dependency of supervised machine learning algorithm on large volume of well-designed training data, I utilize an unsupervised machine learning algorithm to help cluster the time samples into two groups, that is, waveform points and non-waveform points. The fuzzy clustering algorithm has been demonstrated to be effective for such purpose. A group of synthetic, real microseismic and earthquake data sets with different levels of complexity show that the proposed method is much more robust than the state-of-the-art STA/LTA method in picking microseismic events, even in the case of moderately strong background noise.

  17. Bayesian feature weighting for unsupervised learning, with application to object recognition

    OpenAIRE

    Carbonetto , Peter; De Freitas , Nando; Gustafson , Paul; Thompson , Natalie

    2003-01-01

    International audience; We present a method for variable selection/weighting in an unsupervised learning context using Bayesian shrinkage. The basis for the model parameters and cluster assignments can be computed simultaneous using an efficient EM algorithm. Applying our Bayesian shrinkage model to a complex problem in object recognition (Duygulu, Barnard, de Freitas and Forsyth 2002), our experiments yied good results.

  18. Intelligent Fault Diagnosis of Rotary Machinery Based on Unsupervised Multiscale Representation Learning

    Science.gov (United States)

    Jiang, Guo-Qian; Xie, Ping; Wang, Xiao; Chen, Meng; He, Qun

    2017-11-01

    The performance of traditional vibration based fault diagnosis methods greatly depends on those handcrafted features extracted using signal processing algorithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised representation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal structures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at different scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multiscale representations. Finally, the multiscale representations are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.

  19. A Distributed Algorithm for the Cluster-Based Outlier Detection Using Unsupervised Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    Xite Wang

    2017-01-01

    Full Text Available Outlier detection is an important data mining task, whose target is to find the abnormal or atypical objects from a given dataset. The techniques for detecting outliers have a lot of applications, such as credit card fraud detection and environment monitoring. Our previous work proposed the Cluster-Based (CB outlier and gave a centralized method using unsupervised extreme learning machines to compute CB outliers. In this paper, we propose a new distributed algorithm for the CB outlier detection (DACB. On the master node, we collect a small number of points from the slave nodes to obtain a threshold. On each slave node, we design a new filtering method that can use the threshold to efficiently speed up the computation. Furthermore, we also propose a ranking method to optimize the order of cluster scanning. At last, the effectiveness and efficiency of the proposed approaches are verified through a plenty of simulation experiments.

  20. Decomposition methods for unsupervised learning

    DEFF Research Database (Denmark)

    Mørup, Morten

    2008-01-01

    This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding...... methods and clustering problems is derived both in terms of classical point clustering but also in terms of community detection in complex networks. A guiding principle throughout this thesis is the principle of parsimony. Hence, the goal of Unsupervised Learning is here posed as striving for simplicity...... in the decompositions. Thus, it is demonstrated how a wide range of decomposition methods explicitly or implicitly strive to attain this goal. Applications of the derived decompositions are given ranging from multi-media analysis of image and sound data, analysis of biomedical data such as electroencephalography...

  1. An automatic taxonomy of galaxy morphology using unsupervised machine learning

    Science.gov (United States)

    Hocking, Alex; Geach, James E.; Sun, Yi; Davey, Neil

    2018-01-01

    We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS 0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present lensed galaxy candidates from the CANDELS imaging.

  2. Unsupervised behaviour-specific dictionary learning for abnormal event detection

    DEFF Research Database (Denmark)

    Ren, Huamin; Liu, Weifeng; Olsen, Søren Ingvor

    2015-01-01

    the training data is only a small proportion of the surveillance data. Therefore, we propose behavior-specific dictionaries (BSD) through unsupervised learning, pursuing atoms from the same type of behavior to represent one behavior dictionary. To further improve the dictionary by introducing information from...... potential infrequent normal patterns, we refine the dictionary by searching ‘missed atoms’ that have compact coefficients. Experimental results show that our BSD algorithm outperforms state-of-the-art dictionaries in abnormal event detection on the public UCSD dataset. Moreover, BSD has less false alarms...

  3. An Improved EMD-Based Dissimilarity Metric for Unsupervised Linear Subspace Learning

    Directory of Open Access Journals (Sweden)

    Xiangchun Yu

    2018-01-01

    Full Text Available We investigate a novel way of robust face image feature extraction by adopting the methods based on Unsupervised Linear Subspace Learning to extract a small number of good features. Firstly, the face image is divided into blocks with the specified size, and then we propose and extract pooled Histogram of Oriented Gradient (pHOG over each block. Secondly, an improved Earth Mover’s Distance (EMD metric is adopted to measure the dissimilarity between blocks of one face image and the corresponding blocks from the rest of face images. Thirdly, considering the limitations of the original Locality Preserving Projections (LPP, we proposed the Block Structure LPP (BSLPP, which effectively preserves the structural information of face images. Finally, an adjacency graph is constructed and a small number of good features of a face image are obtained by methods based on Unsupervised Linear Subspace Learning. A series of experiments have been conducted on several well-known face databases to evaluate the effectiveness of the proposed algorithm. In addition, we construct the noise, geometric distortion, slight translation, slight rotation AR, and Extended Yale B face databases, and we verify the robustness of the proposed algorithm when faced with a certain degree of these disturbances.

  4. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    Science.gov (United States)

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  5. Unsupervised classification of variable stars

    Science.gov (United States)

    Valenzuela, Lucas; Pichara, Karim

    2018-03-01

    During the past 10 years, a considerable amount of effort has been made to develop algorithms for automatic classification of variable stars. That has been primarily achieved by applying machine learning methods to photometric data sets where objects are represented as light curves. Classifiers require training sets to learn the underlying patterns that allow the separation among classes. Unfortunately, building training sets is an expensive process that demands a lot of human efforts. Every time data come from new surveys; the only available training instances are the ones that have a cross-match with previously labelled objects, consequently generating insufficient training sets compared with the large amounts of unlabelled sources. In this work, we present an algorithm that performs unsupervised classification of variable stars, relying only on the similarity among light curves. We tackle the unsupervised classification problem by proposing an untraditional approach. Instead of trying to match classes of stars with clusters found by a clustering algorithm, we propose a query-based method where astronomers can find groups of variable stars ranked by similarity. We also develop a fast similarity function specific for light curves, based on a novel data structure that allows scaling the search over the entire data set of unlabelled objects. Experiments show that our unsupervised model achieves high accuracy in the classification of different types of variable stars and that the proposed algorithm scales up to massive amounts of light curves.

  6. Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm

    Science.gov (United States)

    Makin, Joseph G.; O'Doherty, Joseph E.; Cardoso, Mariana M. B.; Sabes, Philip N.

    2018-04-01

    Objective. The aim of this work is to improve the state of the art for motor-control with a brain-machine interface (BMI). BMIs use neurological recording devices and decoding algorithms to transform brain activity directly into real-time control of a machine, archetypically a robotic arm or a cursor. The standard procedure treats neural activity—vectors of spike counts in small temporal windows—as noisy observations of the kinematic state (position, velocity, acceleration) of the fingertip. Inferring the state from the observations then takes the form of a dynamical filter, typically some variant on Kalman’s (KF). The KF, however, although fairly robust in practice, is optimal only when the relationships between variables are linear and the noise is Gaussian, conditions usually violated in practice. Approach. To overcome these limitations we introduce a new filter, the ‘recurrent exponential-family harmonium’ (rEFH), that models the spike counts explicitly as Poisson-distributed, and allows for arbitrary nonlinear dynamics and observation models. Furthermore, the model underlying the filter is acquired through unsupervised learning, which allows temporal correlations in spike counts to be explained by latent dynamics that do not necessarily correspond to the kinematic state of the fingertip. Main results. We test the rEFH on offline reconstruction of the kinematics of reaches in the plane. The rEFH outperforms the standard, as well as three other state-of-the-art, decoders, across three monkeys, two different tasks, most kinematic variables, and a range of bin widths, amounts of training data, and numbers of neurons. Significance. Our algorithm establishes a new state of the art for offline decoding of reaches—in particular, for fingertip velocities, the variable used for control in most online decoders.

  7. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data

    Science.gov (United States)

    Goldstein, Markus; Uchida, Seiichi

    2016-01-01

    Anomaly detection is the process of identifying unexpected items or events in datasets, which differ from the norm. In contrast to standard classification tasks, anomaly detection is often applied on unlabeled data, taking only the internal structure of the dataset into account. This challenge is known as unsupervised anomaly detection and is addressed in many practical applications, for example in network intrusion detection, fraud detection as well as in the life science and medical domain. Dozens of algorithms have been proposed in this area, but unfortunately the research community still lacks a comparative universal evaluation as well as common publicly available datasets. These shortcomings are addressed in this study, where 19 different unsupervised anomaly detection algorithms are evaluated on 10 different datasets from multiple application domains. By publishing the source code and the datasets, this paper aims to be a new well-funded basis for unsupervised anomaly detection research. Additionally, this evaluation reveals the strengths and weaknesses of the different approaches for the first time. Besides the anomaly detection performance, computational effort, the impact of parameter settings as well as the global/local anomaly detection behavior is outlined. As a conclusion, we give an advise on algorithm selection for typical real-world tasks. PMID:27093601

  8. Specialization processes in on-line unsupervised learning

    NARCIS (Netherlands)

    Biehl, M.; Freking, A.; Reents, G.; Schlösser, E.

    1998-01-01

    From the recent analysis of supervised learning by on-line gradient descent in multilayered neural networks it is known that the necessary process of student specialization can be delayed significantly. We demonstrate that this phenomenon also occurs in various models of unsupervised learning. A

  9. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling.

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  10. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  11. Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms.

    Science.gov (United States)

    Niegowski, Maciej; Zivanovic, Miroslav

    2016-03-01

    We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Modelling unsupervised online-learning of artificial grammars: linking implicit and statistical learning.

    Science.gov (United States)

    Rohrmeier, Martin A; Cross, Ian

    2014-07-01

    Humans rapidly learn complex structures in various domains. Findings of above-chance performance of some untrained control groups in artificial grammar learning studies raise questions about the extent to which learning can occur in an untrained, unsupervised testing situation with both correct and incorrect structures. The plausibility of unsupervised online-learning effects was modelled with n-gram, chunking and simple recurrent network models. A novel evaluation framework was applied, which alternates forced binary grammaticality judgments and subsequent learning of the same stimulus. Our results indicate a strong online learning effect for n-gram and chunking models and a weaker effect for simple recurrent network models. Such findings suggest that online learning is a plausible effect of statistical chunk learning that is possible when ungrammatical sequences contain a large proportion of grammatical chunks. Such common effects of continuous statistical learning may underlie statistical and implicit learning paradigms and raise implications for study design and testing methodologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Unsupervised process monitoring and fault diagnosis with machine learning methods

    CERN Document Server

    Aldrich, Chris

    2013-01-01

    This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data

  14. Unsupervised learning of a steerable basis for invariant image representations

    Science.gov (United States)

    Bethge, Matthias; Gerwinn, Sebastian; Macke, Jakob H.

    2007-02-01

    There are two aspects to unsupervised learning of invariant representations of images: First, we can reduce the dimensionality of the representation by finding an optimal trade-off between temporal stability and informativeness. We show that the answer to this optimization problem is generally not unique so that there is still considerable freedom in choosing a suitable basis. Which of the many optimal representations should be selected? Here, we focus on this second aspect, and seek to find representations that are invariant under geometrical transformations occuring in sequences of natural images. We utilize ideas of 'steerability' and Lie groups, which have been developed in the context of filter design. In particular, we show how an anti-symmetric version of canonical correlation analysis can be used to learn a full-rank image basis which is steerable with respect to rotations. We provide a geometric interpretation of this algorithm by showing that it finds the two-dimensional eigensubspaces of the average bivector. For data which exhibits a variety of transformations, we develop a bivector clustering algorithm, which we use to learn a basis of generalized quadrature pairs (i.e. 'complex cells') from sequences of natural images.

  15. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma.

    Science.gov (United States)

    Young, Jonathan D; Cai, Chunhui; Lu, Xinghua

    2017-10-03

    One approach to improving the personalized treatment of cancer is to understand the cellular signaling transduction pathways that cause cancer at the level of the individual patient. In this study, we used unsupervised deep learning to learn the hierarchical structure within cancer gene expression data. Deep learning is a group of machine learning algorithms that use multiple layers of hidden units to capture hierarchically related, alternative representations of the input data. We hypothesize that this hierarchical structure learned by deep learning will be related to the cellular signaling system. Robust deep learning model selection identified a network architecture that is biologically plausible. Our model selection results indicated that the 1st hidden layer of our deep learning model should contain about 1300 hidden units to most effectively capture the covariance structure of the input data. This agrees with the estimated number of human transcription factors, which is approximately 1400. This result lends support to our hypothesis that the 1st hidden layer of a deep learning model trained on gene expression data may represent signals related to transcription factor activation. Using the 3rd hidden layer representation of each tumor as learned by our unsupervised deep learning model, we performed consensus clustering on all tumor samples-leading to the discovery of clusters of glioblastoma multiforme with differential survival. One of these clusters contained all of the glioblastoma samples with G-CIMP, a known methylation phenotype driven by the IDH1 mutation and associated with favorable prognosis, suggesting that the hidden units in the 3rd hidden layer representations captured a methylation signal without explicitly using methylation data as input. We also found differentially expressed genes and well-known mutations (NF1, IDH1, EGFR) that were uniquely correlated with each of these clusters. Exploring these unique genes and mutations will allow us to

  16. Unsupervised active learning based on hierarchical graph-theoretic clustering.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve

    2009-10-01

    Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.

  17. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  18. An improved clustering algorithm based on reverse learning in intelligent transportation

    Science.gov (United States)

    Qiu, Guoqing; Kou, Qianqian; Niu, Ting

    2017-05-01

    With the development of artificial intelligence and data mining technology, big data has gradually entered people's field of vision. In the process of dealing with large data, clustering is an important processing method. By introducing the reverse learning method in the clustering process of PAM clustering algorithm, to further improve the limitations of one-time clustering in unsupervised clustering learning, and increase the diversity of clustering clusters, so as to improve the quality of clustering. The algorithm analysis and experimental results show that the algorithm is feasible.

  19. Cognitive Radio Transceivers: RF, Spectrum Sensing, and Learning Algorithms Review

    Directory of Open Access Journals (Sweden)

    Lise Safatly

    2014-01-01

    reconfigurable radio frequency (RF parts, enhanced spectrum sensing algorithms, and sophisticated machine learning techniques. In this paper, we present a review of the recent advances in CR transceivers hardware design and algorithms. For the RF part, three types of antennas are presented: UWB antennas, frequency-reconfigurable/tunable antennas, and UWB antennas with reconfigurable band notches. The main challenges faced by the design of the other RF blocks are also discussed. Sophisticated spectrum sensing algorithms that overcome main sensing challenges such as model uncertainty, hardware impairments, and wideband sensing are highlighted. The cognitive engine features are discussed. Moreover, we study unsupervised classification algorithms and a reinforcement learning (RL algorithm that has been proposed to perform decision-making in CR networks.

  20. Machine learning in APOGEE. Unsupervised spectral classification with K-means

    Science.gov (United States)

    Garcia-Dias, Rafael; Allende Prieto, Carlos; Sánchez Almeida, Jorge; Ordovás-Pascual, Ignacio

    2018-05-01

    Context. The volume of data generated by astronomical surveys is growing rapidly. Traditional analysis techniques in spectroscopy either demand intensive human interaction or are computationally expensive. In this scenario, machine learning, and unsupervised clustering algorithms in particular, offer interesting alternatives. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) offers a vast data set of near-infrared stellar spectra, which is perfect for testing such alternatives. Aims: Our research applies an unsupervised classification scheme based on K-means to the massive APOGEE data set. We explore whether the data are amenable to classification into discrete classes. Methods: We apply the K-means algorithm to 153 847 high resolution spectra (R ≈ 22 500). We discuss the main virtues and weaknesses of the algorithm, as well as our choice of parameters. Results: We show that a classification based on normalised spectra captures the variations in stellar atmospheric parameters, chemical abundances, and rotational velocity, among other factors. The algorithm is able to separate the bulge and halo populations, and distinguish dwarfs, sub-giants, RC, and RGB stars. However, a discrete classification in flux space does not result in a neat organisation in the parameters' space. Furthermore, the lack of obvious groups in flux space causes the results to be fairly sensitive to the initialisation, and disrupts the efficiency of commonly-used methods to select the optimal number of clusters. Our classification is publicly available, including extensive online material associated with the APOGEE Data Release 12 (DR12). Conclusions: Our description of the APOGEE database can help greatly with the identification of specific types of targets for various applications. We find a lack of obvious groups in flux space, and identify limitations of the K-means algorithm in dealing with this kind of data. Full Tables B.1-B.4 are only available at the CDS via

  1. Analog memristive synapse in spiking networks implementing unsupervised learning

    Directory of Open Access Journals (Sweden)

    Erika Covi

    2016-10-01

    Full Text Available Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e. the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity. This implies a device able to change its resistance (synaptic strength, or weight upon proper electrical stimuli (synaptic activity and showing several stable resistive states throughout its dynamic range (analog behavior. Moreover, it should be able to perform spike timing dependent plasticity (STDP, an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy characters are displayed and it is robust to a device-to-device variability of up to +/-30%.

  2. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning.

    Science.gov (United States)

    Covi, Erika; Brivio, Stefano; Serb, Alexander; Prodromakis, Themis; Fanciulli, Marco; Spiga, Sabina

    2016-01-01

    Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e., the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity). This implies a device able to change its resistance (synaptic strength, or weight) upon proper electrical stimuli (synaptic activity) and showing several stable resistive states throughout its dynamic range (analog behavior). Moreover, it should be able to perform spike timing dependent plasticity (STDP), an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO 2 -based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy images are displayed and it is robust to a device-to-device variability of up to ±30%.

  3. Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees

    Science.gov (United States)

    Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan

    2017-01-01

    Objective Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. Method We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Results Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. Significance The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP. PMID:28407016

  4. Unsupervised/supervised learning concept for 24-hour load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Electrical Engineering Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Babic, B [Electrical Power Industry of Serbia, Belgrade (Yugoslavia); Sobajic, D J; Pao, Y -H [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Computer Science

    1993-07-01

    An application of artificial neural networks in short-term load forecasting is described. An algorithm using an unsupervised/supervised learning concept and historical relationship between the load and temperature for a given season, day type and hour of the day to forecast hourly electric load with a lead time of 24 hours is proposed. An additional approach using functional link net, temperature variables, average load and last one-hour load of previous day is introduced and compared with the ANN model with one hidden layer load forecast. In spite of limited available weather variables (maximum, minimum and average temperature for the day) quite acceptable results have been achieved. The 24-hour-ahead forecast errors (absolute average) ranged from 2.78% for Saturdays and 3.12% for working days to 3.54% for Sundays. (Author)

  5. Audio-based, unsupervised machine learning reveals cyclic changes in earthquake mechanisms in the Geysers geothermal field, California

    Science.gov (United States)

    Holtzman, B. K.; Paté, A.; Paisley, J.; Waldhauser, F.; Repetto, D.; Boschi, L.

    2017-12-01

    The earthquake process reflects complex interactions of stress, fracture and frictional properties. New machine learning methods reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Our methods are based closely on those developed for music information retrieval and voice recognition, using the spectrogram instead of the waveform directly. Unsupervised learning involves identification of patterns based on differences among signals without any additional information provided to the algorithm. Clustering of 46,000 earthquakes of $0.3

  6. Teacher and learner: Supervised and unsupervised learning in communities.

    Science.gov (United States)

    Shafto, Michael G; Seifert, Colleen M

    2015-01-01

    How far can teaching methods go to enhance learning? Optimal methods of teaching have been considered in research on supervised and unsupervised learning. Locally optimal methods are usually hybrids of teaching and self-directed approaches. The costs and benefits of specific methods have been shown to depend on the structure of the learning task, the learners, the teachers, and the environment.

  7. Unsupervised Learning of Spatiotemporal Features by Video Completion

    OpenAIRE

    Nallabolu, Adithya Reddy

    2017-01-01

    In this work, we present an unsupervised representation learning approach for learning rich spatiotemporal features from videos without the supervision from semantic labels. We propose to learn the spatiotemporal features by training a 3D convolutional neural network (CNN) using video completion as a surrogate task. Using a large collection of unlabeled videos, we train the CNN to predict the missing pixels of a spatiotemporal hole given the remaining parts of the video through minimizing per...

  8. A comparative evaluation of supervised and unsupervised representation learning approaches for anaplastic medulloblastoma differentiation

    Science.gov (United States)

    Cruz-Roa, Angel; Arevalo, John; Basavanhally, Ajay; Madabhushi, Anant; González, Fabio

    2015-01-01

    Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.

  9. Unsupervised obstacle detection in driving environments using deep-learning-based stereovision

    KAUST Repository

    Dairi, Abdelkader; Harrou, Fouzi; Senouci, Mohamed; Sun, Ying

    2017-01-01

    A vision-based obstacle detection system is a key enabler for the development of autonomous robots and vehicles and intelligent transportation systems. This paper addresses the problem of urban scene monitoring and tracking of obstacles based on unsupervised, deep-learning approaches. Here, we design an innovative hybrid encoder that integrates deep Boltzmann machines (DBM) and auto-encoders (AE). This hybrid auto-encode (HAE) model combines the greedy learning features of DBM with the dimensionality reduction capacity of AE to accurately and reliably detect the presence of obstacles. We combine the proposed hybrid model with the one-class support vector machines (OCSVM) to visually monitor an urban scene. We also propose an efficient approach to estimating obstacles location and track their positions via scene densities. Specifically, we address obstacle detection as an anomaly detection problem. If an obstacle is detected by the OCSVM algorithm, then localization and tracking algorithm is executed. We validated the effectiveness of our approach by using experimental data from two publicly available dataset, the Malaga stereovision urban dataset (MSVUD) and the Daimler urban segmentation dataset (DUSD). Results show the capacity of the proposed approach to reliably detect obstacles.

  10. Unsupervised obstacle detection in driving environments using deep-learning-based stereovision

    KAUST Repository

    Dairi, Abdelkader

    2017-12-06

    A vision-based obstacle detection system is a key enabler for the development of autonomous robots and vehicles and intelligent transportation systems. This paper addresses the problem of urban scene monitoring and tracking of obstacles based on unsupervised, deep-learning approaches. Here, we design an innovative hybrid encoder that integrates deep Boltzmann machines (DBM) and auto-encoders (AE). This hybrid auto-encode (HAE) model combines the greedy learning features of DBM with the dimensionality reduction capacity of AE to accurately and reliably detect the presence of obstacles. We combine the proposed hybrid model with the one-class support vector machines (OCSVM) to visually monitor an urban scene. We also propose an efficient approach to estimating obstacles location and track their positions via scene densities. Specifically, we address obstacle detection as an anomaly detection problem. If an obstacle is detected by the OCSVM algorithm, then localization and tracking algorithm is executed. We validated the effectiveness of our approach by using experimental data from two publicly available dataset, the Malaga stereovision urban dataset (MSVUD) and the Daimler urban segmentation dataset (DUSD). Results show the capacity of the proposed approach to reliably detect obstacles.

  11. Modeling Visit Behaviour in Smart Homes using Unsupervised Learning

    NARCIS (Netherlands)

    Nait Aicha, A.; Englebienne, G.; Kröse, B.

    2014-01-01

    Many algorithms on health monitoring from ambient sensor networks assume that only a single person is present in the home. We present an unsupervised method that models visit behaviour. A Markov modulated multidimensional non-homogeneous Poisson process (M3P2) is described that allows us to model

  12. QUEST: Eliminating Online Supervised Learning for Efficient Classification Algorithms.

    Science.gov (United States)

    Zwartjes, Ardjan; Havinga, Paul J M; Smit, Gerard J M; Hurink, Johann L

    2016-10-01

    In this work, we introduce QUEST (QUantile Estimation after Supervised Training), an adaptive classification algorithm for Wireless Sensor Networks (WSNs) that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting raw sensor data puts high demands on the battery, reducing network life time. By merely transmitting partial results or classifications based on the sampled data, the amount of traffic on the network can be significantly reduced. Such classifications can be made by learning based algorithms using sampled data. An important issue, however, is the training phase of these learning based algorithms. Training a deployed sensor network requires a lot of communication and an impractical amount of human involvement. QUEST is a hybrid algorithm that combines supervised learning in a controlled environment with unsupervised learning on the location of deployment. Using the SITEX02 dataset, we demonstrate that the presented solution works with a performance penalty of less than 10% in 90% of the tests. Under some circumstances, it even outperforms a network of classifiers completely trained with supervised learning. As a result, the need for on-site supervised learning and communication for training is completely eliminated by our solution.

  13. A novel unsupervised spike sorting algorithm for intracranial EEG.

    Science.gov (United States)

    Yadav, R; Shah, A K; Loeb, J A; Swamy, M N S; Agarwal, R

    2011-01-01

    This paper presents a novel, unsupervised spike classification algorithm for intracranial EEG. The method combines template matching and principal component analysis (PCA) for building a dynamic patient-specific codebook without a priori knowledge of the spike waveforms. The problem of misclassification due to overlapping classes is resolved by identifying similar classes in the codebook using hierarchical clustering. Cluster quality is visually assessed by projecting inter- and intra-clusters onto a 3D plot. Intracranial EEG from 5 patients was utilized to optimize the algorithm. The resulting codebook retains 82.1% of the detected spikes in non-overlapping and disjoint clusters. Initial results suggest a definite role of this method for both rapid review and quantitation of interictal spikes that could enhance both clinical treatment and research studies on epileptic patients.

  14. Function approximation using combined unsupervised and supervised learning.

    Science.gov (United States)

    Andras, Peter

    2014-03-01

    Function approximation is one of the core tasks that are solved using neural networks in the context of many engineering problems. However, good approximation results need good sampling of the data space, which usually requires exponentially increasing volume of data as the dimensionality of the data increases. At the same time, often the high-dimensional data is arranged around a much lower dimensional manifold. Here we propose the breaking of the function approximation task for high-dimensional data into two steps: (1) the mapping of the high-dimensional data onto a lower dimensional space corresponding to the manifold on which the data resides and (2) the approximation of the function using the mapped lower dimensional data. We use over-complete self-organizing maps (SOMs) for the mapping through unsupervised learning, and single hidden layer neural networks for the function approximation through supervised learning. We also extend the two-step procedure by considering support vector machines and Bayesian SOMs for the determination of the best parameters for the nonlinear neurons in the hidden layer of the neural networks used for the function approximation. We compare the approximation performance of the proposed neural networks using a set of functions and show that indeed the neural networks using combined unsupervised and supervised learning outperform in most cases the neural networks that learn the function approximation using the original high-dimensional data.

  15. QUEST: Eliminating Online Supervised Learning for Efficient Classification Algorithms

    Directory of Open Access Journals (Sweden)

    Ardjan Zwartjes

    2016-10-01

    Full Text Available In this work, we introduce QUEST (QUantile Estimation after Supervised Training, an adaptive classification algorithm for Wireless Sensor Networks (WSNs that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting raw sensor data puts high demands on the battery, reducing network life time. By merely transmitting partial results or classifications based on the sampled data, the amount of traffic on the network can be significantly reduced. Such classifications can be made by learning based algorithms using sampled data. An important issue, however, is the training phase of these learning based algorithms. Training a deployed sensor network requires a lot of communication and an impractical amount of human involvement. QUEST is a hybrid algorithm that combines supervised learning in a controlled environment with unsupervised learning on the location of deployment. Using the SITEX02 dataset, we demonstrate that the presented solution works with a performance penalty of less than 10% in 90% of the tests. Under some circumstances, it even outperforms a network of classifiers completely trained with supervised learning. As a result, the need for on-site supervised learning and communication for training is completely eliminated by our solution.

  16. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    Science.gov (United States)

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  17. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Qi Huang

    2017-06-01

    Full Text Available Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC, by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC. We compared PAC performance with incremental support vector classifier (ISVC and non-adapting SVC (NSVC in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05 and ISVC (13.38% ± 2.62%, p = 0.001, and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle.

  18. Unsupervised classification of multivariate geostatistical data: Two algorithms

    Science.gov (United States)

    Romary, Thomas; Ors, Fabien; Rivoirard, Jacques; Deraisme, Jacques

    2015-12-01

    With the increasing development of remote sensing platforms and the evolution of sampling facilities in mining and oil industry, spatial datasets are becoming increasingly large, inform a growing number of variables and cover wider and wider areas. Therefore, it is often necessary to split the domain of study to account for radically different behaviors of the natural phenomenon over the domain and to simplify the subsequent modeling step. The definition of these areas can be seen as a problem of unsupervised classification, or clustering, where we try to divide the domain into homogeneous domains with respect to the values taken by the variables in hand. The application of classical clustering methods, designed for independent observations, does not ensure the spatial coherence of the resulting classes. Image segmentation methods, based on e.g. Markov random fields, are not adapted to irregularly sampled data. Other existing approaches, based on mixtures of Gaussian random functions estimated via the expectation-maximization algorithm, are limited to reasonable sample sizes and a small number of variables. In this work, we propose two algorithms based on adaptations of classical algorithms to multivariate geostatistical data. Both algorithms are model free and can handle large volumes of multivariate, irregularly spaced data. The first one proceeds by agglomerative hierarchical clustering. The spatial coherence is ensured by a proximity condition imposed for two clusters to merge. This proximity condition relies on a graph organizing the data in the coordinates space. The hierarchical algorithm can then be seen as a graph-partitioning algorithm. Following this interpretation, a spatial version of the spectral clustering algorithm is also proposed. The performances of both algorithms are assessed on toy examples and a mining dataset.

  19. Unsupervised Learning of Action Primitives

    DEFF Research Database (Denmark)

    Baby, Sanmohan; Krüger, Volker; Kragic, Danica

    2010-01-01

    and scale, the use of the object can provide a strong invariant for the detection of motion primitives. In this paper we propose an unsupervised learning approach for action primitives that makes use of the human movements as well as the object state changes. We group actions according to the changes......Action representation is a key issue in imitation learning for humanoids. With the recent finding of mirror neurons there has been a growing interest in expressing actions as a combination meaningful subparts called primitives. Primitives could be thought of as an alphabet for the human actions....... In this paper we observe that human actions and objects can be seen as being intertwined: we can interpret actions from the way the body parts are moving, but as well from how their effect on the involved object. While human movements can look vastly different even under minor changes in location, orientation...

  20. A new avenue for classification and prediction of olive cultivars using supervised and unsupervised algorithms.

    Directory of Open Access Journals (Sweden)

    Amir H Beiki

    Full Text Available Various methods have been used to identify cultivares of olive trees; herein we used different bioinformatics algorithms to propose new tools to classify 10 cultivares of olive based on RAPD and ISSR genetic markers datasets generated from PCR reactions. Five RAPD markers (OPA0a21, OPD16a, OP01a1, OPD16a1 and OPA0a8 and five ISSR markers (UBC841a4, UBC868a7, UBC841a14, U12BC807a and UBC810a13 selected as the most important markers by all attribute weighting models. K-Medoids unsupervised clustering run on SVM dataset was fully able to cluster each olive cultivar to the right classes. All trees (176 induced by decision tree models generated meaningful trees and UBC841a4 attribute clearly distinguished between foreign and domestic olive cultivars with 100% accuracy. Predictive machine learning algorithms (SVM and Naïve Bayes were also able to predict the right class of olive cultivares with 100% accuracy. For the first time, our results showed data mining techniques can be effectively used to distinguish between plant cultivares and proposed machine learning based systems in this study can predict new olive cultivars with the best possible accuracy.

  1. An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States

    Science.gov (United States)

    Wendel, Jochen; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2016-01-01

    Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification.

  2. Unsupervised Learning for Efficient Texture Estimation From Limited Discrete Orientation Data

    Science.gov (United States)

    Niezgoda, Stephen R.; Glover, Jared

    2013-11-01

    The estimation of orientation distribution functions (ODFs) from discrete orientation data, as produced by electron backscatter diffraction or crystal plasticity micromechanical simulations, is typically achieved via techniques such as the Williams-Imhof-Matthies-Vinel (WIMV) algorithm or generalized spherical harmonic expansions, which were originally developed for computing an ODF from pole figures measured by X-ray or neutron diffraction. These techniques rely on ad-hoc methods for choosing parameters, such as smoothing half-width and bandwidth, and for enforcing positivity constraints and appropriate normalization. In general, such approaches provide little or no information-theoretic guarantees as to their optimality in describing the given dataset. In the current study, an unsupervised learning algorithm is proposed which uses a finite mixture of Bingham distributions for the estimation of ODFs from discrete orientation data. The Bingham distribution is an antipodally-symmetric, max-entropy distribution on the unit quaternion hypersphere. The proposed algorithm also introduces a minimum message length criterion, a common tool in information theory for balancing data likelihood with model complexity, to determine the number of components in the Bingham mixture. This criterion leads to ODFs which are less likely to overfit (or underfit) the data, eliminating the need for a priori parameter choices.

  3. Unsupervised Feature Subset Selection

    DEFF Research Database (Denmark)

    Søndberg-Madsen, Nicolaj; Thomsen, C.; Pena, Jose

    2003-01-01

    This paper studies filter and hybrid filter-wrapper feature subset selection for unsupervised learning (data clustering). We constrain the search for the best feature subset by scoring the dependence of every feature on the rest of the features, conjecturing that these scores discriminate some ir...... irrelevant features. We report experimental results on artificial and real data for unsupervised learning of naive Bayes models. Both the filter and hybrid approaches perform satisfactorily....

  4. Unsupervised feature learning for autonomous rock image classification

    Science.gov (United States)

    Shu, Lei; McIsaac, Kenneth; Osinski, Gordon R.; Francis, Raymond

    2017-09-01

    Autonomous rock image classification can enhance the capability of robots for geological detection and enlarge the scientific returns, both in investigation on Earth and planetary surface exploration on Mars. Since rock textural images are usually inhomogeneous and manually hand-crafting features is not always reliable, we propose an unsupervised feature learning method to autonomously learn the feature representation for rock images. In our tests, rock image classification using the learned features shows that the learned features can outperform manually selected features. Self-taught learning is also proposed to learn the feature representation from a large database of unlabelled rock images of mixed class. The learned features can then be used repeatedly for classification of any subclass. This takes advantage of the large dataset of unlabelled rock images and learns a general feature representation for many kinds of rocks. We show experimental results supporting the feasibility of self-taught learning on rock images.

  5. Interactive Algorithms for Unsupervised Machine Learning

    Science.gov (United States)

    2015-06-01

    in Neural Information Processing Systems, 2013. 14 [3] Louigi Addario-Berry, Nicolas Broutin, Luc Devroye, and Gábor Lugosi. On combinato- rial...Myung Jin Choi, Vincent Y F Tan , Animashree Anandkumar, and Alan S Willsky. Learn- ing Latent Tree Graphical Models. Journal of Machine Learning

  6. An unsupervised strategy for biomedical image segmentation

    Directory of Open Access Journals (Sweden)

    Roberto Rodríguez

    2010-09-01

    Full Text Available Roberto Rodríguez1, Rubén Hernández21Digital Signal Processing Group, Institute of Cybernetics, Mathematics, and Physics, Havana, Cuba; 2Interdisciplinary Professional Unit of Engineering and Advanced Technology, IPN, MexicoAbstract: Many segmentation techniques have been published, and some of them have been widely used in different application problems. Most of these segmentation techniques have been motivated by specific application purposes. Unsupervised methods, which do not assume any prior scene knowledge can be learned to help the segmentation process, and are obviously more challenging than the supervised ones. In this paper, we present an unsupervised strategy for biomedical image segmentation using an algorithm based on recursively applying mean shift filtering, where entropy is used as a stopping criterion. This strategy is proven with many real images, and a comparison is carried out with manual segmentation. With the proposed strategy, errors less than 20% for false positives and 0% for false negatives are obtained.Keywords: segmentation, mean shift, unsupervised segmentation, entropy

  7. Unsupervised Labeling Of Data For Supervised Learning And Its Application To Medical Claims Prediction

    Directory of Open Access Journals (Sweden)

    Che Ngufor

    2013-01-01

    Full Text Available The task identifying changes and irregularities in medical insurance claim pay-ments is a difficult process of which the traditional practice involves queryinghistorical claims databases and flagging potential claims as normal or abnor-mal. Because what is considered as normal payment is usually unknown andmay change over time, abnormal payments often pass undetected; only to bediscovered when the payment period has passed.This paper presents the problem of on-line unsupervised learning from datastreams when the distribution that generates the data changes or drifts overtime. Automated algorithms for detecting drifting concepts in a probabilitydistribution of the data are presented. The idea behind the presented driftdetection methods is to transform the distribution of the data within a slidingwindow into a more convenient distribution. Then, a test statistics p-value ata given significance level can be used to infer the drift rate, adjust the windowsize and decide on the status of the drift. The detected concepts drifts areused to label the data, for subsequent learning of classification models by asupervised learner. The algorithms were tested on several synthetic and realmedical claims data sets.

  8. Automated age-related macular degeneration classification in OCT using unsupervised feature learning

    Science.gov (United States)

    Venhuizen, Freerk G.; van Ginneken, Bram; Bloemen, Bart; van Grinsven, Mark J. J. P.; Philipsen, Rick; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I.

    2015-03-01

    Age-related Macular Degeneration (AMD) is a common eye disorder with high prevalence in elderly people. The disease mainly affects the central part of the retina, and could ultimately lead to permanent vision loss. Optical Coherence Tomography (OCT) is becoming the standard imaging modality in diagnosis of AMD and the assessment of its progression. However, the evaluation of the obtained volumetric scan is time consuming, expensive and the signs of early AMD are easy to miss. In this paper we propose a classification method to automatically distinguish AMD patients from healthy subjects with high accuracy. The method is based on an unsupervised feature learning approach, and processes the complete image without the need for an accurate pre-segmentation of the retina. The method can be divided in two steps: an unsupervised clustering stage that extracts a set of small descriptive image patches from the training data, and a supervised training stage that uses these patches to create a patch occurrence histogram for every image on which a random forest classifier is trained. Experiments using 384 volume scans show that the proposed method is capable of identifying AMD patients with high accuracy, obtaining an area under the Receiver Operating Curve of 0:984. Our method allows for a quick and reliable assessment of the presence of AMD pathology in OCT volume scans without the need for accurate layer segmentation algorithms.

  9. An Efficient Optimization Method for Solving Unsupervised Data Classification Problems

    Directory of Open Access Journals (Sweden)

    Parvaneh Shabanzadeh

    2015-01-01

    Full Text Available Unsupervised data classification (or clustering analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.

  10. Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification

    Science.gov (United States)

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V.; Robles, Montserrat; Aparici, F.; Martí-Bonmatí, L.; García-Gómez, Juan M.

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation. PMID:25978453

  11. Unsupervised Language Acquisition

    Science.gov (United States)

    de Marcken, Carl

    1996-11-01

    This thesis presents a computational theory of unsupervised language acquisition, precisely defining procedures for learning language from ordinary spoken or written utterances, with no explicit help from a teacher. The theory is based heavily on concepts borrowed from machine learning and statistical estimation. In particular, learning takes place by fitting a stochastic, generative model of language to the evidence. Much of the thesis is devoted to explaining conditions that must hold for this general learning strategy to arrive at linguistically desirable grammars. The thesis introduces a variety of technical innovations, among them a common representation for evidence and grammars, and a learning strategy that separates the ``content'' of linguistic parameters from their representation. Algorithms based on it suffer from few of the search problems that have plagued other computational approaches to language acquisition. The theory has been tested on problems of learning vocabularies and grammars from unsegmented text and continuous speech, and mappings between sound and representations of meaning. It performs extremely well on various objective criteria, acquiring knowledge that causes it to assign almost exactly the same structure to utterances as humans do. This work has application to data compression, language modeling, speech recognition, machine translation, information retrieval, and other tasks that rely on either structural or stochastic descriptions of language.

  12. Learning Outlier Ensembles

    DEFF Research Database (Denmark)

    Micenková, Barbora; McWilliams, Brian; Assent, Ira

    into the existing unsupervised algorithms. In this paper, we show how to use powerful machine learning approaches to combine labeled examples together with arbitrary unsupervised outlier scoring algorithms. We aim to get the best out of the two worlds—supervised and unsupervised. Our approach is also a viable......Years of research in unsupervised outlier detection have produced numerous algorithms to score data according to their exceptionality. wever, the nature of outliers heavily depends on the application context and different algorithms are sensitive to outliers of different nature. This makes it very...... difficult to assess suitability of a particular algorithm without a priori knowledge. On the other hand, in many applications, some examples of outliers exist or can be obtain edin addition to the vast amount of unlabeled data. Unfortunately, this extra knowledge cannot be simply incorporated...

  13. Unsupervised learning via self-organization a dynamic approach

    CERN Document Server

    Kyan, Matthew; Jarrah, Kambiz; Guan, Ling

    2014-01-01

    To aid in intelligent data mining, this book introduces a new family of unsupervised algorithms that have a basis in self-organization, yet are free from many of the constraints typical of other well known self-organizing architectures. It then moves through a series of pertinent real world applications with regards to the processing of multimedia data from its role in generic image processing techniques such as the automated modeling and removal of impulse noise in digital images, to problems in digital asset management, and its various roles in feature extraction, visual enhancement, segmentation, and analysis of microbiological image data.

  14. Quick fuzzy backpropagation algorithm.

    Science.gov (United States)

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  15. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists.

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.

  16. Deep unsupervised learning on a desktop PC: A primer for cognitive scientists

    Directory of Open Access Journals (Sweden)

    Alberto eTestolin

    2013-05-01

    Full Text Available Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programming parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low-cost graphic cards (GPUs without any specific programming effort, thanks to the use of high-level programming routines (available in MATLAB or Python. We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.

  17. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior. PMID:23653617

  18. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models.

    Science.gov (United States)

    Beltrame, Thomas; Amelard, Robert; Wong, Alexander; Hughson, Richard L

    2018-02-01

    sensors in unsupervised activities of daily living in combination with novel machine learning algorithms to investigate the aerobic system dynamics with the potential to contribute to models of functional health status and guide future individualized health care in the normal population.

  19. Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning.

    Science.gov (United States)

    Sadeghi, Zahra; Testolin, Alberto

    2017-08-01

    In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.

  20. Spike sorting based upon machine learning algorithms (SOMA).

    Science.gov (United States)

    Horton, P M; Nicol, A U; Kendrick, K M; Feng, J F

    2007-02-15

    We have developed a spike sorting method, using a combination of various machine learning algorithms, to analyse electrophysiological data and automatically determine the number of sampled neurons from an individual electrode, and discriminate their activities. We discuss extensions to a standard unsupervised learning algorithm (Kohonen), as using a simple application of this technique would only identify a known number of clusters. Our extra techniques automatically identify the number of clusters within the dataset, and their sizes, thereby reducing the chance of misclassification. We also discuss a new pre-processing technique, which transforms the data into a higher dimensional feature space revealing separable clusters. Using principal component analysis (PCA) alone may not achieve this. Our new approach appends the features acquired using PCA with features describing the geometric shapes that constitute a spike waveform. To validate our new spike sorting approach, we have applied it to multi-electrode array datasets acquired from the rat olfactory bulb, and from the sheep infero-temporal cortex, and using simulated data. The SOMA sofware is available at http://www.sussex.ac.uk/Users/pmh20/spikes.

