WorldWideScience

Sample records for unstructured mesh quality

  1. Parallel adaptive simulations on unstructured meshes

    International Nuclear Information System (INIS)

    Shephard, M S; Jansen, K E; Sahni, O; Diachin, L A

    2007-01-01

    This paper discusses methods being developed by the ITAPS center to support the execution of parallel adaptive simulations on unstructured meshes. The paper first outlines the ITAPS approach to the development of interoperable mesh, geometry and field services to support the needs of SciDAC application in these areas. The paper then demonstrates the ability of unstructured adaptive meshing methods built on such interoperable services to effectively solve important physics problems. Attention is then focused on ITAPs' developing ability to solve adaptive unstructured mesh problems on massively parallel computers

  2. Development and verification of unstructured adaptive mesh technique with edge compatibility

    International Nuclear Information System (INIS)

    Ito, Kei; Ohshima, Hiroyuki; Kunugi, Tomoaki

    2010-01-01

    In the design study of the large-sized sodium-cooled fast reactor (JSFR), one key issue is suppression of gas entrainment (GE) phenomena at a gas-liquid interface. Therefore, the authors have been developed a high-precision CFD algorithm to evaluate the GE phenomena accurately. The CFD algorithm has been developed on unstructured meshes to establish an accurate modeling of JSFR system. For two-phase interfacial flow simulations, a high-precision volume-of-fluid algorithm is employed. It was confirmed that the developed CFD algorithm could reproduce the GE phenomena in a simple GE experiment. Recently, the authors have been developed an important technique for the simulation of the GE phenomena in JSFR. That is an unstructured adaptive mesh technique which can apply fine cells dynamically to the region where the GE occurs in JSFR. In this paper, as a part of the development, a two-dimensional unstructured adaptive mesh technique is discussed. In the two-dimensional adaptive mesh technique, each cell is refined isotropically to reduce distortions of the mesh. In addition, connection cells are formed to eliminate the edge incompatibility between refined and non-refined cells. The two-dimensional unstructured adaptive mesh technique is verified by solving well-known lid-driven cavity flow problem. As a result, the two-dimensional unstructured adaptive mesh technique succeeds in providing a high-precision solution, even though poor-quality distorted initial mesh is employed. In addition, the simulation error on the two-dimensional unstructured adaptive mesh is much less than the error on the structured mesh with a larger number of cells. (author)

  3. Toward An Unstructured Mesh Database

    Science.gov (United States)

    Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

    2014-05-01

    Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi

  4. MHD simulations on an unstructured mesh

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.

    1996-01-01

    We describe work on a full MHD code using an unstructured mesh. MH3D++ is an extension of the PPPL MH3D resistive full MHD code. MH3D++ replaces the structured mesh and finite difference / fourier discretization of MH3D with an unstructured mesh and finite element / fourier discretization. Low level routines which perform differential operations, solution of PDEs such as Poisson's equation, and graphics, are encapsulated in C++ objects to isolate the finite element operations from the higher level code. The high level code is the same, whether it is run in structured or unstructured mesh versions. This allows the unstructured mesh version to be benchmarked against the structured mesh version. As a preliminary example, disruptions in DIIID reverse shear equilibria are studied numerically with the MH3D++ code. Numerical equilibria were first produced starting with an EQDSK file containing equilibrium data of a DIII-D L-mode negative central shear discharge. Using these equilibria, the linearized equations are time advanced to get the toroidal mode number n = 1 linear growth rate and eigenmode, which is resistively unstable. The equilibrium and linear mode are used to initialize 3D nonlinear runs. An example shows poloidal slices of 3D pressure surfaces: initially, on the left, and at an intermediate time, on the right

  5. Unstructured mesh adaptivity for urban flooding modelling

    Science.gov (United States)

    Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.

    2018-05-01

    Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.

  6. MHD simulations on an unstructured mesh

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.

    1998-01-01

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D

  7. Multiphase flow of immiscible fluids on unstructured moving meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2012-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  8. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2013-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  9. Parallel Performance Optimizations on Unstructured Mesh-based Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; Huck, Kevin; Hollingsworth, Jeffrey; Malony, Allen; Williams, Samuel; Oliker, Leonid

    2015-01-01

    © The Authors. Published by Elsevier B.V. This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches. We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.

  10. An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, Charles R [Los Alamos National Laboratory

    2010-01-01

    Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. The most common SPU memory management strategies cannot be applied to the irregular memory access patterns of unstructured meshes, and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.

  11. Incompressible Navier-Stokes inverse design method based on adaptive unstructured meshes

    International Nuclear Information System (INIS)

    Rahmati, M.T.; Charlesworth, D.; Zangeneh, M.

    2005-01-01

    An inverse method for blade design based on Navier-Stokes equations on adaptive unstructured meshes has been developed. In the method, unlike the method based on inviscid equations, the effect of viscosity is directly taken into account. In the method, the pressure (or pressure loading) is prescribed. The design method then computes the blade shape that would accomplish the target prescribed pressure distribution. The method is implemented using a cell-centered finite volume method, which solves the incompressible Navier-Stokes equations on unstructured meshes. An adaptive unstructured mesh method based on grid subdivision and local adaptive mesh method is utilized for increasing the accuracy. (author)

  12. Mesh Adaptation and Shape Optimization on Unstructured Meshes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR CRM proposes to implement the entropy adjoint method for solution adaptive mesh refinement into the Loci/CHEM unstructured flow solver. The scheme will...

  13. An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine (u)

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, Charles R [Los Alamos National Laboratory

    2010-12-14

    Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. SPU memory management strategies such as data preloading cannot be applied to the irregular memory storage patterns of unstructured meshes; and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.

  14. A software platform for continuum modeling of ion channels based on unstructured mesh

    International Nuclear Information System (INIS)

    Tu, B; Bai, S Y; Xie, Y; Zhang, L B; Lu, B Z; Chen, M X

    2014-01-01

    Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson–Nernst–Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels. (paper)

  15. MCR2S unstructured mesh capabilities for use in shutdown dose rate analysis

    International Nuclear Information System (INIS)

    Eade, T.; Stonell, D.; Turner, A.

    2015-01-01

    Highlights: • Advancements in shutdown dose rate calculations will be needed as fusion moves from experimental reactors to full scale demonstration reactors in order to ensure the safety of personnel. • The MCR2S shutdown dose rate tool has been modified to allow shutdown dose rates calculations using an unstructured mesh. • The unstructured mesh capability of MCR2S was used on three shutdown dose rate models, a simple sphere, the ITER computational benchmark and the DEMO computational benchmark. • The results showed a reasonable agreement between an unstructured mesh approach and the CSG approach and highlighted the need to carefully choose the unstructured mesh resolution. - Abstract: As nuclear fusion progresses towards a sustainable energy source and the power of tokamak devices increases, a greater understanding of the radiation fields will be required. As well as on-load radiation fields, off-load or shutdown radiation field are an important consideration for the safety and economic viability of a commercial fusion reactor. Previously codes such as MCR2S have been written in order to predict the shutdown dose rates within, and in regions surrounding, a fusion reactor. MCR2S utilises a constructive solid geometry (CSG) model and a superimposed structured mesh to calculate 3-D maps of the shutdown dose rate. A new approach to MCR2S calculations is proposed and implemented using a single unstructured mesh to replace both the CSG model and the superimposed structured mesh. This new MCR2S approach has been demonstrated on three models of increasing complexity. These models were: a sphere, the ITER computational shutdown dose rate benchmark and the DEMO computational shutdown dose rate benchmark. In each case the results were compared to MCR2S calculations performed using MCR2S with CSG geometry and a superimposed structured mesh. It was concluded that the results from the unstructured mesh implementation of MCR2S compared well to the CSG structured mesh

  16. Implementation of LDG method for 3D unstructured meshes

    Directory of Open Access Journals (Sweden)

    Filander A. Sequeira Chavarría

    2012-07-01

    Full Text Available This paper describes an implementation of the Local Discontinuous Galerkin method (LDG applied to elliptic problems in 3D. The implementation of the major operators is discussed. In particular the use of higher-order approximations and unstructured meshes. Efficient data structures that allow fast assembly of the linear system in the mixed formulation are described in detail. Keywords: Discontinuous finite element methods, high-order approximations, unstructured meshes, object-oriented programming. Mathematics Subject Classification: 65K05, 65N30, 65N55.

  17. A point-centered diffusion differencing for unstructured meshes in 3-D

    International Nuclear Information System (INIS)

    Palmer, T.S.

    1994-01-01

    We describe a point-centered diffusion discretization for 3-D unstructured meshes of polyhedra. The method has several attractive qualities, including second-order accuracy and preservation of linear solutions. A potential drawback to the scheme is that the diffusion matrix is asymmetric, in general. Results of numerical test problems illustrate the behavior of the scheme

  18. Smooth Bézier surfaces over unstructured quadrilateral meshes

    CERN Document Server

    Bercovier, Michel

    2017-01-01

    Using an elegant mixture of geometry, graph theory and linear analysis, this monograph completely solves a problem lying at the interface of Isogeometric Analysis (IgA) and Finite Element Methods (FEM). The recent explosion of IgA, strongly tying Computer Aided Geometry Design to Analysis, does not easily apply to the rich variety of complex shapes that engineers have to design and analyse. Therefore new developments have studied the extension of IgA to unstructured unions of meshes, similar to those one can find in FEM. The following problem arises: given an unstructured planar quadrilateral mesh, construct a C1-surface, by piecewise Bézier or B-Spline patches defined over this mesh. This problem is solved for C1-surfaces defined over plane bilinear Bézier patches, the corresponding results for B-Splines then being simple consequences. The method can be extended to higher-order quadrilaterals and even to three dimensions, and the most recent developments in this direction are also mentioned here.

  19. Parallel unstructured mesh optimisation for 3D radiation transport and fluids modelling

    International Nuclear Information System (INIS)

    Gorman, G.J.; Pain, Ch. C.; Oliveira, C.R.E. de; Umpleby, A.P.; Goddard, A.J.H.

    2003-01-01

    In this paper we describe the theory and application of a parallel mesh optimisation procedure to obtain self-adapting finite element solutions on unstructured tetrahedral grids. The optimisation procedure adapts the tetrahedral mesh to the solution of a radiation transport or fluid flow problem without sacrificing the integrity of the boundary (geometry), or internal boundaries (regions) of the domain. The objective is to obtain a mesh which has both a uniform interpolation error in any direction and the element shapes are of good quality. This is accomplished with use of a non-Euclidean (anisotropic) metric which is related to the Hessian of the solution field. Appropriate scaling of the metric enables the resolution of multi-scale phenomena as encountered in transient incompressible fluids and multigroup transport calculations. The resulting metric is used to calculate element size and shape quality. The mesh optimisation method is based on a series of mesh connectivity and node position searches of the landscape defining mesh quality which is gauged by a functional. The mesh modification thus fits the solution field(s) in an optimal manner. The parallel mesh optimisation/adaptivity procedure presented in this paper is of general applicability. We illustrate this by applying it to a transient CFD (computational fluid dynamics) problem. Incompressible flow past a cylinder at moderate Reynolds numbers is modelled to demonstrate that the mesh can follow transient flow features. (authors)

  20. Optimization-based Fluid Simulation on Unstructured Meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Bridson, Robert; Erleben, Kenny

    2010-01-01

    for solving the fluid dynamics equations as well as direct access to the interface geometry data, making in- clusion of a new surface energy term feasible. Furthermore, using an unstructured mesh makes it straightforward to handle curved solid boundaries and gives us a possibility to explore several fluid...

  1. Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovations proposed are twofold: 1) a robust unstructured mesh movement method able to handle isotropic (Euler), anisotropic (viscous), mixed element (hybrid)...

  2. Transmission probability method based on triangle meshes for solving unstructured geometry neutron transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongchun [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)]. E-mail: hongchun@mail.xjtu.edu.cn; Liu Pingping [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Zhou Yongqiang [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Cao Liangzhi [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)

    2007-01-15

    In the advanced reactor, the fuel assembly or core with unstructured geometry is frequently used and for calculating its fuel assembly, the transmission probability method (TPM) has been used widely. However, the rectangle or hexagon meshes are mainly used in the TPM codes for the normal core structure. The triangle meshes are most useful for expressing the complicated unstructured geometry. Even though finite element method and Monte Carlo method is very good at solving unstructured geometry problem, they are very time consuming. So we developed the TPM code based on the triangle meshes. The TPM code based on the triangle meshes was applied to the hybrid fuel geometry, and compared with the results of the MCNP code and other codes. The results of comparison were consistent with each other. The TPM with triangle meshes would thus be expected to be able to apply to the two-dimensional arbitrary fuel assembly.

  3. Introducing a distributed unstructured mesh into gyrokinetic particle-in-cell code, XGC

    Science.gov (United States)

    Yoon, Eisung; Shephard, Mark; Seol, E. Seegyoung; Kalyanaraman, Kaushik

    2017-10-01

    XGC has shown good scalability for large leadership supercomputers. The current production version uses a copy of the entire unstructured finite element mesh on every MPI rank. Although an obvious scalability issue if the mesh sizes are to be dramatically increased, the current approach is also not optimal with respect to data locality of particles and mesh information. To address these issues we have initiated the development of a distributed mesh PIC method. This approach directly addresses the base scalability issue with respect to mesh size and, through the use of a mesh entity centric view of the particle mesh relationship, provides opportunities to address data locality needs of many core and GPU supported heterogeneous systems. The parallel mesh PIC capabilities are being built on the Parallel Unstructured Mesh Infrastructure (PUMI). The presentation will first overview the form of mesh distribution used and indicate the structures and functions used to support the mesh, the particles and their interaction. Attention will then focus on the node-level optimizations being carried out to ensure performant operation of all PIC operations on the distributed mesh. Partnership for Edge Physics Simulation (EPSI) Grant No. DE-SC0008449 and Center for Extended Magnetohydrodynamic Modeling (CEMM) Grant No. DE-SC0006618.

  4. An Algorithm for Parallel Sn Sweeps on Unstructured Meshes

    International Nuclear Information System (INIS)

    Pautz, Shawn D.

    2002-01-01

    A new algorithm for performing parallel S n sweeps on unstructured meshes is developed. The algorithm uses a low-complexity list ordering heuristic to determine a sweep ordering on any partitioned mesh. For typical problems and with 'normal' mesh partitionings, nearly linear speedups on up to 126 processors are observed. This is an important and desirable result, since although analyses of structured meshes indicate that parallel sweeps will not scale with normal partitioning approaches, no severe asymptotic degradation in the parallel efficiency is observed with modest (≤100) levels of parallelism. This result is a fundamental step in the development of efficient parallel S n methods

  5. An Interpreted Language and System for the Visualization of Unstructured Meshes

    Science.gov (United States)

    Moran, Patrick J.; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    We present an interpreted language and system supporting the visualization of unstructured meshes and the manipulation of shapes defined in terms of mesh subsets. The language features primitives inspired by geometric modeling, mathematical morphology and algebraic topology. The adaptation of the topology ideas to an interpreted environment, along with support for programming constructs such, as user function definition, provide a flexible system for analyzing a mesh and for calculating with shapes defined in terms of the mesh. We present results demonstrating some of the capabilities of the language, based on an implementation called the Shape Calculator, for tetrahedral meshes in R^3.

  6. Electromagnetic forward modelling for realistic Earth models using unstructured tetrahedral meshes and a meshfree approach

    Science.gov (United States)

    Farquharson, C.; Long, J.; Lu, X.; Lelievre, P. G.

    2017-12-01

    Real-life geology is complex, and so, even when allowing for the diffusive, low resolution nature of geophysical electromagnetic methods, we need Earth models that can accurately represent this complexity when modelling and inverting electromagnetic data. This is particularly the case for the scales, detail and conductivity contrasts involved in mineral and hydrocarbon exploration and development, but also for the larger scale of lithospheric studies. Unstructured tetrahedral meshes provide a flexible means of discretizing a general, arbitrary Earth model. This is important when wanting to integrate a geophysical Earth model with a geological Earth model parameterized in terms of surfaces. Finite-element and finite-volume methods can be derived for computing the electric and magnetic fields in a model parameterized using an unstructured tetrahedral mesh. A number of such variants have been proposed and have proven successful. However, the efficiency and accuracy of these methods can be affected by the "quality" of the tetrahedral discretization, that is, how many of the tetrahedral cells in the mesh are long, narrow and pointy. This is particularly the case if one wants to use an iterative technique to solve the resulting linear system of equations. One approach to deal with this issue is to develop sophisticated model and mesh building and manipulation capabilities in order to ensure that any mesh built from geological information is of sufficient quality for the electromagnetic modelling. Another approach is to investigate other methods of synthesizing the electromagnetic fields. One such example is a "meshfree" approach in which the electromagnetic fields are synthesized using a mesh that is distinct from the mesh used to parameterized the Earth model. There are then two meshes, one describing the Earth model and one used for the numerical mathematics of computing the fields. This means that there are no longer any quality requirements on the model mesh, which

  7. An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics

    International Nuclear Information System (INIS)

    Kühnlein, Christian; Smolarkiewicz, Piotr K.

    2017-01-01

    An advancement of the unstructured-mesh finite-volume MPDATA (Multidimensional Positive Definite Advection Transport Algorithm) is presented that formulates the error-compensative pseudo-velocity of the scheme to rely only on face-normal advective fluxes to the dual cells, in contrast to the full vector employed in previous implementations. This is essentially achieved by expressing the temporal truncation error underlying the pseudo-velocity in a form consistent with the flux-divergence of the governing conservation law. The development is especially important for integrating fluid dynamics equations on non-rectilinear meshes whenever face-normal advective mass fluxes are employed for transport compatible with mass continuity—the latter being essential for flux-form schemes. In particular, the proposed formulation enables large-time-step semi-implicit finite-volume integration of the compressible Euler equations using MPDATA on arbitrary hybrid computational meshes. Furthermore, it facilitates multiple error-compensative iterations of the finite-volume MPDATA and improved overall accuracy. The advancement combines straightforwardly with earlier developments, such as the nonoscillatory option, the infinite-gauge variant, and moving curvilinear meshes. A comprehensive description of the scheme is provided for a hybrid horizontally-unstructured vertically-structured computational mesh for efficient global atmospheric flow modelling. The proposed finite-volume MPDATA is verified using selected 3D global atmospheric benchmark simulations, representative of hydrostatic and non-hydrostatic flow regimes. Besides the added capabilities, the scheme retains fully the efficacy of established finite-volume MPDATA formulations.

  8. An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kühnlein, Christian, E-mail: christian.kuehnlein@ecmwf.int; Smolarkiewicz, Piotr K., E-mail: piotr.smolarkiewicz@ecmwf.int

    2017-04-01

    An advancement of the unstructured-mesh finite-volume MPDATA (Multidimensional Positive Definite Advection Transport Algorithm) is presented that formulates the error-compensative pseudo-velocity of the scheme to rely only on face-normal advective fluxes to the dual cells, in contrast to the full vector employed in previous implementations. This is essentially achieved by expressing the temporal truncation error underlying the pseudo-velocity in a form consistent with the flux-divergence of the governing conservation law. The development is especially important for integrating fluid dynamics equations on non-rectilinear meshes whenever face-normal advective mass fluxes are employed for transport compatible with mass continuity—the latter being essential for flux-form schemes. In particular, the proposed formulation enables large-time-step semi-implicit finite-volume integration of the compressible Euler equations using MPDATA on arbitrary hybrid computational meshes. Furthermore, it facilitates multiple error-compensative iterations of the finite-volume MPDATA and improved overall accuracy. The advancement combines straightforwardly with earlier developments, such as the nonoscillatory option, the infinite-gauge variant, and moving curvilinear meshes. A comprehensive description of the scheme is provided for a hybrid horizontally-unstructured vertically-structured computational mesh for efficient global atmospheric flow modelling. The proposed finite-volume MPDATA is verified using selected 3D global atmospheric benchmark simulations, representative of hydrostatic and non-hydrostatic flow regimes. Besides the added capabilities, the scheme retains fully the efficacy of established finite-volume MPDATA formulations.

  9. Partitioning of unstructured meshes for load balancing

    International Nuclear Information System (INIS)

    Martin, O.C.; Otto, S.W.

    1994-01-01

    Many large-scale engineering and scientific calculations involve repeated updating of variables on an unstructured mesh. To do these types of computations on distributed memory parallel computers, it is necessary to partition the mesh among the processors so that the load balance is maximized and inter-processor communication time is minimized. This can be approximated by the problem, of partitioning a graph so as to obtain a minimum cut, a well-studied combinatorial optimization problem. Graph partitioning algorithms are discussed that give good but not necessarily optimum solutions. These algorithms include local search methods recursive spectral bisection, and more general purpose methods such as simulated annealing. It is shown that a general procedure enables to combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very fast and extremely effective. (authors) 23 refs., 3 figs., 1 tab

  10. Reactor physics verification of the MCNP6 unstructured mesh capability

    International Nuclear Information System (INIS)

    Burke, T. P.; Kiedrowski, B. C.; Martz, R. L.; Martin, W. R.

    2013-01-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  11. Reactor physics verification of the MCNP6 unstructured mesh capability

    Energy Technology Data Exchange (ETDEWEB)

    Burke, T. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C.; Martz, R. L. [X-Computational Physics Division, Monte Carlo Codes Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2013-07-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  12. Simulation of geothermal water extraction in heterogeneous reservoirs using dynamic unstructured mesh optimisation

    Science.gov (United States)

    Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.

    2017-12-01

    It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required

  13. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers

    Science.gov (United States)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-10-01

    Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on

  14. Riding Bare-Back on unstructured meshes for 21. century criticality calculations - 244

    International Nuclear Information System (INIS)

    Kelley, K.C.; Martz, R.L.; Crane, D.L.

    2010-01-01

    MCNP has a new capability that permits tracking of neutrons and photons on an unstructured mesh which is embedded as a mesh universe within its legacy geometry capability. The mesh geometry is created through Abaqus/CAE using its solid modeling capabilities. Transport results are calculated for mesh elements through a path length estimator while element to element tracking is performed on the mesh. The results from MCNP can be exported to Abaqus/CAE for visualization or other-physics analysis. The simple Godiva criticality benchmark problem was tested with this new mesh capability. Computer run time is proportional to the number of mesh elements used. Both first and second order polyhedrons are used. Models that used second order polyhedrons produced slightly better results without significantly increasing computer run time. Models that used first order hexahedrons had shorter runtimes than models that used first order tetrahedrons. (authors)

  15. A finite element formulation of the Darwin electromagnetic PIC model for unstructured meshes of triangles

    International Nuclear Information System (INIS)

    Sonnendrucker, E.; Ambrosiano, J.; Brandon, S.

    1993-01-01

    The Darwin model for electromagnetic simulation is a reduced form of the Maxwell-Vlasov system that retains all essential physical processes except the propagation of light waves. It is useful in modeling systems for which the light-transit timescales are less important than Alfven wave propagation, or quasistatic effects. The Darwin model is elliptic rather than hyperbolic as are the full set of Maxwell's equations. Appropriate boundary conditions must be chosen for the problems to be well-posed. Using finite element techniques to apply this method for unstructured triangular meshes, a mesh made up of unstructured triangles allows realistic device geometries to be modeled without the necessity of using a large number of mesh points. Analyzing the dispersion relation allows us to validate the code as well as the Darwin approximation

  16. Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes

    Science.gov (United States)

    Zhu, Jun; Zhong, Xinghui; Shu, Chi-Wang; Qiu, Jianxian

    2013-09-01

    In this paper we generalize a new type of limiters based on the weighted essentially non-oscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [32] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the entire polynomials of the DG solutions from the troubled cell and its immediate neighboring cells, and then apply the classical WENO procedure to form a convex combination of these polynomials based on smoothness indicators and nonlinear weights, with suitable adjustments to guarantee conservation. The main advantage of this new limiter is its simplicity in implementation, especially for the unstructured meshes considered in this paper, as only information from immediate neighbors is needed and the usage of complicated geometric information of the meshes is largely avoided. Numerical results for both scalar equations and Euler systems of compressible gas dynamics are provided to illustrate the good performance of this procedure.

  17. Numerical methods and analysis of the nonlinear Vlasov equation on unstructured meshes of phase space

    International Nuclear Information System (INIS)

    Besse, Nicolas

    2003-01-01

    This work is dedicated to the mathematical and numerical studies of the Vlasov equation on phase-space unstructured meshes. In the first part, new semi-Lagrangian methods are developed to solve the Vlasov equation on unstructured meshes of phase space. As the Vlasov equation describes multi-scale phenomena, we also propose original methods based on a wavelet multi-resolution analysis. The resulting algorithm leads to an adaptive mesh-refinement strategy. The new massively-parallel computers allow to use these methods with several phase-space dimensions. Particularly, these numerical schemes are applied to plasma physics and charged particle beams in the case of two-, three-, and four-dimensional Vlasov-Poisson systems. In the second part we prove the convergence and give error estimates for several numerical schemes applied to the Vlasov-Poisson system when strong and classical solutions are considered. First we show the convergence of a semi-Lagrangian scheme on an unstructured mesh of phase space, when the regularity hypotheses for the initial data are minimal. Then we demonstrate the convergence of classes of high-order semi-Lagrangian schemes in the framework of the regular classical solution. In order to reconstruct the distribution function, we consider symmetrical Lagrange polynomials, B-Splines and wavelets bases. Finally we prove the convergence of a semi-Lagrangian scheme with propagation of gradients yielding a high-order and stable reconstruction of the solution. (author) [fr

  18. Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems

    Science.gov (United States)

    Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark

    2017-11-01

    Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.

  19. The quasidiffusion method for transport problems on unstructured meshes

    Science.gov (United States)

    Wieselquist, William A.

    2009-06-01

    In this work, we develop a quasidiffusion (QD) method for solving radiation transport problems on unstructured quadrilateral meshes in 2D Cartesian geometry, for example hanging-node meshes from adaptive mesh refinement (AMR) applications or skewed quadrilateral meshes from radiation hydrodynamics with Lagrangian meshing. The main result of the work is a new low-order quasidiffusion (LOQD) discretization on arbitrary quadrilaterals and a strategy for the efficient iterative solution which uses Krylov methods and incomplete LU factorization (ILU) preconditioning. The LOQD equations are a non-symmetric set of first-order PDEs that in second-order form resembles convection- diffusion with a diffusion tensor, with the difference that the LOQD equations contain extra cross-derivative terms. Our finite volume (FV) discretization of the LOQD equations is compared with three LOQD discretizations from literature. We then present a conservative, short characteristics discretization based on subcell balances (SCSB) that uses polynomial exponential moments to achieve robust behavior in various limits (e.g. small cells and voids) and is second- order accurate in space. A linear representation of the isotropic component of the scattering source based on face-average and cell-average scalar fluxes is also proposed and shown to be effective in some problems. In numerical tests, our QD method with linear scattering source representation shows some advantages compared to other transport methods. We conclude with avenues for future research and note that this QD method may easily be extended to arbitrary meshes in 3D Cartesian geometry.

  20. A local level set method based on a finite element method for unstructured meshes

    International Nuclear Information System (INIS)

    Ngo, Long Cu; Choi, Hyoung Gwon

    2016-01-01

    A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time

  1. A local level set method based on a finite element method for unstructured meshes

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Long Cu; Choi, Hyoung Gwon [School of Mechanical Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-12-15

    A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time.

  2. 3D unstructured mesh discontinuous finite element hydro

    International Nuclear Information System (INIS)

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    1995-01-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D

  3. Numerical experiments on unstructured PIC stability.

    Energy Technology Data Exchange (ETDEWEB)

    Day, David Minot

    2011-04-01

    Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time integration. Fields are modeled using finite differences on a tensor product mesh (cells). The Unstructured PIC methods studied here use instead finite element discretizations on unstructured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar bounds constrain unstructured PIC.

  4. Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes

    Science.gov (United States)

    Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R. G.

    2013-02-01

    Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing models are computationally restricted by the fixed mesh approaches that they employ. In contrast, this paper presents a new multiphase flow model that uses an adaptive unstructured mesh approach. As a simulation progresses, the mesh is optimized to focus numerical resolution in areas important to the dynamics and decrease it where it is not needed, thereby potentially reducing computational requirements. Model verification is performed using the method of manufactured solutions, which shows the correct solution convergence rates. Model validation and application considers 2-D simulations of plume formation in a water tank which replicate published laboratory experiments. The numerically predicted settling velocities for both individual particles and plumes, as well as instability behaviour, agree well with experimental data and observations. Plume settling is clearly hindered by the presence of a salinity gradient, and its influence must therefore be taken into account when considering particles in bodies of saline water. Furthermore, individual particles settle in the laminar flow regime while plume settling is shown (by plume Reynolds numbers greater than unity) to be in the turbulent flow regime, which has a significant impact on entrainment and settling rates. Mesh adaptivity maintains solution accuracy while providing a substantial reduction in computational requirements when compared to the same simulation performed using a fixed mesh, highlighting the benefits of an

  5. Split-Cell Exponential Characteristic Transport Method for Unstructured Tetrahedral Meshes

    International Nuclear Information System (INIS)

    Brennan, Charles R.; Miller, Rodney L.; Mathews, Kirk A.

    2001-01-01

    The nonlinear, exponential characteristic (EC) method is extended to unstructured meshes of tetrahedral cells in three-dimensional Cartesian coordinates. The split-cell approach developed for the linear characteristic (LC) method on such meshes is used. Exponential distributions of the source within a cell and of the inflow flux on upstream faces of the cell are assumed. The coefficients of these distributions are determined by nonlinear root solving so as to match the zeroth and first moments of the source or entering flux. Good conditioning is achieved by casting the formulas for the moments of the source, inflow flux, and solution flux as sums of positive functions and by using accurate and robust algorithms for evaluation of those functions. Various test problems are used to compare the performance of the EC and LC methods. The EC method is somewhat less accurate than the LC method in regions of net out leakage but is strictly positive and retains good accuracy with optically thick cells, as in shielding problems, unlike the LC method. The computational cost per cell is greater for the EC method, but the use of substantially coarser meshes can make the EC method less expensive in total cost. The EC method, unlike the LC method, may fail if negative cross sections or angular quadrature weights are used. It is concluded that the EC and LC methods should be practical, reliable, and complimentary schemes for these meshes

  6. MPI to Coarray Fortran: Experiences with a CFD Solver for Unstructured Meshes

    Directory of Open Access Journals (Sweden)

    Anuj Sharma

    2017-01-01

    Full Text Available High-resolution numerical methods and unstructured meshes are required in many applications of Computational Fluid Dynamics (CFD. These methods are quite computationally expensive and hence benefit from being parallelized. Message Passing Interface (MPI has been utilized traditionally as a parallelization strategy. However, the inherent complexity of MPI contributes further to the existing complexity of the CFD scientific codes. The Partitioned Global Address Space (PGAS parallelization paradigm was introduced in an attempt to improve the clarity of the parallel implementation. We present our experiences of converting an unstructured high-resolution compressible Navier-Stokes CFD solver from MPI to PGAS Coarray Fortran. We present the challenges, methodology, and performance measurements of our approach using Coarray Fortran. With the Cray compiler, we observe Coarray Fortran as a viable alternative to MPI. We are hopeful that Intel and open-source implementations could be utilized in the future.

  7. Development and acceleration of unstructured mesh-based cfd solver

    Science.gov (United States)

    Emelyanov, V.; Karpenko, A.; Volkov, K.

    2017-06-01

    The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  8. Discretization of the Joule heating term for plasma discharge fluid models in unstructured meshes

    International Nuclear Information System (INIS)

    Deconinck, T.; Mahadevan, S.; Raja, L.L.

    2009-01-01

    The fluid (continuum) approach is commonly used for simulation of plasma phenomena in electrical discharges at moderate to high pressures (>10's mTorr). The description comprises governing equations for charged and neutral species transport and energy equations for electrons and the heavy species, coupled to equations for the electromagnetic fields. The coupling of energy from the electrostatic field to the plasma species is modeled by the Joule heating term which appears in the electron and heavy species (ion) energy equations. Proper numerical discretization of this term is necessary for accurate description of discharge energetics; however, discretization of this term poses a special problem in the case of unstructured meshes owing to the arbitrary orientation of the faces enclosing each cell. We propose a method for the numerical discretization of the Joule heating term using a cell-centered finite volume approach on unstructured meshes with closed convex cells. The Joule heating term is computed by evaluating both the electric field and the species flux at the cell center. The dot product of these two vector quantities is computed to obtain the Joule heating source term. We compare two methods to evaluate the species flux at the cell center. One is based on reconstructing the fluxes at the cell centers from the fluxes at the face centers. The other recomputes the flux at the cell center using the common drift-diffusion approximation. The reconstructed flux scheme is the most stable method and yields reasonably accurate results on coarse meshes.

  9. Development and comparison of different spatial numerical schemes for the radiative transfer equation resolution using three-dimensional unstructured meshes

    International Nuclear Information System (INIS)

    Capdevila, R.; Perez-Segarra, C.D.; Oliva, A.

    2010-01-01

    In the present work four different spatial numerical schemes have been developed with the aim of reducing the false-scattering of the numerical solutions obtained with the discrete ordinates (DOM) and the finite volume (FVM) methods. These schemes have been designed specifically for unstructured meshes by means of the extrapolation of nodal values of intensity on the studied radiative direction. The schemes have been tested and compared in several 3D benchmark test cases using both structured orthogonal and unstructured grids.

  10. Finite Volume Method for Unstructured Grid

    International Nuclear Information System (INIS)

    Casmara; Kardana, N.D.

    1997-01-01

    The success of a computational method depends on the solution algorithm and mesh generation techniques. cell distributions are needed, which allow the solution to be calculated over the entire body surface with sufficient accuracy. to handle the mesh generation for multi-connected region such as multi-element bodies, the unstructured finite volume method will be applied. the advantages of the unstructured meshes are it provides a great deal more flexibility for generating meshes about complex geometries and provides a natural setting for the use of adaptive meshing. the governing equations to be discretized are inviscid and rotational euler equations. Applications of the method will be evaluated on flow around single and multi-component bodies

  11. Gradient Calculation Methods on Arbitrary Polyhedral Unstructured Meshes for Cell-Centered CFD Solvers

    Science.gov (United States)

    Sozer, Emre; Brehm, Christoph; Kiris, Cetin C.

    2014-01-01

    A survey of gradient reconstruction methods for cell-centered data on unstructured meshes is conducted within the scope of accuracy assessment. Formal order of accuracy, as well as error magnitudes for each of the studied methods, are evaluated on a complex mesh of various cell types through consecutive local scaling of an analytical test function. The tests highlighted several gradient operator choices that can consistently achieve 1st order accuracy regardless of cell type and shape. The tests further offered error comparisons for given cell types, leading to the observation that the "ideal" gradient operator choice is not universal. Practical implications of the results are explored via CFD solutions of a 2D inviscid standing vortex, portraying the discretization error properties. A relatively naive, yet largely unexplored, approach of local curvilinear stencil transformation exhibited surprisingly favorable properties

  12. Parallel CFD Algorithms for Aerodynamical Flow Solvers on Unstructured Meshes. Parts 1 and 2

    Science.gov (United States)

    Barth, Timothy J.; Kwak, Dochan (Technical Monitor)

    1995-01-01

    The Advisory Group for Aerospace Research and Development (AGARD) has requested my participation in the lecture series entitled Parallel Computing in Computational Fluid Dynamics to be held at the von Karman Institute in Brussels, Belgium on May 15-19, 1995. In addition, a request has been made from the US Coordinator for AGARD at the Pentagon for NASA Ames to hold a repetition of the lecture series on October 16-20, 1995. I have been asked to be a local coordinator for the Ames event. All AGARD lecture series events have attendance limited to NATO allied countries. A brief of the lecture series is provided in the attached enclosure. Specifically, I have been asked to give two lectures of approximately 75 minutes each on the subject of parallel solution techniques for the fluid flow equations on unstructured meshes. The title of my lectures is "Parallel CFD Algorithms for Aerodynamical Flow Solvers on Unstructured Meshes" (Parts I-II). The contents of these lectures will be largely review in nature and will draw upon previously published work in this area. Topics of my lectures will include: (1) Mesh partitioning algorithms. Recursive techniques based on coordinate bisection, Cuthill-McKee level structures, and spectral bisection. (2) Newton's method for large scale CFD problems. Size and complexity estimates for Newton's method, modifications for insuring global convergence. (3) Techniques for constructing the Jacobian matrix. Analytic and numerical techniques for Jacobian matrix-vector products, constructing the transposed matrix, extensions to optimization and homotopy theories. (4) Iterative solution algorithms. Practical experience with GIVIRES and BICG-STAB matrix solvers. (5) Parallel matrix preconditioning. Incomplete Lower-Upper (ILU) factorization, domain-decomposed ILU, approximate Schur complement strategies.

  13. Parallel FE Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    International Nuclear Information System (INIS)

    Drumm, C.R.; Lorenz, J.

    1999-01-01

    A novel solution method has been developed to solve the coupled electron-photon transport problem on an unstructured triangular mesh. Instead of tackling the first-order form of the linear Boltzmann equation, this approach is based on the second-order form in conjunction with the conventional multi-group discrete-ordinates approximation. The highly forward-peaked electron scattering is modeled with a multigroup Legendre expansion derived from the Goudsmit-Saunderson theory. The finite element method is used to treat the spatial dependence. The solution method is unique in that the space-direction dependence is solved simultaneously, eliminating the need for the conventional inner iterations, a method that is well suited for massively parallel computers

  14. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes

    KAUST Repository

    Pelties, Christian

    2012-02-18

    Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.

  15. Development of a Two-Phase Flow Analysis Code based on a Unstructured-Mesh SIMPLE Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Tae; Park, Ik Kyu; Cho, Heong Kyu; Yoon, Han Young; Kim, Kyung Doo; Jeong, Jae Jun

    2008-09-15

    For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

  16. A Deep Penetration Problem Calculation Using AETIUS:An Easy Modeling Discrete Ordinates Transport Code UsIng Unstructured Tetrahedral Mesh, Shared Memory Parallel

    Science.gov (United States)

    KIM, Jong Woon; LEE, Young-Ouk

    2017-09-01

    As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.

  17. HIRENASD coarse unstructured

    Data.gov (United States)

    National Aeronautics and Space Administration — Unstructured HIRENASD mesh: - coarse size (5.7 million nodes, 14.4 million elements) - for node centered solvers - 01.06.2011 - caution: dimensions in mm

  18. Multidimensional upwind hydrodynamics on unstructured meshes using graphics processing units - I. Two-dimensional uniform meshes

    Science.gov (United States)

    Paardekooper, S.-J.

    2017-08-01

    We present a new method for numerical hydrodynamics which uses a multidimensional generalization of the Roe solver and operates on an unstructured triangular mesh. The main advantage over traditional methods based on Riemann solvers, which commonly use one-dimensional flux estimates as building blocks for a multidimensional integration, is its inherently multidimensional nature, and as a consequence its ability to recognize multidimensional stationary states that are not hydrostatic. A second novelty is the focus on graphics processing units (GPUs). By tailoring the algorithms specifically to GPUs, we are able to get speedups of 100-250 compared to a desktop machine. We compare the multidimensional upwind scheme to a traditional, dimensionally split implementation of the Roe solver on several test problems, and we find that the new method significantly outperforms the Roe solver in almost all cases. This comes with increased computational costs per time-step, which makes the new method approximately a factor of 2 slower than a dimensionally split scheme acting on a structured grid.

  19. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    Science.gov (United States)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  20. Streaming simplification of tetrahedral meshes.

    Science.gov (United States)

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  1. 6th International Meshing Roundtable '97

    Energy Technology Data Exchange (ETDEWEB)

    White, D.

    1997-09-01

    The goal of the 6th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the pas~ the Roundtable has enjoyed significant participation born each of these groups from a wide variety of countries. The Roundtable will consist of technical presentations from contributed papers and abstracts, two invited speakers, and two invited panels of experts discussing topics related to the development and use of automatic mesh generation tools. In addition, this year we will feature a "Bring Your Best Mesh" competition and poster session to encourage discussion and participation from a wide variety of mesh generation tool users. The schedule and evening social events are designed to provide numerous opportunities for informal dialog. A proceedings will be published by Sandia National Laboratories and distributed at the Roundtable. In addition, papers of exceptionally high quaIity will be submitted to a special issue of the International Journal of Computational Geometry and Applications. Papers and one page abstracts were sought that present original results on the meshing process. Potential topics include but are got limited to: Unstructured triangular and tetrahedral mesh generation Unstructured quadrilateral and hexahedral mesh generation Automated blocking and structured mesh generation Mixed element meshing Surface mesh generation Geometry decomposition and clean-up techniques Geometry modification techniques related to meshing Adaptive mesh refinement and mesh quality control Mesh visualization Special purpose meshing algorithms for particular applications Theoretical or novel ideas with practical potential Technical presentations from industrial researchers.

  2. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    Science.gov (United States)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For

  3. Numerical study of Taylor bubbles with adaptive unstructured meshes

    Science.gov (United States)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  4. Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.

    Science.gov (United States)

    Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F

    2011-03-01

    This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.

  5. Multi-phase Volume Segmentation with Tetrahedral Mesh

    DEFF Research Database (Denmark)

    Nguyen Trung, Tuan; Dahl, Vedrana Andersen; Bærentzen, Jakob Andreas

    Volume segmentation is efficient for reconstructing material structure, which is important for several analyses, e.g. simulation with finite element method, measurement of quantitative information like surface area, surface curvature, volume, etc. We are concerned about the representations of the 3......D volumes, which can be categorized into two groups: fixed voxel grids [1] and unstructured meshes [2]. Among these two representations, the voxel grids are more popular since manipulating a fixed grid is easier than an unstructured mesh, but they are less efficient for quantitative measurements....... In many cases, the voxel grids are converted to explicit meshes, however the conversion may reduce the accuracy of the segmentations, and the effort for meshing is also not trivial. On the other side, methods using unstructured meshes have difficulty in handling topology changes. To reduce the complexity...

  6. Sierra toolkit computational mesh conceptual model

    International Nuclear Information System (INIS)

    Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

    2010-01-01

    The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

  7. Detailed Aerodynamic Analysis of a Shrouded Tail Rotor Using an Unstructured Mesh Flow Solver

    Science.gov (United States)

    Lee, Hee Dong; Kwon, Oh Joon

    The detailed aerodynamics of a shrouded tail rotor in hover has been numerically studied using a parallel inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. The calculation was made for a single blade by imposing a periodic boundary condition between adjacent rotor blades. The grid periodicity was also imposed at the periodic boundary planes to avoid numerical inaccuracy resulting from solution interpolation. The results were compared with available experimental data and those from a disk vortex theory for validation. It was found that realistic three-dimensional modeling is important for the prediction of detailed aerodynamics of shrouded rotors including the tip clearance gap flow.

  8. Notes on the Mesh Handler and Mesh Data Conversion

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok

    2009-01-01

    At the outset of the development of the thermal-hydraulic code (THC), efforts have been made to utilize the recent technology of the computational fluid dynamics. Among many of them, the unstructured mesh approach was adopted to alleviate the restriction of the grid handling system. As a natural consequence, a mesh handler (MH) has been developed to manipulate the complex mesh data from the mesh generator. The mesh generator, Gambit, was chosen at the beginning of the development of the code. But a new mesh generator, Pointwise, was introduced to get more flexible mesh generation capability. An open source code, Paraview, was chosen as a post processor, which can handle unstructured as well as structured mesh data. Overall data processing system for THC is shown in Figure-1. There are various file formats to save the mesh data in the permanent storage media. A couple of dozen of file formats are found even in the above mentioned programs. A competent mesh handler should have the capability to import or export mesh data as many as possible formats. But, in reality, there are two aspects that make it difficult to achieve the competence. The first aspect to consider is the time and efforts to program the interface code. And the second aspect, which is even more difficult one, is the fact that many mesh data file formats are proprietary information. In this paper, some experience of the development of the format conversion programs will be presented. File formats involved are Gambit neutral format, Ansys-CFX grid file format, VTK legacy file format, Nastran format and CGNS

  9. Simulating the Agulhas system in global ocean models - nesting vs. multi-resolution unstructured meshes

    Science.gov (United States)

    Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey

    2018-01-01

    Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.

  10. Second order finite volume scheme for Maxwell's equations with discontinuous electromagnetic properties on unstructured meshes

    Energy Technology Data Exchange (ETDEWEB)

    Ismagilov, Timur Z., E-mail: ismagilov@academ.org

    2015-02-01

    This paper presents a second order finite volume scheme for numerical solution of Maxwell's equations with discontinuous dielectric permittivity and magnetic permeability on unstructured meshes. The scheme is based on Godunov scheme and employs approaches of Van Leer and Lax–Wendroff to increase the order of approximation. To keep the second order of approximation near dielectric permittivity and magnetic permeability discontinuities a novel technique for gradient calculation and limitation is applied near discontinuities. Results of test computations for problems with linear and curvilinear discontinuities confirm second order of approximation. The scheme was applied to modelling propagation of electromagnetic waves inside photonic crystal waveguides with a bend.

  11. Positivity-preserving CE/SE schemes for solving the compressible Euler and Navier–Stokes equations on hybrid unstructured meshes

    KAUST Repository

    Shen, Hua

    2018-05-28

    We construct positivity-preserving space–time conservation element and solution element (CE/SE) schemes for solving the compressible Euler and Navier–Stokes equations on hybrid unstructured meshes consisting of triangular and rectangular elements. The schemes use an a posteriori limiter to prevent negative densities and pressures based on the premise of preserving optimal accuracy. The limiter enforces a constraint for spatial derivatives and does not change the conservative property of CE/SE schemes. Several numerical examples suggest that the proposed schemes preserve accuracy for smooth flows and strictly preserve positivity of densities and pressures for the problems involving near vacuum and very strong discontinuities.

