Silva, Walter A.
1993-01-01
A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.
Guruswamy, G. P.; Goorjian, P. M.
1984-01-01
An efficient coordinate transformation technique is presented for constructing grids for unsteady, transonic aerodynamic computations for delta-type wings. The original shearing transformation yielded computations that were numerically unstable and this paper discusses the sources of those instabilities. The new shearing transformation yields computations that are stable, fast, and accurate. Comparisons of those two methods are shown for the flow over the F5 wing that demonstrate the new stability. Also, comparisons are made with experimental data that demonstrate the accuracy of the new method. The computations were made by using a time-accurate, finite-difference, alternating-direction-implicit (ADI) algorithm for the transonic small-disturbance potential equation.
Development of a nonlinear unsteady transonic flow theory
Stahara, S. S.; Spreiter, J. R.
1973-01-01
A nonlinear, unsteady, small-disturbance theory capable of predicting inviscid transonic flows about aerodynamic configurations undergoing both rigid body and elastic oscillations was developed. The theory is based on the concept of dividing the flow into steady and unsteady components and then solving, by method of local linearization, the coupled differential equation for unsteady surface pressure distribution. The equations, valid at all frequencies, were derived for two-dimensional flows, numerical results, were obtained for two classses of airfoils and two types of oscillatory motions.
Pak, Chan-gi; Li, Wesley W.
2009-01-01
Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed
Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor
Papalia, John J.
Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA
Applications of potential theory computations to transonic aeroelasticity
Edwards, J. W.
1986-01-01
Unsteady aerodynamic and aeroelastic stability calculations based upon transonic small disturbance (TSD) potential theory are presented. Results from the two-dimensional XTRAN2L code and the three-dimensional XTRAN3S code are compared with experiment to demonstrate the ability of TSD codes to treat transonic effects. The necessity of nonisentropic corrections to transonic potential theory is demonstrated. Dynamic computational effects resulting from the choice of grid and boundary conditions are illustrated. Unsteady airloads for a number of parameter variations including airfoil shape and thickness, Mach number, frequency, and amplitude are given. Finally, samples of transonic aeroelastic calculations are given. A key observation is the extent to which unsteady transonic airloads calculated by inviscid potential theory may be treated in a locally linear manner.
Introduction to transonic aerodynamics
Vos, Roelof
2015-01-01
Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics. Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter. The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...
Unsteady Aerodynamics of Deformable Thin Airfoils
Walker, William Paul
2009-01-01
Unsteady aerodynamic theories are essential in the analysis of bird and insect flight. The study of these types of locomotion is vital in the development of flapping wing aircraft. This paper uses potential flow aerodynamics to extend the unsteady aerodynamic theory of Theodorsen and Garrick (which is restricted to rigid airfoil motion) to deformable thin airfoils. Frequency-domain lift, pitching moment and thrust expressions are derived for an airfoil undergoing harmonic oscillations and def...
Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow
Howlett, J. T.
1985-01-01
An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flows.
Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements
Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter
2009-01-01
In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.
Transonic and supersonic ground effect aerodynamics
Doig, G.
2014-08-01
A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.
Unsteady Aerodynamic Force Sensing from Measured Strain
Pak, Chan-Gi
2016-01-01
A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection
Fundamentals of modern unsteady aerodynamics
Gülçat, Ülgen
2016-01-01
In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references. The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.
Influence of unsteady aerodynamics on driving dynamics of passenger cars
Huemer, Jakob; Stickel, Thomas; Sagan, Erich; Schwarz, Martin; Wall, Wolfgang A.
2014-11-01
Recent approaches towards numerical investigations with computational fluid dynamics methods on unsteady aerodynamic loads of passenger cars identified major differences compared with steady-state aerodynamic excitations. Furthermore, innovative vehicle concepts such as electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore, the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve handling and ride characteristics at high velocity of the actual range of vehicle layouts, the influence of unsteady excitations on the vehicle response was investigated. For this purpose, a simulation of the vehicle dynamics through multi-body simulation was used. The impact of certain unsteady aerodynamic load characteristics on the vehicle response was quantified and key factors were identified. Through a series of driving simulator tests, the identified differences in the vehicle response were evaluated regarding their significance on the subjective driver perception of cross-wind stability. Relevant criteria for the subjective driver assessment of the vehicle response were identified. As a consequence, a design method for the basic layout of passenger cars and chassis towards unsteady aerodynamic excitations was defined.