  1. Estimating extinction using unsupervised machine learning

    Science.gov (United States)

    Meingast, Stefan; Lombardi, Marco; Alves, João

    2017-05-01

    Dust extinction is the most robust tracer of the gas distribution in the interstellar medium, but measuring extinction is limited by the systematic uncertainties involved in estimating the intrinsic colors to background stars. In this paper we present a new technique, Pnicer, that estimates intrinsic colors and extinction for individual stars using unsupervised machine learning algorithms. This new method aims to be free from any priors with respect to the column density and intrinsic color distribution. It is applicable to any combination of parameters and works in arbitrary numbers of dimensions. Furthermore, it is not restricted to color space. Extinction toward single sources is determined by fitting Gaussian mixture models along the extinction vector to (extinction-free) control field observations. In this way it becomes possible to describe the extinction for observed sources with probability densities, rather than a single value. Pnicer effectively eliminates known biases found in similar methods and outperforms them in cases of deep observational data where the number of background galaxies is significant, or when a large number of parameters is used to break degeneracies in the intrinsic color distributions. This new method remains computationally competitive, making it possible to correctly de-redden millions of sources within a matter of seconds. With the ever-increasing number of large-scale high-sensitivity imaging surveys, Pnicer offers a fast and reliable way to efficiently calculate extinction for arbitrary parameter combinations without prior information on source characteristics. The Pnicer software package also offers access to the well-established Nicer technique in a simple unified interface and is capable of building extinction maps including the Nicest correction for cloud substructure. Pnicer is offered to the community as an open-source software solution and is entirely written in Python.

  2. Unsupervised Feature Learning for Heart Sounds Classification Using Autoencoder

    Science.gov (United States)

    Hu, Wei; Lv, Jiancheng; Liu, Dongbo; Chen, Yao

    2018-04-01

    Cardiovascular disease seriously threatens the health of many people. It is usually diagnosed during cardiac auscultation, which is a fast and efficient method of cardiovascular disease diagnosis. In recent years, deep learning approach using unsupervised learning has made significant breakthroughs in many fields. However, to our knowledge, deep learning has not yet been used for heart sound classification. In this paper, we first use the average Shannon energy to extract the envelope of the heart sounds, then find the highest point of S1 to extract the cardiac cycle. We convert the time-domain signals of the cardiac cycle into spectrograms and apply principal component analysis whitening to reduce the dimensionality of the spectrogram. Finally, we apply a two-layer autoencoder to extract the features of the spectrogram. The experimental results demonstrate that the features from the autoencoder are suitable for heart sound classification.

  3. Sparse alignment for robust tensor learning.

    Science.gov (United States)

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming

    2014-10-01

    Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.

  4. Unsupervised learning of binary vectors: A Gaussian scenario

    International Nuclear Information System (INIS)

    Copelli, Mauro; Van den Broeck, Christian

    2000-01-01

    We study a model of unsupervised learning where the real-valued data vectors are isotropically distributed, except for a single symmetry-breaking binary direction B(set-membership sign){-1,+1} N , onto which the projections have a Gaussian distribution. We show that a candidate vector J undergoing Gibbs learning in this discrete space, approaches the perfect match J=B exponentially. In addition to the second-order ''retarded learning'' phase transition for unbiased distributions, we show that first-order transitions can also occur. Extending the known result that the center of mass of the Gibbs ensemble has Bayes-optimal performance, we show that taking the sign of the components of this vector (clipping) leads to the vector with optimal performance in the binary space. These upper bounds are shown generally not to be saturated with the technique of transforming the components of a special continuous vector, except in asymptotic limits and in a special linear case. Simulations are presented which are in excellent agreement with the theoretical results. (c) 2000 The American Physical Society

  5. Unsupervised machine learning account of magnetic transitions in the Hubbard model

    Science.gov (United States)

    Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan

    2018-01-01

    We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.

  6. An Unsupervised Algorithm for Change Detection in Hyperspectral Remote Sensing Data Using Synthetically Fused Images and Derivative Spectral Profiles

    Directory of Open Access Journals (Sweden)

    Youkyung Han

    2017-01-01

    Full Text Available Multitemporal hyperspectral remote sensing data have the potential to detect altered areas on the earth’s surface. However, dissimilar radiometric and geometric properties between the multitemporal data due to the acquisition time or position of the sensors should be resolved to enable hyperspectral imagery for detecting changes in natural and human-impacted areas. In addition, data noise in the hyperspectral imagery spectrum decreases the change-detection accuracy when general change-detection algorithms are applied to hyperspectral images. To address these problems, we present an unsupervised change-detection algorithm based on statistical analyses of spectral profiles; the profiles are generated from a synthetic image fusion method for multitemporal hyperspectral images. This method aims to minimize the noise between the spectra corresponding to the locations of identical positions by increasing the change-detection rate and decreasing the false-alarm rate without reducing the dimensionality of the original hyperspectral data. Using a quantitative comparison of an actual dataset acquired by airborne hyperspectral sensors, we demonstrate that the proposed method provides superb change-detection results relative to the state-of-the-art unsupervised change-detection algorithms.

  7. Multispectral and Panchromatic used Enhancement Resolution and Study Effective Enhancement on Supervised and Unsupervised Classification Land – Cover

    Science.gov (United States)

    Salman, S. S.; Abbas, W. A.

    2018-05-01

    The goal of the study is to support analysis Enhancement of Resolution and study effect on classification methods on bands spectral information of specific and quantitative approaches. In this study introduce a method to enhancement resolution Landsat 8 of combining the bands spectral of 30 meters resolution with panchromatic band 8 of 15 meters resolution, because of importance multispectral imagery to extracting land - cover. Classification methods used in this study to classify several lands -covers recorded from OLI- 8 imagery. Two methods of Data mining can be classified as either supervised or unsupervised. In supervised methods, there is a particular predefined target, that means the algorithm learn which values of the target are associated with which values of the predictor sample. K-nearest neighbors and maximum likelihood algorithms examine in this work as supervised methods. In other hand, no sample identified as target in unsupervised methods, the algorithm of data extraction searches for structure and patterns between all the variables, represented by Fuzzy C-mean clustering method as one of the unsupervised methods, NDVI vegetation index used to compare the results of classification method, the percent of dense vegetation in maximum likelihood method give a best results.

  8. Dimensionality reduction with unsupervised nearest neighbors

    CERN Document Server

    Kramer, Oliver

    2013-01-01

    This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustr...

  9. Modeling Language and Cognition with Deep Unsupervised Learning:A Tutorial Overview

    OpenAIRE

    Marco eZorzi; Marco eZorzi; Alberto eTestolin; Ivilin Peev Stoianov; Ivilin Peev Stoianov

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cog...

  10. Modeling language and cognition with deep unsupervised learning: a tutorial overview

    OpenAIRE

    Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P.

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cog...

  11. Spectrum Hole Identification in IEEE 802.22 WRAN using Unsupervised Learning

    Directory of Open Access Journals (Sweden)

    V. Balaji

    2016-01-01

    Full Text Available In this paper we present a Cooperative Spectrum Sensing (CSS algorithm for Cognitive Radios (CR based on IEEE 802.22Wireless Regional Area Network (WRAN standard. The core objective is to improve cooperative sensing efficiency which specifies how fast a decision can be reached in each round of cooperation (iteration to sense an appropriate number of channels/bands (i.e. 86 channels of 7MHz bandwidth as per IEEE 802.22 within a time constraint (channel sensing time. To meet this objective, we have developed CSS algorithm using unsupervised K-means clustering classification approach. The received energy level of each Secondary User (SU is considered as the parameter for determining channel availability. The performance of proposed algorithm is quantified in terms of detection accuracy, training and classification delay time. Further, the detection accuracy of our proposed scheme meets the requirement of IEEE 802.22 WRAN with the target probability of falsealrm as 0.1. All the simulations are carried out using Matlab tool.

  12. An Improved Unsupervised Modeling Methodology For Detecting Fraud In Vendor Payment Transactions

    National Research Council Canada - National Science Library

    Rouillard, Gregory

    2003-01-01

    ...) vendor payment transactions through Unsupervised Modeling (cluster analysis) . Clementine Data Mining software is used to construct unsupervised models of vendor payment data using the K-Means, Two Step, and Kohonen algorithms...

  13. Machine Learning for Neuroimaging with Scikit-Learn

    Directory of Open Access Journals (Sweden)

    Alexandre eAbraham

    2014-02-01

    Full Text Available Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  14. Machine learning for neuroimaging with scikit-learn.

    Science.gov (United States)

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  15. A new hybrid imperialist competitive algorithm on data clustering

    Indian Academy of Sciences (India)

    Modified imperialist competitive algorithm; simulated annealing; ... Clustering is one of the unsupervised learning branches where a set of patterns, usually vectors ..... machine classification is based on design, operation, and/or purpose.

  16. Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction.

    Science.gov (United States)

    Nie, Feiping; Xu, Dong; Tsang, Ivor Wai-Hung; Zhang, Changshui

    2010-07-01

    We propose a unified manifold learning framework for semi-supervised and unsupervised dimension reduction by employing a simple but effective linear regression function to map the new data points. For semi-supervised dimension reduction, we aim to find the optimal prediction labels F for all the training samples X, the linear regression function h(X) and the regression residue F(0) = F - h(X) simultaneously. Our new objective function integrates two terms related to label fitness and manifold smoothness as well as a flexible penalty term defined on the residue F(0). Our Semi-Supervised learning framework, referred to as flexible manifold embedding (FME), can effectively utilize label information from labeled data as well as a manifold structure from both labeled and unlabeled data. By modeling the mismatch between h(X) and F, we show that FME relaxes the hard linear constraint F = h(X) in manifold regularization (MR), making it better cope with the data sampled from a nonlinear manifold. In addition, we propose a simplified version (referred to as FME/U) for unsupervised dimension reduction. We also show that our proposed framework provides a unified view to explain and understand many semi-supervised, supervised and unsupervised dimension reduction techniques. Comprehensive experiments on several benchmark databases demonstrate the significant improvement over existing dimension reduction algorithms.

  17. CHISSL: A Human-Machine Collaboration Space for Unsupervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Dustin L.; Komurlu, Caner; Blaha, Leslie M.

    2017-07-14

    We developed CHISSL, a human-machine interface that utilizes supervised machine learning in an unsupervised context to help the user group unlabeled instances by her own mental model. The user primarily interacts via correction (moving a misplaced instance into its correct group) or confirmation (accepting that an instance is placed in its correct group). Concurrent with the user's interactions, CHISSL trains a classification model guided by the user's grouping of the data. It then predicts the group of unlabeled instances and arranges some of these alongside the instances manually organized by the user. We hypothesize that this mode of human and machine collaboration is more effective than Active Learning, wherein the machine decides for itself which instances should be labeled by the user. We found supporting evidence for this hypothesis in a pilot study where we applied CHISSL to organize a collection of handwritten digits.

  18. Behavioral Modeling for Mental Health using Machine Learning Algorithms.

    Science.gov (United States)

    Srividya, M; Mohanavalli, S; Bhalaji, N

    2018-04-03

    Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.

  19. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Directory of Open Access Journals (Sweden)

    Yoonsik Shim

    2016-10-01

    Full Text Available We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP. The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  20. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Science.gov (United States)

    Shim, Yoonsik; Philippides, Andrew; Staras, Kevin; Husbands, Phil

    2016-10-01

    We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  1. Complex scenes and situations visualization in hierarchical learning algorithm with dynamic 3D NeoAxis engine

    Science.gov (United States)

    Graham, James; Ternovskiy, Igor V.

    2013-06-01

    We applied a two stage unsupervised hierarchical learning system to model complex dynamic surveillance and cyber space monitoring systems using a non-commercial version of the NeoAxis visualization software. The hierarchical scene learning and recognition approach is based on hierarchical expectation maximization, and was linked to a 3D graphics engine for validation of learning and classification results and understanding the human - autonomous system relationship. Scene recognition is performed by taking synthetically generated data and feeding it to a dynamic logic algorithm. The algorithm performs hierarchical recognition of the scene by first examining the features of the objects to determine which objects are present, and then determines the scene based on the objects present. This paper presents a framework within which low level data linked to higher-level visualization can provide support to a human operator and be evaluated in a detailed and systematic way.

  2. Unsupervised Learning of Word-Sequence Representations from Scratch via Convolutional Tensor Decomposition

    OpenAIRE

    Huang, Furong; Anandkumar, Animashree

    2016-01-01

    Unsupervised text embeddings extraction is crucial for text understanding in machine learning. Word2Vec and its variants have received substantial success in mapping words with similar syntactic or semantic meaning to vectors close to each other. However, extracting context-aware word-sequence embedding remains a challenging task. Training over large corpus is difficult as labels are difficult to get. More importantly, it is challenging for pre-trained models to obtain word-...

  3. A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Kamronn, Simon Due; Paquet, Ulrich

    2017-01-01

    This paper takes a step towards temporal reasoning in a dynamically changing video, not in the pixel space that constitutes its frames, but in a latent space that describes the non-linear dynamics of the objects in its world. We introduce the Kalman variational auto-encoder, a framework...... for unsupervised learning of sequential data that disentangles two latent representations: an object’s representation, coming from a recognition model, and a latent state describing its dynamics. As a result, the evolution of the world can be imagined and missing data imputed, both without the need to generate...

  4. Modeling language and cognition with deep unsupervised learning: a tutorial overview.

    Science.gov (United States)

    Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981) is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative) learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as a way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition.

  5. Modeling Language and Cognition with Deep Unsupervised Learning:A Tutorial Overview

    Directory of Open Access Journals (Sweden)

    Marco eZorzi

    2013-08-01

    Full Text Available Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981 is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition.

  6. Modeling language and cognition with deep unsupervised learning: a tutorial overview

    Science.gov (United States)

    Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P.

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981) is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative) learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as a way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition. PMID:23970869

  7. Graph-based unsupervised segmentation algorithm for cultured neuronal networks' structure characterization and modeling.

    Science.gov (United States)

    de Santos-Sierra, Daniel; Sendiña-Nadal, Irene; Leyva, Inmaculada; Almendral, Juan A; Ayali, Amir; Anava, Sarit; Sánchez-Ávila, Carmen; Boccaletti, Stefano

    2015-06-01

    Large scale phase-contrast images taken at high resolution through the life of a cultured neuronal network are analyzed by a graph-based unsupervised segmentation algorithm with a very low computational cost, scaling linearly with the image size. The processing automatically retrieves the whole network structure, an object whose mathematical representation is a matrix in which nodes are identified neurons or neurons' clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our non invasive measures entitle us to perform a longitudinal analysis during the maturation of a single culture. Such an analysis furnishes the way of individuating the main physical processes underlying the self-organization of the neurons' ensemble into a complex network, and drives the formulation of a phenomenological model yet able to describe qualitatively the overall scenario observed during the culture growth. © 2014 International Society for Advancement of Cytometry.

  8. Time series classification using k-Nearest neighbours, Multilayer Perceptron and Learning Vector Quantization algorithms

    Directory of Open Access Journals (Sweden)

    Jiří Fejfar

    2012-01-01

    Full Text Available We are presenting results comparison of three artificial intelligence algorithms in a classification of time series derived from musical excerpts in this paper. Algorithms were chosen to represent different principles of classification – statistic approach, neural networks and competitive learning. The first algorithm is a classical k-Nearest neighbours algorithm, the second algorithm is Multilayer Perceptron (MPL, an example of artificial neural network and the third one is a Learning Vector Quantization (LVQ algorithm representing supervised counterpart to unsupervised Self Organizing Map (SOM.After our own former experiments with unlabelled data we moved forward to the data labels utilization, which generally led to a better accuracy of classification results. As we need huge data set of labelled time series (a priori knowledge of correct class which each time series instance belongs to, we used, with a good experience in former studies, musical excerpts as a source of real-world time series. We are using standard deviation of the sound signal as a descriptor of a musical excerpts volume level.We are describing principle of each algorithm as well as its implementation briefly, giving links for further research. Classification results of each algorithm are presented in a confusion matrix showing numbers of misclassifications and allowing to evaluate overall accuracy of the algorithm. Results are compared and particular misclassifications are discussed for each algorithm. Finally the best solution is chosen and further research goals are given.

  9. Semi-supervised prediction of gene regulatory networks using machine learning algorithms.

    Science.gov (United States)

    Patel, Nihir; Wang, Jason T L

    2015-10-01

    Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.

  10. Factored Translation with Unsupervised Word Clusters

    DEFF Research Database (Denmark)

    Rishøj, Christian; Søgaard, Anders

    2011-01-01

    Unsupervised word clustering algorithms — which form word clusters based on a measure of distributional similarity — have proven to be useful in providing beneficial features for various natural language processing tasks involving supervised learning. This work explores the utility of such word...... clusters as factors in statistical machine translation. Although some of the language pairs in this work clearly benefit from the factor augmentation, there is no consistent improvement in translation accuracy across the board. For all language pairs, the word clusters clearly improve translation for some...... proportion of the sentences in the test set, but has a weak or even detrimental effect on the rest. It is shown that if one could determine whether or not to use a factor when translating a given sentence, rather substantial improvements in precision could be achieved for all of the language pairs evaluated...

  11. A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction

    Science.gov (United States)

    Benvenuto, Federico; Piana, Michele; Campi, Cristina; Massone, Anna Maria

    2018-01-01

    This paper introduces a novel method for flare forecasting, combining prediction accuracy with the ability to identify the most relevant predictive variables. This result is obtained by means of a two-step approach: first, a supervised regularization method for regression, namely, LASSO is applied, where a sparsity-enhancing penalty term allows the identification of the significance with which each data feature contributes to the prediction; then, an unsupervised fuzzy clustering technique for classification, namely, Fuzzy C-Means, is applied, where the regression outcome is partitioned through the minimization of a cost function and without focusing on the optimization of a specific skill score. This approach is therefore hybrid, since it combines supervised and unsupervised learning; realizes classification in an automatic, skill-score-independent way; and provides effective prediction performances even in the case of imbalanced data sets. Its prediction power is verified against NOAA Space Weather Prediction Center data, using as a test set, data in the range between 1996 August and 2010 December and as training set, data in the range between 1988 December and 1996 June. To validate the method, we computed several skill scores typically utilized in flare prediction and compared the values provided by the hybrid approach with the ones provided by several standard (non-hybrid) machine learning methods. The results showed that the hybrid approach performs classification better than all other supervised methods and with an effectiveness comparable to the one of clustering methods; but, in addition, it provides a reliable ranking of the weights with which the data properties contribute to the forecast.

  12. An Introduction to Topic Modeling as an Unsupervised Machine Learning Way to Organize Text Information

    Science.gov (United States)

    Snyder, Robin M.

    2015-01-01

    The field of topic modeling has become increasingly important over the past few years. Topic modeling is an unsupervised machine learning way to organize text (or image or DNA, etc.) information such that related pieces of text can be identified. This paper/session will present/discuss the current state of topic modeling, why it is important, and…

  13. Scikit-learn: Machine Learning in Python

    OpenAIRE

    Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Grisel, Olivier; Blondel, Mathieu; Prettenhofer, Peter; Weiss, Ron; Dubourg, Vincent; Vanderplas, Jake; Passos, Alexandre; Cournapeau, David; Brucher, Matthieu; Perrot, Matthieu

    2011-01-01

    International audience; Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic ...

  14. Scikit-learn: Machine Learning in Python

    OpenAIRE

    Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Grisel, Olivier; Blondel, Mathieu; Louppe, Gilles; Prettenhofer, Peter; Weiss, Ron; Dubourg, Vincent; Vanderplas, Jake; Passos, Alexandre; Cournapeau, David; Brucher, Matthieu

    2012-01-01

    Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings....

  15. An Unsupervised Method of Change Detection in Multi-Temporal PolSAR Data Using a Test Statistic and an Improved K&I Algorithm

    Directory of Open Access Journals (Sweden)

    Jinqi Zhao

    2017-12-01

    Full Text Available In recent years, multi-temporal imagery from spaceborne sensors has provided a fast and practical means for surveying and assessing changes in terrain surfaces. Owing to the all-weather imaging capability, polarimetric synthetic aperture radar (PolSAR has become a key tool for change detection. Change detection methods include both unsupervised and supervised methods. Supervised change detection, which needs some human intervention, is generally ineffective and impractical. Due to this limitation, unsupervised methods are widely used in change detection. The traditional unsupervised methods only use a part of the polarization information, and the required thresholding algorithms are independent of the multi-temporal data, which results in the change detection map being ineffective and inaccurate. To solve these problems, a novel method of change detection using a test statistic based on the likelihood ratio test and the improved Kittler and Illingworth (K&I minimum-error thresholding algorithm is introduced in this paper. The test statistic is used to generate the comparison image (CI of the multi-temporal PolSAR images, and improved K&I using a generalized Gaussian model simulates the distribution of the CI. As a result of these advantages, we can obtain the change detection map using an optimum threshold. The efficiency of the proposed method is demonstrated by the use of multi-temporal PolSAR images acquired by RADARSAT-2 over Wuhan, China. The experimental results show that the proposed method is effective and highly accurate.

  16. Resting-state fMRI activity predicts unsupervised learning and memory in an immersive virtual reality environment.

    Directory of Open Access Journals (Sweden)

    Chi Wah Wong

    Full Text Available In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study, we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations of some of the objects were changed, and object location recall performance was assessed and found to vary across subjects. As prior work had shown that functional magnetic resonance imaging (fMRI measures of resting-state brain activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI measures could be used to predict object location recall performance. We found a significant correlation between performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus, insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia's role in exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial processing may be critical for learning in a complex environment.

  17. Classification of behavior using unsupervised temporal neural networks

    International Nuclear Information System (INIS)

    Adair, K.L.

    1998-03-01

    Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem

  18. TF.Learn: TensorFlow's High-level Module for Distributed Machine Learning

    OpenAIRE

    Tang, Yuan

    2016-01-01

    TF.Learn is a high-level Python module for distributed machine learning inside TensorFlow. It provides an easy-to-use Scikit-learn style interface to simplify the process of creating, configuring, training, evaluating, and experimenting a machine learning model. TF.Learn integrates a wide range of state-of-art machine learning algorithms built on top of TensorFlow's low level APIs for small to large-scale supervised and unsupervised problems. This module focuses on bringing machine learning t...

  19. Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning

    Science.gov (United States)

    Doran, G.

    2013-01-01

    In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.

  20. Artificial immune kernel clustering network for unsupervised image segmentation

    Institute of Scientific and Technical Information of China (English)

    Wenlong Huang; Licheng Jiao

    2008-01-01

    An immune kernel clustering network (IKCN) is proposed based on the combination of the artificial immune network and the support vector domain description (SVDD) for the unsupervised image segmentation. In the network, a new antibody neighborhood and an adaptive learning coefficient, which is inspired by the long-term memory in cerebral cortices are presented. Starting from IKCN algorithm, we divide the image feature sets into subsets by the antibodies, and then map each subset into a high dimensional feature space by a mercer kernel, where each antibody neighborhood is represented as a support vector hypersphere. The clustering results of the local support vector hyperspheres are combined to yield a global clustering solution by the minimal spanning tree (MST), where a predefined number of clustering is not needed. We compare the proposed methods with two common clustering algorithms for the artificial synthetic data set and several image data sets, including the synthetic texture images and the SAR images, and encouraging experimental results are obtained.

  1. Application of unsupervised learning methods in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Koevesarki, Peter; Nuncio Quiroz, Adriana Elizabeth; Brock, Ian C. [Physikalisches Institut, Universitaet Bonn, Bonn (Germany)

    2011-07-01

    High energy physics is a home for a variety of multivariate techniques, mainly due to the fundamentally probabilistic behaviour of nature. These methods generally require training based on some theory, in order to discriminate a known signal from a background. Nevertheless, new physics can show itself in ways that previously no one thought about, and in these cases conventional methods give little or no help. A possible way to discriminate between known processes (like vector bosons or top-quark production) or look for new physics is using unsupervised machine learning to extract the features of the data. A technique was developed, based on the combination of neural networks and the method of principal curves, to find a parametrisation of the non-linear correlations of the data. The feasibility of the method is shown on ATLAS data.

  2. Clustervision: Visual Supervision of Unsupervised Clustering.

    Science.gov (United States)

    Kwon, Bum Chul; Eysenbach, Ben; Verma, Janu; Ng, Kenney; De Filippi, Christopher; Stewart, Walter F; Perer, Adam

    2018-01-01

    Clustering, the process of grouping together similar items into distinct partitions, is a common type of unsupervised machine learning that can be useful for summarizing and aggregating complex multi-dimensional data. However, data can be clustered in many ways, and there exist a large body of algorithms designed to reveal different patterns. While having access to a wide variety of algorithms is helpful, in practice, it is quite difficult for data scientists to choose and parameterize algorithms to get the clustering results relevant for their dataset and analytical tasks. To alleviate this problem, we built Clustervision, a visual analytics tool that helps ensure data scientists find the right clustering among the large amount of techniques and parameters available. Our system clusters data using a variety of clustering techniques and parameters and then ranks clustering results utilizing five quality metrics. In addition, users can guide the system to produce more relevant results by providing task-relevant constraints on the data. Our visual user interface allows users to find high quality clustering results, explore the clusters using several coordinated visualization techniques, and select the cluster result that best suits their task. We demonstrate this novel approach using a case study with a team of researchers in the medical domain and showcase that our system empowers users to choose an effective representation of their complex data.

  3. Supervised versus unsupervised categorization: two sides of the same coin?

    Science.gov (United States)

    Pothos, Emmanuel M; Edwards, Darren J; Perlman, Amotz

    2011-09-01

    Supervised and unsupervised categorization have been studied in separate research traditions. A handful of studies have attempted to explore a possible convergence between the two. The present research builds on these studies, by comparing the unsupervised categorization results of Pothos et al. ( 2011 ; Pothos et al., 2008 ) with the results from two procedures of supervised categorization. In two experiments, we tested 375 participants with nine different stimulus sets and examined the relation between ease of learning of a classification, memory for a classification, and spontaneous preference for a classification. After taking into account the role of the number of category labels (clusters) in supervised learning, we found the three variables to be closely associated with each other. Our results provide encouragement for researchers seeking unified theoretical explanations for supervised and unsupervised categorization, but raise a range of challenging theoretical questions.

  4. Empirical Studies On Machine Learning Based Text Classification Algorithms

    OpenAIRE

    Shweta C. Dharmadhikari; Maya Ingle; Parag Kulkarni

    2011-01-01

    Automatic classification of text documents has become an important research issue now days. Properclassification of text documents requires information retrieval, machine learning and Natural languageprocessing (NLP) techniques. Our aim is to focus on important approaches to automatic textclassification based on machine learning techniques viz. supervised, unsupervised and semi supervised.In this paper we present a review of various text classification approaches under machine learningparadig...

  5. An unsupervised learning algorithm: application to the discrimination of seismic events and quarry blasts in the vicinity of Istanbul

    Directory of Open Access Journals (Sweden)

    H. S. Kuyuk

    2011-01-01

    Full Text Available The results of the application of an unsupervised learning (neural network approach comprising a Self Organizing Map (SOM, to distinguish micro-earthquakes from quarry blasts in the vicinity of Istanbul, Turkey, are presented and discussed. The SOM is constructed as a neural classifier and complementary reliability estimator to distinguish seismic events, and was employed for varying map sizes. Input parameters consisting of frequency and time domain data (complexity, spectral ratio, S/P wave amplitude peak ratio and origin time of events extracted from the vertical components of digital seismograms were estimated as discriminants for 179 (1.8 < Md < 3.0 local events. The results show that complexity and amplitude peak ratio parameters of the observed velocity seismogram may suffice for a reliable discrimination, while origin time and spectral ratio were found to be fuzzy and misleading classifiers for this problem. The SOM discussed here achieved a discrimination reliability that could be employed routinely in observatory practice; however, about 6% of all events were classified as ambiguous cases. This approach was developed independently for this particular classification, but it could be applied to different earthquake regions.

  6. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline.

    Science.gov (United States)

    Zhang, Jie; Li, Qingyang; Caselli, Richard J; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2017-06-01

    Alzheimer's Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms.

  7. Information-theoretic semi-supervised metric learning via entropy regularization.

    Science.gov (United States)

    Niu, Gang; Dai, Bo; Yamada, Makoto; Sugiyama, Masashi

    2014-08-01

    We propose a general information-theoretic approach to semi-supervised metric learning called SERAPH (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled data and minimize its entropy on unlabeled data following entropy regularization. For metric learning, entropy regularization improves manifold regularization by considering the dissimilarity information of unlabeled data in the unsupervised part, and hence it allows the supervised and unsupervised parts to be integrated in a natural and meaningful way. Moreover, we regularize SERAPH by trace-norm regularization to encourage low-dimensional projections associated with the distance metric. The nonconvex optimization problem of SERAPH could be solved efficiently and stably by either a gradient projection algorithm or an EM-like iterative algorithm whose M-step is convex. Experiments demonstrate that SERAPH compares favorably with many well-known metric learning methods, and the learned Mahalanobis distance possesses high discriminability even under noisy environments.

  8. Unsupervised Object Modeling and Segmentation with Symmetry Detection for Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Jui-Yuan Su

    2015-04-01

    Full Text Available In this paper we present a novel unsupervised approach to detecting and segmenting objects as well as their constituent symmetric parts in an image. Traditional unsupervised image segmentation is limited by two obvious deficiencies: the object detection accuracy degrades with the misaligned boundaries between the segmented regions and the target, and pre-learned models are required to group regions into meaningful objects. To tackle these difficulties, the proposed approach aims at incorporating the pair-wise detection of symmetric patches to achieve the goal of segmenting images into symmetric parts. The skeletons of these symmetric parts then provide estimates of the bounding boxes to locate the target objects. Finally, for each detected object, the graphcut-based segmentation algorithm is applied to find its contour. The proposed approach has significant advantages: no a priori object models are used, and multiple objects are detected. To verify the effectiveness of the approach based on the cues that a face part contains an oval shape and skin colors, human objects are extracted from among the detected objects. The detected human objects and their parts are finally tracked across video frames to capture the object part movements for learning the human activity models from video clips. Experimental results show that the proposed method gives good performance on publicly available datasets.

  9. Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM synapses

    Directory of Open Access Journals (Sweden)

    Stefano eAmbrogio

    2016-03-01

    Full Text Available We present a novel one-transistor/one-resistor (1T1R synapse for neuromorphic networks, based on phase change memory (PCM technology. The synapse is capable of spike-timing dependent plasticity (STDP, where gradual potentiation relies on set transition, namely crystallization, in the PCM, while depression is achieved via reset or amorphization of a chalcogenide active volume. STDP characteristics are demonstrated by experiments under variable initial conditions and number of pulses. Finally, we support the applicability of the 1T1R synapse for learning and recognition of visual patterns by simulations of fully connected neuromorphic networks with 2 or 3 layers with high recognition efficiency. The proposed scheme provides a feasible low-power solution for on-line unsupervised machine learning in smart reconfigurable sensors.

  10. Surface mapping via unsupervised classification of remote sensing: application to MESSENGER/MASCS and DAWN/VIRS data.

    Science.gov (United States)

    D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.

    2017-12-01

    Machine-learning achieved unprecedented results in high-dimensional data processing tasks with wide applications in various fields. Due to the growing number of complex nonlinear systems that have to be investigated in science and the bare raw size of data nowadays available, ML offers the unique ability to extract knowledge, regardless the specific application field. Examples are image segmentation, supervised/unsupervised/ semi-supervised classification, feature extraction, data dimensionality analysis/reduction.The MASCS instrument has mapped Mercury surface in the 400-1145 nm wavelength range during orbital observations by the MESSENGER spacecraft. We have conducted k-means unsupervised hierarchical clustering to identify and characterize spectral units from MASCS observations. The results display a dichotomy: a polar and equatorial units, possibly linked to compositional differences or weathering due to irradiation. To explore possible relations between composition and spectral behavior, we have compared the spectral provinces with elemental abundance maps derived from MESSENGER's X-Ray Spectrometer (XRS).For the Vesta application on DAWN Visible and infrared spectrometer (VIR) data, we explored several Machine Learning techniques: image segmentation method, stream algorithm and hierarchical clustering.The algorithm successfully separates the Olivine outcrops around two craters on Vesta's surface [1]. New maps summarizing the spectral and chemical signature of the surface could be automatically produced.We conclude that instead of hand digging in data, scientist could choose a subset of algorithms with well known feature (i.e. efficacy on the particular problem, speed, accuracy) and focus their effort in understanding what important characteristic of the groups found in the data mean. [1] E Ammannito et al. "Olivine in an unexpected location on Vesta's surface". In: Nature 504.7478 (2013), pp. 122-125.

  11. An unsupervised text mining method for relation extraction from biomedical literature.

    Directory of Open Access Journals (Sweden)

    Changqin Quan

    Full Text Available The wealth of interaction information provided in biomedical articles motivated the implementation of text mining approaches to automatically extract biomedical relations. This paper presents an unsupervised method based on pattern clustering and sentence parsing to deal with biomedical relation extraction. Pattern clustering algorithm is based on Polynomial Kernel method, which identifies interaction words from unlabeled data; these interaction words are then used in relation extraction between entity pairs. Dependency parsing and phrase structure parsing are combined for relation extraction. Based on the semi-supervised KNN algorithm, we extend the proposed unsupervised approach to a semi-supervised approach by combining pattern clustering, dependency parsing and phrase structure parsing rules. We evaluated the approaches on two different tasks: (1 Protein-protein interactions extraction, and (2 Gene-suicide association extraction. The evaluation of task (1 on the benchmark dataset (AImed corpus showed that our proposed unsupervised approach outperformed three supervised methods. The three supervised methods are rule based, SVM based, and Kernel based separately. The proposed semi-supervised approach is superior to the existing semi-supervised methods. The evaluation on gene-suicide association extraction on a smaller dataset from Genetic Association Database and a larger dataset from publicly available PubMed showed that the proposed unsupervised and semi-supervised methods achieved much higher F-scores than co-occurrence based method.

  12. Performance Analysis of Unsupervised Clustering Methods for Brain Tumor Segmentation

    Directory of Open Access Journals (Sweden)

    Tushar H Jaware

    2013-10-01

    Full Text Available Medical image processing is the most challenging and emerging field of neuroscience. The ultimate goal of medical image analysis in brain MRI is to extract important clinical features that would improve methods of diagnosis & treatment of disease. This paper focuses on methods to detect & extract brain tumour from brain MR images. MATLAB is used to design, software tool for locating brain tumor, based on unsupervised clustering methods. K-Means clustering algorithm is implemented & tested on data base of 30 images. Performance evolution of unsupervised clusteringmethods is presented.

  13. An Unsupervised Opinion Mining Approach for Japanese Weblog Reputation Information Using an Improved SO-PMI Algorithm

    Science.gov (United States)

    Wang, Guangwei; Araki, Kenji

    In this paper, we propose an improved SO-PMI (Semantic Orientation Using Pointwise Mutual Information) algorithm, for use in Japanese Weblog Opinion Mining. SO-PMI is an unsupervised approach proposed by Turney that has been shown to work well for English. When this algorithm was translated into Japanese naively, most phrases, whether positive or negative in meaning, received a negative SO. For dealing with this slanting phenomenon, we propose three improvements: to expand the reference words to sets of words, to introduce a balancing factor and to detect neutral expressions. In our experiments, the proposed improvements obtained a well-balanced result: both positive and negative accuracy exceeded 62%, when evaluated on 1,200 opinion sentences sampled from three different domains (reviews of Electronic Products, Cars and Travels from Kakaku. com). In a comparative experiment on the same corpus, a supervised approach (SA-Demo) achieved a very similar accuracy to our method. This shows that our proposed approach effectively adapted SO-PMI for Japanese, and it also shows the generality of SO-PMI.

  14. Recent progresses of neural network unsupervised learning: I. Independent component analyses generalizing PCA

    Science.gov (United States)

    Szu, Harold H.

    1999-03-01

    The early vision principle of redundancy reduction of 108 sensor excitations is understandable from computer vision viewpoint toward sparse edge maps. It is only recently derived using a truly unsupervised learning paradigm of artificial neural networks (ANN). In fact, the biological vision, Hubel- Wiesel edge maps, is reproduced seeking the underlying independent components analyses (ICA) among 102 image samples by maximizing the ANN output entropy (partial)H(V)/(partial)[W] equals (partial)[W]/(partial)t. When a pair of newborn eyes or ears meet the bustling and hustling world without supervision, they seek ICA by comparing 2 sensory measurements (x1(t), x2(t))T equalsV X(t). Assuming a linear and instantaneous mixture model of the external world X(t) equals [A] S(t), where both the mixing matrix ([A] equalsV [a1, a2] of ICA vectors and the source percentages (s1(t), s2(t))T equalsV S(t) are unknown, we seek the independent sources approximately equals [I] where the approximated sign indicates that higher order statistics (HOS) may not be trivial. Without a teacher, the ANN weight matrix [W] equalsV [w1, w2] adjusts the outputs V(t) equals tanh([W]X(t)) approximately equals [W]X(t) until no desired outputs except the (Gaussian) 'garbage' (neither YES '1' nor NO '-1' but at linear may-be range 'origin 0') defined by Gaussian covariance G equals [I] equals [W][A] the internal knowledge representation [W], as the inverse of the external world matrix [A]-1. To unify IC, PCA, ANN & HOS theories since 1991 (advanced by Jutten & Herault, Comon, Oja, Bell-Sejnowski, Amari-Cichocki, Cardoso), the LYAPONOV function L(v1,...,vn, w1,...wn,) equals E(v1,...,vn) - H(w1,...wn) is constructed as the HELMHOTZ free energy to prove both convergences of supervised energy E and unsupervised entropy H learning. Consequently, rather using the faithful but dumb computer: 'GARBAGE-IN, GARBAGE-OUT,' the smarter neurocomputer will be equipped with an unsupervised learning that extracts

  15. Unsupervised sub-categorization for object detection: fInding cars from a driving vehicle

    NARCIS (Netherlands)

    Wijnhoven, R.G.J.; With, de P.H.N.

    2011-01-01

    We present a novel algorithm for unsupervised subcategorization of an object class, in the context of object detection. Dividing the detection problem into smaller subproblems simplifies the object vs. background classification. The algorithm uses an iterative split-and-merge procedure and uses both

  16. CAPES: Unsupervised Storage Performance Tuning Using Neural Network-Based Deep Reinforcement Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Parameter tuning is an important task of storage performance optimization. Current practice usually involves numerous tweak-benchmark cycles that are slow and costly. To address this issue, we developed CAPES, a model-less deep reinforcement learning-based unsupervised parameter tuning system driven by a deep neural network (DNN). It is designed to nd the optimal values of tunable parameters in computer systems, from a simple client-server system to a large data center, where human tuning can be costly and often cannot achieve optimal performance. CAPES takes periodic measurements of a target computer system’s state, and trains a DNN which uses Q-learning to suggest changes to the system’s current parameter values. CAPES is minimally intrusive, and can be deployed into a production system to collect training data and suggest tuning actions during the system’s daily operation. Evaluation of a prototype on a Lustre system demonstrates an increase in I/O throughput up to 45% at saturation point. About the...

  17. Advanced Machine Learning for Classification, Regression, and Generation in Jet Physics

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    There is a deep connection between machine learning and jet physics - after all, jets are defined by unsupervised learning algorithms. Jet physics has been a driving force for studying modern machine learning in high energy physics. Domain specific challenges require new techniques to make full use of the algorithms. A key focus is on understanding how and what the algorithms learn. Modern machine learning techniques for jet physics are demonstrated for classification, regression, and generation. In addition to providing powerful baseline performance, we show how to train complex models directly on data and to generate sparse stacked images with non-uniform granularity.

  18. Algorithms for Reinforcement Learning

    CERN Document Server

    Szepesvari, Csaba

    2010-01-01

    Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'

  19. Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning.

    Science.gov (United States)

    Chen, Chien-Chang; Juan, Hung-Hui; Tsai, Meng-Yuan; Lu, Henry Horng-Shing

    2018-01-11

    By introducing the methods of machine learning into the density functional theory, we made a detour for the construction of the most probable density function, which can be estimated by learning relevant features from the system of interest. Using the properties of universal functional, the vital core of density functional theory, the most probable cluster numbers and the corresponding cluster boundaries in a studying system can be simultaneously and automatically determined and the plausibility is erected on the Hohenberg-Kohn theorems. For the method validation and pragmatic applications, interdisciplinary problems from physical to biological systems were enumerated. The amalgamation of uncharged atomic clusters validated the unsupervised searching process of the cluster numbers and the corresponding cluster boundaries were exhibited likewise. High accurate clustering results of the Fisher's iris dataset showed the feasibility and the flexibility of the proposed scheme. Brain tumor detections from low-dimensional magnetic resonance imaging datasets and segmentations of high-dimensional neural network imageries in the Brainbow system were also used to inspect the method practicality. The experimental results exhibit the successful connection between the physical theory and the machine learning methods and will benefit the clinical diagnoses.

  20. Risk assessment of atmospheric emissions using machine learning

    OpenAIRE

    Cervone, G.; Franzese, P.; Ezber, Y.; Boybeyi, Z.

    2008-01-01

    Supervised and unsupervised machine learning algorithms are used to perform statistical and logical analysis of several transport and dispersion model runs which simulate emissions from a fixed source under different atmospheric conditions.

    First, a clustering algorithm is used to automatically group the results of different transport and dispersion simulations according to specific cloud characteristics. Then, a symbolic classification algorithm is employed to find compl...

  1. Information-Based Approach to Unsupervised Machine Learning

    Science.gov (United States)

    2013-06-19

    samples with large fitting error. The above optimization problem can be reduced to a quadratic program (Mangasarian & Musicant , 2000), which can be...recognition. Technicheskaya Kibernetica, 3. in Russian. Mallows, C. L. (1973). Some comments on CP . Technometrics, 15, 661–675. Mangasarian, O. L., & Musicant ...to find correspondence between two sets of objects in different domains in an unsupervised way. Photo album summa- rization is a typical application

  2. Personalized search result diversification via structured learning

    NARCIS (Netherlands)

    Liang, S.; Ren, Z.; de Rijke, M.

    2014-01-01

    This paper is concerned with the problem of personalized diversification of search results, with the goal of enhancing the performance of both plain diversification and plain personalization algorithms. In previous work, the problem has mainly been tackled by means of unsupervised learning. To

  3. Implementing Machine Learning in Radiology Practice and Research.

    Science.gov (United States)

    Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond

    2017-04-01

    The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.

  4. Unsupervised information extraction by text segmentation

    CERN Document Server

    Cortez, Eli

    2013-01-01

    A new unsupervised approach to the problem of Information Extraction by Text Segmentation (IETS) is proposed, implemented and evaluated herein. The authors' approach relies on information available on pre-existing data to learn how to associate segments in the input string with attributes of a given domain relying on a very effective set of content-based features. The effectiveness of the content-based features is also exploited to directly learn from test data structure-based features, with no previous human-driven training, a feature unique to the presented approach. Based on the approach, a

  5. Unsupervised Symbolization of Signal Time Series for Extraction of the Embedded Information

    Directory of Open Access Journals (Sweden)

    Yue Li

    2017-03-01

    Full Text Available This paper formulates an unsupervised algorithm for symbolization of signal time series to capture the embedded dynamic behavior. The key idea is to convert time series of the digital signal into a string of (spatially discrete symbols from which the embedded dynamic information can be extracted in an unsupervised manner (i.e., no requirement for labeling of time series. The main challenges here are: (1 definition of the symbol assignment for the time series; (2 identification of the partitioning segment locations in the signal space of time series; and (3 construction of probabilistic finite-state automata (PFSA from the symbol strings that contain temporal patterns. The reported work addresses these challenges by maximizing the mutual information measures between symbol strings and PFSA states. The proposed symbolization method has been validated by numerical simulation as well as by experimentation in a laboratory environment. Performance of the proposed algorithm has been compared to that of two commonly used algorithms of time series partitioning.