  12. A Krylov Subspace Method for Unstructured Mesh SN Transport Computation

    International Nuclear Information System (INIS)

    Yoo, Han Jong; Cho, Nam Zin; Kim, Jong Woon; Hong, Ser Gi; Lee, Young Ouk

    2010-01-01

    Hong, et al., have developed a computer code MUST (Multi-group Unstructured geometry S N Transport) for the neutral particle transport calculations in three-dimensional unstructured geometry. In this code, the discrete ordinates transport equation is solved by using the discontinuous finite element method (DFEM) or the subcell balance methods with linear discontinuous expansion. In this paper, the conventional source iteration in the MUST code is replaced by the Krylov subspace method to reduce computing time and the numerical test results are given

  13. Feature-Sensitive Tetrahedral Mesh Generation with Guaranteed Quality

    OpenAIRE

    Wang, Jun; Yu, Zeyun

    2012-01-01

    Tetrahedral meshes are being extensively used in finite element methods (FEM). This paper proposes an algorithm to generate feature-sensitive and high-quality tetrahedral meshes from an arbitrary surface mesh model. A top-down octree subdivision is conducted on the surface mesh and a set of tetrahedra are constructed using adaptive body-centered cubic (BCC) lattices. Special treatments are given to the tetrahedra near the surface such that the quality of the resulting tetrahedral mesh is prov...

  14. MOCUM: A two-dimensional method of characteristics code based on constructive solid geometry and unstructured meshing for general geometries

    International Nuclear Information System (INIS)

    Yang Xue; Satvat, Nader

    2012-01-01

    Highlight: ► A two-dimensional numerical code based on the method of characteristics is developed. ► The complex arbitrary geometries are represented by constructive solid geometry and decomposed by unstructured meshing. ► Excellent agreement between Monte Carlo and the developed code is observed. ► High efficiency is achieved by parallel computing. - Abstract: A transport theory code MOCUM based on the method of characteristics as the flux solver with an advanced general geometry processor has been developed for two-dimensional rectangular and hexagonal lattice and full core neutronics modeling. In the code, the core structure is represented by the constructive solid geometry that uses regularized Boolean operations to build complex geometries from simple polygons. Arbitrary-precision arithmetic is also used in the process of building geometry objects to eliminate the round-off error from the commonly used double precision numbers. Then, the constructed core frame will be decomposed and refined into a Conforming Delaunay Triangulation to ensure the quality of the meshes. The code is fully parallelized using OpenMP and is verified and validated by various benchmarks representing rectangular, hexagonal, plate type and CANDU reactor geometries. Compared with Monte Carlo and deterministic reference solution, MOCUM results are highly accurate. The mentioned characteristics of the MOCUM make it a perfect tool for high fidelity full core calculation for current and GenIV reactor core designs. The detailed representation of reactor physics parameters can enhance the safety margins with acceptable confidence levels, which lead to more economically optimized designs.

  15. Recent Development in the CESE Method for the Solution of the Navier-Stokes Equations Using Unstructured Triangular or Tetrahedral Meshes With High Aspect Ratio

    Science.gov (United States)

    Chang, Sin-Chung; Chang, Chau-Lyan; Yen, Joseph C.

    2013-01-01

    In the multidimensional CESE development, triangles and tetrahedra turn out to be the most natural building blocks for 2D and 3D spatial meshes. As such the CESE method is compatible with the simplest unstructured meshes and thus can be easily applied to solve problems with complex geometries. However, because the method uses space-time staggered stencils, solution decoupling may become a real nuisance in applications involving unstructured meshes. In this paper we will describe a simple and general remedy which, according to numerical experiments, has removed any possibility of solution decoupling. Moreover, in a real-world viscous flow simulation near a solid wall, one often encounters a case where a boundary with high curvature or sharp corner is surrounded by triangular/tetrahedral meshes of extremely high aspect ratio (up to 106). For such an extreme case, the spatial projection of a space-time compounded conservation element constructed using the original CESE design may become highly concave and thus its centroid (referred to as a spatial solution point) may lie far outside of the spatial projection. It could even be embedded beyond a solid wall boundary and causes serious numerical difficulties. In this paper we will also present a new procedure for constructing conservation elements and solution elements which effectively overcomes the difficulties associated with the original design. Another difficulty issue which was addressed more recently is the wellknown fact that accuracy of gradient computations involving triangular/tetrahedral grids deteriorates rapidly as the aspect ratio of grid cells increases. The root cause of this difficulty was clearly identified and several remedies to overcome it were found through a rigorous mathematical analysis. However, because of the length of the current paper and the complexity of mathematics involved, this new work will be presented in another paper.

  16. Interoperable mesh components for large-scale, distributed-memory simulations

    International Nuclear Information System (INIS)

    Devine, K; Leung, V; Diachin, L; Miller, M

    2009-01-01

    SciDAC applications have a demonstrated need for advanced software tools to manage the complexities associated with sophisticated geometry, mesh, and field manipulation tasks, particularly as computer architectures move toward the petascale. In this paper, we describe a software component - an abstract data model and programming interface - designed to provide support for parallel unstructured mesh operations. We describe key issues that must be addressed to successfully provide high-performance, distributed-memory unstructured mesh services and highlight some recent research accomplishments in developing new load balancing and MPI-based communication libraries appropriate for leadership class computing. Finally, we give examples of the use of parallel adaptive mesh modification in two SciDAC applications.

  17. An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations

    Directory of Open Access Journals (Sweden)

    João Luiz F. Azevedo

    2009-06-01

    Full Text Available A comparison of five different spatial discretization schemes is performed considering a typical high speed flow application. Flowfields are simulated using the 2-D Euler equations, discretized in a cell-centered finite volume procedure on unstructured triangular meshes. The algorithms studied include a central difference-type scheme, and 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes. These methods are implemented in an efficient, edge-based, unstructured grid procedure which allows for adaptive mesh refinement based on flow property gradients. Details of the unstructured grid implementation of the methods are presented together with a discussion of the data structure and of the adaptive refinement strategy. The application of interest is the cold gas flow through a typical hypersonic inlet. Results for different entrance Mach numbers and mesh topologies are discussed in order to assess the comparative performance of the various spatial discretization schemes.

  18. Unstructured Adaptive Meshes: Bad for Your Memory?

    Science.gov (United States)

    Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob

    2003-01-01

    This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.

  19. Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    Science.gov (United States)

    Boscheri, Walter; Dumbser, Michael

    2017-10-01

    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total

  20. COMPUTATIONAL EFFICIENCY OF A MODIFIED SCATTERING KERNEL FOR FULL-COUPLED PHOTON-ELECTRON TRANSPORT PARALLEL COMPUTING WITH UNSTRUCTURED TETRAHEDRAL MESHES

    Directory of Open Access Journals (Sweden)

    JONG WOON KIM

    2014-04-01

    In this paper, we introduce a modified scattering kernel approach to avoid the unnecessarily repeated calculations involved with the scattering source calculation, and used it with parallel computing to effectively reduce the computation time. Its computational efficiency was tested for three-dimensional full-coupled photon-electron transport problems using our computer program which solves the multi-group discrete ordinates transport equation by using the discontinuous finite element method with unstructured tetrahedral meshes for complicated geometrical problems. The numerical tests show that we can improve speed up to 17∼42 times for the elapsed time per iteration using the modified scattering kernel, not only in the single CPU calculation but also in the parallel computing with several CPUs.

  1. A Parallel Multiblock Structured Grid Method with Automated Interblocked Unstructured Grids for Chemically Reacting Flows

    Science.gov (United States)

    Spiegel, Seth Christian

    An automated method for using unstructured grids to patch non- C0 interfaces between structured blocks has been developed in conjunction with a finite-volume method for solving chemically reacting flows on unstructured grids. Although the standalone unstructured solver, FVFLO-NCSU, is capable of resolving flows for high-speed aeropropulsion devices with complex geometries, unstructured-mesh algorithms are inherently inefficient when compared to their structured counterparts. However, the advantages of structured algorithms in developing a flow solution in a timely manner can be negated by the amount of time required to develop a mesh for complex geometries. The global domain can be split up into numerous smaller blocks during the grid-generation process to alleviate some of the difficulties in creating these complex meshes. An even greater abatement can be found by allowing the nodes on abutting block interfaces to be nonmatching or non-C 0 continuous. One code capable of solving chemically reacting flows on these multiblock grids is VULCAN, which uses a nonconservative approach for patching non-C0 block interfaces. The developed automated unstructured-grid patching algorithm has been installed within VULCAN to provide it the capability of a fully conservative approach for patching non-C0 block interfaces. Additionally, the FVFLO-NCSU solver algorithms have been deeply intertwined with the VULCAN source code to solve chemically reacting flows on these unstructured patches. Finally, the CGNS software library was added to the VULCAN postprocessor so structured and unstructured data can be stored in a single compact file. This final upgrade to VULCAN has been successfully installed and verified using test cases with particular interest towards those involving grids with non- C0 block interfaces.

  2. Linear Discontinuous Expansion Method using the Subcell Balances for Unstructured Geometry SN Transport

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Kim, Jong Woon; Lee, Young Ouk; Kim, Kyo Youn

    2010-01-01

    The subcell balance methods have been developed for one- and two-dimensional SN transport calculations. In this paper, a linear discontinuous expansion method using sub-cell balances (LDEM-SCB) is developed for neutral particle S N transport calculations in 3D unstructured geometrical problems. At present, this method is applied to the tetrahedral meshes. As the name means, this method assumes the linear distribution of the particle flux in each tetrahedral mesh and uses the balance equations for four sub-cells of each tetrahedral mesh to obtain the equations for the four sub-cell average fluxes which are unknowns. This method was implemented in the computer code MUST (Multi-group Unstructured geometry S N Transport). The numerical tests show that this method gives more robust solution than DFEM (Discontinuous Finite Element Method)

  3. Multidimensional Riemann problem with self-similar internal structure. Part II - Application to hyperbolic conservation laws on unstructured meshes

    Science.gov (United States)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-04-01

    Multidimensional Riemann solvers that have internal sub-structure in the strongly-interacting state have been formulated recently (D.S. Balsara (2012, 2014) [5,16]). Any multidimensional Riemann solver operates at the grid vertices and takes as its input all the states from its surrounding elements. It yields as its output an approximation of the strongly interacting state, as well as the numerical fluxes. The multidimensional Riemann problem produces a self-similar strongly-interacting state which is the result of several one-dimensional Riemann problems interacting with each other. To compute this strongly interacting state and its higher order moments we propose the use of a Galerkin-type formulation to compute the strongly interacting state and its higher order moments in terms of similarity variables. The use of substructure in the Riemann problem reduces numerical dissipation and, therefore, allows a better preservation of flow structures, like contact and shear waves. In this second part of a series of papers we describe how this technique is extended to unstructured triangular meshes. All necessary details for a practical computer code implementation are discussed. In particular, we explicitly present all the issues related to computational geometry. Because these Riemann solvers are Multidimensional and have Self-similar strongly-Interacting states that are obtained by Consistency with the conservation law, we call them MuSIC Riemann solvers. (A video introduction to multidimensional Riemann solvers is available on http://www.elsevier.com/xml/linking-roles/text/html". The MuSIC framework is sufficiently general to handle general nonlinear systems of hyperbolic conservation laws in multiple space dimensions. It can also accommodate all self-similar one-dimensional Riemann solvers and subsequently produces a multidimensional version of the same. In this paper we focus on unstructured triangular meshes. As examples of different systems of conservation laws we

  4. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    Science.gov (United States)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  5. A Novel Mesh Quality Improvement Method for Boundary Elements

    Directory of Open Access Journals (Sweden)

    Hou-lin Liu

    2012-01-01

    Full Text Available In order to improve the boundary mesh quality while maintaining the essential characteristics of discrete surfaces, a new approach combining optimization-based smoothing and topology optimization is developed. The smoothing objective function is modified, in which two functions denoting boundary and interior quality, respectively, and a weight coefficient controlling boundary quality are taken into account. In addition, the existing smoothing algorithm can improve the mesh quality only by repositioning vertices of the interior mesh. Without destroying boundary conformity, bad elements with all their vertices on the boundary cannot be eliminated. Then, topology optimization is employed, and those elements are converted into other types of elements whose quality can be improved by smoothing. The practical application shows that the worst elements can be eliminated and, with the increase of weight coefficient, the average quality of boundary mesh can also be improved. Results obtained with the combined approach are compared with some common approach. It is clearly shown that it performs better than the existing approach.

  6. How to Measure Quality of Service Using Unstructured Data Analysis: A General Method Design

    Directory of Open Access Journals (Sweden)

    Lucie Sperková,

    2015-10-01

    Full Text Available The aim of the paper is to design a general method usable for measuring the quality of the service from the customer’s point of view with the help of content analytics. Large amount of unstructured data is created by customers of the service. This data can provide a valuable feedback from the service usage. Customers talk among themselves about their experiences and feelings from consumption of the service. The design of the method is based on a systematic literature review in the area of the service quality and unstructured data analysis. Analytics and quality measurement models are collected and critically evaluated regarding their potential use for measuring IT service quality. The method can be used by IT service provider to measure and monitor service quality based on World-of-Mouth in order to continual service improvement.

  7. Nonlinear Projective-Iteration Methods for Solving Transport Problems on Regular and Unstructured Grids

    International Nuclear Information System (INIS)

    Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist

    2007-01-01

    This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable

  8. Domain decomposition multigrid for unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Shapira, Yair

    1997-01-01

    A two-level preconditioning method for the solution of elliptic boundary value problems using finite element schemes on possibly unstructured meshes is introduced. It is based on a domain decomposition and a Galerkin scheme for the coarse level vertex unknowns. For both the implementation and the analysis, it is not required that the curves of discontinuity in the coefficients of the PDE match the interfaces between subdomains. Generalizations to nonmatching or overlapping grids are made.

  9. Cache-Oblivious Mesh Layouts

    International Nuclear Information System (INIS)

    Yoon, S; Lindstrom, P; Pascucci, V; Manocha, D

    2005-01-01

    We present a novel method for computing cache-oblivious layouts of large meshes that improve the performance of interactive visualization and geometric processing algorithms. Given that the mesh is accessed in a reasonably coherent manner, we assume no particular data access patterns or cache parameters of the memory hierarchy involved in the computation. Furthermore, our formulation extends directly to computing layouts of multi-resolution and bounding volume hierarchies of large meshes. We develop a simple and practical cache-oblivious metric for estimating cache misses. Computing a coherent mesh layout is reduced to a combinatorial optimization problem. We designed and implemented an out-of-core multilevel minimization algorithm and tested its performance on unstructured meshes composed of tens to hundreds of millions of triangles. Our layouts can significantly reduce the number of cache misses. We have observed 2-20 times speedups in view-dependent rendering, collision detection, and isocontour extraction without any modification of the algorithms or runtime applications

  10. Study of two-dimensional flow by triangular unstructured grid around airfoil with dynamic ground effect

    International Nuclear Information System (INIS)

    Haghbin, S.; Farahat, S.

    2004-01-01

    In this paper, the numerical solution of two-dimensional incompressible viscid flow by triangular unstructured grid around airfoil with dynamic ground effect and by using geometric conservation law (GCL) has been represented. In this analysis, after the mesh generation for physical model, for the purpose of adaption of meshes with physical condition, the mesh adaption method has been used. Also, for increasing the speed of results convergence, the Multigrid method has been applied to the solver of governing equations. Because of the movement of meshes in this analysis, by using a spring simulation, the generated meshes have been moved and in every time step for the purpose of controlling the quality of meshes, by considering the EquiAngle Skew coefficient (EAS) and the volume of each mesh, the meshes that had a large EAS and a volume more than and less than defined maximum and minimum value, have been removed and then regenerated. Also, because the continuity and momentum conservations law were insufficient to work with these moving grids, the geometric conservation law was combined with the other conservation laws and a general equation was obtained for the dynamic meshes. For solving this general equation, the Simple Algorithm has been used. According to the results, the dynamic ground effect causes unsteadiness and also the Lift coefficient is increased vibrationally. And with respect to the type of airfoil, the Drag coefficient can decrease or increase vibrationally. (author)

  11. Study of two-dimensional flow by triangular unstructured grid around airfoil with dynamic ground effect

    Energy Technology Data Exchange (ETDEWEB)

    Haghbin, S.; Farahat, S. [Sistan and Baluchestan Univ., Dept. of Mechanical Engineering, Zahedan (Iran, Islamic Republic of)]. E-mail: sadegh_haghbin@yahoo.com

    2004-07-01

    In this paper, the numerical solution of two-dimensional incompressible viscid flow by triangular unstructured grid around airfoil with dynamic ground effect and by using geometric conservation law (GCL) has been represented. In this analysis, after the mesh generation for physical model, for the purpose of adaption of meshes with physical condition, the mesh adaption method has been used. Also, for increasing the speed of results convergence, the Multigrid method has been applied to the solver of governing equations. Because of the movement of meshes in this analysis, by using a spring simulation, the generated meshes have been moved and in every time step for the purpose of controlling the quality of meshes, by considering the EquiAngle Skew coefficient (EAS) and the volume of each mesh, the meshes that had a large EAS and a volume more than and less than defined maximum and minimum value, have been removed and then regenerated. Also, because the continuity and momentum conservations law were insufficient to work with these moving grids, the geometric conservation law was combined with the other conservation laws and a general equation was obtained for the dynamic meshes. For solving this general equation, the Simple Algorithm has been used. According to the results, the dynamic ground effect causes unsteadiness and also the Lift coefficient is increased vibrationally. And with respect to the type of airfoil, the Drag coefficient can decrease or increase vibrationally. (author)

  12. New Method for Mesh Moving Based on Radial Basis Function Interpolation

    NARCIS (Netherlands)

    De Boer, A.; Van der Schoot, M.S.; Bijl, H.

    2006-01-01

    A new point-by-point mesh movement algorithm is developed for the deformation of unstructured grids. The method is based on using radial basis function, RBFs, to interpolate the displacements of the boundary nodes to the whole flow mesh. A small system of equations has to be solved, only involving

  13. Mesh Generation via Local Bisection Refinement of Triangulated Grids

    Science.gov (United States)

    2015-06-01

    Science and Technology Organisation DSTO–TR–3095 ABSTRACT This report provides a comprehensive implementation of an unstructured mesh generation method...and Technology Organisation 506 Lorimer St, Fishermans Bend, Victoria 3207, Australia Telephone: 1300 333 362 Facsimile: (03) 9626 7999 c© Commonwealth...their behaviour is critically linked to Maubach’s method and the data structures N and T . The top- level mesh refinement algorithm is also presented

  14. Exploring Shared-Memory Optimizations for an Unstructured Mesh CFD Application on Modern Parallel Systems

    KAUST Repository

    Mudigere, Dheevatsa

    2015-05-01

    In this work, we revisit the 1999 Gordon Bell Prize winning PETSc-FUN3D aerodynamics code, extending it with highly-tuned shared-memory parallelization and detailed performance analysis on modern highly parallel architectures. An unstructured-grid implicit flow solver, which forms the backbone of computational aerodynamics, poses particular challenges due to its large irregular working sets, unstructured memory accesses, and variable/limited amount of parallelism. This code, based on a domain decomposition approach, exposes tradeoffs between the number of threads assigned to each MPI-rank sub domain, and the total number of domains. By applying several algorithm- and architecture-aware optimization techniques for unstructured grids, we show a 6.9X speed-up in performance on a single-node Intel® XeonTM1 E5 2690 v2 processor relative to the out-of-the-box compilation. Our scaling studies on TACC Stampede supercomputer show that our optimizations continue to provide performance benefits over baseline implementation as we scale up to 256 nodes.

  15. MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.

    2013-09-30

    Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.

  16. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

    Science.gov (United States)

    Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

    2015-01-01

    Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the

  17. Implicit Unstructured Aerodynamics on Emerging Multi- and Many-Core HPC Architectures

    KAUST Repository

    Al Farhan, Mohammed A.

    2017-03-13

    Shared memory parallelization of PETSc-FUN3D, an unstructured tetrahedral mesh Euler code previously characterized for distributed memory Single Program, Multiple Data (SPMD) for thousands of nodes, is hybridized with shared memory Single Instruction, Multiple Data (SIMD) for hundreds of threads per node. We explore thread-level performance optimizations on state-of-the-art multi- and many-core Intel processors, including the second generation of Xeon Phi, Knights Landing (KNL). We study the performance on the KNL with different configurations of memory and cluster modes, with code optimizations to minimize indirect addressing and enhance the cache locality. The optimizations employed are expected to be of value other unstructured applications as many-core architecture evolves.

  18. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    Science.gov (United States)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  19. Error estimation for goal-oriented spatial adaptivity for the SN equations on triangular meshes

    International Nuclear Information System (INIS)

    Lathouwers, D.

    2011-01-01

    In this paper we investigate different error estimation procedures for use within a goal oriented adaptive algorithm for the S N equations on unstructured meshes. The method is based on a dual-weighted residual approach where an appropriate adjoint problem is formulated and solved in order to obtain the importance of residual errors in the forward problem on the specific goal of interest. The forward residuals and the adjoint function are combined to obtain both economical finite element meshes tailored to the solution of the target functional as well as providing error estimates. Various approximations made to make the calculation of the adjoint angular flux more economically attractive are evaluated by comparing the performance of the resulting adaptive algorithm and the quality of the error estimators when applied to two shielding-type test problems. (author)

  20. Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers

    Science.gov (United States)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2014-01-01

    This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.

  1. An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Rieben, R N; White, D A; Wallin, B K; Solberg, J M

    2006-06-12

    We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.

  2. Exploring Shared-Memory Optimizations for an Unstructured Mesh CFD Application on Modern Parallel Systems

    KAUST Repository

    Mudigere, Dheevatsa; Sridharan, Srinivas; Deshpande, Anand; Park, Jongsoo; Heinecke, Alexander; Smelyanskiy, Mikhail; Kaul, Bharat; Dubey, Pradeep; Kaushik, Dinesh; Keyes, David E.

    2015-01-01

    -grid implicit flow solver, which forms the backbone of computational aerodynamics, poses particular challenges due to its large irregular working sets, unstructured memory accesses, and variable/limited amount of parallelism. This code, based on a domain

  3. A Solution Adaptive Structured/Unstructured Overset Grid Flow Solver with Applications to Helicopter Rotor Flows

    Science.gov (United States)

    Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.

    1995-01-01

    This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.

  4. Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids

    Science.gov (United States)

    Bryson, Steve; Levy, Doron

    2004-01-01

    We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of conservation laws to systems of balance laws one has to find an appropriate discretization of the source terms. We first show that for general triangulations there is no discretization of the source terms that corresponds to a well-balanced form of the KP scheme. We then derive a new variant of a central scheme that can be balanced on triangular meshes. We note in passing that it is straightforward to extend the KP scheme to general unstructured conformal meshes. This extension allows us to recover our previous well-balanced scheme on Cartesian grids. We conclude with several simulations, verifying the second-order accuracy of our scheme as well as its well-balanced properties.

  5. SALOME PLATFORM and TetGen for Polyhedral Mesh Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan [KEPCO E and C Company, Inc., Daejeon (Korea, Republic of)

    2014-05-15

    SPACE and CUPID use the unstructured mesh and they also require reliable mesh generation system. The combination of CAD system and mesh generation system is necessary to cope with a large number of cells and the complex fluid system with structural materials inside. In the past, a CAD system Pro/Engineer and mesh generator Pointwise were evaluated for this application. But, the cost of those commercial CAD and mesh generator is sometimes a great burden. Therefore, efforts have been made to set up a mesh generation system with open source programs. The evaluation of the TetGen has been made in focusing the application for the polyhedral mesh generation. In this paper, SALOME will be evaluated for the efforts in conjunction with TetGen. In section 2, review will be made on the CAD and mesh generation capability of SALOME. SALOME and TetGen codes are being integrated to construct robust polyhedral mesh generator. Edge removal on the flat surface and vertex reattachment to the solid are two challenging tasks. It is worthwhile to point out that the Python script capability of the SALOME should be fully utilized for the future investigation.

  6. Unstructured 3D core calculations with the descartes system application to the JHR research reactor

    International Nuclear Information System (INIS)

    Baudron, A. M.; Doderlein, C.; Guerin, P.; Lautard, J. J.; Moreau, F.

    2007-01-01

    Recent developments in the DESCARTES system enable neutronics calculations dealing with very complex unstructured geometrical configurations. The discretization can be made either by using a very fine Cartesian mesh and the fast simplified transport (SPN) solver MINOS, or a discretization based on triangles and the SP1 solver MINARET. In order to perform parallel calculations dealing with a very fine mesh in 3D, a domain decomposition with non overlapping domains has been implemented. To illustrate these capabilities, we present an application on the future European research reactor JHR dedicated to technological irradiations. (authors)

  7. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    Energy Technology Data Exchange (ETDEWEB)

    Wintermeyer, Niklas [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Winters, Andrew R., E-mail: awinters@math.uni-koeln.de [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Gassner, Gregor J. [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Kopriva, David A. [Department of Mathematics, The Florida State University, Tallahassee, FL 32306 (United States)

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  8. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    Science.gov (United States)

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with

  9. Anisotropic three-dimensional inversion of CSEM data using finite-element techniques on unstructured grids

    Science.gov (United States)

    Wang, Feiyan; Morten, Jan Petter; Spitzer, Klaus

    2018-05-01

    In this paper, we present a recently developed anisotropic 3-D inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite-element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multisource problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parametrization of the inversion domain at a suitable scale. For a rapid simulation of multisource EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.

  10. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, E.; Ruggieri, J.M. [CEA Cadarache (DER/SPRC/LEPH), 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs; Santandrea, S. [CEA Saclay, Dept. Modelisation de Systemes et Structures DM2S/SERMA/LENR, 91 - Gif sur Yvette (France)

    2005-07-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  11. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    International Nuclear Information System (INIS)

    Girardi, E.; Ruggieri, J.M.

    2005-01-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  12. An overset algorithm for 3D unstructured grids

    International Nuclear Information System (INIS)

    Pishevar, A.R.; Shateri, A.R.

    2004-01-01

    In this paper a new methodology is introduced to simulate flows around complex geometries by using overset unstructured grids. The proposed algorithm can also be used for the unsteady flows about objects in relative motions. In such a case since the elements are not deformed during the computation the costly part of conventional methods, re-meshing, is prevented. This method relies on the inter-grid boundary definition to establish communications among independent grids in the overset system. At the end, the Euler set of equations are integrated on several overset systems to examine the capabilities of this methodology. (author)

  13. Hybrid mesh generation for the new generation of oil reservoir simulators: 3D extension; Generation de maillage hybride pour les simulateurs de reservoir petrolier de nouvelle generation: extension 3D

    Energy Technology Data Exchange (ETDEWEB)

    Flandrin, N.

    2005-09-15

    During the exploitation of an oil reservoir, it is important to predict the recovery of hydrocarbons and to optimize its production. A better comprehension of the physical phenomena requires to simulate 3D multiphase flows in increasingly complex geological structures. In this thesis, we are interested in this spatial discretization and we propose to extend in 3D the 2D hybrid model proposed by IFP in 1998 that allows to take directly into account in the geometry the radial characteristics of the flows. In these hybrid meshes, the wells and their drainage areas are described by structured radial circular meshes and the reservoirs are represented by structured meshes that can be a non uniform Cartesian grid or a Corner Point Geometry grids. In order to generate a global conforming mesh, unstructured transition meshes based on power diagrams and satisfying finite volume properties are used to connect the structured meshes together. Two methods have been implemented to generate these transition meshes: the first one is based on a Delaunay triangulation, the other one uses a frontal approach. Finally, some criteria are introduced to measure the quality of the transition meshes and optimization procedures are proposed to increase this quality under finite volume properties constraints. (author)

  14. Unstructured grids and an element based conservative approach for a black-oil reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Regis Lopes; Fernandes, Bruno Ramon Batista [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Chemical Engineering; Araujo, Andre Luiz de Souza [Federal Institution of Education, Science and Technology of Ceara - IFCE, Fortaleza (Brazil). Industry Department], e-mail: andre@ifce.edu.br; Marcondes, Francisco [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br

    2010-07-01

    Unstructured meshes presented one upgrade in modeling the main important features of the reservoir such as discrete fractures, faults, and irregular boundaries. From several methodologies available, the Element based Finite Volume Method (EbFVM), in conjunction with unstructured meshes, is one methodology that deserves large attention. In this approach, the reservoir, for 2D domains, is discretized using a mixed two-dimensional mesh using quadrilateral and triangle elements. After the initial step of discretization, each element is divided into sub-elements and the mass balance for each component is developed for each sub-element. The equations for each control-volume using a cell vertex construction are formulated through the contribution of different neighboured elements. This paper presents an investigation of an element-based approach using the black-oil model based on pressure and global mass fractions. In this approach, even when all gas phase is dissolved in oil phase the global mass fraction of gas will be different from zero. Therefore, no additional numerical procedure is necessary in order to treat the gas phase appear/disappearance. In this paper the above mentioned approach is applied to multiphase flows involving oil, gas, and water. The mass balance equations in terms of global mass fraction of oil, gas and water are discretized through the EbFVM and linearized by the Newton's method. The results are presented in terms of volumetric rates of oil, gas, and water and phase saturations. (author)

  15. Finite volume method for radiative heat transfer in an unstructured flow solver for emitting, absorbing and scattering media

    International Nuclear Information System (INIS)

    Gazdallah, Moncef; Feldheim, Véronique; Claramunt, Kilian; Hirsch, Charles

    2012-01-01

    This paper presents the implementation of the finite volume method to solve the radiative transfer equation in a commercial code. The particularity of this work is that the method applied on unstructured hexahedral meshes does not need a pre-processing step establishing a particular marching order to visit all the control volumes. The solver simply visits the faces of the control volumes as numbered in the hexahedral unstructured mesh. A cell centred mesh and a spatial differencing step scheme to relate facial radiative intensities to nodal intensities is used. The developed computer code based on FVM has been integrated in the CFD solver FINE/Open from NUMECA Int. Radiative heat transfer can be evaluated within systems containing uniform, grey, emitting, absorbing and/or isotropically or linear anisotropically scattering medium bounded by diffuse grey walls. This code has been validated for three test cases. The first one is a three dimensional rectangular enclosure filled with emitting, absorbing and anisotropically scattering media. The second is the differentially heated cubic cavity. The third one is the L-shaped enclosure. For these three test cases a good agreement has been observed when temperature and heat fluxes predictions are compared with references taken, from literature.

  16. Modelling of pedestrian level wind environment on a high-quality mesh: A case study for the HKPolyU campus

    DEFF Research Database (Denmark)

    Du, Yaxing; Mak, Cheuk Ming; Ai, Zhengtao

    2018-01-01

    Quality and efficiency of computational fluid dynamics (CFD) simulation of pedestrian level wind environment in a complex urban area are often compromised by many influencing factors, particularly mesh quality. This paper first proposes a systematic and efficient mesh generation method and then p......Quality and efficiency of computational fluid dynamics (CFD) simulation of pedestrian level wind environment in a complex urban area are often compromised by many influencing factors, particularly mesh quality. This paper first proposes a systematic and efficient mesh generation method...... and then performs detailed sensitivity analysis of some important computational parameters. The geometrically complex Hong Kong Polytechnic University (HKPolyU) campus is taken as a case study. Based on the high-quality mesh system, the influences of three important computational parameters, namely, turbulence...... model, near-wall mesh density and computational domain size, on the CFD predicted results of pedestrian level wind environment are quantitatively evaluated. Validation of CFD models is conducted against wind tunnel experimental data, where a good agreement is achieved. It is found that the proposed mesh...

  17. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    Science.gov (United States)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  18. User Manual for the PROTEUS Mesh Tools

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-19

    PROTEUS is built around a finite element representation of the geometry for visualization. In addition, the PROTEUS-SN solver was built to solve the even-parity transport equation on a finite element mesh provided as input. Similarly, PROTEUS-MOC and PROTEUS-NEMO were built to apply the method of characteristics on unstructured finite element meshes. Given the complexity of real world problems, experience has shown that using commercial mesh generator to create rather simple input geometries is overly complex and slow. As a consequence, significant effort has been put into place to create multiple codes that help assist in the mesh generation and manipulation. There are three input means to create a mesh in PROTEUS: UFMESH, GRID, and NEMESH. At present, the UFMESH is a simple way to generate two-dimensional Cartesian and hexagonal fuel assembly geometries. The UFmesh input allows for simple assembly mesh generation while the GRID input allows the generation of Cartesian, hexagonal, and regular triangular structured grid geometry options. The NEMESH is a way for the user to create their own mesh or convert another mesh file format into a PROTEUS input format. Given that one has an input mesh format acceptable for PROTEUS, we have constructed several tools which allow further mesh and geometry construction (i.e. mesh extrusion and merging). This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial

  19. New software developments for quality mesh generation and optimization from biomedical imaging data.

    Science.gov (United States)

    Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko

    2014-01-01

    In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Aranha: a 2D mesh generator for triangular finite elements

    International Nuclear Information System (INIS)

    Fancello, E.A.; Salgado, A.C.; Feijoo, R.A.

    1990-01-01

    A method for generating unstructured meshes for linear and quadratic triangular finite elements is described in this paper. Some topics on the C language data structure used in the development of the program Aranha are also presented. The applicability for adaptive remeshing is shown and finally several examples are included to illustrate the performance of the method in irregular connected planar domains. (author)

  1. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  2. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    Science.gov (United States)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  3. A novel finite volume discretization method for advection-diffusion systems on stretched meshes

    Science.gov (United States)

    Merrick, D. G.; Malan, A. G.; van Rooyen, J. A.

    2018-06-01

    This work is concerned with spatial advection and diffusion discretization technology within the field of Computational Fluid Dynamics (CFD). In this context, a novel method is proposed, which is dubbed the Enhanced Taylor Advection-Diffusion (ETAD) scheme. The model equation employed for design of the scheme is the scalar advection-diffusion equation, the industrial application being incompressible laminar and turbulent flow. Developed to be implementable into finite volume codes, ETAD places specific emphasis on improving accuracy on stretched structured and unstructured meshes while considering both advection and diffusion aspects in a holistic manner. A vertex-centered structured and unstructured finite volume scheme is used, and only data available on either side of the volume face is employed. This includes the addition of a so-called mesh stretching metric. Additionally, non-linear blending with the existing NVSF scheme was performed in the interest of robustness and stability, particularly on equispaced meshes. The developed scheme is assessed in terms of accuracy - this is done analytically and numerically, via comparison to upwind methods which include the popular QUICK and CUI techniques. Numerical tests involved the 1D scalar advection-diffusion equation, a 2D lid driven cavity and turbulent flow case. Significant improvements in accuracy were achieved, with L2 error reductions of up to 75%.

  4. elsA-Hybrid: an all-in-one structured/unstructured solver for the simulation of internal and external flows. Application to turbomachinery

    Science.gov (United States)

    de la Llave Plata, M.; Couaillier, V.; Le Pape, M.-C.; Marmignon, C.; Gazaix, M.

    2013-03-01

    This paper reports recent work on the extension of the multiblock structured solver elsA to deal with hybrid grids. The new hybrid-grid solver is called elsA-H (elsA-Hybrid), is based on the investigation of a new unstructured-grid module has been built within the original elsA CFD (computational fluid dynamics) system. The implementation benefits from the flexibility of the object-oriented design. The aim of elsA-H is to take advantage of the full potential of structured solvers and unstructured mesh generation by allowing any type of grid to be used within the same simulation process. The main challenge lies in the numerical treatment of the hybrid-grid interfaces where blocks of different type meet. In particular, one must pay attention to the transfer of information across these boundaries, so that the accuracy of the numerical scheme is preserved and flux conservation is guaranteed. In this paper, the numerical approach allowing to achieve this is presented. A comparison between the hybrid and the structured-grid methods is also carried out by considering a fully hexahedral multiblock mesh for which a few blocks have been transformed into unstructured. The performance of elsA-H for the simulation of internal flows will be demonstrated on a number of turbomachinery configurations.

  5. Optimizations of Unstructured Aerodynamics Computations for Many-core Architectures

    KAUST Repository

    Al Farhan, Mohammed Ahmed

    2018-04-13

    We investigate several state-of-the-practice shared-memory optimization techniques applied to key routines of an unstructured computational aerodynamics application with irregular memory accesses. We illustrate for the Intel KNL processor, as a representative of the processors in contemporary leading supercomputers, identifying and addressing performance challenges without compromising the floating point numerics of the original code. We employ low and high-level architecture-specific code optimizations involving thread and data-level parallelism. Our approach is based upon a multi-level hierarchical distribution of work and data across both the threads and the SIMD units within every hardware core. On a 64-core KNL chip, we achieve nearly 2.9x speedup of the dominant routines relative to the baseline. These exhibit almost linear strong scalability up to 64 threads, and thereafter some improvement with hyperthreading. At substantially fewer Watts, we achieve up to 1.7x speedup relative to the performance of 72 threads of a 36-core Haswell CPU and roughly equivalent performance to 112 threads of a 56-core Skylake scalable processor. These optimizations are expected to be of value for many other unstructured mesh PDE-based scientific applications as multi and many-core architecture evolves.

  6. Assessment of Pain and Quality of Life in Lichtenstein Hernia Repair Using a New Monofilament PTFE Mesh: Comparison of Suture vs. Fibrin-Sealant Mesh Fixation.

    Science.gov (United States)

    Fortelny, René H; Petter-Puchner, Alexander H; Redl, Heinz; May, Christopher; Pospischil, Wolfgang; Glaser, Karl

    2014-01-01

    Inguinal hernia repair is one of the most common operations in general surgery. The Lichtenstein tension-free operation has become the gold standard in open inguinal hernia repair. Despite the low recurrence rates, pain and discomfort remain a problem for a large number of patients. The aim of this study was to compare suture fixation vs. fibrin sealing by using a new monofilament PTFE mesh, i.e., the Infinit(®) mesh by W. L. Gore & Associates. This study was designed as a controlled prospective single-center two-cohort study. A total of 38 patients were enrolled and operated in Lichtenstein technique either standard suture mesh fixation or fibrin-sealant mesh fixation were used as described in the TIMELI trial. Primary outcome parameters were postoperative complications with the new mesh (i.e., seroma, infection), pain, and quality of life evaluated by the VAS and the SF-36 questionnaire. Secondary outcome was recurrence assessed by ultrasound and physical examination. Follow-up time was 1 year. Significantly, less postoperative pain was reported in the fibrin-sealant group compared to the suture group at 6 weeks (P = 0.035), 6 months (P = 0.023), and 1 year (P = 0.011) postoperatively. Additionally, trends toward a higher postoperative quality of life, a faster surgical procedure, and a shorter hospital stay were seen in the fibrin-sealant group. Fibrin-sealant mesh fixation in Lichtenstein hernioplasty effectively reduces acute and chronic postoperative pain. Monofilament, macro-porous, knitted PTFE meshes seem to be a practicable alternative to commonly used polypropylene meshes in open inguinal hernia repair.

  7. Assessment of pain and quality of life in Lichtenstein hernia repair using a new monofilament PTFE mesh: comparison of suture vs. fibrin sealant mesh fixation

    Directory of Open Access Journals (Sweden)

    René H Fortelny

    2014-11-01

    Full Text Available Background: Inguinal hernia repair is one of the most common operations in general surgery. The Lichtenstein tension-free operation has become the gold standard in open inguinal hernia repair. Despite the low recurrence rates, pain and discomfort remain a problem for a large number of patients. The aim of this study was to compare suture fixation vs. fibrin sealing by using a new monofilament PTFE mesh, i.e. the Infinit® mesh by W. L. Gore & Associates. Methods: This study was designed as a controlled prospective single-centre two cohort study. A total of 38 patients were enrolled and operated in Lichtenstein technique either standard suture mesh fixation or fibrin sealant mesh fixation were used as described in the TIMELI trial. Primary outcome parameters were postoperative complications with the new mesh (i.e. seroma, infection, pain and quality of life evaluated by the VAS and the SF-36 questionnaire. Secondary outcome was recurrence assessed by ultrasound and physical examination. Follow-up time was 1 year.Results: Significantly less postoperative pain was reported in the fibrin sealant group compared to the suture group at 6 weeks (P=0.035, 6 months (P=0.023 and 1 year (P=0.011 postoperatively. Additionally trends towards a higher postoperative quality of life, a faster surgical procedure and a shorter hospital stay were seen in the fibrin sealant group.Conclusion: Fibrin sealant mesh fixation in Lichtenstein hernioplasty effectively reduces acute and chronic postoperative pain. Monofilament, macro-porous, knitted PTFE meshes seem to be a practicable alternative to commonly used polypropylene meshes in open inguinal hernia repair.

  8. Multigrid and multilevel domain decomposition for unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.; Smith, B.

    1994-12-31

    Multigrid has proven itself to be a very versatile method for the iterative solution of linear and nonlinear systems of equations arising from the discretization of PDES. In some applications, however, no natural multilevel structure of grids is available, and these must be generated as part of the solution procedure. In this presentation the authors will consider the problem of generating a multigrid algorithm when only a fine, unstructured grid is given. Their techniques generate a sequence of coarser grids by first forming an approximate maximal independent set of the vertices and then applying a Cavendish type algorithm to form the coarser triangulation. Numerical tests indicate that convergence using this approach can be as fast as standard multigrid on a structured mesh, at least in two dimensions.

  9. Status of the Polyhedral Mesh Generator using SALOME PLATFORM and TetGen

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan

    2014-01-01

    Recently developed porous body approach codes such as SPACE and CUPID require a CAD system to estimate the porosity. Since they use the unstructured mesh and they also require reliable mesh generation system. The combination of CAD system and mesh generation system is necessary to cope with a large number of cells and the complex fluid system with structural materials inside. In the past, a CAD system Pro/Engineer and mesh generator Pointwise were evaluated for this application. But, the cost of those commercial CAD and mesh generator is sometimes a great burden. Therefore, efforts have been made to set up a mesh generation system with open source programs. The evaluation of the TetGen has been made in focusing the application for the polyhedral mesh generation. In this paper, SALOME will be described for the efforts to combine TetGen with it. In section 2, brief introduction will be made on the CAD and mesh generation capability of SALOME and Tetgen. SALOME and TetGen codes are being integrated to construct robust polyhedral mesh generator. Procedures to merge boundary faces and to cut concave cells are developed to remove concave cells to get final convex polyhedral mesh. Treating the internal boundary face, i.e. non-manifold face will be the next task in the future investigation

  10. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin; Zeng, Wei; Morvan, Jean-Marie; Chen, Liming; Gu, Xianfengdavid

    2014-01-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  11. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin

    2014-06-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  12. Mesh versus non-mesh repair of ventral abdominal hernias

    International Nuclear Information System (INIS)

    Jawaid, M.A.; Talpur, A.H.

    2008-01-01

    To investigate the relative effectiveness of mesh and suture repair of ventral abdominal hernias in terms of clinical outcome, quality of life and rate of recurrence in both the techniques. This is a retrospective descriptive analysis of 236 patients with mesh and non-mesh repair of primary ventral hernias performed between January 2000 to December 2004 at Surgery Department, Liaquat University of Medical and Health Sciences, Jamshoro. The record sheets of the patients were analyzed and data retrieved to compare the results of both techniques for short-term and long-term results. The data retrieved is statistically analyzed on SPSS version 11. There were 43 (18.22%) males and 193 (81.77%) females with a mean age of 51.79 years and a range of 59 (81-22). Para-umbilical hernia was the commonest of ventral hernia and accounted for 49.8% (n=118) of the total study population followed by incisional hernia comprising 24% (n=57) of the total number. There was a significant difference in the recurrent rate at 3 years interval with 23/101 (22.77%) recurrences in suture-repaired subjects compared to 10/135 (7.40%) in mesh repair group. Chronic pain lasting up to 1-2 years was noted in 14 patients with suture repair. Wound infection is comparatively more common (8.14%) in mesh group. The other variables such as operative and postoperative complications, total hospital stay and quality of life is also discussed. Mesh repair of ventral hernia is much superior to non-mesh suture repair in terms of recurrence and overall outcome. (author)

  13. Finite volume methods for the incompressible Navier-Stokes equations on unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Meese, Ernst Arne

    1998-07-01

    Most solution methods of computational fluid dynamics (CFD) use structured grids based on curvilinear coordinates for compliance with complex geometries. In a typical industry application, about 80% of the time used to produce the results is spent constructing computational grids. Recently the use of unstructured grids has been strongly advocated. For unstructured grids there are methods for generating them automatically on quite complex domains. This thesis focuses on the design of Navier-Stokes solvers that can cope with unstructured grids and ''low quality grids'', thus reducing the need for human intervention in the grid generation.

  14. Mesh Excision: Is Total Mesh Excision Necessary?

    Science.gov (United States)

    Wolff, Gillian F; Winters, J Christian; Krlin, Ryan M

    2016-04-01

    Nearly 29% of women will undergo a secondary, repeat operation for pelvic organ prolapse (POP) symptom recurrence following a primary repair, as reported by Abbott et al. (Am J Obstet Gynecol 210:163.e1-163.e1, 2014). In efforts to decrease the rates of failure, graft materials have been utilized to augment transvaginal repairs. Following the success of using polypropylene mesh (PPM) for stress urinary incontinence (SUI), the use of PPM in the transvaginal repair of POP increased. However, in recent years, significant concerns have been raised about the safety of PPM mesh. Complications, some specific to mesh, such as exposures, erosion, dyspareunia, and pelvic pain, have been reported with increased frequency. In the current literature, there is not substantive evidence to suggest that PPM has intrinsic properties that warrant total mesh removal in the absence of complications. There are a number of complications that can occur after transvaginal mesh placement that do warrant surgical intervention after failure of conservative therapy. In aggregate, there are no high-quality controlled studies that clearly demonstrate that total mesh removal is consistently more likely to achieve pain reduction. In the cases of obstruction and erosion, it seems clear that definitive removal of the offending mesh is associated with resolution of symptoms in the majority of cases and reasonable practice. There are a number of complications that can occur with removal of mesh, and patients should be informed of this as they formulate a choice of treatment. We will review these considerations as we examine the clinical question of whether total versus partial removal of mesh is necessary for the resolution of complications following transvaginal mesh placement.

  15. Parallel Adaptive Mesh Refinement for High-Order Finite-Volume Schemes in Computational Fluid Dynamics

    Science.gov (United States)

    Schwing, Alan Michael

    For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable

  16. The application of finite volume methods for modelling three-dimensional incompressible flow on an unstructured mesh

    Science.gov (United States)

    Lonsdale, R. D.; Webster, R.