Influence of Unsteady Aerodynamics on Driving Dynamics of Passenger Cars
Huemer, J.; Stickel, T.; Sagan, E.; Schwarz, M.; Wall, W.A.
2015-01-01
Recent approaches towards numerical investigations with CFD-Methods on unsteady aerodynamic loads of passenger cars identified major differences compared to steady state aerodynamic excitations. Furthermore innovative vehicle concepts like electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve...
Theoretical and applied aerodynamics and related numerical methods
Chattot, J J
2015-01-01
This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...
Fundamentals of modern unsteady aerodynamics
Gülçat, Ülgen
2010-01-01
This introduction to the principles of unsteady aerodynamics covers all the core concepts, provides readers with a review of the fundamental physics, terminology and basic equations, and covers hot new topics such as the use of flapping wings for propulsion.
Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan
2016-01-01
The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).
Introduction of the ASP3D Computer Program for Unsteady Aerodynamic and Aeroelastic Analyses
Batina, John T.
2005-01-01
A new computer program has been developed called ASP3D (Advanced Small Perturbation 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP3D code is the result of a decade of developmental work on improvements to the small perturbation formulation, performed while the author was employed as a Senior Research Scientist in the Configuration Aerodynamics Branch at the NASA Langley Research Center. The ASP3D code is a significant improvement to the state-of-the-art for transonic aeroelastic analyses over the CAP-TSD code (Computational Aeroelasticity Program Transonic Small Disturbance), which was developed principally by the author in the mid-1980s. The author is in a unique position as the developer of both computer programs to compare, contrast, and ultimately make conclusions regarding the underlying formulations and utility of each code. The paper describes the salient features of the ASP3D code including the rationale for improvements in comparison with CAP-TSD. Numerous results are presented to demonstrate the ASP3D capability. The general conclusion is that the new ASP3D capability is superior to the older CAP-TSD code because of the myriad improvements developed and incorporated.
Unsteady Aerodynamics of Flapping Wing of a Bird
Directory of Open Access Journals (Sweden)
M. Agoes Moelyadi
2013-04-01
Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.
Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations
Energy Technology Data Exchange (ETDEWEB)
Sandhu, Rimple [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Poirel, Dominique [Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston, Ontario (Canada); Pettit, Chris [Department of Aerospace Engineering, United States Naval Academy, Annapolis, MD (United States); Khalil, Mohammad [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Sarkar, Abhijit, E-mail: abhijit.sarkar@carleton.ca [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada)
2016-07-01
A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.
International Nuclear Information System (INIS)
Anon.
1992-01-01
Consideration is given to vortex physics and aerodynamics; supersonic/hypersonic aerodynamics; STOL/VSTOL/rotors; missile and reentry vehicle aerodynamics; CFD as applied to aircraft; unsteady aerodynamics; supersonic/hypersonic aerodynamics; low-speed/high-lift aerodynamics; airfoil/wing aerodynamics; measurement techniques; CFD-solvers/unstructured grid; airfoil/drag prediction; high angle-of-attack aerodynamics; and CFD grid methods. Particular attention is given to transonic-numerical investigation into high-angle-of-attack leading-edge vortex flow, prediction of rotor unsteady airloads using vortex filament theory, rapid synthesis for evaluating the missile maneuverability parameters, transonic calculations of wing/bodies with deflected control surfaces; the static and dynamic flow field development about a porous suction surface wing; the aircraft spoiler effects under wind shear; multipoint inverse design of an infinite cascade of airfoils, turbulence modeling for impinging jet flows; numerical investigation of tail buffet on the F-18 aircraft; the surface grid generation in a parameter space; and the flip flop nozzle extended to supersonic flows
Aerodynamics profile not in stationary flow
Directory of Open Access Journals (Sweden)
А.А. Загорулько
2006-02-01
Full Text Available Consider the question about influence of unsteady flight on the size of drag and lift coefficients of theaerodynamic profile. Distinctive features of this investigation are obtaining data about aerodynamic drag chancing in process unsteady on high angle at attack and oscillation profile in subsonic and transonic flight. Given analysis of oscillation profile show, that dynamic loops accompany change of lift and dray force. The researches show that it is necessary to clarity the mathematic model of the airplane flight dynamics by introducing numbers, with take into account unsteady effects.