  6. Machine Learning an algorithmic perspective

    CERN Document Server

    Marsland, Stephen

    2009-01-01

    Traditional books on machine learning can be divided into two groups - those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement le

  7. Cascade Error Projection Learning Algorithm

    Science.gov (United States)

    Duong, T. A.; Stubberud, A. R.; Daud, T.

    1995-01-01

    A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.

  8. Supervised and unsupervised condition monitoring of non-stationary acoustic emission signals

    DEFF Research Database (Denmark)

    Sigurdsson, Sigurdur; Pontoppidan, Niels Henrik; Larsen, Jan

    2005-01-01

    condition changes across load changes. In this paper we approach this load interpolation problem with supervised and unsupervised learning, i.e. model with normal and fault examples and normal examples only, respectively. We apply non-linear methods for the learning of engine condition changes. Both...

  9. A Constrained Algorithm Based NMFα for Image Representation

    Directory of Open Access Journals (Sweden)

    Chenxue Yang

    2014-01-01

    Full Text Available Nonnegative matrix factorization (NMF is a useful tool in learning a basic representation of image data. However, its performance and applicability in real scenarios are limited because of the lack of image information. In this paper, we propose a constrained matrix decomposition algorithm for image representation which contains parameters associated with the characteristics of image data sets. Particularly, we impose label information as additional hard constraints to the α-divergence-NMF unsupervised learning algorithm. The resulted algorithm is derived by using Karush-Kuhn-Tucker (KKT conditions as well as the projected gradient and its monotonic local convergence is proved by using auxiliary functions. In addition, we provide a method to select the parameters to our semisupervised matrix decomposition algorithm in the experiment. Compared with the state-of-the-art approaches, our method with the parameters has the best classification accuracy on three image data sets.

  10. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images.

    Science.gov (United States)

    Gao, Han; Tang, Yunwei; Jing, Linhai; Li, Hui; Ding, Haifeng

    2017-10-24

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  11. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Han Gao

    2017-10-01

    Full Text Available The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA. Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  12. A semi-supervised classification algorithm using the TAD-derived background as training data

    Science.gov (United States)

    Fan, Lei; Ambeau, Brittany; Messinger, David W.

    2013-05-01

    In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.

  13. Quantum learning algorithms for quantum measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bisio, Alessandro, E-mail: alessandro.bisio@unipv.it [QUIT Group, Dipartimento di Fisica ' A. Volta' and INFN, via Bassi 6, 27100 Pavia (Italy); D' Ariano, Giacomo Mauro, E-mail: dariano@unipv.it [QUIT Group, Dipartimento di Fisica ' A. Volta' and INFN, via Bassi 6, 27100 Pavia (Italy); Perinotti, Paolo, E-mail: paolo.perinotti@unipv.it [QUIT Group, Dipartimento di Fisica ' A. Volta' and INFN, via Bassi 6, 27100 Pavia (Italy); Sedlak, Michal, E-mail: michal.sedlak@unipv.it [QUIT Group, Dipartimento di Fisica ' A. Volta' and INFN, via Bassi 6, 27100 Pavia (Italy); Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2011-09-12

    We study quantum learning algorithms for quantum measurements. The optimal learning algorithm is derived for arbitrary von Neumann measurements in the case of training with one or two examples. The analysis of the case of three examples reveals that, differently from the learning of unitary gates, the optimal algorithm for learning of quantum measurements cannot be parallelized, and requires quantum memories for the storage of information. -- Highlights: → Optimal learning algorithm for von Neumann measurements. → From 2 copies to 1 copy: the optimal strategy is parallel. → From 3 copies to 1 copy: the optimal strategy must be non-parallel.

  14. Quantum learning algorithms for quantum measurements

    International Nuclear Information System (INIS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Sedlak, Michal

    2011-01-01

    We study quantum learning algorithms for quantum measurements. The optimal learning algorithm is derived for arbitrary von Neumann measurements in the case of training with one or two examples. The analysis of the case of three examples reveals that, differently from the learning of unitary gates, the optimal algorithm for learning of quantum measurements cannot be parallelized, and requires quantum memories for the storage of information. -- Highlights: → Optimal learning algorithm for von Neumann measurements. → From 2 copies to 1 copy: the optimal strategy is parallel. → From 3 copies to 1 copy: the optimal strategy must be non-parallel.

  15. Unsupervised Learning of Digit Recognition Using Spike-Timing-Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Peter U. Diehl

    2015-08-01

    Full Text Available In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functioning systems. Therefore, in recent years there is an increasing interest in how spiking neural networks (SNN can be used to perform complex computations or solve pattern recognition tasks. However, it remains a challenging task to design SNNs which use biologically plausible mechanisms (especially for learning new patterns, since most of such SNN architectures rely on training in a rate-based network and subsequent conversion to a SNN. We present a SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e. conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold. Unlike most other systems, we do not use a teaching signal and do not present any class labels to the network. Using this unsupervised learning scheme, our architecture achieves 95% accuracy on the MNIST benchmark, which is better than previous SNN implementations without supervision. The fact that we used no domain-specific knowledge points toward the general applicability of our network design. Also, the performance of our network scales well with the number of neurons used and shows similar performance for four different learning rules, indicating robustness of the full combination of mechanisms, which suggests applicability in heterogeneous biological neural networks.

  16. Unsupervised detection and removal of muscle artifacts from scalp EEG recordings using canonical correlation analysis, wavelets and random forests.

    Science.gov (United States)

    Anastasiadou, Maria N; Christodoulakis, Manolis; Papathanasiou, Eleftherios S; Papacostas, Savvas S; Mitsis, Georgios D

    2017-09-01

    This paper proposes supervised and unsupervised algorithms for automatic muscle artifact detection and removal from long-term EEG recordings, which combine canonical correlation analysis (CCA) and wavelets with random forests (RF). The proposed algorithms first perform CCA and continuous wavelet transform of the canonical components to generate a number of features which include component autocorrelation values and wavelet coefficient magnitude values. A subset of the most important features is subsequently selected using RF and labelled observations (supervised case) or synthetic data constructed from the original observations (unsupervised case). The proposed algorithms are evaluated using realistic simulation data as well as 30min epochs of non-invasive EEG recordings obtained from ten patients with epilepsy. We assessed the performance of the proposed algorithms using classification performance and goodness-of-fit values for noisy and noise-free signal windows. In the simulation study, where the ground truth was known, the proposed algorithms yielded almost perfect performance. In the case of experimental data, where expert marking was performed, the results suggest that both the supervised and unsupervised algorithm versions were able to remove artifacts without affecting noise-free channels considerably, outperforming standard CCA, independent component analysis (ICA) and Lagged Auto-Mutual Information Clustering (LAMIC). The proposed algorithms achieved excellent performance for both simulation and experimental data. Importantly, for the first time to our knowledge, we were able to perform entirely unsupervised artifact removal, i.e. without using already marked noisy data segments, achieving performance that is comparable to the supervised case. Overall, the results suggest that the proposed algorithms yield significant future potential for improving EEG signal quality in research or clinical settings without the need for marking by expert

  17. Empirical tests of the Gradual Learning Algorithm

    NARCIS (Netherlands)

    Boersma, P.; Hayes, B.

    1999-01-01

    The Gradual Learning Algorithm (Boersma 1997) is a constraint ranking algorithm for learning Optimality-theoretic grammars. The purpose of this article is to assess the capabilities of the Gradual Learning Algorithm, particularly in comparison with the Constraint Demotion algorithm of Tesar and

  18. Empirical tests of the Gradual Learning Algorithm

    NARCIS (Netherlands)

    Boersma, P.; Hayes, B.

    2001-01-01

    The Gradual Learning Algorithm (Boersma 1997) is a constraint-ranking algorithm for learning optimality-theoretic grammars. The purpose of this article is to assess the capabilities of the Gradual Learning Algorithm, particularly in comparison with the Constraint Demotion algorithm of Tesar and

  19. Unsupervised classification of major depression using functional connectivity MRI.

    Science.gov (United States)

    Zeng, Ling-Li; Shen, Hui; Liu, Li; Hu, Dewen

    2014-04-01

    The current diagnosis of psychiatric disorders including major depressive disorder based largely on self-reported symptoms and clinical signs may be prone to patients' behaviors and psychiatrists' bias. This study aims at developing an unsupervised machine learning approach for the accurate identification of major depression based on single resting-state functional magnetic resonance imaging scans in the absence of clinical information. Twenty-four medication-naive patients with major depression and 29 demographically similar healthy individuals underwent resting-state functional magnetic resonance imaging. We first clustered the voxels within the perigenual cingulate cortex into two subregions, a subgenual region and a pregenual region, according to their distinct resting-state functional connectivity patterns and showed that a maximum margin clustering-based unsupervised machine learning approach extracted sufficient information from the subgenual cingulate functional connectivity map to differentiate depressed patients from healthy controls with a group-level clustering consistency of 92.5% and an individual-level classification consistency of 92.5%. It was also revealed that the subgenual cingulate functional connectivity network with the highest discriminative power primarily included the ventrolateral and ventromedial prefrontal cortex, superior temporal gyri and limbic areas, indicating that these connections may play critical roles in the pathophysiology of major depression. The current study suggests that subgenual cingulate functional connectivity network signatures may provide promising objective biomarkers for the diagnosis of major depression and that maximum margin clustering-based unsupervised machine learning approaches may have the potential to inform clinical practice and aid in research on psychiatric disorders. Copyright © 2013 Wiley Periodicals, Inc.

  20. Application of cluster analysis and unsupervised learning to multivariate tissue characterization

    International Nuclear Information System (INIS)

    Momenan, R.; Insana, M.F.; Wagner, R.F.; Garra, B.S.; Loew, M.H.

    1987-01-01

    This paper describes a procedure for classifying tissue types from unlabeled acoustic measurements (data type unknown) using unsupervised cluster analysis. These techniques are being applied to unsupervised ultrasonic image segmentation and tissue characterization. The performance of a new clustering technique is measured and compared with supervised methods, such as a linear Bayes classifier. In these comparisons two objectives are sought: a) How well does the clustering method group the data?; b) Do the clusters correspond to known tissue classes? The first question is investigated by a measure of cluster similarity and dispersion. The second question involves a comparison with a supervised technique using labeled data

  1. Learning algorithms and automatic processing of languages

    International Nuclear Information System (INIS)

    Fluhr, Christian Yves Andre

    1977-01-01

    This research thesis concerns the field of artificial intelligence. It addresses learning algorithms applied to automatic processing of languages. The author first briefly describes some mechanisms of human intelligence in order to describe how these mechanisms are simulated on a computer. He outlines the specific role of learning in various manifestations of intelligence. Then, based on the Markov's algorithm theory, the author discusses the notion of learning algorithm. Two main types of learning algorithms are then addressed: firstly, an 'algorithm-teacher dialogue' type sanction-based algorithm which aims at learning how to solve grammatical ambiguities in submitted texts; secondly, an algorithm related to a document system which structures semantic data automatically obtained from a set of texts in order to be able to understand by references to any question on the content of these texts

  2. Unsupervised Word Mapping Using Structural Similarities in Monolingual Embeddings

    OpenAIRE

    Aldarmaki, Hanan; Mohan, Mahesh; Diab, Mona

    2017-01-01

    Most existing methods for automatic bilingual dictionary induction rely on prior alignments between the source and target languages, such as parallel corpora or seed dictionaries. For many language pairs, such supervised alignments are not readily available. We propose an unsupervised approach for learning a bilingual dictionary for a pair of languages given their independently-learned monolingual word embeddings. The proposed method exploits local and global structures in monolingual vector ...

  3. Classification and unsupervised clustering of LIGO data with Deep Transfer Learning

    Science.gov (United States)

    George, Daniel; Shen, Hongyu; Huerta, E. A.

    2018-05-01

    Gravitational wave detection requires a detailed understanding of the response of the LIGO and Virgo detectors to true signals in the presence of environmental and instrumental noise. Of particular interest is the study of anomalous non-Gaussian transients, such as glitches, since their occurrence rate in LIGO and Virgo data can obscure or even mimic true gravitational wave signals. Therefore, successfully identifying and excising these anomalies from gravitational wave data is of utmost importance for the detection and characterization of true signals and for the accurate computation of their significance. To facilitate this work, we present the first application of deep learning combined with transfer learning to show that knowledge from pretrained models for real-world object recognition can be transferred for classifying spectrograms of glitches. To showcase this new method, we use a data set of twenty-two classes of glitches, curated and labeled by the Gravity Spy project using data collected during LIGO's first discovery campaign. We demonstrate that our Deep Transfer Learning method enables an optimal use of very deep convolutional neural networks for glitch classification given small and unbalanced training data sets, significantly reduces the training time, and achieves state-of-the-art accuracy above 98.8%, lowering the previous error rate by over 60%. More importantly, once trained via transfer learning on the known classes, we show that our neural networks can be truncated and used as feature extractors for unsupervised clustering to automatically group together new unknown classes of glitches and anomalous signals. This novel capability is of paramount importance to identify and remove new types of glitches which will occur as the LIGO/Virgo detectors gradually attain design sensitivity.

  4. Unsupervised Power Profiling for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik

    Today, power consumption is a main limitation for mobile phones. To minimize the power consumption of popular and traditionally power-hungry location-based services requires knowledge of how individual phone features consume power, so that those features can be utilized intelligently for optimal...... power savings while at the same time maintaining good quality of service. This paper proposes an unsupervised API-level method for power profiling mobile phones based on genetic algorithms. The method enables accurate profiling of the power consumption of devices and thereby provides the information...

  5. Unsupervised Power Profiling for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik

    2011-01-01

    Today, power consumption is a main limitation for mobile phones. To minimize the power consumption of popular and traditionally power-hungry location-based services requires knowledge of how individual phone features consume power, so that those features can be utilized intelligently for optimal...... power savings while at the same time maintaining good quality of service. This paper proposes an unsupervised API-level method for power profiling mobile phones based on genetic algorithms. The method enables accurate profiling of the power consumption of devices and thereby provides the information...

  6. Learning theory of distributed spectral algorithms

    International Nuclear Information System (INIS)

    Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan

    2017-01-01

    Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms. (paper)

  7. Data clustering theory, algorithms, and applications

    CERN Document Server

    Gan, Guojun; Wu, Jianhong

    2007-01-01

    Cluster analysis is an unsupervised process that divides a set of objects into homogeneous groups. This book starts with basic information on cluster analysis, including the classification of data and the corresponding similarity measures, followed by the presentation of over 50 clustering algorithms in groups according to some specific baseline methodologies such as hierarchical, center-based, and search-based methods. As a result, readers and users can easily identify an appropriate algorithm for their applications and compare novel ideas with existing results. The book also provides examples of clustering applications to illustrate the advantages and shortcomings of different clustering architectures and algorithms. Application areas include pattern recognition, artificial intelligence, information technology, image processing, biology, psychology, and marketing. Readers also learn how to perform cluster analysis with the C/C++ and MATLAB® programming languages.

  8. Storage capacity of the Tilinglike Learning Algorithm

    International Nuclear Information System (INIS)

    Buhot, Arnaud; Gordon, Mirta B.

    2001-01-01

    The storage capacity of an incremental learning algorithm for the parity machine, the Tilinglike Learning Algorithm, is analytically determined in the limit of a large number of hidden perceptrons. Different learning rules for the simple perceptron are investigated. The usual Gardner-Derrida rule leads to a storage capacity close to the upper bound, which is independent of the learning algorithm considered

  9. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  10. Advanced methods in NDE using machine learning approaches

    Science.gov (United States)

    Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank

    2018-04-01

    Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability

  11. Online unsupervised formation of cell assemblies for the encoding of multiple cognitive maps.

    Science.gov (United States)

    Salihoglu, Utku; Bersini, Hugues; Yamaguchi, Yoko; Molter, Colin

    2009-01-01

    Since their introduction sixty years ago, cell assemblies have proved to be a powerful paradigm for brain information processing. After their introduction in artificial intelligence, cell assemblies became commonly used in computational neuroscience as a neural substrate for content addressable memories. However, the mechanisms underlying their formation are poorly understood and, so far, there is no biologically plausible algorithms which can explain how external stimuli can be online stored in cell assemblies. We addressed this question in a previous paper [Salihoglu, U., Bersini, H., Yamaguchi, Y., Molter, C., (2009). A model for the cognitive map formation: Application of the retroaxonal theory. In Proc. IEEE international joint conference on neural networks], were, based on biologically plausible mechanisms, a novel unsupervised algorithm for online cell assemblies' creation was developed. The procedure involved simultaneously, a fast Hebbian/anti-Hebbian learning of the network's recurrent connections for the creation of new cell assemblies, and a slower feedback signal which stabilized the cell assemblies by learning the feedforward input connections. Here, we first quantify the role played by the retroaxonal feedback mechanism. Then, we show how multiple cognitive maps, composed by a set of orthogonal input stimuli, can be encoded in the network. As a result, when facing a previously learned input, the system is able to retrieve the cognitive map it belongs to. As a consequence, ambiguous inputs which could belong to multiple cognitive maps can be disambiguated by the knowledge of the context, i.e. the cognitive map.

  12. Learning Methods for Dynamic Topic Modeling in Automated Behavior Analysis.

    Science.gov (United States)

    Isupova, Olga; Kuzin, Danil; Mihaylova, Lyudmila

    2017-09-27

    Semisupervised and unsupervised systems provide operators with invaluable support and can tremendously reduce the operators' load. In the light of the necessity to process large volumes of video data and provide autonomous decisions, this paper proposes new learning algorithms for activity analysis in video. The activities and behaviors are described by a dynamic topic model. Two novel learning algorithms based on the expectation maximization approach and variational Bayes inference are proposed. Theoretical derivations of the posterior estimates of model parameters are given. The designed learning algorithms are compared with the Gibbs sampling inference scheme introduced earlier in the literature. A detailed comparison of the learning algorithms is presented on real video data. We also propose an anomaly localization procedure, elegantly embedded in the topic modeling framework. It is shown that the developed learning algorithms can achieve 95% success rate. The proposed framework can be applied to a number of areas, including transportation systems, security, and surveillance.

  13. Unsupervised clustering with spiking neurons by sparse temporal coding and multi-layer RBF networks

    NARCIS (Netherlands)

    S.M. Bohte (Sander); J.A. La Poutré (Han); J.N. Kok (Joost)

    2000-01-01

    textabstractWe demonstrate that spiking neural networks encoding information in spike times are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on

  14. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.

    Science.gov (United States)

    He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej

    2011-12-01

    Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.

  15. Kernel learning algorithms for face recognition

    CERN Document Server

    Li, Jun-Bao; Pan, Jeng-Shyang

    2013-01-01

    Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its new

  16. Unsupervised online classifier in sleep scoring for sleep deprivation studies.

    Science.gov (United States)

    Libourel, Paul-Antoine; Corneyllie, Alexandra; Luppi, Pierre-Hervé; Chouvet, Guy; Gervasoni, Damien

    2015-05-01

    This study was designed to evaluate an unsupervised adaptive algorithm for real-time detection of sleep and wake states in rodents. We designed a Bayesian classifier that automatically extracts electroencephalogram (EEG) and electromyogram (EMG) features and categorizes non-overlapping 5-s epochs into one of the three major sleep and wake states without any human supervision. This sleep-scoring algorithm is coupled online with a new device to perform selective paradoxical sleep deprivation (PSD). Controlled laboratory settings for chronic polygraphic sleep recordings and selective PSD. Ten adult Sprague-Dawley rats instrumented for chronic polysomnographic recordings. The performance of the algorithm is evaluated by comparison with the score obtained by a human expert reader. Online detection of PS is then validated with a PSD protocol with duration of 72 hours. Our algorithm gave a high concordance with human scoring with an average κ coefficient > 70%. Notably, the specificity to detect PS reached 92%. Selective PSD using real-time detection of PS strongly reduced PS amounts, leaving only brief PS bouts necessary for the detection of PS in EEG and EMG signals (4.7 ± 0.7% over 72 h, versus 8.9 ± 0.5% in baseline), and was followed by a significant PS rebound (23.3 ± 3.3% over 150 minutes). Our fully unsupervised data-driven algorithm overcomes some limitations of the other automated methods such as the selection of representative descriptors or threshold settings. When used online and coupled with our sleep deprivation device, it represents a better option for selective PSD than other methods like the tedious gentle handling or the platform method. © 2015 Associated Professional Sleep Societies, LLC.

  17. An unsupervised adaptive strategy for constructing probabilistic roadmaps

    KAUST Repository

    Tapia, L.

    2009-05-01

    Since planning environments are complex and no single planner exists that is best for all problems, much work has been done to explore methods for selecting where and when to apply particular planners. However, these two questions have been difficult to answer, even when adaptive methods meant to facilitate a solution are applied. For example, adaptive solutions such as setting learning rates, hand-classifying spaces, and defining parameters for a library of planners have all been proposed. We demonstrate a strategy based on unsupervised learning methods that makes adaptive planning more practical. The unsupervised strategies require less user intervention, model the topology of the problem in a reasonable and efficient manner, can adapt the sampler depending on characteristics of the problem, and can easily accept new samplers as they become available. Through a series of experiments, we demonstrate that in a wide variety of environments, the regions automatically identified by our technique represent the planning space well both in number and placement.We also show that our technique has little overhead and that it out-performs two existing adaptive methods in all complex cases studied.© 2009 IEEE.

  18. Indoor localization using unsupervised manifold alignment with geometry perturbation

    KAUST Repository

    Majeed, Khaqan

    2014-04-01

    The main limitation of deploying/updating Received Signal Strength (RSS) based indoor localization is the construction of fingerprinted radio map, which is quite a hectic and time-consuming process especially when the indoor area is enormous and/or dynamic. Different approaches have been undertaken to reduce such deployment/update efforts, but the performance degrades when the fingerprinting load is reduced below a certain level. In this paper, we propose an indoor localization scheme that requires as low as 1% fingerprinting load. This scheme employs unsupervised manifold alignment that takes crowd sourced RSS readings and localization requests as source data set and the environment\\'s plan coordinates as destination data set. The 1% fingerprinting load is only used to perturb the local geometries in the destination data set. Our proposed algorithm was shown to achieve less than 5 m mean localization error with 1% fingerprinting load and a limited number of crowd sourced readings, when other learning based localization schemes pass the 10 m mean error with the same information.

  19. Indoor localization using unsupervised manifold alignment with geometry perturbation

    KAUST Repository

    Majeed, Khaqan; Sorour, Sameh; Al-Naffouri, Tareq Y.; Valaee, Shahrokh

    2014-01-01

    The main limitation of deploying/updating Received Signal Strength (RSS) based indoor localization is the construction of fingerprinted radio map, which is quite a hectic and time-consuming process especially when the indoor area is enormous and/or dynamic. Different approaches have been undertaken to reduce such deployment/update efforts, but the performance degrades when the fingerprinting load is reduced below a certain level. In this paper, we propose an indoor localization scheme that requires as low as 1% fingerprinting load. This scheme employs unsupervised manifold alignment that takes crowd sourced RSS readings and localization requests as source data set and the environment's plan coordinates as destination data set. The 1% fingerprinting load is only used to perturb the local geometries in the destination data set. Our proposed algorithm was shown to achieve less than 5 m mean localization error with 1% fingerprinting load and a limited number of crowd sourced readings, when other learning based localization schemes pass the 10 m mean error with the same information.

  20. Convergence analysis of Chauvin's PCA learning algorithm with a constant learning rate

    International Nuclear Information System (INIS)

    Lv Jiancheng; Yi Zhang

    2007-01-01

    The convergence of Chauvin's PCA learning algorithm with a constant learning rate is studied in this paper by using a DDT method (deterministic discrete-time system method). Different from the DCT method (deterministic continuous-time system method), the DDT method does not require that the learning rate converges to zero. An invariant set of Chauvin's algorithm with a constant learning rate is obtained so that the non-divergence of this algorithm can be guaranteed. Rigorous mathematic proofs are provided to prove the local convergence of this algorithm

  1. Learning algorithms and automatic processing of languages; Algorithmes a apprentissage et traitement automatique des langues

    Energy Technology Data Exchange (ETDEWEB)

    Fluhr, Christian Yves Andre

    1977-06-15

    This research thesis concerns the field of artificial intelligence. It addresses learning algorithms applied to automatic processing of languages. The author first briefly describes some mechanisms of human intelligence in order to describe how these mechanisms are simulated on a computer. He outlines the specific role of learning in various manifestations of intelligence. Then, based on the Markov's algorithm theory, the author discusses the notion of learning algorithm. Two main types of learning algorithms are then addressed: firstly, an 'algorithm-teacher dialogue' type sanction-based algorithm which aims at learning how to solve grammatical ambiguities in submitted texts; secondly, an algorithm related to a document system which structures semantic data automatically obtained from a set of texts in order to be able to understand by references to any question on the content of these texts.

  2. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.

    Science.gov (United States)

    Oluwadare, Oluwatosin; Cheng, Jianlin

    2017-11-14

    With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique, the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal interaction (contact) data, which can be used to investigate the higher-level organization of chromosomes, such as Topologically Associated Domains (TAD), i.e., locally packed chromosome regions bounded together by intra chromosomal contacts. The identification of the TADs for a genome is useful for studying gene regulation, genomic interaction, and genome function. Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) problem, and develop a new TAD identification method called ClusterTAD. We introduce a novel method to represent chromosomal contacts as features to be used by the clustering algorithm. Our results show that ClusterTAD can accurately predict the TADs on a simulated Hi-C data. Our method is also largely complementary and consistent with existing methods on the real Hi-C datasets of two mouse cells. The validation with the chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq) data shows that the domain boundaries identified by ClusterTAD have a high enrichment of CTCF binding sites, promoter-related marks, and enhancer-related histone modifications. As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of clustering methods developed in the machine learning field to the TAD identification problem. The source code, the results, and the TADs generated for the simulated and real Hi-C datasets are available here: https://github.com/BDM-Lab/ClusterTAD .

  3. Unsupervised EEG analysis for automated epileptic seizure detection

    Science.gov (United States)

    Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad

    2016-07-01

    Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.

  4. A Newton-type neural network learning algorithm

    International Nuclear Information System (INIS)

    Ivanov, V.V.; Puzynin, I.V.; Purehvdorzh, B.

    1993-01-01

    First- and second-order learning methods for feed-forward multilayer networks are considered. A Newton-type algorithm is proposed and compared with the common back-propagation algorithm. It is shown that the proposed algorithm provides better learning quality. Some recommendations for their usage are given. 11 refs.; 1 fig.; 1 tab

  5. Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System

    Science.gov (United States)

    Lucena, Caroline Vieira; Lacerda, Marcelo; Caldas, Rafael; De Lima Neto, Fernando Buarque

    2018-01-01

    There is a direct relationship between the prevalence of musculoskeletal disorders of the temporomandibular joint and orofacial disorders. A well-elaborated analysis of the jaw movements provides relevant information for healthcare professionals to conclude their diagnosis. Different approaches have been explored to track jaw movements such that the mastication analysis is getting less subjective; however, all methods are still highly subjective, and the quality of the assessments depends much on the experience of the health professional. In this paper, an accurate and non-invasive method based on a commercial low-cost inertial sensor (MPU6050) to measure jaw movements is proposed. The jaw-movement feature values are compared to the obtained with clinical analysis, showing no statistically significant difference between both methods. Moreover, We propose to use unsupervised paradigm approaches to cluster mastication patterns of healthy subjects and simulated patients with facial trauma. Two techniques were used in this paper to instantiate the method: Kohonen’s Self-Organizing Maps and K-Means Clustering. Both algorithms have excellent performances to process jaw-movements data, showing encouraging results and potential to bring a full assessment of the masticatory function. The proposed method can be applied in real-time providing relevant dynamic information for health-care professionals. PMID:29651365

  6. Mastication Evaluation With Unsupervised Learning: Using an Inertial Sensor-Based System.

    Science.gov (United States)

    Lucena, Caroline Vieira; Lacerda, Marcelo; Caldas, Rafael; De Lima Neto, Fernando Buarque; Rativa, Diego

    2018-01-01

    There is a direct relationship between the prevalence of musculoskeletal disorders of the temporomandibular joint and orofacial disorders. A well-elaborated analysis of the jaw movements provides relevant information for healthcare professionals to conclude their diagnosis. Different approaches have been explored to track jaw movements such that the mastication analysis is getting less subjective; however, all methods are still highly subjective, and the quality of the assessments depends much on the experience of the health professional. In this paper, an accurate and non-invasive method based on a commercial low-cost inertial sensor (MPU6050) to measure jaw movements is proposed. The jaw-movement feature values are compared to the obtained with clinical analysis, showing no statistically significant difference between both methods. Moreover, We propose to use unsupervised paradigm approaches to cluster mastication patterns of healthy subjects and simulated patients with facial trauma. Two techniques were used in this paper to instantiate the method: Kohonen's Self-Organizing Maps and K-Means Clustering. Both algorithms have excellent performances to process jaw-movements data, showing encouraging results and potential to bring a full assessment of the masticatory function. The proposed method can be applied in real-time providing relevant dynamic information for health-care professionals.

  7. Linear time relational prototype based learning.

    Science.gov (United States)

    Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara

    2012-10-01

    Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.

  8. Learning in Non-Stationary Environments Methods and Applications

    CERN Document Server

    Lughofer, Edwin

    2012-01-01

    Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.   Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dyna...

  9. An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy

    Directory of Open Access Journals (Sweden)

    Muhammad Ali

    2017-11-01

    Full Text Available Current transformer (CT saturation is one of the significant problems for protection engineers. If CT saturation is not tackled properly, it can cause a disastrous effect on the stability of the power system, and may even create a complete blackout. To cope with CT saturation properly, an accurate detection or classification should be preceded. Recently, deep learning (DL methods have brought a subversive revolution in the field of artificial intelligence (AI. This paper presents a new DL classification method based on unsupervised feature extraction and supervised fine-tuning strategy to classify the saturated and unsaturated regions in case of CT saturation. In other words, if protection system is subjected to a CT saturation, proposed method will correctly classify the different levels of saturation with a high accuracy. Traditional AI methods are mostly based on supervised learning and rely heavily on human crafted features. This paper contributes to an unsupervised feature extraction, using autoencoders and deep neural networks (DNNs to extract features automatically without prior knowledge of optimal features. To validate the effectiveness of proposed method, a variety of simulation tests are conducted, and classification results are analyzed using standard classification metrics. Simulation results confirm that proposed method classifies the different levels of CT saturation with a remarkable accuracy and has unique feature extraction capabilities. Lastly, we provided a potential future research direction to conclude this paper.

  10. Statistical-Mechanical Analysis of Pre-training and Fine Tuning in Deep Learning

    Science.gov (United States)

    Ohzeki, Masayuki

    2015-03-01

    In this paper, we present a statistical-mechanical analysis of deep learning. We elucidate some of the essential components of deep learning — pre-training by unsupervised learning and fine tuning by supervised learning. We formulate the extraction of features from the training data as a margin criterion in a high-dimensional feature-vector space. The self-organized classifier is then supplied with small amounts of labelled data, as in deep learning. Although we employ a simple single-layer perceptron model, rather than directly analyzing a multi-layer neural network, we find a nontrivial phase transition that is dependent on the number of unlabelled data in the generalization error of the resultant classifier. In this sense, we evaluate the efficacy of the unsupervised learning component of deep learning. The analysis is performed by the replica method, which is a sophisticated tool in statistical mechanics. We validate our result in the manner of deep learning, using a simple iterative algorithm to learn the weight vector on the basis of belief propagation.

  11. Advancing Affect Modeling via Preference Learning and Unsupervised Feature Extraction

    DEFF Research Database (Denmark)

    Martínez, Héctor Pérez

    strategies (error functions and training algorithms) for artificial neural networks are examined across synthetic and psycho-physiological datasets, and compared against support vector machines and Cohen’s method. Results reveal the best training strategies for neural networks and suggest their superiority...... difficulties, ordinal reports such as rankings and ratings can yield more reliable affect annotations than alternative tools. This thesis explores preference learning methods to automatically learn computational models from ordinal annotations of affect. In particular, an extensive collection of training...... over the other examined methods. The second challenge addressed in this thesis refers to the extraction of relevant information from physiological modalities. Deep learning is proposed as an automatic approach to extract input features for models of affect from physiological signals. Experiments...

  12. ISO learning approximates a solution to the inverse-controller problem in an unsupervised behavioral paradigm.

    Science.gov (United States)

    Porr, Bernd; von Ferber, Christian; Wörgötter, Florentin

    2003-04-01

    In "Isotropic Sequence Order Learning" (pp. 831-864 in this issue), we introduced a novel algorithm for temporal sequence learning (ISO learning). Here, we embed this algorithm into a formal nonevaluating (teacher free) environment, which establishes a sensor-motor feedback. The system is initially guided by a fixed reflex reaction, which has the objective disadvantage that it can react only after a disturbance has occurred. ISO learning eliminates this disadvantage by replacing the reflex-loop reactions with earlier anticipatory actions. In this article, we analytically demonstrate that this process can be understood in terms of control theory, showing that the system learns the inverse controller of its own reflex. Thereby, this system is able to learn a simple form of feedforward motor control.

  13. Automated training for algorithms that learn from genomic data.

    Science.gov (United States)

    Cilingir, Gokcen; Broschat, Shira L

    2015-01-01

    Supervised machine learning algorithms are used by life scientists for a variety of objectives. Expert-curated public gene and protein databases are major resources for gathering data to train these algorithms. While these data resources are continuously updated, generally, these updates are not incorporated into published machine learning algorithms which thereby can become outdated soon after their introduction. In this paper, we propose a new model of operation for supervised machine learning algorithms that learn from genomic data. By defining these algorithms in a pipeline in which the training data gathering procedure and the learning process are automated, one can create a system that generates a classifier or predictor using information available from public resources. The proposed model is explained using three case studies on SignalP, MemLoci, and ApicoAP in which existing machine learning models are utilized in pipelines. Given that the vast majority of the procedures described for gathering training data can easily be automated, it is possible to transform valuable machine learning algorithms into self-evolving learners that benefit from the ever-changing data available for gene products and to develop new machine learning algorithms that are similarly capable.

  14. Unsupervised ensemble ranking of terms in electronic health record notes based on their importance to patients.

    Science.gov (United States)

    Chen, Jinying; Yu, Hong

    2017-04-01

    Allowing patients to access their own electronic health record (EHR) notes through online patient portals has the potential to improve patient-centered care. However, EHR notes contain abundant medical jargon that can be difficult for patients to comprehend. One way to help patients is to reduce information overload and help them focus on medical terms that matter most to them. Targeted education can then be developed to improve patient EHR comprehension and the quality of care. The aim of this work was to develop FIT (Finding Important Terms for patients), an unsupervised natural language processing (NLP) system that ranks medical terms in EHR notes based on their importance to patients. We built FIT on a new unsupervised ensemble ranking model derived from the biased random walk algorithm to combine heterogeneous information resources for ranking candidate terms from each EHR note. Specifically, FIT integrates four single views (rankers) for term importance: patient use of medical concepts, document-level term salience, word co-occurrence based term relatedness, and topic coherence. It also incorporates partial information of term importance as conveyed by terms' unfamiliarity levels and semantic types. We evaluated FIT on 90 expert-annotated EHR notes and used the four single-view rankers as baselines. In addition, we implemented three benchmark unsupervised ensemble ranking methods as strong baselines. FIT achieved 0.885 AUC-ROC for ranking candidate terms from EHR notes to identify important terms. When including term identification, the performance of FIT for identifying important terms from EHR notes was 0.813 AUC-ROC. Both performance scores significantly exceeded the corresponding scores from the four single rankers (P<0.001). FIT also outperformed the three ensemble rankers for most metrics. Its performance is relatively insensitive to its parameter. FIT can automatically identify EHR terms important to patients. It may help develop future interventions

  15. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  16. Segmentation of fluorescence microscopy cell images using unsupervised mining.

    Science.gov (United States)

    Du, Xian; Dua, Sumeet

    2010-05-28

    The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.

  17. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network

    Directory of Open Access Journals (Sweden)

    Jun He

    2017-07-01

    Full Text Available Artificial intelligence (AI techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN and support vector machine (SVM. The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods.

  18. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network.

    Science.gov (United States)

    He, Jun; Yang, Shixi; Gan, Chunbiao

    2017-07-04

    Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods.

  19. Information theoretic learning Renyi's entropy and Kernel perspectives

    CERN Document Server

    Principe, Jose C

    2010-01-01

    This book presents the first cohesive treatment of Information Theoretic Learning (ITL) algorithms to adapt linear or nonlinear learning machines both in supervised or unsupervised paradigms. ITL is a framework where the conventional concepts of second order statistics (covariance, L2 distances, correlation functions) are substituted by scalars and functions with information theoretic underpinnings, respectively entropy, mutual information and correntropy. ITL quantifies the stochastic structure of the data beyond second order statistics for improved performance without using full-blown Bayesi

  20. Unsupervised neural networks for solving Troesch's problem

    International Nuclear Information System (INIS)

    Raja Muhammad Asif Zahoor

    2014-01-01

    In this study, stochastic computational intelligence techniques are presented for the solution of Troesch's boundary value problem. The proposed stochastic solvers use the competency of a feed-forward artificial neural network for mathematical modeling of the problem in an unsupervised manner, whereas the learning of unknown parameters is made with local and global optimization methods as well as their combinations. Genetic algorithm (GA) and pattern search (PS) techniques are used as the global search methods and the interior point method (IPM) is used for an efficient local search. The combination of techniques like GA hybridized with IPM (GA-IPM) and PS hybridized with IPM (PS-IPM) are also applied to solve different forms of the equation. A comparison of the proposed results obtained from GA, PS, IPM, PS-IPM and GA-IPM has been made with the standard solutions including well known analytic techniques of the Adomian decomposition method, the variational iterational method and the homotopy perturbation method. The reliability and effectiveness of the proposed schemes, in term of accuracy and convergence, are evaluated from the results of statistical analysis based on sufficiently large independent runs. (interdisciplinary physics and related areas of science and technology)

  1. "Accelerated Perceptron": A Self-Learning Linear Decision Algorithm

    OpenAIRE

    Zuev, Yu. A.

    2003-01-01

    The class of linear decision rules is studied. A new algorithm for weight correction, called an "accelerated perceptron", is proposed. In contrast to classical Rosenblatt's perceptron this algorithm modifies the weight vector at each step. The algorithm may be employed both in learning and in self-learning modes. The theoretical aspects of the behaviour of the algorithm are studied when the algorithm is used for the purpose of increasing the decision reliability by means of weighted voting. I...

  2. Challenges in the Verification of Reinforcement Learning Algorithms

    Science.gov (United States)

    Van Wesel, Perry; Goodloe, Alwyn E.

    2017-01-01

    Machine learning (ML) is increasingly being applied to a wide array of domains from search engines to autonomous vehicles. These algorithms, however, are notoriously complex and hard to verify. This work looks at the assumptions underlying machine learning algorithms as well as some of the challenges in trying to verify ML algorithms. Furthermore, we focus on the specific challenges of verifying reinforcement learning algorithms. These are highlighted using a specific example. Ultimately, we do not offer a solution to the complex problem of ML verification, but point out possible approaches for verification and interesting research opportunities.

  3. Risk assessment of atmospheric emissions using machine learning

    Directory of Open Access Journals (Sweden)

    G. Cervone

    2008-09-01

    Full Text Available Supervised and unsupervised machine learning algorithms are used to perform statistical and logical analysis of several transport and dispersion model runs which simulate emissions from a fixed source under different atmospheric conditions.

    First, a clustering algorithm is used to automatically group the results of different transport and dispersion simulations according to specific cloud characteristics. Then, a symbolic classification algorithm is employed to find complex non-linear relationships between the meteorological input conditions and each cluster of clouds. The patterns discovered are provided in the form of probabilistic measures of contamination, thus suitable for result interpretation and dissemination.

    The learned patterns can be used for quick assessment of the areas at risk and of the fate of potentially hazardous contaminants released in the atmosphere.

  4. Workforce Optimization for Bank Operation Centers: A Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Sefik Ilkin Serengil

    2017-12-01

    Full Text Available Online Banking Systems evolved and improved in recent years with the use of mobile and online technologies, performing money transfer transactions on these channels can be done without delay and human interaction, however commercial customers still tend to transfer money on bank branches due to several concerns. Bank Operation Centers serve to reduce the operational workload of branches. Centralized management also offers personalized service by appointed expert employees in these centers. Inherently, workload volume of money transfer transactions changes dramatically in hours. Therefore, work-force should be planned instantly or early to save labor force and increase operational efficiency. This paper introduces a hybrid multi stage approach for workforce planning in bank operation centers by the application of supervised and unsu-pervised learning algorithms. Expected workload would be predicted as supervised learning whereas employees are clus-tered into different skill groups as unsupervised learning to match transactions and proper employees. Finally, workforce optimization is analyzed for proposed approach on production data.

  5. An algorithm for learning real-time automata

    NARCIS (Netherlands)

    Verwer, S.E.; De Weerdt, M.M.; Witteveen, C.

    2007-01-01

    We describe an algorithm for learning simple timed automata, known as real-time automata. The transitions of real-time automata can have a temporal constraint on the time of occurrence of the current symbol relative to the previous symbol. The learning algorithm is similar to the redblue fringe

  6. Remote photoplethysmography system for unsupervised monitoring regional anesthesia effectiveness

    Science.gov (United States)

    Rubins, U.; Miscuks, A.; Marcinkevics, Z.; Lange, M.

    2017-12-01

    Determining the level of regional anesthesia (RA) is vitally important to both an anesthesiologist and surgeon, also knowing the RA level can protect the patient and reduce the time of surgery. Normally to detect the level of RA, usually a simple subjective (sensitivity test) and complicated quantitative methods (thermography, neuromyography, etc.) are used, but there is not yet a standardized method for objective RA detection and evaluation. In this study, the advanced remote photoplethysmography imaging (rPPG) system for unsupervised monitoring of human palm RA is demonstrated. The rPPG system comprises compact video camera with green optical filter, surgical lamp as a light source and a computer with custom-developed software. The algorithm implemented in Matlab software recognizes the palm and two dermatomes (Medial and Ulnar innervation), calculates the perfusion map and perfusion changes in real-time to detect effect of RA. Seven patients (aged 18-80 years) undergoing hand surgery received peripheral nerve brachial plexus blocks during the measurements. Clinical experiments showed that our rPPG system is able to perform unsupervised monitoring of RA.

  7. Cascade Error Projection: A New Learning Algorithm

    Science.gov (United States)

    Duong, T. A.; Stubberud, A. R.; Daud, T.; Thakoor, A. P.

    1995-01-01

    A new neural network architecture and a hardware implementable learning algorithm is proposed. The algorithm, called cascade error projection (CEP), handles lack of precision and circuit noise better than existing algorithms.

  8. Convergence analysis of Chauvin's PCA learning algorithm with a constant learning rate

    Energy Technology Data Exchange (ETDEWEB)

    Lv Jiancheng [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yi Zhang [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)]. E-mail: zhangyi@uestc.edu.cn

    2007-05-15

    The convergence of Chauvin's PCA learning algorithm with a constant learning rate is studied in this paper by using a DDT method (deterministic discrete-time system method). Different from the DCT method (deterministic continuous-time system method), the DDT method does not require that the learning rate converges to zero. An invariant set of Chauvin's algorithm with a constant learning rate is obtained so that the non-divergence of this algorithm can be guaranteed. Rigorous mathematic proofs are provided to prove the local convergence of this algorithm.