    This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.

  17. Coupling LaGrit unstructured mesh generation and model setup with TOUGH2 flow and transport: A case study

    Science.gov (United States)

    Sentís, Manuel Lorenzo; Gable, Carl W.

    2017-11-01

    There are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools will provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 (Pruess et al., 1999) to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. In this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.

  18. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  19. Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F4 Configuration

    Science.gov (United States)

    Pirzadeh, Shahyar Z.; Frink, Neal T.

    2002-01-01

    An application of the NASA unstructured grid software system TetrUSS is presented for the prediction of aerodynamic drag on a transport configuration. The paper briefly describes the underlying methodology and summarizes the results obtained on the DLR-F4 transport configuration recently presented in the first AIAA computational fluid dynamics (CFD) Drag Prediction Workshop. TetrUSS is a suite of loosely coupled unstructured grid CFD codes developed at the NASA Langley Research Center. The meshing approach is based on the advancing-front and the advancing-layers procedures. The flow solver employs a cell-centered, finite volume scheme for solving the Reynolds Averaged Navier-Stokes equations on tetrahedral grids. For the present computations, flow in the viscous sublayer has been modeled with an analytical wall function. The emphasis of the paper is placed on the practicality of the methodology for accurately predicting aerodynamic drag data.

  20. Anisotropic mesh adaptation for marine ice-sheet modelling

    Science.gov (United States)

    Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier

    2017-04-01

    Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh

  1. Quality of pharmacy-specific Medical Subject Headings (MeSH) assignment in pharmacy journals indexed in MEDLINE.

    Science.gov (United States)

    Minguet, Fernando; Salgado, Teresa M; van den Boogerd, Lucienne; Fernandez-Llimos, Fernando

    2015-01-01

    The Medical Subject Headings (MeSH) is the National Library of Medicine (NLM) controlled vocabulary for indexing articles. Inaccuracies in the MeSH thesaurus have been reported for several areas including pharmacy. To assess the quality of pharmacy-specific MeSH assignment to articles indexed in pharmacy journals. The 10 journals containing the highest number of articles published in 2012 indexed under the MeSH 'Pharmacists' were identified. All articles published over a 5-year period (2008-2012) in the 10 previously selected journals were retrieved from PubMed. MeSH terms used to index these articles were extracted and pharmacy-specific MeSH terms were identified. The frequency of use of pharmacy-specific MeSH terms was calculated across journals. A total of 6989 articles were retrieved from the 10 pharmacy journals, of which 328 (4.7%) were articles not fully indexed and therefore did not contain any MeSH terms assigned. Among the 6661 articles fully indexed, the mean number of MeSH terms was 10.1 (SD = 4.0), being 1.0 (SD = 1.3) considered as Major MeSH. Both values significantly varied across journals. The mean number of pharmacy-specific MeSH terms per article was 0.9 (SD = 1.2). A total of 3490 (52.4%) of the 6661 articles were indexed in pharmacy journals without a single pharmacy-specific MeSH. Of the total 67193 MeSH terms assigned to articles, on average 10.5% (SD = 13.9) were pharmacy-specific MeSH. A statistically significant different pattern of pharmacy-specific MeSH assignment was identified across journals (Kruskal-Wallis P journals can be improved to further enhance evidence gathering in pharmacy. Over half of the articles published in the top-10 journals publishing pharmacy literature were indexed without a single pharmacy-specific MeSH. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes

    KAUST Repository

    Mohamed, Mamdouh S.

    2016-02-11

    A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  3. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

    Science.gov (United States)

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-05-01

    A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  4. Meshes optimized for discrete exterior calculus (DEC).

    Energy Technology Data Exchange (ETDEWEB)

    Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.

  5. An object-oriented and quadrilateral-mesh based solution adaptive algorithm for compressible multi-fluid flows

    Science.gov (United States)

    Zheng, H. W.; Shu, C.; Chew, Y. T.

    2008-07-01

    In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.

  6. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    Science.gov (United States)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  7. Automatic, unstructured mesh optimization for simulation and assessment of tide- and surge-driven hydrodynamics in a longitudinal estuary: St. Johns River

    Science.gov (United States)

    Bacopoulos, Peter

    2018-05-01

    A localized truncation error analysis with complex derivatives (LTEA+CD) is applied recursively with advanced circulation (ADCIRC) simulations of tides and storm surge for finite element mesh optimization. Mesh optimization is demonstrated with two iterations of LTEA+CD for tidal simulation in the lower 200 km of the St. Johns River, located in northeast Florida, and achieves more than an over 50% decrease in the number of mesh nodes, relating to a twofold increase in efficiency, at a zero cost to model accuracy. The recursively generated meshes using LTEA+CD lead to successive reductions in the global cumulative truncation error associated with the model mesh. Tides are simulated with root mean square error (RMSE) of 0.09-0.21 m and index of agreement (IA) values generally in the 80s and 90s percentage ranges. Tidal currents are simulated with RMSE of 0.09-0.23 m s-1 and IA values of 97% and greater. Storm tide due to Hurricane Matthew 2016 is simulated with RMSE of 0.09-0.33 m and IA values of 75-96%. Analysis of the LTEA+CD results shows the M2 constituent to dominate the node spacing requirement in the St. Johns River, with the M4 and M6 overtides and the STEADY constituent contributing some. Friction is the predominant physical factor influencing the target element size distribution, especially along the main river stem, while frequency (inertia) and Coriolis (rotation) are supplementary contributing factors. The combination of interior- and boundary-type computational molecules, providing near-full coverage of the model domain, renders LTEA+CD an attractive mesh generation/optimization tool for complex coastal and estuarine domains. The mesh optimization procedure using LTEA+CD is automatic and extensible to other finite element-based numerical models. Discussion is provided on the scope of LTEA+CD, the starting point (mesh) of the procedure, the user-specified scaling of the LTEA+CD results, and the iteration (termination) of LTEA+CD for mesh optimization.

  8. Long-term quality-of-life outcome after mesh sacrocolpopexy for vaginal vault prolapse.

    LENUS (Irish Health Repository)

    Thomas, Arun Z

    2009-12-01

    To evaluate the long-term outcome of mesh sacrocolpopexy (MSC, which aims to restore normal pelvic floor anatomy to alleviate prolapse related symptoms) and its effect on patient\\'s quality of life, as women with vaginal vault prolapse commonly have various pelvic floor symptoms that can affect urinary, rectal and sexual function.

  9. Cell-centered particle weighting algorithm for PIC simulations in a non-uniform 2D axisymmetric mesh

    Science.gov (United States)

    Araki, Samuel J.; Wirz, Richard E.

    2014-09-01

    Standard area weighting methods for particle-in-cell simulations result in systematic errors on particle densities for a non-uniform mesh in cylindrical coordinates. These errors can be significantly reduced by using weighted cell volumes for density calculations. A detailed description on the corrected volume calculations and cell-centered weighting algorithm in a non-uniform mesh is provided. The simple formulas for the corrected volume can be used for any type of quadrilateral and/or triangular mesh in cylindrical coordinates. Density errors arising from the cell-centered weighting algorithm are computed for radial density profiles of uniform, linearly decreasing, and Bessel function in an adaptive Cartesian mesh and an unstructured mesh. For all the density profiles, it is shown that the weighting algorithm provides a significant improvement for density calculations. However, relatively large density errors may persist at outermost cells for monotonically decreasing density profiles. A further analysis has been performed to investigate the effect of the density errors in potential calculations, and it is shown that the error at the outermost cell does not propagate into the potential solution for the density profiles investigated.

  10. Generation of hybrid meshes for the simulation of petroleum reservoirs; Generation de maillages hybrides pour la simulation de reservoirs petroliers

    Energy Technology Data Exchange (ETDEWEB)

    Balaven-Clermidy, S.

    2001-12-01

    Oil reservoir simulations study multiphase flows in porous media. These flows are described and evaluated through numerical schemes on a discretization of the reservoir domain. In this thesis, we were interested in this spatial discretization and a new kind of hybrid mesh has been proposed where the radial nature of flows in the vicinity of wells is directly taken into account in the geometry. Our modular approach described wells and their drainage area through radial circular meshes. These well meshes are inserted in a structured reservoir mesh (a Corner Point Geometry mesh) made up with hexahedral cells. Finally, in order to generate a global conforming mesh, proper connections are realized between the different kinds of meshes through unstructured transition ones. To compute these transition meshes that we want acceptable in terms of finite volume methods, an automatic method based on power diagrams has been developed. Our approach can deal with a homogeneous anisotropic medium and allows the user to insert vertical or horizontal wells as well as secondary faults in the reservoir mesh. Our work has been implemented, tested and validated in 2D and 2D1/2. It can also be extended in 3D when the geometrical constraints are simplicial ones: points, segments and triangles. (author)

  11. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou

    2015-11-15

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  12. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    International Nuclear Information System (INIS)

    Feng, Jingchao; Chen, Hongli; He, Qingyun; Ye, Minyou

    2015-01-01

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  13. Adaptive unstructured simulations of diaphragm rupture and perforation opening to start hypersonic air inlets

    International Nuclear Information System (INIS)

    Timofeev, E.V.; Tahir, R.B.; Voinovich, P.A.; Moelder, S.

    2004-01-01

    The concept of 'twin' grid nodes is discussed in the context of unstructured, adaptive meshes that are suitable for highly unsteady flows. The concept is applicable to internal boundary contours (within the computational domain) where the boundary conditions may need to be changed dynamically; for instance, an impermeable solid wall segment can be redefined as a fully permeable invisible boundary segment during the course of the simulation. This can be used to simulate unsteady gas flows with internal boundaries where the flow conditions may change rapidly and drastically. As a demonstration, the idea is applied to study the starting process in hypersonic air inlets by rupturing a diaphragm or by opening wall-perforations. (author)

  14. Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision 2030

    Science.gov (United States)

    Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.

    2016-01-01

    Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.

  15. Enhancement of Pre-and Post-Processing Capability of the CUPID code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Park, Ik Kyu; Yoon, Hanyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    To simulate heat transfer and fluid flow in a field with a complicated geometry, an unstructured mesh is popularly used. Most commercial CFD (Computational Fluid Dynamics) solvers are based on an unstructured mesh technology. An advantage of using unstructured meshes for a field simulation is reduced man-hours by automatic mesh generation compared to a traditional structured mesh generation, which requires a huge amount of man-hours to discretized a complex geometry. Initially, unstructured meshes that can be generated automatically are limited to regular cell elements such as tetrahedron, pyramid, prism, or hexahedron. The multi-dimensional multi-phase flow solver, CUPID, has been developed in the context of an unstructured mesh finite volume method (FVM). Its numerical formulation and programming structure is independent of the number of faces surrounding the computational cells. Thus, it can be easily extended into polyhedral unstructured meshes. In this study, new tools for enhancing the pre- and post-processing capabilities of CUPID are proposed. They are based on an open-source CFD tool box OpenFOAM. A goal of this study is an extension of the applicability of the CUPID code by improving the mesh and solution treatment of the code.

  16. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  17. A novel three-dimensional mesh deformation method based on sphere relaxation

    International Nuclear Information System (INIS)

    Zhou, Xuan; Li, Shuixiang

    2015-01-01

    In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations

  18. A novel three-dimensional mesh deformation method based on sphere relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China); Li, Shuixiang, E-mail: lsx@pku.edu.cn [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China)

    2015-10-01

    In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations.

  19. Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal Discontinuous Galerkin method on unstructured meshes: Implementation, verification, and application

    Science.gov (United States)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Uphoff, Carsten

    2018-05-01

    The dynamics and potential size of earthquakes depend crucially on rupture transfers between adjacent fault segments. To accurately describe earthquake source dynamics, numerical models can account for realistic fault geometries and rheologies such as nonlinear inelastic processes off the slip interface. We present implementation, verification, and application of off-fault Drucker-Prager plasticity in the open source software SeisSol (www.seissol.org). SeisSol is based on an arbitrary high-order derivative modal Discontinuous Galerkin (ADER-DG) method using unstructured, tetrahedral meshes specifically suited for complex geometries. Two implementation approaches are detailed, modelling plastic failure either employing sub-elemental quadrature points or switching to nodal basis coefficients. At fine fault discretizations the nodal basis approach is up to 6 times more efficient in terms of computational costs while yielding comparable accuracy. Both methods are verified in community benchmark problems and by three dimensional numerical h- and p-refinement studies with heterogeneous initial stresses. We observe no spectral convergence for on-fault quantities with respect to a given reference solution, but rather discuss a limitation to low-order convergence for heterogeneous 3D dynamic rupture problems. For simulations including plasticity, a high fault resolution may be less crucial than commonly assumed, due to the regularization of peak slip rate and an increase of the minimum cohesive zone width. In large-scale dynamic rupture simulations based on the 1992 Landers earthquake, we observe high rupture complexity including reverse slip, direct branching, and dynamic triggering. The spatio-temporal distribution of rupture transfers are altered distinctively by plastic energy absorption, correlated with locations of geometrical fault complexity. Computational cost increases by 7% when accounting for off-fault plasticity in the demonstrating application. Our results

  20. Cosmos++: relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement

    International Nuclear Information System (INIS)

    Salmonson, Jay D; Anninos, Peter; Fragile, P Chris; Camarda, Karen

    2007-01-01

    A code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. It provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threaded oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. Some recent studies will be summarized

  1. Persistent pelvic pain following transvaginal mesh surgery: a cause for mesh removal.

    Science.gov (United States)

    Marcus-Braun, Naama; Bourret, Antoine; von Theobald, Peter

    2012-06-01

    Persistent pelvic pain after vaginal mesh surgery is an uncommon but serious complication that greatly affects women's quality of life. Our aim was to evaluate various procedures for mesh removal performed at a tertiary referral center in cases of persistent pelvic pain, and to evaluate the ensuing complications and outcomes. A retrospective study was conducted at the University Hospital of Caen, France, including all patients treated for removal or section of vaginal mesh due to pelvic pain as a primary cause, between January 2004 and September 2009. Ten patients met the inclusion criteria. Patients were diagnosed between 10 months and 3 years after their primary operation. Eight cases followed suburethral sling procedures and two followed mesh surgery for pelvic organ prolapse. Patients presented with obturator neuralgia (6), pudendal neuralgia (2), dyspareunia (1), and non-specific pain (1). The surgical treatment to release the mesh included: three cases of extra-peritoneal laparoscopy, four cases of complete vaginal mesh removal, one case of partial mesh removal and two cases of section of the suburethral sling. In all patients with obturator neuralgia, symptoms were resolved or improved, whereas in both cases of pudendal neuralgia the symptoms continued. There were no intra-operative complications. Post-operative Retzius hematoma was observed in one patient after laparoscopy. Mesh removal in a tertiary center is a safe procedure, necessary in some cases of persistent pelvic pain. Obturator neuralgia seems to be easier to treat than pudendal neuralgia. Early diagnosis is the key to success in prevention of chronic disease. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Cartesian anisotropic mesh adaptation for compressible flow

    International Nuclear Information System (INIS)

    Keats, W.A.; Lien, F.-S.

    2004-01-01

    Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)

  3. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows

    Science.gov (United States)

    Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis

    2016-11-01

    A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates

  4. Outcomes of Autologous Fascia Pubovaginal Sling for Patients with Transvaginal Mesh Related Complications Requiring Mesh Removal.

    Science.gov (United States)

    McCoy, Olugbemisola; Vaughan, Taylor; Nickles, S Walker; Ashley, Matt; MacLachlan, Lara S; Ginsberg, David; Rovner, Eric

    2016-08-01

    We reviewed the outcomes of the autologous fascial pubovaginal sling as a salvage procedure for recurrent stress incontinence after intervention for polypropylene mesh erosion/exposure and/or bladder outlet obstruction in patients treated with prior transvaginal synthetic mesh for stress urinary incontinence. In a review of surgical databases at 2 institutions between January 2007 and June 2013 we identified 46 patients who underwent autologous fascial pubovaginal sling following removal of transvaginal synthetic mesh in simultaneous or staged fashion. This cohort of patients was evaluated for outcomes, including subjective and objective success, change in quality of life and complications between those who underwent staged vs concomitant synthetic mesh removal with autologous fascial pubovaginal sling placement. All 46 patients had received at least 1 prior mesh sling for incontinence and 8 (17%) had received prior transvaginal polypropylene mesh for pelvic organ prolapse repair. A total of 30 patients underwent concomitant mesh incision with or without partial excision and autologous sling placement while 16 underwent staged autologous sling placement. Mean followup was 16 months. Of the patients 22% required a mean of 1.8 subsequent interventions an average of 6.5 months after autologous sling placement with no difference in median quality of life at final followup. At last followup 42 of 46 patients (91%) and 35 of 46 (76%) had achieved objective and subjective success, respectively. There was no difference in subjective success between patients treated with a staged vs a concomitant approach (69% vs 80%, p = 0.48). Autologous fascial pubovaginal sling placement after synthetic mesh removal can be performed successfully in patients with stress urinary incontinence as a single or staged procedure. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. A general coarse and fine mesh solution scheme for fluid flow modeling in VHTRS

    International Nuclear Information System (INIS)

    Clifford, I; Ivanov, K; Avramova, M.

    2011-01-01

    Coarse mesh Computational Fluid Dynamics (CFD) methods offer several advantages over traditional coarse mesh methods for the safety analysis of helium-cooled graphite-moderated Very High Temperature Reactors (VHTRs). This relatively new approach opens up the possibility for system-wide calculations to be carried out using a consistent set of field equations throughout the calculation, and subsequently the possibility for hybrid coarse/fine mesh or hierarchical multi scale CFD simulations. To date, a consistent methodology for hierarchical multi-scale CFD has not been developed. This paper describes work carried out in the initial development of a multi scale CFD solver intended to be used for the safety analysis of VHTRs. The VHTR is considered on any scale to consist of a homogenized two-phase mixture of fluid and stationary solid material of varying void fraction. A consistent set of conservation equations was selected such that they reduce to the single-phase conservation equations for the case where void fraction is unity. The discretization of the conservation equations uses a new pressure interpolation scheme capable of capturing the discontinuity in pressure across relatively large changes in void fraction. Based on this, a test solver was developed which supports fully unstructured meshes for three-dimensional time-dependent compressible flow problems, including buoyancy effects. For typical VHTR flow phenomena the new solver shows promise as an effective candidate for predicting the flow behavior on multiple scales, as it is capable of modeling both fine mesh single phase flows as well as coarse mesh flows in homogenized regions containing both fluid and solid materials. (author)

  6. Modeling of engine hydrodynamics equations on hybrid unstructured meshes; Modelisation des equations de l`hydrodynamique moteur sur maillage non structure hybride

    Energy Technology Data Exchange (ETDEWEB)

    Durand, A

    1996-10-10

    In this thesis, we are interested in the modeling of the compressible Navier-Stokes equations in 2-D moving domains with hybrid meshes. This work, far from being restricted to these equations, could be generalized to any other convection-diffusion system written in conservative vector form. After having described the mathematical equations and elaborated on finite volume (FV) methods, numerical schemes and various meshes, we have selected the Galerkin FV method. This method consists in locating the unknowns at the mesh nodes, then in solving the convective terms by means of VF method - quasi 1-D by edge approximation - and the diffusive terms by means of the finite element (FE) method - P{sub 1} for the triangular and Q{sub 1} for the quadrilateral. The equivalence between the Galerkin FV method and a mass-lumped FE method for temporal terms allows the construction of a new control volume constructed by means of medians. Then, show its interest in comparison to the classical control volume constructed by means of medians. Then first-order in comparison to the classical control volume constructed bu means of medians. Then, the first-order Roe scheme and its extension to second-order by the MUSCL method are detailed Emphasis is laid on two calculations oF the Gradient integral. Numerous numerical tests as well as the comparison with another code validate the approach. In particular, we show that triangular meshes lead to less precise results compared to quadrilateral meshes in certain cases. Afterward, we switch to the dimensionless Navier-Stokes equations and we describe a simplified (Bubnov)-Galerkin FE method in the case of the quadrilaterals. The newly deduced computer code is validated bu the means of a vortex convection-diffusion for different Reynolds numbers. This test shows that only highly viscous flows give rise to equivalent solutions for both meshes. (author)

  7. Quality of life in women of non-reproductive age with transvaginal mesh repair for pelvic organ prolapse: A cohort study.

    Science.gov (United States)

    Hüsch, Tanja; Mager, René; Ober, Erika; Bentler, Ralf; Ulm, Kurt; Haferkamp, Axel

    2016-09-01

    Transvaginal mesh repair has been discredited due to high complications rates in the past years. Therefore, we evaluated the quality of life (QoL) and complication rates after transvaginal mesh (TVM) repair for pelvic organ prolapse (POP). A total of 148 women who underwent TVM repair for symptomatic POP were retrospectively enrolled. Complication rates and functional outcomes were retrospectively assessed and validated, standardised questionnaires were used prospectively for evaluation of QoL. Univariate analysis by the chi(2)-test as well as a multivariate Cox regression analysis was conducted to predict mesh exposure using various variables as predictors. Intraoperative complications with bowel or bladder injury appeared in 3.4%. Mesh exposure occurred in 2.7% whereas surgical revision was necessary only in 1.4%. No predictor for mesh exposure could be identified. Postoperative complications according to Clavien-Dindo classification ≥ III occurred in only 2.8%. An improvement of POP-symptoms was reported by 84.6% according the "patients' global impression of improvement" (PGI-I) and 88.2% women would repeat the surgery. The results of the "prolapse-quality of life"-questionnaire were comparable to asymptomatic women. Only 33% reported vaginal pain with a mean vaginal pain score of 0.6 according the international index of pain. Of sexually active women, 29% reported sexual impairments and mean score of sexual impairment was 1.52. Low complication rates and a quality of life comparable to asymptomatic women following TVM repair could be achieved in our cohort. However, a high number of sexual impairments was identified although the impact of impairment was marginal. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  8. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Daniel, E-mail: daniel.simmons@nottingham.ac.uk; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications. - Graphical abstract:.

  9. Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovations proposed by ResearchSouth are: 1) a robust method to automatically insert high quality anisotropic prismatic (viscous boundary layer) cells into any...

  10. Adaptive hybrid mesh refinement for multiphysics applications

    International Nuclear Information System (INIS)

    Khamayseh, Ahmed; Almeida, Valmor de

    2007-01-01

    The accuracy and convergence of computational solutions of mesh-based methods is strongly dependent on the quality of the mesh used. We have developed methods for optimizing meshes that are comprised of elements of arbitrary polygonal and polyhedral type. We present in this research the development of r-h hybrid adaptive meshing technology tailored to application areas relevant to multi-physics modeling and simulation. Solution-based adaptation methods are used to reposition mesh nodes (r-adaptation) or to refine the mesh cells (h-adaptation) to minimize solution error. The numerical methods perform either the r-adaptive mesh optimization or the h-adaptive mesh refinement method on the initial isotropic or anisotropic meshes to equidistribute weighted geometric and/or solution error function. We have successfully introduced r-h adaptivity to a least-squares method with spherical harmonics basis functions for the solution of the spherical shallow atmosphere model used in climate modeling. In addition, application of this technology also covers a wide range of disciplines in computational sciences, most notably, time-dependent multi-physics, multi-scale modeling and simulation

  11. A robust and efficient finite volume scheme for the discretization of diffusive flux on extremely skewed meshes in complex geometries

    Science.gov (United States)

    Traoré, Philippe; Ahipo, Yves Marcel; Louste, Christophe

    2009-08-01

    In this paper an improved finite volume scheme to discretize diffusive flux on a non-orthogonal mesh is proposed. This approach, based on an iterative technique initially suggested by Khosla [P.K. Khosla, S.G. Rubin, A diagonally dominant second-order accurate implicit scheme, Computers and Fluids 2 (1974) 207-209] and known as deferred correction, has been intensively utilized by Muzaferija [S. Muzaferija, Adaptative finite volume method for flow prediction using unstructured meshes and multigrid approach, Ph.D. Thesis, Imperial College, 1994] and later Fergizer and Peric [J.H. Fergizer, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002] to deal with the non-orthogonality of the control volumes. Using a more suitable decomposition of the normal gradient, our scheme gives accurate solutions in geometries where the basic idea of Muzaferija fails. First the performances of both schemes are compared for a Poisson problem solved in quadrangular domains where control volumes are increasingly skewed in order to test their robustness and efficiency. It is shown that convergence properties and the accuracy order of the solution are not degraded even on extremely skewed mesh. Next, the very stable behavior of the method is successfully demonstrated on a randomly distorted grid as well as on an anisotropically distorted one. Finally we compare the solution obtained for quadrilateral control volumes to the ones obtained with a finite element code and with an unstructured version of our finite volume code for triangular control volumes. No differences can be observed between the different solutions, which demonstrates the effectiveness of our approach.

  12. A matrix-free implicit treatment for all speed flows on unstructured grids

    International Nuclear Information System (INIS)

    Kloczko, Th.

    2006-03-01

    The aim of this research work is the development of an efficient implicit scheme for computing compressible and low-speed flows on unstructured meshes. The first part is devoted to the review and analysis of some standard block-implicit treatments for the two-dimensional Euler and Navier-Stokes equations with a view to identify the best candidate for a fair comparison with the matrix-free treatment. The second part forms the main original contribution of this research work. It describes and analyses a matrix-free treatment that can be applied to any type of flow (inviscid/viscous, low Mach/highly compressible, steady/unsteady). The third part deals with the implementation of this treatment within the CAST3M code, and the demonstration of its advantages over existing techniques for computing applications of interest for the CEA: low-Mach number steady and unsteady flows in a Tee junction for example

  13. Portable Parallel Programming for the Dynamic Load Balancing of Unstructured Grid Applications

    Science.gov (United States)

    Biswas, Rupak; Das, Sajal K.; Harvey, Daniel; Oliker, Leonid

    1999-01-01

    The ability to dynamically adapt an unstructured -rid (or mesh) is a powerful tool for solving computational problems with evolving physical features; however, an efficient parallel implementation is rather difficult, particularly from the view point of portability on various multiprocessor platforms We address this problem by developing PLUM, tin automatic anti architecture-independent framework for adaptive numerical computations in a message-passing environment. Portability is demonstrated by comparing performance on an SP2, an Origin2000, and a T3E, without any code modifications. We also present a general-purpose load balancer that utilizes symmetric broadcast networks (SBN) as the underlying communication pattern, with a goal to providing a global view of system loads across processors. Experiments on, an SP2 and an Origin2000 demonstrate the portability of our approach which achieves superb load balance at the cost of minimal extra overhead.

  14. Texturing of continuous LOD meshes with the hierarchical texture atlas

    Science.gov (United States)

    Birkholz, Hermann

    2006-02-01

    For the rendering of detailed virtual environments, trade-offs have to be made between image quality and rendering time. An immersive experience of virtual reality always demands high frame-rates with the best reachable image qual-ity. Continuous Level of Detail (cLoD) triangle-meshes provide an continuous spectrum of detail for a triangle mesh that can be used to create view-dependent approximations of the environment in real-time. This enables the rendering with a constant number of triangles and thus with constant frame-rates. Normally the construction of such cLoD mesh representations leads to the loss of all texture information of the original mesh. To overcome this problem, a parameter domain can be created, in order to map the surface properties (colour, texture, normal) to it. This parameter domain can be used to map the surface properties back to arbitrary approximations of the original mesh. The parameter domain is often a simplified version of the mesh to be parameterised. This limits the reachable simplification to the domain mesh which has to map the surface of the original mesh with the least possible stretch. In this paper, a hierarchical domain mesh is presented, that scales between very coarse domain meshes and good property-mapping.

  15. Polyhedral meshing in numerical analysis of conjugate heat transfer

    Science.gov (United States)

    Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata

    2018-06-01

    Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.

  16. Unstructured Computational Aerodynamics on Many Integrated Core Architecture

    KAUST Repository

    Al Farhan, Mohammed A.

    2016-06-08

    Shared memory parallelization of the flux kernel of PETSc-FUN3D, an unstructured tetrahedral mesh Euler flow code previously studied for distributed memory and multi-core shared memory, is evaluated on up to 61 cores per node and up to 4 threads per core. We explore several thread-level optimizations to improve flux kernel performance on the state-of-the-art many integrated core (MIC) Intel processor Xeon Phi “Knights Corner,” with a focus on strong thread scaling. While the linear algebraic kernel is bottlenecked by memory bandwidth for even modest numbers of cores sharing a common memory, the flux kernel, which arises in the control volume discretization of the conservation law residuals and in the formation of the preconditioner for the Jacobian by finite-differencing the conservation law residuals, is compute-intensive and is known to exploit effectively contemporary multi-core hardware. We extend study of the performance of the flux kernel to the Xeon Phi in three thread affinity modes, namely scatter, compact, and balanced, in both offload and native mode, with and without various code optimizations to improve alignment and reduce cache coherency penalties. Relative to baseline “out-of-the-box” optimized compilation, code restructuring optimizations provide about 3.8x speedup using the offload mode and about 5x speedup using the native mode. Even with these gains for the flux kernel, with respect to execution time the MIC simply achieves par with optimized compilation on a contemporary multi-core Intel CPU, the 16-core Sandy Bridge E5 2670. Nevertheless, the optimizations employed to reduce the data motion and cache coherency protocol penalties of the MIC are expected to be of value for CFD and many other unstructured applications as many-core architecture evolves. We explore large-scale distributed-shared memory performance on the Cray XC40 supercomputer, to demonstrate that optimizations employed on Phi hybridize to this context, where each of

  17. Unstructured Computational Aerodynamics on Many Integrated Core Architecture

    KAUST Repository

    Al Farhan, Mohammed A.; Kaushik, Dinesh K.; Keyes, David E.

    2016-01-01

    Shared memory parallelization of the flux kernel of PETSc-FUN3D, an unstructured tetrahedral mesh Euler flow code previously studied for distributed memory and multi-core shared memory, is evaluated on up to 61 cores per node and up to 4 threads per core. We explore several thread-level optimizations to improve flux kernel performance on the state-of-the-art many integrated core (MIC) Intel processor Xeon Phi “Knights Corner,” with a focus on strong thread scaling. While the linear algebraic kernel is bottlenecked by memory bandwidth for even modest numbers of cores sharing a common memory, the flux kernel, which arises in the control volume discretization of the conservation law residuals and in the formation of the preconditioner for the Jacobian by finite-differencing the conservation law residuals, is compute-intensive and is known to exploit effectively contemporary multi-core hardware. We extend study of the performance of the flux kernel to the Xeon Phi in three thread affinity modes, namely scatter, compact, and balanced, in both offload and native mode, with and without various code optimizations to improve alignment and reduce cache coherency penalties. Relative to baseline “out-of-the-box” optimized compilation, code restructuring optimizations provide about 3.8x speedup using the offload mode and about 5x speedup using the native mode. Even with these gains for the flux kernel, with respect to execution time the MIC simply achieves par with optimized compilation on a contemporary multi-core Intel CPU, the 16-core Sandy Bridge E5 2670. Nevertheless, the optimizations employed to reduce the data motion and cache coherency protocol penalties of the MIC are expected to be of value for CFD and many other unstructured applications as many-core architecture evolves. We explore large-scale distributed-shared memory performance on the Cray XC40 supercomputer, to demonstrate that optimizations employed on Phi hybridize to this context, where each of

  18. Opfront: mesh

    DEFF Research Database (Denmark)

    2015-01-01

    Mesh generation and visualization software based on the CGAL library. Folder content: drawmesh Visualize slices of the mesh (surface/volumetric) as wireframe on top of an image (3D). drawsurf Visualize surfaces of the mesh (surface/volumetric). img2mesh Convert isosurface in image to volumetric m...... mesh (medit format). img2off Convert isosurface in image to surface mesh (off format). off2mesh Convert surface mesh (off format) to volumetric mesh (medit format). reduce Crop and resize 3D and stacks of images. data Example data to test the library on...

  19. Mobile-robot navigation with complete coverage of unstructured environments

    OpenAIRE

    García Armada, Elena; González de Santos, Pablo

    2004-01-01

    There are some mobile-robot applications that require the complete coverage of an unstructured environment. Examples are humanitarian de-mining and floor-cleaning tasks. A complete-coverage algorithm is then used, a path-planning technique that allows the robot to pass over all points in the environment, avoiding unknown obstacles. Different coverage algorithms exist, but they fail working in unstructured environments. This paper details a complete-coverage algorithm for unstructured environm...

  20. To mesh or not to mesh: a review of pelvic organ reconstructive surgery

    Science.gov (United States)

    Dällenbach, Patrick

    2015-01-01

    Pelvic organ prolapse (POP) is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to clarify the risks, benefits, and the recognized indications for its use. PMID:25848324

  1. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.

  2. Ventral hernia repair with poly-4-hydroxybutyrate mesh.

    Science.gov (United States)

    Plymale, Margaret A; Davenport, Daniel L; Dugan, Adam; Zachem, Amanda; Roth, John Scott

    2018-04-01

    Biomaterial research has made available a biologically derived fully resorbable poly-4-hydroxybutyrate (P4HB) mesh for use in ventral and incisional hernia repair (VIHR). This study evaluates outcomes of patients undergoing VIHR with P4HB mesh. An IRB-approved prospective pilot study was conducted to assess clinical and quality of life (QOL) outcomes for patients undergoing VIHR with P4HB mesh. Perioperative characteristics were defined. Clinical outcomes, employment status, QOL using 12-item short form survey (SF-12), and pain assessments were followed for 24 months postoperatively. 31 patients underwent VIHR with bioresorbable mesh via a Rives-Stoppa approach with retrorectus mesh placement. The median patient age was 52 years, median body mass index was 33 kg/m 2 , and just over half of the patients were female. Surgical site occurrences occurred in 19% of patients, most of which were seroma. Hernia recurrence rate was 0% (median follow-up = 414 days). Patients had significantly improved QOL at 24 months compared to baseline for SF-12 physical component summary and role emotional (p < 0.05). Ventral hernia repair with P4HB bioresorbable mesh results in favorable outcomes. Early hernia recurrence was not identified among the patient cohort. Quality of life improvements were noted at 24 months versus baseline for this cohort of patients with bioresorbable mesh. Use of P4HB mesh for ventral hernia repair was found to be feasible in this patient population. (ClinicalTrials.gov Identifier: NCT01863030).

  3. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics

    Science.gov (United States)

    Boscheri, Walter; Dumbser, Michael; Loubère, Raphaël; Maire, Pierre-Henri

    2018-04-01

    In this paper we develop a conservative cell-centered Lagrangian finite volume scheme for the solution of the hydrodynamics equations on unstructured multidimensional grids. The method is derived from the Eucclhyd scheme discussed in [47,43,45]. It is second-order accurate in space and is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves. Second-order of accuracy in time is achieved via the ADER (Arbitrary high order schemes using DERivatives) approach. A large set of numerical test cases is proposed to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior on discontinuous profiles, general robustness ensuring physical admissibility of the numerical solution, and precision where appropriate.

  4. To mesh or not to mesh: a review of pelvic organ reconstructive surgery

    Directory of Open Access Journals (Sweden)

    Dällenbach P

    2015-04-01

    Full Text Available Patrick Dällenbach Department of Gynecology and Obstetrics, Division of Gynecology, Urogynecology Unit, Geneva University Hospitals, Geneva, Switzerland Abstract: Pelvic organ prolapse (POP is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to

  5. The slice balance approach (SBA): a characteristic-based, multiple balance SN approach on unstructured polyhedral meshes

    International Nuclear Information System (INIS)

    Grove, R.E.

    2005-01-01

    The Slice Balance Approach (SBA) is an approach for solving geometrically-complex, neutral-particle transport problems within a multi-group discrete ordinates (S N ) framework. The salient feature is an angle-dependent spatial decomposition. We approximate general surfaces with arbitrary polygonal faces and mesh the geometry with arbitrarily-shaped polyhedral cells. A cell-local spatial decomposition divides cells into angle-dependent slices for each S N direction. This subdivision follows from a characteristic-based view of the transport problem. Most balance-based characteristic methods use it implicitly; we use it explicitly and exploit its properties. Our mathematical approach is a multiple balance approach using exact spatial moments balance equations on cells and slices along with auxiliary relations on slices. We call this the slice balance approach; it is a characteristic-based multiple balance approach. The SBA is intentionally general and can extend differencing schemes to arbitrary 2-D and 3-D meshes. This work contributes to development of general-geometry deterministic transport capability to complement Monte Carlo capability for large, geometrically-complex transport problems. The purpose of this paper is to describe the SBA. We describe the spatial decomposition and mathematical framework and highlight a few interesting properties. We sketch the derivation of two solution schemes, a step characteristic scheme and a diamond-difference-like scheme, to illustrate the approach and we present interesting results for a 2-D problem. (author)

  6. Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, J S; Kumar, Inder [Bhabha Atomic Research Center, Mumbai (India); Eswaran, V, E-mail: jsjayan@gmail.com, E-mail: inderk@barc.gov.in, E-mail: eswar@iitk.ac.in [Indian Institute of Technology, Kanpur (India)

    2010-12-15

    Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-{omega}. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.

  7. Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step

    Science.gov (United States)

    Jayakumar, J. S.; Kumar, Inder; Eswaran, V.

    2010-12-01

    Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.

  8. Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step

    International Nuclear Information System (INIS)

    Jayakumar, J S; Kumar, Inder; Eswaran, V

    2010-01-01

    Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.

  9. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    Science.gov (United States)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  10. DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation

    KAUST Repository

    Choi, E.; Tan, E.; Lavier, L. L.; Calo, Victor M.

    2013-01-01

    Many tectonic problems require to treat the lithosphere as a compressible elastic material, which can also flow viscously or break in a brittle fashion depending on the stress level applied and the temperature conditions. We present a flexible methodology to address the resulting complex material response, which imposes severe challenges on the discretization and rheological models used. This robust, adaptive, two-dimensional, finite element method solves the momentum balance and the heat equation in Lagrangian form using unstructured meshes. An implementation of this methodology is released to the public with the publication of this paper and is named DynEarthSol2D (available at http://bitbucket.org/tan2/dynearthsol2). The solver uses contingent mesh adaptivity in places where shear strain is focused (localization) and a conservative mapping assisted by marker particles to preserve phase and facies boundaries during remeshing. We detail the solver and verify it in a number of benchmark problems against analytic and numerical solutions from the literature. These results allow us to verify and validate our software framework and show its improved performance by an order of magnitude compared against an earlier implementation of the Fast Lagrangian Analysis of Continua algorithm.

  11. DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation

    KAUST Repository

    Choi, E.

    2013-05-01

    Many tectonic problems require to treat the lithosphere as a compressible elastic material, which can also flow viscously or break in a brittle fashion depending on the stress level applied and the temperature conditions. We present a flexible methodology to address the resulting complex material response, which imposes severe challenges on the discretization and rheological models used. This robust, adaptive, two-dimensional, finite element method solves the momentum balance and the heat equation in Lagrangian form using unstructured meshes. An implementation of this methodology is released to the public with the publication of this paper and is named DynEarthSol2D (available at http://bitbucket.org/tan2/dynearthsol2). The solver uses contingent mesh adaptivity in places where shear strain is focused (localization) and a conservative mapping assisted by marker particles to preserve phase and facies boundaries during remeshing. We detail the solver and verify it in a number of benchmark problems against analytic and numerical solutions from the literature. These results allow us to verify and validate our software framework and show its improved performance by an order of magnitude compared against an earlier implementation of the Fast Lagrangian Analysis of Continua algorithm.

  12. Unstructured Navier-Stokes Analysis of Full TCA Configuration

    Science.gov (United States)

    Frink, Neal T.; Pirzadeh, Shahyar Z.

    1999-01-01

    This paper presents an Unstructured Navier-Stokes Analysis of Full TCA (Technology Concept Airplane) Configuration. The topics include: 1) Motivation; 2) Milestone and approach; 3) Overview of the unstructured-grid system; 4) Results on full TCA W/B/N/D/E configuration; 5) Concluding remarks; and 6) Future directions.

  13. Towards a supervised rescoring system for unstructured data bases used to build specialized dictionaries

    Directory of Open Access Journals (Sweden)

    Antonio Rico-Sulayes

    2014-12-01

    Full Text Available This article proposes the architecture for a system that uses previously learned weights to sort query results from unstructured data bases when building specialized dictionaries. A common resource in the construction of dictionaries, unstructured data bases have been especially useful in providing information about lexical items frequencies and examples in use. However, when building specialized dictionaries, whose selection of lexical items does not rely on frequency, the use of these data bases gets restricted to a simple provider of examples. Even in this task, the information unstructured data bases provide may not be very useful when looking for specialized uses of lexical items with various meanings and very long lists of results. In the face of this problem, long lists of hits can be rescored based on a supervised learning model that relies on previously helpful results. The allocation of a vast set of high quality training data for this rescoring system is reported here. Finally, the architecture of sucha system,an unprecedented tool in specialized lexicography, is proposed.

  14. Monitoring and evaluation of wire mesh forming life

    Science.gov (United States)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  15. Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul; Evans, Thomas; Tautges, Tim

    2012-12-24

    This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well

  16. High-fidelity meshes from tissue samples for diffusion MRI simulations.

    Science.gov (United States)

    Panagiotaki, Eleftheria; Hall, Matt G; Zhang, Hui; Siow, Bernard; Lythgoe, Mark F; Alexander, Daniel C

    2010-01-01

    This paper presents a method for constructing detailed geometric models of tissue microstructure for synthesizing realistic diffusion MRI data. We construct three-dimensional mesh models from confocal microscopy image stacks using the marching cubes algorithm. Random-walk simulations within the resulting meshes provide synthetic diffusion MRI measurements. Experiments optimise simulation parameters and complexity of the meshes to achieve accuracy and reproducibility while minimizing computation time. Finally we assess the quality of the synthesized data from the mesh models by comparison with scanner data as well as synthetic data from simple geometric models and simplified meshes that vary only in two dimensions. The results support the extra complexity of the three-dimensional mesh compared to simpler models although sensitivity to the mesh resolution is quite robust.

  17. Tetrahedral meshing via maximal Poisson-disk sampling

    KAUST Repository

    Guo, Jianwei

    2016-02-15

    In this paper, we propose a simple yet effective method to generate 3D-conforming tetrahedral meshes from closed 2-manifold surfaces. Our approach is inspired by recent work on maximal Poisson-disk sampling (MPS), which can generate well-distributed point sets in arbitrary domains. We first perform MPS on the boundary of the input domain, we then sample the interior of the domain, and we finally extract the tetrahedral mesh from the samples by using 3D Delaunay or regular triangulation for uniform or adaptive sampling, respectively. We also propose an efficient optimization strategy to protect the domain boundaries and to remove slivers to improve the meshing quality. We present various experimental results to illustrate the efficiency and the robustness of our proposed approach. We demonstrate that the performance and quality (e.g., minimal dihedral angle) of our approach are superior to current state-of-the-art optimization-based approaches.

  18. Studies on aerodynamic interferences between the components of transport airplane using unstructured Navier-Stokes simulations

    International Nuclear Information System (INIS)

    Wang, G.; Ye, Z.

    2005-01-01

    It is well known that the aerodynamic interference flows widely exist between the components of conventional transport airplane, for example, the wing-fuselage juncture flow, wing-pylon-nacelle flow and tail-fuselage juncture flow. The main characteristic of these aerodynamic interferences is flow separation, which will increase the drag, reduce the lift and cause adverse influence on the stability and controllability of the airplane. Therefore, the modern civil transport designers should do their best to eliminate negative effects of aerodynamic interferences, which demands that the aerodynamic interferences between the aircraft components should be predicted and analyzed accurately. Today's CFD techniques provide us powerful and efficient analysis tools to achieve this objective. In this paper, computational investigations of the interferences between transport aircraft components have been carried out by using a viscous flow solver based on mixed element type unstructured meshes. (author)

  19. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang; Yang, Yijun; Pottmann, Helmut; Mitra, Niloy J.

    2011-01-01

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  20. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang

    2011-12-12

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  1. A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations

    KAUST Repository

    Wang, Zhiheng; Huang, Zhu; Zhang, Wei; Xi, Guang

    2014-01-01

    main advantages of the method. One is that the unstructured nodes generation in the computational domain is quite simple, without much concern about the mesh quality; the other is that the localization of the obtained collocations for the discretization

  2. 3D Mesh Compression and Transmission for Mobile Robotic Applications

    Directory of Open Access Journals (Sweden)

    Bailin Yang

    2016-01-01

    Full Text Available Mobile robots are useful for environment exploration and rescue operations. In such applications, it is crucial to accurately analyse and represent an environment, providing appropriate inputs for motion planning in order to support robot navigation and operations. 2D mapping methods are simple but cannot handle multilevel or multistory environments. To address this problem, 3D mapping methods generate structural 3D representations of the robot operating environment and its objects by 3D mesh reconstruction. However, they face the challenge of efficiently transmitting those 3D representations to system modules for 3D mapping, motion planning, and robot operation visualization. This paper proposes a quality-driven mesh compression and transmission method to address this. Our method is efficient, as it compresses a mesh by quantizing its transformed vertices without the need to spend time constructing an a-priori structure over the mesh. A visual distortion function is developed to govern the level of quantization, allowing mesh transmission to be controlled under different network conditions or time constraints. Our experiments demonstrate how the visual quality of a mesh can be manipulated by the visual distortion function.

  3. The Unstructured Clinical Interview

    Science.gov (United States)

    Jones, Karyn Dayle

    2010-01-01

    In mental health, family, and community counseling settings, master's-level counselors engage in unstructured clinical interviewing to develop diagnoses based on the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed., text rev.; "DSM-IV-TR"; American Psychiatric Association, 2000). Although counselors receive education about…

  4. The Quick Measure of a Nurbs Surface Curvature for Accurate Triangular Meshing

    Directory of Open Access Journals (Sweden)

    Kniat Aleksander

    2014-04-01

    Full Text Available NURBS surfaces are the most widely used surfaces for three-dimensional models in CAD/ CAE programs. When a model for FEM calculation is prepared with a CAD program it is inevitable to mesh it finally. There are many algorithms for meshing planar regions. Some of them may be used for meshing surfaces but it is necessary to take the curvature of the surface under consideration to avoid poor quality mesh. The mesh must be denser in the curved regions of the surface. In this paper, instead of analysing a surface curvature, the method to assess how close is a mesh triangle to the surface to which its vertices belong, is presented. The distance between a mesh triangle and a parallel tangent plane through a point on a surface is the measure of the triangle quality. Finding the surface point whose projection is located inside the mesh triangle and which is the tangency point to the plane parallel to this triangle is an optimization problem. Mathematical description of the problem and the algorithm to find its solution are also presented in the paper.