  9. Detection of Human Impacts by an Adaptive Energy-Based Anisotropic Algorithm

    Directory of Open Access Journals (Sweden)

    Manuel Prado-Velasco

    2013-10-01

    Full Text Available Boosted by health consequences and the cost of falls in the elderly, this work develops and tests a novel algorithm and methodology to detect human impacts that will act as triggers of a two-layer fall monitor. The two main requirements demanded by socio-healthcare providers—unobtrusiveness and reliability—defined the objectives of the research. We have demonstrated that a very agile, adaptive, and energy-based anisotropic algorithm can provide 100% sensitivity and 78% specificity, in the task of detecting impacts under demanding laboratory conditions. The algorithm works together with an unsupervised real-time learning technique that addresses the adaptive capability, and this is also presented. The work demonstrates the robustness and reliability of our new algorithm, which will be the basis of a smart falling monitor. This is shown in this work to underline the relevance of the results.

  10. An Unsupervised Online Spike-Sorting Framework.

    Science.gov (United States)

    Knieling, Simeon; Sridharan, Kousik S; Belardinelli, Paolo; Naros, Georgios; Weiss, Daniel; Mormann, Florian; Gharabaghi, Alireza

    2016-08-01

    Extracellular neuronal microelectrode recordings can include action potentials from multiple neurons. To separate spikes from different neurons, they can be sorted according to their shape, a procedure referred to as spike-sorting. Several algorithms have been reported to solve this task. However, when clustering outcomes are unsatisfactory, most of them are difficult to adjust to achieve the desired results. We present an online spike-sorting framework that uses feature normalization and weighting to maximize the distinctiveness between different spike shapes. Furthermore, multiple criteria are applied to either facilitate or prevent cluster fusion, thereby enabling experimenters to fine-tune the sorting process. We compare our method to established unsupervised offline (Wave_Clus (WC)) and online (OSort (OS)) algorithms by examining their performance in sorting various test datasets using two different scoring systems (AMI and the Adamos metric). Furthermore, we evaluate sorting capabilities on intra-operative recordings using established quality metrics. Compared to WC and OS, our algorithm achieved comparable or higher scores on average and produced more convincing sorting results for intra-operative datasets. Thus, the presented framework is suitable for both online and offline analysis and could substantially improve the quality of microelectrode-based data evaluation for research and clinical application.

  11. Fully Decentralized Semi-supervised Learning via Privacy-preserving Matrix Completion.

    Science.gov (United States)

    Fierimonte, Roberto; Scardapane, Simone; Uncini, Aurelio; Panella, Massimo

    2016-08-26

    Distributed learning refers to the problem of inferring a function when the training data are distributed among different nodes. While significant work has been done in the contexts of supervised and unsupervised learning, the intermediate case of Semi-supervised learning in the distributed setting has received less attention. In this paper, we propose an algorithm for this class of problems, by extending the framework of manifold regularization. The main component of the proposed algorithm consists of a fully distributed computation of the adjacency matrix of the training patterns. To this end, we propose a novel algorithm for low-rank distributed matrix completion, based on the framework of diffusion adaptation. Overall, the distributed Semi-supervised algorithm is efficient and scalable, and it can preserve privacy by the inclusion of flexible privacy-preserving mechanisms for similarity computation. The experimental results and comparison on a wide range of standard Semi-supervised benchmarks validate our proposal.

  12. Q-learning-based adjustable fixed-phase quantum Grover search algorithm

    International Nuclear Information System (INIS)

    Guo Ying; Shi Wensha; Wang Yijun; Hu, Jiankun

    2017-01-01

    We demonstrate that the rotation phase can be suitably chosen to increase the efficiency of the phase-based quantum search algorithm, leading to a dynamic balance between iterations and success probabilities of the fixed-phase quantum Grover search algorithm with Q-learning for a given number of solutions. In this search algorithm, the proposed Q-learning algorithm, which is a model-free reinforcement learning strategy in essence, is used for performing a matching algorithm based on the fraction of marked items λ and the rotation phase α. After establishing the policy function α = π(λ), we complete the fixed-phase Grover algorithm, where the phase parameter is selected via the learned policy. Simulation results show that the Q-learning-based Grover search algorithm (QLGA) enables fewer iterations and gives birth to higher success probabilities. Compared with the conventional Grover algorithms, it avoids the optimal local situations, thereby enabling success probabilities to approach one. (author)

  13. Research on machine learning framework based on random forest algorithm

    Science.gov (United States)

    Ren, Qiong; Cheng, Hui; Han, Hai

    2017-03-01

    With the continuous development of machine learning, industry and academia have released a lot of machine learning frameworks based on distributed computing platform, and have been widely used. However, the existing framework of machine learning is limited by the limitations of machine learning algorithm itself, such as the choice of parameters and the interference of noises, the high using threshold and so on. This paper introduces the research background of machine learning framework, and combined with the commonly used random forest algorithm in machine learning classification algorithm, puts forward the research objectives and content, proposes an improved adaptive random forest algorithm (referred to as ARF), and on the basis of ARF, designs and implements the machine learning framework.

  14. Trans-algorithmic nature of learning in biological systems.

    Science.gov (United States)

    Shimansky, Yury P

    2018-05-02

    Learning ability is a vitally important, distinctive property of biological systems, which provides dynamic stability in non-stationary environments. Although several different types of learning have been successfully modeled using a universal computer, in general, learning cannot be described by an algorithm. In other words, algorithmic approach to describing the functioning of biological systems is not sufficient for adequate grasping of what is life. Since biosystems are parts of the physical world, one might hope that adding some physical mechanisms and principles to the concept of algorithm could provide extra possibilities for describing learning in its full generality. However, a straightforward approach to that through the so-called physical hypercomputation so far has not been successful. Here an alternative approach is proposed. Biosystems are described as achieving enumeration of possible physical compositions though random incremental modifications inflicted on them by active operating resources (AORs) in the environment. Biosystems learn through algorithmic regulation of the intensity of the above modifications according to a specific optimality criterion. From the perspective of external observers, biosystems move in the space of different algorithms driven by random modifications imposed by the environmental AORs. A particular algorithm is only a snapshot of that motion, while the motion itself is essentially trans-algorithmic. In this conceptual framework, death of unfit members of a population, for example, is viewed as a trans-algorithmic modification made in the population as a biosystem by environmental AORs. Numerous examples of AOR utilization in biosystems of different complexity, from viruses to multicellular organisms, are provided.

  15. Incremental online object learning in a vehicular radar-vision fusion framework

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhengping [Los Alamos National Laboratory; Weng, Juyang [Los Alamos National Laboratory; Luciw, Matthew [IEEE; Zeng, Shuqing [IEEE

    2010-10-19

    In this paper, we propose an object learning system that incorporates sensory information from an automotive radar system and a video camera. The radar system provides a coarse attention for the focus of visual analysis on relatively small areas within the image plane. The attended visual areas are coded and learned by a 3-layer neural network utilizing what is called in-place learning, where every neuron is responsible for the learning of its own signal processing characteristics within its connected network environment, through inhibitory and excitatory connections with other neurons. The modeled bottom-up, lateral, and top-down connections in the network enable sensory sparse coding, unsupervised learning and supervised learning to occur concurrently. The presented work is applied to learn two types of encountered objects in multiple outdoor driving settings. Cross validation results show the overall recognition accuracy above 95% for the radar-attended window images. In comparison with the uncoded representation and purely unsupervised learning (without top-down connection), the proposed network improves the recognition rate by 15.93% and 6.35% respectively. The proposed system is also compared with other learning algorithms favorably. The result indicates that our learning system is the only one to fit all the challenging criteria for the development of an incremental and online object learning system.

  16. Advances in independent component analysis and learning machines

    CERN Document Server

    Bingham, Ella; Laaksonen, Jorma; Lampinen, Jouko

    2015-01-01

    In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: A unifying probabilistic model for PCA and ICA Optimization methods for matrix decompositions Insights into the FastICA algorithmUnsupervised deep learning Machine vision and image retrieval A review of developments in the t

  17. Evolving Stochastic Learning Algorithm based on Tsallis entropic index

    Science.gov (United States)

    Anastasiadis, A. D.; Magoulas, G. D.

    2006-03-01

    In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method.

  18. Machine learning applications in genetics and genomics.

    Science.gov (United States)

    Libbrecht, Maxwell W; Noble, William Stafford

    2015-06-01

    The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets.

  19. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit.

    Science.gov (United States)

    Kwon, Min-Woo; Baek, Myung-Hyun; Hwang, Sungmin; Kim, Sungjun; Park, Byung-Gook

    2018-09-01

    We designed the CMOS analog integrate and fire (I&F) neuron circuit can drive resistive synaptic device. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, asymmetric negative and positive pulse generation part, a refractory part, and finally a back-propagation pulse generation part for learning of the synaptic devices. The resistive synaptic devices were fabricated using HfOx switching layer by atomic layer deposition (ALD). The resistive synaptic device had gradual set and reset characteristics and the conductance was adjusted by spike-timing-dependent-plasticity (STDP) learning rule. We carried out circuit simulation of synaptic device and CMOS neuron circuit. And we have developed an unsupervised spiking neural networks (SNNs) for 5 × 5 pattern recognition and classification using the neuron circuit and synaptic devices. The hardware-based SNNs can autonomously and efficiently control the weight updates of the synapses between neurons, without the aid of software calculations.

  20. Unsupervised classification of neocortical activity patterns in neonatal and pre-juvenile rodents

    Directory of Open Access Journals (Sweden)

    Nicole eCichon

    2014-05-01

    Full Text Available Flexible communication within the brain, which relies on oscillatory activity, is not confined to adult neuronal networks. Experimental evidence has documented the presence of discontinuous patterns of oscillatory activity already during early development. Their highly variable spatial and time-frequency organization has been related to region specificity. However, it might be equally due to the absence of unitary criteria for classifying the early activity patterns, since they have been mainly characterized by visual inspection. Therefore, robust and unbiased methods for categorizing these discontinuous oscillations are needed for increasingly complex data sets from different labs. Here, we introduce an unsupervised detection and classification algorithm for the discontinuous activity patterns of rodents during early development. For this, firstly time windows with discontinuous oscillations vs. epochs of network silence were identified. In a second step, the major features of detected events were identified and processed by principal component analysis for deciding on their contribution to the classification of different oscillatory patterns. Finally, these patterns were categorized using an unsupervised cluster algorithm. The results were validated on manually characterized neonatal spindle bursts, which ubiquitously entrain neocortical areas of rats and mice, and prelimbic nested gamma spindle bursts. Moreover, the algorithm led to satisfactory results for oscillatory events that, due to increased similarity of their features, were more difficult to classify, e.g. during the pre-juvenile developmental period. Based on a linear classification, the optimal number of features to consider increased with the difficulty of detection. This algorithm allows the comparison of neonatal and pre-juvenile oscillatory patterns in their spatial and temporal organization. It might represent a first step for the unbiased elucidation of activity patterns

  1. Large-Scale Unsupervised Hashing with Shared Structure Learning.

    Science.gov (United States)

    Liu, Xianglong; Mu, Yadong; Zhang, Danchen; Lang, Bo; Li, Xuelong

    2015-09-01

    Hashing methods are effective in generating compact binary signatures for images and videos. This paper addresses an important open issue in the literature, i.e., how to learn compact hash codes by enhancing the complementarity among different hash functions. Most of prior studies solve this problem either by adopting time-consuming sequential learning algorithms or by generating the hash functions which are subject to some deliberately-designed constraints (e.g., enforcing hash functions orthogonal to one another). We analyze the drawbacks of past works and propose a new solution to this problem. Our idea is to decompose the feature space into a subspace shared by all hash functions and its complementary subspace. On one hand, the shared subspace, corresponding to the common structure across different hash functions, conveys most relevant information for the hashing task. Similar to data de-noising, irrelevant information is explicitly suppressed during hash function generation. On the other hand, in case that the complementary subspace also contains useful information for specific hash functions, the final form of our proposed hashing scheme is a compromise between these two kinds of subspaces. To make hash functions not only preserve the local neighborhood structure but also capture the global cluster distribution of the whole data, an objective function incorporating spectral embedding loss, binary quantization loss, and shared subspace contribution is introduced to guide the hash function learning. We propose an efficient alternating optimization method to simultaneously learn both the shared structure and the hash functions. Experimental results on three well-known benchmarks CIFAR-10, NUS-WIDE, and a-TRECVID demonstrate that our approach significantly outperforms state-of-the-art hashing methods.

  2. Leave-two-out stability of ontology learning algorithm

    International Nuclear Information System (INIS)

    Wu, Jianzhang; Yu, Xiao; Zhu, Linli; Gao, Wei

    2016-01-01

    Ontology is a semantic analysis and calculation model, which has been applied to many subjects. Ontology similarity calculation and ontology mapping are employed as machine learning approaches. The purpose of this paper is to study the leave-two-out stability of ontology learning algorithm. Several leave-two-out stabilities are defined in ontology learning setting and the relationship among these stabilities are presented. Furthermore, the results manifested reveal that leave-two-out stability is a sufficient and necessary condition for ontology learning algorithm.

  3. A Decomposition Algorithm for Learning Bayesian Network Structures from Data

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Cordero Hernandez, Jorge

    2008-01-01

    It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....

  4. A Learning Algorithm based on High School Teaching Wisdom

    OpenAIRE

    Philip, Ninan Sajeeth

    2010-01-01

    A learning algorithm based on primary school teaching and learning is presented. The methodology is to continuously evaluate a student and to give them training on the examples for which they repeatedly fail, until, they can correctly answer all types of questions. This incremental learning procedure produces better learning curves by demanding the student to optimally dedicate their learning time on the failed examples. When used in machine learning, the algorithm is found to train a machine...

  5. TAO-robust backpropagation learning algorithm.

    Science.gov (United States)

    Pernía-Espinoza, Alpha V; Ordieres-Meré, Joaquín B; Martínez-de-Pisón, Francisco J; González-Marcos, Ana

    2005-03-01

    In several fields, as industrial modelling, multilayer feedforward neural networks are often used as universal function approximations. These supervised neural networks are commonly trained by a traditional backpropagation learning format, which minimises the mean squared error (mse) of the training data. However, in the presence of corrupted data (outliers) this training scheme may produce wrong models. We combine the benefits of the non-linear regression model tau-estimates [introduced by Tabatabai, M. A. Argyros, I. K. Robust Estimation and testing for general nonlinear regression models. Applied Mathematics and Computation. 58 (1993) 85-101] with the backpropagation algorithm to produce the TAO-robust learning algorithm, in order to deal with the problems of modelling with outliers. The cost function of this approach has a bounded influence function given by the weighted average of two psi functions, one corresponding to a very robust estimate and the other to a highly efficient estimate. The advantages of the proposed algorithm are studied with an example.

  6. Misty Mountain clustering: application to fast unsupervised flow cytometry gating

    Directory of Open Access Journals (Sweden)

    Sealfon Stuart C

    2010-10-01

    Full Text Available Abstract Background There are many important clustering questions in computational biology for which no satisfactory method exists. Automated clustering algorithms, when applied to large, multidimensional datasets, such as flow cytometry data, prove unsatisfactory in terms of speed, problems with local minima or cluster shape bias. Model-based approaches are restricted by the assumptions of the fitting functions. Furthermore, model based clustering requires serial clustering for all cluster numbers within a user defined interval. The final cluster number is then selected by various criteria. These supervised serial clustering methods are time consuming and frequently different criteria result in different optimal cluster numbers. Various unsupervised heuristic approaches that have been developed such as affinity propagation are too expensive to be applied to datasets on the order of 106 points that are often generated by high throughput experiments. Results To circumvent these limitations, we developed a new, unsupervised density contour clustering algorithm, called Misty Mountain, that is based on percolation theory and that efficiently analyzes large data sets. The approach can be envisioned as a progressive top-down removal of clouds covering a data histogram relief map to identify clusters by the appearance of statistically distinct peaks and ridges. This is a parallel clustering method that finds every cluster after analyzing only once the cross sections of the histogram. The overall run time for the composite steps of the algorithm increases linearly by the number of data points. The clustering of 106 data points in 2D data space takes place within about 15 seconds on a standard laptop PC. Comparison of the performance of this algorithm with other state of the art automated flow cytometry gating methods indicate that Misty Mountain provides substantial improvements in both run time and in the accuracy of cluster assignment. Conclusions

  7. Top Tagging by Deep Learning Algorithm

    CERN Document Server

    Akil, Ali

    2015-01-01

    In this report I will show the application of a deep learning algorithm on a Monte Carlo simulation sample to test its performance in tagging hadronic decays of boosted top quarks and compare what we get with the results of the application of some other algorithms.

  8. A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images.

    Science.gov (United States)

    Windrim, Lloyd; Ramakrishnan, Rishi; Melkumyan, Arman; Murphy, Richard J

    2018-02-01

    This paper proposes the Relit Spectral Angle-Stacked Autoencoder, a novel unsupervised feature learning approach for mapping pixel reflectances to illumination invariant encodings. This work extends the Spectral Angle-Stacked Autoencoder so that it can learn a shadow-invariant mapping. The method is inspired by a deep learning technique, Denoising Autoencoders, with the incorporation of a physics-based model for illumination such that the algorithm learns a shadow invariant mapping without the need for any labelled training data, additional sensors, a priori knowledge of the scene or the assumption of Planckian illumination. The method is evaluated using datasets captured from several different cameras, with experiments to demonstrate the illumination invariance of the features and how they can be used practically to improve the performance of high-level perception algorithms that operate on images acquired outdoors.

  9. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    Science.gov (United States)

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  10. SOL: A Library for Scalable Online Learning Algorithms

    OpenAIRE

    Wu, Yue; Hoi, Steven C. H.; Liu, Chenghao; Lu, Jing; Sahoo, Doyen; Yu, Nenghai

    2016-01-01

    SOL is an open-source library for scalable online learning algorithms, and is particularly suitable for learning with high-dimensional data. The library provides a family of regular and sparse online learning algorithms for large-scale binary and multi-class classification tasks with high efficiency, scalability, portability, and extensibility. SOL was implemented in C++, and provided with a collection of easy-to-use command-line tools, python wrappers and library calls for users and develope...

  11. Expectation-maximization algorithms for learning a finite mixture of univariate survival time distributions from partially specified class values

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngrok [Iowa State Univ., Ames, IA (United States)

    2013-05-15

    Heterogeneity exists on a data set when samples from di erent classes are merged into the data set. Finite mixture models can be used to represent a survival time distribution on heterogeneous patient group by the proportions of each class and by the survival time distribution within each class as well. The heterogeneous data set cannot be explicitly decomposed to homogeneous subgroups unless all the samples are precisely labeled by their origin classes; such impossibility of decomposition is a barrier to overcome for estimating nite mixture models. The expectation-maximization (EM) algorithm has been used to obtain maximum likelihood estimates of nite mixture models by soft-decomposition of heterogeneous samples without labels for a subset or the entire set of data. In medical surveillance databases we can find partially labeled data, that is, while not completely unlabeled there is only imprecise information about class values. In this study we propose new EM algorithms that take advantages of using such partial labels, and thus incorporate more information than traditional EM algorithms. We particularly propose four variants of the EM algorithm named EM-OCML, EM-PCML, EM-HCML and EM-CPCML, each of which assumes a specific mechanism of missing class values. We conducted a simulation study on exponential survival trees with five classes and showed that the advantages of incorporating substantial amount of partially labeled data can be highly signi cant. We also showed model selection based on AIC values fairly works to select the best proposed algorithm on each specific data set. A case study on a real-world data set of gastric cancer provided by Surveillance, Epidemiology and End Results (SEER) program showed a superiority of EM-CPCML to not only the other proposed EM algorithms but also conventional supervised, unsupervised and semi-supervised learning algorithms.

  12. Algorithmic learning in a random world

    CERN Document Server

    Vovk, Vladimir; Shafer, Glenn

    2005-01-01

    A new scientific monograph developing significant new algorithmic foundations in machine learning theory. Researchers and postgraduates in CS, statistics, and A.I. will find the book an authoritative and formal presentation of some of the most promising theoretical developments in machine learning.

  13. Natural-Annotation-based Unsupervised Construction of Korean-Chinese Domain Dictionary

    Science.gov (United States)

    Liu, Wuying; Wang, Lin

    2018-03-01

    The large-scale bilingual parallel resource is significant to statistical learning and deep learning in natural language processing. This paper addresses the automatic construction issue of the Korean-Chinese domain dictionary, and presents a novel unsupervised construction method based on the natural annotation in the raw corpus. We firstly extract all Korean-Chinese word pairs from Korean texts according to natural annotations, secondly transform the traditional Chinese characters into the simplified ones, and finally distill out a bilingual domain dictionary after retrieving the simplified Chinese words in an extra Chinese domain dictionary. The experimental results show that our method can automatically build multiple Korean-Chinese domain dictionaries efficiently.

  14. Location-Aware Mobile Learning of Spatial Algorithms

    Science.gov (United States)

    Karavirta, Ville

    2013-01-01

    Learning an algorithm--a systematic sequence of operations for solving a problem with given input--is often difficult for students due to the abstract nature of the algorithms and the data they process. To help students understand the behavior of algorithms, a subfield in computing education research has focused on algorithm…

  15. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    Science.gov (United States)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  16. Geodesic Flow Kernel Support Vector Machine for Hyperspectral Image Classification by Unsupervised Subspace Feature Transfer

    Directory of Open Access Journals (Sweden)

    Alim Samat

    2016-03-01

    Full Text Available In order to deal with scenarios where the training data, used to deduce a model, and the validation data have different statistical distributions, we study the problem of transformed subspace feature transfer for domain adaptation (DA in the context of hyperspectral image classification via a geodesic Gaussian flow kernel based support vector machine (GFKSVM. To show the superior performance of the proposed approach, conventional support vector machines (SVMs and state-of-the-art DA algorithms, including information-theoretical learning of discriminative cluster for domain adaptation (ITLDC, joint distribution adaptation (JDA, and joint transfer matching (JTM, are also considered. Additionally, unsupervised linear and nonlinear subspace feature transfer techniques including principal component analysis (PCA, randomized nonlinear principal component analysis (rPCA, factor analysis (FA and non-negative matrix factorization (NNMF are investigated and compared. Experiments on two real hyperspectral images show the cross-image classification performances of the GFKSVM, confirming its effectiveness and suitability when applied to hyperspectral images.

  17. Unsupervised Event Characterization and Detection in Multichannel Signals: An EEG application

    Directory of Open Access Journals (Sweden)

    Angel Mur

    2016-04-01

    Full Text Available In this paper, we propose a new unsupervised method to automatically characterize and detect events in multichannel signals. This method is used to identify artifacts in electroencephalogram (EEG recordings of brain activity. The proposed algorithm has been evaluated and compared with a supervised method. To this end an example of the performance of the algorithm to detect artifacts is shown. The results show that although both methods obtain similar classification, the proposed method allows detecting events without training data and can also be applied in signals whose events are unknown a priori. Furthermore, the proposed method provides an optimal window whereby an optimal detection and characterization of events is found. The detection of events can be applied in real-time.

  18. Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout.

    Science.gov (United States)

    Das, Anup; Pradhapan, Paruthi; Groenendaal, Willemijn; Adiraju, Prathyusha; Rajan, Raj Thilak; Catthoor, Francky; Schaafsma, Siebren; Krichmar, Jeffrey L; Dutt, Nikil; Van Hoof, Chris

    2018-03-01

    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine learning technique to estimate heart-rate from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery-life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects is considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Human resource recommendation algorithm based on ensemble learning and Spark

    Science.gov (United States)

    Cong, Zihan; Zhang, Xingming; Wang, Haoxiang; Xu, Hongjie

    2017-08-01

    Aiming at the problem of “information overload” in the human resources industry, this paper proposes a human resource recommendation algorithm based on Ensemble Learning. The algorithm considers the characteristics and behaviours of both job seeker and job features in the real business circumstance. Firstly, the algorithm uses two ensemble learning methods-Bagging and Boosting. The outputs from both learning methods are then merged to form user interest model. Based on user interest model, job recommendation can be extracted for users. The algorithm is implemented as a parallelized recommendation system on Spark. A set of experiments have been done and analysed. The proposed algorithm achieves significant improvement in accuracy, recall rate and coverage, compared with recommendation algorithms such as UserCF and ItemCF.

  20. A Learning Algorithm for Multimodal Grammar Inference.

    Science.gov (United States)

    D'Ulizia, A; Ferri, F; Grifoni, P

    2011-12-01

    The high costs of development and maintenance of multimodal grammars in integrating and understanding input in multimodal interfaces lead to the investigation of novel algorithmic solutions in automating grammar generation and in updating processes. Many algorithms for context-free grammar inference have been developed in the natural language processing literature. An extension of these algorithms toward the inference of multimodal grammars is necessary for multimodal input processing. In this paper, we propose a novel grammar inference mechanism that allows us to learn a multimodal grammar from its positive samples of multimodal sentences. The algorithm first generates the multimodal grammar that is able to parse the positive samples of sentences and, afterward, makes use of two learning operators and the minimum description length metrics in improving the grammar description and in avoiding the over-generalization problem. The experimental results highlight the acceptable performances of the algorithm proposed in this paper since it has a very high probability of parsing valid sentences.

  1. Scaling up spike-and-slab models for unsupervised feature learning.

    Science.gov (United States)

    Goodfellow, Ian J; Courville, Aaron; Bengio, Yoshua

    2013-08-01

    We describe the use of two spike-and-slab models for modeling real-valued data, with an emphasis on their applications to object recognition. The first model, which we call spike-and-slab sparse coding (S3C), is a preexisting model for which we introduce a faster approximate inference algorithm. We introduce a deep variant of S3C, which we call the partially directed deep Boltzmann machine (PD-DBM) and extend our S3C inference algorithm for use on this model. We describe learning procedures for each. We demonstrate that our inference procedure for S3C enables scaling the model to unprecedented large problem sizes, and demonstrate that using S3C as a feature extractor results in very good object recognition performance, particularly when the number of labeled examples is low. We show that the PD-DBM generates better samples than its shallow counterpart, and that unlike DBMs or DBNs, the PD-DBM may be trained successfully without greedy layerwise training.

  2. A strategy for quantum algorithm design assisted by machine learning

    International Nuclear Information System (INIS)

    Bang, Jeongho; Lee, Jinhyoung; Ryu, Junghee; Yoo, Seokwon; Pawłowski, Marcin

    2014-01-01

    We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum–classical hybrid simulator, where a ‘quantum student’ is being taught by a ‘classical teacher’. In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem, assisted by a classical main-feedback system. Our method is applicable for designing quantum oracle-based algorithms. We chose, as a case study, an oracle decision problem, called a Deutsch–Jozsa problem. We showed by using Monte Carlo simulations that our simulator can faithfully learn a quantum algorithm for solving the problem for a given oracle. Remarkably, the learning time is proportional to the square root of the total number of parameters, rather than showing the exponential dependence found in the classical machine learning-based method. (paper)

  3. A strategy for quantum algorithm design assisted by machine learning

    Science.gov (United States)

    Bang, Jeongho; Ryu, Junghee; Yoo, Seokwon; Pawłowski, Marcin; Lee, Jinhyoung

    2014-07-01

    We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum-classical hybrid simulator, where a ‘quantum student’ is being taught by a ‘classical teacher’. In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem, assisted by a classical main-feedback system. Our method is applicable for designing quantum oracle-based algorithms. We chose, as a case study, an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using Monte Carlo simulations that our simulator can faithfully learn a quantum algorithm for solving the problem for a given oracle. Remarkably, the learning time is proportional to the square root of the total number of parameters, rather than showing the exponential dependence found in the classical machine learning-based method.

  4. Learning from nature: Nature-inspired algorithms

    DEFF Research Database (Denmark)

    Albeanu, Grigore; Madsen, Henrik; Popentiu-Vladicescu, Florin

    2016-01-01

    .), genetic and evolutionary strategies, artificial immune systems etc. Well-known examples of applications include: aircraft wing design, wind turbine design, bionic car, bullet train, optimal decisions related to traffic, appropriate strategies to survive under a well-adapted immune system etc. Based......During last decade, the nature has inspired researchers to develop new algorithms. The largest collection of nature-inspired algorithms is biology-inspired: swarm intelligence (particle swarm optimization, ant colony optimization, cuckoo search, bees' algorithm, bat algorithm, firefly algorithm etc...... on collective social behaviour of organisms, researchers have developed optimization strategies taking into account not only the individuals, but also groups and environment. However, learning from nature, new classes of approaches can be identified, tested and compared against already available algorithms...

  5. Parallelization of TMVA Machine Learning Algorithms

    CERN Document Server

    Hajili, Mammad

    2017-01-01

    This report reflects my work on Parallelization of TMVA Machine Learning Algorithms integrated to ROOT Data Analysis Framework during summer internship at CERN. The report consists of 4 impor- tant part - data set used in training and validation, algorithms that multiprocessing applied on them, parallelization techniques and re- sults of execution time changes due to number of workers.

  6. Exploitation of linkage learning in evolutionary algorithms

    CERN Document Server

    Chen, Ying-ping

    2010-01-01

    The exploitation of linkage learning is enhancing the performance of evolutionary algorithms. This monograph examines recent progress in linkage learning, with a series of focused technical chapters that cover developments and trends in the field.

  7. Relevance as a metric for evaluating machine learning algorithms

    NARCIS (Netherlands)

    Kota Gopalakrishna, A.; Ozcelebi, T.; Liotta, A.; Lukkien, J.J.

    2013-01-01

    In machine learning, the choice of a learning algorithm that is suitable for the application domain is critical. The performance metric used to compare different algorithms must also reflect the concerns of users in the application domain under consideration. In this work, we propose a novel

  8. Gradient descent learning algorithm overview: a general dynamical systems perspective.

    Science.gov (United States)

    Baldi, P

    1995-01-01

    Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning.

  9. SPATIAL-SPECTRAL CLASSIFICATION BASED ON THE UNSUPERVISED CONVOLUTIONAL SPARSE AUTO-ENCODER FOR HYPERSPECTRAL REMOTE SENSING IMAGERY

    Directory of Open Access Journals (Sweden)

    X. Han

    2016-06-01

    Full Text Available Current hyperspectral remote sensing imagery spatial-spectral classification methods mainly consider concatenating the spectral information vectors and spatial information vectors together. However, the combined spatial-spectral information vectors may cause information loss and concatenation deficiency for the classification task. To efficiently represent the spatial-spectral feature information around the central pixel within a neighbourhood window, the unsupervised convolutional sparse auto-encoder (UCSAE with window-in-window selection strategy is proposed in this paper. Window-in-window selection strategy selects the sub-window spatial-spectral information for the spatial-spectral feature learning and extraction with the sparse auto-encoder (SAE. Convolution mechanism is applied after the SAE feature extraction stage with the SAE features upon the larger outer window. The UCSAE algorithm was validated by two common hyperspectral imagery (HSI datasets – Pavia University dataset and the Kennedy Space Centre (KSC dataset, which shows an improvement over the traditional hyperspectral spatial-spectral classification methods.

  10. Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation

    Science.gov (United States)

    Lacaze, Alberto; Meystel, Michael; Meystel, Alex

    1994-01-01

    This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.

  11. The Livermore Brain: Massive Deep Learning Networks Enabled by High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Barry Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-29

    The proliferation of inexpensive sensor technologies like the ubiquitous digital image sensors has resulted in the collection and sharing of vast amounts of unsorted and unexploited raw data. Companies and governments who are able to collect and make sense of large datasets to help them make better decisions more rapidly will have a competitive advantage in the information era. Machine Learning technologies play a critical role for automating the data understanding process; however, to be maximally effective, useful intermediate representations of the data are required. These representations or “features” are transformations of the raw data into a form where patterns are more easily recognized. Recent breakthroughs in Deep Learning have made it possible to learn these features from large amounts of labeled data. The focus of this project is to develop and extend Deep Learning algorithms for learning features from vast amounts of unlabeled data and to develop the HPC neural network training platform to support the training of massive network models. This LDRD project succeeded in developing new unsupervised feature learning algorithms for images and video and created a scalable neural network training toolkit for HPC. Additionally, this LDRD helped create the world’s largest freely-available image and video dataset supporting open multimedia research and used this dataset for training our deep neural networks. This research helped LLNL capture several work-for-others (WFO) projects, attract new talent, and establish collaborations with leading academic and commercial partners. Finally, this project demonstrated the successful training of the largest unsupervised image neural network using HPC resources and helped establish LLNL leadership at the intersection of Machine Learning and HPC research.

  12. Semi-supervised learning of hyperspectral image segmentation applied to vine tomatoes and table grapes

    Directory of Open Access Journals (Sweden)

    Jeroen van Roy

    2018-03-01

    Full Text Available Nowadays, quality inspection of fruit and vegetables is typically accomplished through visual inspection. Automation of this inspection is desirable to make it more objective. For this, hyperspectral imaging has been identified as a promising technique. When the field of view includes multiple objects, hypercubes should be segmented to assign individual pixels to different objects. Unsupervised and supervised methods have been proposed. While the latter are labour intensive as they require masking of the training images, the former are too computationally intensive for in-line use and may provide different results for different hypercubes. Therefore, a semi-supervised method is proposed to train a computationally efficient segmentation algorithm with minimal human interaction. As a first step, an unsupervised classification model is used to cluster spectra in similar groups. In the second step, a pixel selection algorithm applied to the output of the unsupervised classification is used to build a supervised model which is fast enough for in-line use. To evaluate this approach, it is applied to hypercubes of vine tomatoes and table grapes. After first derivative spectral preprocessing to remove intensity variation due to curvature and gloss effects, the unsupervised models segmented 86.11% of the vine tomato images correctly. Considering overall accuracy, sensitivity, specificity and time needed to segment one hypercube, partial least squares discriminant analysis (PLS-DA was found to be the best choice for in-line use, when using one training image. By adding a second image, the segmentation results improved considerably, yielding an overall accuracy of 96.95% for segmentation of vine tomatoes and 98.52% for segmentation of table grapes, demonstrating the added value of the learning phase in the algorithm.

  13. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.

    Science.gov (United States)

    Leibig, Christian; Wachtler, Thomas; Zeck, Günther

    2016-09-15

    Unsupervised identification of action potentials in multi-channel extracellular recordings, in particular from high-density microelectrode arrays with thousands of sensors, is an unresolved problem. While independent component analysis (ICA) achieves rapid unsupervised sorting, it ignores the convolutive structure of extracellular data, thus limiting the unmixing to a subset of neurons. Here we present a spike sorting algorithm based on convolutive ICA (cICA) to retrieve a larger number of accurately sorted neurons than with instantaneous ICA while accounting for signal overlaps. Spike sorting was applied to datasets with varying signal-to-noise ratios (SNR: 3-12) and 27% spike overlaps, sampled at either 11.5 or 23kHz on 4365 electrodes. We demonstrate how the instantaneity assumption in ICA-based algorithms has to be relaxed in order to improve the spike sorting performance for high-density microelectrode array recordings. Reformulating the convolutive mixture as an instantaneous mixture by modeling several delayed samples jointly is necessary to increase signal-to-noise ratio. Our results emphasize that different cICA algorithms are not equivalent. Spike sorting performance was assessed with ground-truth data generated from experimentally derived templates. The presented spike sorter was able to extract ≈90% of the true spike trains with an error rate below 2%. It was superior to two alternative (c)ICA methods (≈80% accurately sorted neurons) and comparable to a supervised sorting. Our new algorithm represents a fast solution to overcome the current bottleneck in spike sorting of large datasets generated by simultaneous recording with thousands of electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Machine learning in cardiovascular medicine: are we there yet?

    Science.gov (United States)

    Shameer, Khader; Johnson, Kipp W; Glicksberg, Benjamin S; Dudley, Joel T; Sengupta, Partho P

    2018-01-19

    Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Unsupervised Image Segmentation

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Mikeš, Stanislav

    2014-01-01

    Roč. 36, č. 4 (2014), s. 23-23 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : unsupervised image segmentation Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2014/RO/haindl-0434412.pdf

  16. Teaching learning based optimization algorithm and its engineering applications

    CERN Document Server

    Rao, R Venkata

    2016-01-01

    Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.

  17. A distributed algorithm for machine learning

    Science.gov (United States)

    Chen, Shihong

    2018-04-01

    This paper considers a distributed learning problem in which a group of machines in a connected network, each learning its own local dataset, aim to reach a consensus at an optimal model, by exchanging information only with their neighbors but without transmitting data. A distributed algorithm is proposed to solve this problem under appropriate assumptions.

  18. An Embodied Multi-Sensor Fusion Approach to Visual Motion Estimation Using Unsupervised Deep Networks.

    Science.gov (United States)

    Shamwell, E Jared; Nothwang, William D; Perlis, Donald

    2018-05-04

    Aimed at improving size, weight, and power (SWaP)-constrained robotic vision-aided state estimation, we describe our unsupervised, deep convolutional-deconvolutional sensor fusion network, Multi-Hypothesis DeepEfference (MHDE). MHDE learns to intelligently combine noisy heterogeneous sensor data to predict several probable hypotheses for the dense, pixel-level correspondence between a source image and an unseen target image. We show how our multi-hypothesis formulation provides increased robustness against dynamic, heteroscedastic sensor and motion noise by computing hypothesis image mappings and predictions at 76⁻357 Hz depending on the number of hypotheses being generated. MHDE fuses noisy, heterogeneous sensory inputs using two parallel, inter-connected architectural pathways and n (1⁻20 in this work) multi-hypothesis generating sub-pathways to produce n global correspondence estimates between a source and a target image. We evaluated MHDE on the KITTI Odometry dataset and benchmarked it against the vision-only DeepMatching and Deformable Spatial Pyramids algorithms and were able to demonstrate a significant runtime decrease and a performance increase compared to the next-best performing method.

  19. Automatic learning algorithm for the MD-logic artificial pancreas system.

    Science.gov (United States)

    Miller, Shahar; Nimri, Revital; Atlas, Eran; Grunberg, Eli A; Phillip, Moshe

    2011-10-01

    Applying real-time learning into an artificial pancreas system could effectively track the unpredictable behavior of glucose-insulin dynamics and adjust insulin treatment accordingly. We describe a novel learning algorithm and its performance when integrated into the MD-Logic Artificial Pancreas (MDLAP) system developed by the Diabetes Technology Center, Schneider Children's Medical Center of Israel, Petah Tikva, Israel. The algorithm was designed to establish an initial patient profile using open-loop data (Initial Learning Algorithm component) and then make periodic adjustments during closed-loop operation (Runtime Learning Algorithm component). The MDLAP system, integrated with the learning algorithm, was tested in seven different experiments using the University of Virginia/Padova simulator, comprising adults, adolescents, and children. The experiments included simulations using the open-loop and closed-loop control strategy under nominal and varying insulin sensitivity conditions. The learning algorithm was automatically activated at the end of the open-loop segment and after every day of the closed-loop operation. Metabolic control parameters achieved at selected time points were compared. The percentage of time glucose levels were maintained within 70-180 mg/dL for children and adolescents significantly improved when open-loop was compared with day 6 of closed-loop control (Psignificantly reduced by approximately sevenfold (Psignificant reduction in the Low Blood Glucose Index (P<0.001). The new algorithm was effective in characterizing the patient profiles from open-loop data and in adjusting treatment to provide better glycemic control during closed-loop control in both conditions. These findings warrant corroboratory clinical trials.

  20. Unsupervised grammar induction of clinical report sublanguage

    Directory of Open Access Journals (Sweden)

    Kate Rohit J

    2012-10-01

    Full Text Available Abstract Background Clinical reports are written using a subset of natural language while employing many domain-specific terms; such a language is also known as a sublanguage for a scientific or a technical domain. Different genres of clinical reports use different sublaguages, and in addition, different medical facilities use different medical language conventions. This makes supervised training of a parser for clinical sentences very difficult as it would require expensive annotation effort to adapt to every type of clinical text. Methods In this paper, we present an unsupervised method which automatically induces a grammar and a parser for the sublanguage of a given genre of clinical reports from a corpus with no annotations. In order to capture sentence structures specific to clinical domains, the grammar is induced in terms of semantic classes of clinical terms in addition to part-of-speech tags. Our method induces grammar by minimizing the combined encoding cost of the grammar and the corresponding sentence derivations. The probabilities for the productions of the induced grammar are then learned from the unannotated corpus using an instance of the expectation-maximization algorithm. Results Our experiments show that the induced grammar is able to parse novel sentences. Using a dataset of discharge summary sentences with no annotations, our method obtains 60.5% F-measure for parse-bracketing on sentences of maximum length 10. By varying a parameter, the method can induce a range of grammars, from very specific to very general, and obtains the best performance in between the two extremes.

  1. Unsupervised grammar induction of clinical report sublanguage.

    Science.gov (United States)

    Kate, Rohit J

    2012-10-05

    Clinical reports are written using a subset of natural language while employing many domain-specific terms; such a language is also known as a sublanguage for a scientific or a technical domain. Different genres of clinical reports use different sublaguages, and in addition, different medical facilities use different medical language conventions. This makes supervised training of a parser for clinical sentences very difficult as it would require expensive annotation effort to adapt to every type of clinical text. In this paper, we present an unsupervised method which automatically induces a grammar and a parser for the sublanguage of a given genre of clinical reports from a corpus with no annotations. In order to capture sentence structures specific to clinical domains, the grammar is induced in terms of semantic classes of clinical terms in addition to part-of-speech tags. Our method induces grammar by minimizing the combined encoding cost of the grammar and the corresponding sentence derivations. The probabilities for the productions of the induced grammar are then learned from the unannotated corpus using an instance of the expectation-maximization algorithm. Our experiments show that the induced grammar is able to parse novel sentences. Using a dataset of discharge summary sentences with no annotations, our method obtains 60.5% F-measure for parse-bracketing on sentences of maximum length 10. By varying a parameter, the method can induce a range of grammars, from very specific to very general, and obtains the best performance in between the two extremes.

  2. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update.

    Science.gov (United States)

    Lotte, F; Bougrain, L; Cichocki, A; Clerc, M; Congedo, M; Rakotomamonjy, A; Yger, F

    2018-06-01

    Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.

  3. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update

    Science.gov (United States)

    Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F.

    2018-06-01

    Objective. Most current electroencephalography (EEG)-based brain–computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. Approach. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. Main results. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. Significance. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges

  4. Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System

    Science.gov (United States)

    Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang

    2018-03-01

    Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.

  5. An Educational System for Learning Search Algorithms and Automatically Assessing Student Performance

    Science.gov (United States)

    Grivokostopoulou, Foteini; Perikos, Isidoros; Hatzilygeroudis, Ioannis

    2017-01-01

    In this paper, first we present an educational system that assists students in learning and tutors in teaching search algorithms, an artificial intelligence topic. Learning is achieved through a wide range of learning activities. Algorithm visualizations demonstrate the operational functionality of algorithms according to the principles of active…

  6. Unsupervised categorization with individuals diagnosed as having moderate traumatic brain injury: Over-selective responding.

    Science.gov (United States)

    Edwards, Darren J; Wood, Rodger

    2016-01-01

    This study explored over-selectivity (executive dysfunction) using a standard unsupervised categorization task. Over-selectivity has been demonstrated using supervised categorization procedures (where training is given); however, little has been done in the way of unsupervised categorization (without training). A standard unsupervised categorization task was used to assess levels of over-selectivity in a traumatic brain injury (TBI) population. Individuals with TBI were selected from the Tertiary Traumatic Brain Injury Clinic at Swansea University and were asked to categorize two-dimensional items (pictures on cards), into groups that they felt were most intuitive, and without any learning (feedback from experimenter). This was compared against categories made by a control group for the same task. The findings of this study demonstrate that individuals with TBI had deficits for both easy and difficult categorization sets, as indicated by a larger amount of one-dimensional sorting compared to control participants. Deficits were significantly greater for the easy condition. The implications of these findings are discussed in the context of over-selectivity, and the processes that underlie this deficit. Also, the implications for using this procedure as a screening measure for over-selectivity in TBI are discussed.