  5. Verification & Validation of High-Order Short-Characteristics-Based Deterministic Transport Methodology on Unstructured Grids

    International Nuclear Information System (INIS)

    Azmy, Yousry; Wang, Yaqi

    2013-01-01

    The research team has developed a practical, high-order, discrete-ordinates, short characteristics neutron transport code for three-dimensional configurations represented on unstructured tetrahedral grids that can be used for realistic reactor physics applications at both the assembly and core levels. This project will perform a comprehensive verification and validation of this new computational tool against both a continuous-energy Monte Carlo simulation (e.g. MCNP) and experimentally measured data, an essential prerequisite for its deployment in reactor core modeling. Verification is divided into three phases. The team will first conduct spatial mesh and expansion order refinement studies to monitor convergence of the numerical solution to reference solutions. This is quantified by convergence rates that are based on integral error norms computed from the cell-by-cell difference between the code's numerical solution and its reference counterpart. The latter is either analytic or very fine- mesh numerical solutions from independent computational tools. For the second phase, the team will create a suite of code-independent benchmark configurations to enable testing the theoretical order of accuracy of any particular discretization of the discrete ordinates approximation of the transport equation. For each tested case (i.e. mesh and spatial approximation order), researchers will execute the code and compare the resulting numerical solution to the exact solution on a per cell basis to determine the distribution of the numerical error. The final activity comprises a comparison to continuous-energy Monte Carlo solutions for zero-power critical configuration measurements at Idaho National Laboratory's Advanced Test Reactor (ATR). Results of this comparison will allow the investigators to distinguish between modeling errors and the above-listed discretization errors introduced by the deterministic method, and to separate the sources of uncertainty.

  6. Computing Flows Using Chimera and Unstructured Grids

    Science.gov (United States)

    Liou, Meng-Sing; Zheng, Yao

    2006-01-01

    DRAGONFLOW is a computer program that solves the Navier-Stokes equations of flows in complexly shaped three-dimensional regions discretized by use of a direct replacement of arbitrary grid overlapping by nonstructured (DRAGON) grid. A DRAGON grid (see figure) is a combination of a chimera grid (a composite of structured subgrids) and a collection of unstructured subgrids. DRAGONFLOW incorporates modified versions of two prior Navier-Stokes-equation-solving programs: OVERFLOW, which is designed to solve on chimera grids; and USM3D, which is used to solve on unstructured grids. A master module controls the invocation of individual modules in the libraries. At each time step of a simulated flow, DRAGONFLOW is invoked on the chimera portion of the DRAGON grid in alternation with USM3D, which is invoked on the unstructured subgrids of the DRAGON grid. The USM3D and OVERFLOW modules then immediately exchange their solutions and other data. As a result, USM3D and OVERFLOW are coupled seamlessly.

  7. On Adding Structure to Unstructured Overlay Networks

    Science.gov (United States)

    Leitão, João; Carvalho, Nuno A.; Pereira, José; Oliveira, Rui; Rodrigues, Luís

    Unstructured peer-to-peer overlay networks are very resilient to churn and topology changes, while requiring little maintenance cost. Therefore, they are an infrastructure to build highly scalable large-scale services in dynamic networks. Typically, the overlay topology is defined by a peer sampling service that aims at maintaining, in each process, a random partial view of peers in the system. The resulting random unstructured topology is suboptimal when a specific performance metric is considered. On the other hand, structured approaches (for instance, a spanning tree) may optimize a given target performance metric but are highly fragile. In fact, the cost for maintaining structures with strong constraints may easily become prohibitive in highly dynamic networks. This chapter discusses different techniques that aim at combining the advantages of unstructured and structured networks. Namely we focus on two distinct approaches, one based on optimizing the overlay and another based on optimizing the gossip mechanism itself.

  8. A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis

    KAUST Repository

    Jagad, P. I.; Puranik, B. P.; Date, A. W.

    2018-01-01

    A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell

  9. 3D visualization and finite element mesh formation from wood anatomy samples, Part II – Algorithm approach

    Directory of Open Access Journals (Sweden)

    Petr Koňas

    2009-01-01

    Full Text Available Paper presents new original application WOOD3D in form of program code assembling. The work extends the previous article “Part I – Theoretical approach” in detail description of implemented C++ classes of utilized projects Visualization Toolkit (VTK, Insight Toolkit (ITK and MIMX. Code is written in CMake style and it is available as multiplatform application. Currently GNU Linux (32/64b and MS Windows (32/64b platforms were released. Article discusses various filter classes for image filtering. Mainly Otsu and Binary threshold filters are classified for anatomy wood samples thresholding. Registration of images series is emphasized for difference of colour spaces compensation is included. Resulted work flow of image analysis is new methodological approach for images processing through the composition, visualization, filtering, registration and finite element mesh formation. Application generates script in ANSYS parametric design language (APDL which is fully compatible with ANSYS finite element solver and designer environment. The script includes the whole definition of unstructured finite element mesh formed by individual elements and nodes. Due to simple notation, the same script can be used for generation of geometrical entities in element positions. Such formed volumetric entities are prepared for further geometry approximation (e.g. by boolean or more advanced methods. Hexahedral and tetrahedral types of mesh elements are formed on user request with specified mesh options. Hexahedral meshes are formed both with uniform element size and with anisotropic character. Modified octree method for hexahedral mesh with anisotropic character was declared in application. Multicore CPUs in the application are supported for fast image analysis realization. Visualization of image series and consequent 3D image are realized in VTK format sufficiently known and public format, visualized in GPL application Paraview. Future work based on mesh

  10. Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation

    Energy Technology Data Exchange (ETDEWEB)

    GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.

    1999-09-27

    Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.

  11. A constrained Delaunay discretization method for adaptively meshing highly discontinuous geological media

    Science.gov (United States)

    Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo

    2017-12-01

    A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.

  12. Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing.

    Science.gov (United States)

    Yates, Keegan M; Untaroiu, Costin D

    2018-04-16

    Statistical shape analysis was conducted on 15 pairs (left and right) of human kidneys. It was shown that the left and right kidney were significantly different in size and shape. In addition, several common modes of kidney variation were identified using statistical shape analysis. Semi-automatic mesh morphing techniques have been developed to efficiently create subject specific meshes from a template mesh with a similar geometry. Subject specific meshes as well as probabilistic kidney meshes were created from a template mesh. Mesh quality remained about the same as the template mesh while only taking a fraction of the time to create the mesh from scratch or morph with manually identified landmarks. This technique can help enhance the quality of information gathered from experimental testing with subject specific meshes as well as help to more efficiently predict injury by creating models with the mean shape as well as models at the extremes for each principal component. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. High Performance Parallel Multigrid Algorithms for Unstructured Grids

    Science.gov (United States)

    Frederickson, Paul O.

    1996-01-01

    We describe a high performance parallel multigrid algorithm for a rather general class of unstructured grid problems in two and three dimensions. The algorithm PUMG, for parallel unstructured multigrid, is related in structure to the parallel multigrid algorithm PSMG introduced by McBryan and Frederickson, for they both obtain a higher convergence rate through the use of multiple coarse grids. Another reason for the high convergence rate of PUMG is its smoother, an approximate inverse developed by Baumgardner and Frederickson.

  14. A Survey of Solver-Related Geometry and Meshing Issues

    Science.gov (United States)

    Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris

    2016-01-01

    There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.

  15. An Angular Method with Position Control for Block Mesh Squareness Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Yao, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stillman, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-19

    We optimize a target function de ned by angular properties with a position control term for a basic stencil with a block-structured mesh, to improve element squareness in 2D and 3D. Comparison with the condition number method shows that besides a similar mesh quality regarding orthogonality can be achieved as the former does, the new method converges faster and provides a more uniform global mesh spacing in our numerical tests.

  16. Semantic Annotation of Unstructured Documents Using Concepts Similarity

    Directory of Open Access Journals (Sweden)

    Fernando Pech

    2017-01-01

    Full Text Available There is a large amount of information in the form of unstructured documents which pose challenges in the information storage, search, and retrieval. This situation has given rise to several information search approaches. Some proposals take into account the contextual meaning of the terms specified in the query. Semantic annotation technique can help to retrieve and extract information in unstructured documents. We propose a semantic annotation strategy for unstructured documents as part of a semantic search engine. In this proposal, ontologies are used to determine the context of the entities specified in the query. Our strategy for extracting the context is focused on concepts similarity. Each relevant term of the document is associated with an instance in the ontology. The similarity between each of the explicit relationships is measured through the combination of two types of associations: the association between each pair of concepts and the calculation of the weight of the relationships.

  17. Energy mesh optimization for multi-level calculation schemes

    International Nuclear Information System (INIS)

    Mosca, P.; Taofiki, A.; Bellier, P.; Prevost, A.

    2011-01-01

    The industrial calculations of third generation nuclear reactors are based on sophisticated strategies of homogenization and collapsing at different spatial and energetic levels. An important issue to ensure the quality of these calculation models is the choice of the collapsing energy mesh. In this work, we show a new approach to generate optimized energy meshes starting from the SHEM 281-group library. The optimization model is applied on 1D cylindrical cells and consists of finding an energy mesh which minimizes the errors between two successive collision probability calculations. The former is realized over the fine SHEM mesh with Livolant-Jeanpierre self-shielded cross sections and the latter is performed with collapsed cross sections over the energy mesh being optimized. The optimization is done by the particle swarm algorithm implemented in the code AEMC and multigroup flux solutions are obtained from standard APOLLO2 solvers. By this new approach, a set of new optimized meshes which encompass from 10 to 50 groups has been defined for PWR and BWR calculations. This set will allow users to adapt the energy detail of the solution to the complexity of the calculation (assembly, multi-assembly, two-dimensional whole core). Some preliminary verifications, in which the accuracy of the new meshes is measured compared to a direct 281-group calculation, show that the 30-group optimized mesh offers a good compromise between simulation time and accuracy for a standard 17 x 17 UO 2 assembly with and without control rods. (author)

  18. Multigrid on unstructured grids using an auxiliary set of structured grids

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, C.C.; Malhotra, S.; Schultz, M.H. [Yale Univ., New Haven, CT (United States)

    1996-12-31

    Unstructured grids do not have a convenient and natural multigrid framework for actually computing and maintaining a high floating point rate on standard computers. In fact, just the coarsening process is expensive for many applications. Since unstructured grids play a vital role in many scientific computing applications, many modifications have been proposed to solve this problem. One suggested solution is to map the original unstructured grid onto a structured grid. This can be used as a fine grid in a standard multigrid algorithm to precondition the original problem on the unstructured grid. We show that unless extreme care is taken, this mapping can lead to a system with a high condition number which eliminates the usefulness of the multigrid method. Theorems with lower and upper bounds are provided. Simple examples show that the upper bounds are sharp.

  19. Generalized Framework and Algorithms for Illustrative Visualization of Time-Varying Data on Unstructured Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Alexander S. Rattner; Donna Post Guillen; Alark Joshi

    2012-12-01

    Photo- and physically-realistic techniques are often insufficient for visualization of simulation results, especially for 3D and time-varying datasets. Substantial research efforts have been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. While these efforts have yielded valuable visualization results, a great deal of work has been reproduced in studies as individual research groups often develop purpose-built platforms. Additionally, interoperability between illustrative visualization software is limited due to specialized processing and rendering architectures employed in different studies. In this investigation, a generalized framework for illustrative visualization is proposed, and implemented in marmotViz, a ParaView plugin, enabling its use on variety of computing platforms with various data file formats and mesh geometries. Detailed descriptions of the region-of-interest identification and feature-tracking algorithms incorporated into this tool are provided. Additionally, implementations of multiple illustrative effect algorithms are presented to demonstrate the use and flexibility of this framework. By providing a framework and useful underlying functionality, the marmotViz tool can act as a springboard for future research in the field of illustrative visualization.

  20. Computational mesh generation for vascular structures with deformable surfaces

    International Nuclear Information System (INIS)

    Putter, S. de; Laffargue, F.; Breeuwer, M.; Vosse, F.N. van de; Gerritsen, F.A.; Philips Medical Systems, Best

    2006-01-01

    Computational blood flow and vessel wall mechanics simulations for vascular structures are becoming an important research tool for patient-specific surgical planning and intervention. An important step in the modelling process for patient-specific simulations is the creation of the computational mesh based on the segmented geometry. Most known solutions either require a large amount of manual processing or lead to a substantial difference between the segmented object and the actual computational domain. We have developed a chain of algorithms that lead to a closely related implementation of image segmentation with deformable models and 3D mesh generation. The resulting processing chain is very robust and leads both to an accurate geometrical representation of the vascular structure as well as high quality computational meshes. The chain of algorithms has been tested on a wide variety of shapes. A benchmark comparison of our mesh generation application with five other available meshing applications clearly indicates that the new approach outperforms the existing methods in the majority of cases. (orig.)

  1. An Efficient Approach for Solving Mesh Optimization Problems Using Newton’s Method

    Directory of Open Access Journals (Sweden)

    Jibum Kim

    2014-01-01

    Full Text Available We present an efficient approach for solving various mesh optimization problems. Our approach is based on Newton’s method, which uses both first-order (gradient and second-order (Hessian derivatives of the nonlinear objective function. The volume and surface mesh optimization algorithms are developed such that mesh validity and surface constraints are satisfied. We also propose several Hessian modification methods when the Hessian matrix is not positive definite. We demonstrate our approach by comparing our method with nonlinear conjugate gradient and steepest descent methods in terms of both efficiency and mesh quality.

  2. Heterogeneous Wireless Mesh Network Technology Evaluation for Space Proximity and Surface Applications

    Science.gov (United States)

    DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2014-01-01

    NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.

  3. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  4. A THREE-YEAR EXPERIENCE WITH ANTERIOR TRANSOBTURATOR MESH (ATOM AND POSTERIOR ISCHIORECTAL MESH (PIRM

    Directory of Open Access Journals (Sweden)

    Marijan Lužnik

    2018-02-01

    . In all 11 cases correction was performed during the operation, mesh was kept in place and postoperative course of treatment went without complications. Mean hospitalization time for mesh operation was 4 to 5 days. Short term results, 2 to 3 months after the operation, are very good both for pelvic organ static, and for pelvic function. In 14 cases we had small vaginal erosion in place of upper vaginal incision by ATOM. All erosions were cured spontaneously after removing of unresorptive suture (Etibond 1/0; Ethicon and/or excision of small denudated mesh part (< 1 mm2 without any anesthesia and vaginal sutures. Conclusions. New methods and materials allow return of pelvic floor integrity to physiological condition without hysterectomy of otherwise healthy uterus also in state of totally uterine prolapse. Corrections of POP with mesh procedures and without hysterectomy present a minimally invasive surgery with short hospitalization and reconvalescence. Quality of life markedly improved after operation because the preoperative problems were eliminated. Our and foreign experiences on these field1–8 give us a promise for long duration of good results which we also expect for women after needle implanted mesh in ATOM and/or PIRM procedure.9, 10

  5. A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes

    Science.gov (United States)

    Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.

    2018-06-01

    A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.

  6. Parallel adaptation of general three-dimensional hybrid meshes

    International Nuclear Information System (INIS)

    Kavouklis, Christos; Kallinderis, Yannis

    2010-01-01

    A new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid grids has been developed. The meshes considered in this work are composed of four kinds of elements; tetrahedra, prisms, hexahedra and pyramids, which poses a challenge to parallel mesh adaptation. Additional complexity imposed by the presence of multiple types of elements affects especially data migration, updates of local data structures and interpartition data structures. Efficient partition of hybrid meshes has been accomplished by transforming them to suitable graphs and using serial graph partitioning algorithms. Communication among processors is based on the faces of the interpartition boundary and the termination detection algorithm of Dijkstra is employed to ensure proper flagging of edges for refinement. An inexpensive dynamic load balancing strategy is introduced to redistribute work load among processors after adaptation. In particular, only the initial coarse mesh, with proper weighting, is balanced which yields savings in computation time and relatively simple implementation of mesh quality preservation rules, while facilitating coarsening of refined elements. Special algorithms are employed for (i) data migration and dynamic updates of the local data structures, (ii) determination of the resulting interpartition boundary and (iii) identification of the communication pattern of processors. Several representative applications are included to evaluate the method.

  7. SPRAI: coupling of radiative feedback and primordial chemistry in moving mesh hydrodynamics

    Science.gov (United States)

    Jaura, O.; Glover, S. C. O.; Klessen, R. S.; Paardekooper, J.-P.

    2018-04-01

    In this paper, we introduce a new radiative transfer code SPRAI (Simplex Photon Radiation in the Arepo Implementation) based on the SIMPLEX radiation transfer method. This method, originally used only for post-processing, is now directly integrated into the AREPO code and takes advantage of its adaptive unstructured mesh. Radiated photons are transferred from the sources through the series of Voronoi gas cells within a specific solid angle. From the photon attenuation, we derive corresponding photon fluxes and ionization rates and feed them to a primordial chemistry module. This gives us a self-consistent method for studying dynamical and chemical processes caused by ionizing sources in primordial gas. Since the computational cost of the SIMPLEX method does not scale directly with the number of sources, it is convenient for studying systems such as primordial star-forming haloes that may form multiple ionizing sources.

  8. Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application

    Science.gov (United States)

    Tanawade, A. G.; Modhera, C. D.

    2017-08-01

    Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.

  9. Seeking new surgical predictors of mesh exposure after transvaginal mesh repair.

    Science.gov (United States)

    Wu, Pei-Ying; Chang, Chih-Hung; Shen, Meng-Ru; Chou, Cheng-Yang; Yang, Yi-Ching; Huang, Yu-Fang

    2016-10-01

    The purpose of this study was to explore new preventable risk factors for mesh exposure. A retrospective review of 92 consecutive patients treated with transvaginal mesh (TVM) in the urogynecological unit of our university hospital. An analysis of perioperative predictors was conducted in patients after vaginal repairs using a type 1 mesh. Mesh complications were recorded according to International Urogynecological Association (IUGA) definitions. Mesh-exposure-free durations were calculated by using the Kaplan-Meier method and compared between different closure techniques using log-rank test. Hazard ratios (HR) of predictors for mesh exposure were estimated by univariate and multivariate analyses using Cox proportional hazards regression models. The median surveillance interval was 24.1 months. Two late occurrences were found beyond 1 year post operation. No statistically significant correlation was observed between mesh exposure and concomitant hysterectomy. Exposure risks were significantly higher in patients with interrupted whole-layer closure in univariate analysis. In the multivariate analysis, hematoma [HR 5.42, 95 % confidence interval (CI) 1.26-23.35, P = 0.024), Prolift mesh (HR 5.52, 95 % CI 1.15-26.53, P = 0.033), and interrupted whole-layer closure (HR 7.02, 95 % CI 1.62-30.53, P = 0.009) were the strongest predictors of mesh exposure. Findings indicate the risks of mesh exposure and reoperation may be prevented by avoiding hematoma, large amount of mesh, or interrupted whole-layer closure in TVM surgeries. If these risk factors are prevented, hysterectomy may not be a relative contraindication for TVM use. We also provide evidence regarding mesh exposure and the necessity for more than 1 year of follow-up and preoperative counselling.

  10. VisualUrText: A Text Analytics Tool for Unstructured Textual Data

    Science.gov (United States)

    Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.

    2018-05-01

    The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.

  11. Transvaginal mesh procedures for pelvic organ prolapse.

    Science.gov (United States)

    Walter, Jens-Erik

    2011-02-01

    To provide an update on transvaginal mesh procedures, newly available minimally invasive surgical techniques for pelvic floor repair. The discussion is limited to minimally invasive transvaginal mesh procedures. PubMed and Medline were searched for articles published in English, using the key words "pelvic organ prolapse," transvaginal mesh," and "minimally invasive surgery." Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies. Searches were updated on a regular basis, and articles were incorporated in the guideline to May 2010. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on the Preventive Health Care. Recommendations for practice were ranked according to the method described in that report (Table 1). Counselling for the surgical treatment of pelvic organ prolapse should consider all benefits, harms, and costs of the surgical procedure, with particular emphasis on the use of mesh. 1. Patients should be counselled that transvaginal mesh procedures are considered novel techniques for pelvic floor repair that demonstrate high rates of anatomical cure in uncontrolled short-term case series. (II-2B) 2. Patients should be informed of the range of success rates until stronger evidence of superiority is published. (II-2B) 3. Training specific to transvaginal mesh procedures should be undertaken before procedures are performed. (III-C) 4. Patients should undergo thorough preoperative counselling regarding (a) the potential serious adverse sequelae of transvaginal mesh repairs, including mesh exposure, pain, and dyspareunia; and (b) the limited data available

  12. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.

    Science.gov (United States)

    Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan

    2016-01-01

    Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.

  13. Are patient specific meshes required for EIT head imaging?

    Science.gov (United States)

    Jehl, Markus; Aristovich, Kirill; Faulkner, Mayo; Holder, David

    2016-06-01

    Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma.

  14. Multiple-correction hybrid k-exact schemes for high-order compressible RANS-LES simulations on fully unstructured grids

    Science.gov (United States)

    Pont, Grégoire; Brenner, Pierre; Cinnella, Paola; Maugars, Bruno; Robinet, Jean-Christophe

    2017-12-01

    A Godunov's type unstructured finite volume method suitable for highly compressible turbulent scale-resolving simulations around complex geometries is constructed by using a successive correction technique. First, a family of k-exact Godunov schemes is developed by recursively correcting the truncation error of the piecewise polynomial representation of the primitive variables. The keystone of the proposed approach is a quasi-Green gradient operator which ensures consistency on general meshes. In addition, a high-order single-point quadrature formula, based on high-order approximations of the successive derivatives of the solution, is developed for flux integration along cell faces. The proposed family of schemes is compact in the algorithmic sense, since it only involves communications between direct neighbors of the mesh cells. The numerical properties of the schemes up to fifth-order are investigated, with focus on their resolvability in terms of number of mesh points required to resolve a given wavelength accurately. Afterwards, in the aim of achieving the best possible trade-off between accuracy, computational cost and robustness in view of industrial flow computations, we focus more specifically on the third-order accurate scheme of the family, and modify locally its numerical flux in order to reduce the amount of numerical dissipation in vortex-dominated regions. This is achieved by switching from the upwind scheme, mostly applied in highly compressible regions, to a fourth-order centered one in vortex-dominated regions. An analytical switch function based on the local grid Reynolds number is adopted in order to warrant numerical stability of the recentering process. Numerical applications demonstrate the accuracy and robustness of the proposed methodology for compressible scale-resolving computations. In particular, supersonic RANS/LES computations of the flow over a cavity are presented to show the capability of the scheme to predict flows with shocks

  15. Discrete Surface Evolution and Mesh Deformation for Aircraft Icing Applications

    Science.gov (United States)

    Thompson, David; Tong, Xiaoling; Arnoldus, Qiuhan; Collins, Eric; McLaurin, David; Luke, Edward; Bidwell, Colin S.

    2013-01-01

    Robust, automated mesh generation for problems with deforming geometries, such as ice accreting on aerodynamic surfaces, remains a challenging problem. Here we describe a technique to deform a discrete surface as it evolves due to the accretion of ice. The surface evolution algorithm is based on a smoothed, face-offsetting approach. We also describe a fast algebraic technique to propagate the computed surface deformations into the surrounding volume mesh while maintaining geometric mesh quality. Preliminary results presented here demonstrate the ecacy of the approach for a sphere with a prescribed accretion rate, a rime ice accretion, and a more complex glaze ice accretion.

  16. The Role of Chronic Mesh Infection in Delayed-Onset Vaginal Mesh Complications or Recurrent Urinary Tract Infections: Results From Explanted Mesh Cultures.

    Science.gov (United States)

    Mellano, Erin M; Nakamura, Leah Y; Choi, Judy M; Kang, Diana C; Grisales, Tamara; Raz, Shlomo; Rodriguez, Larissa V

    2016-01-01

    Vaginal mesh complications necessitating excision are increasingly prevalent. We aim to study whether subclinical chronically infected mesh contributes to the development of delayed-onset mesh complications or recurrent urinary tract infections (UTIs). Women undergoing mesh removal from August 2013 through May 2014 were identified by surgical code for vaginal mesh removal. Only women undergoing removal of anti-incontinence mesh were included. Exclusion criteria included any women undergoing simultaneous prolapse mesh removal. We abstracted preoperative and postoperative information from the medical record and compared mesh culture results from patients with and without mesh extrusion, de novo recurrent UTIs, and delayed-onset pain. One hundred seven women with only anti-incontinence mesh removed were included in the analysis. Onset of complications after mesh placement was within the first 6 months in 70 (65%) of 107 and delayed (≥6 months) in 37 (35%) of 107. A positive culture from the explanted mesh was obtained from 82 (77%) of 107 patients, and 40 (37%) of 107 were positive with potential pathogens. There were no significant differences in culture results when comparing patients with delayed-onset versus immediate pain, extrusion with no extrusion, and de novo recurrent UTIs with no infections. In this large cohort of patients with mesh removed for a diverse array of complications, cultures of the explanted vaginal mesh demonstrate frequent low-density bacterial colonization. We found no differences in culture results from women with delayed-onset pain versus acute pain, vaginal mesh extrusions versus no extrusions, or recurrent UTIs using standard culture methods. Chronic prosthetic infections in other areas of medicine are associated with bacterial biofilms, which are resistant to typical culture techniques. Further studies using culture-independent methods are needed to investigate the potential role of chronic bacterial infections in delayed vaginal mesh

  17. Direct Numerical Simulation of Acoustic Waves Interacting with a Shock Wave in a Quasi-1D Convergent-Divergent Nozzle Using an Unstructured Finite Volume Algorithm

    Science.gov (United States)

    Bui, Trong T.; Mankbadi, Reda R.

    1995-01-01

    Numerical simulation of a very small amplitude acoustic wave interacting with a shock wave in a quasi-1D convergent-divergent nozzle is performed using an unstructured finite volume algorithm with a piece-wise linear, least square reconstruction, Roe flux difference splitting, and second-order MacCormack time marching. First, the spatial accuracy of the algorithm is evaluated for steady flows with and without the normal shock by running the simulation with a sequence of successively finer meshes. Then the accuracy of the Roe flux difference splitting near the sonic transition point is examined for different reconstruction schemes. Finally, the unsteady numerical solutions with the acoustic perturbation are presented and compared with linear theory results.

  18. An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows

    Science.gov (United States)

    Papoutsakis, Andreas; Sazhin, Sergei S.; Begg, Steven; Danaila, Ionut; Luddens, Francky

    2018-06-01

    We present an Adaptive Mesh Refinement (AMR) method suitable for hybrid unstructured meshes that allows for local refinement and de-refinement of the computational grid during the evolution of the flow. The adaptive implementation of the Discontinuous Galerkin (DG) method introduced in this work (ForestDG) is based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution of the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an increase of the order of accuracy in the region of shear layers and vortices. A graph of unitarian-trees, representing hexahedral, prismatic and tetrahedral elements is used for the representation of the initial domain. The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by linked lists of pointers. An explicit calculation of these relations, presented in this paper, facilitates the on-the-fly splitting, merging and repartitioning of the computational mesh by rearranging the links of each node of the tree with a minimal computational overhead. The modal basis used in the DG implementation facilitates the mapping of the fluxes across the non conformal faces. The AMR methodology is presented and assessed using a series of inviscid and viscous test cases. Also, the AMR methodology is used for the modelling of the interaction between droplets and the carrier phase in a two-phase flow. This approach is applied to the analysis of a spray injected into a chamber of quiescent air, using the Eulerian

  19. Urogynecologic Surgical Mesh Implants

    Science.gov (United States)

    ... procedures performed to treat pelvic floor disorders with surgical mesh: Transvaginal mesh to treat POP Transabdominal mesh to treat ... address safety risks Final Order for Reclassification of Surgical Mesh for Transvaginal Pelvic Organ Prolapse Repair Final Order for Effective ...

  20. Intravesical midurethral sling mesh erosion secondary to transvaginal mesh reconstructive surgery

    Directory of Open Access Journals (Sweden)

    Sukanda Bin Jaili

    2015-05-01

    Conclusion: Repeated vaginal reconstructive surgery may jeopardize a primary mesh or sling, and pose a high risk of mesh erosion, which may be delayed for several years. Removal of the mesh erosion and bladder repair are feasible pervaginally with good outcome.

  1. Hybrid meshes and domain decomposition for the modeling of oil reservoirs; Maillages hybrides et decomposition de domaine pour la modelisation des reservoirs petroliers

    Energy Technology Data Exchange (ETDEWEB)

    Gaiffe, St

    2000-03-23

    In this thesis, we are interested in the modeling of fluid flow through porous media with 2-D and 3-D unstructured meshes, and in the use of domain decomposition methods. The behavior of flow through porous media is strongly influenced by heterogeneities: either large-scale lithological discontinuities or quite localized phenomena such as fluid flow in the neighbourhood of wells. In these two typical cases, an accurate consideration of the singularities requires the use of adapted meshes. After having shown the limits of classic meshes we present the future prospects offered by hybrid and flexible meshes. Next, we consider the generalization possibilities of the numerical schemes traditionally used in reservoir simulation and we draw two available approaches: mixed finite elements and U-finite volumes. The investigated phenomena being also characterized by different time-scales, special treatments in terms of time discretization on various parts of the domain are required. We think that the combination of domain decomposition methods with operator splitting techniques may provide a promising approach to obtain high flexibility for a local tune-steps management. Consequently, we develop a new numerical scheme for linear parabolic equations which allows to get a higher flexibility in the local space and time steps management. To conclude, a priori estimates and error estimates on the two variables of interest, namely the pressure and the velocity are proposed. (author)

  2. Quantum search of a real unstructured database

    Science.gov (United States)

    Broda, Bogusław

    2016-02-01

    A simple circuit implementation of the oracle for Grover's quantum search of a real unstructured classical database is proposed. The oracle contains a kind of quantumly accessible classical memory, which stores the database.

  3. An Efficient Mesh Generation Method for Fractured Network System Based on Dynamic Grid Deformation

    Directory of Open Access Journals (Sweden)

    Shuli Sun

    2013-01-01

    Full Text Available Meshing quality of the discrete model influences the accuracy, convergence, and efficiency of the solution for fractured network system in geological problem. However, modeling and meshing of such a fractured network system are usually tedious and difficult due to geometric complexity of the computational domain induced by existence and extension of fractures. The traditional meshing method to deal with fractures usually involves boundary recovery operation based on topological transformation, which relies on many complicated techniques and skills. This paper presents an alternative and efficient approach for meshing fractured network system. The method firstly presets points on fractures and then performs Delaunay triangulation to obtain preliminary mesh by point-by-point centroid insertion algorithm. Then the fractures are exactly recovered by local correction with revised dynamic grid deformation approach. Smoothing algorithm is finally applied to improve the quality of mesh. The proposed approach is efficient, easy to implement, and applicable to the cases of initial existing fractures and extension of fractures. The method is successfully applied to modeling of two- and three-dimensional discrete fractured network (DFN system in geological problems to demonstrate its effectiveness and high efficiency.

  4. Axisymmetric charge-conservative electromagnetic particle simulation algorithm on unstructured grids: Application to microwave vacuum electronic devices

    Science.gov (United States)

    Na, Dong-Yeop; Omelchenko, Yuri A.; Moon, Haksu; Borges, Ben-Hur V.; Teixeira, Fernando L.

    2017-10-01

    We present a charge-conservative electromagnetic particle-in-cell (EM-PIC) algorithm optimized for the analysis of vacuum electronic devices (VEDs) with cylindrical symmetry (axisymmetry). We exploit the axisymmetry present in the device geometry, fields, and sources to reduce the dimensionality of the problem from 3D to 2D. Further, we employ 'transformation optics' principles to map the original problem in polar coordinates with metric tensor diag (1 ,ρ2 , 1) to an equivalent problem on a Cartesian metric tensor diag (1 , 1 , 1) with an effective (artificial) inhomogeneous medium introduced. The resulting problem in the meridian (ρz) plane is discretized using an unstructured 2D mesh considering TEϕ-polarized fields. Electromagnetic field and source (node-based charges and edge-based currents) variables are expressed as differential forms of various degrees, and discretized using Whitney forms. Using leapfrog time integration, we obtain a mixed E - B finite-element time-domain scheme for the full-discrete Maxwell's equations. We achieve a local and explicit time update for the field equations by employing the sparse approximate inverse (SPAI) algorithm. Interpolating field values to particles' positions for solving Newton-Lorentz equations of motion is also done via Whitney forms. Particles are advanced using the Boris algorithm with relativistic correction. A recently introduced charge-conserving scatter scheme tailored for 2D unstructured grids is used in the scatter step. The algorithm is validated considering cylindrical cavity and space-charge-limited cylindrical diode problems. We use the algorithm to investigate the physical performance of VEDs designed to harness particle bunching effects arising from the coherent (resonance) Cerenkov electron beam interactions within micro-machined slow wave structures.

  5. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement

    Directory of Open Access Journals (Sweden)

    Juan J. Garcia-Cantero

    2017-06-01

    Full Text Available Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma’s morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been

  6. A Denotational Semantics for Communicating Unstructured Code

    Directory of Open Access Journals (Sweden)

    Nils Jähnig

    2015-03-01

    Full Text Available An important property of programming language semantics is that they should be compositional. However, unstructured low-level code contains goto-like commands making it hard to define a semantics that is compositional. In this paper, we follow the ideas of Saabas and Uustalu to structure low-level code. This gives us the possibility to define a compositional denotational semantics based on least fixed points to allow for the use of inductive verification methods. We capture the semantics of communication using finite traces similar to the denotations of CSP. In addition, we examine properties of this semantics and give an example that demonstrates reasoning about communication and jumps. With this semantics, we lay the foundations for a proof calculus that captures both, the semantics of unstructured low-level code and communication.

  7. Cost effectiveness of mesh prophylaxis to prevent parastomal hernia in patients undergoing permanent colostomy for rectal cancer.

    Science.gov (United States)

    Lee, Lawrence; Saleem, Abdulaziz; Landry, Tara; Latimer, Eric; Chaudhury, Prosanto; Feldman, Liane S

    2014-01-01

    Parastomal hernia (PSH) is common after stoma formation. Studies have reported that mesh prophylaxis reduces PSH, but there are no cost-effectiveness data. Our objective was to determine the cost effectiveness of mesh prophylaxis vs no prophylaxis to prevent PSH in patients undergoing abdominoperineal resection with permanent colostomy for rectal cancer. Using a cohort Markov model, we modeled the costs and effectiveness of mesh prophylaxis vs no prophylaxis at the index operation in a cohort of 60-year-old patients undergoing abdominoperineal resection for rectal cancer during a time horizon of 5 years. Costs were expressed in 2012 Canadian dollars (CAD$) and effectiveness in quality-adjusted life years. Deterministic and probabilistic sensitivity analyses were performed. In patients with stage I to III rectal cancer, prophylactic mesh was dominant (less costly and more effective) compared with no mesh. In patients with stage IV disease, mesh prophylaxis was associated with higher cost (CAD$495 more) and minimally increased effectiveness (0.05 additional quality-adjusted life years), resulting in an incremental cost-effectiveness ratio of CAD$10,818 per quality-adjusted life year. On sensitivity analyses, the decision was sensitive to the probability of mesh infection and the cost of the mesh, and method of diagnosing PSH. In patients undergoing abdominoperineal resection with permanent colostomy for rectal cancer, mesh prophylaxis might be the less costly and more effective strategy compared with no mesh to prevent PSH in patients with stage I to III disease, and might be cost effective in patients with stage IV disease. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Mesh removal following transvaginal mesh placement: a case series of 104 operations.

    Science.gov (United States)

    Marcus-Braun, Naama; von Theobald, Peter

    2010-04-01

    The objective of the study was to reveal the way we treat vaginal mesh complications in a trained referral center. This is a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 5-year period. Eighty-three patients underwent 104 operations including 61 complete mesh removal, 14 partial excision, 15 section of sub-urethral sling, and five laparoscopies. Main indications were erosion, infection, granuloma, incomplete voiding, and pain. Fifty-eight removals occurred more than 2 years after the primary mesh placement. Mean operation time was 21 min, and there were two intraoperative and ten minor postoperative complications. Stress urinary incontinence (SUI) recurred in 38% and cystocele in 19% of patients. In a trained center, mesh removal was found to be a quick and safe procedure. Mesh-related complications may frequently occur more than 2 years after the primary operation. Recurrence was mostly associated with SUI and less with genital prolapse.

  9. Long-term follow-up of treatment for synthetic mesh complications.

    Science.gov (United States)

    Hansen, Brooke L; Dunn, Guinn Ellen; Norton, Peggy; Hsu, Yvonne; Nygaard, Ingrid

    2014-01-01

    The objectives of this study are (1) to describe the presenting symptoms, findings, and treatment and (2) to describe the self-reported improvement and function at least 6 months after presentation in women presenting to 1 urogynecology division for complications associated with synthetic vaginal mesh. Women evaluated between 2006 and 2011 were identified by diagnostic codes. We abstracted information from the medical record and attempted to contact all women to complete a follow-up telephone survey questionnaire consisting of several validated instruments. A total of 111 women were evaluated for complications associated with synthetic vaginal mesh. The mean interval from index surgery was 2.4 years. Of these, 84% were referred from outside hospitals. Index surgeries included vaginal mesh kits/vaginally placed mesh (47%), midurethral mesh slings (37%), abdominally placed vaginal mesh (11%), and vaginal mesh kit with concomitantly placed mesh sling (5%). The most common complications were extrusion (65%), contraction (17%), and chronic pelvic pain (16%). A total of 98 women underwent some type of treatment (85 surgical) by urogynecologists, pelvic pain specialists, or physical therapists. Eighty-four (76%) provided follow-up information at mean interval since presentation of 2.3 years. At follow-up, the mean (SD) Pelvic Floor Distress Inventory score was 98 (67), the mean (SD) EQ-5D index score was 0.69 (0.23), and 22% reported vaginal discharge, 15% vaginal bleeding or spotting, and 45% sexual abstinence due to problems related to mesh. A total of 71% reported being overall better, whereas 29% were the same or worse. Two years after tertiary care level multidisciplinary treatment of vaginal mesh complications, many women still report symptoms that negatively impact their quality of life.

  10. Polygonal Prism Mesh in the Viscous Layers for the Polyhedral Mesh Generator, PolyGen

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan

    2015-01-01

    Polyhedral mesh has been known to have some benefits over the tetrahedral mesh. Efforts have been made to set up a polyhedral mesh generation system with open source programs SALOME and TetGen. The evaluation has shown that the polyhedral mesh generation system is promising. But it is necessary to extend the capability of the system to handle the viscous layers to be a generalized mesh generator. A brief review to the previous works on the mesh generation for the viscous layers will be made in section 2. Several challenging issues for the polygonal prism mesh generation will be discussed as well. The procedure to generate a polygonal prism mesh will be discussed in detail in section 3. Conclusion will be followed in section 4. A procedure to generate meshes in the viscous layers with PolyGen has been successfully designed. But more efforts have to be exercised to find the best way for the generating meshes for viscous layers. Using the extrusion direction of the STL data will the first of the trials in the near future

  11. Improved mesh based photon sampling techniques for neutron activation analysis

    International Nuclear Information System (INIS)

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-01-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  12. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang

    2011-02-01

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.

  13. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  14. Performance Portability for Unstructured Mesh Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keasler, J A

    2012-03-23

    ASC legacy software must be ported to emerging hardware architectures. This paper notes that many programming models used by DOE applications are similar, and suggests that constructing a common terminology across these models could reveal a performance portable programming model. The paper then highlights how the LULESH mini-app is used to explore new programming models with outside solution providers. Finally, we suggest better tools to identify parallelism in software, and give suggestions for enhancing the co-design process with vendors.

  15. MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank.

    Science.gov (United States)

    Mao, Yuqing; Lu, Zhiyong

    2017-04-17

    MeSH indexing is the task of assigning relevant MeSH terms based on a manual reading of scholarly publications by human indexers. The task is highly important for improving literature retrieval and many other scientific investigations in biomedical research. Unfortunately, given its manual nature, the process of MeSH indexing is both time-consuming (new articles are not immediately indexed until 2 or 3 months later) and costly (approximately ten dollars per article). In response, automatic indexing by computers has been previously proposed and attempted but remains challenging. In order to advance the state of the art in automatic MeSH indexing, a community-wide shared task called BioASQ was recently organized. We propose MeSH Now, an integrated approach that first uses multiple strategies to generate a combined list of candidate MeSH terms for a target article. Through a novel learning-to-rank framework, MeSH Now then ranks the list of candidate terms based on their relevance to the target article. Finally, MeSH Now selects the highest-ranked MeSH terms via a post-processing module. We assessed MeSH Now on two separate benchmarking datasets using traditional precision, recall and F 1 -score metrics. In both evaluations, MeSH Now consistently achieved over 0.60 in F-score, ranging from 0.610 to 0.612. Furthermore, additional experiments show that MeSH Now can be optimized by parallel computing in order to process MEDLINE documents on a large scale. We conclude that MeSH Now is a robust approach with state-of-the-art performance for automatic MeSH indexing and that MeSH Now is capable of processing PubMed scale documents within a reasonable time frame. http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/MeSHNow/ .

  16. Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta

    Science.gov (United States)

    Martyr-Koller, R.C.; Kernkamp, H.W.J.; Van Dam, Anne A.; Mick van der Wegen,; Lucas, Lisa; Knowles, N.; Jaffe, B.; Fregoso, T.A.

    2017-01-01

    A linked modeling approach has been undertaken to understand the impacts of climate and infrastructure on aquatic ecology and water quality in the San Francisco Bay-Delta region. The Delft3D Flexible Mesh modeling suite is used in this effort for its 3D hydrodynamics, salinity, temperature and sediment dynamics, phytoplankton and water-quality coupling infrastructure, and linkage to a habitat suitability model. The hydrodynamic model component of the suite is D-Flow FM, a new 3D unstructured finite-volume model based on the Delft3D model. In this paper, D-Flow FM is applied to the San Francisco Bay-Delta to investigate tidal, seasonal and annual dynamics of water levels, river flows and salinity under historical environmental and infrastructural conditions. The model is driven by historical winds, tides, ocean salinity, and river flows, and includes federal, state, and local freshwater withdrawals, and regional gate and barrier operations. The model is calibrated over a 9-month period, and subsequently validated for water levels, flows, and 3D salinity dynamics over a 2 year period.Model performance was quantified using several model assessment metrics and visualized through target diagrams. These metrics indicate that the model accurately estimated water levels, flows, and salinity over wide-ranging tidal and fluvial conditions, and the model can be used to investigate detailed circulation and salinity patterns throughout the Bay-Delta. The hydrodynamics produced through this effort will be used to drive affiliated sediment, phytoplankton, and contaminant hindcast efforts and habitat suitability assessments for fish and bivalves. The modeling framework applied here will serve as a baseline to ultimately shed light on potential ecosystem change over the current century.

  17. Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta

    Science.gov (United States)

    Martyr-Koller, R. C.; Kernkamp, H. W. J.; van Dam, A.; van der Wegen, M.; Lucas, L. V.; Knowles, N.; Jaffe, B.; Fregoso, T. A.

    2017-06-01

    A linked modeling approach has been undertaken to understand the impacts of climate and infrastructure on aquatic ecology and water quality in the San Francisco Bay-Delta region. The Delft3D Flexible Mesh modeling suite is used in this effort for its 3D hydrodynamics, salinity, temperature and sediment dynamics, phytoplankton and water-quality coupling infrastructure, and linkage to a habitat suitability model. The hydrodynamic model component of the suite is D-Flow FM, a new 3D unstructured finite-volume model based on the Delft3D model. In this paper, D-Flow FM is applied to the San Francisco Bay-Delta to investigate tidal, seasonal and annual dynamics of water levels, river flows and salinity under historical environmental and infrastructural conditions. The model is driven by historical winds, tides, ocean salinity, and river flows, and includes federal, state, and local freshwater withdrawals, and regional gate and barrier operations. The model is calibrated over a 9-month period, and subsequently validated for water levels, flows, and 3D salinity dynamics over a 2 year period. Model performance was quantified using several model assessment metrics and visualized through target diagrams. These metrics indicate that the model accurately estimated water levels, flows, and salinity over wide-ranging tidal and fluvial conditions, and the model can be used to investigate detailed circulation and salinity patterns throughout the Bay-Delta. The hydrodynamics produced through this effort will be used to drive affiliated sediment, phytoplankton, and contaminant hindcast efforts and habitat suitability assessments for fish and bivalves. The modeling framework applied here will serve as a baseline to ultimately shed light on potential ecosystem change over the current century.

  18. BOA, Beam Optics Analyzer A Particle-In-Cell Code

    International Nuclear Information System (INIS)

    Bui, Thuc

    2007-01-01

    The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.

  19. Comparative reliability of structured versus unstructured interviews in the admission process of a residency program.

    Science.gov (United States)

    Blouin, Danielle; Day, Andrew G; Pavlov, Andrey

    2011-12-01

    Although never directly compared, structured interviews are reported as being more reliable than unstructured interviews. This study compared the reliability of both types of interview when applied to a common pool of applicants for positions in an emergency medicine residency program. In 2008, one structured interview was added to the two unstructured interviews traditionally used in our resident selection process. A formal job analysis using the critical incident technique guided the development of the structured interview tool. This tool consisted of 7 scenarios assessing 4 of the domains deemed essential for success as a resident in this program. The traditional interview tool assessed 5 general criteria. In addition to these criteria, the unstructured panel members were asked to rate each candidate on the same 4 essential domains rated by the structured panel members. All 3 panels interviewed all candidates. Main outcomes were the overall, interitem, and interrater reliabilities, the correlations between interview panels, and the dimensionality of each interview tool. Thirty candidates were interviewed. The overall reliability reached 0.43 for the structured interview, and 0.81 and 0.71 for the unstructured interviews. Analyses of the variance components showed a high interrater, low interitem reliability for the structured interview, and a high interrater, high interitem reliability for the unstructured interviews. The summary measures from the 2 unstructured interviews were significantly correlated, but neither was correlated with the structured interview. Only the structured interview was multidimensional. A structured interview did not yield a higher overall reliability than both unstructured interviews. The lower reliability is explained by a lower interitem reliability, which in turn is due to the multidimensionality of the interview tool. Both unstructured panels consistently rated a single dimension, even when prompted to assess the 4 specific domains

  20. Bracketing as a skill in conducting unstructured qualitative interviews.

    Science.gov (United States)

    Sorsa, Minna Anneli; Kiikkala, Irma; Åstedt-Kurki, Päivi

    2015-03-01

    To provide an overview of bracketing as a skill in unstructured qualitative research interviews. Researchers affect the qualitative research process. Bracketing in descriptive phenomenology entails researchers setting aside their pre-understanding and acting non-judgementally. In interpretative phenomenology, previous knowledge is used intentionally to create new understanding. A literature search of bracketing in phenomenology and qualitative research. This is a methodology paper examining the researchers' impact in creating data in creating data in qualitative research. Self-knowledge, sensitivity and reflexivity of the researcher enable bracketing. Skilled and experienced researchers are needed to use bracketing in unstructured qualitative research interviews. Bracketing adds scientific rigour and validity to any qualitative study.

  1. Users manual for Opt-MS : local methods for simplicial mesh smoothing and untangling.

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, L.

    1999-07-20

    Creating meshes containing good-quality elements is a challenging, yet critical, problem facing computational scientists today. Several researchers have shown that the size of the mesh, the shape of the elements within that mesh, and their relationship to the physical application of interest can profoundly affect the efficiency and accuracy of many numerical approximation techniques. If the application contains anisotropic physics, the mesh can be improved by considering both local characteristics of the approximate application solution and the geometry of the computational domain. If the application is isotropic, regularly shaped elements in the mesh reduce the discretization error, and the mesh can be improved a priori by considering geometric criteria only. The Opt-MS package provides several local node point smoothing techniques that improve elements in the mesh by adjusting grid point location using geometric, criteria. The package is easy to use; only three subroutine calls are required for the user to begin using the software. The package is also flexible; the user may change the technique, function, or dimension of the problem at any time during the mesh smoothing process. Opt-MS is designed to interface with C and C++ codes, ad examples for both two-and three-dimensional meshes are provided.

  2. Transvaginal mesh in the media following the 2011 US food and drug administration public health notification update.

    Science.gov (United States)

    Koo, Kevin; Gormley, E Ann

    2017-02-01

    Prompted by patients' changing perceptions of transvaginal mesh, this study examines how mesh has been reported in the news following the 2011 US Food and Drug Administration (FDA) updated notification about the use of mesh in the treatment of pelvic organ prolapse. Two national newspaper databases were queried for articles discussing transvaginal mesh published within 3 years of the FDA announcement. Content analysis included headline subjects, mesh-related complications, quoted sources, and the FDA recommendations. To determine whether more widely read sources publish higher quality reporting, a subgroup analysis was conducted based on newspaper circulation. Ninety-five articles met inclusion criteria. Mesh-related litigation was the most common headline subject (36 articles, 38%), and 54% of all articles referenced legal action. Fifty-seven articles (60%) cited at least one mesh-related complication. Only 18 articles (19%) quoted surgeons who use transvaginal mesh. For the FDA update, 40% of articles that first reported the announcement accurately specified that it applies to mesh for prolapse, not incontinence. This ambiguity persisted: half of all articles cited the warning, but only 23% distinguished between prolapse and incontinence. Higher newspaper circulation did not significantly improve the quality of reporting about the content or context of the FDA's recommendations. Despite frequent media coverage of transvaginal mesh and its complications since 2011, very few news sources that cited the FDA warning distinguished between prolapse and incontinence. Given prevalent reporting of mesh-related litigation, the findings raise concern about how patients perceive the safety and efficacy of transvaginal mesh, regardless of indication. Neurourol. Urodynam. 36:329-332, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. Laparoscopic appendicectomy for suspected mesh-induced appendicitis after laparoscopic transabdominal preperitoneal polypropylene mesh inguinal herniorraphy

    Directory of Open Access Journals (Sweden)

    Jennings Jason

    2010-01-01

    Full Text Available Laparoscopic inguinal herniorraphy via a transabdominal preperitoneal (TAPP approach using Polypropylene Mesh (Mesh and staples is an accepted technique. Mesh induces a localised inflammatory response that may extend to, and involve, adjacent abdominal and pelvic viscera such as the appendix. We present an interesting case of suspected Mesh-induced appendicitis treated successfully with laparoscopic appendicectomy, without Mesh removal, in an elderly gentleman who presented with symptoms and signs of acute appendicitis 18 months after laparoscopic inguinal hernia repair. Possible mechanisms for Mesh-induced appendicitis are briefly discussed.

  4. Nonlinear multigrid solvers exploiting AMGe coarse spaces with approximation properties

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Vassilevski, Panayot S.; Villa, Umberto

    2017-01-01

    discretizations on general unstructured grids for a large class of nonlinear partial differential equations, including saddle point problems. The approximation properties of the coarse spaces ensure that our FAS approach for general unstructured meshes leads to optimal mesh-independent convergence rates similar...... to those achieved by geometric FAS on a nested hierarchy of refined meshes. In the numerical results, Newton’s method and Picard iterations with state-of-the-art inner linear solvers are compared to our FAS algorithm for the solution of a nonlinear saddle point problem arising from porous media flow...

  5. Warehousing Structured and Unstructured Data for Data Mining.

    Science.gov (United States)

    Miller, L. L.; Honavar, Vasant; Barta, Tom

    1997-01-01

    Describes an extensible object-oriented view system that supports the integration of both structured and unstructured data sources in either the multidatabase or data warehouse environment. Discusses related work and data mining issues. (AEF)

  6. Transport and dynamcis in toroidal fusion systems. Final report, 1992--1995

    International Nuclear Information System (INIS)

    Schnack, D.D.

    1995-01-01

    This document is organized as follows. Discussions are presented on the properties of structured and unstructured meshes, and the data structures useful for describing them. Issues related to the triangulation of an arbitrary set of points in a plane are also discussed. A derivation is made of a finite volume approximation to the resistive MHD equations suitable for use on an unstructured, triangular mesh in toroidal geometry. Boundary conditions are discussed. The specific MHD model, and its implementation on the unstructured mesh, is discussed. A discussion is presented of methods of time integration, and descriptions are given for implementation of semi-implicit and fully implicit algorithms. Examples of the application of the method are given. Included are standard, two- dimensional hydrodynamic and MHD shock problems, as well as applications of the method to the equilibrium and stability of toroidal fusion plasmas in two and three dimensions. The initial results with mesh adaptation are also described

  7. Variational mesh segmentation via quadric surface fitting

    KAUST Repository

    Yan, Dongming; Wang, Wen Ping; Liu, Yang; Yang, Zhouwang

    2012-01-01

    We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.

  8. Variational mesh segmentation via quadric surface fitting

    KAUST Repository

    Yan, Dongming

    2012-11-01

    We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.

  9. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    International Nuclear Information System (INIS)

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-01-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated

  10. Early experience with mesh excision for adverse outcomes after transvaginal mesh placement using prolapse kits.

    Science.gov (United States)

    Ridgeway, Beri; Walters, Mark D; Paraiso, Marie Fidela R; Barber, Matthew D; McAchran, Sarah E; Goldman, Howard B; Jelovsek, J Eric

    2008-12-01

    The purpose of this study was to determine the complications, treatments, and outcomes in patients choosing to undergo removal of mesh previously placed with a mesh procedural kit. This was a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 3-year period at Cleveland Clinic. At last follow-up, patients reported degree of pain, level of improvement, sexual activity, and continued symptoms. Nineteen patients underwent removal of mesh during the study period. Indications for removal included chronic pain (6/19), dyspareunia (6/19), recurrent pelvic organ prolapse (8/19), mesh erosion (12/19), and vesicovaginal fistula (3/19), with most patients (16/19) citing more than 1 reason. There were few complications related to the mesh removal. Most patients reported significant relief of symptoms. Mesh removal can be technically difficult but appears to be safe with few complications and high relief of symptoms, although some symptoms can persist.

  11. Mesh erosion after abdominal sacrocolpopexy.

    Science.gov (United States)

    Kohli, N; Walsh, P M; Roat, T W; Karram, M M

    1998-12-01

    To report our experience with erosion of permanent suture or mesh material after abdominal sacrocolpopexy. A retrospective chart review was performed to identify patients who underwent sacrocolpopexy by the same surgeon over 8 years. Demographic data, operative notes, hospital records, and office charts were reviewed after sacrocolpopexy. Patients with erosion of either suture or mesh were treated initially with conservative therapy followed by surgical intervention as required. Fifty-seven patients underwent sacrocolpopexy using synthetic mesh during the study period. The mean (range) postoperative follow-up was 19.9 (1.3-50) months. Seven patients (12%) had erosions after abdominal sacrocolpopexy with two suture erosions and five mesh erosions. Patients with suture erosion were asymptomatic compared with patients with mesh erosion, who presented with vaginal bleeding or discharge. The mean (+/-standard deviation) time to erosion was 14.0+/-7.7 (range 4-24) months. Both patients with suture erosion were treated conservatively with estrogen cream. All five patients with mesh erosion required transvaginal removal of the mesh. Mesh erosion can follow abdominal sacrocolpopexy over a long time, and usually presents as vaginal bleeding or discharge. Although patients with suture erosion can be managed successfully with conservative treatment, patients with mesh erosion require surgical intervention. Transvaginal removal of the mesh with vaginal advancement appears to be an effective treatment in patients failing conservative management.

  12. Improving MeSH classification of biomedical articles using citation contexts.

    Science.gov (United States)

    Aljaber, Bader; Martinez, David; Stokes, Nicola; Bailey, James

    2011-10-01

    Medical Subject Headings (MeSH) are used to index the majority of databases generated by the National Library of Medicine. Essentially, MeSH terms are designed to make information, such as scientific articles, more retrievable and assessable to users of systems such as PubMed. This paper proposes a novel method for automating the assignment of biomedical publications with MeSH terms that takes advantage of citation references to these publications. Our findings show that analysing the citation references that point to a document can provide a useful source of terms that are not present in the document. The use of these citation contexts, as they are known, can thus help to provide a richer document feature representation, which in turn can help improve text mining and information retrieval applications, in our case MeSH term classification. In this paper, we also explore new methods of selecting and utilising citation contexts. In particular, we assess the effect of weighting the importance of citation terms (found in the citation contexts) according to two aspects: (i) the section of the paper they appear in and (ii) their distance to the citation marker. We conduct intrinsic and extrinsic evaluations of citation term quality. For the intrinsic evaluation, we rely on the UMLS Metathesaurus conceptual database to explore the semantic characteristics of the mined citation terms. We also analyse the "informativeness" of these terms using a class-entropy measure. For the extrinsic evaluation, we run a series of automatic document classification experiments over MeSH terms. Our experimental evaluation shows that citation contexts contain terms that are related to the original document, and that the integration of this knowledge results in better classification performance compared to two state-of-the-art MeSH classification systems: MeSHUP and MTI. Our experiments also demonstrate that the consideration of Section and Distance factors can lead to statistically

  13. Surgical management of lower urinary mesh perforation after mid-urethral polypropylene mesh sling: mesh excision, urinary tract reconstruction and concomitant pubovaginal sling with autologous rectus fascia.

    Science.gov (United States)

    Shah, Ketul; Nikolavsky, Dmitriy; Gilsdorf, Daniel; Flynn, Brian J

    2013-12-01

    We present our management of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling using a novel combination of surgical techniques including total or near total mesh excision, urinary tract reconstruction, and concomitant pubovaginal sling with autologous rectus fascia in a single operation. We retrospectively reviewed the medical records of 189 patients undergoing transvaginal removal of polypropylene mesh from the lower urinary tract or vagina. The focus of this study is 21 patients with LUT mesh perforation after mid-urethral polypropylene mesh sling. We excluded patients with LUT mesh perforation from prolapse kits (n = 4) or sutures (n = 11), or mesh that was removed because of isolated vaginal wall exposure without concomitant LUT perforation (n = 164). Twenty-one patients underwent surgical removal of mesh through a transvaginal approach or combined transvaginal/abdominal approaches. The location of the perforation was the urethra in 14 and the bladder in 7. The mean follow-up was 22 months. There were no major intraoperative complications. All patients had complete resolution of the mesh complication and the primary symptom. Of the patients with urethral perforation, continence was achieved in 10 out of 14 (71.5 %). Of the patients with bladder perforation, continence was achieved in all 7. Total or near total removal of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling can completely resolve LUT mesh perforation in a single operation. A concomitant pubovaginal sling can be safely performed in efforts to treat existing SUI or avoid future surgery for SUI.

  14. In vitro analysis of biopolymer coating with glycidoxypropyltrimethoxysilane on hernia meshes.

    Science.gov (United States)

    Metzler, Steffen; Zankovych, Sergiy; Rauchfuß, Falk; Dittmar, Yves; Jandt, Karin; Jandt, Klaus D; Settmacher, Utz; Scheuerlein, Hubert

    2017-07-01

    Certain coatings may improve the biocompatibility of hernia meshes. The coating with self-assembled monolayers, such as glycidoxypropyltrimethoxysilane (GOPS) can also improve the materials characteristics of implants. This approach was not yet explored in hernia meshes. It was the aim of this work to clarify if and how hernia meshes with their three-dimensional structure can be coated with GOPS and with which technique this coating can be best characterized. Commercially available meshes made from polypropylene (PP), polyester (PE), and expanded polytetrafluorethylene (ePTFE) have been coated with GOPS. The coatings were analyzed via X-ray photoelectron spectroscopy (XPS), confocal laser scanning microscopy (CLSM), and cell proliferation test (mouse fibroblasts). Cell viability and cytotoxicity were tested by MTT test. With the GOPS surface modification, the adherence of mouse fibroblasts on polyester meshes and the proliferation on ePTFE meshes were increased compared to noncoated meshes. Both XPS and CLSM are limited in their applicability and validity due to the three-dimensional mesh structure while CLSM was overall more suitable. In the MTT test, no negative effects of the GOPS coating on the cells were detected after 24 h. The present results show that GOPS coating of hernia meshes is feasible and effective. GOPS coating can be achieved in a fast and cost-efficient way. Further investigations are necessary with respect to coating quality and adverse effects before such a coating may be used in the clinical routine. In conclusion, GOPS is a promising material that warrants further research as coating of medical implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1083-1090, 2017. © 2016 Wiley Periodicals, Inc.

  15. Emerging medical informatics research trends detection based on MeSH terms.

    Science.gov (United States)

    Lyu, Peng-Hui; Yao, Qiang; Mao, Jin; Zhang, Shi-Jing

    2015-01-01

    The aim of this study is to analyze the research trends of medical informatics over the last 12 years. A new method based on MeSH terms was proposed to identify emerging topics and trends of medical informatics research. Informetric methods and visualization technologies were applied to investigate research trends of medical informatics. The metric of perspective factor (PF) embedding MeSH terms was appropriately employed to assess the perspective quality for journals. The emerging MeSH terms have changed dramatically over the last 12 years, identifying two stages of medical informatics: the "medical imaging stage" and the "medical informatics stage". The focus of medical informatics has shifted from acquisition and storage of healthcare data by integrating computational, informational, cognitive and organizational sciences to semantic analysis for problem solving and clinical decision-making. About 30 core journals were determined by Bradford's Law in the last 3 years in this area. These journals, with high PF values, have relative high perspective quality and lead the trend of medical informatics.

  16. A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations

    KAUST Repository

    Wang, Zhiheng

    2014-12-10

    A meshless local radial basis function method is developed for two-dimensional incompressible Navier-Stokes equations. The distributed nodes used to store the variables are obtained by the philosophy of an unstructured mesh, which results in two main advantages of the method. One is that the unstructured nodes generation in the computational domain is quite simple, without much concern about the mesh quality; the other is that the localization of the obtained collocations for the discretization of equations is performed conveniently with the supporting nodes. The algebraic system is solved by a semi-implicit pseudo-time method, in which the convective and source terms are explicitly marched by the Runge-Kutta method, and the diffusive terms are implicitly solved. The proposed method is validated by several benchmark problems, including natural convection in a square cavity, the lid-driven cavity flow, and the natural convection in a square cavity containing a circular cylinder, and very good agreement with the existing results are obtained.

  17. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    Science.gov (United States)

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical

  18. Mesh size in Lichtenstein repair: a systematic review and meta-analysis to determine the importance of mesh size.

    Science.gov (United States)

    Seker, D; Oztuna, D; Kulacoglu, H; Genc, Y; Akcil, M

    2013-04-01

    Small mesh size has been recognized as one of the factors responsible for recurrence after Lichtenstein hernia repair due to insufficient coverage or mesh shrinkage. The Lichtenstein Hernia Institute recommends a 7 × 15 cm mesh that can be trimmed up to 2 cm from the lateral side. We performed a systematic review to determine surgeons' mesh size preference for the Lichtenstein hernia repair and made a meta-analysis to determine the effect of mesh size, mesh type, and length of follow-up time on recurrence. Two medical databases, PubMed and ISI Web of Science, were systematically searched using the key word "Lichtenstein repair." All full text papers were selected. Publications mentioning mesh size were brought for further analysis. A mesh surface area of 90 cm(2) was accepted as the threshold for defining the mesh as small or large. Also, a subgroup analysis for recurrence pooled proportion according to the mesh size, mesh type, and follow-up period was done. In total, 514 papers were obtained. There were no prospective or retrospective clinical studies comparing mesh size and clinical outcome. A total of 141 papers were duplicated in both databases. As a result, 373 papers were obtained. The full text was available in over 95 % of papers. Only 41 (11.2 %) papers discussed mesh size. In 29 studies, a mesh larger than 90 cm(2) was used. The most frequently preferred commercial mesh size was 7.5 × 15 cm. No papers mentioned the size of the mesh after trimming. There was no information about the relationship between mesh size and patient BMI. The pooled proportion in recurrence for small meshes was 0.0019 (95 % confidence interval: 0.007-0.0036), favoring large meshes to decrease the chance of recurrence. Recurrence becomes more marked when follow-up period is longer than 1 year (p < 0.001). Heavy meshes also decreased recurrence (p = 0.015). This systematic review demonstrates that the size of the mesh used in Lichtenstein hernia repair is rarely

  19. River salinity on a mega-delta, an unstructured grid model approach.

    Science.gov (United States)

    Bricheno, Lucy; Saiful Islam, Akm; Wolf, Judith

    2014-05-01

    With an average freshwater discharge of around 40,000 m3/s the BGM (Brahmaputra Ganges and Meghna) river system has the third largest discharge worldwide. The BGM river delta is a low-lying fertile area covering over 100,000 km2 mainly in India and Bangladesh. Approximately two-thirds of the Bangladesh people work in agriculture and these local livelihoods depend on freshwater sources directly linked to river salinity. The finite volume coastal ocean model (FVCOM) has been applied to the BGM delta in order to simulate river salinity under present and future climate conditions. Forced by a combination of regional climate model predictions, and a basin-wide river catchment model, the 3D baroclinic delta model can determine river salinity under the current climate, and make predictions for future wet and dry years. The river salinity demonstrates a strong seasonal and tidal cycle, making it important for the model to be able to capture a wide range of timescales. The unstructured mesh approach used in FVCOM is required to properly represent the delta's structure; a complex network of interconnected river channels. The model extends 250 km inland in order to capture the full extent of the tidal influence and grid resolutions of 10s of metres are required to represent narrow inland river channels. The use of FVCOM to simulate flows so far inland is a novel challenge, which also requires knowledge of the shape and cross-section of the river channels.

  20. Biologic mesh reconstruction of the pelvic floor after extralevator abdominoperineal excision; a systematic review

    Directory of Open Access Journals (Sweden)

    Nasra N Alam

    2016-02-01

    Full Text Available IntroductionThe aim of this review is to provide an overview of the evidence for the use of biologic mesh in the reconstruction of the pelvic floor after extralevator abdominoperineal excision of the rectum (ELAPE.MethodsA systematic search of PubMed was conducted using the search terms ‘ELAPE’, ‘extralevator abdominoperineal excision of rectum’ or ‘extralevator abdominoperineal resection’. The search yielded 17 studies.ResultsBiologic mesh was used in perineal reconstruction in 463 cases. There were 41 perineal hernias reported but rates were not consistently reported in all studies. The most common complications were perineal wound infection (n = 93, perineal sinus and fistulae (n = 26 and perineal haematoma or seroma (n = 11. There were very few comparative studies, with only one RCT identified that compared patients undergoing ELAPE with perineal reconstruction using a biological mesh, with patients undergoing a conventional abdominoperineal excision of the rectum with no mesh. There was no significant difference in perineal hernia rates or perineal wound infections between the groups. Other comparative studies comparing the use of biologic mesh with techniques such as the use of myocutaneous flaps were of low quality.ConclusionsBiologic mesh-assisted perineal reconstruction is a promising technique to improve wound healing and has comparable complications rates to other techniques. However, there is not enough evidence to support its use in all patients who have undergone ELAPE. Results from high-quality prospective RCTs and national/international collaborative audits are required.

  1. Cu mesh for flexible transparent conductive electrodes.

    Science.gov (United States)

    Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

    2015-06-03

    Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

  2. Compressive and Flexural Tests on Adobe Samples Reinforced with Wire Mesh

    Science.gov (United States)

    Jokhio, G. A.; Al-Tawil, Y. M. Y.; Syed Mohsin, S. M.; Gul, Y.; Ramli, N. I.

    2018-03-01

    Adobe is an economical, naturally available, and environment friendly construction material that offers excellent thermal and sound insulations as well as indoor air quality. It is important to understand and enhance the mechanical properties of this material, where a high degree of variation is reported in the literature owing to lack of research and standardization in this field. The present paper focuses first on the understanding of mechanical behaviour of adobe subjected to compressive stresses as well as flexure and then on enhancing the same with the help of steel wire mesh as reinforcement. A total of 22 samples were tested out of which, 12 cube samples were tested for compressive strength, whereas 10 beams samples were tested for modulus of rupture. Half of the samples in each category were control samples i.e. without wire mesh reinforcement, whereas the remaining half were reinforced with a single layer of wire mesh per sample. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. The flexural response of adobe has also shown improvement with the addition of wire mesh reinforcement.

  3. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  4. The Status Quo of Ontology Learning from Unstructured Knowledge Sources for Knowledge Management

    OpenAIRE

    Scheuermann , Andreas; Obermann , Jens

    2012-01-01

    International audience; In the global race for competitive advantage Knowledge Management gains increasing importance for companies. The purposeful and systematic creation, maintenance, and transfer of unstructured knowledge sources demands for advanced Information Technology. Ontologies constitute a basic ingredient of Knowledge Management; thus, ontology learning from unstructured knowledge sources is of particular interest since it bears the potential to bring significant advantages for Kn...

  5. Laparoscopic mesh explantation and drainage of sacral abscess remote from transvaginal excision of exposed sacral colpopexy mesh.

    Science.gov (United States)

    Roth, Ted M; Reight, Ian

    2012-07-01

    Sacral colpopexy may be complicated by mesh exposure, and the surgical treatment of mesh exposure typically results in minor postoperative morbidity and few delayed complications. A 75-year-old woman presented 7 years after a laparoscopic sacral colpopexy, with Mersilene mesh, with an apical mesh exposure. She underwent an uncomplicated transvaginal excision and was asymptomatic until 8 months later when she presented with vaginal drainage and a sacral abscess. This was successfully treated with laparoscopic enterolysis, drainage of the abscess, and explantation of the remaining mesh. Incomplete excision of exposed colpopexy mesh can lead to ascending infection and sacral abscess. Laparoscopic drainage and mesh removal may be considered in these patients.

  6. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    2011-01-01

    that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid

  7. SUPERIMPOSED MESH PLOTTING IN MCNP

    Energy Technology Data Exchange (ETDEWEB)

    J. HENDRICKS

    2001-02-01

    The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.

  8. User Manual for the PROTEUS Mesh Tools

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-06-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.

  9. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  10. Management of complications of mesh surgery.

    Science.gov (United States)

    Lee, Dominic; Zimmern, Philippe E

    2015-07-01

    Transvaginal placements of synthetic mid-urethral slings and vaginal meshes have largely superseded traditional tissue repairs in the current era because of presumed efficacy and ease of implant with device 'kits'. The use of synthetic material has generated novel complications including mesh extrusion, pelvic and vaginal pain and mesh contraction. In this review, our aim is to discuss the management, surgical techniques and outcomes associated with mesh removal. Recent publications have seen an increase in presentation of these mesh-related complications, and reports from multiple tertiary centers have suggested that not all patients benefit from surgical intervention. Although the true incidence of mesh complications is unknown, recent publications can serve to guide physicians and inform patients of the surgical outcomes from mesh-related complications. In addition, the literature highlights the growing need for a registry to account for a more accurate reporting of these events and to counsel patients on the risk and benefits before proceeding with mesh surgeries.

  11. User Manual for the PROTEUS Mesh Tools

    International Nuclear Information System (INIS)

    Smith, Micheal A.; Shemon, Emily R.

    2015-01-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT M eshToMesh.x and the MT R adialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as ''mesh'' input for any of the mesh tools discussed in this manual.

  12. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  13. RGG: Reactor geometry (and mesh) generator

    International Nuclear Information System (INIS)

    Jain, R.; Tautges, T.

    2012-01-01

    The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)

  14. Properties of meshes used in hernia repair: a comprehensive review of synthetic and biologic meshes.

    Science.gov (United States)

    Ibrahim, Ahmed M S; Vargas, Christina R; Colakoglu, Salih; Nguyen, John T; Lin, Samuel J; Lee, Bernard T

    2015-02-01

    Data on the mechanical properties of the adult human abdominal wall have been difficult to obtain rendering manufacture of the ideal mesh for ventral hernia repair a challenge. An ideal mesh would need to exhibit greater biomechanical strength and elasticity than that of the abdominal wall. The aim of this study is to quantitatively compare the biomechanical properties of the most commonly used synthetic and biologic meshes in ventral hernia repair and presents a comprehensive literature review. A narrative review of the literature was performed using the PubMed database spanning articles from 1982 to 2012 including a review of company Web sites to identify all available information relating to the biomechanical properties of various synthetic and biologic meshes used in ventral hernia repair. There exist differences in the mechanical properties and the chemical nature of different meshes. In general, most synthetic materials have greater stiffness and elasticity than what is required for abdominal wall reconstruction; however, each exhibits unique properties that may be beneficial for clinical use. On the contrary, biologic meshes are more elastic but less stiff and with a lower tensile strength than their synthetic counterparts. The current standard of practice for the treatment of ventral hernias is the use of permanent synthetic mesh material. Recently, biologic meshes have become more frequently used. Most meshes exhibit biomechanical properties over the known abdominal wall thresholds. Augmenting strength requires increasing amounts of material contributing to more stiffness and foreign body reaction, which is not necessarily an advantage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Compressible flow modelling in unstructured mesh topologies using numerical methods developed for incompressible flows

    International Nuclear Information System (INIS)

    Caruso, A.; Mechitoua, N.; Duplex, J.

    1995-01-01

    The R and D thermal hydraulic codes, notably the finite difference codes Melodie (2D) and ESTET (3D) or the 2D and 3D versions of the finite element code N3S were initially developed for incompressible, possibly dilatable, turbulent flows, i.e. those where density is not pressure-dependent. Subsequent minor modifications to these finite difference code algorithms enabled extension of their scope to subsonic compressible flows. The first applications in both single-phase and two flow contexts have now been completed. This paper presents the techniques used to adapt these algorithms for the processing of compressible flows in an N3S type finite element code, whereby complex geometries normally difficult to model in finite difference meshes could be successfully dealt with. The development of version 3.0 of he N3S code led to dilatable flow calculations at lower cost. On this basis, a 2-D prototype version of N3S was programmed, tested and validated, drawing maximum benefit from Cray vectorization possibilities and from physical, numerical or data processing experience with other fluid dynamics codes, such as Melodie, ESTET or TELEMAC. The algorithms are the same as those used in finite difference codes, but their formulation is variational. The first part of the paper deals with the fundamental equations involved, expressed in basic form, together with the associated digital method. The modifications to the k-epsilon turbulence model extended to compressible flows are also described. THe second part presents the algorithm used, indicating the additional terms required by the extension. The third part presents the equations in integral form and the associated matrix systems. The solutions adopted for calculation of the compressibility related terms are indicated. Finally, a few representative applications and test cases are discussed. These include subsonic, but also transsonic and supersonic cases, showing the shock responses of the digital method. The application of

  16. Molecular surface mesh generation by filtering electron density map.

    Science.gov (United States)

    Giard, Joachim; Macq, Benoît

    2010-01-01

    Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

  17. Molecular Surface Mesh Generation by Filtering Electron Density Map

    Directory of Open Access Journals (Sweden)

    Joachim Giard

    2010-01-01

    Full Text Available Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

  18. Diffusion on unstructured triangular grids using Lattice Boltzmann

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2004-01-01

    In this paper, we present a Lattice Boltzmann scheme for diffusion on unstructured triangular grids. In this formulation there is no need for interpolation, as is required in other LB schemes on irregular grids. At the end of the propagation step, the lattice gas particles arrive exactly at

  19. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    Science.gov (United States)

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2013-05-01

    projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise.

  20. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    International Nuclear Information System (INIS)

    Boutchko, R; Gullberg, G T; Sitek, A

    2013-01-01

    projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise. (paper)

  1. MCNP6 unstructured mesh application to estimate the photoneutron distribution and induced activity inside a linac bunker

    Science.gov (United States)

    Juste, B.; Morató, S.; Miró, R.; Verdú, G.; Díez, S.

    2017-08-01

    Unwanted neutrons in radiation therapy treatments are typically generated by photonuclear reactions. High-energy beams emitted by medical Linear Accelerators (LinAcs) interact with high atomic number materials situated in the accelerator head and release neutrons. Since neutrons have a high relative biological effectiveness, even low neutron doses may imply significant exposure of patients. It is also important to study radioactivity induced by these photoneutrons when interacting with the different materials and components of the treatment head facility and the shielding room walls, since persons not present during irradiation (e.g. medical staff) may be exposed to them even when the accelerator is not operating. These problems are studied in this work in order to contribute to challenge the radiation protection in these treatment locations. The work has been performed by simulation using the latest state of the art of Monte-Carlo computer code MCNP6. To that, a detailed model of particles transport inside the bunker and treatment head has been carried out using a meshed geometry model. The LinAc studied is an Elekta Precise accelerator with a treatment photon energy of 15 MeV used at the Hospital Clinic Universitari de Valencia, Spain.

  2. A novel method of the image processing on irregular triangular meshes

    Science.gov (United States)

    Vishnyakov, Sergey; Pekhterev, Vitaliy; Sokolova, Elizaveta

    2018-04-01

    The paper describes a novel method of the image processing based on irregular triangular meshes implementation. The triangular mesh is adaptive to the image content, least mean square linear approximation is proposed for the basic interpolation within the triangle. It is proposed to use triangular numbers to simplify using of the local (barycentric) coordinates for the further analysis - triangular element of the initial irregular mesh is to be represented through the set of the four equilateral triangles. This allows to use fast and simple pixels indexing in local coordinates, e.g. "for" or "while" loops for access to the pixels. Moreover, representation proposed allows to use discrete cosine transform of the simple "rectangular" symmetric form without additional pixels reordering (as it is used for shape-adaptive DCT forms). Furthermore, this approach leads to the simple form of the wavelet transform on triangular mesh. The results of the method application are presented. It is shown that advantage of the method proposed is a combination of the flexibility of the image-adaptive irregular meshes with the simple form of the pixel indexing in local triangular coordinates and the using of the common forms of the discrete transforms for triangular meshes. Method described is proposed for the image compression, pattern recognition, image quality improvement, image search and indexing. It also may be used as a part of video coding (intra-frame or inter-frame coding, motion detection).

  3. On Reducing Delay in Mesh-Based P2P Streaming: A Mesh-Push Approach

    Science.gov (United States)

    Liu, Zheng; Xue, Kaiping; Hong, Peilin

    The peer-assisted streaming paradigm has been widely employed to distribute live video data on the internet recently. In general, the mesh-based pull approach is more robust and efficient than the tree-based push approach. However, pull protocol brings about longer streaming delay, which is caused by the handshaking process of advertising buffer map message, sending request message and scheduling of the data block. In this paper, we propose a new approach, mesh-push, to address this issue. Different from the traditional pull approach, mesh-push implements block scheduling algorithm at sender side, where the block transmission is initiated by the sender rather than by the receiver. We first formulate the optimal upload bandwidth utilization problem, then present the mesh-push approach, in which a token protocol is designed to avoid block redundancy; a min-cost flow model is employed to derive the optimal scheduling for the push peer; and a push peer selection algorithm is introduced to reduce control overhead. Finally, we evaluate mesh-push through simulation, the results of which show mesh-push outperforms the pull scheduling in streaming delay, and achieves comparable delivery ratio at the same time.

  4. Adaptive and dynamic meshing methods for numerical simulations

    Science.gov (United States)

    Acikgoz, Nazmiye

    For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures. For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad

  5. Transrectal Mesh Erosion Requiring Bowel Resection.

    Science.gov (United States)

    Kemp, Marta Maria; Slim, Karem; Rabischong, Benoît; Bourdel, Nicolas; Canis, Michel; Botchorishvili, Revaz

    To report a case of a transrectal mesh erosion as complication of laparoscopic promontofixation with mesh repair, necessitating bowel resection and subsequent surgical interventions. Sacrocolpopexy has become a standard procedure for vaginal vault prolapse [1], and the laparoscopic approach has gained popularity owing to more rapid recovery and less morbidity [2,3]. Mesh erosion is a well-known complication of surgical treatment for prolapse as reported in several negative evaluations, including a report from the US Food and Drug Administration in 2011 [4]. Mesh complications are more common after surgeries via the vaginal approach [5]; nonetheless, the incidence of vaginal mesh erosion after laparoscopic procedures is as high as 9% [6]. The incidence of transrectal mesh exposure after laparoscopic ventral rectopexy is roughly 1% [7]. The diagnosis may be delayed because of its rarity and variable presentation. In addition, polyester meshes, such as the mesh used in this case, carry a higher risk of exposure [8]. A 57-year-old woman experiencing genital prolapse, with the cervix classified as +3 according to the Pelvic Organ Prolapse Quantification system, underwent laparoscopic standard sacrocolpopexy using polyester mesh. Subtotal hysterectomy and bilateral adnexectomy were performed concomitantly. A 3-year follow-up consultation demonstrated no signs or symptoms of erosion of any type. At 7 years after the surgery, however, the patient presented with rectal discharge, diagnosed as infectious rectocolitis with the isolation of Clostridium difficile. She underwent a total of 5 repair surgeries in a period of 4 months, including transrectal resection of exposed mesh, laparoscopic ablation of mesh with digestive resection, exploratory laparoscopy with abscess drainage, and exploratory laparoscopy with ablation of residual mesh and transverse colostomy. She recovered well after the last intervention, exhibiting no signs of vaginal or rectal fistula and no recurrence

  6. Parallel Sn Sweeps on Unstructured Grids: Algorithms for Prioritization, Grid Partitioning, and Cycle Detection

    International Nuclear Information System (INIS)

    Plimpton, Steven J.; Hendrickson, Bruce; Burns, Shawn P.; McLendon, William III; Rauchwerger, Lawrence

    2005-01-01

    The method of discrete ordinates is commonly used to solve the Boltzmann transport equation. The solution in each ordinate direction is most efficiently computed by sweeping the radiation flux across the computational grid. For unstructured grids this poses many challenges, particularly when implemented on distributed-memory parallel machines where the grid geometry is spread across processors. We present several algorithms relevant to this approach: (a) an asynchronous message-passing algorithm that performs sweeps simultaneously in multiple ordinate directions, (b) a simple geometric heuristic to prioritize the computational tasks that a processor works on, (c) a partitioning algorithm that creates columnar-style decompositions for unstructured grids, and (d) an algorithm for detecting and eliminating cycles that sometimes exist in unstructured grids and can prevent sweeps from successfully completing. Algorithms (a) and (d) are fully parallel; algorithms (b) and (c) can be used in conjunction with (a) to achieve higher parallel efficiencies. We describe our message-passing implementations of these algorithms within a radiation transport package. Performance and scalability results are given for unstructured grids with up to 3 million elements (500 million unknowns) running on thousands of processors of Sandia National Laboratories' Intel Tflops machine and DEC-Alpha CPlant cluster

  7. Unstructured Socializing with Peers and Delinquent Behavior: A Genetically Informed Analysis.

    Science.gov (United States)

    Meldrum, Ryan C; Barnes, J C

    2017-09-01

    A large body of research finds that unstructured socializing with peers is positively associated with delinquency during adolescence. Yet, existing research has not ruled out the potential for confounding due to genetic factors and factors that can be traced to environments shared between siblings. To fill this void, the current study examines whether the association between unstructured socializing with peers and delinquent behavior remains when accounting for genetic factors, shared environmental influences, and a variety of non-shared environmental covariates. We do so by using data from the twin subsample of the National Longitudinal Study of Adolescent to Adult Health (n = 1200 at wave 1 and 1103 at wave 2; 51% male; mean age at wave 1 = 15.63). Results from both cross-sectional and lagged models indicate the association between unstructured socializing with peers and delinquent behavior remains when controlling for both genetic and environmental influences. Supplementary analyses examining the association under different specifications offer additional, albeit qualified, evidence supportive of this finding. The study concludes with a discussion highlighting the importance of limiting free time with friends in the absence of authority figures as a strategy for reducing delinquency during adolescence.

  8. From Pore Scale to Turbulent Flow with the Unstructured Lattice Boltzmann Method

    DEFF Research Database (Denmark)

    Matin, Rastin

    Abstract: The lattice Boltzmann method is a class of methods in computational fluid dynamics for simulating fluid flow. Implementations on unstructured grids are particularly relevant for various engineering applications, where geometric flexibility or high resolution near a body or a wall...... is required. The main topic of this thesis is to further develop unstructured lattice Boltzmann methods for simulations of Newtonian fluid flow in three dimensions, in particular porous flow. Two methods are considered in this thesis based on the finite volume method and finite element method, respectively...

  9. Coarse mesh code development

    Energy Technology Data Exchange (ETDEWEB)

    Lieberoth, J.

    1975-06-15

    The numerical solution of the neutron diffusion equation plays a very important role in the analysis of nuclear reactors. A wide variety of numerical procedures has been proposed, at which most of the frequently used numerical methods are fundamentally based on the finite- difference approximation where the partial derivatives are approximated by the finite difference. For complex geometries, typical of the practical reactor problems, the computational accuracy of the finite-difference method is seriously affected by the size of the mesh width relative to the neutron diffusion length and by the heterogeneity of the medium. Thus, a very large number of mesh points are generally required to obtain a reasonably accurate approximate solution of the multi-dimensional diffusion equation. Since the computation time is approximately proportional to the number of mesh points, a detailed multidimensional analysis, based on the conventional finite-difference method, is still expensive even with modern large-scale computers. Accordingly, there is a strong incentive to develop alternatives that can reduce the number of mesh-points and still retain accuracy. One of the promising alternatives is the finite element method, which consists of the expansion of the neutron flux by piecewise polynomials. One of the advantages of this procedure is its flexibility in selecting the locations of the mesh points and the degree of the expansion polynomial. The small number of mesh points of the coarse grid enables to store the results of several of the least outer iterations and to calculate well extrapolated values of them by comfortable formalisms. This holds especially if only one energy distribution of fission neutrons is assumed for all fission processes in the reactor, because the whole information of an outer iteration is contained in a field of fission rates which has the size of all mesh points of the coarse grid.

  10. EMPHASIS™/Nevada UTDEM User Guide Version 2.1.2

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pasik, Michael F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seidel, David B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pointon, Timothy D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cartwright, Keith L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kramer, Richard M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McGregor, Duncan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-15

    The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell’s equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest.

  11. Short-term outcomes of the transvaginal minimal mesh procedure for pelvic organ prolapse

    Directory of Open Access Journals (Sweden)

    Naoko Takazawa

    2018-03-01

    Full Text Available Purpose: This study aimed to evaluate the clinical outcomes and complications of transvaginal minimal mesh repair without using commercially available kits for treatment of pelvic organ prolapse (POP. Materials and Methods: This retrospective cohort study involved 91 women who underwent surgical management of POP with originally designed small mesh between July 2014 and August 2015. This mesh is 56% smaller than the mesh widely used in Japan, and it has only two arms delivered into each right and left sacrospinous ligament. The main study outcome was the anatomic cure rate defined as recurrence of POP quantification (POP-Q stage II or more. We also assessed changes in the overactive bladder symptom score (OABSS and prolapse quality of life questionnaire (P-QOL and evaluated adverse events. Finally, we compared patient backgrounds between the patients with and without recurrence. Results: Prolapse recurred in 10 of 91 patients (11.0%, and all patients with recurrence were diagnosed as POP-Q stage II. As adverse events, only mesh erosion occurred in two (2.2% and pelvic pain in one (1.1% of the 91 patients. The OABSS and P-QOL were significantly improved by the operation. When we compared patient backgrounds between the patients with and without recurrence, body mass index was the only factor influencing affecting recurrence. Conclusions: Transvaginal minimal mesh repair resulted in successful outcomes with low mesh-related complications and anatomic recurrence at one year. Furthermore, significant improvement in QOL was offered by this procedure. Our minimal mesh technique should be considered as one treatment option for the management of POP.

  12. Short-term outcomes of the transvaginal minimal mesh procedure for pelvic organ prolapse.

    Science.gov (United States)

    Takazawa, Naoko; Fujisaki, Akiko; Yoshimura, Yasukuni; Tsujimura, Akira; Horie, Shigeo

    2018-03-01

    This study aimed to evaluate the clinical outcomes and complications of transvaginal minimal mesh repair without using commercially available kits for treatment of pelvic organ prolapse (POP). This retrospective cohort study involved 91 women who underwent surgical management of POP with originally designed small mesh between July 2014 and August 2015. This mesh is 56% smaller than the mesh widely used in Japan, and it has only two arms delivered into each right and left sacrospinous ligament. The main study outcome was the anatomic cure rate defined as recurrence of POP quantification (POP-Q) stage II or more. We also assessed changes in the overactive bladder symptom score (OABSS) and prolapse quality of life questionnaire (P-QOL) and evaluated adverse events. Finally, we compared patient backgrounds between the patients with and without recurrence. Prolapse recurred in 10 of 91 patients (11.0%), and all patients with recurrence were diagnosed as POP-Q stage II. As adverse events, only mesh erosion occurred in two (2.2%) and pelvic pain in one (1.1%) of the 91 patients. The OABSS and P-QOL were significantly improved by the operation. When we compared patient backgrounds between the patients with and without recurrence, body mass index was the only factor influencing affecting recurrence. Transvaginal minimal mesh repair resulted in successful outcomes with low mesh-related complications and anatomic recurrence at one year. Furthermore, significant improvement in QOL was offered by this procedure. Our minimal mesh technique should be considered as one treatment option for the management of POP.

  13. Mesh fixation with glue versus suture for chronic pain and recurrence in Lichtenstein inguinal hernioplasty.

    Science.gov (United States)

    Sun, Ping; Cheng, Xiang; Deng, Shichang; Hu, Qinggang; Sun, Yi; Zheng, Qichang

    2017-02-07

    Chronic pain following mesh-based inguinal hernia repair is frequently reported, and has a significant impact on quality of life. Whether mesh fixation with glue can reduce chronic pain without increasing the recurrence rate is still controversial. To determine whether tissue adhesives can reduce postoperative complications, especially chronic pain, with no increase in recurrence rate, compared with sutures for mesh fixation in Lichtenstein hernia repair. We searched the following electronic databases with no language restrictions: the Cochrane Central Register of Controlled Trials (CENTRAL; issue 4, 2016) in the Cochrane Library (searched 11 May 2016), MEDLINE Ovid (1986 to 11 May 2016), Embase Ovid (1986 to 11 May 2016), Science Citation Index (Web of Science) (1986 to 11 May 2016), CBM (Chinese Biomedical Database), CNKI (China National Knowledge Infrastructure), VIP (a full-text database in China), Wanfang databases. We also checked reference lists of identified papers (included studies and relevant reviews). We included all randomised and quasi-randomised controlled trials comparing glue versus sutures for mesh fixation in Lichtenstein hernia repair. Cluster-RCTs were also eligible. Two review authors extracted data and assessed the risk of bias independently. Dichotomous outcomes were expressed as odds ratio (OR) with 95% confidence intervals (CI). Continuous outcomes were expressed as mean differences (MD) with 95% CIs. Twelve trials with a total of 1932 participants were included in this review. The overall postoperative chronic pain in the glue group was reduced by 37% (OR 0.63, 95% CI 0.44 to 0.91; 10 studies, 1418 participants, low-quality evidence) compared with the suture group. However, the results changed when we conducted subgroup analysis with regard to the type of mesh. Subgroup analysis of included studies using lightweight mesh showed the reduction of chronic pain was less profound and insignificant (OR 0.77, 95% CI 0.50 to 1.17). Subgroup

  14. Use of NLM medical subject headings with the MeSH2010 thesaurus in the PORTAL-DOORS system.

    Science.gov (United States)

    Taswell, Carl

    2010-01-01

    The NLM MeSH Thesaurus has been incorporated for use in the PORTAL-DOORS System (PDS) for resource metadata management on the semantic web. All 25588 descriptor records from the NLM 2010 MeSH Thesaurus have been exposed as web accessible resources by the PDS MeSH2010 Thesaurus implemented as a PDS PORTAL Registry operating as a RESTful web service. Examples of records from the PDS MeSH2010 PORTAL are demonstrated along with their use by records in other PDS PORTAL Registries that reference the concepts from the MeSH2010 Thesaurus. Use of this important biomedical terminology will greatly enhance the quality of metadata content of other PDS records thus improving cross-domain searches between different problem oriented domains and amongst different clinical specialty fields.