  7. Unsupervised action classification using space-time link analysis

    DEFF Research Database (Denmark)

    Liu, Haowei; Feris, Rogerio; Krüger, Volker

    2010-01-01

    In this paper we address the problem of unsupervised discovery of action classes in video data. Different from all existing methods thus far proposed for this task, we present a space-time link analysis approach which matches the performance of traditional unsupervised action categorization metho...

  8. Machine-Learning Algorithms to Code Public Health Spending Accounts.

    Science.gov (United States)

    Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David

    Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.

  9. Supervised Machine Learning for Regionalization of Environmental Data: Distribution of Uranium in Groundwater in Ukraine

    Science.gov (United States)

    Govorov, Michael; Gienko, Gennady; Putrenko, Viktor

    2018-05-01

    In this paper, several supervised machine learning algorithms were explored to define homogeneous regions of con-centration of uranium in surface waters in Ukraine using multiple environmental parameters. The previous study was focused on finding the primary environmental parameters related to uranium in ground waters using several methods of spatial statistics and unsupervised classification. At this step, we refined the regionalization using Artifi-cial Neural Networks (ANN) techniques including Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Convolutional Neural Network (CNN). The study is focused on building local ANN models which may significantly improve the prediction results of machine learning algorithms by taking into considerations non-stationarity and autocorrelation in spatial data.

  10. Class imbalance in unsupervised change detection - A diagnostic analysis from urban remote sensing

    Science.gov (United States)

    Leichtle, Tobias; Geiß, Christian; Lakes, Tobia; Taubenböck, Hannes

    2017-08-01

    Automatic monitoring of changes on the Earth's surface is an intrinsic capability and simultaneously a persistent methodological challenge in remote sensing, especially regarding imagery with very-high spatial resolution (VHR) and complex urban environments. In order to enable a high level of automatization, the change detection problem is solved in an unsupervised way to alleviate efforts associated with collection of properly encoded prior knowledge. In this context, this paper systematically investigates the nature and effects of class distribution and class imbalance in an unsupervised binary change detection application based on VHR imagery over urban areas. For this purpose, a diagnostic framework for sensitivity analysis of a large range of possible degrees of class imbalance is presented, which is of particular importance with respect to unsupervised approaches where the content of images and thus the occurrence and the distribution of classes are generally unknown a priori. Furthermore, this framework can serve as a general technique to evaluate model transferability in any two-class classification problem. The applied change detection approach is based on object-based difference features calculated from VHR imagery and subsequent unsupervised two-class clustering using k-means, genetic k-means and self-organizing map (SOM) clustering. The results from two test sites with different structural characteristics of the built environment demonstrated that classification performance is generally worse in imbalanced class distribution settings while best results were reached in balanced or close to balanced situations. Regarding suitable accuracy measures for evaluating model performance in imbalanced settings, this study revealed that the Kappa statistics show significant response to class distribution while the true skill statistic was widely insensitive to imbalanced classes. In general, the genetic k-means clustering algorithm achieved the most robust results

  11. Improving Layman Readability of Clinical Narratives with Unsupervised Synonym Replacement.

    Science.gov (United States)

    Moen, Hans; Peltonen, Laura-Maria; Koivumäki, Mikko; Suhonen, Henry; Salakoski, Tapio; Ginter, Filip; Salanterä, Sanna

    2018-01-01

    We report on the development and evaluation of a prototype tool aimed to assist laymen/patients in understanding the content of clinical narratives. The tool relies largely on unsupervised machine learning applied to two large corpora of unlabeled text - a clinical corpus and a general domain corpus. A joint semantic word-space model is created for the purpose of extracting easier to understand alternatives for words considered difficult to understand by laymen. Two domain experts evaluate the tool and inter-rater agreement is calculated. When having the tool suggest ten alternatives to each difficult word, it suggests acceptable lay words for 55.51% of them. This and future manual evaluation will serve to further improve performance, where also supervised machine learning will be used.

  12. Unsupervised Performance Evaluation of Image Segmentation

    Directory of Open Access Journals (Sweden)

    Chabrier Sebastien

    2006-01-01

    Full Text Available We present in this paper a study of unsupervised evaluation criteria that enable the quantification of the quality of an image segmentation result. These evaluation criteria compute some statistics for each region or class in a segmentation result. Such an evaluation criterion can be useful for different applications: the comparison of segmentation results, the automatic choice of the best fitted parameters of a segmentation method for a given image, or the definition of new segmentation methods by optimization. We first present the state of art of unsupervised evaluation, and then, we compare six unsupervised evaluation criteria. For this comparative study, we use a database composed of 8400 synthetic gray-level images segmented in four different ways. Vinet's measure (correct classification rate is used as an objective criterion to compare the behavior of the different criteria. Finally, we present the experimental results on the segmentation evaluation of a few gray-level natural images.

  13. Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer

    Science.gov (United States)

    Ruske, Simon; Topping, David O.; Foot, Virginia E.; Kaye, Paul H.; Stanley, Warren R.; Crawford, Ian; Morse, Andrew P.; Gallagher, Martin W.

    2017-03-01

    Characterisation of bioaerosols has important implications within environment and public health sectors. Recent developments in ultraviolet light-induced fluorescence (UV-LIF) detectors such as the Wideband Integrated Bioaerosol Spectrometer (WIBS) and the newly introduced Multiparameter Bioaerosol Spectrometer (MBS) have allowed for the real-time collection of fluorescence, size and morphology measurements for the purpose of discriminating between bacteria, fungal spores and pollen.This new generation of instruments has enabled ever larger data sets to be compiled with the aim of studying more complex environments. In real world data sets, particularly those from an urban environment, the population may be dominated by non-biological fluorescent interferents, bringing into question the accuracy of measurements of quantities such as concentrations. It is therefore imperative that we validate the performance of different algorithms which can be used for the task of classification.For unsupervised learning we tested hierarchical agglomerative clustering with various different linkages. For supervised learning, 11 methods were tested, including decision trees, ensemble methods (random forests, gradient boosting and AdaBoost), two implementations for support vector machines (libsvm and liblinear) and Gaussian methods (Gaussian naïve Bayesian, quadratic and linear discriminant analysis, the k-nearest neighbours algorithm and artificial neural networks).The methods were applied to two different data sets produced using the new MBS, which provides multichannel UV-LIF fluorescence signatures for single airborne biological particles. The first data set contained mixed PSLs and the second contained a variety of laboratory-generated aerosol.Clustering in general performs slightly worse than the supervised learning methods, correctly classifying, at best, only 67. 6 and 91. 1 % for the two data sets respectively. For supervised learning the gradient boosting algorithm was

  14. A Comparison of the Effects of K-Anonymity on Machine Learning Algorithms

    OpenAIRE

    Hayden Wimmer; Loreen Powell

    2014-01-01

    While research has been conducted in machine learning algorithms and in privacy preserving in data mining (PPDM), a gap in the literature exists which combines the aforementioned areas to determine how PPDM affects common machine learning algorithms. The aim of this research is to narrow this literature gap by investigating how a common PPDM algorithm, K-Anonymity, affects common machine learning and data mining algorithms, namely neural networks, logistic regression, decision trees, and Baye...

  15. Cascade Error Projection: An Efficient Hardware Learning Algorithm

    Science.gov (United States)

    Duong, T. A.

    1995-01-01

    A new learning algorithm termed cascade error projection (CEP) is presented. CEP is an adaption of a constructive architecture from cascade correlation and the dynamical stepsize of A/D conversion from the cascade back propagation algorithm.

  16. Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.

    Science.gov (United States)

    Hansen, Mirko; Zahari, Finn; Ziegler, Martin; Kohlstedt, Hermann

    2017-01-01

    The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al 2 O 3 /Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al 2 O 3 tunnel barrier and a 2.5 mm thick Nb x O y memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong I - V non-linearity might avoid the need for selector devices in crossbar array structures.

  17. Online learning algorithm for ensemble of decision rules

    KAUST Repository

    Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2011-01-01

    We describe an online learning algorithm that builds a system of decision rules for a classification problem. Rules are constructed according to the minimum description length principle by a greedy algorithm or using the dynamic programming approach

  18. Learning motor skills from algorithms to robot experiments

    CERN Document Server

    Kober, Jens

    2014-01-01

    This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters, and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation, and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author’s doctoral thesis, which wo...

  19. Algorithm-Dependent Generalization Bounds for Multi-Task Learning.

    Science.gov (United States)

    Liu, Tongliang; Tao, Dacheng; Song, Mingli; Maybank, Stephen J

    2017-02-01

    Often, tasks are collected for multi-task learning (MTL) because they share similar feature structures. Based on this observation, in this paper, we present novel algorithm-dependent generalization bounds for MTL by exploiting the notion of algorithmic stability. We focus on the performance of one particular task and the average performance over multiple tasks by analyzing the generalization ability of a common parameter that is shared in MTL. When focusing on one particular task, with the help of a mild assumption on the feature structures, we interpret the function of the other tasks as a regularizer that produces a specific inductive bias. The algorithm for learning the common parameter, as well as the predictor, is thereby uniformly stable with respect to the domain of the particular task and has a generalization bound with a fast convergence rate of order O(1/n), where n is the sample size of the particular task. When focusing on the average performance over multiple tasks, we prove that a similar inductive bias exists under certain conditions on the feature structures. Thus, the corresponding algorithm for learning the common parameter is also uniformly stable with respect to the domains of the multiple tasks, and its generalization bound is of the order O(1/T), where T is the number of tasks. These theoretical analyses naturally show that the similarity of feature structures in MTL will lead to specific regularizations for predicting, which enables the learning algorithms to generalize fast and correctly from a few examples.

  20. Unsupervised detection of salt marsh platforms: a topographic method

    Science.gov (United States)

    Goodwin, Guillaume C. H.; Mudd, Simon M.; Clubb, Fiona J.

    2018-03-01

    perimeter. This suggests our method may benefit from combination with existing creek detection algorithms. Fallen blocks and high tidal flat portions, associated with potential pioneer zones, can also lead to differences between our method and supervised mapping. Although pioneer zones prove difficult to classify using a topographic method, we suggest that these transition areas should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.

  1. Unsupervised detection of salt marsh platforms: a topographic method

    Directory of Open Access Journals (Sweden)

    G. C. H. Goodwin

    2018-03-01

    and overall platform perimeter. This suggests our method may benefit from combination with existing creek detection algorithms. Fallen blocks and high tidal flat portions, associated with potential pioneer zones, can also lead to differences between our method and supervised mapping. Although pioneer zones prove difficult to classify using a topographic method, we suggest that these transition areas should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.

  2. Image Super-Resolution Algorithm Based on an Improved Sparse Autoencoder

    Directory of Open Access Journals (Sweden)

    Detian Huang

    2018-01-01

    Full Text Available Due to the limitations of the resolution of the imaging system and the influence of scene changes and other factors, sometimes only low-resolution images can be acquired, which cannot satisfy the practical application’s requirements. To improve the quality of low-resolution images, a novel super-resolution algorithm based on an improved sparse autoencoder is proposed. Firstly, in the training set preprocessing stage, the high- and low-resolution image training sets are constructed, respectively, by using high-frequency information of the training samples as the characterization, and then the zero-phase component analysis whitening technique is utilized to decorrelate the formed joint training set to reduce its redundancy. Secondly, a constructed sparse regularization term is added to the cost function of the traditional sparse autoencoder to further strengthen the sparseness constraint on the hidden layer. Finally, in the dictionary learning stage, the improved sparse autoencoder is adopted to achieve unsupervised dictionary learning to improve the accuracy and stability of the dictionary. Experimental results validate that the proposed algorithm outperforms the existing algorithms both in terms of the subjective visual perception and the objective evaluation indices, including the peak signal-to-noise ratio and the structural similarity measure.

  3. The impact of initialization procedures on unsupervised unmixing of hyperspectral imagery using the constrained positive matrix factorization

    Science.gov (United States)

    Masalmah, Yahya M.; Vélez-Reyes, Miguel

    2007-04-01

    The authors proposed in previous papers the use of the constrained Positive Matrix Factorization (cPMF) to perform unsupervised unmixing of hyperspectral imagery. Two iterative algorithms were proposed to compute the cPMF based on the Gauss-Seidel and penalty approaches to solve optimization problems. Results presented in previous papers have shown the potential of the proposed method to perform unsupervised unmixing in HYPERION and AVIRIS imagery. The performance of iterative methods is highly dependent on the initialization scheme. Good initialization schemes can improve convergence speed, whether or not a global minimum is found, and whether or not spectra with physical relevance are retrieved as endmembers. In this paper, different initializations using random selection, longest norm pixels, and standard endmembers selection routines are studied and compared using simulated and real data.

  4. An Improved Fuzzy C-Means Algorithm for the Implementation of Demand Side Management Measures

    Directory of Open Access Journals (Sweden)

    Ioannis Panapakidis

    2017-09-01

    Full Text Available Load profiling refers to a procedure that leads to the formulation of daily load curves and consumer classes regarding the similarity of the curve shapes. This procedure incorporates a set of unsupervised machine learning algorithms. While many crisp clustering algorithms have been proposed for grouping load curves into clusters, only one soft clustering algorithm is utilized for the aforementioned purpose, namely the Fuzzy C-Means (FCM algorithm. Since the benefits of soft clustering are demonstrated in a variety of applications, the potential of introducing a novel modification of the FCM in the electricity consumer clustering process is examined. Additionally, this paper proposes a novel Demand Side Management (DSM strategy for load management of consumers that are eligible for the implementation of Real-Time Pricing (RTP schemes. The DSM strategy is formulated as a constrained optimization problem that can be easily solved and therefore, making it a useful tool for retailers’ decision-making framework in competitive electricity markets.

  5. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    Science.gov (United States)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  6. Generalized SMO algorithm for SVM-based multitask learning.

    Science.gov (United States)

    Cai, Feng; Cherkassky, Vladimir

    2012-06-01

    Exploiting additional information to improve traditional inductive learning is an active research area in machine learning. In many supervised-learning applications, training data can be naturally separated into several groups, and incorporating this group information into learning may improve generalization. Recently, Vapnik proposed a general approach to formalizing such problems, known as "learning with structured data" and its support vector machine (SVM) based optimization formulation called SVM+. Liang and Cherkassky showed the connection between SVM+ and multitask learning (MTL) approaches in machine learning, and proposed an SVM-based formulation for MTL called SVM+MTL for classification. Training the SVM+MTL classifier requires the solution of a large quadratic programming optimization problem which scales as O(n(3)) with sample size n. So there is a need to develop computationally efficient algorithms for implementing SVM+MTL. This brief generalizes Platt's sequential minimal optimization (SMO) algorithm to the SVM+MTL setting. Empirical results show that, for typical SVM+MTL problems, the proposed generalized SMO achieves over 100 times speed-up, in comparison with general-purpose optimization routines.

  7. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    Science.gov (United States)

    2011-09-01

    SNP Array v2. A ‘proof-of-concept’ advanced data mining algorithm for unsupervised analysis of genome-wide association study (GWAS) dataset was... Opal F AUS Yes U141 Peggs F AUS Yes U142 Taxi F AUS Yes U143 Riso MI MAL Yes U144 Szarik MI GSD Yes U145 Astor MI MAL Yes U146 Roy MC MAL Yes... mining of genetic studies in general, and especially GWAS. As a proof-of-concept, a classification analysis of the WG SNP typing dataset of a

  8. Evolutionary Pseudo-Relaxation Learning Algorithm for Bidirectional Associative Memory

    Institute of Scientific and Technical Information of China (English)

    Sheng-Zhi Du; Zeng-Qiang Chen; Zhu-Zhi Yuan

    2005-01-01

    This paper analyzes the sensitivity to noise in BAM (Bidirectional Associative Memory), and then proves the noise immunity of BAM relates not only to the minimum absolute value of net inputs (MAV) but also to the variance of weights associated with synapse connections. In fact, it is a positive monotonically increasing function of the quotient of MAV divided by the variance of weights. Besides, the performance of pseudo-relaxation method depends on learning parameters (λ and ζ), but the relation of them is not linear. So it is hard to find a best combination of λ and ζ which leads to the best BAM performance. And it is obvious that pseudo-relaxation is a kind of local optimization method, so it cannot guarantee to get the global optimal solution. In this paper, a novel learning algorithm EPRBAM (evolutionary psendo-relaxation learning algorithm for bidirectional association memory) employing genetic algorithm and pseudo-relaxation method is proposed to get feasible solution of BAM weight matrix. This algorithm uses the quotient as the fitness of each individual and employs pseudo-relaxation method to adjust individual solution when it does not satisfy constraining condition any more after genetic operation. Experimental results show this algorithm improves noise immunity of BAM greatly. At the same time, EPRBAM does not depend on learning parameters and can get global optimal solution.

  9. Online learning algorithm for ensemble of decision rules

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    We describe an online learning algorithm that builds a system of decision rules for a classification problem. Rules are constructed according to the minimum description length principle by a greedy algorithm or using the dynamic programming approach. © 2011 Springer-Verlag.

  10. Performance analysis of alpha divergence in nonnegative matrix ...

    African Journals Online (AJOL)

    user

    The paper also looks into the performance of the algorithm as important ... a larger framework of the class of unsupervised learning algorithms used in estimation of ...... His major research interests are Signal Processing, Machine Learning and.

  11. Model–Free Visualization of Suspicious Lesions in Breast MRI Based on Supervised and Unsupervised Learning

    NARCIS (Netherlands)

    Twellmann, T.; Meyer-Bäse, A.; Lange, O.; Foo, S.; Nattkemper, T.W.

    2008-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition

  12. An Improved Brain-Inspired Emotional Learning Algorithm for Fast Classification

    Directory of Open Access Journals (Sweden)

    Ying Mei

    2017-06-01

    Full Text Available Classification is an important task of machine intelligence in the field of information. The artificial neural network (ANN is widely used for classification. However, the traditional ANN shows slow training speed, and it is hard to meet the real-time requirement for large-scale applications. In this paper, an improved brain-inspired emotional learning (BEL algorithm is proposed for fast classification. The BEL algorithm was put forward to mimic the high speed of the emotional learning mechanism in mammalian brain, which has the superior features of fast learning and low computational complexity. To improve the accuracy of BEL in classification, the genetic algorithm (GA is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in the BEL neural network. The combinational algorithm named as GA-BEL has been tested on eight University of California at Irvine (UCI datasets and two well-known databases (Japanese Female Facial Expression, Cohn–Kanade. The comparisons of experiments indicate that the proposed GA-BEL is more accurate than the original BEL algorithm, and it is much faster than the traditional algorithm.

  13. Unsupervised Condition Change Detection In Large Diesel Engines

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2003-01-01

    This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can be investig...... be investigated further. The method is successfully applied to unsupervised condition change detection in large diesel engines from acoustical emission sensor signal and compared to more classical techniques based on principal component analysis and Gaussian mixture models.......This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can...

  14. Content-Based High-Resolution Remote Sensing Image Retrieval via Unsupervised Feature Learning and Collaborative Affinity Metric Fusion

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2016-08-01

    Full Text Available With the urgent demand for automatic management of large numbers of high-resolution remote sensing images, content-based high-resolution remote sensing image retrieval (CB-HRRS-IR has attracted much research interest. Accordingly, this paper proposes a novel high-resolution remote sensing image retrieval approach via multiple feature representation and collaborative affinity metric fusion (IRMFRCAMF. In IRMFRCAMF, we design four unsupervised convolutional neural networks with different layers to generate four types of unsupervised features from the fine level to the coarse level. In addition to these four types of unsupervised features, we also implement four traditional feature descriptors, including local binary pattern (LBP, gray level co-occurrence (GLCM, maximal response 8 (MR8, and scale-invariant feature transform (SIFT. In order to fully incorporate the complementary information among multiple features of one image and the mutual information across auxiliary images in the image dataset, this paper advocates collaborative affinity metric fusion to measure the similarity between images. The performance evaluation of high-resolution remote sensing image retrieval is implemented on two public datasets, the UC Merced (UCM dataset and the Wuhan University (WH dataset. Large numbers of experiments show that our proposed IRMFRCAMF can significantly outperform the state-of-the-art approaches.

  15. A new evolutionary algorithm with LQV learning for combinatorial problems optimization

    International Nuclear Information System (INIS)

    Machado, Marcelo Dornellas; Schirru, Roberto

    2000-01-01

    Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for combinatorial problems optimization. In this work, a new learning mode, to be used by the population-based incremental learning algorithm, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process known as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors, in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problems. Due to the fact that the reload problem is a combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)

  16. Some chaotic behaviors in a MCA learning algorithm with a constant learning rate

    International Nuclear Information System (INIS)

    Lv Jiancheng; Yi Zhang

    2007-01-01

    Douglas's minor component analysis algorithm with a constant learning rate has both stability and chaotic dynamical behavior under some conditions. The paper explores such dynamical behavior of this algorithm. Certain stability and chaos of this algorithm are derived. Waveform plots, Lyapunov exponents and bifurcation diagrams are presented to illustrate the existence of chaotic behavior

  17. A parallel ILP algorithm that incorporates incremental batch learning

    OpenAIRE

    Nuno Fonseca; Rui Camacho; Fernado Silva

    2003-01-01

    In this paper we tackle the problems of eciency and scala-bility faced by Inductive Logic Programming (ILP) systems. We proposethe use of parallelism to improve eciency and the use of an incrementalbatch learning to address the scalability problem. We describe a novelparallel algorithm that incorporates into ILP the method of incremen-tal batch learning. The theoretical complexity of the algorithm indicatesthat a linear speedup can be achieved.

  18. Image Denoising Algorithm Combined with SGK Dictionary Learning and Principal Component Analysis Noise Estimation

    Directory of Open Access Journals (Sweden)

    Wenjing Zhao

    2018-01-01

    Full Text Available SGK (sequential generalization of K-means dictionary learning denoising algorithm has the characteristics of fast denoising speed and excellent denoising performance. However, the noise standard deviation must be known in advance when using SGK algorithm to process the image. This paper presents a denoising algorithm combined with SGK dictionary learning and the principal component analysis (PCA noise estimation. At first, the noise standard deviation of the image is estimated by using the PCA noise estimation algorithm. And then it is used for SGK dictionary learning algorithm. Experimental results show the following: (1 The SGK algorithm has the best denoising performance compared with the other three dictionary learning algorithms. (2 The SGK algorithm combined with PCA is superior to the SGK algorithm combined with other noise estimation algorithms. (3 Compared with the original SGK algorithm, the proposed algorithm has higher PSNR and better denoising performance.

  19. A new web-based system for unsupervised classification of satellite images from the Google Maps engine

    Science.gov (United States)

    Ferrán, Ángel; Bernabé, Sergio; García-Rodríguez, Pablo; Plaza, Antonio

    2012-10-01

    In this paper, we develop a new web-based system for unsupervised classification of satellite images available from the Google Maps engine. The system has been developed using the Google Maps API and incorporates functionalities such as unsupervised classification of image portions selected by the user (at the desired zoom level). For this purpose, we use a processing chain made up of the well-known ISODATA and k-means algorithms, followed by spatial post-processing based on majority voting. The system is currently hosted on a high performance server which performs the execution of classification algorithms and returns the obtained classification results in a very efficient way. The previous functionalities are necessary to use efficient techniques for the classification of images and the incorporation of content-based image retrieval (CBIR). Several experimental validation types of the classification results with the proposed system are performed by comparing the classification accuracy of the proposed chain by means of techniques available in the well-known Environment for Visualizing Images (ENVI) software package. The server has access to a cluster of commodity graphics processing units (GPUs), hence in future work we plan to perform the processing in parallel by taking advantage of the cluster.

  20. Using an improved association rules mining optimization algorithm in web-based mobile-learning system

    Science.gov (United States)

    Huang, Yin; Chen, Jianhua; Xiong, Shaojun

    2009-07-01

    Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.

  1. Alternatively Constrained Dictionary Learning For Image Superresolution.

    Science.gov (United States)

    Lu, Xiaoqiang; Yuan, Yuan; Yan, Pingkun

    2014-03-01

    Dictionaries are crucial in sparse coding-based algorithm for image superresolution. Sparse coding is a typical unsupervised learning method to study the relationship between the patches of high-and low-resolution images. However, most of the sparse coding methods for image superresolution fail to simultaneously consider the geometrical structure of the dictionary and the corresponding coefficients, which may result in noticeable superresolution reconstruction artifacts. In other words, when a low-resolution image and its corresponding high-resolution image are represented in their feature spaces, the two sets of dictionaries and the obtained coefficients have intrinsic links, which has not yet been well studied. Motivated by the development on nonlocal self-similarity and manifold learning, a novel sparse coding method is reported to preserve the geometrical structure of the dictionary and the sparse coefficients of the data. Moreover, the proposed method can preserve the incoherence of dictionary entries and provide the sparse coefficients and learned dictionary from a new perspective, which have both reconstruction and discrimination properties to enhance the learning performance. Furthermore, to utilize the model of the proposed method more effectively for single-image superresolution, this paper also proposes a novel dictionary-pair learning method, which is named as two-stage dictionary training. Extensive experiments are carried out on a large set of images comparing with other popular algorithms for the same purpose, and the results clearly demonstrate the effectiveness of the proposed sparse representation model and the corresponding dictionary learning algorithm.

  2. An analysis dictionary learning algorithm under a noisy data model with orthogonality constraint.

    Science.gov (United States)

    Zhang, Ye; Yu, Tenglong; Wang, Wenwu

    2014-01-01

    Two common problems are often encountered in analysis dictionary learning (ADL) algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is high), as represented by the Analysis K-SVD (AK-SVD) algorithm. The other problem is the trivial solution to the dictionary, for example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete sparsifying transform (LOST) algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the original signals (leading to a fast optimization procedure) and enforce an orthogonality constraint on the optimization criterion to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms.

  3. An Analysis Dictionary Learning Algorithm under a Noisy Data Model with Orthogonality Constraint

    Directory of Open Access Journals (Sweden)

    Ye Zhang

    2014-01-01

    Full Text Available Two common problems are often encountered in analysis dictionary learning (ADL algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is high, as represented by the Analysis K-SVD (AK-SVD algorithm. The other problem is the trivial solution to the dictionary, for example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete sparsifying transform (LOST algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the original signals (leading to a fast optimization procedure and enforce an orthogonality constraint on the optimization criterion to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms.

  4. STDP-based behavior learning on the TriBot robot

    Science.gov (United States)

    Arena, P.; De Fiore, S.; Patané, L.; Pollino, M.; Ventura, C.

    2009-05-01

    This paper describes a correlation-based navigation algorithm, based on an unsupervised learning paradigm for spiking neural networks, called Spike Timing Dependent Plasticity (STDP). This algorithm was implemented on a new bio-inspired hybrid mini-robot called TriBot to learn and increase its behavioral capabilities. In fact correlation based algorithms have been found to explain many basic behaviors in simple animals. The main interesting consequence of STDP is that the system is able to learn high-level sensor features, based on a set of basic reflexes, depending on some low-level sensor inputs. TriBot is composed of 3 modules, the first two being identical and inspired by the Whegs hybrid robot. The peculiar characteristics of the robot consists in the innovative shape of the three-spoke appendages that allow to increase stability of the structure. The last module is composed of two standard legs with 3 degrees of freedom each. Thanks to the cooperation among these modules, TriBot is able to face with irregular terrains overcoming potential deadlock situations, to climb high obstacles compared to its size and to manipulate objects. Robot experiments will be reported to demonstrate the potentiality and the effectiveness of the approach.

  5. Dynamic gradient descent learning algorithms for enhanced empirical modeling of power plants

    International Nuclear Information System (INIS)

    Parlos, A.G.; Atiya, Amir; Chong, K.T.

    1991-01-01

    A newly developed dynamic gradient descent-based learning algorithm is used to train a recurrent multilayer perceptron network for use in empirical modeling of power plants. The two main advantages of the proposed learning algorithm are its ability to consider past error gradient information for future use and the two forward passes associated with its implementation, instead of one forward and one backward pass of the backpropagation algorithm. The latter advantage results in computational time saving because both passes can be performed simultaneously. The dynamic learning algorithm is used to train a hybrid feedforward/feedback neural network, a recurrent multilayer perceptron, which was previously found to exhibit good interpolation and extrapolation capabilities in modeling nonlinear dynamic systems. One of the drawbacks, however, of the previously reported work has been the long training times associated with accurate empirical models. The enhanced learning capabilities provided by the dynamic gradient descent-based learning algorithm are demonstrated by a case study of a steam power plant. The number of iterations required for accurate empirical modeling has been reduced from tens of thousands to hundreds, thus significantly expediting the learning process

  6. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means

    Science.gov (United States)

    Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-12-01

    Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.

  7. Towards unsupervised ontology learning from data

    CSIR Research Space (South Africa)

    Klarman, S

    2015-07-01

    Full Text Available from facts [Shapiro, 1981], finite automata descriptions from observations [Pitt, 1989], logic programs from interpretations [De Raedt and Lavracˇ, 1993; De Raedt, 1994]. In the area of DLs, a few learning scenarios have been formally addressed..., concerned largely with learning concept descriptions via different learn- ing operators [Straccia and Mucci, 2015; Lehmann and Hit- zler, 2008; Fanizzi et al., 2008; Cohen and Hirsh, 1994] and applications of formal concept analysis techniques to auto- mated...

  8. Assessment of various supervised learning algorithms using different performance metrics

    Science.gov (United States)

    Susheel Kumar, S. M.; Laxkar, Deepak; Adhikari, Sourav; Vijayarajan, V.

    2017-11-01

    Our work brings out comparison based on the performance of supervised machine learning algorithms on a binary classification task. The supervised machine learning algorithms which are taken into consideration in the following work are namely Support Vector Machine(SVM), Decision Tree(DT), K Nearest Neighbour (KNN), Naïve Bayes(NB) and Random Forest(RF). This paper mostly focuses on comparing the performance of above mentioned algorithms on one binary classification task by analysing the Metrics such as Accuracy, F-Measure, G-Measure, Precision, Misclassification Rate, False Positive Rate, True Positive Rate, Specificity, Prevalence.

  9. DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key Generation.

    Science.gov (United States)

    Kalsi, Shruti; Kaur, Harleen; Chang, Victor

    2017-12-05

    Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don't exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.

  10. Correlates of Unsupervised Bathing of Infants: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Tinneke M. J. Beirens

    2013-03-01

    Full Text Available Drowning represents the third leading cause of fatal unintentional injury in infants (0–1 years. The aim of this study is to investigate correlates of unsupervised bathing. This cross-sectional study included 1,410 parents with an infant. Parents completed a questionnaire regarding supervision during bathing, socio-demographic factors, and Protection Motivation Theory-constructs. To determine correlates of parents who leave their infant unsupervised, logistic regression analyses were performed. Of the parents, 6.2% left their child unsupervised in the bathtub. Parents with older children (OR 1.24; 95%CI 1.00–1.54 were more likely to leave their child unsupervised in the bathtub. First-time parents (OR 0.59; 95%CI 0.36–0.97 and non-Western migrant fathers (OR 0.18; 95%CI 0.05–0.63 were less likely to leave their child unsupervised in the bathtub. Furthermore, parents who perceived higher self-efficacy (OR 0.57; 95%CI 0.47–0.69, higher response efficacy (OR 0.34; 95%CI 0.24–0.48, and higher severity (OR 0.74; 95%CI 0.58–0.93 were less likely to leave their child unsupervised. Since young children are at great risk of drowning if supervision is absent, effective strategies for drowning prevention should be developed and evaluated. In the meantime, health care professionals should inform parents with regard to the importance of supervision during bathing.

  11. Robust Semi-Supervised Manifold Learning Algorithm for Classification

    Directory of Open Access Journals (Sweden)

    Mingxia Chen

    2018-01-01

    Full Text Available In the recent years, manifold learning methods have been widely used in data classification to tackle the curse of dimensionality problem, since they can discover the potential intrinsic low-dimensional structures of the high-dimensional data. Given partially labeled data, the semi-supervised manifold learning algorithms are proposed to predict the labels of the unlabeled points, taking into account label information. However, these semi-supervised manifold learning algorithms are not robust against noisy points, especially when the labeled data contain noise. In this paper, we propose a framework for robust semi-supervised manifold learning (RSSML to address this problem. The noisy levels of the labeled points are firstly predicted, and then a regularization term is constructed to reduce the impact of labeled points containing noise. A new robust semi-supervised optimization model is proposed by adding the regularization term to the traditional semi-supervised optimization model. Numerical experiments are given to show the improvement and efficiency of RSSML on noisy data sets.

  12. Detecting Transitions in Manual Tasks from Wearables: An Unsupervised Labeling Approach

    Directory of Open Access Journals (Sweden)

    Sebastian Böttcher

    2018-03-01

    Full Text Available Authoring protocols for manual tasks such as following recipes, manufacturing processes or laboratory experiments requires significant effort. This paper presents a system that estimates individual procedure transitions from the user’s physical movement and gestures recorded with inertial motion sensors. Combined with egocentric or external video recordings, this facilitates efficient review and annotation of video databases. We investigate different clustering algorithms on wearable inertial sensor data recorded on par with video data, to automatically create transition marks between task steps. The goal is to match these marks to the transitions given in a description of the workflow, thus creating navigation cues to browse video repositories of manual work. To evaluate the performance of unsupervised algorithms, the automatically-generated marks are compared to human expert-created labels on two publicly-available datasets. Additionally, we tested the approach on a novel dataset in a manufacturing lab environment, describing an existing sequential manufacturing process. The results from selected clustering methods are also compared to some supervised methods.

  13. Machine Learning in Production Systems Design Using Genetic Algorithms

    OpenAIRE

    Abu Qudeiri Jaber; Yamamoto Hidehiko Rizauddin Ramli

    2008-01-01

    To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves aw...

  14. MINING ON CAR DATABASE EMPLOYING LEARNING AND CLUSTERING ALGORITHMS

    OpenAIRE

    Muhammad Rukunuddin Ghalib; Shivam Vohra; Sunish Vohra; Akash Juneja

    2013-01-01

    In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the known learning algorithms used are Naïve Bayesian (NB) and SMO (Self-Minimal-Optimisation) .Thus the following two learning algorithms are used on a Car review database and thus a model is hence created which predicts the characteristic of a review comment after getting trained. It was found that model successfully predicted correctly about the review comm...

  15. Unsupervised laparoscopic appendicectomy by surgical trainees is safe and time-effective.

    Science.gov (United States)

    Wong, Kenneth; Duncan, Tristram; Pearson, Andrew

    2007-07-01

    Open appendicectomy is the traditional standard treatment for appendicitis. Laparoscopic appendicectomy is perceived as a procedure with greater potential for complications and longer operative times. This paper examines the hypothesis that unsupervised laparoscopic appendicectomy by surgical trainees is a safe and time-effective valid alternative. Medical records, operating theatre records and histopathology reports of all patients undergoing laparoscopic and open appendicectomy over a 15-month period in two hospitals within an area health service were retrospectively reviewed. Data were analysed to compare patient features, pathology findings, operative times, complications, readmissions and mortality between laparoscopic and open groups and between unsupervised surgical trainee operators versus consultant surgeon operators. A total of 143 laparoscopic and 222 open appendicectomies were reviewed. Unsupervised trainees performed 64% of the laparoscopic appendicectomies and 55% of the open appendicectomies. There were no significant differences in complication rates, readmissions, mortality and length of stay between laparoscopic and open appendicectomy groups or between trainee and consultant surgeon operators. Conversion rates (laparoscopic to open approach) were similar for trainees and consultants. Unsupervised senior surgical trainees did not take significantly longer to perform laparoscopic appendicectomy when compared to unsupervised trainee-performed open appendicectomy. Unsupervised laparoscopic appendicectomy by surgical trainees is safe and time-effective.

  16. AHaH Computing–From Metastable Switches to Attractors to Machine Learning

    Science.gov (United States)

    Nugent, Michael Alexander; Molter, Timothy Wesley

    2014-01-01

    Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures–all key capabilities of biological nervous systems and modern machine learning algorithms with real world application. PMID:24520315

  17. AHaH computing-from metastable switches to attractors to machine learning.

    Directory of Open Access Journals (Sweden)

    Michael Alexander Nugent

    Full Text Available Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures-all key capabilities of biological nervous systems and modern machine learning algorithms with real world application.

  18. A fast and accurate online sequential learning algorithm for feedforward networks.

    Science.gov (United States)

    Liang, Nan-Ying; Huang, Guang-Bin; Saratchandran, P; Sundararajan, N

    2006-11-01

    In this paper, we develop an online sequential learning algorithm for single hidden layer feedforward networks (SLFNs) with additive or radial basis function (RBF) hidden nodes in a unified framework. The algorithm is referred to as online sequential extreme learning machine (OS-ELM) and can learn data one-by-one or chunk-by-chunk (a block of data) with fixed or varying chunk size. The activation functions for additive nodes in OS-ELM can be any bounded nonconstant piecewise continuous functions and the activation functions for RBF nodes can be any integrable piecewise continuous functions. In OS-ELM, the parameters of hidden nodes (the input weights and biases of additive nodes or the centers and impact factors of RBF nodes) are randomly selected and the output weights are analytically determined based on the sequentially arriving data. The algorithm uses the ideas of ELM of Huang et al. developed for batch learning which has been shown to be extremely fast with generalization performance better than other batch training methods. Apart from selecting the number of hidden nodes, no other control parameters have to be manually chosen. Detailed performance comparison of OS-ELM is done with other popular sequential learning algorithms on benchmark problems drawn from the regression, classification and time series prediction areas. The results show that the OS-ELM is faster than the other sequential algorithms and produces better generalization performance.

  19. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    Science.gov (United States)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  20. Using Machine Learning Techniques in the Analysis of Oceanographic Data

    Science.gov (United States)

    Falcinelli, K. E.; Abuomar, S.

    2017-12-01

    Acoustic Doppler Current Profilers (ADCPs) are oceanographic tools capable of collecting large amounts of current profile data. Using unsupervised machine learning techniques such as principal component analysis, fuzzy c-means clustering, and self-organizing maps, patterns and trends in an ADCP dataset are found. Cluster validity algorithms such as visual assessment of cluster tendency and clustering index are used to determine the optimal number of clusters in the ADCP dataset. These techniques prove to be useful in analysis of ADCP data and demonstrate potential for future use in other oceanographic applications.

  1. Fuzzy gain scheduling of velocity PI controller with intelligent learning algorithm for reactor control

    International Nuclear Information System (INIS)

    Kim, Dong Yun

    1997-02-01

    In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate adequate gains, which minimize the error of system. The proposed algorithm can reduce the time and efforts required for obtaining the fuzzy rules through the intelligent learning function. The evolutionary programming algorithm is modified and adopted as the method in order to find the optimal gains which are used as the initial gains of FGS with learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller

  2. Video game for learning and metaphorization of recursive algorithms

    Directory of Open Access Journals (Sweden)

    Ricardo Inacio Alvares Silva

    2013-09-01

    Full Text Available The learning of recursive algorithms in computer programming is problematic, because its execution and resolution is not natural to the thinking way people are trained and used to since young. As with other topics in algorithms, we use metaphors to make parallels between the abstract and the concrete to help in understanding the operation of recursive algorithms. However, the classic metaphors employed in this area, such as calculating factorial recursively and Towers of Hanoi game, may just confuse more or be insufficient. In this work, we produced a computer game to assist students in computer courses in learning recursive algorithms. It was designed to have regular video game characteristics, with narrative and classical gameplay elements, commonly found in this kind of product. Aiding to education occurs through metaphorization, or in other words, through experiences provided by game situations that refer to recursive algorithms. To this end, we designed and imbued in the game four valid metaphors related to the theory, and other minor references to the subject.

  3. Advanced defect detection algorithm using clustering in ultrasonic NDE

    Science.gov (United States)

    Gongzhang, Rui; Gachagan, Anthony

    2016-02-01

    A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.

  4. Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning

    Science.gov (United States)

    Fu, QiMing

    2016-01-01

    To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ 2-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA), respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode. The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform best in terms of convergence rate and sample efficiency. PMID:27795704

  5. Superior Generalization Capability of Hardware-Learing Algorithm Developed for Self-Learning Neuron-MOS Neural Networks

    Science.gov (United States)

    Kondo, Shuhei; Shibata, Tadashi; Ohmi, Tadahiro

    1995-02-01

    We have investigated the learning performance of the hardware backpropagation (HBP) algorithm, a hardware-oriented learning algorithm developed for the self-learning architecture of neural networks constructed using neuron MOS (metal-oxide-semiconductor) transistors. The solution to finding a mirror symmetry axis in a 4×4 binary pixel array was tested by computer simulation based on the HBP algorithm. Despite the inherent restrictions imposed on the hardware-learning algorithm, HBP exhibits equivalent learning performance to that of the original backpropagation (BP) algorithm when all the pertinent parameters are optimized. Very importantly, we have found that HBP has a superior generalization capability over BP; namely, HBP exhibits higher performance in solving problems that the network has not yet learnt.

  6. SVC control enhancement applying self-learning fuzzy algorithm for islanded microgrid

    Directory of Open Access Journals (Sweden)

    Hossam Gabbar

    2016-03-01

    Full Text Available Maintaining voltage stability, within acceptable levels, for islanded Microgrids (MGs is a challenge due to limited exchange power between generation and loads. This paper proposes an algorithm to enhance the dynamic performance of islanded MGs in presence of load disturbance using Static VAR Compensator (SVC with Fuzzy Model Reference Learning Controller (FMRLC. The proposed algorithm compensates MG nonlinearity via fuzzy membership functions and inference mechanism imbedded in both controller and inverse model. Hence, MG keeps the desired performance as required at any operating condition. Furthermore, the self-learning capability of the proposed control algorithm compensates for grid parameter’s variation even with inadequate information about load dynamics. A reference model was designed to reject bus voltage disturbance with achievable performance by the proposed fuzzy controller. Three simulations scenarios have been presented to investigate effectiveness of proposed control algorithm in improving steady-state and transient performance of islanded MGs. The first scenario conducted without SVC, second conducted with SVC using PID controller and third conducted using FMRLC algorithm. A comparison for results shows ability of proposed control algorithm to enhance disturbance rejection due to learning process.

  7. Fuzzy gain scheduling of velocity PI controller with intelligent learning algorithm for reactor control

    International Nuclear Information System (INIS)

    Dong Yun Kim; Poong Hyun Seong; .

    1997-01-01

    In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate gains, which minimize the error of system. The proposed algorithm can reduce the time and effort required for obtaining the fuzzy rules through the intelligent learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller. (author)

  8. Super-resolution reconstruction of MR image with a novel residual learning network algorithm

    Science.gov (United States)

    Shi, Jun; Liu, Qingping; Wang, Chaofeng; Zhang, Qi; Ying, Shihui; Xu, Haoyu

    2018-04-01

    Spatial resolution is one of the key parameters of magnetic resonance imaging (MRI). The image super-resolution (SR) technique offers an alternative approach to improve the spatial resolution of MRI due to its simplicity. Convolutional neural networks (CNN)-based SR algorithms have achieved state-of-the-art performance, in which the global residual learning (GRL) strategy is now commonly used due to its effectiveness for learning image details for SR. However, the partial loss of image details usually happens in a very deep network due to the degradation problem. In this work, we propose a novel residual learning-based SR algorithm for MRI, which combines both multi-scale GRL and shallow network block-based local residual learning (LRL). The proposed LRL module works effectively in capturing high-frequency details by learning local residuals. One simulated MRI dataset and two real MRI datasets have been used to evaluate our algorithm. The experimental results show that the proposed SR algorithm achieves superior performance to all of the other compared CNN-based SR algorithms in this work.