  15. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  16. Wave Resource Characterization Using an Unstructured Grid Modeling Approach

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Wu

    2018-03-01

    Full Text Available This paper presents a modeling study conducted on the central Oregon coast for wave resource characterization, using the unstructured grid Simulating WAve Nearshore (SWAN model coupled with a nested grid WAVEWATCH III® (WWIII model. The flexibility of models with various spatial resolutions and the effects of open boundary conditions simulated by a nested grid WWIII model with different physics packages were evaluated. The model results demonstrate the advantage of the unstructured grid-modeling approach for flexible model resolution and good model skills in simulating the six wave resource parameters recommended by the International Electrotechnical Commission in comparison to the observed data in Year 2009 at National Data Buoy Center Buoy 46050. Notably, spectral analysis indicates that the ST4 physics package improves upon the ST2 physics package’s ability to predict wave power density for large waves, which is important for wave resource assessment, load calculation of devices, and risk management. In addition, bivariate distributions show that the simulated sea state of maximum occurrence with the ST4 physics package matched the observed data better than with the ST2 physics package. This study demonstrated that the unstructured grid wave modeling approach, driven by regional nested grid WWIII outputs along with the ST4 physics package, can efficiently provide accurate wave hindcasts to support wave resource characterization. Our study also suggests that wind effects need to be considered if the dimension of the model domain is greater than approximately 100 km, or O (102 km.

  17. Method and system for mesh network embedded devices

    Science.gov (United States)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

  18. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  19. Organized and Unstructured Activity Participation among Adolescents Involved with Child Protective Services in the United States

    Science.gov (United States)

    Kwak, Yoonyoung; Lu, Ting; Christ, Sharon L.

    2017-01-01

    Background: Many adolescents are referred to Child Protective Services for possible maltreatment every year, but not much is known about their organized and unstructured activity participation. Objective: The purposes of this study are to provide a description of organized and unstructured activity participation for adolescents who were possible…

  20. 3D active shape models of human brain structures: application to patient-specific mesh generation

    Science.gov (United States)

    Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.

    2015-03-01

    The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.

  1. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-12

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  2. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan; Zhang, Eugene; Kobayashi, Yoshihiro; Wonka, Peter

    2011-01-01

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  3. Leveraging the power of mesh

    Energy Technology Data Exchange (ETDEWEB)

    Glass, H. [Cellnet, Alpharetta, GA (United States)

    2006-07-01

    Mesh network applications are used by utilities for metering, demand response, and mobile workforce management. This presentation provided an overview of a multi-dimensional mesh application designed to offer improved scalability and higher throughput in advanced metering infrastructure (AMI) systems. Mesh applications can be used in AMI for load balancing and forecasting, as well as for distribution and transmission planning. New revenue opportunities can be realized through the application's ability to improve notification and monitoring services, and customer service communications. Mesh network security features include data encryption, data fragmentation and the automatic re-routing of data. In order to use mesh network applications, networks must have sufficient bandwidth and provide flexibility at the endpoint layer to support multiple devices from multiple vendors, as well as support multiple protocols. It was concluded that smart meters will not enable energy response solutions without an underlying AMI that is reliable, scalable and self-healing. .refs., tabs., figs.

  4. CVD-MPFA full pressure support, coupled unstructured discrete fracture-matrix Darcy-flux approximations

    Science.gov (United States)

    Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur

    2017-11-01

    Two novel control-volume methods are presented for flow in fractured media, and involve coupling the control-volume distributed multi-point flux approximation (CVD-MPFA) constructed with full pressure support (FPS), to two types of discrete fracture-matrix approximation for simulation on unstructured grids; (i) involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy's law together with mass conservation both in the matrix and the fractures, where large discontinuities in permeability tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular pressure support (TPS) schemes for problems involving highly anisotropic homogeneous and heterogeneous full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are modelled by lower-dimensional interfaces between matrix cells in the physical mesh but expanded to equi-dimensional cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which reduces the condition number of the global linear system and leads to larger time steps for tracer transport. The transport equation for tracer flow is coupled with the pressure equation and provides flow parameter assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations are compared with the corresponding results of fine-scale explicit equi-dimensional formulations. The results show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic permeability fields and very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the

  5. Continuous-time quantum algorithms for unstructured problems

    International Nuclear Information System (INIS)

    Hen, Itay

    2014-01-01

    We consider a family of unstructured optimization problems, for which we propose a method for constructing analogue, continuous-time (not necessarily adiabatic) quantum algorithms that are faster than their classical counterparts. In this family of problems, which we refer to as ‘scrambled input’ problems, one has to find a minimum-cost configuration of a given integer-valued n-bit black-box function whose input values have been scrambled in some unknown way. Special cases within this set of problems are Grover’s search problem of finding a marked item in an unstructured database, certain random energy models, and the functions of the Deutsch–Josza problem. We consider a couple of examples in detail. In the first, we provide an O(1) deterministic analogue quantum algorithm to solve the seminal problem of Deutsch and Josza, in which one has to determine whether an n-bit boolean function is constant (gives 0 on all inputs or 1 on all inputs) or balanced (returns 0 on half the input states and 1 on the other half). We also study one variant of the random energy model, and show that, as one might expect, its minimum energy configuration can be found quadratically faster with a quantum adiabatic algorithm than with classical algorithms. (paper)

  6. Hernia Surgical Mesh Implants

    Science.gov (United States)

    ... knitted mesh or non-knitted sheet forms. The synthetic materials used can be absorbable, non-absorbable or a combination of absorbable and non-absorbable materials. Animal-derived mesh are made of animal tissue, such as intestine or skin, that has been processed and disinfected to be ...

  7. Recognition and characterization of unstructured environmental sounds

    Science.gov (United States)

    Chu, Selina

    2011-12-01

    Environmental sounds are what we hear everyday, or more generally sounds that surround us ambient or background audio. Humans utilize both vision and hearing to respond to their surroundings, a capability still quite limited in machine processing. The first step toward achieving multimodal input applications is the ability to process unstructured audio and recognize audio scenes (or environments). Such ability would have applications in content analysis and mining of multimedia data or improving robustness in context aware applications through multi-modality, such as in assistive robotics, surveillances, or mobile device-based services. The goal of this thesis is on the characterization of unstructured environmental sounds for understanding and predicting the context surrounding of an agent or device. Most research on audio recognition has focused primarily on speech and music. Less attention has been paid to the challenges and opportunities for using audio to characterize unstructured audio. My research focuses on investigating challenging issues in characterizing unstructured environmental audio and to develop novel algorithms for modeling the variations of the environment. The first step in building a recognition system for unstructured auditory environment was to investigate on techniques and audio features for working with such audio data. We begin by performing a study that explore suitable features and the feasibility of designing an automatic environment recognition system using audio information. In my initial investigation to explore the feasibility of designing an automatic environment recognition system using audio information, I have found that traditional recognition and feature extraction for audio were not suitable for environmental sound, as they lack any type of structures, unlike those of speech and music which contain formantic and harmonic structures, thus dispelling the notion that traditional speech and music recognition techniques can simply

  8. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  9. WebDat: bridging the gap between unstructured and structured data

    International Nuclear Information System (INIS)

    Nogiec, Jerzy M.; Trombly-Freytag, Kelley; Carcagno, Ruben

    2008-01-01

    Accelerator R and D environments produce data characterized by different levels of organization. Whereas some systems produce repetitively predictable and standardized structured data, others may produce data of unknown or changing structure. In addition, structured data, typically sets of numeric values, are frequently logically connected with unstructured content (e.g., images, graphs, comments). Despite these different characteristics, a coherent, organized and integrated view of all information is sought out. WebDat is a system conceived as a result of efforts in this direction. It provides a uniform and searchable view of structured and unstructured data via common metadata, regardless of the repository used (DBMS or file system). It also allows for processing data and creating interactive reports. WebDat supports metadata management, administration, data and content access, application integration via Web services, and Web-based collaborative analysis

  10. WebDat: bridging the gap between unstructured and structured data

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, Jerzy M.; Trombly-Freytag, Kelley; Carcagno, Ruben; /Fermilab

    2008-11-01

    Accelerator R&D environments produce data characterized by different levels of organization. Whereas some systems produce repetitively predictable and standardized structured data, others may produce data of unknown or changing structure. In addition, structured data, typically sets of numeric values, are frequently logically connected with unstructured content (e.g., images, graphs, comments). Despite these different characteristics, a coherent, organized and integrated view of all information is sought out. WebDat is a system conceived as a result of efforts in this direction. It provides a uniform and searchable view of structured and unstructured data via common metadata, regardless of the repository used (DBMS or file system). It also allows for processing data and creating interactive reports. WebDat supports metadata management, administration, data and content access, application integration via Web services, and Web-based collaborative analysis.

  11. Comparison of a lightweight polypropylene mesh (Optilene® LP) and a large-pore knitted PTFE mesh (GORE® INFINIT® mesh)--Biocompatibility in a standardized endoscopic extraperitoneal hernia model.

    Science.gov (United States)

    Jacob, Dietmar A; Schug-Pass, Christine; Sommerer, Florian; Tannapfel, Andrea; Lippert, Hans; Köckerling, Ferdinand

    2012-02-01

    The use of a mesh with good biocompatibility properties is of decisive importance for the avoidance of recurrences and chronic pain in endoscopic hernia repair surgery. As we know from numerous experiments and clinical experience, large-pore, lightweight polypropylene meshes possess the best biocompatibility. However, large-pore meshes of different polymers may be used as well and might be an alternative solution. Utilizing a totally extraperitoneal technique in an established animal model, 20 domestic pigs were implanted with either a lightweight large-pore polypropylene (PP) mesh (Optilene® LP) or a medium-weight large-pore knitted polytetrafluorethylene (PTFE) mesh (GORE® INFINIT® mesh). After 94 days, the pigs were sacrificed and postmortem diagnostic laparoscopy was performed, followed by explantation of the specimens for macroscopic, histological and immunohistochemical evaluation. The mean mesh shrinkage rate was 14.2% for Optilene® LP vs. 24.7% for INFINIT® mesh (p = 0.017). The partial volume of the inflammatory cells was 11.2% for Optilene® LP vs. 13.9% for INFINIT (n.s.). CD68 was significantly higher for INFINIT (11.8% vs. 5.6%, p = 0.007). The markers of cell turnover, namely Ki67 and the apoptotic index, were comparable at 6.4% vs. 12.4% (n.s.) and 1.6% vs. 2.0% (n.s.). In the extracellular matrix, TGF-β was 35.4% for Optilene® LP and 31.0% for INFINIT® (n.s.). Collagen I (pos/300 μm) deposits were 117.8 and 114.9, respectively. In our experimental examinations, Optilene® LP and INFINIT® showed a comparable biocompatibility in terms of chronic inflammatory reaction; however, the shrinkage rate was significantly higher for INFINIT® after 3 months. The higher shrinkage rate of INFINIT® should be taken into account when choosing the mesh size for an adequate hernia overlap.

  12. MEDLINE MeSH Indexing: Lessons Learned from Machine Learning and Future Directions

    DEFF Research Database (Denmark)

    Jimeno-Yepes, Antonio; Mork, James G.; Wilkowski, Bartlomiej

    2012-01-01

    and analyzed the issues when using standard machine learning algorithms. We show that in some cases machine learning can improve the annotations already recommended by MTI, that machine learning based on low variance methods achieves better performance and that each MeSH heading presents a different behavior......Map and a k-NN approach called PubMed Related Citations (PRC). Our motivation is to improve the quality of MTI based on machine learning. Typical machine learning approaches fit this indexing task into text categorization. In this work, we have studied some Medical Subject Headings (MeSH) recommended by MTI...

  13. Mesh fixation in laparoscopic incisional hernia repair: glue fixation provides attachment strength similar to absorbable tacks but differs substantially in different meshes.

    Science.gov (United States)

    Rieder, Erwin; Stoiber, Martin; Scheikl, Verena; Poglitsch, Marcus; Dal Borgo, Andrea; Prager, Gerhard; Schima, Heinrich

    2011-01-01

    Laparoscopic ventral hernia repair has gained popularity among minimally invasive surgeons. However, mesh fixation remains a matter of discussion. This study was designed to compare noninvasive fibrin-glue attachment with tack fixation of meshes developed primarily for intra-abdominal use. It was hypothesized that particular mesh structures would substantially influence detachment force. For initial evaluation, specimens of laminated polypropylene/polydioxanone meshes were anchored to porcine abdominal walls by either helical titanium tacks or absorbable tacks in vitro. A universal tensile-testing machine was used to measure tangential detachment forces (TF). For subsequent experiments of glue fixation, polypropylene/polydioxanone mesh and 4 additional meshes with diverse particular mesh structure, ie, polyvinylidene fluoride/polypropylene mesh, a titanium-coated polypropylene mesh, a polyester mesh bonded with a resorbable collagen, and a macroporous condensed PTFE mesh were evaluated. TF tests revealed that fibrin-glue attachment was not substantially different from that achieved with absorbable tacks (median TF 7.8 Newton [N], range 1.3 to 15.8 N), but only when certain open porous meshes (polyvinylidene fluoride/polypropylene mesh: median 6.2 N, range 3.4 to 10.3 N; titanium-coated polypropylene mesh: median 5.2 N, range 2.1 to 11.7 N) were used. Meshes coated by an anti-adhesive barrier (polypropylene/polydioxanone mesh: median 3.1 N, range 1.7 to 5.8 N; polyester mesh bonded with a resorbable collagen: median 1.3 N, range 0.5 to 1.9 N), or the condensed PTFE mesh (median 3.1 N, range 2.1 to 7.0 N) provided a significantly lower TF (p < 0.01). Fibrin glue appears to be an appealing noninvasive option for mesh fixation in laparoscopic ventral hernia repair, but only if appropriate meshes are used. Glue can also serve as an adjunct to mechanical fixation to reduce the number of invasive tacks. Copyright © 2010 American College of Surgeons. Published by Elsevier

  14. Linear systems with unstructured multiplicative uncertainty: Modeling and robust stability analysis.

    Directory of Open Access Journals (Sweden)

    Radek Matušů

    Full Text Available This article deals with continuous-time Linear Time-Invariant (LTI Single-Input Single-Output (SISO systems affected by unstructured multiplicative uncertainty. More specifically, its aim is to present an approach to the construction of uncertain models based on the appropriate selection of a nominal system and a weight function and to apply the fundamentals of robust stability investigation for considered sort of systems. The initial theoretical parts are followed by three extensive illustrative examples in which the first order time-delay, second order and third order plants with parametric uncertainty are modeled as systems with unstructured multiplicative uncertainty and subsequently, the robust stability of selected feedback loops containing constructed models and chosen controllers is analyzed and obtained results are discussed.

  15. Unsupervised Ontology Generation from Unstructured Text. CRESST Report 827

    Science.gov (United States)

    Mousavi, Hamid; Kerr, Deirdre; Iseli, Markus R.

    2013-01-01

    Ontologies are a vital component of most knowledge acquisition systems, and recently there has been a huge demand for generating ontologies automatically since manual or supervised techniques are not scalable. In this paper, we introduce "OntoMiner", a rule-based, iterative method to extract and populate ontologies from unstructured or…

  16. Prolapse Recurrence after Transvaginal Mesh Removal.

    Science.gov (United States)

    Rawlings, Tanner; Lavelle, Rebecca S; Coskun, Burhan; Alhalabi, Feras; Zimmern, Philippe E

    2015-11-01

    We determined the rate of pelvic organ prolapse recurrence after transvaginal mesh removal. Following institutional review board approval a longitudinally collected database of women undergoing transvaginal mesh removal for complications after transvaginal mesh placement with at least 1 year minimum followup was queried for pelvic organ prolapse recurrence. Recurrent prolapse was defined as greater than stage 1 on examination or the need for reoperation at the site of transvaginal mesh removal. Outcome measures were based on POP-Q (Pelvic Organ Prolapse Quantification System) at the last visit. Patients were grouped into 3 groups, including group 1--recurrent prolapse in the same compartment as transvaginal mesh removal, 2--persistent prolapse and 3--prolapse in a compartment different than transvaginal mesh removal. Of 73 women 52 met study inclusion criteria from 2007 to 2013, including 73% who presented with multiple indications for transvaginal mesh removal. The mean interval between insertion and removal was 45 months (range 10 to 165). Overall mean followup after transvaginal mesh removal was 30 months (range 12 to 84). In group 1 (recurrent prolapse) the rate was 15% (6 of 40 patients). Four women underwent surgery for recurrent prolapse at a mean 7 of months (range 5 to 10). Two patients elected observation. The rate of persistent prolapse (group 2) was 23% (12 of 52 patients). Three women underwent prolapse reoperation at a mean of 10 months (range 8 to 12). In group 3 (de novo/different compartment prolapse) the rate was 6% (3 of 52 patients). One woman underwent surgical repair at 52 months. At a mean 2.5-year followup 62% of patients (32 of 52) did not have recurrent or persistent prolapse after transvaginal mesh removal and 85% (44 of 52) did not undergo any further procedure for prolapse. Specifically for pelvic organ prolapse in the same compartment as transvaginal mesh removal 12% of patients had recurrence, of whom 8% underwent prolapse repair

  17. GRIZ: Visualization of finite element analysis results on unstructured grids

    International Nuclear Information System (INIS)

    Dovey, D.; Loomis, M.D.

    1994-01-01

    GRIZ is a general-purpose post-processing application that supports interactive visualization of finite element analysis results on three-dimensional unstructured grids. GRIZ includes direct-to-videodisc animation capabilities and is being used as a production tool for creating engineering animations

  18. Automatic mesh generation with QMESH program

    International Nuclear Information System (INIS)

    Ise, Takeharu; Tsutsui, Tsuneo

    1977-05-01

    Usage of the two-dimensional self-organizing mesh generation program, QMESH, is presented together with the descriptions and the experience, as it has recently been converted and reconstructed from the NEACPL version to the FACOM. The program package consists of the QMESH code to generate quadrilaterial meshes with smoothing techniques, the QPLOT code to plot the data obtained from the QMESH on the graphic COM, and the RENUM code to renumber the meshes by using a bandwidth minimization procedure. The technique of mesh reconstructuring coupled with smoothing techniques is especially useful when one generates the meshes for computer codes based on the finite element method. Several typical examples are given for easy access to the QMESH program, which is registered in the R.B-disks of JAERI for users. (auth.)

  19. In-vitro examination of the biocompatibility of fibroblast cell lines on alloplastic meshes and sterilized polyester mosquito mesh.

    Science.gov (United States)

    Wiessner, R; Kleber, T; Ekwelle, N; Ludwig, K; Richter, D-U

    2017-06-01

    The use of alloplastic implants for tissue strengthening when treating hernias is an established therapy worldwide. Despite the high incidence of hernias in Africa and Asia, the implantation of costly mesh netting is not financially feasible. Because of that various investigative groups have examined the use of sterilized mosquito netting. The animal experiments as well as the clinical trials have both shown equivalent short- and long-term results. The goal of this paper is the comparison of biocompatibility of human fibroblasts on the established commercially available nets and on sterilized polyester mosquito mesh over a period of 12 weeks. Three commercially available plastic mesh types and a gas-sterilized mosquito polyethylenterephtalate (polyester) mesh were examined. Human fibroblasts from subcutaneous healthy tissue were used. Various tests for evaluating the growth behavior and the cell morphology of human fibroblasts were conducted. The semi-quantitative (light microscopy) and qualitative (scanning electron microscopy) analyses were performed after 1 week and then again after 12 weeks. The cell proliferation and cytotoxicity of the implants were investigated with the help of the 5'-bromo-2'-deoxyuridine (BrdU)-cell proliferation test and the LDH-cytotoxicity test. The number of live cells per ml was determined with the Bürker counting chamber. In addition, analyses were made of the cell metabolism (oxidative stress) by measuring the pH value, hydrogen peroxide, and glycolysis. After 12 weeks, a proliferation of fibroblasts on all mesh is documented. No mesh showed a complete apoptosis of the cells. This qualitative observation could be confirmed quantitatively in a biochemical assay by marking the proliferating cells with BrdU. The biochemical analysis brought the proof that the materials used, including the polyester of the mosquito mesh, are not cytotoxic for the fibroblasts. The vitality of the cells was between 94 and 98%. The glucose metabolism

  20. Refficientlib: an efficient load-rebalanced adaptive mesh refinement algorithm for high-performance computational physics meshes

    OpenAIRE

    Baiges Aznar, Joan; Bayona Roa, Camilo Andrés

    2017-01-01

    No separate or additional fees are collected for access to or distribution of the work. In this paper we present a novel algorithm for adaptive mesh refinement in computational physics meshes in a distributed memory parallel setting. The proposed method is developed for nodally based parallel domain partitions where the nodes of the mesh belong to a single processor, whereas the elements can belong to multiple processors. Some of the main features of the algorithm presented in this paper a...

  1. Using unstructured diaries for primary data collection.

    Science.gov (United States)

    Thomas, Juliet Anne

    2015-05-01

    To give a reflective account of using unstructured handwritten diaries as a method of collecting qualitative data. Diaries are primarily used in research as a method of collecting qualitative data. There are some challenges associated with their use, including compliance rates. However, they can provide a rich source of meaningful data and can avoid the difficulties of participants trying to precisely recall events after some time has elapsed. The author used unstructured handwritten diaries as her primary method of collecting data during her grounded theory doctoral study, when she examined the professional socialisation of nursing students. Over two years, 26 participants selected from four consecutive recruited groups of nursing students volunteered to take part in the study and were asked to keep a daily diary throughout their first five weeks of clinical experience. When using open-ended research questions, grounded theory's pragmatic approach permits the examination of processes thereby creating conceptual interpretive understanding of data. A wealth of rich, detailed data was obtained from the diaries that permitted the development of new theories regarding the effects early clinical experiences have on nursing students' professional socialisation. Diaries were found to provide insightful in-depth qualitative data in a resource-friendly manner. Nurse researchers should consider using diaries as an alternative to more commonly used approaches to collecting qualitative data.

  2. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  3. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    International Nuclear Information System (INIS)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong

    2007-03-01

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow

  4. A Novel Model of Conforming Delaunay Triangulation for Sensor Network Configuration

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2015-01-01

    Full Text Available Delaunay refinement is a technique for generating unstructured meshes of triangles for sensor network configuration engineering practice. A new method for solving Delaunay triangulation problem is proposed in this paper, which is called endpoint triangle’s circumcircle model (ETCM. As compared with the original fractional node refinement algorithms, the proposed algorithm can get well refinement stability with least time cost. Simulations are performed under five aspects including refinement stability, the number of additional nodes, time cost, mesh quality after intruding additional nodes, and the aspect ratio improved by single additional node. All experimental results show the advantages of the proposed algorithm as compared with the existing algorithms and confirm the algorithm analysis sufficiently.

  5. Positive Contrast MRI Techniques for Visualization of Iron-Loaded Hernia Mesh Implants in Patients.

    Directory of Open Access Journals (Sweden)

    Alexander Ciritsis

    Full Text Available In MRI, implants and devices can be delineated via susceptibility artefacts. To discriminate susceptibility voids from proton-free structures, different positive contrast techniques were implemented. The purpose of this study was to evaluate a pulse sequence-based positive contrast technique (PCSI and a post-processing susceptibility gradient mapping algorithm (SGM for visualization of iron loaded mesh implants in patients.Five patients with iron-loaded MR-visible inguinal hernia mesh implants were examined at 1.5 Tesla. A gradient echo sequence (GRE; parameters: TR: 8.3ms; TE: 4.3ms; NSA:2; FA:20°; FOV:350mm² and a PCSI sequence (parameters: TR: 25ms; TE: 4.6ms; NSA:4; FA:20°; FOV:350mm² with on-resonant proton suppression were performed. SGM maps were calculated using two algorithms. Image quality and mesh delineation were independently evaluated by three radiologists.On GRE, the iron-loaded meshes generated distinct susceptibility-induced signal voids. PCSI exhibited susceptibility differences including the meshes as hyperintense signals. SGM exhibited susceptibility differences with positive contrast. Visually, the different algorithms presented no significant differences. Overall, the diagnostic value was rated best in GRE whereas PCSI and SGM were barely "sufficient".Both "positive contrast" techniques depicted implanted meshes with hyperintense signal. SGM comes without additional acquisition time and can therefore be utilized in every patient.

  6. Mersiline mesh in premaxillary augmentation.

    Science.gov (United States)

    Foda, Hossam M T

    2005-01-01

    Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant.

  7. Mesh-morphing algorithms for specimen-specific finite element modeling.

    Science.gov (United States)

    Sigal, Ian A; Hardisty, Michael R; Whyne, Cari M

    2008-01-01

    Despite recent advances in software for meshing specimen-specific geometries, considerable effort is still often required to produce and analyze specimen-specific models suitable for biomechanical analysis through finite element modeling. We hypothesize that it is possible to obtain accurate models by adapting a pre-existing geometry to represent a target specimen using morphing techniques. Here we present two algorithms for morphing, automated wrapping (AW) and manual landmarks (ML), and demonstrate their use to prepare specimen-specific models of caudal rat vertebrae. We evaluate the algorithms by measuring the distance between target and morphed geometries and by comparing response to axial loading simulated with finite element (FE) methods. First a traditional reconstruction process based on microCT was used to obtain two natural specimen-specific FE models. Next, the two morphing algorithms were used to compute mappings from the surface of one model, the source, to the other, the target, and to use this mapping to morph the source mesh to produce a target mesh. The microCT images were then used to assign element-specific material properties. In AW the mappings were obtained by wrapping the source and target surfaces with an auxiliary triangulated surface. In ML, landmarks were manually placed on corresponding locations on the surfaces of both source and target. Both morphing algorithms were successful in reproducing the shape of the target vertebra with a median distance between natural and morphed models of 18.8 and 32.2 microm, respectively, for AW and ML. Whereas AW-morphing produced a surface more closely resembling that of the target, ML guaranteed correspondence of the landmark locations between source and target. Morphing preserved the quality of the mesh producing models suitable for FE simulation. Moreover, there were only minor differences between natural and morphed models in predictions of deformation, strain and stress. We therefore conclude that

  8. The mesh controversy [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joshua A. Cohn

    2016-09-01

    Full Text Available Pelvic organ prolapse and stress urinary incontinence are common conditions for which approximately 11% of women will undergo surgical intervention in their lifetime. The use of vaginal mesh for pelvic organ prolapse and stress urinary incontinence rose rapidly in the early 2000s as over 100 mesh products were introduced into the clinical armamentarium with little regulatory oversight for their use. US Food and Drug Administration Public Health Notifications in 2008 and 2011, as well as reclassification of transvaginal mesh for prolapse to class III in early 2016, were a response to debilitating complications associated with transvaginal mesh placement in many women. The midurethral sling has not been subject to the same reclassification and continues to be endorsed as the “gold standard” for surgical management of stress urinary incontinence by subspecialty societies. However, litigators have not differentiated between mesh for prolapse and mesh for incontinence. As such, all mesh, including that placed for stress urinary incontinence, faces continued controversy amidst an uncertain future. In this article, we review the background of the mesh controversy, recent developments, and the anticipated role of mesh in surgery for prolapse and stress urinary incontinence going forward.

  9. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...

  10. Abdominal wall hernia repair with a composite ePTFE/polypropylene mesh: clinical outcome and quality of life in 152 patients

    DEFF Research Database (Denmark)

    Iversen, E; Lykke, Anna; Hensler, M

    2010-01-01

    No consensus has yet been reached regarding the optimal mesh for the repair of small ventral hernias. A composite polytetrafluoroethylene/polypropylene mesh (Ventralex(®)) is designed for this purpose, and this paper reports its use in a larger series of patients....

  11. Performance of the hybrid wireless mesh protocol for wireless mesh networks

    DEFF Research Database (Denmark)

    Boye, Magnus; Staalhagen, Lars

    2010-01-01

    Wireless mesh networks offer a new way of providing end-user access and deploying network infrastructure. Though mesh networks offer a price competitive solution to wired networks, they also come with a set of new challenges such as optimal path selection, channel utilization, and load balancing....... and proactive. Two scenarios of different node density are considered for both path selection modes. The results presented in this paper are based on a simulation model of the HWMP specification in the IEEE 802.11s draft 4.0 implemented in OPNET Modeler....

  12. Data-Parallel Mesh Connected Components Labeling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Cyrus; Childs, Hank; Gaither, Kelly

    2011-04-10

    We present a data-parallel algorithm for identifying and labeling the connected sub-meshes within a domain-decomposed 3D mesh. The identification task is challenging in a distributed-memory parallel setting because connectivity is transitive and the cells composing each sub-mesh may span many or all processors. Our algorithm employs a multi-stage application of the Union-find algorithm and a spatial partitioning scheme to efficiently merge information across processors and produce a global labeling of connected sub-meshes. Marking each vertex with its corresponding sub-mesh label allows us to isolate mesh features based on topology, enabling new analysis capabilities. We briefly discuss two specific applications of the algorithm and present results from a weak scaling study. We demonstrate the algorithm at concurrency levels up to 2197 cores and analyze meshes containing up to 68 billion cells.

  13. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.

    2011-01-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  14. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  15. A coarse-mesh nodal method-diffusive-mesh finite difference method

    International Nuclear Information System (INIS)

    Joo, H.; Nichols, W.R.

    1994-01-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper

  16. Image-Based Geometric Modeling and Mesh Generation

    CERN Document Server

    2013-01-01

    As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...

  17. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schofield, Samuel P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-21

    A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.

  18. [CLINICAL EVALUATION OF THE NEW ANTISEPTIC MESHES].

    Science.gov (United States)

    Gogoladze, M; Kiladze, M; Chkhikvadze, T; Jiqia, D

    2016-12-01

    Improving the results of hernia treatment and prevention of complications became a goal of our research which included two parts - experimental and clinical. Histomorphological and bacteriological researches showed that the best result out of the 3 control groups was received in case of covering implant "Coladerm"+ with chlorhexidine. Based on the experiment results working process continued in clinics in order to test and introduce new "coladerm"+ chlorhexidine covered poliprophilene meshes into practice. For clinical illustration there were 60 patients introduced to the research who had hernioplasty procedures by different nets: I group - standard meshes+"coladerm"+chlorhexidine, 35 patients; II group - standard meshes +"coladerm", 15 patients; III group - standard meshes, 10 patients. Assessment of the wound and echo-control was done post-surgery on the 8th, 30th and 90th days. This clinical research based on the experimental results once again showed the best anti-microbe features of new antiseptic polymeric biocomposite meshes (standard meshes+"coladerm"+chlorhexidine); timely termination of regeneration and reparation processes without any post-surgery suppurative complications. We hope that new antiseptic polymeric biocomposite meshes presented by us will be successfully used in surgical practice of hernia treatment based on and supported by expermental-clinical research.

  19. From 4D Medical Images (CT, MRI, and Ultrasound to 4D Structured Mesh Models of the Left Ventricular Endocardium for Patient-Specific Simulations

    Directory of Open Access Journals (Sweden)

    Federico Canè

    2018-01-01

    Full Text Available With cardiovascular disease (CVD remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time with 1-to-1 vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume.

  20. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.

    Science.gov (United States)

    Grassi, Lorenzo; Hraiech, Najah; Schileo, Enrico; Ansaloni, Mauro; Rochette, Michel; Viceconti, Marco

    2011-01-01

    Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (R(2)>0.9, RMSE%0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  2. A novel consistent and well-balanced algorithm for simulations of multiphase flows on unstructured grids

    Science.gov (United States)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2017-12-01

    consistent transport and balanced force treatment results in a numerically stable solution procedure and physically consistent results. The algorithm proposed in this study qualifies as a robust approach to simulate multiphase flows with high density ratios on unstructured meshes and may be realised in existing flow solvers with relative ease.

  3. Mesh Optimization for Ground Vehicle Aerodynamics

    OpenAIRE

    Adrian Gaylard; Essam F Abo-Serie; Nor Elyana Ahmad

    2010-01-01

    Mesh optimization strategy for estimating accurate drag of a ground vehicle is proposed based on examining the effect of different mesh parameters.  The optimized mesh parameters were selected using design of experiment (DOE) method to be able to work in a...

  4. No. 351-Transvaginal Mesh Procedures for Pelvic Organ Prolapse.

    Science.gov (United States)

    Larouche, Maryse; Geoffrion, Roxana; Walter, Jens-Erik

    2017-11-01

    publications with study groups larger than 20 individuals were selected because this criterion was used in the largest meta-analysis referenced in this guideline. A total of 1470 studies were obtained; after selecting only applicable studies and excluding duplicates, 68 manuscripts were reviewed and included. The content and recommendations were drafted and agreed upon by the principal authors and members of the Urogynaecology Committee. The Board of the Society of Obstetricians and Gynaecologists of Canada approved the final draft for publication. The quality of evidence was rated using the criteria described in the Grading of Recommendations Assessment, Development and Evaluation methodology framework. The Summary of Findings is available upon request. It is expected that this guideline will benefit women with pelvic organ prolapse by ensuring that health care providers are aware of outcomes related to transvaginal mesh procedures and steps in the management of related complications. This should guide patient-informed consent before such procedures are undertaken. The benefits clearly outweigh the potential harms or costs of implementation of this guideline, although no direct harms or costs are identified. Evidence will be reviewed 5 years after publication to decide whether all or part of the guideline should be updated. However, if important new evidence is published prior to the 5-year cycle, the review process may be accelerated for a more rapid update of some recommendations. RECOMMENDATIONS. Copyright © 2017 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.

  5. Postoperative pain outcomes after transvaginal mesh revision.

    Science.gov (United States)

    Danford, Jill M; Osborn, David J; Reynolds, W Stuart; Biller, Daniel H; Dmochowski, Roger R

    2015-01-01

    Although the current literature discusses mesh complications including pain, as well as suggesting different techniques for removing mesh, there is little literature regarding pain outcomes after surgical removal or revision. The purpose of this study is to determine if surgical removal or revision of vaginal mesh improves patient's subjective complaints of pelvic pain associated with original placement of mesh. After obtaining approval from the Vanderbilt University Medical Center Institutional Review Board, a retrospective review of female patients with pain secondary to previous mesh placement who underwent excision or revision of vaginal mesh from January 2000 to August 2012 was performed. Patient age, relevant medical history including menopause status, previous hysterectomy, smoking status, and presence of diabetes, fibromyalgia, interstitial cystitis, and chronic pelvic pain, was obtained. Patients' postoperative pain complaints were assessed. Of the 481 patients who underwent surgery for mesh revision, removal or urethrolysis, 233 patients met our inclusion criteria. One hundred and sixty-nine patients (73 %) reported that their pain improved, 19 (8 %) reported that their pain worsened, and 45 (19 %) reported that their pain remained unchanged after surgery. Prior history of chronic pelvic pain was associated with increased risk of failure of the procedure to relieve pain (OR 0.28, 95 % CI 0.12-0.64, p = 0.003). Excision or revision of vaginal mesh appears to be effective in improving patients' pain symptoms most of the time. Patients with a history of chronic pelvic pain are at an increased risk of no improvement or of worsening pain.

  6. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  7. Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code

    Science.gov (United States)

    Bartels, Robert E.

    2005-01-01

    A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.

  8. Field-aligned mesh joinery

    OpenAIRE

    Cignoni, Paolo; Pietroni, Nico; Malomo, Luigi

    2014-01-01

    Mesh joinery is an innovative method to produce illustrative shape approximations suitable for fabrication. Mesh joinery is capable of producing complex fabricable structures in an efficient and visually pleasing manner. We represent an input geometry as a set of planar pieces arranged to compose a rigid structure, by exploiting an efficient slit mechanism. Since slices are planar, to fabricate them a standard 2D cutting system is enough. We automatically arrange slices according to a smooth ...

  9. Pure transvaginal excision of mesh erosion involving the bladder.

    Science.gov (United States)

    Firoozi, Farzeen; Goldman, Howard B

    2013-06-01

    We present a pure transvaginal approach to the removal of eroded mesh involving the bladder secondary to placement of transvaginal mesh for management of pelvic organ prolapse (POP) using a mesh kit. Although technically challenging, we demonstrate the feasibility of a purely transvaginal approach, avoiding a potentially more morbid transabdominal approach. The video presents the surgical technique of pure transvaginal excision of mesh erosion involving the bladder after mesh placement using a prolapse kit was performed. This video shows that purely transvaginal removal of mesh erosion involving the bladder can be done safely and is feasible.

  10. A nonlinear model predictive control formulation for obstacle avoidance in high-speed autonomous ground vehicles in unstructured environments

    Science.gov (United States)

    Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga

    2018-06-01

    This paper presents a nonlinear model predictive control (MPC) formulation for obstacle avoidance in high-speed, large-size autono-mous ground vehicles (AGVs) with high centre of gravity (CoG) that operate in unstructured environments, such as military vehicles. The term 'unstructured' in this context denotes that there are no lanes or traffic rules to follow. Existing MPC formulations for passenger vehicles in structured environments do not readily apply to this context. Thus, a new nonlinear MPC formulation is developed to navigate an AGV from its initial position to a target position at high-speed safely. First, a new cost function formulation is used that aims to find the shortest path to the target position, since no reference trajectory exists in unstructured environments. Second, a region partitioning approach is used in conjunction with a multi-phase optimal control formulation to accommodate the complicated forms the obstacle-free region can assume due to the presence of multiple obstacles in the prediction horizon in an unstructured environment. Third, the no-wheel-lift-off condition, which is the major dynamical safety concern for high-speed, high-CoG AGVs, is ensured by limiting the steering angle within a range obtained offline using a 14 degrees-of-freedom vehicle dynamics model. Thus, a safe, high-speed navigation is enabled in an unstructured environment. Simulations of an AGV approaching multiple obstacles are provided to demonstrate the effectiveness of the algorithm.

  11. Adaptive radial basis function mesh deformation using data reduction

    Science.gov (United States)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  12. Simulation of dynamic behaviour of a digital displacement motor using transient 3d computational fluid dynamics analysis

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    . Movement of the low and high pressure valves is coupled to fluid forces and valve actuation is included to control the valve movement according to the pressure cycle of the digital displacement motor. The fluid domain is meshed using a structured/unstructured non-conformal mesh, which is updated throughout...

  13. Effects on Diagnostic Parameters After Removing Additional Synchronous Gear Meshes

    Science.gov (United States)

    Decker, Harry J.

    2003-01-01

    Gear cracks are typically difficult to diagnose with sufficient time before catastrophic damage occurs. Significant damage must be present before algorithms appear to be able to detect the damage. Frequently there are multiple gear meshes on a single shaft. Since they are all synchronous with the shaft frequency, the commonly used synchronous averaging technique is ineffective in removing other gear mesh effects. Carefully applying a filter to these extraneous gear mesh frequencies can reduce the overall vibration signal and increase the accuracy of commonly used vibration metrics. The vibration signals from three seeded fault tests were analyzed using this filtering procedure. Both the filtered and unfiltered vibration signals were then analyzed using commonly used fault detection metrics and compared. The tests were conducted on aerospace quality spur gears in a test rig. The tests were conducted at speeds ranging from 2500 to 5000 revolutions per minute and torques from 184 to 228 percent of design load. The inability to detect these cracks with high confidence results from the high loading which is causing fast fracture as opposed to stable crack growth. The results indicate that these techniques do not currently produce an indication of damage that significantly exceeds experimental scatter.

  14. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

    Science.gov (United States)

    Rasheed, Muhibur; Bajaj, Chandrajit

    2016-01-01

    We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

  15. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  16. Challenges in Second-Generation Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Pescapé Antonio

    2008-01-01

    Full Text Available Wireless mesh networks have the potential to provide ubiquitous high-speed Internet access at low costs. The good news is that initial deployments of WiFi meshes show the feasibility of providing ubiquitous Internet connectivity. However, their performance is far below the necessary and achievable limit. Moreover, users' subscription in the existing meshes is dismal even though the technical challenges to get connectivity are low. This paper provides an overview of the current status of mesh networks' deployment, and highlights the technical, economical, and social challenges that need to be addressed in the next years. As a proof-of-principle study, we discuss the above-mentioned challenges with reference to three real networks: (i MagNets, an operator-driven planned two-tier mesh network; (ii Berlin Freifunk network as a pure community-driven single-tier network; (iii Weimar Freifunk network, also a community-driven but two-tier network.

  17. Mesh requirements for neutron transport calculations

    International Nuclear Information System (INIS)

    Askew, J.R.

    1967-07-01

    Fine-structure calculations are reported for a cylindrical natural uranium-graphite cell using different solution methods (discrete ordinate and collision probability codes) and varying the spatial mesh. It is suggested that of formulations assuming the source constant in a mesh interval the differential approach is generally to be preferred. Due to cancellation between approximations made in the derivation of the finite difference equations and the errors in neglecting source variation, the discrete ordinate code gave a more accurate estimate of fine structure for a given mesh even for unusually coarse representations. (author)

  18. A new subgrid characteristic length for turbulence simulations on anisotropic grids

    Science.gov (United States)

    Trias, F. X.; Gorobets, A.; Silvis, M. H.; Verstappen, R. W. C. P.; Oliva, A.

    2017-11-01

    Direct numerical simulations of the incompressible Navier-Stokes equations are not feasible yet for most practical turbulent flows. Therefore, dynamically less complex mathematical formulations are necessary for coarse-grained simulations. In this regard, eddy-viscosity models for Large-Eddy Simulation (LES) are probably the most popular example thereof. This type of models requires the calculation of a subgrid characteristic length which is usually associated with the local grid size. For isotropic grids, this is equal to the mesh step. However, for anisotropic or unstructured grids, such as the pancake-like meshes that are often used to resolve near-wall turbulence or shear layers, a consensus on defining the subgrid characteristic length has not been reached yet despite the fact that it can strongly affect the performance of LES models. In this context, a new definition of the subgrid characteristic length is presented in this work. This flow-dependent length scale is based on the turbulent, or subgrid stress, tensor and its representations on different grids. The simplicity and mathematical properties suggest that it can be a robust definition that minimizes the effects of mesh anisotropies on simulation results. The performance of the proposed subgrid characteristic length is successfully tested for decaying isotropic turbulence and a turbulent channel flow using artificially refined grids. Finally, a simple extension of the method for unstructured meshes is proposed and tested for a turbulent flow around a square cylinder. Comparisons with existing subgrid characteristic length scales show that the proposed definition is much more robust with respect to mesh anisotropies and has a great potential to be used in complex geometries where highly skewed (unstructured) meshes are present.

  19. Improved mesh generator for the POISSON Group Codes

    International Nuclear Information System (INIS)

    Gupta, R.C.

    1987-01-01

    This paper describes the improved mesh generator of the POISSON Group Codes. These improvements enable one to have full control over the way the mesh is generated and in particular the way the mesh density is distributed throughout this model. A higher mesh density in certain regions coupled with a successively lower mesh density in others keeps the accuracy of the field computation high and the requirements on the computer time and computer memory low. The mesh is generated with the help of codes AUTOMESH and LATTICE; both have gone through a major upgrade. Modifications have also been made in the POISSON part of these codes. We shall present an example of a superconducting dipole magnet to explain how to use this code. The results of field computations are found to be reliable within a few parts in a hundred thousand even in such complex geometries

  20. One-Year Surgical Outcomes and Quality of Life after Minimally Invasive Sling Procedures for the Treatment of Female Stress Urinary Incontinence: TVT SECUR® vs. CureMesh®

    Science.gov (United States)

    Joo, Young Min; Choe, Jin Ho

    2010-01-01

    Purpose We compared the efficacy and safety of two minimally invasive sling procedures used to treat female stress urinary incontinence (SUI), tension-free vaginal tape (TVT) SECUR® and CureMesh®, and assessed the 1-year surgical outcomes. Materials and Methods Sixty women with SUI were assigned to undergo either the TVT SECUR (n=38) or CureMesh (n=22) procedures between April 2007 and June 2008. Patients were monitored via outpatient visits at 1 month, 3 months, and 1 year after surgery. The efficacy of these procedures was evaluated by the cough test or by a urodynamic study. At these postoperative visits, the patients also completed several questionnaires, including incontinence quality of life, patient's perception of urgency severity, the scored form of the Bristol Female Lower Urinary Tract Symptoms, visual analog scale, and questions about perceived benefit, satisfaction, and willingness to undergo the same operation again. The objective cure rate was defined as no leakage during the cough test with a full bladder. The subjective cure rate was evaluated by self-assessment of goal achievement performed 1 year postoperatively. Results The two groups were similar in preoperative characteristics and urodynamic parameters. The objective cure rates were similar between TVT SECUR and CureMesh (68.4% vs. 77.3%). All respondents reported improvement after surgery. There were no intra-operative complications. Conclusions Our results showed that the TVT SECUR and CureMesh procedures are both safe and simple to perform and have no significant differences in efficacy. Comparative studies with long-term follow-up are warranted to determine the true efficacy of these procedures. PMID:20495697

  1. Predicting mesh density for adaptive modelling of the global atmosphere.

    Science.gov (United States)

    Weller, Hilary

    2009-11-28

    The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1-20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.

  2. Mesh fixation in endoscopic inguinal hernia repair: evaluation of methodology based on a systematic review of randomised clinical trials.

    Science.gov (United States)

    Lederhuber, Hans; Stiede, Franziska; Axer, Stephan; Dahlstrand, Ursula

    2017-11-01

    The issue of mesh fixation in endoscopic inguinal hernia repair is frequently debated and still no conclusive data exist on differences between methods regarding long-term outcome and postoperative complications. The quantity of trials and the simultaneous lack of high-quality evidence raise the question how future trials should be planned. PubMed, EMBASE and the Cochrane Library were searched, using the filters "randomised clinical trials" and "humans". Trials that compared one method of mesh fixation with another fixation method or with non-fixation in endoscopic inguinal hernia repair were eligible. To be included, the trial was required to have assessed at least one of the following primary outcome parameters: recurrence; surgical site infection; chronic pain; or quality-of-life. Fourteen trials assessing 2161 patients and 2562 hernia repairs were included. Only two trials were rated as low risk for bias. Eight trials evaluated recurrence or surgical site infection; none of these could show significant differences between methods of fixation. Two of 11 trials assessing chronic pain described significant differences between methods of fixation. One of two trials evaluating quality-of-life showed significant differences between fixation methods in certain functions. High-quality evidence for differences between the assessed mesh fixation techniques is still lacking. From a socioeconomic and ethical point of view, it is necessary that future trials will be properly designed. As small- and medium-sized single-centre trials have proven unable to find answers, register studies or multi-centre studies with an evident focus on methodology and study design are needed in order to answer questions about mesh fixation in inguinal hernia repair.

  3. Mesh networks: an optimum solution for AMR

    Energy Technology Data Exchange (ETDEWEB)

    Mimno, G.

    2003-12-01

    Characteristics of mesh networks and the advantage of using them in automatic meter reading equipment (AMR) are discussed. Mesh networks are defined as being similar to a fishing net made of knots and links. In mesh networks the knots represent meter sites and the links are the radio paths between the meter sites and the neighbourhood concentrator. In mesh networks any knot in the communications chain can link to any other and the optimum path is calculated by the network by hopping from meter to meter until the radio message reaches a concentrator. This mesh communications architecture is said to be vastly superior to many older types of radio-based meter reading technologies; its main advantage is that it not only significantly improves the economics of fixed network deployment, but also supports time-of-use metering, remote disconnect services and advanced features, such as real-time pricing, demand response, and other efficiency measures, providing a better return on investment and reliability.

  4. 3D visualization and finite element mesh formation from wood anatomy samples, Part I – Theoretical approach

    Directory of Open Access Journals (Sweden)

    Petr Koňas

    2009-01-01

    Full Text Available The work summarizes created algorithms for formation of finite element (FE mesh which is derived from bitmap pattern. Process of registration, segmentation and meshing is described in detail. C++ library of STL from Insight Toolkit (ITK Project together with Visualization Toolkit (VTK were used for base processing of images. Several methods for appropriate mesh output are discussed. Multiplatform application WOOD3D for the task under GNU GPL license was assembled. Several methods of segmentation and mainly different ways of contouring were included. Tetrahedral and rectilinear types of mesh were programmed. Improving of mesh quality in some simple ways is mentioned. Testing and verification of final program on wood anatomy samples of spruce and walnut was realized. Methods of microscopic anatomy samples preparation are depicted. Final utilization of formed mesh in the simple structural analysis was performed.The article discusses main problems in image analysis due to incompatible colour spaces, samples preparation, thresholding and final conversion into finite element mesh. Assembling of mentioned tasks together and evaluation of the application are main original results of the presented work. In presented program two thresholding filters were used. By utilization of ITK two following filters were included. Otsu filter based and binary filter based were used. The most problematic task occurred in a production of wood anatomy samples in the unique light conditions with minimal or zero co­lour space shift and the following appropriate definition of thresholds (corresponding thresholding parameters and connected methods (prefiltering + registration which influence the continuity and mainly separation of wood anatomy structure. Solution in samples staining is suggested with the following quick image analysis realization. Next original result of the work is complex fully automated application which offers three types of finite element mesh

  5. Wireless mesh networks.

    Science.gov (United States)

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  6. A Finite Element Method for Simulation of Compressible Cavitating Flows

    Science.gov (United States)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad

    2016-11-01

    This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.

  7. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  8. Surgeon Experience and Complications of Transvaginal Prolapse Mesh.

    Science.gov (United States)

    Kelly, Erin C; Winick-Ng, Jennifer; Welk, Blayne

    2016-07-01

    To measure the proportion of women with transvaginal prolapse mesh complications and their association with surgeon volume. We conducted a retrospective, population-based cohort study of all women who underwent a mesh-based prolapse procedure using administrative data (hospital procedure and physician billing records) between 2002 and 2013 in Ontario, Canada. The primary outcome was surgical revision of the mesh. Primary exposure was surgeon volume: high (greater than the 75th percentile, requiring a median of five [interquartile range 5-6] procedures per year) and very high (greater than the 90th percentile, requiring a median of 13 [interquartile range 11-14] procedures per year) volume mesh implanters were identified each year. Primary analysis was an adjusted Cox proportional hazards model. A total of 5,488 women underwent mesh implantation by 1 of 368 unique surgeons. Median follow-up time was 5.4 (interquartile range 3.0-8.0) years. We found that 218 women (4.0%) underwent mesh reoperation a median of 1.17 (interquartile range 0.58-2.90) years after implantation. The hazard of reoperation for complications was only lower for patients of very high-volume surgeons (3.0% [145/3,001] compared with 4.8% [73/2,447], adjusted hazards ratio 0.59, 95% confidence interval 0.40-0.86). In multivariable modeling, younger age, concomitant hysterectomy, blood transfusion, and increased medical comorbidity were all associated with vaginal mesh reoperation. Approximately 5% of women who underwent mesh-based prolapse surgery required reoperation for a mesh complication within 10 years. The risk of reoperation was lowest for surgeons performing 14 or more procedures per year.

  9. High performance parallel computing of flows in complex geometries: I. Methods

    International Nuclear Information System (INIS)

    Gourdain, N; Gicquel, L; Montagnac, M; Vermorel, O; Staffelbach, G; Garcia, M; Boussuge, J-F; Gazaix, M; Poinsot, T

    2009-01-01

    Efficient numerical tools coupled with high-performance computers, have become a key element of the design process in the fields of energy supply and transportation. However flow phenomena that occur in complex systems such as gas turbines and aircrafts are still not understood mainly because of the models that are needed. In fact, most computational fluid dynamics (CFD) predictions as found today in industry focus on a reduced or simplified version of the real system (such as a periodic sector) and are usually solved with a steady-state assumption. This paper shows how to overcome such barriers and how such a new challenge can be addressed by developing flow solvers running on high-end computing platforms, using thousands of computing cores. Parallel strategies used by modern flow solvers are discussed with particular emphases on mesh-partitioning, load balancing and communication. Two examples are used to illustrate these concepts: a multi-block structured code and an unstructured code. Parallel computing strategies used with both flow solvers are detailed and compared. This comparison indicates that mesh-partitioning and load balancing are more straightforward with unstructured grids than with multi-block structured meshes. However, the mesh-partitioning stage can be challenging for unstructured grids, mainly due to memory limitations of the newly developed massively parallel architectures. Finally, detailed investigations show that the impact of mesh-partitioning on the numerical CFD solutions, due to rounding errors and block splitting, may be of importance and should be accurately addressed before qualifying massively parallel CFD tools for a routine industrial use.

  10. Coronary artery disease risk assessment from unstructured electronic health records using text mining.

    Science.gov (United States)

    Jonnagaddala, Jitendra; Liaw, Siaw-Teng; Ray, Pradeep; Kumar, Manish; Chang, Nai-Wen; Dai, Hong-Jie

    2015-12-01

    Coronary artery disease (CAD) often leads to myocardial infarction, which may be fatal. Risk factors can be used to predict CAD, which may subsequently lead to prevention or early intervention. Patient data such as co-morbidities, medication history, social history and family history are required to determine the risk factors for a disease. However, risk factor data are usually embedded in unstructured clinical narratives if the data is not collected specifically for risk assessment purposes. Clinical text mining can be used to extract data related to risk factors from unstructured clinical notes. This study presents methods to extract Framingham risk factors from unstructured electronic health records using clinical text mining and to calculate 10-year coronary artery disease risk scores in a cohort of diabetic patients. We developed a rule-based system to extract risk factors: age, gender, total cholesterol, HDL-C, blood pressure, diabetes history and smoking history. The results showed that the output from the text mining system was reliable, but there was a significant amount of missing data to calculate the Framingham risk score. A systematic approach for understanding missing data was followed by implementation of imputation strategies. An analysis of the 10-year Framingham risk scores for coronary artery disease in this cohort has shown that the majority of the diabetic patients are at moderate risk of CAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Oral, intestinal, and skin bacteria in ventral hernia mesh implants

    Directory of Open Access Journals (Sweden)

    Odd Langbach

    2016-07-01

    Full Text Available Background: In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective: The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods: Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results: A great variety of taxa were detected in 20 (66.7% mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion: The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also

  12. Reconfigurable lattice mesh designs for programmable photonic processors.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A

    2016-05-30

    We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.

  13. Selective laser vaporization of polypropylene sutures and mesh

    Science.gov (United States)

    Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

    2012-02-01

    Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

  14. A Reconfigurable Mesh-Ring Topology for Bluetooth Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ben-Yi Wang

    2018-05-01

    Full Text Available In this paper, a Reconfigurable Mesh-Ring (RMR algorithm is proposed for Bluetooth sensor networks. The algorithm is designed in three stages to determine the optimal configuration of the mesh-ring network. Firstly, a designated root advertises and discovers its neighboring nodes. Secondly, a scatternet criterion is built to compute the minimum number of piconets and distributes the connection information for piconet and scatternet. Finally, a peak-search method is designed to determine the optimal mesh-ring configuration for various sizes of networks. To maximize the network capacity, the research problem is formulated by determining the best connectivity of available mesh links. During the formation and maintenance phases, three possible configurations (including piconet, scatternet, and hybrid are examined to determine the optimal placement of mesh links. The peak-search method is a systematic approach, and is implemented by three functional blocks: the topology formation block generates the mesh-ring topology, the routing efficiency block computes the routing performance, and the optimum decision block introduces a decision-making criterion to determine the optimum number of mesh links. Simulation results demonstrate that the optimal mesh-ring configuration can be determined and that the scatternet case achieves better overall performance than the other two configurations. The RMR topology also outperforms the conventional ring-based and cluster-based mesh methods in terms of throughput performance for Bluetooth configurable networks.

  15. Coarse-mesh rebalancing acceleration for eigenvalue problems

    International Nuclear Information System (INIS)

    Asaoka, T.; Nakahara, Y.; Miyasaka, S.

    1974-01-01

    The coarse-mesh rebalance method is adopted for Monte Carlo schemes for aiming at accelerating the convergence of a source iteration process. At every completion of the Monte Carlo game for one batch of neutron histories, the scaling factor for the neutron flux is calculated to achieve the neutron balance in each coarse-mesh zone into which the total system is divided. This rebalance factor is multiplied to the weight of each fission source neutron in the coarse-mesh zone for playing the next Monte Carlo game. The numerical examples have shown that the coarse-mesh rebalance Monte Carlo calculation gives a good estimate of the eigenvalue already after several batches with a negligible extra computer time compared to the standard Monte Carlo. 5 references. (U.S.)

  16. LR: Compact connectivity representation for triangle meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gurung, T; Luffel, M; Lindstrom, P; Rossignac, J

    2011-01-28

    We propose LR (Laced Ring) - a simple data structure for representing the connectivity of manifold triangle meshes. LR provides the option to store on average either 1.08 references per triangle or 26.2 bits per triangle. Its construction, from an input mesh that supports constant-time adjacency queries, has linear space and time complexity, and involves ordering most vertices along a nearly-Hamiltonian cycle. LR is best suited for applications that process meshes with fixed connectivity, as any changes to the connectivity require the data structure to be rebuilt. We provide an implementation of the set of standard random-access, constant-time operators for traversing a mesh, and show that LR often saves both space and traversal time over competing representations.

  17. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2013-01-01

    Robust generation of pelvic finite element models is necessary to understand the variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis and their strain distributions evaluated. Morphing and mapping techniques were effectively applied to generate good quality geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2012-08-01

    Robust generation of pelvic finite element models is necessary to understand variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity-based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis, and their strain distributions were evaluated. Morphing and mapping techniques were effectively applied to generate good quality and geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Mesh-graft urethroplasty: a case report

    OpenAIRE

    田中, 敏博; 滝川, 浩; 香川, 征; 長江, 浩朗

    1987-01-01

    We used a meshed free-foreskin transplant in a two-stage procedure for reconstruction of the extended stricture of urethra after direct vision urethrotomy. The results were excellent. Mesh-graft urethroplasty is a useful method for patients with extended strictures of the urethra or recurrent strictures after several operations.

  20. Using Text Analytics to Derive Customer Service Management Benefits from Unstructured Data

    DEFF Research Database (Denmark)

    Müller, Oliver; Junglas, Iris; Debortoli, Stefan

    2016-01-01

    Deriving value from structured data is now commonplace. The value of unstructured textual data, however, remains mostly untapped and often unrecognized. This article describes the text analytics journeys of three organizations in the customer service management area. Based on their experiences, we...

  1. Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Kyle T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-08

    Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperature (Tg ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below Tg. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).

  2. Age-stratified analysis of long-term outcomes of transvaginal mesh repair for treatment of pelvic organ prolapse.

    Science.gov (United States)

    Dong, Shengnan; Zhong, Yanbo; Chu, Lei; Li, Huaifang; Tong, Xiaowen; Wang, Jianjun

    2016-10-01

    To investigate long-term outcomes after transvaginal mesh repair among patients with pelvic organ prolapse in different age groups. A retrospective cohort study was conducted among women who underwent transvaginal mesh repair with polypropylene mesh for pelvic organ prolapse of stage II or higher between January 2007 and November 2011 at a center in Shanghai, China. Patients were invited to attend a follow-up appointment between July 2014 and May 2015. Surgical outcomes were compared among three age groups (≤59, 60-74, and ≥75 years), and quality-of-life questionnaires were evaluated. Multivariate logistic regression was used to identify risk factors associated with recurrent prolapse and mesh exposure. Among 158 patients, 143 (90.5%) were objectively cured and 149 (94.3%) were subjectively cured at follow-up. Surgical outcomes were similar across all age groups. Significant improvements were observed on the Pelvic Floor Distress Inventory across all applicable subscales in all age groups (Pmesh exposure (odds ratio 11.89, 95% confidence interval 1.08-131.48; P=0.043). Transvaginal mesh repair was found to be a safe and effective technique for treating pelvic organ prolapse among women of all ages. An active postoperative sex life increased the odds of mesh exposure. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  3. HypGrid2D. A 2-d mesh generator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N N

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  4. Adaptive mesh refinement for shocks and material interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, William Wenlong [Los Alamos National Laboratory

    2010-01-01

    There are three kinds of adaptive mesh refinement (AMR) in structured meshes. Block-based AMR sometimes over refines meshes. Cell-based AMR treats cells cell by cell and thus loses the advantage of the nature of structured meshes. Patch-based AMR is intended to combine advantages of block- and cell-based AMR, i.e., the nature of structured meshes and sharp regions of refinement. But, patch-based AMR has its own difficulties. For example, patch-based AMR typically cannot preserve symmetries of physics problems. In this paper, we will present an approach for a patch-based AMR for hydrodynamics simulations. The approach consists of clustering, symmetry preserving, mesh continuity, flux correction, communications, management of patches, and load balance. The special features of this patch-based AMR include symmetry preserving, efficiency of refinement across shock fronts and material interfaces, special implementation of flux correction, and patch management in parallel computing environments. To demonstrate the capability of the AMR framework, we will show both two- and three-dimensional hydrodynamics simulations with many levels of refinement.

  5. Selectivity of commercial, larger mesh and square mesh trawl codends for deep water rose shrimp Parapenaeus longirostris (Lucas, 1846 in the Aegean Sea

    Directory of Open Access Journals (Sweden)

    Hakan Kaykaç

    2009-09-01

    Full Text Available We investigated the differences between size selectivity of a commercial codend (40 mm diamond mesh – 40D, a larger mesh codend (48 mm diamond mesh – 48D, and a square mesh codend (40 mm square mesh – 40S for Parapenaeus longirostris in international waters of the Aegean Sea. Selectivity data were collected by using a covered codend method and analysed taking between-haul variation into account. The results indicate significant increases in L50 values in relation to an increase in mesh size and when the square mesh is used in the commercial trawl codend. The results demonstrate that the commercially used codend (40D is not selective enough for P. longirostris in terms of length at first maturity. Changing from a 40D to a 48D codend significantly improves selection, with an increase of about 15% in the L50 values (carapace length 14.5 mm for 40D and 16.6 mm for 48D. Similarly, 40 mm square mesh, which has recently been legislated for EU Mediterranean waters, showed a 12.4% higher mean L50 value (16.3 mm than 40 mm diamond mesh for this species. However, despite these improvements, the 48D and 40S codends still need further improvements to obtain higher selectivity closer to the length at first maturity (20 mm carapace length.

  6. Connectivity editing for quad-dominant meshes

    KAUST Repository

    Peng, Chihan

    2013-08-01

    We propose a connectivity editing framework for quad-dominant meshes. In our framework, the user can edit the mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four neighbors) and irregular faces (non-quads). We provide a theoretical analysis of the problem, discuss what edits are possible and impossible, and describe how to implement an editing framework that realizes all possible editing operations. In the results, we show example edits and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  7. [Implants for genital prolapse : Contra mesh surgery].

    Science.gov (United States)

    Hampel, C

    2017-12-01

    Alloplastic transvaginal meshes have become very popular in the surgery of pelvic organ prolapse (POP) as did alloplastic suburethral slings in female stress incontinence surgery, but without adequate supporting data. The simplicity of the mesh procedure facilitates its propagation with acceptance of higher revision and complication rates. Since attending physicians do more and more prolapse surgeries without practicing or teaching alternative techniques, expertise in these alternatives, which might be very useful in cases of recurrence, persistence or complications, is permanently lost. It is doubtful that proper and detailed information about alternatives, risks, and benefits of transvaginal alloplastic meshes is provided to every single prolapse patient according to the recommendations of the German POP guidelines, since the number of implanted meshes exceeds the number of properly indicated mesh candidates by far. Although there is no dissent internationally about the available mesh data, thousands of lawsuits in the USA, insolvency of companies due to claims for compensation and unambiguous warnings from foreign urological societies leave German urogynecologists still unimpressed. The existing literature in pelvic organ prolapse exclusively focusses on POP stage and improvement of that stage with surgical therapy. Instead, typical prolapse symptoms should trigger therapy and improvement of these symptoms should be the utmost treatment goal. It is strongly recommended for liability reasons to obtain specific written informed consent.

  8. Adaptive-mesh zoning by the equipotential method

    Energy Technology Data Exchange (ETDEWEB)

    Winslow, A.M.

    1981-04-01

    An adaptive mesh method is proposed for the numerical solution of differential equations which causes the mesh lines to move closer together in regions where higher resolution in some physical quantity T is desired. A coefficient D > 0 is introduced into the equipotential zoning equations, where D depends on the gradient of T . The equations are inverted, leading to nonlinear elliptic equations for the mesh coordinates with source terms which depend on the gradient of D. A functional form of D is proposed.

  9. Fire performance of basalt FRP mesh reinforced HPC thin plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2013-01-01

    An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...

  10. Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, G L [Los Alamos National Laboratory; Finn, J M [Los Alamos National Laboratory

    2009-01-01

    Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.

  11. Current situation of transvaginal mesh repair for pelvic organ prolapse.

    Science.gov (United States)

    Zhu, Lan; Zhang, Lei

    2014-09-01

    Surgical mesh is a metallic or polymeric screen intended to be implanted to reinforce soft tissue or bone where weakness exists. Surgical mesh has been used since the 1950s to repair abdominal hernias. In the 1970s, gynecologists began using surgical mesh products to indicate the repair of pelvic organ prolapse (POP), and in the 1990s, gynecologists began using surgical mesh for POP. Then the U.S. Food and Drug Administration (FDA) approved the first surgical mesh product specifically for use in POP. Surgical mesh materials can be divided into several categories. Most surgical mesh devices cleared for POP procedures are composed of non-absorbable synthetic polypropylene. Mesh can be placed in the anterior vaginal wall to aid in the correction of cystocele (anterior repair), in the posterior vaginal wall to aid in correction of rectocele (posterior repair), or attached to the top of the vagina to correct uterine prolapse or vaginal apical prolapse (apical repair). Over the past decades, surgical mesh products for transvaginal POP repair became incorporated into "kits" that included tools to aid in the delivery and insertion of the mesh. Surgical mesh kits continue to evolve, adding new insertion tools, tissue fixation anchors, surgical techniques, and ab- sorbable and biological materials. This procedure has been performed popularly. It was also performed increased in China. But this new technique met some trouble recently and let shake in urogynecology.

  12. Horizontal Air-Water Flow Analysis with Wire Mesh Sensor

    International Nuclear Information System (INIS)

    De Salve, M; Monni, G; Panella, B

    2012-01-01

    A Wire Mesh Sensor, based on the measurement of the local instantaneous conductivity of the two-phase mixture, has been used to characterize the fluid dynamics of the gas–liquid interface in a horizontal pipe flow. Experiments with a pipe of a nominal diameter of 19.5 mm and total length of 6 m, have been performed with air/water mixtures, at ambient conditions. The flow quality ranges from 0.00016 to 0.22 and the superficial velocities range from 0.1 to 10.5 m/s for air and from 0.02 to 1.7 m/s for water; the flow pattern is stratified, slug/plug and annular. A sensor (WMS200) with an inner diameter of 19.5 mm and a measuring matrix of 16×16 points equally distributed over the cross-section has been chosen for the measurements. From the analysis of the Wire Mesh Sensor digital signals the average and the local void fraction are evaluated and the flow patterns are identified with reference to space, time and flow rate boundary conditions.

  13. Incorporating Unstructured Socializing Into the Study of Secondary Exposure to Community Violence: Etiological and Empirical Implications.

    Science.gov (United States)

    Zimmerman, Gregory M; Messner, Steven F; Rees, Carter

    2014-07-01

    Secondary exposure to community violence, defined as witnessing or hearing violence in the community, has the potential to profoundly impact long-term development, health, happiness, and security. While research has explored pathways to community violence exposure at the individual, family, and neighborhood levels, prior work has largely neglected situational factors conducive to secondary violence exposure. The present study evaluates "unstructured socializing with peers in the absence of authority figures" as a situational process that has implications for secondary exposure to violence. Results indicate that a measure of unstructured socializing was significantly associated with exposure to violence, net of an array of theoretically relevant covariates of violence exposure. Moreover, the relationships between exposure to violence and three of the most well-established correlates of violence exposure in the literature-age, male, and prior violence-were mediated to varying degrees by unstructured socializing. The results suggest a more nuanced approach to the study of secondary violence exposure that expands the focus of attention beyond individual and neighborhood background factors to include situational opportunities presented by patterns of everyday activities. © The Author(s) 2013.

  14. Convergence study of global meshing on enamel-cement-bracket finite element model

    Science.gov (United States)

    Samshuri, S. F.; Daud, R.; Rojan, M. A.; Basaruddin, K. S.; Abdullah, A. B.; Ariffin, A. K.

    2017-09-01

    This paper presents on meshing convergence analysis of finite element (FE) model to simulate enamel-cement-bracket fracture. Three different materials used in this study involving interface fracture are concerned. Complex behavior ofinterface fracture due to stress concentration is the reason to have a well-constructed meshing strategy. In FE analysis, meshing size is a critical factor that influenced the accuracy and computational time of analysis. The convergence study meshing scheme involving critical area (CA) and non-critical area (NCA) to ensure an optimum meshing sizes are acquired for this FE model. For NCA meshing, the area of interest are at the back of enamel, bracket ligature groove and bracket wing. For CA meshing, area of interest are enamel area close to cement layer, the cement layer and bracket base. The value of constant NCA meshing tested are meshing size 1 and 0.4. The value constant CA meshing tested are 0.4 and 0.1. Manipulative variables are randomly selected and must abide the rule of NCA must be higher than CA. This study employed first principle stresses due to brittle failure nature of the materials used. Best meshing size are selected according to convergence error analysis. Results show that, constant CA are more stable compare to constant NCA meshing. Then, 0.05 constant CA meshing are tested to test the accuracy of smaller meshing. However, unpromising result obtained as the errors are increasing. Thus, constant CA 0.1 with NCA mesh of 0.15 until 0.3 are the most stable meshing as the error in this region are lowest. Convergence test was conducted on three selected coarse, medium and fine meshes at the range of NCA mesh of 0.15 until 3 and CA mesh area stay constant at 0.1. The result shows that, at coarse mesh 0.3, the error are 0.0003% compare to 3% acceptable error. Hence, the global meshing are converge as the meshing size at CA 0.1 and NCA 0.15 for this model.

  15. Resterilized Polypropylene Mesh for Inguinal Hernia Repair

    African Journals Online (AJOL)

    2018-04-19

    Apr 19, 2018 ... Conclusion: The use of sterilized polypropylene mesh for the repair of inguinal ... and nonabsorbable materials to reduce the tissue–mesh. INTRODUCTION ... which we have been practicing in our center since we introduced ...

  16. Clinical study for pancreatic fistula after distal pancreatectomy with mesh reinforcement

    Directory of Open Access Journals (Sweden)

    Akira Hayashibe

    2018-05-01

    Full Text Available Summary: Background: The purpose of this cohort study was to determine whether distal pancreatectomy with mesh reinforcement can reduce postoperative pancreatic fistula (POPF rates compared with bare stapler. Methods: In total, 51 patients underwent stapled distal pancreatectomy. Out of these, 22 patients (no mesh group underwent distal pancreatectomy with bare stapler and 29 patients (mesh group underwent distal pancreatectomy with mesh reinforced stapler. The risk factor for clinically relevant POPF (grades B and C after distal pancreatectomy was also evaluated. Results: Clinical characteristics were almost similar in both the groups. The days of the mean hospital stay and drainage tube insertion in the mesh group were significantly fewer than those in the no mesh group. The mean level of amylase in the discharge fluid in the mesh group was also significantly lower than that the in no mesh group. The rate of clinically relevant POPF (grades B and C in the mesh group was significantly lower than that in the no mesh group (p=0.016. Univariate analyses of risk factors for POPF (grades B and C revealed that only mesh reinforcement was associated with POPF (grades B and C. Moreover, on multivariate analyses of POPF risk factors with p value<0.2 in univariate analyses by logistic regression, mesh reinforcement was regarded as a significant factor for POPF(grades B and C. Conclusions: The distal pancreatectomy with mesh reinforced stapler was thought to be favorable for the prevention of clinically relevant POPF (grades B and C. Keywords: mesh reinforcement, pancreatic fistula, pancreatic surgery

  17. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  18. Laparoscopic removal of mesh used in pelvic floor surgery.

    Science.gov (United States)

    Khong, Su-Yen; Lam, Alan

    2009-01-01

    Various meshes are being used widely in clinical practice for pelvic reconstructive surgery despite the lack of evidence of their long-term safety and efficacy. Management of complications such as mesh erosion and dyspareunia can be challenging. Most mesh-related complications can probably be managed successfully via the transvaginal route; however, this may be impossible if surgical access is poor. This case report demonstrates the successful laparoscopic removal of mesh after several failed attempts via the vaginal route.

  19. Temporal Scalability of Dynamic Volume Data using Mesh Compensated Wavelet Lifting.

    Science.gov (United States)

    Schnurrer, Wolfgang; Pallast, Niklas; Richter, Thomas; Kaup, Andre

    2017-10-12

    Due to their high resolution, dynamic medical 2D+t and 3D+t volumes from computed tomography (CT) and magnetic resonance tomography (MR) reach a size which makes them very unhandy for teleradiologic applications. A lossless scalable representation offers the advantage of a down-scaled version which can be used for orientation or previewing, while the remaining information for reconstructing the full resolution is transmitted on demand. The wavelet transform offers the desired scalability. A very high quality of the lowpass sub-band is crucial in order to use it as a down-scaled representation. We propose an approach based on compensated wavelet lifting for obtaining a scalable representation of dynamic CT and MR volumes with very high quality. The mesh compensation is feasible to model the displacement in dynamic volumes which is mainly given by expansion and contraction of tissue over time. To achieve this, we propose an optimized estimation of the mesh compensation parameters to optimally fit for dynamic volumes. Within the lifting structure, the inversion of the motion compensation is crucial in the update step. We propose to take this inversion directly into account during the estimation step and can improve the quality of the lowpass sub-band by 0.63 dB and 0.43 dB on average for our tested dynamic CT and MR volumes at the cost of an increase of the rate by 2.4% and 1.2% on average.

  20. GENERATION OF IRREGULAR HEXAGONAL MESHES

    Directory of Open Access Journals (Sweden)

    Vlasov Aleksandr Nikolaevich

    2012-07-01

    Decomposition is performed in a constructive way and, as option, it involves meshless representation. Further, this mapping method is used to generate the calculation mesh. In this paper, the authors analyze different cases of mapping onto simply connected and bi-connected canonical domains. They represent forward and backward mapping techniques. Their potential application for generation of nonuniform meshes within the framework of the asymptotic homogenization theory is also performed to assess and project effective characteristics of heterogeneous materials (composites.

  1. Current role of mesh in vaginal prolapse surgery.

    Science.gov (United States)

    Richter, Lee A; Carter, Charelle; Gutman, Robert E

    2014-10-01

    This report summarizes the latest literature on transvaginal mesh (TVM) for the treatment of pelvic organ prolapse, with a focus on indications for use and management of complications. We describe trends in TVM by reviewing the recent literature and summarizing national meeting presentations. Vaginal mesh complications are most often managed surgically, and the majority of patients experiencing mesh-related pain have symptom improvement after intervention. New efforts will focus on identifying variables associated with success after intervention for mesh-related complications, to aid reconstructive pelvic surgeons in outcome prediction and patient counselling. Although the use of TVM has plateaued in recent years, we are seeing an exponential rise in synthetic mesh implant removal. Reconstructive pelvic surgeons advising patients with TVM complications should report that surgical intervention is often necessary, improvement rates of pain-related symptoms after surgery are high, and up to a third may require multiple interventions.

  2. Obturator foramen dissection for excision of symptomatic transobturator mesh.

    Science.gov (United States)

    Reynolds, W Stuart; Kit, Laura Chang; Kaufman, Melissa R; Karram, Mickey; Bales, Gregory T; Dmochowski, Roger R

    2012-05-01

    Groin pain after transobturator synthetic mesh placement can be recalcitrant to conservative therapy and ultimately requires surgical excision. We describe our experiences with and technique of obturator foramen dissection for mesh excision. The records of 8 patients treated from 2005 to 2010, were reviewed. Obturator dissection was performed via a lateral groin incision over the inferior pubic ramus at the level of the obturator foramen, typically in conjunction with orthopedic surgery. Five patients had transobturator mid urethral sling surgery for stress urinary incontinence, 2 had mid urethral sling and trocar based anterior vaginal wall mesh kits with transobturator passage of mesh arms for stress urinary incontinence and pelvic organ prolapse, and 1 had an anterior vaginal wall mesh kit for pelvic organ prolapse. Patients had 0 to 2 prior transvaginal mesh excisions before obturator surgery. All patients presented with intractable pain in the area of the obturator foramen and/or medial groin for which conservative treatment measures had failed. Six patients underwent concurrent vaginal and obturator dissection and 2 underwent obturator dissection alone. In all cases residual mesh (3 to 11 cm) was identified and excised from the obturator foramen. Mesh was closely associated to or traversing the adductor longus muscle and tendon with significant fibrous reaction in all cases. Postoperatively 5 patients were cured of pain and/or infection, and 3 reported no or some improvement at a mean followup of 6 months (range 1 to 12). Our experience suggests that surgical excision of residual mesh can alleviate many of the symptoms in many patients. In all cases mesh remnants were identified and removed, and typically involved neuromuscular structures adjacent to the obturator foramen. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. On the application of Chimera/unstructured hybrid grids for conjugate heat transfer

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1995-01-01

    A hybrid grid system that combines the Chimera overset grid scheme and an unstructured grid method is developed to study fluid flow and heat transfer problems. With the proposed method, the solid structural region, in which only the heat conduction is considered, can be easily represented using an unstructured grid method. As for the fluid flow region external to the solid material, the Chimera overset grid scheme has been shown to be very flexible and efficient in resolving complex configurations. The numerical analyses require the flow field solution and material thermal response to be obtained simultaneously. A continuous transfer of temperature and heat flux is specified at the interface, which connects the solid structure and the fluid flow as an integral system. Numerical results are compared with analytical and experimental data for a flat plate and a C3X cooled turbine cascade. A simplified drum-disk system is also simulated to show the effectiveness of this hybrid grid system.

  4. A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis

    KAUST Repository

    Jagad, P. I.

    2018-04-12

    A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell-Centered Colocated Variables. Part I: Discretization, International Journal of Heat and Mass Transfer, vol. 48 (6), 1117-1127, 2005) is extended to include the solid-body stress analysis. The transport terms for a cell-face are evaluated in a structured grid-like manner. The Cartesian gradients at the center of each cell-face are evaluated using the coordinate transformation relations. The accuracy of the procedure is demonstrated by solving several benchmark problems involving different boundary conditions, source terms, and types of loading.

  5. Evaluation of the perturbation of the mesh Bra Breast TiLoop in the planning process-radiotherapy

    International Nuclear Information System (INIS)

    Camacho, C.; Pujades, M. C.; Perez-Calatayud, J.; Lliso, F.; Carmona, V.; Richart, J.; Ballester, F.

    2011-01-01

    The aim of this study is to determine the dosimetric impact TiLoop Mesh Bra breast radiotherapy treatments, and their influence on both the quality and the disruption of the gray levels of the radiographic image required for treatment planning.

  6. Grid adaptation using chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  7. Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris

    2012-01-01

    A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.

  8. THM-GTRF: New Spider meshes, New Hydra-TH runs

    Energy Technology Data Exchange (ETDEWEB)

    Bakosi, Jozsef [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory; Francois, Marianne M. [Los Alamos National Laboratory; Lowrie, Robert B. [Los Alamos National Laboratory; Nourgaliev, Robert [Los Alamos National Laboratory

    2012-06-20

    Progress is reported on computational capabilities for the grid-to-rod-fretting (GTRF) problem of pressurized water reactors. Numeca's Hexpress/Hybrid mesh generator is demonstrated as an excellent alternative to generating computational meshes for complex flow geometries, such as in GTRF. Mesh assessment is carried out using standard industrial computational fluid dynamics practices. Hydra-TH, a simulation code developed at LANL for reactor thermal-hydraulics, is demonstrated on hybrid meshes, containing different element types. A series of new Hydra-TH calculations has been carried out collecting turbulence statistics. Preliminary results on the newly generated meshes are discussed; full analysis will be documented in the L3 milestone, THM.CFD.P5.05, Sept. 2012.

  9. AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.

  10. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-01

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  11. Engagement of Metal Debris into Gear Mesh

    Science.gov (United States)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  12. A conceptual framework for technology-enabled and technology-dependent user behavior toward device mesh and mesh app

    Directory of Open Access Journals (Sweden)

    Ming-Hsiung Hsiao

    2018-06-01

    Full Text Available The device mesh and mesh app revealed by Gartner as the future strategic technology trend are able to predict people's need from their historic data, then provides the needed services or service innovation to support their activity engagement. However, many theories have identified that it is the motivation, rather than technology, that drives people to engage in activities or tasks. For this reason, this study builds a conceptual framework by integrating the extant logic and theories to explore how future technology would generate benefits for people. It integrates task-technology fit (TTF model and motivation theory (mainly expectancy-value theory to explain such technology user behavior. It also points out the difference between technology-enabled and technology-dependent user behavior and concludes that too much emphasis on the role of technology with too little attention on motivation would distort technology user behavior, and the role of technology as well. Keywords: Device mesh, Mesh app, Expectancy-value theory, Task-technology fit (TTF, Technology-enabled user, Technology-dependent user

  13. Symptom resolution after operative management of complications from transvaginal mesh.

    Science.gov (United States)

    Crosby, Erin C; Abernethy, Melinda; Berger, Mitchell B; DeLancey, John O; Fenner, Dee E; Morgan, Daniel M

    2014-01-01

    Complications from transvaginal mesh placed for prolapse often require operative management. The aim of this study is to describe the outcomes of vaginal mesh removal. A retrospective review of all patients having surgery by the urogynecology group in the department of obstetrics and gynecology at our institution for a complication of transvaginal mesh placed for prolapse was performed. Demographics, presenting symptoms, surgical procedures, and postoperative symptoms were abstracted. Comparative statistics were performed using the χ or Fisher's exact test with significance at Pmesh and 84 had follow-up data. The most common presenting signs and symptoms were: mesh exposure, 62% (n=56); pain, 64% (n=58); and dyspareunia, 48% (n=43). During operative management, mesh erosion was encountered unexpectedly in a second area of the vagina in 5% (n=4), in the bladder in 1% (n=1), and in the bowel in 2% (n=2). After vaginal mesh removal, 51% (n=43) had resolution of all presenting symptoms. Mesh exposure was treated successfully in 95% of patients, whereas pain was only successfully treated in 51% of patients. Removal of vaginal mesh is helpful in relieving symptoms of presentation. Patients can be reassured that exposed mesh can almost always be successfully managed surgically, but pain and dyspareunia are only resolved completely in half of patients. III.

  14. The Disability Impact and Associated Cost per Disability in Women Who Underwent Surgical Revision of Transvaginal Mesh Kits for Prolapse Repair.

    Science.gov (United States)

    Javadian, Pouya; Shobeiri, S Abbas

    2017-09-13

    The aim of this study was to investigate disability impact in patients and cost to the families of patients who have had complications of transvaginal prolapse mesh kits and underwent surgical revision. Patients who developed complications of transvaginal mesh kits for prolapse and who had undergone vaginal prolapse mesh surgical revision/removal in 2009 to 2014 at a single institution were identified by Current Procedural Terminology codes. The group was invited to complete a phone survey pertaining to the initial vaginal mesh used for prolapse surgery utilizing Sheehan Disability Scale (scale 0-10) and Years of life Lived with Disability (YLDs) questionnaires. The data collected were used to estimate the disability and cost analysis. We used our data to estimate the economic and quality-of-life impact of vaginal mesh complications on patients in the United States RESULTS: Sixty-two patients (62/198 [31.2%]) were consented to participate and completed the questionnaires by phone. Extremely disabled patients were 18 (29%) of 62 of whole cases, and 5 (8%) of 62 reported that they had no disability after vaginal mesh surgery. The median for overall disability score after vaginal mesh procedure was 8 (which reflects marked disability on a scale of 0-10). The majority of patients missed a median of 12 months of their school or work because of their mesh complications. Thirty-seven (59.6%) of 62 did not improve after mesh removal. Twenty-one (33.9%) of 62 stated that their family income dropped because of productivity loss related to mesh complications. The mean time between vaginal mesh surgery and mesh removal procedure was 4.7 years. Sheehan Disability Scale scores are significantly correlated with YLDs outcomes. Patients' overall disability score showed a significant correlation with YLDs scores (P mesh for prolapse reduction complications had a sustained disability impact that continued despite mesh removal. Likewise, the complications were associated with

  15. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  16. Bilateral Laparoscopic Totally Extraperitoneal Repair Without Mesh Fixation

    OpenAIRE

    Dehal, Ahmed; Woodward, Brandon; Johna, Samir; Yamanishi, Frank

    2014-01-01

    Background and Objectives: Mesh fixation during laparoscopic totally extraperitoneal repair is thought to be necessary to prevent recurrence. However, mesh fixation may increase postoperative chronic pain. This study aimed to describe the experience of a single surgeon at our institution performing this operation. Methods: We performed a retrospective review of the medical records of all patients who underwent bilateral laparoscopic totally extraperitoneal repair without mesh fixation for ing...

  17. Reconstructive laparoscopic prolapse surgery to avoid mesh erosions

    Directory of Open Access Journals (Sweden)

    Devassy, Rajesh

    2013-09-01

    Full Text Available Introduction: The objective of the study is to examine the efficacy of the purely laparoscopic reconstructive management of cystocele and rectocele with mesh, to avoid the risk of erosion by the graft material, a well known complication in vaginal mesh surgery. Material and methods: We performed a prospective, single-case, non-randomized study in 325 patients who received laparoscopic reconstructive management of pelvic organe prolaps with mesh. The study was conducted between January 2004 and December 2012 in a private clinic in India. The most common prolapse symptoms were reducible vaginal lump, urinary stress incontinence, constipation and flatus incontinence, sexual dysfunction and dypareunia. The degree e of the prolaps was staged according to POPQ system. The approach was purely laparoscopic and involved the use of polypropylene (Prolene or polyurethane with activated regenerated cellulose coating (Parietex mesh. Results: The mean age was 55 (30–80 years and the most of the patients were multiparous (272/325. The patients received a plastic correction of the rectocele only (138 cases, a cystocele and rectocele (187 cases with mesh. 132 patients had a concomitant total hysterectomy; in 2 cases a laparoscopic supracervical hysterectomy was performed and 190 patients had a laparoscopic colposuspension. The mean operation time was 82.2 (60–210 minutes. The mean follow up was 3.4 (3–5 years. Urinary retention developed in 1 case, which required a new laparoscopical intervention. Bladder injury, observed in the same case was in one session closed with absorbable suture. There were four recurrences of the rectocele, receiving a posterior vaginal colporrhaphy. Erosions of the mesh were not reported or documented. Conclusion: The pure laparoscopic reconstructive management of the cystocele and rectocele with mesh seems to be a safe and effective surgical procedure potentially avoiding the risk of mesh erosions.

  18. A Rare Complication of Composite Dual Mesh: Migration and Enterocutaneous Fistula Formation

    Directory of Open Access Journals (Sweden)

    Ozgur Bostanci

    2015-01-01

    Full Text Available Introduction. Mesh is commonly employed for abdominal hernia repair because it ensures a low recurrence rate. However, enterocutaneous fistula due to mesh migration can occur as a very rare, late complication, for which diagnosis is very difficult. Presentation of Case. Here we report the case of an enterocutaneous fistula due to late mesh migration in a mentally retarded, diabetic, 35-year-old male after umbilical hernia repair with composite dual mesh in 2010. Discussion. Mesh is a foreign substance, because of that some of the complications including hematoma, seroma, foreign body reaction, organ damage, infection, mesh rejection, and fistula formation may occur after implantation of the mesh. In the literature, most cases of mesh-associated enterocutaneous fistula due to migration involved polypropylene meshes. Conclusion. This case serves as a reminder of migration of composite dual meshes.

  19. Grid adaption using Chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  20. The Analysis of the Usefulness of Welded Meshes to Embankment Reinforcement

    Directory of Open Access Journals (Sweden)

    Ćwirko Marcin

    2017-09-01

    Full Text Available The aim of this paper was to find an answer to the question about the possibility of using steel welded mesh in building the retaining walls of gabion baskets. In light of the currently used gabion structure solutions, among which double-woven mesh is much more popular, the focus was put on the possibility of using welded mesh. A numerical analysis was conducted to examine the behavior of welded and woven mesh subjected to various loads and the results obtained for both types of mesh were directly compared. The maximal displacement in mesh nodes was admitted as the measurement of the system behavior (in the case of both undamaged and damaged mesh.

  1. Enriching Triangle Mesh Animations with Physically Based Simulation.

    Science.gov (United States)

    Li, Yijing; Xu, Hongyi; Barbic, Jernej

    2017-10-01

    We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation, enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete. The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of the simulation mesh, and resolving collisions and self-collisions while following the input.

  2. Finite element simulation of impact response of wire mesh screens

    Directory of Open Access Journals (Sweden)

    Wang Caizheng

    2015-01-01

    Full Text Available In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg and a large mass (40 kg providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

  3. Finite element meshing approached as a global minimization process

    Energy Technology Data Exchange (ETDEWEB)

    WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.

    2000-03-01

    The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested

  4. Interactive Shape Modeling using a Skeleton-Mesh Co-Representation

    DEFF Research Database (Denmark)

    Bærentzen, Jacob Andreas; Abdrashitov, Rinat; Singh, Karan

    2014-01-01

    We introduce the Polar-Annular Mesh representation (PAM). A PAM is a mesh-skeleton co-representation designed for the modeling of 3D organic, articulated shapes. A PAM represents a manifold mesh as a partition of polar (triangle fans) and annular (rings of quads) regions. The skeletal topology of...... a PAM to a quad-only mesh. We further present a PAM-based multi-touch sculpting application in order to demonstrate its utility as a shape representation for the interactive modeling of organic, articulated figures as well as for editing and posing of pre-existing models....

  5. Textile properties of synthetic prolapse mesh in response to uniaxial loading

    Science.gov (United States)

    Barone, William R.; Moalli, Pamela A.; Abramowitch, Steven D.

    2016-01-01

    BACKGROUND Although synthetic mesh is associated with superior anatomic outcomes for the repair of pelvic organ prolapse, the benefits of mesh have been questioned because of the relatively high complication rates. To date, the mechanisms that result in such complications are poorly understood, yet the textile characteristics of mesh products are believed to play an important role. Interestingly, the pore diameter of synthetic mesh has been shown to impact the host response after hernia repair greatly, and such findings have served as design criteria for prolapse meshes, with larger pores viewed as more favorable. Although pore size and porosity are well-characterized before implantation, the changes in these textile properties after implantation are unclear; the application of mechanical forces has the potential to greatly alter pore geometries in vivo. Understanding the impact of mechanical loading on the textile properties of mesh is essential for the development of more effective devices for prolapse repair. OBJECTIVE The objective of this study was to determine the effect of tensile loading and pore orientation on mesh porosity and pore dimensions. STUDY DESIGN In this study, the porosity and pore diameter of 4 currently available prolapse meshes were examined in response to uniaxial tensile loads of 0.1, 5, and 10 N while mimicking clinical loading conditions. The textile properties were compared with those observed for the unloaded mesh. Meshes included Gynemesh PS (Ethicon, Somerville, NJ), UltraPro (Artisyn; Ethicon), Restorelle (Coloplast, Minneapolis, MN), and Alyte Y-mesh (Bard, Covington, GA). In addition to the various pore geometries, 3 orientations of Restorelle (0-, 5-, 45-degree offset) and 2 orientations of UltraPro (0-, 90-degree offset) were examined. RESULTS In response to uniaxial loading, both porosity and pore diameter dramatically decreased for most mesh products. The application of 5 N led to reductions in porosity for nearly all groups

  6. Comparison of post-operative wound infection after inguinal hernia repair with polypropylene mesh and polyester mesh

    International Nuclear Information System (INIS)

    Mughal, M.A.; Ahmed, M.; Sajid, M.T.; Mustafa, Q.U.A.; Shukr, I.; Ahsan, J.