  9. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    Science.gov (United States)

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (pmachine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  10. A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio.

    Science.gov (United States)

    Leung, Henry C M; Yiu, S M; Yang, Bin; Peng, Yu; Wang, Yi; Liu, Zhihua; Chen, Jingchi; Qin, Junjie; Li, Ruiqiang; Chin, Francis Y L

    2011-06-01

    With the rapid development of next-generation sequencing techniques, metagenomics, also known as environmental genomics, has emerged as an exciting research area that enables us to analyze the microbial environment in which we live. An important step for metagenomic data analysis is the identification and taxonomic characterization of DNA fragments (reads or contigs) resulting from sequencing a sample of mixed species. This step is referred to as 'binning'. Binning algorithms that are based on sequence similarity and sequence composition markers rely heavily on the reference genomes of known microorganisms or phylogenetic markers. Due to the limited availability of reference genomes and the bias and low availability of markers, these algorithms may not be applicable in all cases. Unsupervised binning algorithms which can handle fragments from unknown species provide an alternative approach. However, existing unsupervised binning algorithms only work on datasets either with balanced species abundance ratios or rather different abundance ratios, but not both. In this article, we present MetaCluster 3.0, an integrated binning method based on the unsupervised top--down separation and bottom--up merging strategy, which can bin metagenomic fragments of species with very balanced abundance ratios (say 1:1) to very different abundance ratios (e.g. 1:24) with consistently higher accuracy than existing methods. MetaCluster 3.0 can be downloaded at http://i.cs.hku.hk/~alse/MetaCluster/.

  11. Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality.

    Science.gov (United States)

    Braithwaite, Scott R; Giraud-Carrier, Christophe; West, Josh; Barnes, Michael D; Hanson, Carl Lee

    2016-05-16

    One of the leading causes of death in the United States (US) is suicide and new methods of assessment are needed to track its risk in real time. Our objective is to validate the use of machine learning algorithms for Twitter data against empirically validated measures of suicidality in the US population. Using a machine learning algorithm, the Twitter feeds of 135 Mechanical Turk (MTurk) participants were compared with validated, self-report measures of suicide risk. Our findings show that people who are at high suicidal risk can be easily differentiated from those who are not by machine learning algorithms, which accurately identify the clinically significant suicidal rate in 92% of cases (sensitivity: 53%, specificity: 97%, positive predictive value: 75%, negative predictive value: 93%). Machine learning algorithms are efficient in differentiating people who are at a suicidal risk from those who are not. Evidence for suicidality can be measured in nonclinical populations using social media data.

  12. A Coupled User Clustering Algorithm Based on Mixed Data for Web-Based Learning Systems

    Directory of Open Access Journals (Sweden)

    Ke Niu

    2015-01-01

    Full Text Available In traditional Web-based learning systems, due to insufficient learning behaviors analysis and personalized study guides, a few user clustering algorithms are introduced. While analyzing the behaviors with these algorithms, researchers generally focus on continuous data but easily neglect discrete data, each of which is generated from online learning actions. Moreover, there are implicit coupled interactions among the data but are frequently ignored in the introduced algorithms. Therefore, a mass of significant information which can positively affect clustering accuracy is neglected. To solve the above issues, we proposed a coupled user clustering algorithm for Wed-based learning systems by taking into account both discrete and continuous data, as well as intracoupled and intercoupled interactions of the data. The experiment result in this paper demonstrates the outperformance of the proposed algorithm.

  13. Perceptual approach for unsupervised digital color restoration of cinematographic archives

    Science.gov (United States)

    Chambah, Majed; Rizzi, Alessandro; Gatta, Carlo; Besserer, Bernard; Marini, Daniele

    2003-01-01

    The cinematographic archives represent an important part of our collective memory. We present in this paper some advances in automating the color fading restoration process, especially with regard to the automatic color correction technique. The proposed color correction method is based on the ACE model, an unsupervised color equalization algorithm based on a perceptual approach and inspired by some adaptation mechanisms of the human visual system, in particular lightness constancy and color constancy. There are some advantages in a perceptual approach: mainly its robustness and its local filtering properties, that lead to more effective results. The resulting technique, is not just an application of ACE on movie images, but an enhancement of ACE principles to meet the requirements in the digital film restoration field. The presented preliminary results are satisfying and promising.

  14. Comparison of machine learning algorithms for detecting coral reef

    Directory of Open Access Journals (Sweden)

    Eduardo Tusa

    2014-09-01

    Full Text Available (Received: 2014/07/31 - Accepted: 2014/09/23This work focuses on developing a fast coral reef detector, which is used for an autonomous underwater vehicle, AUV. A fast detection secures the AUV stabilization respect to an area of reef as fast as possible, and prevents devastating collisions. We use the algorithm of Purser et al. (2009 because of its precision. This detector has two parts: feature extraction that uses Gabor Wavelet filters, and feature classification that uses machine learning based on Neural Networks. Due to the extensive time of the Neural Networks, we exchange for a classification algorithm based on Decision Trees. We use a database of 621 images of coral reef in Belize (110 images for training and 511 images for testing. We implement the bank of Gabor Wavelets filters using C++ and the OpenCV library. We compare the accuracy and running time of 9 machine learning algorithms, whose result was the selection of the Decision Trees algorithm. Our coral detector performs 70ms of running time in comparison to 22s executed by the algorithm of Purser et al. (2009.

  15. Unsupervised Categorization in a Sample of Children with Autism Spectrum Disorders

    Science.gov (United States)

    Edwards, Darren J.; Perlman, Amotz; Reed, Phil

    2012-01-01

    Studies of supervised Categorization have demonstrated limited Categorization performance in participants with autism spectrum disorders (ASD), however little research has been conducted regarding unsupervised Categorization in this population. This study explored unsupervised Categorization using two stimulus sets that differed in their…

  16. Unsupervised text mining methods for literature analysis: a case study for Thomas Pynchon's V.

    Directory of Open Access Journals (Sweden)

    Christos Iraklis Tsatsoulis

    2013-08-01

    Full Text Available We investigate the use of unsupervised text mining methods for the analysis of prose literature works, using Thomas Pynchon's novel 'V'. as a case study. Our results suggest that such methods may be employed to reveal meaningful information regarding the novel’s structure. We report results using a wide variety of clustering algorithms, several distinct distance functions, and different visualization techniques. The application of a simple topic model is also demonstrated. We discuss the meaningfulness of our results along with the limitations of our approach, and we suggest some possible paths for further study.

  17. Strong systematicity through sensorimotor conceptual grounding: an unsupervised, developmental approach to connectionist sentence processing

    Science.gov (United States)

    Jansen, Peter A.; Watter, Scott

    2012-03-01

    Connectionist language modelling typically has difficulty with syntactic systematicity, or the ability to generalise language learning to untrained sentences. This work develops an unsupervised connectionist model of infant grammar learning. Following the semantic boostrapping hypothesis, the network distils word category using a developmentally plausible infant-scale database of grounded sensorimotor conceptual representations, as well as a biologically plausible semantic co-occurrence activation function. The network then uses this knowledge to acquire an early benchmark clausal grammar using correlational learning, and further acquires separate conceptual and grammatical category representations. The network displays strongly systematic behaviour indicative of the general acquisition of the combinatorial systematicity present in the grounded infant-scale language stream, outperforms previous contemporary models that contain primarily noun and verb word categories, and successfully generalises broadly to novel untrained sensorimotor grounded sentences composed of unfamiliar nouns and verbs. Limitations as well as implications to later grammar learning are discussed.

  18. Inductive learning of thyroid functional states using the ID3 algorithm. The effect of poor examples on the learning result.

    Science.gov (United States)

    Forsström, J

    1992-01-01

    The ID3 algorithm for inductive learning was tested using preclassified material for patients suspected to have a thyroid illness. Classification followed a rule-based expert system for the diagnosis of thyroid function. Thus, the knowledge to be learned was limited to the rules existing in the knowledge base of that expert system. The learning capability of the ID3 algorithm was tested with an unselected learning material (with some inherent missing data) and with a selected learning material (no missing data). The selected learning material was a subgroup which formed a part of the unselected learning material. When the number of learning cases was increased, the accuracy of the program improved. When the learning material was large enough, an increase in the learning material did not improve the results further. A better learning result was achieved with the selected learning material not including missing data as compared to unselected learning material. With this material we demonstrate a weakness in the ID3 algorithm: it can not find available information from good example cases if we add poor examples to the data.

  19. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    Science.gov (United States)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert

    2018-05-01

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.

  20. Attribute Learning for SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-04-01

    Full Text Available This paper presents a classification approach based on attribute learning for high spatial resolution Synthetic Aperture Radar (SAR images. To explore the representative and discriminative attributes of SAR images, first, an iterative unsupervised algorithm is designed to cluster in the low-level feature space, where the maximum edge response and the ratio of mean-to-variance are included; a cross-validation step is applied to prevent overfitting. Second, the most discriminative clustering centers are sorted out to construct an attribute dictionary. By resorting to the attribute dictionary, a representation vector describing certain categories in the SAR image can be generated, which in turn is used to perform the classifying task. The experiments conducted on TerraSAR-X images indicate that those learned attributes have strong visual semantics, which are characterized by bright and dark spots, stripes, or their combinations. The classification method based on these learned attributes achieves better results.

  1. Active Learning with Rationales for Identifying Operationally Significant Anomalies in Aviation

    Science.gov (United States)

    Sharma, Manali; Das, Kamalika; Bilgic, Mustafa; Matthews, Bryan; Nielsen, David Lynn; Oza, Nikunj C.

    2016-01-01

    A major focus of the commercial aviation community is discovery of unknown safety events in flight operations data. Data-driven unsupervised anomaly detection methods are better at capturing unknown safety events compared to rule-based methods which only look for known violations. However, not all statistical anomalies that are discovered by these unsupervised anomaly detection methods are operationally significant (e.g., represent a safety concern). Subject Matter Experts (SMEs) have to spend significant time reviewing these statistical anomalies individually to identify a few operationally significant ones. In this paper we propose an active learning algorithm that incorporates SME feedback in the form of rationales to build a classifier that can distinguish between uninteresting and operationally significant anomalies. Experimental evaluation on real aviation data shows that our approach improves detection of operationally significant events by as much as 75% compared to the state-of-the-art. The learnt classifier also generalizes well to additional validation data sets.

  2. Usage of self-organizing neural networks in evaluation of consumer behaviour

    Directory of Open Access Journals (Sweden)

    Jana Weinlichová

    2010-01-01

    Full Text Available This article deals with evaluation of consumer data by Artificial Intelligence methods. In methodical part there are described learning algorithms for Kohonen maps on the principle of supervised learning, unsupervised learning and semi-supervised learning. The principles of supervised learning and unsupervised learning are compared. On base of binding conditions of these principles there is pointed out an advantage of semi-supervised learning. Three algorithms are described for the semi-supervised learning: label propagation, self-training and co-training. Especially usage of co-training in Kohonen map learning seems to be promising point of other research. In concrete application of Kohonen neural network on consumer’s expense the unsupervised learning method has been chosen – the self-organization. So the features of data are evaluated by clustering method called Kohonen maps. These input data represents consumer expenses of households in countries of European union and are characterised by 12-dimension vector according to commodity classification. The data are evaluated in several years, so we can see their distribution, similarity or dissimilarity and also their evolution. In the article we discus other usage of this method for this type of data and also comparison of our results with results reached by hierarchical cluster analysis.

  3. Residential roof condition assessment system using deep learning

    Science.gov (United States)

    Wang, Fan; Kerekes, John P.; Xu, Zhuoyi; Wang, Yandong

    2018-01-01

    The emergence of high resolution (HR) and ultra high resolution (UHR) airborne remote sensing imagery is enabling humans to move beyond traditional land cover analysis applications to the detailed characterization of surface objects. A residential roof condition assessment method using techniques from deep learning is presented. The proposed method operates on individual roofs and divides the task into two stages: (1) roof segmentation, followed by (2) condition classification of the segmented roof regions. As the first step in this process, a self-tuning method is proposed to segment the images into small homogeneous areas. The segmentation is initialized with simple linear iterative clustering followed by deep learned feature extraction and region merging, with the optimal result selected by an unsupervised index, Q. After the segmentation, a pretrained residual network is fine-tuned on the augmented roof segments using a proposed k-pixel extension technique for classification. The effectiveness of the proposed algorithm was demonstrated on both HR and UHR imagery collected by EagleView over different study sites. The proposed algorithm has yielded promising results and has outperformed traditional machine learning methods using hand-crafted features.

  4. Accuracy of latent-variable estimation in Bayesian semi-supervised learning.

    Science.gov (United States)

    Yamazaki, Keisuke

    2015-09-01

    Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Upper-Lower Bounds Candidate Sets Searching Algorithm for Bayesian Network Structure Learning

    Directory of Open Access Journals (Sweden)

    Guangyi Liu

    2014-01-01

    Full Text Available Bayesian network is an important theoretical model in artificial intelligence field and also a powerful tool for processing uncertainty issues. Considering the slow convergence speed of current Bayesian network structure learning algorithms, a fast hybrid learning method is proposed in this paper. We start with further analysis of information provided by low-order conditional independence testing, and then two methods are given for constructing graph model of network, which is theoretically proved to be upper and lower bounds of the structure space of target network, so that candidate sets are given as a result; after that a search and scoring algorithm is operated based on the candidate sets to find the final structure of the network. Simulation results show that the algorithm proposed in this paper is more efficient than similar algorithms with the same learning precision.

  6. Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy.

    Science.gov (United States)

    Tian, Yuling; Zhang, Hongxian

    2016-01-01

    For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic-there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions.

  7. Learning-based meta-algorithm for MRI brain extraction.

    Science.gov (United States)

    Shi, Feng; Wang, Li; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2011-01-01

    Multiple-segmentation-and-fusion method has been widely used for brain extraction, tissue segmentation, and region of interest (ROI) localization. However, such studies are hindered in practice by their computational complexity, mainly coming from the steps of template selection and template-to-subject nonlinear registration. In this study, we address these two issues and propose a novel learning-based meta-algorithm for MRI brain extraction. Specifically, we first use exemplars to represent the entire template library, and assign the most similar exemplar to the test subject. Second, a meta-algorithm combining two existing brain extraction algorithms (BET and BSE) is proposed to conduct multiple extractions directly on test subject. Effective parameter settings for the meta-algorithm are learned from the training data and propagated to subject through exemplars. We further develop a level-set based fusion method to combine multiple candidate extractions together with a closed smooth surface, for obtaining the final result. Experimental results show that, with only a small portion of subjects for training, the proposed method is able to produce more accurate and robust brain extraction results, at Jaccard Index of 0.956 +/- 0.010 on total 340 subjects under 6-fold cross validation, compared to those by the BET and BSE even using their best parameter combinations.

  8. Unsupervised learning of facial expression components

    OpenAIRE

    Egede, Joy Onyekachukwu

    2013-01-01

    The face is one of the most important means of non-verbal communication. A lot of information can be gotten about the emotional state of a person just by merely observing their facial expression. This is relatively easy in face to face communication but not so in human computer interaction. Supervised learning has been widely used by researchers to train machines to recognise facial expressions just like humans. However, supervised learning has significant limitations one of which is the fact...

  9. SUSTAIN: a network model of category learning.

    Science.gov (United States)

    Love, Bradley C; Medin, Douglas L; Gureckis, Todd M

    2004-04-01

    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

  10. A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Sho Fukuda

    2014-12-01

    Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks

  11. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems

    Directory of Open Access Journals (Sweden)

    Vivek Patel

    2012-08-01

    Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.

  12. Two Algorithms for Learning the Parameters of Stochastic Context-Free Grammars

    National Research Council Canada - National Science Library

    Heeringa, Brent; Oates, Tim

    2001-01-01

    .... Most algorithms for learning them require storage and repeated processing of a sentence corpus. The memory and computational demands of such algorithms are illsuited for embedded agents such as a mobile robot...

  13. An Orthogonal Learning Differential Evolution Algorithm for Remote Sensing Image Registration

    Directory of Open Access Journals (Sweden)

    Wenping Ma

    2014-01-01

    Full Text Available We introduce an area-based method for remote sensing image registration. We use orthogonal learning differential evolution algorithm to optimize the similarity metric between the reference image and the target image. Many local and global methods have been used to achieve the optimal similarity metric in the last few years. Because remote sensing images are usually influenced by large distortions and high noise, local methods will fail in some cases. For this reason, global methods are often required. The orthogonal learning (OL strategy is efficient when searching in complex problem spaces. In addition, it can discover more useful information via orthogonal experimental design (OED. Differential evolution (DE is a heuristic algorithm. It has shown to be efficient in solving the remote sensing image registration problem. So orthogonal learning differential evolution algorithm (OLDE is efficient for many optimization problems. The OLDE method uses the OL strategy to guide the DE algorithm to discover more useful information. Experiments show that the OLDE method is more robust and efficient for registering remote sensing images.

  14. Dynamics of the evolution of learning algorithms by selection

    International Nuclear Information System (INIS)

    Neirotti, Juan Pablo; Caticha, Nestor

    2003-01-01

    We study the evolution of artificial learning systems by means of selection. Genetic programming is used to generate populations of programs that implement algorithms used by neural network classifiers to learn a rule in a supervised learning scenario. In contrast to concentrating on final results, which would be the natural aim while designing good learning algorithms, we study the evolution process. Phenotypic and genotypic entropies, which describe the distribution of fitness and of symbols, respectively, are used to monitor the dynamics. We identify significant functional structures responsible for the improvements in the learning process. In particular, some combinations of variables and operators are useful in assessing performance in rule extraction and can thus implement annealing of the learning schedule. We also find combinations that can signal surprise, measured on a single example, by the difference between predicted and correct classification. When such favorable structures appear, they are disseminated on very short time scales throughout the population. Due to such abruptness they can be thought of as dynamical transitions. But foremost, we find a strict temporal order of such discoveries. Structures that measure performance are never useful before those for measuring surprise. Invasions of the population by such structures in the reverse order were never observed. Asymptotically, the generalization ability approaches Bayesian results

  15. Validating module network learning algorithms using simulated data.

    Science.gov (United States)

    Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves

    2007-05-03

    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network

  16. Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Richard Lamb

    2015-09-01

    Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.

  17. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    Science.gov (United States)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  18. Hebbian errors in learning: an analysis using the Oja model.

    Science.gov (United States)

    Rădulescu, Anca; Cox, Kingsley; Adams, Paul

    2009-06-21

    Recent work on long term potentiation in brain slices shows that Hebb's rule is not completely synapse-specific, probably due to intersynapse diffusion of calcium or other factors. We previously suggested that such errors in Hebbian learning might be analogous to mutations in evolution. We examine this proposal quantitatively, extending the classical Oja unsupervised model of learning by a single linear neuron to include Hebbian inspecificity. We introduce an error matrix E, which expresses possible crosstalk between updating at different connections. When there is no inspecificity, this gives the classical result of convergence to the first principal component of the input distribution (PC1). We show the modified algorithm converges to the leading eigenvector of the matrix EC, where C is the input covariance matrix. In the most biologically plausible case when there are no intrinsically privileged connections, E has diagonal elements Q and off-diagonal elements (1-Q)/(n-1), where Q, the quality, is expected to decrease with the number of inputs n and with a synaptic parameter b that reflects synapse density, calcium diffusion, etc. We study the dependence of the learning accuracy on b, n and the amount of input activity or correlation (analytically and computationally). We find that accuracy increases (learning becomes gradually less useful) with increases in b, particularly for intermediate (i.e., biologically realistic) correlation strength, although some useful learning always occurs up to the trivial limit Q=1/n. We discuss the relation of our results to Hebbian unsupervised learning in the brain. When the mechanism lacks specificity, the network fails to learn the expected, and typically most useful, result, especially when the input correlation is weak. Hebbian crosstalk would reflect the very high density of synapses along dendrites, and inevitably degrades learning.

  19. Community detection in complex networks using deep auto-encoded extreme learning machine

    Science.gov (United States)

    Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing

    2018-06-01

    Community detection has long been a fascinating topic in complex networks since the community structure usually unveils valuable information of interest. The prevalence and evolution of deep learning and neural networks have been pushing forward the advancement in various research fields and also provide us numerous useful and off the shelf techniques. In this paper, we put the cascaded stacked autoencoders and the unsupervised extreme learning machine (ELM) together in a two-level embedding process and propose a novel community detection algorithm. Extensive comparison experiments in circumstances of both synthetic and real-world networks manifest the advantages of the proposed algorithm. On one hand, it outperforms the k-means clustering in terms of the accuracy and stability thus benefiting from the determinate dimensions of the ELM block and the integration of sparsity restrictions. On the other hand, it endures smaller complexity than the spectral clustering method on account of the shrinkage in time spent on the eigenvalue decomposition procedure.

  20. Four Machine Learning Algorithms for Biometrics Fusion: A Comparative Study

    Directory of Open Access Journals (Sweden)

    I. G. Damousis

    2012-01-01

    Full Text Available We examine the efficiency of four machine learning algorithms for the fusion of several biometrics modalities to create a multimodal biometrics security system. The algorithms examined are Gaussian Mixture Models (GMMs, Artificial Neural Networks (ANNs, Fuzzy Expert Systems (FESs, and Support Vector Machines (SVMs. The fusion of biometrics leads to security systems that exhibit higher recognition rates and lower false alarms compared to unimodal biometric security systems. Supervised learning was carried out using a number of patterns from a well-known benchmark biometrics database, and the validation/testing took place with patterns from the same database which were not included in the training dataset. The comparison of the algorithms reveals that the biometrics fusion system is superior to the original unimodal systems and also other fusion schemes found in the literature.

  1. Algorithm that mimics human perceptual grouping of dot patterns

    NARCIS (Netherlands)

    Papari, G.; Petkov, N.; Gregorio, MD; DiMaio,; Frucci, M; Musio, C

    2005-01-01

    We propose an algorithm that groups points similarly to how human observers do. It is simple, totally unsupervised and able to find clusters of complex and not necessarily convex shape. Groups are identified as the connected components of a Reduced Delaunay Graph (RDG) that we define in this paper.

  2. Supervised and Unsupervised Learning of Multidimensional Acoustic Categories

    Science.gov (United States)

    Goudbeek, Martijn; Swingley, Daniel; Smits, Roel

    2009-01-01

    Learning to recognize the contrasts of a language-specific phonemic repertoire can be viewed as forming categories in a multidimensional psychophysical space. Research on the learning of distributionally defined visual categories has shown that categories defined over 1 dimension are easy to learn and that learning multidimensional categories is…

  3. Comparison between genetic algorithm and self organizing map to detect botnet network traffic

    Science.gov (United States)

    Yugandhara Prabhakar, Shinde; Parganiha, Pratishtha; Madhu Viswanatham, V.; Nirmala, M.

    2017-11-01

    In Cyber Security world the botnet attacks are increasing. To detect botnet is a challenging task. Botnet is a group of computers connected in a coordinated fashion to do malicious activities. Many techniques have been developed and used to detect and prevent botnet traffic and the attacks. In this paper, a comparative study is done on Genetic Algorithm (GA) and Self Organizing Map (SOM) to detect the botnet network traffic. Both are soft computing techniques and used in this paper as data analytics system. GA is based on natural evolution process and SOM is an Artificial Neural Network type, uses unsupervised learning techniques. SOM uses neurons and classifies the data according to the neurons. Sample of KDD99 dataset is used as input to GA and SOM.

  4. Varieties of perceptual learning.

    Science.gov (United States)

    Mackintosh, N J

    2009-05-01

    Although most studies of perceptual learning in human participants have concentrated on the changes in perception assumed to be occurring, studies of nonhuman animals necessarily measure discrimination learning and generalization and remain agnostic on the question of whether changes in behavior reflect changes in perception. On the other hand, animal studies do make it easier to draw a distinction between supervised and unsupervised learning. Differential reinforcement will surely teach animals to attend to some features of a stimulus array rather than to others. But it is an open question as to whether such changes in attention underlie the enhanced discrimination seen after unreinforced exposure to such an array. I argue that most instances of unsupervised perceptual learning observed in animals (and at least some in human animals) are better explained by appeal to well-established principles and phenomena of associative learning theory: excitatory and inhibitory associations between stimulus elements, latent inhibition, and habituation.

  5. Application of a fuzzy control algorithm with improved learning speed to nuclear steam generator level control

    International Nuclear Information System (INIS)

    Park, Gee Yong; Seong, Poong Hyun

    1994-01-01

    In order to reduce the load of tuning works by trial-and-error for obtaining the best control performance of conventional fuzzy control algorithm, a fuzzy control algorithm with learning function is investigated in this work. This fuzzy control algorithm can make its rule base and tune the membership functions automatically by use of learning function which needs the data from the control actions of the plant operator or other controllers. Learning process in fuzzy control algorithm is to find the optimal values of parameters, which consist of the membership functions and the rule base, by gradient descent method. Learning speed of gradient descent is significantly improved in this work with the addition of modified momentum. This control algorithm is applied to the steam generator level control by computer simulations. The simulation results confirm the good performance of this control algorithm for level control and show that the fuzzy learning algorithm has the generalization capability for the relation of inputs and outputs and it also has the excellent capability of disturbance rejection

  6. Slow feature analysis: unsupervised learning of invariances.

    Science.gov (United States)

    Wiskott, Laurenz; Sejnowski, Terrence J

    2002-04-01

    Invariant features of temporally varying signals are useful for analysis and classification. Slow feature analysis (SFA) is a new method for learning invariant or slowly varying features from a vectorial input signal. It is based on a nonlinear expansion of the input signal and application of principal component analysis to this expanded signal and its time derivative. It is guaranteed to find the optimal solution within a family of functions directly and can learn to extract a large number of decorrelated features, which are ordered by their degree of invariance. SFA can be applied hierarchically to process high-dimensional input signals and extract complex features. SFA is applied first to complex cell tuning properties based on simple cell output, including disparity and motion. Then more complicated input-output functions are learned by repeated application of SFA. Finally, a hierarchical network of SFA modules is presented as a simple model of the visual system. The same unstructured network can learn translation, size, rotation, contrast, or, to a lesser degree, illumination invariance for one-dimensional objects, depending on only the training stimulus. Surprisingly, only a few training objects suffice to achieve good generalization to new objects. The generated representation is suitable for object recognition. Performance degrades if the network is trained to learn multiple invariances simultaneously.

  7. Peripheral blood smear image analysis: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Emad A Mohammed

    2014-01-01

    Full Text Available Peripheral blood smear image examination is a part of the routine work of every laboratory. The manual examination of these images is tedious, time-consuming and suffers from interobserver variation. This has motivated researchers to develop different algorithms and methods to automate peripheral blood smear image analysis. Image analysis itself consists of a sequence of steps consisting of image segmentation, features extraction and selection and pattern classification. The image segmentation step addresses the problem of extraction of the object or region of interest from the complicated peripheral blood smear image. Support vector machine (SVM and artificial neural networks (ANNs are two common approaches to image segmentation. Features extraction and selection aims to derive descriptive characteristics of the extracted object, which are similar within the same object class and different between different objects. This will facilitate the last step of the image analysis process: pattern classification. The goal of pattern classification is to assign a class to the selected features from a group of known classes. There are two types of classifier learning algorithms: supervised and unsupervised. Supervised learning algorithms predict the class of the object under test using training data of known classes. The training data have a predefined label for every class and the learning algorithm can utilize this data to predict the class of a test object. Unsupervised learning algorithms use unlabeled training data and divide them into groups using similarity measurements. Unsupervised learning algorithms predict the group to which a new test object belong to, based on the training data without giving an explicit class to that object. ANN, SVM, decision tree and K-nearest neighbor are possible approaches to classification algorithms. Increased discrimination may be obtained by combining several classifiers together.

  8. Denoising of gravitational wave signals via dictionary learning algorithms

    Science.gov (United States)

    Torres-Forné, Alejandro; Marquina, Antonio; Font, José A.; Ibáñez, José M.

    2016-12-01

    Gravitational wave astronomy has become a reality after the historical detections accomplished during the first observing run of the two advanced LIGO detectors. In the following years, the number of detections is expected to increase significantly with the full commissioning of the advanced LIGO, advanced Virgo and KAGRA detectors. The development of sophisticated data analysis techniques to improve the opportunities of detection for low signal-to-noise-ratio events is, hence, a most crucial effort. In this paper, we present one such technique, dictionary-learning algorithms, which have been extensively developed in the last few years and successfully applied mostly in the context of image processing. However, to the best of our knowledge, such algorithms have not yet been employed to denoise gravitational wave signals. By building dictionaries from numerical relativity templates of both binary black holes mergers and bursts of rotational core collapse, we show how machine-learning algorithms based on dictionaries can also be successfully applied for gravitational wave denoising. We use a subset of signals from both catalogs, embedded in nonwhite Gaussian noise, to assess our techniques with a large sample of tests and to find the best model parameters. The application of our method to the actual signal GW150914 shows promising results. Dictionary-learning algorithms could be a complementary addition to the gravitational wave data analysis toolkit. They may be used to extract signals from noise and to infer physical parameters if the data are in good enough agreement with the morphology of the dictionary atoms.

  9. Component Pin Recognition Using Algorithms Based on Machine Learning

    Science.gov (United States)

    Xiao, Yang; Hu, Hong; Liu, Ze; Xu, Jiangchang

    2018-04-01

    The purpose of machine vision for a plug-in machine is to improve the machine’s stability and accuracy, and recognition of the component pin is an important part of the vision. This paper focuses on component pin recognition using three different techniques. The first technique involves traditional image processing using the core algorithm for binary large object (BLOB) analysis. The second technique uses the histogram of oriented gradients (HOG), to experimentally compare the effect of the support vector machine (SVM) and the adaptive boosting machine (AdaBoost) learning meta-algorithm classifiers. The third technique is the use of an in-depth learning method known as convolution neural network (CNN), which involves identifying the pin by comparing a sample to its training. The main purpose of the research presented in this paper is to increase the knowledge of learning methods used in the plug-in machine industry in order to achieve better results.

  10. Learning about individuals' health from aggregate data.

    Science.gov (United States)

    Colbaugh, Rich; Glass, Kristin

    2017-07-01

    There is growing awareness that user-generated social media content contains valuable health-related information and is more convenient to collect than typical health data. For example, Twitter has been employed to predict aggregate-level outcomes, such as regional rates of diabetes and child poverty, and to identify individual cases of depression and food poisoning. Models which make aggregate-level inferences can be induced from aggregate data, and consequently are straightforward to build. In contrast, learning models that produce individual-level (IL) predictions, which are more informative, usually requires a large number of difficult-to-acquire labeled IL examples. This paper presents a new machine learning method which achieves the best of both worlds, enabling IL models to be learned from aggregate labels. The algorithm makes predictions by combining unsupervised feature extraction, aggregate-based modeling, and optimal integration of aggregate-level and IL information. Two case studies illustrate how to learn health-relevant IL prediction models using only aggregate labels, and show that these models perform as well as state-of-the-art models trained on hundreds or thousands of labeled individuals.

  11. Alignment of Custom Standards by Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Adela Sirbu

    2010-09-01

    Full Text Available Building an efficient model for automatic alignment of terminologies would bring a significant improvement to the information retrieval process. We have developed and compared two machine learning based algorithms whose aim is to align 2 custom standards built on a 3 level taxonomy, using kNN and SVM classifiers that work on a vector representation consisting of several similarity measures. The weights utilized by the kNN were optimized with an evolutionary algorithm, while the SVM classifier's hyper-parameters were optimized with a grid search algorithm. The database used for train was semi automatically obtained by using the Coma++ tool. The performance of our aligners is shown by the results obtained on the test set.

  12. An Efficient Inductive Genetic Learning Algorithm for Fuzzy Relational Rules

    Directory of Open Access Journals (Sweden)

    Antonio

    2012-04-01

    Full Text Available Fuzzy modelling research has traditionally focused on certain types of fuzzy rules. However, the use of alternative rule models could improve the ability of fuzzy systems to represent a specific problem. In this proposal, an extended fuzzy rule model, that can include relations between variables in the antecedent of rules is presented. Furthermore, a learning algorithm based on the iterative genetic approach which is able to represent the knowledge using this model is proposed as well. On the other hand, potential relations among initial variables imply an exponential growth in the feasible rule search space. Consequently, two filters for detecting relevant potential relations are added to the learning algorithm. These filters allows to decrease the search space complexity and increase the algorithm efficiency. Finally, we also present an experimental study to demonstrate the benefits of using fuzzy relational rules.

  13. Fuzzy gain scheduling of velocity PI controller with intelligent learning algorithm for reactor control

    International Nuclear Information System (INIS)

    Kim, Dong Yun; Seong, Poong Hyun

    1996-01-01

    In this study, we proposed a fuzzy gain scheduler with intelligent learning algorithm for a reactor control. In the proposed algorithm, we used the gradient descent method to learn the rule bases of a fuzzy algorithm. These rule bases are learned toward minimizing an objective function, which is called a performance cost function. The objective of fuzzy gain scheduler with intelligent learning algorithm is the generation of adequate gains, which minimize the error of system. The condition of every plant is generally changed as time gose. That is, the initial gains obtained through the analysis of system are no longer suitable for the changed plant. And we need to set new gains, which minimize the error stemmed from changing the condition of a plant. In this paper, we applied this strategy for reactor control of nuclear power plant (NPP), and the results were compared with those of a simple PI controller, which has fixed gains. As a result, it was shown that the proposed algorithm was superior to the simple PI controller

  14. Creating Engaging Online Learning Material with the JSAV JavaScript Algorithm Visualization Library

    Science.gov (United States)

    Karavirta, Ville; Shaffer, Clifford A.

    2016-01-01

    Data Structures and Algorithms are a central part of Computer Science. Due to their abstract and dynamic nature, they are a difficult topic to learn for many students. To alleviate these learning difficulties, instructors have turned to algorithm visualizations (AV) and AV systems. Research has shown that especially engaging AVs can have an impact…

  15. Perturbation of convex risk minimization and its application in differential private learning algorithms

    Directory of Open Access Journals (Sweden)

    Weilin Nie

    2017-01-01

    Full Text Available Abstract Convex risk minimization is a commonly used setting in learning theory. In this paper, we firstly give a perturbation analysis for such algorithms, and then we apply this result to differential private learning algorithms. Our analysis needs the objective functions to be strongly convex. This leads to an extension of our previous analysis to the non-differentiable loss functions, when constructing differential private algorithms. Finally, an error analysis is then provided to show the selection for the parameters.

  16. JACoW Model learning algorithms for anomaly detection in CERN control systems

    CERN Document Server

    Tilaro, Filippo; Gonzalez-Berges, Manuel; Roshchin, Mikhail; Varela, Fernando

    2018-01-01

    The CERN automation infrastructure consists of over 600 heterogeneous industrial control systems with around 45 million deployed sensors, actuators and control objects. Therefore, it is evident that the monitoring of such huge system represents a challenging and complex task. This paper describes three different mathematical approaches that have been designed and developed to detect anomalies in any of the CERN control systems. Specifically, one of these algorithms is purely based on expert knowledge; the other two mine the historical generated data to create a simple model of the system; this model is then used to detect faulty sensors measurements. The presented methods can be categorized as dynamic unsupervised anomaly detection; “dynamic” since the behaviour of the system and the evolution of its attributes are observed and changing in time. They are “unsupervised” because we are trying to predict faulty events without examples in the data history. So, the described strategies involve monitoring t...

  17. Shadow detection and removal in RGB VHR images for land use unsupervised classification

    Science.gov (United States)

    Movia, A.; Beinat, A.; Crosilla, F.

    2016-09-01

    Nowadays, high resolution aerial images are widely available thanks to the diffusion of advanced technologies such as UAVs (Unmanned Aerial Vehicles) and new satellite missions. Although these developments offer new opportunities for accurate land use analysis and change detection, cloud and terrain shadows actually limit benefits and possibilities of modern sensors. Focusing on the problem of shadow detection and removal in VHR color images, the paper proposes new solutions and analyses how they can enhance common unsupervised classification procedures for identifying land use classes related to the CO2 absorption. To this aim, an improved fully automatic procedure has been developed for detecting image shadows using exclusively RGB color information, and avoiding user interaction. Results show a significant accuracy enhancement with respect to similar methods using RGB based indexes. Furthermore, novel solutions derived from Procrustes analysis have been applied to remove shadows and restore brightness in the images. In particular, two methods implementing the so called "anisotropic Procrustes" and the "not-centered oblique Procrustes" algorithms have been developed and compared with the linear correlation correction method based on the Cholesky decomposition. To assess how shadow removal can enhance unsupervised classifications, results obtained with classical methods such as k-means, maximum likelihood, and self-organizing maps, have been compared to each other and with a supervised clustering procedure.

  18. Algorithm Building and Learning Programming Languages Using a New Educational Paradigm

    Science.gov (United States)

    Jain, Anshul K.; Singhal, Manik; Gupta, Manu Sheel

    2011-08-01

    This research paper presents a new concept of using a single tool to associate syntax of various programming languages, algorithms and basic coding techniques. A simple framework has been programmed in Python that helps students learn skills to develop algorithms, and implement them in various programming languages. The tool provides an innovative and a unified graphical user interface for development of multimedia objects, educational games and applications. It also aids collaborative learning amongst students and teachers through an integrated mechanism based on Remote Procedure Calls. The paper also elucidates an innovative method for code generation to enable students to learn the basics of programming languages using drag-n-drop methods for image objects.

  19. Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief.

    Science.gov (United States)

    Douglas, P K; Harris, Sam; Yuille, Alan; Cohen, Mark S

    2011-05-15

    Machine learning (ML) has become a popular tool for mining functional neuroimaging data, and there are now hopes of performing such analyses efficiently in real-time. Towards this goal, we compared accuracy of six different ML algorithms applied to neuroimaging data of persons engaged in a bivariate task, asserting their belief or disbelief of a variety of propositional statements. We performed unsupervised dimension reduction and automated feature extraction using independent component (IC) analysis and extracted IC time courses. Optimization of classification hyperparameters across each classifier occurred prior to assessment. Maximum accuracy was achieved at 92% for Random Forest, followed by 91% for AdaBoost, 89% for Naïve Bayes, 87% for a J48 decision tree, 86% for K*, and 84% for support vector machine. For real-time decoding applications, finding a parsimonious subset of diagnostic ICs might be useful. We used a forward search technique to sequentially add ranked ICs to the feature subspace. For the current data set, we determined that approximately six ICs represented a meaningful basis set for classification. We then projected these six IC spatial maps forward onto a later scanning session within subject. We then applied the optimized ML algorithms to these new data instances, and found that classification accuracy results were reproducible. Additionally, we compared our classification method to our previously published general linear model results on this same data set. The highest ranked IC spatial maps show similarity to brain regions associated with contrasts for belief > disbelief, and disbelief < belief. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Using machine learning algorithms to guide rehabilitation planning for home care clients.

    Science.gov (United States)

    Zhu, Mu; Zhang, Zhanyang; Hirdes, John P; Stolee, Paul

    2007-12-20

    Targeting older clients for rehabilitation is a clinical challenge and a research priority. We investigate the potential of machine learning algorithms - Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) - to guide rehabilitation planning for home care clients. This study is a secondary analysis of data on 24,724 longer-term clients from eight home care programs in Ontario. Data were collected with the RAI-HC assessment system, in which the Activities of Daily Living Clinical Assessment Protocol (ADLCAP) is used to identify clients with rehabilitation potential. For study purposes, a client is defined as having rehabilitation potential if there was: i) improvement in ADL functioning, or ii) discharge home. SVM and KNN results are compared with those obtained using the ADLCAP. For comparison, the machine learning algorithms use the same functional and health status indicators as the ADLCAP. The KNN and SVM algorithms achieved similar substantially improved performance over the ADLCAP, although false positive and false negative rates were still fairly high (FP > .18, FN > .34 versus FP > .29, FN. > .58 for ADLCAP). Results are used to suggest potential revisions to the ADLCAP. Machine learning algorithms achieved superior predictions than the current protocol. Machine learning results are less readily interpretable, but can also be used to guide development of improved clinical protocols.

  1. An Unsupervised Approach to Activity Recognition and Segmentation based on Object-Use Fingerprints

    DEFF Research Database (Denmark)

    Gu, Tao; Chen, Shaxun; Tao, Xianping

    2010-01-01

    Human activity recognition is an important task which has many potential applications. In recent years, researchers from pervasive computing are interested in deploying on-body sensors to collect observations and applying machine learning techniques to model and recognize activities. Supervised...... machine learning techniques typically require an appropriate training process in which training data need to be labeled manually. In this paper, we propose an unsupervised approach based on object-use fingerprints to recognize activities without human labeling. We show how to build our activity models...... a trace and detect the boundary of any two adjacent activities. We develop a wearable RFID system and conduct a real-world trace collection done by seven volunteers in a smart home over a period of 2 weeks. We conduct comprehensive experimental evaluations and comparison study. The results show that our...

  2. Mind the Gaps: Controversies about Algorithms, Learning and Trendy Knowledge

    Science.gov (United States)

    Argenton, Gerald

    2017-01-01

    This article critically explores the ways by which the Web could become a more learning-oriented medium in the age of, but also in spite of, the newly bred algorithmic cultures. The social dimension of algorithms is reported in literature as being a socio-technological entanglement that has a powerful influence on users' practices and their lived…

  3. Recommending Learning Activities in Social Network Using Data Mining Algorithms

    Science.gov (United States)

    Mahnane, Lamia

    2017-01-01

    In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…

  4. MACHINE LEARNING METHODS IN DIGITAL AGRICULTURE: ALGORITHMS AND CASES

    Directory of Open Access Journals (Sweden)

    Aleksandr Vasilyevich Koshkarov

    2018-05-01

    Full Text Available Ensuring food security is a major challenge in many countries. With a growing global population, the issues of improving the efficiency of agriculture have become most relevant. Farmers are looking for new ways to increase yields, and governments of different countries are developing new programs to support agriculture. This contributes to a more active implementation of digital technologies in agriculture, helping farmers to make better decisions, increase yields and take care of the environment. The central point is the collection and analysis of data. In the industry of agriculture, data can be collected from different sources and may contain useful patterns that identify potential problems or opportunities. Data should be analyzed using machine learning algorithms to extract useful insights. Such methods of precision farming allow the farmer to monitor individual parts of the field, optimize the consumption of water and chemicals, and identify problems quickly. Purpose: to make an overview of the machine learning algorithms used for data analysis in agriculture. Methodology: an overview of the relevant literature; a survey of farmers. Results: relevant algorithms of machine learning for the analysis of data in agriculture at various levels were identified: soil analysis (soil assessment, soil classification, soil fertility predictions, weather forecast (simulation of climate change, temperature and precipitation prediction, and analysis of vegetation (weed identification, vegetation classification, plant disease identification, crop forecasting. Practical implications: agriculture, crop production.

  5. From the social learning theory to a social learning algorithm for global optimization

    OpenAIRE

    Gong, Yue-Jiao; Zhang, Jun; Li, Yun

    2014-01-01

    Traditionally, the Evolutionary Computation (EC) paradigm is inspired by Darwinian evolution or the swarm intelligence of animals. Bandura's Social Learning Theory pointed out that the social learning behavior of humans indicates a high level of intelligence in nature. We found that such intelligence of human society can be implemented by numerical computing and be utilized in computational algorithms for solving optimization problems. In this paper, we design a novel and generic optimization...