    2012-01-01

    Objective: To compare post operative wound infection frequency after inguinal hernia repair with polypropylene and polyester mesh using standard Lichtenstein hernioplasty technique. Study Design: Randomized controlled trial. Place and Duration: This study was conducted at general surgery department CMH/MH Rawalpindi from 8th April 2007 to 1st Jan 2008 over a period of 09 months. Patients and Materials: Sixty patients received through outpatient department with diagnosis of inguinal hernia satisfying inclusion/exclusion criteria were included. Patients were divided into two groups randomly. Group 1 included those patients in whom polypropylene mesh was used while group II patients were implanted with polyester mesh. Demographic as well as data concerning post operative wound infection was collected and analyzed. Results: Fifty seven patients (95%) were males while remaining (05%) were females. Mean age in group I was 41.17+-9.99 years while in group II was 41.47+-9.79 years (p=0.907). One patient (3.3%) in each group developed wound infection diagnosed by clinical evidence of pain at wound site, redness, induration and purulent discharge. Conclusion: There is no difference in post operative wound infection rate after inguinal Lichtenstein hernioplasty using either polypropylene or polyester mesh. (author)

  7. Does Attorney Advertising Influence Patient Perceptions of Pelvic Mesh?

    Science.gov (United States)

    Tippett, Elizabeth; King, Jesse; Lucent, Vincent; Ephraim, Sonya; Murphy, Miles; Taff, Eileen

    2018-01-01

    To measure the relative influence of attorney advertising on patient perceptions of pelvic mesh compared with a history of surgery and a first urology visit. A 52-item survey was administered to 170 female patients in 2 urology offices between 2014 and 2016. Multiple survey items were combined to form scales for benefit and risk perceptions of pelvic mesh, perceptions of the advertising, attitudes toward pelvic mesh, and knowledge of pelvic mesh and underlying medical conditions. Data were analyzed using hierarchical linear regression models. Exposure to attorney advertising was quite high; 88% reported seeing a mesh-related attorney advertisement in the last 6 months. Over half of patients reported seeing attorney advertisements more than once per week. A history of prior mesh implant surgery was the strongest predictor of benefit and risk perceptions of pelvic mesh. Exposure to attorney advertising was associated with higher risk perceptions but did not significantly affect perceptions of benefits. Past urologist visits increased perceptions of benefits but had no effect on risk perceptions. Attorney advertising appears to have some influence on risk perceptions, but personal experience and discussions with a urogynecologist or urologist also influence patient perceptions. Implications, limitations, and future research are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.

    Science.gov (United States)

    Dai, Xiaochuan; Hong, Guosong; Gao, Teng; Lieber, Charles M

    2018-02-20

    Nanobioelectronics represents a rapidly developing field with broad-ranging opportunities in fundamental biological sciences, biotechnology, and medicine. Despite this potential, seamless integration of electronics has been difficult due to fundamental mismatches, including size and mechanical properties, between the elements of the electronic and living biological systems. In this Account, we discuss the concept, development, key demonstrations, and future opportunities of mesh nanoelectronics as a general paradigm for seamless integration of electronics within synthetic tissues and live animals. We first describe the design and realization of hybrid synthetic tissues that are innervated in three dimensions (3D) with mesh nanoelectronics where the mesh serves as both as a tissue scaffold and as a platform of addressable electronic devices for monitoring and manipulating tissue behavior. Specific examples of tissue/nanoelectronic mesh hybrids highlighted include 3D neural tissue, cardiac patches, and vascular constructs, where the nanoelectronic devices have been used to carry out real-time 3D recording of electrophysiological and chemical signals in the tissues. This novel platform was also exploited for time-dependent 3D spatiotemporal mapping of cardiac tissue action potentials during cell culture and tissue maturation as well as in response to injection of pharmacological agents. The extension to simultaneous real-time monitoring and active control of tissue behavior is further discussed for multifunctional mesh nanoelectronics incorporating both recording and stimulation devices, providing the unique capability of bidirectional interfaces to cardiac tissue. In the case of live animals, new challenges must be addressed, including minimally invasive implantation, absence of deleterious chronic tissue response, and long-term capability for monitoring and modulating tissue activity. We discuss each of these topics in the context of implantation of mesh

  9. Moving mesh generation with a sequential approach for solving PDEs

    DEFF Research Database (Denmark)

    In moving mesh methods, physical PDEs and a mesh equation derived from equidistribution of an error metrics (so-called the monitor function) are simultaneously solved and meshes are dynamically concentrated on steep regions (Lim et al., 2001). However, the simultaneous solution procedure...... a simple and robust moving mesh algorithm in one or multidimension. In this study, we propose a sequential solution procedure including two separate parts: prediction step to obtain an approximate solution to a next time level (integration of physical PDEs) and regriding step at the next time level (mesh...... generation and solution interpolation). Convection terms, which appear in physical PDEs and a mesh equation, are discretized by a WENO (Weighted Essentially Non-Oscillatory) scheme under the consrvative form. This sequential approach is to keep the advantages of robustness and simplicity for the static...

  10. r-Adaptive mesh generation for shell finite element analysis

    International Nuclear Information System (INIS)

    Cho, Maenghyo; Jun, Seongki

    2004-01-01

    An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and to prevent surface geometric errors, we use the Naghdi's shell theory and express the shell surface by a B-spline patch. In addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a reliable mesh adaptation method after a parameter value in the weight function is properly chosen

  11. Promoting Wired Links in Wireless Mesh Networks: An Efficient Engineering Solution

    Science.gov (United States)

    Barekatain, Behrang; Raahemifar, Kaamran; Ariza Quintana, Alfonso; Triviño Cabrera, Alicia

    2015-01-01

    Wireless Mesh Networks (WMNs) cannot completely guarantee good performance of traffic sources such as video streaming. To improve the network performance, this study proposes an efficient engineering solution named Wireless-to-Ethernet-Mesh-Portal-Passageway (WEMPP) that allows effective use of wired communication in WMNs. WEMPP permits transmitting data through wired and stable paths even when the destination is in the same network as the source (Intra-traffic). Tested with four popular routing protocols (Optimized Link State Routing or OLSR as a proactive protocol, Dynamic MANET On-demand or DYMO as a reactive protocol, DYMO with spanning tree ability and HWMP), WEMPP considerably decreases the end-to-end delay, jitter, contentions and interferences on nodes, even when the network size or density varies. WEMPP is also cost-effective and increases the network throughput. Moreover, in contrast to solutions proposed by previous studies, WEMPP is easily implemented by modifying the firmware of the actual Ethernet hardware without altering the routing protocols and/or the functionality of the IP/MAC/Upper layers. In fact, there is no need for modifying the functionalities of other mesh components in order to work with WEMPPs. The results of this study show that WEMPP significantly increases the performance of all routing protocols, thus leading to better video quality on nodes. PMID:25793516

  12. Form-finding with polyhedral meshes made simple

    KAUST Repository

    Tang, Chengcheng

    2014-07-27

    We solve the form-finding problem for polyhedral meshes in a way which combines form, function and fabrication; taking care of user-specified constraints like boundary interpolation, planarity of faces, statics, panel size and shape, enclosed volume, and last, but not least, cost. Our main application is the interactive modeling of meshes for architectural and industrial design. Our approach can be described as guided exploration of the constraint space whose algebraic structure is simplified by introducing auxiliary variables and ensuring that constraints are at most quadratic. Computationally, we perform a projection onto the constraint space which is biased towards low values of an energy which expresses desirable "soft" properties like fairness. We have created a tool which elegantly handles difficult tasks, such as taking boundary-alignment of polyhedral meshes into account, planarization, fairing under planarity side conditions, handling hybrid meshes, and extending the treatment of static equilibrium to shapes which possess overhanging parts.

  13. Form-finding with polyhedral meshes made simple

    KAUST Repository

    Tang, Chengcheng; Sun, Xiang; Gomes, Maria Alexandra; Wallner, Johannes; Pottmann, Helmut

    2014-01-01

    We solve the form-finding problem for polyhedral meshes in a way which combines form, function and fabrication; taking care of user-specified constraints like boundary interpolation, planarity of faces, statics, panel size and shape, enclosed volume, and last, but not least, cost. Our main application is the interactive modeling of meshes for architectural and industrial design. Our approach can be described as guided exploration of the constraint space whose algebraic structure is simplified by introducing auxiliary variables and ensuring that constraints are at most quadratic. Computationally, we perform a projection onto the constraint space which is biased towards low values of an energy which expresses desirable "soft" properties like fairness. We have created a tool which elegantly handles difficult tasks, such as taking boundary-alignment of polyhedral meshes into account, planarization, fairing under planarity side conditions, handling hybrid meshes, and extending the treatment of static equilibrium to shapes which possess overhanging parts.

  14. Glue versus suture for mesh fixation in inguinal hernia repair.

    Science.gov (United States)

    Chandrasekar, Shruthi; Jeyakumar, S; Ganapathy, Tharun

    2018-03-22

    Inguinal hernia is one of the most common surgical problem presenting to the surgical OPD. Surgery is the mainstay of treatment for inguinal hernia today. Surgery for inguinal hernia has undergone a great evolution over a period of several centuries. Lichenstein's tension free hernioplasty is the one of the first surgeries taught to a surgical resident. The main aim of surgeries in this era is to give the best possible results with the least possible pain, scar and time. This has given rise to so many modifications to the classical Lichenstein's procedure and also to laparoscopic hernioplasty. Pain after inguinal hernia surgery is found to be debilitating and altering the quality of life in several patients, which has been attributed to the traumatic fixation of the mesh with sutures. This has paved way to the development of various atraumatic methods of fixation, tissue glue is one such development. Hence this study, to compare traumatic and atraumatic methods of mesh fixation in inguinal hernia repair. The aim of this study was to compare suture fixation versus tissue glue fixation of the mesh in inguinal hernia repair. Primary objective was to compare the immediate and chronic post-operative pain. Secondary objective was to compare the time taken for the procedure by the two methods in use and also to compare the presence of any complications. and methodology: This study was done in the General Surgery department of XXX hospital, medical college and research centre, kattangulathur after Ethics committee clearance. It is a single blinded study. The study was done on 51 patients consenting for the study and meeting the inclusion criterias from the period of March 2016 to August 2017 out of which 26 were selected for glue mesh fixation and 25 for suture mesh fixation according to simple randomization. The suture group patients underwent classical Lichenstein's tension free hernioplasty and the glue group underwent Lichenstein's hernioplasty with glue where dots of

  15. A moving mesh method with variable relaxation time

    OpenAIRE

    Soheili, Ali Reza; Stockie, John M.

    2006-01-01

    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...

  16. Micro-mesh fabric pollination bags for switchgrass

    Science.gov (United States)

    Pollination bags for making controlled crosses between switchgrass plants were made from a polyester micro-mesh fabric with a mesh size of 41 µm which is smaller than the mean reported 43 µm diameter of switchgrass pollen. When used in paired plant crosses between switchgrass plants, the mean amoun...

  17. CAPAClTYANALYSIS OF WIRELESS MESH NET\\VORKS

    African Journals Online (AJOL)

    The limited available bandwidth makes capacity analysis of the network very essential. ... Wireless mesh networks can also be employed for wide variety ofapplications such ... wireless mesh networks using OPNET (Optimized Network Engineering Tool) Modeller 1-J..5. The .... /bps using I I Mbps data rate and 12000 bits.

  18. Converting skeletal structures to quad dominant meshes

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Misztal, Marek Krzysztof; Welnicka, Katarzyna

    2012-01-01

    We propose the Skeleton to Quad-dominant polygonal Mesh algorithm (SQM), which converts skeletal structures to meshes composed entirely of polar and annular regions. Both types of regions have a regular structure where all faces are quads except for a single ring of triangles at the center of each...

  19. Runaway transient simulation of a model Kaplan turbine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S; Liu, D; Wu, Y [State Key Laboratory of Hydroscience and Engineering, Department of Thermal Eng., Tsinghua University, Beijing, 100084 (China); Zhou, D [Water Conservancy and Hydropower Eng., Hohai University, Nanjing. 210098 (China); Nishi, M, E-mail: liushuhong@tsinghua.edu.c [Kyushu Inst. Tech. Senior Academy, Kitakyushu, 804-8550 (Japan)

    2010-08-15

    The runaway transient is a typical transient process of a hydro power unit, where the rotational speed of a turbine runner rapidly increases up to the runaway speed under a working head as the guide vanes cannot be closed due to some reason at the load rejection. In the present paper, the characteristics of the runaway transient of a model Kaplan turbine having ns = 479(m-kW) is simulated by using a time-dependent CFD technique where equation of rotational motion of runner, continuity equation and unsteady RANS equations with RNG k-{epsilon} turbulence model are solved iteratively. In the calculation, unstructured mesh is used to the whole flow passage, which consists of several sub-domains: entrance, casing, stay vanes + guide vanes, guide section, runner and draft tube. And variable speed sliding mesh technique is used to exchange interface flow information between moving part and stationary part, and three-dimensional unstructured dynamic mesh technique is also adopted to ensure mesh quality. Two cases were treated in the simulation of runaway transient characteristics after load rejection: one is the rated operating condition as the initial condition, and the other is the condition at the maximum head. Regarding the runaway speed, the experimental speed is 1.45 times the initial speed and the calculation is 1.47 times the initial for the former case. In the latter case, the experiment and the calculation are 1.67 times and 1.69 times respectively. From these results, it is recognized that satisfactorily prediction will be possible by using the present numerical method. Further, numerical results show that the swirl in the draft-tube flow becomes stronger in the latter part of the transient process so that a vortex rope will occur in the draft tube and its precession will cause the pressure fluctuations which sometimes affect the stability of hydro power system considerably.

  20. Runaway transient simulation of a model Kaplan turbine

    Science.gov (United States)

    Liu, S.; Zhou, D.; Liu, D.; Wu, Y.; Nishi, M.

    2010-08-01

    The runaway transient is a typical transient process of a hydro power unit, where the rotational speed of a turbine runner rapidly increases up to the runaway speed under a working head as the guide vanes cannot be closed due to some reason at the load rejection. In the present paper, the characteristics of the runaway transient of a model Kaplan turbine having ns = 479(m-kW) is simulated by using a time-dependent CFD technique where equation of rotational motion of runner, continuity equation and unsteady RANS equations with RNG k-epsilon turbulence model are solved iteratively. In the calculation, unstructured mesh is used to the whole flow passage, which consists of several sub-domains: entrance, casing, stay vanes + guide vanes, guide section, runner and draft tube. And variable speed sliding mesh technique is used to exchange interface flow information between moving part and stationary part, and three-dimensional unstructured dynamic mesh technique is also adopted to ensure mesh quality. Two cases were treated in the simulation of runaway transient characteristics after load rejection: one is the rated operating condition as the initial condition, and the other is the condition at the maximum head. Regarding the runaway speed, the experimental speed is 1.45 times the initial speed and the calculation is 1.47 times the initial for the former case. In the latter case, the experiment and the calculation are 1.67 times and 1.69 times respectively. From these results, it is recognized that satisfactorily prediction will be possible by using the present numerical method. Further, numerical results show that the swirl in the draft-tube flow becomes stronger in the latter part of the transient process so that a vortex rope will occur in the draft tube and its precession will cause the pressure fluctuations which sometimes affect the stability of hydro power system considerably.

  1. Runaway transient simulation of a model Kaplan turbine

    International Nuclear Information System (INIS)

    Liu, S; Liu, D; Wu, Y; Zhou, D; Nishi, M

    2010-01-01

    The runaway transient is a typical transient process of a hydro power unit, where the rotational speed of a turbine runner rapidly increases up to the runaway speed under a working head as the guide vanes cannot be closed due to some reason at the load rejection. In the present paper, the characteristics of the runaway transient of a model Kaplan turbine having ns = 479(m-kW) is simulated by using a time-dependent CFD technique where equation of rotational motion of runner, continuity equation and unsteady RANS equations with RNG k-ε turbulence model are solved iteratively. In the calculation, unstructured mesh is used to the whole flow passage, which consists of several sub-domains: entrance, casing, stay vanes + guide vanes, guide section, runner and draft tube. And variable speed sliding mesh technique is used to exchange interface flow information between moving part and stationary part, and three-dimensional unstructured dynamic mesh technique is also adopted to ensure mesh quality. Two cases were treated in the simulation of runaway transient characteristics after load rejection: one is the rated operating condition as the initial condition, and the other is the condition at the maximum head. Regarding the runaway speed, the experimental speed is 1.45 times the initial speed and the calculation is 1.47 times the initial for the former case. In the latter case, the experiment and the calculation are 1.67 times and 1.69 times respectively. From these results, it is recognized that satisfactorily prediction will be possible by using the present numerical method. Further, numerical results show that the swirl in the draft-tube flow becomes stronger in the latter part of the transient process so that a vortex rope will occur in the draft tube and its precession will cause the pressure fluctuations which sometimes affect the stability of hydro power system considerably.

  2. Laparoscopic sacrocolpopexy versus transvaginal mesh for recurrent pelvic organ prolapse.

    Science.gov (United States)

    Iglesia, Cheryl B; Hale, Douglass S; Lucente, Vincent R

    2013-03-01

    Both expert surgeons agree with the following: (1) Surgical mesh, whether placed laparoscopically or transvaginally, is indicated for pelvic floor reconstruction in cases involving recurrent advanced pelvic organ prolapse. (2) Procedural expertise and experience gained from performing a high volume of cases is fundamentally necessary. Knowledge of outcomes and complications from an individual surgeon's audit of cases is also needed when discussing the risks and benefits of procedures and alternatives. Yet controversy still exists on how best to teach new surgical techniques and optimal ways to efficiently track outcomes, including subjective and objective cure of prolapse as well as perioperative complications. A mesh registry will be useful in providing data needed for surgeons. Cost factors are also a consideration since laparoscopic and especially robotic surgical mesh procedures are generally more costly than transvaginal mesh kits when operative time, extra instrumentation and length of stay are included. Long-term outcomes, particularly for transvaginal mesh procedures, are lacking. In conclusion, all surgery poses risks; however, patients should be made aware of the pros and cons of various routes of surgery as well as the potential risks and benefits of using mesh. Surgeons should provide patients with honest information about their own experience implanting mesh and also their experience dealing with mesh-related complications.

  3. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  4. Use of mesh in laparoscopic paraesophageal hernia repair

    DEFF Research Database (Denmark)

    Müller-Stich, Beat P.; Kenngott, Hannes G.; Gondan, Matthias

    2015-01-01

    Introduction. Mesh augmentation seems to reduce recurrences following laparoscopic paraesophageal hernia repair (LPHR). However, there is an uncertain risk of mesh-associated complications. Risk-benefit analysis might solve the dilemma. Materials and Methods. A systematic literature search...... potential benefits of LMAH. All data regarding LMAH were used to estimate risk of mesh-associated complications. Risk-benefit analysis was performed using a Markov Monte Carlo decision-analytic model. Results. Meta-analysis of 3 RCTs and 9 OCSs including 915 patients revealed a significantly lower...

  5. Sensor-based whole-arm obstacle avoidance for unstructured environments

    International Nuclear Information System (INIS)

    Wintenberg, AL.; Butler, P.L.; Babcock, S.M.; Ericson, M.N.; Britton, C.L. Jr.; Hamel, W.R.

    1992-01-01

    Whole-arm obstacle avoidance is needed for a variety of robotic applications in the Environmental Restoration and Waste Management (ER ampersand WM) Program. Typical industrial applications of robotics involve well-defined work spaces, allowing a predetermined knowledge of collision-free paths for manipulator motion. In the unstructured or poorly defined hazardous environments of the ER ampersand WM program, the potential for significant problems resulting from collisions between manipulators and the environment in which they are utilized is great. A sensing system under development, which will provide protection against such collisions, is described in this paper

  6. Node Discovery and Interpretation in Unstructured Resource-Constrained Environments

    DEFF Research Database (Denmark)

    Gechev, Miroslav; Kasabova, Slavyana; Mihovska, Albena D.

    2014-01-01

    for the discovery, linking and interpretation of nodes in unstructured and resource-constrained network environments and their interrelated and collective use for the delivery of smart services. The model is based on a basic mathematical approach, which describes and predicts the success of human interactions...... in the context of long-term relationships and identifies several key variables in the context of communications in resource-constrained environments. The general theoretical model is described and several algorithms are proposed as part of the node discovery, identification, and linking processes in relation...

  7. Robust diamond meshes with unique wettability properties.

    Science.gov (United States)

    Yang, Yizhou; Li, Hongdong; Cheng, Shaoheng; Zou, Guangtian; Wang, Chuanxi; Lin, Quan

    2014-03-18

    Robust diamond meshes with excellent superhydrophobic and superoleophilic properties have been fabricated. Superhydrophobicity is observed for water with varying pH from 1 to 14 with good recyclability. Reversible superhydrophobicity and hydrophilicity can be easily controlled. The diamond meshes show highly efficient water-oil separation and water pH droplet transference.

  8. Development of skeletal system for mesh-type ICRP reference adult phantoms

    Science.gov (United States)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  9. The impact of the unstructured contacts component in influenza pandemic modeling.

    Directory of Open Access Journals (Sweden)

    Marco Ajelli

    Full Text Available Individual based models have become a valuable tool for modeling the spatiotemporal dynamics of epidemics, e.g. influenza pandemic, and for evaluating the effectiveness of intervention strategies. While specific contacts among individuals into diverse environments (family, school/workplace can be modeled in a standard way by employing available socio-demographic data, all the other (unstructured contacts can be dealt with by adopting very different approaches. This can be achieved for instance by employing distance-based models or by choosing unstructured contacts in the local communities or by employing commuting data.Here we show how diverse choices can lead to different model outputs and thus to a different evaluation of the effectiveness of the containment/mitigation strategies. Sensitivity analysis has been conducted for different values of the first generation index G(0, which is the average number of secondary infections generated by the first infectious individual in a completely susceptible population and by varying the seeding municipality. Among the different considered models, attack rate ranges from 19.1% to 25.7% for G(0 = 1.1, from 47.8% to 50.7% for G(0 = 1.4 and from 62.4% to 67.8% for G(0 = 1.7. Differences of about 15 to 20 days in the peak day have been observed. As regards spatial diffusion, a difference of about 100 days to cover 200 km for different values of G(0 has been observed.To reduce uncertainty in the models it is thus important to employ data, which start being available, on contacts on neglected but important activities (leisure time, sport mall, restaurants, etc. and time-use data for improving the characterization of the unstructured contacts. Moreover, all the possible effects of different assumptions should be considered for taking public health decisions: not only sensitivity analysis to various model parameters should be performed, but intervention options should be based on the analysis and

  10. Efficient unstructured mesh generation for marine renewable energy applications

    NARCIS (Netherlands)

    Avdis, A.; Candy, A.S.; Hill, J.; Kramer, SC; Piggott, M.D.

    2018-01-01

    Renewable energy is the cornerstone of preventing dangerous climate change whilst main- taining a robust energy supply. Tidal energy will arguably play a critical role in the renewable energy portfolio as it is both predictable and reliable, and can be put in place across the globe. However,

  11. Laparoscopic Pelvic Floor Repair Using Polypropylene Mesh

    Directory of Open Access Journals (Sweden)

    Shih-Shien Weng

    2008-09-01

    Conclusion: Laparoscopic pelvic floor repair using a single piece of polypropylene mesh combined with uterosacral ligament suspension appears to be a feasible procedure for the treatment of advanced vaginal vault prolapse and enterocele. Fewer mesh erosions and postoperative pain syndromes were seen in patients who had no previous pelvic floor reconstructive surgery.

  12. VARIABLE MESH STIFFNESS OF SPUR GEAR TEETH USING ...

    African Journals Online (AJOL)

    gear engagement. A gear mesh kinematic simulation ... model is appropnate for VMS of a spur gear tooth. The assumptions for ... This process has been continued until one complete tooth meshing cycle is ..... Element Method. Using MATLAB,.

  13. Short-term complications associated with the use of transvaginal mesh in pelvic floor reconstructive surgery: Results from a multi-institutional prospectively maintained dataset.

    Science.gov (United States)

    Caveney, Maxx; Haddad, Devin; Matthews, Catherine; Badlani, Gopal; Mirzazadeh, Majid

    2017-11-01

    Vaginal reconstructive surgery can be performed with or without mesh. We sought to determine comparative rates of perioperative complications of native tissue versus vaginal mesh repairs for pelvic organ prolapse. Using the National Surgical Quality Improvement Program (NSQIP) database, we concatenated surgical data from vaginal procedures for prolapse repair, including anterior and posterior colporrhaphy, paravaginal defect repair, enterocele repair, and vaginal colpopexy using Current Procedural Terminology (CPT) coding. We stratified this data by the modifier associated with mesh usage at the time of the procedure. We then compared 30-day perioperative outcomes, postoperative complications (bleeding, infection, etc), and readmission rates between women with and without mesh-based repairs. We identified 10 657 vaginal reconstructive procedures without mesh and 959 mesh-based repairs from 2009 through 2013. Patients undergoing mesh repair were more likely to experience at least one complication than native tissue repair (9.28% vs 6.15%, P mesh group (11.37% vs 9.39%, P = 0.03). Procedures with mesh had a higher rate of perioperative bleeding requiring transfusion than native tissue repair (2.3% vs 0.49%, P surgical site infection (SSI) (0.52% vs 0.17%, P = 0.02). There were no significant differences in rates of readmission, superficial, or deep SSIs, pneumonia, urinary tract infection, sepsis, or renal failure. The use of vaginal mesh for pelvic organ prolapse repair appears to result in a higher rate of perioperative complications than native tissue repair. Patients undergoing these procedures should be counselled preoperatively concerning these risks. © 2017 Wiley Periodicals, Inc.

  14. Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids

    Directory of Open Access Journals (Sweden)

    Sudi Mungkasi

    2016-01-01

    Full Text Available This paper presents a numerical entropy production (NEP scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.

  15. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    International Nuclear Information System (INIS)

    Ishigaki, Masahiro; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-01-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  16. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Masahiro, E-mail: ishigaki.masahiro@jaea.go.jp; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-04-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  17. Crack growth simulation for plural crack using hexahedral mesh generation technique

    International Nuclear Information System (INIS)

    Orita, Y; Wada, Y; Kikuchi, M

    2010-01-01

    This paper describes a surface crack growth simulation using a new mesh generation technique. The generated mesh is constituted of all hexahedral elements. Hexahedral elements are suitable for an analysis of fracture mechanics parameters, i.e. stress intensity factor. The advantage of a hexahedral mesh is good accuracy of an analysis and less number of degrees of freedoms than a tetrahedral mesh. In this study, a plural crack growth simulation is computed using the hexahedral mesh and its distribution of stress intensity factor is investigated.

  18. Towards Blockchain-enabled Wireless Mesh Networks

    OpenAIRE

    Selimi, Mennan; Kabbinale, Aniruddh Rao; Ali, Anwaar; Navarro, Leandro; Sathiaseelan, Arjuna

    2018-01-01

    Recently, mesh networking and blockchain are two of the hottest technologies in the telecommunications industry. Combining both can reformulate internet access and make connecting to the Internet not only easy, but affordable too. Hyperledger Fabric (HLF) is a blockchain framework implementation and one of the Hyperledger projects hosted by The Linux Foundation. We evaluate HLF in a real production mesh network and in the laboratory, quantify its performance, bottlenecks and limitations of th...

  19. PERFORMANCE ENHANCEMENT OF A MINIATURE STIRLING CRYOCOOLER WITH A MULTI MESH REGENERATOR DESIGN

    Directory of Open Access Journals (Sweden)

    KISHOR KUMAR V. V.

    2017-06-01

    Full Text Available A parametric study has been carried out using the software REGEN 3.3 to optimize the regenerator of a miniature Stirling cryocooler operating with a warm end temperature of 300 K and cold end temperature of 80 K. Regenerator designs which produce the maximum coefficient of performance (COP of the system is considered as an optimized regenerator. The length and diameter of the regenerator were fixed from the cooler system requirements. Single mesh regenerators made of 200, 250, 300, 400 and 450 Stainless Steel wire meshes were considered and the optimum phase angle and mesh size were obtained. A maximum COP of 0.1475 was obtained for 300 mesh regenerator at 70° phase angle. Then multi mesh regenerators were considered with finer mesh on the cold end and coarser mesh on the hot end. The optimum size and length of each mesh in the multi mesh regenerator and the optimum phase angle were calculated. The maximum COP of 0.156 was obtained for 200 300-400 multi mesh regenerator at 70° phase angle. The COP and net refrigeration obtained for an optimized multi mesh regenerator was found to be significantly higher than that of a single mesh regenerator. Thus a multi mesh regenerator design with a proper combination of regenerator mesh size and length can enhance the regenerator effectiveness.

  20. [Current state of transvaginal meshes by resolution of pelvic organ prolapse].

    Science.gov (United States)

    Jírová, J; Pán, M

    Treatment of pelvic organs prolapse with transvaginal mesh kits represents nowadays a widespread surgical method, which partially replaced classic operations due to high success rate and low count of recurrences. Just like any other surgical method, the placement of transvaginal mesh is linked with occurrence of complications. In this article we attempt to review the more and less known facts about trans-vaginal meshes, their efficacy, count of recurrence and the spectrum of complications and we try to compare this technique with traditional surgical methods used to treat pelvic organs prolapse (without graft materials). Review. Department of Obstetrics and Gynecology, Regional hospital Mladá Boleslav a.s., Mladá Boleslav. Overview of the results of recent studies published in the Czech and English language in recent years. Pelvic organ prolapse repair with vaginal mesh has generally lower count of relapse especially in patients with wide genital hiatal area and with major levator ani avulsion. The spectrum of complications differs from classical techniques because of the presence of synthetic nonabsorbable material. Some of the specific complications we did not encounter during classical operations include vaginal mesh erosion, infection of mesh associated with chronic pelvic pain, dyspareunia, protrusion of the mesh into the closest organs or the rejection and progressive extrusion of the mesh. Primary enthusiasm has now been replaced with worries of major complications. Future tasks should therefore be aimed at minimizing the rate of complications associated with transvaginal meshes. Except using well-known and safe materials and providing specialized training of physicians for each mesh implantation technique, other precautions outlined in this article should help, such as a closer specification of indication for the application of transvaginal mesh.

  1. Histologic and biomechanical evaluation of a novel macroporous polytetrafluoroethylene knit mesh compared to lightweight and heavyweight polypropylene mesh in a porcine model of ventral incisional hernia repair.

    Science.gov (United States)

    Melman, L; Jenkins, E D; Hamilton, N A; Bender, L C; Brodt, M D; Deeken, C R; Greco, S C; Frisella, M M; Matthews, B D

    2011-08-01

    To evaluate the biocompatibility of heavyweight polypropylene (HWPP), lightweight polypropylene (LWPP), and monofilament knit polytetrafluoroethylene (mkPTFE) mesh by comparing biomechanics and histologic response at 1, 3, and 5 months in a porcine model of incisional hernia repair. Bilateral full-thickness abdominal wall defects measuring 4 cm in length were created in 27 Yucatan minipigs. Twenty-one days after hernia creation, animals underwent bilateral preperitoneal ventral hernia repair with 8 × 10 cm pieces of mesh. Repairs were randomized to Bard(®)Mesh (HWPP, Bard/Davol, http://www.davol.com), ULTRAPRO(®) (LWPP, Ethicon, http://www.ethicon.com), and GORE(®)INFINIT Mesh (mkPTFE, Gore & Associates, http://www.gore.com). Nine animals were sacrificed at each timepoint (1, 3, and 5 months). At harvest, a 3 × 4 cm sample of mesh and incorporated tissue was taken from the center of the implant site and subjected to uniaxial tensile testing at a rate of 0.42 mm/s. The maximum force (N) and tensile strength (N/cm) were measured with a tensiometer, and stiffness (N/mm) was calculated from the slope of the force-versus-displacement curve. Adjacent sections of tissue were stained with hematoxylin and eosin (H&E) and analyzed for inflammation, fibrosis, and tissue ingrowth. Data are reported as mean ± SEM. Statistical significance (P 0.05 for all comparisons). However, for each mesh type, the maximum strength at 5 months was significantly lower than that at 1 month (P 0.05 for all comparisons). No significant differences with regard to inflammation, fibrosis, or tissue ingrowth were detected between mesh types at any time point (P > 0.09 for all comparisons). However, over time, inflammation decreased significantly for all mesh types (P 0.09). The maximum tensile strength of mesh in the abdominal wall decreased over time for HWPP, LWPP, and mkPTFE mesh materials alike. This trend may actually reflect inability to adequately grip specimens at later time points

  2. Engagement of Metal Debris into a Gear Mesh

    Science.gov (United States)

    Handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  3. 7th International Meshing Roundtable '98

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, T.J.

    1998-10-01

    The goal of the 7th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the past, the Roundtable has enjoyed significant participation from each of these groups from a wide variety of countries.

  4. Flow simulations about steady-complex and unsteady moving configurations using structured-overlapped and unstructured grids

    Science.gov (United States)

    Newman, James C., III

    1995-01-01

    The limiting factor in simulating flows past realistic configurations of interest has been the discretization of the physical domain on which the governing equations of fluid flow may be solved. In an attempt to circumvent this problem, many Computational Fluid Dynamic (CFD) methodologies that are based on different grid generation and domain decomposition techniques have been developed. However, due to the costs involved and expertise required, very few comparative studies between these methods have been performed. In the present work, the two CFD methodologies which show the most promise for treating complex three-dimensional configurations as well as unsteady moving boundary problems are evaluated. These are namely the structured-overlapped and the unstructured grid schemes. Both methods use a cell centered, finite volume, upwind approach. The structured-overlapped algorithm uses an approximately factored, alternating direction implicit scheme to perform the time integration, whereas, the unstructured algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and limitations of each scheme, they are applied to the same steady complex multicomponent configurations and unsteady moving boundary problems. The steady complex cases consist of computing the subsonic flow about a two-dimensional high-lift multielement airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. Accuracy was accessed through the comparison of computed and experimentally measured pressure coefficient data on several of the wing/pylon/finned store assembly's components and at numerous angles-of-attack for the pitching airfoil. From this study, it was found that both the structured-overlapped and the unstructured grid schemes yielded flow solutions of

  5. Coupling an Unstructured NoSQL Database with a Geographic Information System

    OpenAIRE

    Holemans, Amandine; Kasprzyk, Jean-Paul; Donnay, Jean-Paul

    2018-01-01

    The management of unstructured NoSQL (Not only Structured Query Language) databases has undergone a great development in the last years mainly thanks to Big Data. Nevertheless, the specificity of spatial information is not purposely taken into account. To overcome this difficulty, we propose to couple a NoSQL database with a spatial Relational Data Base Management System (RDBMS). Exchanges of information between these two systems are illustrated with relevant examples ...

  6. Plated nickel wire mesh makes superior catalyst bed

    Science.gov (United States)

    Sill, M.

    1965-01-01

    Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.

  7. Mesh Processing in Medical-Image Analysis-a Tutorial

    DEFF Research Database (Denmark)

    Levine, Joshua A.; Paulsen, Rasmus Reinhold; Zhang, Yongjie

    2012-01-01

    Medical-image analysis requires an understanding of sophisticated scanning modalities, constructing geometric models, building meshes to represent domains, and downstream biological applications. These four steps form an image-to-mesh pipeline. For research in this field to progress, the imaging...

  8. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  9. Challenging the Myth: Transvaginal Mesh is Not Associated with Carcinogenesis.

    Science.gov (United States)

    Chughtai, Bilal; Sedrakyan, Art; Mao, Jialin; Thomas, Dominique; Eilber, Karyn S; Clemens, J Quentin; Anger, Jennifer T

    2017-10-01

    We sought to determine if there was a potential link between synthetic polypropylene mesh implantation for transvaginal pelvic organ prolapse and stress urinary incontinence, and carcinogenesis using statewide administrative data. Women who underwent transvaginal surgery for pelvic organ prolapse or stress urinary incontinence with mesh between January 2008 and December 2009 in New York State were identified using ICD-9-CM procedure codes and CPT-4 codes. Patients in the mesh cohort were individually matched to 2 control cohorts based on comorbidities and procedure date. Carcinogenesis was determined before and after matching at 1, 2 and 3 years, and during the entire followup time. A total of 2,229 patients who underwent mesh based pelvic organ prolapse surgery and 10,401 who underwent sling surgery for stress urinary incontinence between January 2008 and December 2009 were included in the study. Mean followup was 6 years (range 5 to 7). Exact matching between the mesh and control cohorts resulted in 1,870 pairs for pelvic organ prolapse mesh and cholecystectomy (1:2), 1,278 pairs for pelvic organ prolapse mesh and hysterectomy (1:1), 7,986 pairs for sling and cholecystectomy (1:1) and 3,810 pairs for sling and hysterectomy (1:1). Transvaginal mesh implantation was not associated with an increased risk of a cancer diagnosis (pelvic/local cancers or any cancer) at 1 year and during the entire followup of up to 7 years. Transvaginal surgery with implantation of mesh was not associated with the development of malignancy at a mean followup of 6 years. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Incisional hernia prevention using a cyanoacrilate-fixed retrofascial mesh.

    Science.gov (United States)

    Hoyuela, Carlos; Juvany, Montserrat; Trias, Miquel; Ardid, Jordi; Martrat, Antoni

    2018-01-01

    The rate of incisional hernia in high-risk patients (obesity, cancer, etc.) is high, even in laparoscopic surgery. The aim of this study is to evaluate the safety of the use of cyanoacrylate fixed prophylactic meshes in the assistance incision in overweight or obese patients undergoing laparoscopic colorectal surgery. A prospective, non-randomized cohort study of patients undergoing elective laparoscopic resection for colorectal cancer between January 2013 and March 2016 was performed. Those with a body mass index greater than 25kg / m 2 were evaluated to implant a prophylactic meshes fixed with cyanoacrylate (Histoacryl®) as reinforcement of the assistance incision. 52 patients were analyzed (mean body mass index: 28.4±2kg / m 2 ). Prophylactic meshes was implanted in 15 patients. The time to put the mesh in place was always less than 5minutes. There was no significant difference in wound infection rate (12% vs. 10%). No mesh had to be explanted. Although the mean follow-up was shorter (14.1±4 vs. 22.3±9 months), there were no incisional hernia in the mesh group. On the other hand, in the non-mesh group, 1 acute evisceration (2.7%) and 4 incisional hernia of the assistance incision were observed (10.8%). There were no significant differences between groups regarding trocar incisional hernia (6.6 vs. 5.4%). The implantation of a reinforcement prophylactic mesh in overweight or obese patients undergoing laparoscopic colorectal surgery is safe and seems to reduce the short-term rate of incisional hernia. Fixation with cyanoacrylate is a rapid method that facilitates the procedure without additional complications. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. ZONE: a finite element mesh generator

    International Nuclear Information System (INIS)

    Burger, M.J.

    1976-05-01

    The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures

  12. Ordering schemes for parallel processing of certain mesh problems

    International Nuclear Information System (INIS)

    O'Leary, D.

    1984-01-01

    In this work, some ordering schemes for mesh points are presented which enable algorithms such as the Gauss-Seidel or SOR iteration to be performed efficiently for the nine-point operator finite difference method on computers consisting of a two-dimensional grid of processors. Convergence results are presented for the discretization of u /SUB xx/ + u /SUB yy/ on a uniform mesh over a square, showing that the spectral radius of the iteration for these orderings is no worse than that for the standard row by row ordering of mesh points. Further applications of these mesh point orderings to network problems, more general finite difference operators, and picture processing problems are noted

  13. Energy transfer in structured and unstructured environments

    DEFF Research Database (Denmark)

    Iles-Smith, Jake; Dijkstra, Arend G.; Lambert, Neill

    2016-01-01

    of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum......We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly...... correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously...

  14. H-Morph: An indirect approach to advancing front hex meshing

    Energy Technology Data Exchange (ETDEWEB)

    OWEN,STEVEN J.; SAIGAL,SUNIL

    2000-05-30

    H-Morph is a new automatic algorithm for the generation of a hexahedral-dominant finite element mesh for arbitrary volumes. The H-Morph method starts with an initial tetrahedral mesh and systematically transforms and combines tetrahedral into hexahedra. It uses an advancing front technique where the initial front consists of a set of prescribed quadrilateral surface facets. Fronts are individually processed by recovering each of the six quadrilateral faces of a hexahedron from the tetrahedral mesh. Recovery techniques similar to those used in boundary constrained Delaunay mesh generation are used. Tetrahedral internal to the six hexahedral faces are then removed and a hexahedron is formed. At any time during the H-Morph procedure a valid mixed hexahedral-tetrahedral mesh is in existence within the volume. The procedure continues until no tetrahedral remain within the volume, or tetrahedral remain which cannot be transformed or combined into valid hexahedral elements. Any remaining tetrahedral are typically towards the interior of the volume, generally a less critical region for analysis. Transition from tetrahedral to hexahedra in the final mesh is accomplished through pyramid shaped elements. Advantages of the proposed method include its ability to conform to an existing quadrilateral surface mesh, its ability to mesh without the need to decompose or recognize special classes of geometry, and its characteristic well-aligned layers of elements parallel to the boundary. Example test cases are presented on a variety of models.

  15. Statistical Analysis of Compressive and Flexural Test Results on the Sustainable Adobe Reinforced with Steel Wire Mesh

    Science.gov (United States)

    Jokhio, Gul A.; Syed Mohsin, Sharifah M.; Gul, Yasmeen

    2018-04-01

    It has been established that Adobe provides, in addition to being sustainable and economic, a better indoor air quality without spending extensive amounts of energy as opposed to the modern synthetic materials. The material, however, suffers from weak structural behaviour when subjected to adverse loading conditions. A wide range of mechanical properties has been reported in literature owing to lack of research and standardization. The present paper presents the statistical analysis of the results that were obtained through compressive and flexural tests on Adobe samples. Adobe specimens with and without wire mesh reinforcement were tested and the results were reported. The statistical analysis of these results presents an interesting read. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. This increase is statistically significant. The flexural response of Adobe has also shown improvement with the addition of wire mesh reinforcement, however, the statistical significance of the same cannot be established.

  16. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    International Nuclear Information System (INIS)

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X

    2015-01-01

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed

  17. 3D Tensorial Elastodynamics for Isotropic Media on Vertically Deformed Meshes

    Science.gov (United States)

    Shragge, J. C.

    2017-12-01

    Solutions of the 3D elastodynamic wave equation are sometimes required in industrial and academic applications of elastic reverse-time migration (E-RTM) and full waveform inversion (E-FWI) that involve vertically deformed meshes. Examples include incorporating irregular free-surface topography and handling internal boundaries (e.g., water bottom) directly into the computational meshes. In 3D E-RTM and E-FWI applications, the number of forward modeling simulations can number in the tens of thousands (per iteration), which necessitates the development of stable, accurate and efficient 3D elastodynamics solvers. For topographic scenarios, most finite-difference solution approaches use a change-of-variable strategy that has a number of associated computational challenges, including difficulties in handling of the free-surface boundary condition. In this study, I follow a tensorial approach and use a generalized family of analytic transforms to develop a set of analytic equations for 3D elastodynamics that directly incorporates vertical grid deformations. Importantly, this analytic approach allows for the specification of an analytic free-surface boundary condition appropriate for vertically deformed meshes. These equations are both straightforward and efficient to solve using a velocity-stress formulation with finite-difference (MFD) operators implemented on a fully staggered grid. Moreover, I demonstrate that the use of mimetic finite difference (MFD) methods allows stable, accurate, and efficient numerical solutions to be simulated for typical topographic scenarios. Examples demonstrate that high-quality elastic wavefields can be generated for topographic surfaces exhibiting significant topographic relief.

  18. Grouper: a compact, streamable triangle mesh data structure.

    Science.gov (United States)

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek

    2014-01-01

    We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As a part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle--i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format--Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.

  19. Grouper: A Compact, Streamable Triangle Mesh Data Structure

    Energy Technology Data Exchange (ETDEWEB)

    Luffel, Mark [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU); Gurung, Topraj [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU); Lindstrom, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rossignac, Jarek [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU)

    2014-01-01

    Here, we present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We also present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. In this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle-i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format-Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.

  20. Male infertility after mesh hernia repair: A prospective study.

    Science.gov (United States)

    Hallén, Magnus; Sandblom, Gabriel; Nordin, Pär; Gunnarsson, Ulf; Kvist, Ulrik; Westerdahl, Johan

    2011-02-01

    Several animal studies have raised concern about the risk for obstructive azoospermia owing to vasal fibrosis caused by the use of alloplastic mesh prosthesis in inguinal hernia repair. The aim of this study was to determine the prevalence of male infertility after bilateral mesh repair. In a prospective study, a questionnaire inquiring about involuntary childlessness, investigation for infertility and number of children was sent by mail to a group of 376 men aged 18-55 years, who had undergone bilateral mesh repair, identified in the Swedish Hernia Register (SHR). Questionnaires were also sent to 2 control groups, 1 consisting of 186 men from the SHR who had undergone bilateral repair without mesh, and 1 consisting of 383 men identified in the general population. The control group from the SHR was matched 2:1 for age and years elapsed since operation. The control group from the general population was matched 1:1 for age and marital status. The overall response rate was 525 of 945 (56%). Method of approach (anterior or posterior), type of mesh, and testicular status at the time of the repair had no significant impact on the answers to the questions. Nor did subgroup analysis of the men ≤40 years old reveal any significant differences. The results of this prospective study in men do not support the hypothesis that bilateral inguinal hernia repair with alloplastic mesh prosthesis causes male infertility at a significantly greater rate than those operated without mesh. Copyright © 2011 Mosby, Inc. All rights reserved.