  6. Mining FDA drug labels using an unsupervised learning technique--topic modeling.

    Science.gov (United States)

    Bisgin, Halil; Liu, Zhichao; Fang, Hong; Xu, Xiaowei; Tong, Weida

    2011-10-18

    The Food and Drug Administration (FDA) approved drug labels contain a broad array of information, ranging from adverse drug reactions (ADRs) to drug efficacy, risk-benefit consideration, and more. However, the labeling language used to describe these information is free text often containing ambiguous semantic descriptions, which poses a great challenge in retrieving useful information from the labeling text in a consistent and accurate fashion for comparative analysis across drugs. Consequently, this task has largely relied on the manual reading of the full text by experts, which is time consuming and labor intensive. In this study, a novel text mining method with unsupervised learning in nature, called topic modeling, was applied to the drug labeling with a goal of discovering "topics" that group drugs with similar safety concerns and/or therapeutic uses together. A total of 794 FDA-approved drug labels were used in this study. First, the three labeling sections (i.e., Boxed Warning, Warnings and Precautions, Adverse Reactions) of each drug label were processed by the Medical Dictionary for Regulatory Activities (MedDRA) to convert the free text of each label to the standard ADR terms. Next, the topic modeling approach with latent Dirichlet allocation (LDA) was applied to generate 100 topics, each associated with a set of drugs grouped together based on the probability analysis. Lastly, the efficacy of the topic modeling was evaluated based on known information about the therapeutic uses and safety data of drugs. The results demonstrate that drugs grouped by topics are associated with the same safety concerns and/or therapeutic uses with statistical significance (P<0.05). The identified topics have distinct context that can be directly linked to specific adverse events (e.g., liver injury or kidney injury) or therapeutic application (e.g., antiinfectives for systemic use). We were also able to identify potential adverse events that might arise from specific

  7. Mining FDA drug labels using an unsupervised learning technique - topic modeling

    Science.gov (United States)

    2011-01-01

    Background The Food and Drug Administration (FDA) approved drug labels contain a broad array of information, ranging from adverse drug reactions (ADRs) to drug efficacy, risk-benefit consideration, and more. However, the labeling language used to describe these information is free text often containing ambiguous semantic descriptions, which poses a great challenge in retrieving useful information from the labeling text in a consistent and accurate fashion for comparative analysis across drugs. Consequently, this task has largely relied on the manual reading of the full text by experts, which is time consuming and labor intensive. Method In this study, a novel text mining method with unsupervised learning in nature, called topic modeling, was applied to the drug labeling with a goal of discovering “topics” that group drugs with similar safety concerns and/or therapeutic uses together. A total of 794 FDA-approved drug labels were used in this study. First, the three labeling sections (i.e., Boxed Warning, Warnings and Precautions, Adverse Reactions) of each drug label were processed by the Medical Dictionary for Regulatory Activities (MedDRA) to convert the free text of each label to the standard ADR terms. Next, the topic modeling approach with latent Dirichlet allocation (LDA) was applied to generate 100 topics, each associated with a set of drugs grouped together based on the probability analysis. Lastly, the efficacy of the topic modeling was evaluated based on known information about the therapeutic uses and safety data of drugs. Results The results demonstrate that drugs grouped by topics are associated with the same safety concerns and/or therapeutic uses with statistical significance (P<0.05). The identified topics have distinct context that can be directly linked to specific adverse events (e.g., liver injury or kidney injury) or therapeutic application (e.g., antiinfectives for systemic use). We were also able to identify potential adverse events that

  8. Predicting Smoking Status Using Machine Learning Algorithms and Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Charles Frank

    2018-03-01

    Full Text Available Smoking has been proven to negatively affect health in a multitude of ways. As of 2009, smoking has been considered the leading cause of preventable morbidity and mortality in the United States, continuing to plague the country’s overall health. This study aims to investigate the viability and effectiveness of some machine learning algorithms for predicting the smoking status of patients based on their blood tests and vital readings results. The analysis of this study is divided into two parts: In part 1, we use One-way ANOVA analysis with SAS tool to show the statistically significant difference in blood test readings between smokers and non-smokers. The results show that the difference in INR, which measures the effectiveness of anticoagulants, was significant in favor of non-smokers which further confirms the health risks associated with smoking. In part 2, we use five machine learning algorithms: Naïve Bayes, MLP, Logistic regression classifier, J48 and Decision Table to predict the smoking status of patients. To compare the effectiveness of these algorithms we use: Precision, Recall, F-measure and Accuracy measures. The results show that the Logistic algorithm outperformed the four other algorithms with Precision, Recall, F-Measure, and Accuracy of 83%, 83.4%, 83.2%, 83.44%, respectively.

  9. Electrocardiogram signal quality measures for unsupervised telehealth environments

    International Nuclear Information System (INIS)

    Redmond, S J; Xie, Y; Chang, D; Lovell, N H; Basilakis, J

    2012-01-01

    The use of telehealth paradigms for the remote management of patients suffering from chronic conditions has become more commonplace with the advancement of Internet connectivity and enterprise software systems. To facilitate clinicians in managing large numbers of telehealth patients, and in digesting the vast array of data returned from the remote monitoring environment, decision support systems in various guises are often utilized. The success of decision support systems in interpreting patient conditions from physiological data is dependent largely on the quality of these recorded data. This paper outlines an algorithm to determine the quality of single-lead electrocardiogram (ECG) recordings obtained from telehealth patients. Three hundred short ECG recordings were manually annotated to identify movement artifact, QRS locations and signal quality (discrete quality levels) by a panel of three experts, who then reconciled the annotation as a group to resolve any discrepancies. After applying a published algorithm to remove gross movement artifact, the proposed method was then applied to estimate the remaining ECG signal quality, using a Parzen window supervised statistical classifier model. The three-class classifier model, using a number of time-domain features and evaluated using cross validation, gave an accuracy in classifying signal quality of 78.7% (κ = 0.67) when using fully automated preprocessing algorithms to remove gross motion artifact and detect QRS locations. This is a similar level of accuracy to the reported human inter-scorer agreement when generating the gold standard annotation (accuracy = 70–89.3%, κ = 0.54–0.84). These results indicate that the assessment of the quality of single-lead ECG recordings, acquired in unsupervised telehealth environments, is entirely feasible and may help to promote the acceptance and utility of future decision support systems for remotely managing chronic disease conditions. (paper)

  10. Learning to classify organic and conventional wheat - a machine-learning driven approach using the MeltDB 2.0 metabolomics analysis platform

    Directory of Open Access Journals (Sweden)

    Nikolas eKessler

    2015-03-01

    Full Text Available We present results of our machine learning approach to the problem of classifying GC-MS data originating from wheat grains of different farming systems. The aim is to investigate the potential of learning algorithms to classify GC-MS data to be either from conventionally grown or from organically grown samples and considering different cultivars. The motivation of our work is rather obvious on the background of nowadays increased demand for organic food in post-industrialized societies and the necessity to prove organic food authenticity. The background of our data set is given by up to eleven wheat cultivars that have been cultivated in both farming systems, organic and conventional, throughout three years. More than 300 GC-MS measurements were recorded and subsequently processed and analyzed in the MeltDB 2.0 metabolomics analysis platform, being briefly outlined in this paper. We further describe how unsupervised (t-SNE, PCA and supervised (RF, SVM methods can be applied for sample visualization and classification. Our results clearly show that years have most and wheat cultivars have second-most influence on the metabolic composition of a sample. We can also show, that for a given year and cultivar, organic and conventional cultivation can be distinguished by machine-learning algorithms.

  11. Unsupervised Anomaly Detection for Liquid-Fueled Rocket Prop...

    Data.gov (United States)

    National Aeronautics and Space Administration — Title: Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring. Abstract: This article describes the results of applying four...

  12. Interactive algorithms for teaching and learning acute medicine in the network of medical faculties MEFANET.

    Science.gov (United States)

    Schwarz, Daniel; Štourač, Petr; Komenda, Martin; Harazim, Hana; Kosinová, Martina; Gregor, Jakub; Hůlek, Richard; Smékalová, Olga; Křikava, Ivo; Štoudek, Roman; Dušek, Ladislav

    2013-07-08

    Medical Faculties Network (MEFANET) has established itself as the authority for setting standards for medical educators in the Czech Republic and Slovakia, 2 independent countries with similar languages that once comprised a federation and that still retain the same curricular structure for medical education. One of the basic goals of the network is to advance medical teaching and learning with the use of modern information and communication technologies. We present the education portal AKUTNE.CZ as an important part of the MEFANET's content. Our focus is primarily on simulation-based tools for teaching and learning acute medicine issues. Three fundamental elements of the MEFANET e-publishing system are described: (1) medical disciplines linker, (2) authentication/authorization framework, and (3) multidimensional quality assessment. A new set of tools for technology-enhanced learning have been introduced recently: Sandbox (works in progress), WikiLectures (collaborative content authoring), Moodle-MEFANET (central learning management system), and Serious Games (virtual casuistics and interactive algorithms). The latest development in MEFANET is designed for indexing metadata about simulation-based learning objects, also known as electronic virtual patients or virtual clinical cases. The simulations assume the form of interactive algorithms for teaching and learning acute medicine. An anonymous questionnaire of 10 items was used to explore students' attitudes and interests in using the interactive algorithms as part of their medical or health care studies. Data collection was conducted over 10 days in February 2013. In total, 25 interactive algorithms in the Czech and English languages have been developed and published on the AKUTNE.CZ education portal to allow the users to test and improve their knowledge and skills in the field of acute medicine. In the feedback survey, 62 participants completed the online questionnaire (13.5%) from the total 460 addressed

  13. Inferring hierarchical clustering structures by deterministic annealing

    International Nuclear Information System (INIS)

    Hofmann, T.; Buhmann, J.M.

    1996-01-01

    The unsupervised detection of hierarchical structures is a major topic in unsupervised learning and one of the key questions in data analysis and representation. We propose a novel algorithm for the problem of learning decision trees for data clustering and related problems. In contrast to many other methods based on successive tree growing and pruning, we propose an objective function for tree evaluation and we derive a non-greedy technique for tree growing. Applying the principles of maximum entropy and minimum cross entropy, a deterministic annealing algorithm is derived in a meanfield approximation. This technique allows us to canonically superimpose tree structures and to fit parameters to averaged or open-quote fuzzified close-quote trees

  14. 基于MRF的多时相SAR影像非监督变化检测%Unsupervised Change Detection in Multitemporal SAR Images Using MRF Models

    Institute of Scientific and Technical Information of China (English)

    江利明; 廖明生; 张路; 林珲

    2007-01-01

    An unsupervised change-detection method that considers the spatial contextual information in a log-ratio difference image generated from multitemporal SAR images is proposed. A Markov random filed (MRF) model is particularly employed to exploit statistical spatial correlation of intensity levels among neighboring pixels. Under the assumption of the independency of pixels and mixed Gaussian distribution in the log-ratio difference image, a stochastic and iterative EM-MPM change-detection algorithm based on an MRF model is developed. The EM-MPM algorithm is based on a maximiser of posterior marginals (MPM) algorithm for image segmentation and an expectation-maximum (EM) algorithm for parameter estimation in a completely automatic way. The experiment results obtained on multitemporal ERS-2 SAR images show the effectiveness of the proposed method.

  15. Identification of chaotic systems by neural network with hybrid learning algorithm

    International Nuclear Information System (INIS)

    Pan, S.-T.; Lai, C.-C.

    2008-01-01

    Based on the genetic algorithm (GA) and steepest descent method (SDM), this paper proposes a hybrid algorithm for the learning of neural networks to identify chaotic systems. The systems in question are the logistic map and the Duffing equation. Different identification schemes are used to identify both the logistic map and the Duffing equation, respectively. Simulation results show that our hybrid algorithm is more efficient than that of other methods

  16. Exploration Of Deep Learning Algorithms Using Openacc Parallel Programming Model

    KAUST Repository

    Hamam, Alwaleed A.

    2017-03-13

    Deep learning is based on a set of algorithms that attempt to model high level abstractions in data. Specifically, RBM is a deep learning algorithm that used in the project to increase it\\'s time performance using some efficient parallel implementation by OpenACC tool with best possible optimizations on RBM to harness the massively parallel power of NVIDIA GPUs. GPUs development in the last few years has contributed to growing the concept of deep learning. OpenACC is a directive based ap-proach for computing where directives provide compiler hints to accelerate code. The traditional Restricted Boltzmann Ma-chine is a stochastic neural network that essentially perform a binary version of factor analysis. RBM is a useful neural net-work basis for larger modern deep learning model, such as Deep Belief Network. RBM parameters are estimated using an efficient training method that called Contrastive Divergence. Parallel implementation of RBM is available using different models such as OpenMP, and CUDA. But this project has been the first attempt to apply OpenACC model on RBM.

  17. Exploration Of Deep Learning Algorithms Using Openacc Parallel Programming Model

    KAUST Repository

    Hamam, Alwaleed A.; Khan, Ayaz H.

    2017-01-01

    Deep learning is based on a set of algorithms that attempt to model high level abstractions in data. Specifically, RBM is a deep learning algorithm that used in the project to increase it's time performance using some efficient parallel implementation by OpenACC tool with best possible optimizations on RBM to harness the massively parallel power of NVIDIA GPUs. GPUs development in the last few years has contributed to growing the concept of deep learning. OpenACC is a directive based ap-proach for computing where directives provide compiler hints to accelerate code. The traditional Restricted Boltzmann Ma-chine is a stochastic neural network that essentially perform a binary version of factor analysis. RBM is a useful neural net-work basis for larger modern deep learning model, such as Deep Belief Network. RBM parameters are estimated using an efficient training method that called Contrastive Divergence. Parallel implementation of RBM is available using different models such as OpenMP, and CUDA. But this project has been the first attempt to apply OpenACC model on RBM.

  18. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning.

    Science.gov (United States)

    Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui

    2015-10-30

    Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2013-01-01

    Full Text Available Teaching-Learning-based optimization (TLBO is a recently proposed population based algorithm, which simulates the teaching-learning process of the class room. This algorithm requires only the common control parameters and does not require any algorithm-specific control parameters. In this paper, the effect of elitism on the performance of the TLBO algorithm is investigated while solving unconstrained benchmark problems. The effects of common control parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 76 unconstrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. A statistical test is also performed to investigate the results obtained using different algorithms. The results have proved the effectiveness of the proposed elitist TLBO algorithm.

  20. Reinforcement Learning for Online Control of Evolutionary Algorithms

    NARCIS (Netherlands)

    Eiben, A.; Horvath, Mark; Kowalczyk, Wojtek; Schut, Martijn

    2007-01-01

    The research reported in this paper is concerned with assessing the usefulness of reinforcment learning (RL) for on-line calibration of parameters in evolutionary algorithms (EA). We are running an RL procedure and the EA simultaneously and the RL is changing the EA parameters on-the-fly. We

  1. A globally convergent MC algorithm with an adaptive learning rate.

    Science.gov (United States)

    Peng, Dezhong; Yi, Zhang; Xiang, Yong; Zhang, Haixian

    2012-02-01

    This brief deals with the problem of minor component analysis (MCA). Artificial neural networks can be exploited to achieve the task of MCA. Recent research works show that convergence of neural networks based MCA algorithms can be guaranteed if the learning rates are less than certain thresholds. However, the computation of these thresholds needs information about the eigenvalues of the autocorrelation matrix of data set, which is unavailable in online extraction of minor component from input data stream. In this correspondence, we introduce an adaptive learning rate into the OJAn MCA algorithm, such that its convergence condition does not depend on any unobtainable information, and can be easily satisfied in practical applications.

  2. A Large-Scale Multi-Hop Localization Algorithm Based on Regularized Extreme Learning for Wireless Networks.

    Science.gov (United States)

    Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan

    2017-12-20

    A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.

  3. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    Science.gov (United States)

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  4. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    Directory of Open Access Journals (Sweden)

    Serge Thomas Mickala Bourobou

    2015-05-01

    Full Text Available This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  5. Extracting quantum dynamics from genetic learning algorithms through principal control analysis

    International Nuclear Information System (INIS)

    White, J L; Pearson, B J; Bucksbaum, P H

    2004-01-01

    Genetic learning algorithms are widely used to control ultrafast optical pulse shapes for photo-induced quantum control of atoms and molecules. An unresolved issue is how to use the solutions found by these algorithms to learn about the system's quantum dynamics. We propose a simple method based on covariance analysis of the control space, which can reveal the degrees of freedom in the effective control Hamiltonian. We have applied this technique to stimulated Raman scattering in liquid methanol. A simple model of two-mode stimulated Raman scattering is consistent with the results. (letter to the editor)

  6. An unsupervised technique for optimal feature selection in attribute profiles for spectral-spatial classification of hyperspectral images

    Science.gov (United States)

    Bhardwaj, Kaushal; Patra, Swarnajyoti

    2018-04-01

    Inclusion of spatial information along with spectral features play a significant role in classification of remote sensing images. Attribute profiles have already proved their ability to represent spatial information. In order to incorporate proper spatial information, multiple attributes are required and for each attribute large profiles need to be constructed by varying the filter parameter values within a wide range. Thus, the constructed profiles that represent spectral-spatial information of an hyperspectral image have huge dimension which leads to Hughes phenomenon and increases computational burden. To mitigate these problems, this work presents an unsupervised feature selection technique that selects a subset of filtered image from the constructed high dimensional multi-attribute profile which are sufficiently informative to discriminate well among classes. In this regard the proposed technique exploits genetic algorithms (GAs). The fitness function of GAs are defined in an unsupervised way with the help of mutual information. The effectiveness of the proposed technique is assessed using one-against-all support vector machine classifier. The experiments conducted on three hyperspectral data sets show the robustness of the proposed method in terms of computation time and classification accuracy.

  7. QUEST : Eliminating online supervised learning for efficient classification algorithms

    NARCIS (Netherlands)

    Zwartjes, Ardjan; Havinga, Paul J.M.; Smit, Gerard J.M.; Hurink, Johann L.

    2016-01-01

    In this work, we introduce QUEST (QUantile Estimation after Supervised Training), an adaptive classification algorithm for Wireless Sensor Networks (WSNs) that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting

  8. Sequence-based prediction of protein protein interaction using a deep-learning algorithm.

    Science.gov (United States)

    Sun, Tanlin; Zhou, Bo; Lai, Luhua; Pei, Jianfeng

    2017-05-25

    Protein-protein interactions (PPIs) are critical for many biological processes. It is therefore important to develop accurate high-throughput methods for identifying PPI to better understand protein function, disease occurrence, and therapy design. Though various computational methods for predicting PPI have been developed, their robustness for prediction with external datasets is unknown. Deep-learning algorithms have achieved successful results in diverse areas, but their effectiveness for PPI prediction has not been tested. We used a stacked autoencoder, a type of deep-learning algorithm, to study the sequence-based PPI prediction. The best model achieved an average accuracy of 97.19% with 10-fold cross-validation. The prediction accuracies for various external datasets ranged from 87.99% to 99.21%, which are superior to those achieved with previous methods. To our knowledge, this research is the first to apply a deep-learning algorithm to sequence-based PPI prediction, and the results demonstrate its potential in this field.

  9. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.

    Science.gov (United States)

    Burbank, Kendra S

    2015-12-01

    The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.

  10. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  11. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    International Nuclear Information System (INIS)

    Bornholdt, S.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback

  12. Beyond the "c" and the "x": Learning with algorithms in massive open online courses (MOOCs)

    Science.gov (United States)

    Knox, Jeremy

    2018-02-01

    This article examines how algorithms are shaping student learning in massive open online courses (MOOCs). Following the dramatic rise of MOOC platform organisations in 2012, over 4,500 MOOCs have been offered to date, in increasingly diverse languages, and with a growing requirement for fees. However, discussions of learning in MOOCs remain polarised around the "xMOOC" and "cMOOC" designations. In this narrative, the more recent extended or platform MOOC ("xMOOC") adopts a broadcast pedagogy, assuming a direct transmission of information to its largely passive audience (i.e. a teacher-centred approach), while the slightly older connectivist model ("cMOOC") offers only a simplistic reversal of the hierarchy, posing students as highly motivated, self-directed and collaborative learners (i.e. a learner-centred approach). The online nature of both models generates data (e.g. on how many times a particular resource was viewed, or the ways in which participants communicated with each other) which MOOC providers use for analysis, albeit only after these data have been selectively processed. Central to many learning analytics approaches is the desire to predict students' future behaviour. Educators need to be aware that MOOC learning is not just about teachers and students, but that it also involves algorithms: instructions which perform automated calculations on data. Education is becoming embroiled in an "algorithmic culture" that defines educational roles, forecasts attainment, and influences pedagogy. Established theories of learning appear wholly inadequate in addressing the agential role of algorithms in the educational domain of the MOOC. This article identifies and examines four key areas where algorithms influence the activities of the MOOC: (1) data capture and discrimination; (2) calculated learners; (3) feedback and entanglement; and (4) learning with algorithms. The article concludes with a call for further research in these areas to surface a critical

  13. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  14. LEARNING ALGORITHM EFFECT ON MULTILAYER FEED FORWARD ARTIFICIAL NEURAL NETWORK PERFORMANCE IN IMAGE CODING

    Directory of Open Access Journals (Sweden)

    OMER MAHMOUD

    2007-08-01

    Full Text Available One of the essential factors that affect the performance of Artificial Neural Networks is the learning algorithm. The performance of Multilayer Feed Forward Artificial Neural Network performance in image compression using different learning algorithms is examined in this paper. Based on Gradient Descent, Conjugate Gradient, Quasi-Newton techniques three different error back propagation algorithms have been developed for use in training two types of neural networks, a single hidden layer network and three hidden layers network. The essence of this study is to investigate the most efficient and effective training methods for use in image compression and its subsequent applications. The obtained results show that the Quasi-Newton based algorithm has better performance as compared to the other two algorithms.

  15. Metric Learning for Hyperspectral Image Segmentation

    Science.gov (United States)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  16. Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data

    Directory of Open Access Journals (Sweden)

    Michael Veale

    2017-11-01

    Full Text Available Decisions based on algorithmic, machine learning models can be unfair, reproducing biases in historical data used to train them. While computational techniques are emerging to address aspects of these concerns through communities such as discrimination-aware data mining (DADM and fairness, accountability and transparency machine learning (FATML, their practical implementation faces real-world challenges. For legal, institutional or commercial reasons, organisations might not hold the data on sensitive attributes such as gender, ethnicity, sexuality or disability needed to diagnose and mitigate emergent indirect discrimination-by-proxy, such as redlining. Such organisations might also lack the knowledge and capacity to identify and manage fairness issues that are emergent properties of complex sociotechnical systems. This paper presents and discusses three potential approaches to deal with such knowledge and information deficits in the context of fairer machine learning. Trusted third parties could selectively store data necessary for performing discrimination discovery and incorporating fairness constraints into model-building in a privacy-preserving manner. Collaborative online platforms would allow diverse organisations to record, share and access contextual and experiential knowledge to promote fairness in machine learning systems. Finally, unsupervised learning and pedagogically interpretable algorithms might allow fairness hypotheses to be built for further selective testing and exploration. Real-world fairness challenges in machine learning are not abstract, constrained optimisation problems, but are institutionally and contextually grounded. Computational fairness tools are useful, but must be researched and developed in and with the messy contexts that will shape their deployment, rather than just for imagined situations. Not doing so risks real, near-term algorithmic harm.

  17. Distribution-Preserving Stratified Sampling for Learning Problems.

    Science.gov (United States)

    Cervellera, Cristiano; Maccio, Danilo

    2017-06-09

    The need for extracting a small sample from a large amount of real data, possibly streaming, arises routinely in learning problems, e.g., for storage, to cope with computational limitations, obtain good training/test/validation sets, and select minibatches for stochastic gradient neural network training. Unless we have reasons to select the samples in an active way dictated by the specific task and/or model at hand, it is important that the distribution of the selected points is as similar as possible to the original data. This is obvious for unsupervised learning problems, where the goal is to gain insights on the distribution of the data, but it is also relevant for supervised problems, where the theory explains how the training set distribution influences the generalization error. In this paper, we analyze the technique of stratified sampling from the point of view of distances between probabilities. This allows us to introduce an algorithm, based on recursive binary partition of the input space, aimed at obtaining samples that are distributed as much as possible as the original data. A theoretical analysis is proposed, proving the (greedy) optimality of the procedure together with explicit error bounds. An adaptive version of the algorithm is also introduced to cope with streaming data. Simulation tests on various data sets and different learning tasks are also provided.

  18. The efficiency of the RULES-4 classification learning algorithm in predicting the density of agents

    Directory of Open Access Journals (Sweden)

    Ziad Salem

    2014-12-01

    Full Text Available Learning is the act of obtaining new or modifying existing knowledge, behaviours, skills or preferences. The ability to learn is found in humans, other organisms and some machines. Learning is always based on some sort of observations or data such as examples, direct experience or instruction. This paper presents a classification algorithm to learn the density of agents in an arena based on the measurements of six proximity sensors of a combined actuator sensor units (CASUs. Rules are presented that were induced by the learning algorithm that was trained with data-sets based on the CASU’s sensor data streams collected during a number of experiments with “Bristlebots (agents in the arena (environment”. It was found that a set of rules generated by the learning algorithm is able to predict the number of bristlebots in the arena based on the CASU’s sensor readings with satisfying accuracy.

  19. Ellipsoidal fuzzy learning for smart car platoons

    Science.gov (United States)

    Dickerson, Julie A.; Kosko, Bart

    1993-12-01

    A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.

  20. A multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2014-01-01

    Full Text Available The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009 competition. The performance assessment is done by using the inverted generational distance (IGD measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.

  1. Boltzmann learning of parameters in cellular neural networks

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    1992-01-01

    The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...

  2. Unsupervised Document Embedding With CNNs

    OpenAIRE

    Liu, Chundi; Zhao, Shunan; Volkovs, Maksims

    2017-01-01

    We propose a new model for unsupervised document embedding. Leading existing approaches either require complex inference or use recurrent neural networks (RNN) that are difficult to parallelize. We take a different route and develop a convolutional neural network (CNN) embedding model. Our CNN architecture is fully parallelizable resulting in over 10x speedup in inference time over RNN models. Parallelizable architecture enables to train deeper models where each successive layer has increasin...

  3. On the Multi-Modal Object Tracking and Image Fusion Using Unsupervised Deep Learning Methodologies

    Science.gov (United States)

    LaHaye, N.; Ott, J.; Garay, M. J.; El-Askary, H. M.; Linstead, E.

    2017-12-01

    The number of different modalities of remote-sensors has been on the rise, resulting in large datasets with different complexity levels. Such complex datasets can provide valuable information separately, yet there is a bigger value in having a comprehensive view of them combined. As such, hidden information can be deduced through applying data mining techniques on the fused data. The curse of dimensionality of such fused data, due to the potentially vast dimension space, hinders our ability to have deep understanding of them. This is because each dataset requires a user to have instrument-specific and dataset-specific knowledge for optimum and meaningful usage. Once a user decides to use multiple datasets together, deeper understanding of translating and combining these datasets in a correct and effective manner is needed. Although there exists data centric techniques, generic automated methodologies that can potentially solve this problem completely don't exist. Here we are developing a system that aims to gain a detailed understanding of different data modalities. Such system will provide an analysis environment that gives the user useful feedback and can aid in research tasks. In our current work, we show the initial outputs our system implementation that leverages unsupervised deep learning techniques so not to burden the user with the task of labeling input data, while still allowing for a detailed machine understanding of the data. Our goal is to be able to track objects, like cloud systems or aerosols, across different image-like data-modalities. The proposed system is flexible, scalable and robust to understand complex likenesses within multi-modal data in a similar spatio-temporal range, and also to be able to co-register and fuse these images when needed.

  4. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms

    International Nuclear Information System (INIS)

    Liu, Hui; Tian, Hong-qi; Li, Yan-fei

    2015-01-01

    Highlights: • A hybrid architecture is proposed for the wind speed forecasting. • Four algorithms are used for the wind speed multi-scale decomposition. • The extreme learning machines are employed for the wind speed forecasting. • All the proposed hybrid models can generate the accurate results. - Abstract: Realization of accurate wind speed forecasting is important to guarantee the safety of wind power utilization. In this paper, a new hybrid forecasting architecture is proposed to realize the wind speed accurate forecasting. In this architecture, four different hybrid models are presented by combining four signal decomposing algorithms (e.g., Wavelet Decomposition/Wavelet Packet Decomposition/Empirical Mode Decomposition/Fast Ensemble Empirical Mode Decomposition) and Extreme Learning Machines. The originality of the study is to investigate the promoted percentages of the Extreme Learning Machines by those mainstream signal decomposing algorithms in the multiple step wind speed forecasting. The results of two forecasting experiments indicate that: (1) the method of Extreme Learning Machines is suitable for the wind speed forecasting; (2) by utilizing the decomposing algorithms, all the proposed hybrid algorithms have better performance than the single Extreme Learning Machines; (3) in the comparisons of the decomposing algorithms in the proposed hybrid architecture, the Fast Ensemble Empirical Mode Decomposition has the best performance in the three-step forecasting results while the Wavelet Packet Decomposition has the best performance in the one and two step forecasting results. At the same time, the Wavelet Packet Decomposition and the Fast Ensemble Empirical Mode Decomposition are better than the Wavelet Decomposition and the Empirical Mode Decomposition in all the step predictions, respectively; and (4) the proposed algorithms are effective in the wind speed accurate predictions

  5. Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.

    Science.gov (United States)

    Xu, Dongpo; Xia, Yili; Mandic, Danilo P

    2016-02-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.

  6. Learning-based traffic signal control algorithms with neighborhood information sharing: An application for sustainable mobility

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, H. M. Abdul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhu, Feng [Purdue University, West Lafayette, IN (United States). Lyles School of Civil Engineering; Ukkusuri, Satish V. [Purdue University, West Lafayette, IN (United States). Lyles School of Civil Engineering

    2017-10-04

    Here, this research applies R-Markov Average Reward Technique based reinforcement learning (RL) algorithm, namely RMART, for vehicular signal control problem leveraging information sharing among signal controllers in connected vehicle environment. We implemented the algorithm in a network of 18 signalized intersections and compare the performance of RMART with fixed, adaptive, and variants of the RL schemes. Results show significant improvement in system performance for RMART algorithm with information sharing over both traditional fixed signal timing plans and real time adaptive control schemes. Additionally, the comparison with reinforcement learning algorithms including Q learning and SARSA indicate that RMART performs better at higher congestion levels. Further, a multi-reward structure is proposed that dynamically adjusts the reward function with varying congestion states at the intersection. Finally, the results from test networks show significant reduction in emissions (CO, CO2, NOx, VOC, PM10) when RL algorithms are implemented compared to fixed signal timings and adaptive schemes.

  7. Can We Train Machine Learning Methods to Outperform the High-dimensional Propensity Score Algorithm?

    Science.gov (United States)

    Karim, Mohammad Ehsanul; Pang, Menglan; Platt, Robert W

    2018-03-01

    The use of retrospective health care claims datasets is frequently criticized for the lack of complete information on potential confounders. Utilizing patient's health status-related information from claims datasets as surrogates or proxies for mismeasured and unobserved confounders, the high-dimensional propensity score algorithm enables us to reduce bias. Using a previously published cohort study of postmyocardial infarction statin use (1998-2012), we compare the performance of the algorithm with a number of popular machine learning approaches for confounder selection in high-dimensional covariate spaces: random forest, least absolute shrinkage and selection operator, and elastic net. Our results suggest that, when the data analysis is done with epidemiologic principles in mind, machine learning methods perform as well as the high-dimensional propensity score algorithm. Using a plasmode framework that mimicked the empirical data, we also showed that a hybrid of machine learning and high-dimensional propensity score algorithms generally perform slightly better than both in terms of mean squared error, when a bias-based analysis is used.

  8. Spectral Learning for Supervised Topic Models.

    Science.gov (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  9. A New Fuzzy Cognitive Map Learning Algorithm for Speech Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-01-01

    Full Text Available Selecting an appropriate recognition method is crucial in speech emotion recognition applications. However, the current methods do not consider the relationship between emotions. Thus, in this study, a speech emotion recognition system based on the fuzzy cognitive map (FCM approach is constructed. Moreover, a new FCM learning algorithm for speech emotion recognition is proposed. This algorithm includes the use of the pleasure-arousal-dominance emotion scale to calculate the weights between emotions and certain mathematical derivations to determine the network structure. The proposed algorithm can handle a large number of concepts, whereas a typical FCM can handle only relatively simple networks (maps. Different acoustic features, including fundamental speech features and a new spectral feature, are extracted to evaluate the performance of the proposed method. Three experiments are conducted in this paper, namely, single feature experiment, feature combination experiment, and comparison between the proposed algorithm and typical networks. All experiments are performed on TYUT2.0 and EMO-DB databases. Results of the feature combination experiments show that the recognition rates of the combination features are 10%–20% better than those of single features. The proposed FCM learning algorithm generates 5%–20% performance improvement compared with traditional classification networks.

  10. FMRQ-A Multiagent Reinforcement Learning Algorithm for Fully Cooperative Tasks.

    Science.gov (United States)

    Zhang, Zhen; Zhao, Dongbin; Gao, Junwei; Wang, Dongqing; Dai, Yujie

    2017-06-01

    In this paper, we propose a multiagent reinforcement learning algorithm dealing with fully cooperative tasks. The algorithm is called frequency of the maximum reward Q-learning (FMRQ). FMRQ aims to achieve one of the optimal Nash equilibria so as to optimize the performance index in multiagent systems. The frequency of obtaining the highest global immediate reward instead of immediate reward is used as the reinforcement signal. With FMRQ each agent does not need the observation of the other agents' actions and only shares its state and reward at each step. We validate FMRQ through case studies of repeated games: four cases of two-player two-action and one case of three-player two-action. It is demonstrated that FMRQ can converge to one of the optimal Nash equilibria in these cases. Moreover, comparison experiments on tasks with multiple states and finite steps are conducted. One is box-pushing and the other one is distributed sensor network problem. Experimental results show that the proposed algorithm outperforms others with higher performance.

  11. New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical Classification Problems

    Directory of Open Access Journals (Sweden)

    Xiguang Li

    2017-01-01

    Full Text Available Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA, is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into two subpopulations, and different subpopulations will undergo different sowing behaviors. Moreover, another sowing method is designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced fireworks algorithm. Simulations show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be applied to optimize extreme learning machine (ELM for biomedical classification problems, and the effect is considerable. At last, we use different fusion methods to form different fusion classifiers, and the fusion classifiers can achieve higher accuracy and better stability to some extent.

  12. Development of a general learning algorithm with applications in nuclear reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Brittain, C.R.; Otaduy, P.J.; Perez, R.B.

    1989-12-01

    The objective of this study was development of a generalized learning algorithm that can learn to predict a particular feature of a process by observation of a set of representative input examples. The algorithm uses pattern matching and statistical analysis techniques to find a functional relationship between descriptive attributes of the input examples and the feature to be predicted. The algorithm was tested by applying it to a set of examples consisting of performance descriptions for 277 fuel cycles of Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR). The program learned to predict the critical rod position for the HFIR from core configuration data prior to reactor startup. The functional relationship bases its predictions on initial core reactivity, the number of certain targets placed in the center of the reactor, and the total exposure of the control plates. Twelve characteristic fuel cycle clusters were identified. Nine fuel cycles were diagnosed as having noisy data, and one could not be predicted by the functional relationship. 13 refs., 6 figs.

  13. Development of a general learning algorithm with applications in nuclear reactor systems

    International Nuclear Information System (INIS)

    Brittain, C.R.; Otaduy, P.J.; Perez, R.B.

    1989-12-01

    The objective of this study was development of a generalized learning algorithm that can learn to predict a particular feature of a process by observation of a set of representative input examples. The algorithm uses pattern matching and statistical analysis techniques to find a functional relationship between descriptive attributes of the input examples and the feature to be predicted. The algorithm was tested by applying it to a set of examples consisting of performance descriptions for 277 fuel cycles of Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR). The program learned to predict the critical rod position for the HFIR from core configuration data prior to reactor startup. The functional relationship bases its predictions on initial core reactivity, the number of certain targets placed in the center of the reactor, and the total exposure of the control plates. Twelve characteristic fuel cycle clusters were identified. Nine fuel cycles were diagnosed as having noisy data, and one could not be predicted by the functional relationship. 13 refs., 6 figs

  14. An Adaptive Bacterial Foraging Optimization Algorithm with Lifecycle and Social Learning

    Directory of Open Access Journals (Sweden)

    Xiaohui Yan

    2012-01-01

    Full Text Available Bacterial Foraging Algorithm (BFO is a recently proposed swarm intelligence algorithm inspired by the foraging and chemotactic phenomenon of bacteria. However, its optimization ability is not so good compared with other classic algorithms as it has several shortages. This paper presents an improved BFO Algorithm. In the new algorithm, a lifecycle model of bacteria is founded. The bacteria could split, die, or migrate dynamically in the foraging processes, and population size varies as the algorithm runs. Social learning is also introduced so that the bacteria will tumble towards better directions in the chemotactic steps. Besides, adaptive step lengths are employed in chemotaxis. The new algorithm is named BFOLS and it is tested on a set of benchmark functions with dimensions of 2 and 20. Canonical BFO, PSO, and GA algorithms are employed for comparison. Experiment results and statistic analysis show that the BFOLS algorithm offers significant improvements than original BFO algorithm. Particulary with dimension of 20, it has the best performance among the four algorithms.

  15. Glaucomatous patterns in Frequency Doubling Technology (FDT) perimetry data identified by unsupervised machine learning classifiers.

    Science.gov (United States)

    Bowd, Christopher; Weinreb, Robert N; Balasubramanian, Madhusudhanan; Lee, Intae; Jang, Giljin; Yousefi, Siamak; Zangwill, Linda M; Medeiros, Felipe A; Girkin, Christopher A; Liebmann, Jeffrey M; Goldbaum, Michael H

    2014-01-01

    The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes representing statistically independent patterns of defect in the glaucoma clusters. FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 eyes with abnormal FDT results from the UCSD-based Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma Evaluation Study (ADAGES). For all eyes, VIM input was 52 threshold test points from the 24-2 test pattern, plus age. FDT mean deviation was -1.00 dB (S.D. = 2.80 dB) and -5.57 dB (S.D. = 5.09 dB) in FDT-normal eyes and FDT-abnormal eyes, respectively (p<0.001). VIM identified meaningful clusters of FDT data and positioned a set of statistically independent axes through the mean of each cluster. The optimal VIM model separated the FDT fields into 3 clusters. Cluster N contained primarily normal fields (1109/1190, specificity 93.1%) and clusters G1 and G2 combined, contained primarily abnormal fields (651/786, sensitivity 82.8%). For clusters G1 and G2 the optimal number of axes were 2 and 5, respectively. Patterns automatically generated along axes within the glaucoma clusters were similar to those known to be indicative of glaucoma. Fields located farther from the normal mean on each glaucoma axis showed increasing field defect severity. VIM successfully separated FDT fields from healthy and glaucoma eyes without a priori information about class membership, and identified familiar glaucomatous patterns of loss.

  16. flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding.

    Science.gov (United States)

    Ge, Yongchao; Sealfon, Stuart C

    2012-08-01

    For flow cytometry data, there are two common approaches to the unsupervised clustering problem: one is based on the finite mixture model and the other on spatial exploration of the histograms. The former is computationally slow and has difficulty to identify clusters of irregular shapes. The latter approach cannot be applied directly to high-dimensional data as the computational time and memory become unmanageable and the estimated histogram is unreliable. An algorithm without these two problems would be very useful. In this article, we combine ideas from the finite mixture model and histogram spatial exploration. This new algorithm, which we call flowPeaks, can be applied directly to high-dimensional data and identify irregular shape clusters. The algorithm first uses K-means algorithm with a large K to partition the cell population into many small clusters. These partitioned data allow the generation of a smoothed density function using the finite mixture model. All local peaks are exhaustively searched by exploring the density function and the cells are clustered by the associated local peak. The algorithm flowPeaks is automatic, fast and reliable and robust to cluster shape and outliers. This algorithm has been applied to flow cytometry data and it has been compared with state of the art algorithms, including Misty Mountain, FLOCK, flowMeans, flowMerge and FLAME. The R package flowPeaks is available at https://github.com/yongchao/flowPeaks. yongchao.ge@mssm.edu Supplementary data are available at Bioinformatics online.

  17. Hyperparameterization of soil moisture statistical models for North America with Ensemble Learning Models (Elm)

    Science.gov (United States)

    Steinberg, P. D.; Brener, G.; Duffy, D.; Nearing, G. S.; Pelissier, C.

    2017-12-01

    Hyperparameterization, of statistical models, i.e. automated model scoring and selection, such as evolutionary algorithms, grid searches, and randomized searches, can improve forecast model skill by reducing errors associated with model parameterization, model structure, and statistical properties of training data. Ensemble Learning Models (Elm), and the related Earthio package, provide a flexible interface for automating the selection of parameters and model structure for machine learning models common in climate science and land cover classification, offering convenient tools for loading NetCDF, HDF, Grib, or GeoTiff files, decomposition methods like PCA and manifold learning, and parallel training and prediction with unsupervised and supervised classification, clustering, and regression estimators. Continuum Analytics is using Elm to experiment with statistical soil moisture forecasting based on meteorological forcing data from NASA's North American Land Data Assimilation System (NLDAS). There Elm is using the NSGA-2 multiobjective optimization algorithm for optimizing statistical preprocessing of forcing data to improve goodness-of-fit for statistical models (i.e. feature engineering). This presentation will discuss Elm and its components, including dask (distributed task scheduling), xarray (data structures for n-dimensional arrays), and scikit-learn (statistical preprocessing, clustering, classification, regression), and it will show how NSGA-2 is being used for automate selection of soil moisture forecast statistical models for North America.

  18. Data mining with unsupervised clustering using photonic micro-ring resonators

    Science.gov (United States)

    McAulay, Alastair D.

    2013-09-01

    Data is commonly moved through optical fiber in modern data centers and may be stored optically. We propose an optical method of data mining for future data centers to enhance performance. For example, in clustering, a form of unsupervised learning, we propose that parameters corresponding to information in a database are converted from analog values to frequencies, as in the brain's neurons, where similar data will have close frequencies. We describe the Wilson-Cowan model for oscillating neurons. In optics we implement the frequencies with micro ring resonators. Due to the influence of weak coupling, a group of resonators will form clusters of similar frequencies that will indicate the desired parameters having close relations. Fewer clusters are formed as clustering proceeds, which allows the creation of a tree showing topics of importance and their relationships in the database. The tree can be used for instance to target advertising and for planning.

  19. CAT-PUMA: CME Arrival Time Prediction Using Machine learning Algorithms

    Science.gov (United States)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-04-01

    CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) quickly and accurately predicts the arrival of Coronal Mass Ejections (CMEs) of CME arrival time. The software was trained via detailed analysis of CME features and solar wind parameters using 182 previously observed geo-effective partial-/full-halo CMEs and uses algorithms of the Support Vector Machine (SVM) to make its predictions, which can be made within minutes of providing the necessary input parameters of a CME.

  20. How the machine ‘thinks’: Understanding opacity in machine learning algorithms

    Directory of Open Access Journals (Sweden)

    Jenna Burrell

    2016-01-01

    Full Text Available This article considers the issue of opacity as a problem for socially consequential mechanisms of classification and ranking, such as spam filters, credit card fraud detection, search engines, news trends, market segmentation and advertising, insurance or loan qualification, and credit scoring. These mechanisms of classification all frequently rely on computational algorithms, and in many cases on machine learning algorithms to do this work. In this article, I draw a distinction between three forms of opacity: (1 opacity as intentional corporate or state secrecy, (2 opacity as technical illiteracy, and (3 an opacity that arises from the characteristics of machine learning algorithms and the scale required to apply them usefully. The analysis in this article gets inside the algorithms themselves. I cite existing literatures in computer science, known industry practices (as they are publicly presented, and do some testing and manipulation of code as a form of lightweight code audit. I argue that recognizing the distinct forms of opacity that may be coming into play in a given application is a key to determining which of a variety of technical and non-technical solutions could help to prevent harm.

  1. Unsupervised quantification of abdominal fat from CT images using Greedy Snakes

    Science.gov (United States)

    Agarwal, Chirag; Dallal, Ahmed H.; Arbabshirani, Mohammad R.; Patel, Aalpen; Moore, Gregory

    2017-02-01

    Adipose tissue has been associated with adverse consequences of obesity. Total adipose tissue (TAT) is divided into subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). Intra-abdominal fat (VAT), located inside the abdominal cavity, is a major factor for the classic obesity related pathologies. Since direct measurement of visceral and subcutaneous fat is not trivial, substitute metrics like waist circumference (WC) and body mass index (BMI) are used in clinical settings to quantify obesity. Abdominal fat can be assessed effectively using CT or MRI, but manual fat segmentation is rather subjective and time-consuming. Hence, an automatic and accurate quantification tool for abdominal fat is needed. The goal of this study is to extract TAT, VAT and SAT fat from abdominal CT in a fully automated unsupervised fashion using energy minimization techniques. We applied a four step framework consisting of 1) initial body contour estimation, 2) approximation of the body contour, 3) estimation of inner abdominal contour using Greedy Snakes algorithm, and 4) voting, to segment the subcutaneous and visceral fat. We validated our algorithm on 952 clinical abdominal CT images (from 476 patients with a very wide BMI range) collected from various radiology departments of Geisinger Health System. To our knowledge, this is the first study of its kind on such a large and diverse clinical dataset. Our algorithm obtained a 3.4% error for VAT segmentation compared to manual segmentation. These personalized and accurate measurements of fat can complement traditional population health driven obesity metrics such as BMI and WC.

  2. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    Science.gov (United States)

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  3. A Learning Model for L/M Specificity in Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2016-01-01

    An unsupervised learning model for developing LM specific wiring at the ganglion cell level would support the research indicating LM specific wiring at the ganglion cell level (Reid and Shapley, 2002). Removing the contributions to the surround from cells of the same cone type improves the signal-to-noise ratio of the chromatic signals. The unsupervised learning model used is Hebbian associative learning, which strengthens the surround input connections according to the correlation of the output with the input. Since the surround units of the same cone type as the center are redundant with the center, their weights end up disappearing. This process can be thought of as a general mechanism for eliminating unnecessary cells in the nervous system.

  4. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer

    NARCIS (Netherlands)

    Bejnordi, Babak Ehteshami; Veta, Mitko; van Diest, Paul Johannes; Van Ginneken, Bram; Karssemeijer, Nico; Litjens, Geert; van der Laak, Jeroen A.W.M.; Hermsen, Meyke; Manson, Quirine F.; Balkenhol, Maschenka; Geessink, Oscar; Stathonikos, Nikolaos; Van Dijk, Marcory C.R.F.; Bult, Peter; Beca, Francisco; Beck, Andrew H.; Wang, Dayong; Khosla, Aditya; Gargeya, Rishab; Irshad, Humayun; Zhong, Aoxiao; Dou, Qi; Li, Quanzheng; Chen, Hao; Lin, Huang Jing; Heng, Pheng Ann; Haß, Christian; Bruni, Elia; Wong, Quincy; Halici, Ugur; Öner, Mustafa Ümit; Cetin-Atalay, Rengul; Berseth, Matt; Khvatkov, Vitali; Vylegzhanin, Alexei; Kraus, Oren; Shaban, Muhammad; Rajpoot, Nasir; Awan, Ruqayya; Sirinukunwattana, Korsuk; Qaiser, Talha; Tsang, Yee Wah; Tellez, David; Annuscheit, Jonas; Hufnagl, Peter; Valkonen, Mira; Kartasalo, Kimmo; Latonen, Leena; Ruusuvuori, Pekka; Liimatainen, Kaisa

    2017-01-01

    IMPORTANCE: Application of deep learning algorithms to whole-slide pathology imagescan potentially improve diagnostic accuracy and efficiency. OBJECTIVE: Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph

  5. Semi-automatic mapping of linear-trending bedforms using 'Self-Organizing Maps' algorithm

    Science.gov (United States)

    Foroutan, M.; Zimbelman, J. R.

    2017-09-01

    Increased application of high resolution spatial data such as high resolution satellite or Unmanned Aerial Vehicle (UAV) images from Earth, as well as High Resolution Imaging Science Experiment (HiRISE) images from Mars, makes it necessary to increase automation techniques capable of extracting detailed geomorphologic elements from such large data sets. Model validation by repeated images in environmental management studies such as climate-related changes as well as increasing access to high-resolution satellite images underline the demand for detailed automatic image-processing techniques in remote sensing. This study presents a methodology based on an unsupervised Artificial Neural Network (ANN) algorithm, known as Self Organizing Maps (SOM), to achieve the semi-automatic extraction of linear features with small footprints on satellite images. SOM is based on competitive learning and is efficient for handling huge data sets. We applied the SOM algorithm to high resolution satellite images of Earth and Mars (Quickbird, Worldview and HiRISE) in order to facilitate and speed up image analysis along with the improvement of the accuracy of results. About 98% overall accuracy and 0.001 quantization error in the recognition of small linear-trending bedforms demonstrate a promising framework.

  6. Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning

    Science.gov (United States)

    Duan, Haibin; Li, Pei; Shi, Yuhui; Zhang, Xiangyin; Sun, Changhao

    2015-01-01

    This paper describes the development of BOLE, a MATLAB-based interactive learning environment, that facilitates the process of learning bio-inspired optimization algorithms, and that is dedicated exclusively to unmanned aerial vehicle path planning. As a complement to conventional teaching methods, BOLE is designed to help students consolidate the…

  7. An augmented Lagrangian multi-scale dictionary learning algorithm

    Directory of Open Access Journals (Sweden)

    Ye Meng

    2011-01-01

    Full Text Available Abstract Learning overcomplete dictionaries for sparse signal representation has become a hot topic fascinated by many researchers in the recent years, while most of the existing approaches have a serious problem that they always lead to local minima. In this article, we present a novel augmented Lagrangian multi-scale dictionary learning algorithm (ALM-DL, which is achieved by first recasting the constrained dictionary learning problem into an AL scheme, and then updating the dictionary after each inner iteration of the scheme during which majorization-minimization technique is employed for solving the inner subproblem. Refining the dictionary from low scale to high makes the proposed method less dependent on the initial dictionary hence avoiding local optima. Numerical tests for synthetic data and denoising applications on real images demonstrate the superior performance of the proposed approach.

  8. An Empirical Generative Framework for Computational Modeling of Language Acquisition

    Science.gov (United States)

    Waterfall, Heidi R.; Sandbank, Ben; Onnis, Luca; Edelman, Shimon

    2010-01-01

    This paper reports progress in developing a computer model of language acquisition in the form of (1) a generative grammar that is (2) algorithmically learnable from realistic corpus data, (3) viable in its large-scale quantitative performance and (4) psychologically real. First, we describe new algorithmic methods for unsupervised learning of…

  9. A numeric comparison of variable selection algorithms for supervised learning

    International Nuclear Information System (INIS)

    Palombo, G.; Narsky, I.

    2009-01-01

    Datasets in modern High Energy Physics (HEP) experiments are often described by dozens or even hundreds of input variables. Reducing a full variable set to a subset that most completely represents information about data is therefore an important task in analysis of HEP data. We compare various variable selection algorithms for supervised learning using several datasets such as, for instance, imaging gamma-ray Cherenkov telescope (MAGIC) data found at the UCI repository. We use classifiers and variable selection methods implemented in the statistical package StatPatternRecognition (SPR), a free open-source C++ package developed in the HEP community ( (http://sourceforge.net/projects/statpatrec/)). For each dataset, we select a powerful classifier and estimate its learning accuracy on variable subsets obtained by various selection algorithms. When possible, we also estimate the CPU time needed for the variable subset selection. The results of this analysis are compared with those published previously for these datasets using other statistical packages such as R and Weka. We show that the most accurate, yet slowest, method is a wrapper algorithm known as generalized sequential forward selection ('Add N Remove R') implemented in SPR.

  10. Machine Learning and Data Mining Methods in Diabetes Research.

    Science.gov (United States)

    Kavakiotis, Ioannis; Tsave, Olga; Salifoglou, Athanasios; Maglaveras, Nicos; Vlahavas, Ioannis; Chouvarda, Ioanna

    2017-01-01

    The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM.

  11. Basis Expansion Approaches for Regularized Sequential Dictionary Learning Algorithms With Enforced Sparsity for fMRI Data Analysis.

    Science.gov (United States)

    Seghouane, Abd-Krim; Iqbal, Asif

    2017-09-01

    Sequential dictionary learning algorithms have been successfully applied to functional magnetic resonance imaging (fMRI) data analysis. fMRI data sets are, however, structured data matrices with the notions of temporal smoothness in the column direction. This prior information, which can be converted into a constraint of smoothness on the learned dictionary atoms, has seldomly been included in classical dictionary learning algorithms when applied to fMRI data analysis. In this paper, we tackle this problem by proposing two new sequential dictionary learning algorithms dedicated to fMRI data analysis by accounting for this prior information. These algorithms differ from the existing ones in their dictionary update stage. The steps of this stage are derived as a variant of the power method for computing the SVD. The proposed algorithms generate regularized dictionary atoms via the solution of a left regularized rank-one matrix approximation problem where temporal smoothness is enforced via regularization through basis expansion and sparse basis expansion in the dictionary update stage. Applications on synthetic data experiments and real fMRI data sets illustrating the performance of the proposed algorithms are provided.

  12. Inference algorithms and learning theory for Bayesian sparse factor analysis

    International Nuclear Information System (INIS)

    Rattray, Magnus; Sharp, Kevin; Stegle, Oliver; Winn, John

    2009-01-01

    Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.

  13. Inference algorithms and learning theory for Bayesian sparse factor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rattray, Magnus; Sharp, Kevin [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Stegle, Oliver [Max-Planck-Institute for Biological Cybernetics, Tuebingen (Germany); Winn, John, E-mail: magnus.rattray@manchester.ac.u [Microsoft Research Cambridge, Roger Needham Building, Cambridge, CB3 0FB (United Kingdom)

    2009-12-01

    Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.

  14. Towards a new classification of stable phase schizophrenia into major and simple neuro-cognitive psychosis: Results of unsupervised machine learning analysis.

    Science.gov (United States)

    Kanchanatawan, Buranee; Sriswasdi, Sira; Thika, Supaksorn; Stoyanov, Drozdstoy; Sirivichayakul, Sunee; Carvalho, André F; Geffard, Michel; Maes, Michael

    2018-05-23

    Deficit schizophrenia, as defined by the Schedule for Deficit Syndrome, may represent a distinct diagnostic class defined by neurocognitive impairments coupled with changes in IgA/IgM responses to tryptophan catabolites (TRYCATs). Adequate classifications should be based on supervised and unsupervised learning rather than on consensus criteria. This study used machine learning as means to provide a more accurate classification of patients with stable phase schizophrenia. We found that using negative symptoms as discriminatory variables, schizophrenia patients may be divided into two distinct classes modelled by (A) impairments in IgA/IgM responses to noxious and generally more protective tryptophan catabolites, (B) impairments in episodic and semantic memory, paired associative learning and false memory creation, and (C) psychotic, excitation, hostility, mannerism, negative, and affective symptoms. The first cluster shows increased negative, psychotic, excitation, hostility, mannerism, depression and anxiety symptoms, and more neuroimmune and cognitive disorders and is therefore called "major neurocognitive psychosis" (MNP). The second cluster, called "simple neurocognitive psychosis" (SNP) is discriminated from normal controls by the same features although the impairments are less well developed than in MNP. The latter is additionally externally validated by lowered quality of life, body mass (reflecting a leptosome body type), and education (reflecting lower cognitive reserve). Previous distinctions including "type 1" (positive)/"type 2" (negative) and DSM-IV-TR (eg, paranoid) schizophrenia could not be validated using machine learning techniques. Previous names of the illness, including schizophrenia, are not very adequate because they do not describe the features of the illness, namely, interrelated neuroimmune, cognitive, and clinical features. Stable-phase schizophrenia consists of 2 relevant qualitatively distinct categories or nosological entities with SNP

  15. On-line Learning of Prototypes and Principal Components

    NARCIS (Netherlands)

    Biehl, M.; Freking, A.; Hölzer, M.; Reents, G.; Schlösser, E.; Saad, David

    1998-01-01

    We review our recent investigation of on-line unsupervised learning from high-dimensional structured data. First, on-line competitive learning is studied as a method for the identification of prototype vectors from overlapping clusters of examples. Specifically, we analyse the dynamics of the

  16. ProDis-ContSHC: learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval.

    Science.gov (United States)

    Wang, Jingyan; Gao, Xin; Wang, Quanquan; Li, Yongping

    2012-05-08

    The need to retrieve or classify protein molecules using structure or sequence-based similarity measures underlies a wide range of biomedical applications. Traditional protein search methods rely on a pairwise dissimilarity/similarity measure for comparing a pair of proteins. This kind of pairwise measures suffer from the limitation of neglecting the distribution of other proteins and thus cannot satisfy the need for high accuracy of the retrieval systems. Recent work in the machine learning community has shown that exploiting the global structure of the database and learning the contextual dissimilarity/similarity measures can improve the retrieval performance significantly. However, most existing contextual dissimilarity/similarity learning algorithms work in an unsupervised manner, which does not utilize the information of the known class labels of proteins in the database. In this paper, we propose a novel protein-protein dissimilarity learning algorithm, ProDis-ContSHC. ProDis-ContSHC regularizes an existing dissimilarity measure dij by considering the contextual information of the proteins. The context of a protein is defined by its neighboring proteins. The basic idea is, for a pair of proteins (i, j), if their context N(i) and N(j) is similar to each other, the two proteins should also have a high similarity. We implement this idea by regularizing dij by a factor learned from the context N(i) and N(j).Moreover, we divide the context to hierarchial sub-context and get the contextual dissimilarity vector for each protein pair. Using the class label information of the proteins, we select the relevant (a pair of proteins that has the same class labels) and irrelevant (with different labels) protein pairs, and train an SVM model to distinguish between their contextual dissimilarity vectors. The SVM model is further used to learn a supervised regularizing factor. Finally, with the new Supervised learned Dissimilarity measure, we update the Protein Hierarchial

  17. Bioinformatics algorithm based on a parallel implementation of a machine learning approach using transducers

    International Nuclear Information System (INIS)

    Roche-Lima, Abiel; Thulasiram, Ruppa K

    2012-01-01

    Finite automata, in which each transition is augmented with an output label in addition to the familiar input label, are considered finite-state transducers. Transducers have been used to analyze some fundamental issues in bioinformatics. Weighted finite-state transducers have been proposed to pairwise alignments of DNA and protein sequences; as well as to develop kernels for computational biology. Machine learning algorithms for conditional transducers have been implemented and used for DNA sequence analysis. Transducer learning algorithms are based on conditional probability computation. It is calculated by using techniques, such as pair-database creation, normalization (with Maximum-Likelihood normalization) and parameters optimization (with Expectation-Maximization - EM). These techniques are intrinsically costly for computation, even worse when are applied to bioinformatics, because the databases sizes are large. In this work, we describe a parallel implementation of an algorithm to learn conditional transducers using these techniques. The algorithm is oriented to bioinformatics applications, such as alignments, phylogenetic trees, and other genome evolution studies. Indeed, several experiences were developed using the parallel and sequential algorithm on Westgrid (specifically, on the Breeze cluster). As results, we obtain that our parallel algorithm is scalable, because execution times are reduced considerably when the data size parameter is increased. Another experience is developed by changing precision parameter. In this case, we obtain smaller execution times using the parallel algorithm. Finally, number of threads used to execute the parallel algorithm on the Breezy cluster is changed. In this last experience, we obtain as result that speedup is considerably increased when more threads are used; however there is a convergence for number of threads equal to or greater than 16.

  18. Data Mining for Anomaly Detection

    Science.gov (United States)

    Biswas, Gautam; Mack, Daniel; Mylaraswamy, Dinkar; Bharadwaj, Raj

    2013-01-01

    The Vehicle Integrated Prognostics Reasoner (VIPR) program describes methods for enhanced diagnostics as well as a prognostic extension to current state of art Aircraft Diagnostic and Maintenance System (ADMS). VIPR introduced a new anomaly detection function for discovering previously undetected and undocumented situations, where there are clear deviations from nominal behavior. Once a baseline (nominal model of operations) is established, the detection and analysis is split between on-aircraft outlier generation and off-aircraft expert analysis to characterize and classify events that may not have been anticipated by individual system providers. Offline expert analysis is supported by data curation and data mining algorithms that can be applied in the contexts of supervised learning methods and unsupervised learning. In this report, we discuss efficient methods to implement the Kolmogorov complexity measure using compression algorithms, and run a systematic empirical analysis to determine the best compression measure. Our experiments established that the combination of the DZIP compression algorithm and CiDM distance measure provides the best results for capturing relevant properties of time series data encountered in aircraft operations. This combination was used as the basis for developing an unsupervised learning algorithm to define "nominal" flight segments using historical flight segments.

  19. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  20. A competition in unsupervised color image segmentation

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Mikeš, Stanislav

    2016-01-01

    Roč. 57, č. 9 (2016), s. 136-151 ISSN 0031-3203 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : Unsupervised image segmentation * Segmentation contest * Texture analysis Subject RIV: BD - Theory of Information Impact factor: 4.582, year: 2016 http://library.utia.cas.cz/separaty/2016/RO/haindl-0459179.pdf

  1. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography.

    Science.gov (United States)

    Narula, Sukrit; Shameer, Khader; Salem Omar, Alaa Mabrouk; Dudley, Joel T; Sengupta, Partho P

    2016-11-29

    Machine-learning models may aid cardiac phenotypic recognition by using features of cardiac tissue deformation. This study investigated the diagnostic value of a machine-learning framework that incorporates speckle-tracking echocardiographic data for automated discrimination of hypertrophic cardiomyopathy (HCM) from physiological hypertrophy seen in athletes (ATH). Expert-annotated speckle-tracking echocardiographic datasets obtained from 77 ATH and 62 HCM patients were used for developing an automated system. An ensemble machine-learning model with 3 different machine-learning algorithms (support vector machines, random forests, and artificial neural networks) was developed and a majority voting method was used for conclusive predictions with further K-fold cross-validation. Feature selection using an information gain (IG) algorithm revealed that volume was the best predictor for differentiating between HCM ands. ATH (IG = 0.24) followed by mid-left ventricular segmental (IG = 0.134) and average longitudinal strain (IG = 0.131). The ensemble machine-learning model showed increased sensitivity and specificity compared with early-to-late diastolic transmitral velocity ratio (p 13 mm. In this subgroup analysis, the automated model continued to show equal sensitivity, but increased specificity relative to early-to-late diastolic transmitral velocity ratio, e', and strain. Our results suggested that machine-learning algorithms can assist in the discrimination of physiological versus pathological patterns of hypertrophic remodeling. This effort represents a step toward the development of a real-time, machine-learning-based system for automated interpretation of echocardiographic images, which may help novice readers with limited experience. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. A New Fuzzy Cognitive Map Learning Algorithm for Speech Emotion Recognition

    OpenAIRE

    Zhang, Wei; Zhang, Xueying; Sun, Ying

    2017-01-01

    Selecting an appropriate recognition method is crucial in speech emotion recognition applications. However, the current methods do not consider the relationship between emotions. Thus, in this study, a speech emotion recognition system based on the fuzzy cognitive map (FCM) approach is constructed. Moreover, a new FCM learning algorithm for speech emotion recognition is proposed. This algorithm includes the use of the pleasure-arousal-dominance emotion scale to calculate the weights between e...

  3. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Rosenberger C

    2008-01-01

    Full Text Available Abstract Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  4. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    H. Laurent

    2008-05-01

    Full Text Available Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  5. ASSESSMENT OF PERFORMANCES OF VARIOUS MACHINE LEARNING ALGORITHMS DURING AUTOMATED EVALUATION OF DESCRIPTIVE ANSWERS

    Directory of Open Access Journals (Sweden)

    C. Sunil Kumar

    2014-07-01

    Full Text Available Automation of descriptive answers evaluation is the need of the hour because of the huge increase in the number of students enrolling each year in educational institutions and the limited staff available to spare their time for evaluations. In this paper, we use a machine learning workbench called LightSIDE to accomplish auto evaluation and scoring of descriptive answers. We attempted to identify the best supervised machine learning algorithm given a limited training set sample size scenario. We evaluated performances of Bayes, SVM, Logistic Regression, Random forests, Decision stump and Decision trees algorithms. We confirmed SVM as best performing algorithm based on quantitative measurements across accuracy, kappa, training speed and prediction accuracy with supplied test set.

  6. Content Discovery from Composite Audio : An unsupervised approach

    NARCIS (Netherlands)

    Lu, L.

    2009-01-01

    In this thesis, we developed and assessed a novel robust and unsupervised framework for semantic inference from composite audio signals. We focused on the problem of detecting audio scenes and grouping them into meaningful clusters. Our approach addressed all major steps in a general process of

  7. Sampling algorithms for validation of supervised learning models for Ising-like systems

    Science.gov (United States)

    Portman, Nataliya; Tamblyn, Isaac

    2017-12-01

    In this paper, we build and explore supervised learning models of ferromagnetic system behavior, using Monte-Carlo sampling of the spin configuration space generated by the 2D Ising model. Given the enormous size of the space of all possible Ising model realizations, the question arises as to how to choose a reasonable number of samples that will form physically meaningful and non-intersecting training and testing datasets. Here, we propose a sampling technique called ;ID-MH; that uses the Metropolis-Hastings algorithm creating Markov process across energy levels within the predefined configuration subspace. We show that application of this method retains phase transitions in both training and testing datasets and serves the purpose of validation of a machine learning algorithm. For larger lattice dimensions, ID-MH is not feasible as it requires knowledge of the complete configuration space. As such, we develop a new ;block-ID; sampling strategy: it decomposes the given structure into square blocks with lattice dimension N ≤ 5 and uses ID-MH sampling of candidate blocks. Further comparison of the performance of commonly used machine learning methods such as random forests, decision trees, k nearest neighbors and artificial neural networks shows that the PCA-based Decision Tree regressor is the most accurate predictor of magnetizations of the Ising model. For energies, however, the accuracy of prediction is not satisfactory, highlighting the need to consider more algorithmically complex methods (e.g., deep learning).

  8. Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm

    International Nuclear Information System (INIS)

    Rao, R.V.; More, K.C.

    2015-01-01

    Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching–Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms. - Highlights: • The TLBO (Teaching–Learning-Based Optimization) algorithm is used for the design and optimization of a heat pipe. • Two examples of heat pipe design and optimization are presented. • The TLBO algorithm is proved better than the other optimization algorithms in terms of results and the convergence

  9. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.

    Science.gov (United States)

    Kamali, Tahereh; Stashuk, Daniel

    2016-10-01

    Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright

  10. Variance inflation in high dimensional Support Vector Machines

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2013-01-01

    Many important machine learning models, supervised and unsupervised, are based on simple Euclidean distance or orthogonal projection in a high dimensional feature space. When estimating such models from small training sets we face the problem that the span of the training data set input vectors...... the case of Support Vector Machines (SVMS) and we propose a non-parametric scheme to restore proper generalizability. We illustrate the algorithm and its ability to restore performance on a wide range of benchmark data sets....... follow a different probability law with less variance. While the problem and basic means to reconstruct and deflate are well understood in unsupervised learning, the case of supervised learning is less well understood. We here investigate the effect of variance inflation in supervised learning including...

  11. A new evolutionary algorithm with LVQ learning for the optimization of combinatory problems as a reload of nuclear reactors

    International Nuclear Information System (INIS)

    Machado, Marcelo Dornellas

    1999-04-01

    Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for function optimization. In this work, a new learning mode, to be used by the Population-Based Incremental Learning (PBIL) algorithm, who combines mechanisms of standard genetic algorithm with simple competitive learning, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process know as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors. This problem can be interpreted as search of a load pattern to be used in the nucleus of the reactor in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)

  12. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    Science.gov (United States)

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

  13. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    Science.gov (United States)

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  14. An unsupervised learning algorithm for fatigue crack detection in waveguides

    International Nuclear Information System (INIS)

    Rizzo, Piervincenzo; Cammarata, Marcello; Kent Harries; Dutta, Debaditya; Sohn, Hoon

    2009-01-01

    Ultrasonic guided waves (UGWs) are a useful tool in structural health monitoring (SHM) applications that can benefit from built-in transduction, moderately large inspection ranges, and high sensitivity to small flaws. This paper describes an SHM method based on UGWs and outlier analysis devoted to the detection and quantification of fatigue cracks in structural waveguides. The method combines the advantages of UGWs with the outcomes of the discrete wavelet transform (DWT) to extract defect-sensitive features aimed at performing a multivariate diagnosis of damage. In particular, the DWT is exploited to generate a set of relevant wavelet coefficients to construct a uni-dimensional or multi-dimensional damage index vector. The vector is fed to an outlier analysis to detect anomalous structural states. The general framework presented in this paper is applied to the detection of fatigue cracks in a steel beam. The probing hardware consists of a National Instruments PXI platform that controls the generation and detection of the ultrasonic signals by means of piezoelectric transducers made of lead zirconate titanate. The effectiveness of the proposed approach to diagnose the presence of defects as small as a few per cent of the waveguide cross-sectional area is demonstrated

  15. Forecasting spot electricity prices : Deep learning approaches and empirical comparison of traditional algorithms

    NARCIS (Netherlands)

    Lago Garcia, J.; De Ridder, Fjo; De Schutter, B.H.K.

    2018-01-01

    In this paper, a novel modeling framework for forecasting electricity prices is proposed. While many predictive models have been already proposed to perform this task, the area of deep learning algorithms remains yet unexplored. To fill this scientific gap, we propose four different deep learning

  16. Head pose estimation algorithm based on deep learning

    Science.gov (United States)

    Cao, Yuanming; Liu, Yijun

    2017-05-01

    Head pose estimation has been widely used in the field of artificial intelligence, pattern recognition and intelligent human-computer interaction and so on. Good head pose estimation algorithm should deal with light, noise, identity, shelter and other factors robustly, but so far how to improve the accuracy and robustness of attitude estimation remains a major challenge in the field of computer vision. A method based on deep learning for pose estimation is presented. Deep learning with a strong learning ability, it can extract high-level image features of the input image by through a series of non-linear operation, then classifying the input image using the extracted feature. Such characteristics have greater differences in pose, while they are robust of light, identity, occlusion and other factors. The proposed head pose estimation is evaluated on the CAS-PEAL data set. Experimental results show that this method is effective to improve the accuracy of pose estimation.

  17. Separation of pulsar signals from noise using supervised machine learning algorithms

    Science.gov (United States)

    Bethapudi, S.; Desai, S.

    2018-04-01

    We evaluate the performance of four different machine learning (ML) algorithms: an Artificial Neural Network Multi-Layer Perceptron (ANN MLP), Adaboost, Gradient Boosting Classifier (GBC), and XGBoost, for the separation of pulsars from radio frequency interference (RFI) and other sources of noise, using a dataset obtained from the post-processing of a pulsar search pipeline. This dataset was previously used for the cross-validation of the SPINN-based machine learning engine, obtained from the reprocessing of the HTRU-S survey data (Morello et al., 2014). We have used the Synthetic Minority Over-sampling Technique (SMOTE) to deal with high-class imbalance in the dataset. We report a variety of quality scores from all four of these algorithms on both the non-SMOTE and SMOTE datasets. For all the above ML methods, we report high accuracy and G-mean for both the non-SMOTE and SMOTE cases. We study the feature importances using Adaboost, GBC, and XGBoost and also from the minimum Redundancy Maximum Relevance approach to report algorithm-agnostic feature ranking. From these methods, we find that the signal to noise of the folded profile to be the best feature. We find that all the ML algorithms report FPRs about an order of magnitude lower than the corresponding FPRs obtained in Morello et al. (2014), for the same recall value.

  18. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2014-03-01

    Full Text Available In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS and very high resolution (WorldView-2, Quickbird, Ikonos multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognition tasks. Four classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support Vector Machines, which represent different concepts in machine learning (probabilistic, nearest neighbor, tree-based, function-based, have been selected and implemented on a free and open-source basis. Particular focus is given to assess the generalization ability of machine learning algorithms and the transferability of trained learning machines between different image types and image scenes. Moreover, the influence of the number and choice of training data, the influence of the size and composition of the feature vector and the effect of image segmentation on the classification accuracy is evaluated.

  19. The island model for parallel implementation of evolutionary algorithm of Population-Based Incremental Learning (PBIL) optimization

    International Nuclear Information System (INIS)

    Lima, Alan M.M. de; Schirru, Roberto

    2000-01-01

    Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for function optimization. The purpose of this work is to introduce a new parallelization method to be applied to the Population-Based Incremental Learning (PBIL) algorithm. PBIL combines standard genetic algorithm mechanisms with simple competitive learning and has ben successfully used in combinatorial optimization problems. The development of this algorithm aims its application to the reload optimization of PWR nuclear reactors. Tests have been performed with combinatorial optimization problems similar to the reload problem. Results are compared to the serial PBIL ones, showing the new method's superiority and its viability as a tool for the nuclear core reload problem solution. (author)

  20. Unsupervised method for automatic construction of a disease dictionary from a large free text collection.

    Science.gov (United States)

    Xu, Rong; Supekar, Kaustubh; Morgan, Alex; Das, Amar; Garber, Alan

    2008-11-06

    Concept specific lexicons (e.g. diseases, drugs, anatomy) are a critical source of background knowledge for many medical language-processing systems. However, the rapid pace of biomedical research and the lack of constraints on usage ensure that such dictionaries are incomplete. Focusing on disease terminology, we have developed an automated, unsupervised, iterative pattern learning approach for constructing a comprehensive medical dictionary of disease terms from randomized clinical trial (RCT) abstracts, and we compared different ranking methods for automatically extracting con-textual patterns and concept terms. When used to identify disease concepts from 100 randomly chosen, manually annotated clinical abstracts, our disease dictionary shows significant performance improvement (F1 increased by 35-88%) over available, manually created disease terminologies.

  1. Classification and learning using genetic algorithms applications in Bioinformatics and Web Intelligence

    CERN Document Server

    Bandyopadhyay, Sanghamitra

    2007-01-01

    This book provides a unified framework that describes how genetic learning can be used to design pattern recognition and learning systems. It examines how a search technique, the genetic algorithm, can be used for pattern classification mainly through approximating decision boundaries. Coverage also demonstrates the effectiveness of the genetic classifiers vis-à-vis several widely used classifiers, including neural networks.

  2. Best friends' interactions and substance use: The role of friend pressure and unsupervised co-deviancy.

    Science.gov (United States)

    Tsakpinoglou, Florence; Poulin, François

    2017-10-01

    Best friends exert a substantial influence on rising alcohol and marijuana use during adolescence. Two mechanisms occurring within friendship - friend pressure and unsupervised co-deviancy - may partially capture the way friends influence one another. The current study aims to: (1) examine the psychometric properties of a new instrument designed to assess pressure from a youth's best friend and unsupervised co-deviancy; (2) investigate the relative contribution of these processes to alcohol and marijuana use; and (3) determine whether gender moderates these associations. Data were collected through self-report questionnaires completed by 294 Canadian youths (62% female) across two time points (ages 15-16). Principal component analysis yielded a two-factor solution corresponding to friend pressure and unsupervised co-deviancy. Logistic regressions subsequently showed that unsupervised co-deviancy was predictive of an increase in marijuana use one year later. Neither process predicted an increase in alcohol use. Results did not differ as a function of gender. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  3. High-speed detection of emergent market clustering via an unsupervised parallel genetic algorithm

    Directory of Open Access Journals (Sweden)

    Dieter Hendricks

    2016-02-01

    Full Text Available We implement a master-slave parallel genetic algorithm with a bespoke log-likelihood fitness function to identify emergent clusters within price evolutions. We use graphics processing units (GPUs to implement a parallel genetic algorithm and visualise the results using disjoint minimal spanning trees. We demonstrate that our GPU parallel genetic algorithm, implemented on a commercially available general purpose GPU, is able to recover stock clusters in sub-second speed, based on a subset of stocks in the South African market. This approach represents a pragmatic choice for low-cost, scalable parallel computing and is significantly faster than a prototype serial implementation in an optimised C-based fourth-generation programming language, although the results are not directly comparable because of compiler differences. Combined with fast online intraday correlation matrix estimation from high frequency data for cluster identification, the proposed implementation offers cost-effective, near-real-time risk assessment for financial practitioners.

  4. Scaling up machine learning: parallel and distributed approaches

    National Research Council Canada - National Science Library

    Bekkerman, Ron; Bilenko, Mikhail; Langford, John

    2012-01-01

    ... presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters; concurrent programming frameworks that include CUDA, MPI, MapReduce, and DryadLINQ; and various learning settings: supervised, unsupervised, semi-supervised, and online learning. Extensive coverage of parallelizat...

  5. A Computer Environment for Beginners' Learning of Sorting Algorithms: Design and Pilot Evaluation

    Science.gov (United States)

    Kordaki, M.; Miatidis, M.; Kapsampelis, G.

    2008-01-01

    This paper presents the design, features and pilot evaluation study of a web-based environment--the SORTING environment--for the learning of sorting algorithms by secondary level education students. The design of this environment is based on modeling methodology, taking into account modern constructivist and social theories of learning while at…

  6. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  7. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Watanabe, Masaya; Yusa, Noritaka

    2014-01-01

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology

  8. An efficient dictionary learning algorithm and its application to 3-D medical image denoising.

    Science.gov (United States)

    Li, Shutao; Fang, Leyuan; Yin, Haitao

    2012-02-01

    In this paper, we propose an efficient dictionary learning algorithm for sparse representation of given data and suggest a way to apply this algorithm to 3-D medical image denoising. Our learning approach is composed of two main parts: sparse coding and dictionary updating. On the sparse coding stage, an efficient algorithm named multiple clusters pursuit (MCP) is proposed. The MCP first applies a dictionary structuring strategy to cluster the atoms with high coherence together, and then employs a multiple-selection strategy to select several competitive atoms at each iteration. These two strategies can greatly reduce the computation complexity of the MCP and assist it to obtain better sparse solution. On the dictionary updating stage, the alternating optimization that efficiently approximates the singular value decomposition is introduced. Furthermore, in the 3-D medical image denoising application, a joint 3-D operation is proposed for taking the learning capabilities of the presented algorithm to simultaneously capture the correlations within each slice and correlations across the nearby slices, thereby obtaining better denoising results. The experiments on both synthetically generated data and real 3-D medical images demonstrate that the proposed approach has superior performance compared to some well-known methods. © 2011 IEEE

  9. Hybrid attribute-based recommender system for learning material using genetic algorithm and a multidimensional information model

    Directory of Open Access Journals (Sweden)

    Mojtaba Salehi

    2013-03-01

    Full Text Available In recent years, the explosion of learning materials in the web-based educational systems has caused difficulty of locating appropriate learning materials to learners. A personalized recommendation is an enabling mechanism to overcome information overload occurred in the new learning environments and deliver suitable materials to learners. Since users express their opinions based on some specific attributes of items, this paper proposes a hybrid recommender system for learning materials based on their attributes to improve the accuracy and quality of recommendation. The presented system has two main modules: explicit attribute-based recommender and implicit attribute-based recommender. In the first module, weights of implicit or latent attributes of materials for learner are considered as chromosomes in genetic algorithm then this algorithm optimizes the weights according to historical rating. Then, recommendation is generated by Nearest Neighborhood Algorithm (NNA using the optimized weight vectors implicit attributes that represent the opinions of learners. In the second, preference matrix (PM is introduced that can model the interests of learner based on explicit attributes of learning materials in a multidimensional information model. Then, a new similarity measure between PMs is introduced and recommendations are generated by NNA. The experimental results show that our proposed method outperforms current algorithms on accuracy measures and can alleviate some problems such as cold-start and sparsity.

  10. Algorithms of maximum likelihood data clustering with applications

    Science.gov (United States)

    Giada, Lorenzo; Marsili, Matteo

    2002-12-01

    We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.

  11. Learning phacoemulsification. Results of different teaching methods.

    Directory of Open Access Journals (Sweden)

    Hennig Albrecht

    2004-01-01

    Full Text Available We report the learning curves of three eye surgeons converting from sutureless extracapsular cataract extraction to phacoemulsification using different teaching methods. Posterior capsule rupture (PCR as a per-operative complication and visual outcome of the first 100 operations were analysed. The PCR rate was 4% and 15% in supervised and unsupervised surgery respectively. Likewise, an uncorrected visual acuity of > or = 6/18 on the first postoperative day was seen in 62 (62% of patients and in 22 (22% in supervised and unsupervised surgery respectively.

  12. Unsupervised Assessment of Subcutaneous and Visceral Fat by MRI

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Larsen, Rasmus; Wraae, Kristian

    2009-01-01

    This paper presents a. method for unsupervised assessment of visceral and subcutaneous adipose tissue in the abdominal region by MRI. The identification of the subcutaneous and the visceral regions were achieved by dynamic programming constrained by points acquired from an active shape model...

  13. Machine Learning Algorithms for $b$-Jet Tagging at the ATLAS Experiment

    CERN Document Server

    Paganini, Michela; The ATLAS collaboration

    2017-01-01

    The separation of $b$-quark initiated jets from those coming from lighter quark flavors ($b$-tagging) is a fundamental tool for the ATLAS physics program at the CERN Large Hadron Collider. The most powerful $b$-tagging algorithms combine information from low-level taggers, exploiting reconstructed track and vertex information, into machine learning classifiers. The potential of modern deep learning techniques is explored using simulated events, and compared to that achievable from more traditional classifiers such as boosted decision trees.

  14. Clustering performance comparison using K-means and expectation maximization algorithms.

    Science.gov (United States)

    Jung, Yong Gyu; Kang, Min Soo; Heo, Jun

    2014-11-14

    Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.

  15. MODIS Science Algorithms and Data Systems Lessons Learned

    Science.gov (United States)

    Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.

    2009-01-01

    For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.

  16. Unsupervised Learning (Clustering) of Odontocete Echolocation Clicks

    Science.gov (United States)

    2015-09-30

    develop methods for clustering of marine mammal echolocation clicks to learn about species assemblages where little or no prior knowledge exists about... Mexico or the Atlanic. 2 APPROACH Acoustic encounters with odontocetes are detected automatically and noise-corrected cepstral features...Estmation of Marine Mammals Using Passive Acoustic Monitoring (DCLDE). KL divergence maps were created for all known species, but the sperm whale

  17. Unsupervised classification of operator workload from brain signals

    Science.gov (United States)

    Schultze-Kraft, Matthias; Dähne, Sven; Gugler, Manfred; Curio, Gabriel; Blankertz, Benjamin

    2016-06-01

    Objective. In this study we aimed for the classification of operator workload as it is expected in many real-life workplace environments. We explored brain-signal based workload predictors that differ with respect to the level of label information required for training, including entirely unsupervised approaches. Approach. Subjects executed a task on a touch screen that required continuous effort of visual and motor processing with alternating difficulty. We first employed classical approaches for workload state classification that operate on the sensor space of EEG and compared those to the performance of three state-of-the-art spatial filtering methods: common spatial patterns (CSPs) analysis, which requires binary label information; source power co-modulation (SPoC) analysis, which uses the subjects’ error rate as a target function; and canonical SPoC (cSPoC) analysis, which solely makes use of cross-frequency power correlations induced by different states of workload and thus represents an unsupervised approach. Finally, we investigated the effects of fusing brain signals and peripheral physiological measures (PPMs) and examined the added value for improving classification performance. Main results. Mean classification accuracies of 94%, 92% and 82% were achieved with CSP, SPoC, cSPoC, respectively. These methods outperformed the approaches that did not use spatial filtering and they extracted physiologically plausible components. The performance of the unsupervised cSPoC is significantly increased by augmenting it with PPM features. Significance. Our analyses ensured that the signal sources used for classification were of cortical origin and not contaminated with artifacts. Our findings show that workload states can be successfully differentiated from brain signals, even when less and less information from the experimental paradigm is used, thus paving the way for real-world applications in which label information may be noisy or entirely unavailable.

  18. On parameterized deformations and unsupervised learning

    DEFF Research Database (Denmark)

    Hansen, Michael Sass

    matrix. Spline approximations of functions and in particular image registration warp fields are discussed. It is shown how spline bases may be learned from the optimization process, i.e. image registration optimization, and how this may contribute with a reasonable prior, or regularization in the method...... on an unrestricted linear parameter space, where all derivatives are defined, is introduced. Furthermore, it is shown that L2-norm the parameter space introduces a reasonable metric in the actual space of modelled diffeomorphisms. A new parametrization of 3D deformation fields, using potentials and Helmholtz...... of the multivariate B-splines, the warp field is automatically refined in areas where it results in the minimization of the registration cost function....

  19. Deep learning for constructing microblog behavior representation to identify social media user’s personality

    Directory of Open Access Journals (Sweden)

    Xiaoqian Liu

    2016-09-01

    Full Text Available Due to the rapid development of information technology, the Internet has gradually become a part of everyday life. People would like to communicate with friends to share their opinions on social networks. The diverse behavior on socials networks is an ideal reflection of users’ personality traits. Existing behavior analysis methods for personality prediction mostly extract behavior attributes with heuristic analysis. Although they work fairly well, they are hard to extend and maintain. In this paper, we utilize a deep learning algorithm to build a feature learning model for personality prediction, which could perform an unsupervised extraction of the Linguistic Representation Feature Vector (LRFV activity without supervision from text actively published on the Sina microblog. Compared with other feature extractsion methods, LRFV, as an abstract representation of microblog content, could describe a user’s semantic information more objectively and comprehensively. In the experiments, the personality prediction model is built using a linear regression algorithm, and different attributes obtained through different feature extraction methods are taken as input of the prediction model, respectively. The results show that LRFV performs better in microblog behavior descriptions, and improves the performance of the personality prediction model.

  20. Maximum Margin Clustering of Hyperspectral Data

    Science.gov (United States)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2013-09-01

    In recent decades, large margin methods such as Support Vector Machines (SVMs) are supposed to be the state-of-the-art of supervised learning methods for classification of hyperspectral data. However, the results of these algorithms mainly depend on the quality and quantity of available training data. To tackle down the problems associated with the training data, the researcher put effort into extending the capability of large margin algorithms for unsupervised learning. One of the recent proposed algorithms is Maximum Margin Clustering (MMC). The MMC is an unsupervised SVMs algorithm that simultaneously estimates both the labels and the hyperplane parameters. Nevertheless, the optimization of the MMC algorithm is a non-convex problem. Most of the existing MMC methods rely on the reformulating and the relaxing of the non-convex optimization problem as semi-definite programs (SDP), which are computationally very expensive and only can handle small data sets. Moreover, most of these algorithms are two-class classification, which cannot be used for classification of remotely sensed data. In this paper, a new MMC algorithm is used that solve the original non-convex problem using Alternative Optimization method. This algorithm is also extended for multi-class classification and its performance is evaluated. The results of the proposed algorithm show that the algorithm has acceptable results for hyperspectral data clustering.