Determination of aerodynamic sensitivity coefficients in the transonic and supersonic regimes
Elbanna, Hesham M.; Carlson, Leland A.
1989-01-01
The quasi-analytical approach is developed to compute airfoil aerodynamic sensitivity coefficients in the transonic and supersonic flight regimes. Initial investigation verifies the feasibility of this approach as applied to the transonic small perturbation residual expression. Results are compared to those obtained by the direct (finite difference) approach and both methods are evaluated to determine their computational accuracies and efficiencies. The quasi-analytical approach is shown to be superior and worth further investigation.
Perry, Boyd, III
2017-01-01
This paper identifies the unsteady aerodynamic forces and moments for a typical section contained in the NACA Report No. 496, "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen. These quantities are named Theodorsen's aerodynamic forces (TAFs). The TAFs are compared to the generalized aerodynamic forces (GAFs) for a very high aspect ratio wing (AR = 20) at zero Mach number computed by the doublet lattice method. Agreement between TAFs and GAFs is very-good-to-excellent. The paper also reveals that simple proportionality relationships that are known to exist between the real parts of some GAFs and the imaginary parts of others also hold for the real and imaginary parts of the corresponding TAFs.
Predicted and experimental steady and unsteady transonic flows about a biconvex airfoil
Levy, L. L., Jr.
1981-01-01
Results of computer code time dependent solutions of the two dimensional compressible Navier-Stokes equations and the results of independent experiments are compared to verify the Mach number range for instabilities in the transonic flow field about a 14 percent thick biconvex airfoil at an angle of attack of 0 deg and a Reynolds number of 7 million. The experiments were conducted in a transonic, slotted wall wind tunnel. The computer code included an algebraic eddy viscosity turbulence model developed for steady flows, and all computations were made using free flight boundary conditions. All of the features documented experimentally for both steady and unsteady flows were predicted qualitatively; even with the above simplifications, the predictions were, on the whole, in good quantitative agreement with experiment. In particular, predicted time histories of shock wave position, surface pressures, lift, and pitching moment were found to be in very good agreement with experiment for an unsteady flow. Depending upon the free stream Mach number for steady flows, the surface pressure downstream of the shock wave or the shock wave location was not well predicted.
Unsteady aerodynamic modeling at high angles of attack using support vector machines
Directory of Open Access Journals (Sweden)
Wang Qing
2015-06-01
Full Text Available Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as selection of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfying learning and generalization performance of LS-SVMs.
Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil
Davis, Sanford S.; Malcolm, Gerald N.
1980-01-01
Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.
Unsteady Aerodynamics Experiment Phase V: Test Configuration and Available Data Campaigns; TOPICAL
International Nuclear Information System (INIS)
Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.
2001-01-01
The main objective of the Unsteady Aerodynamics Experiment is to provide information needed to quantify the full-scale, three-dimensional, unsteady aerodynamic behavior of horizontal-axis wind turbines (HAWTs). To accomplish this, an experimental wind turbine configured to meet specific research objectives was assembled and operated at the National Renewable Energy Laboratory (NREL). The turbine was instrumented to characterize rotating-blade aerodynamic performance, machine structural responses, and atmospheric inflow conditions. Comprehensive tests were conducted with the turbine operating in an outdoor field environment under diverse conditions. Resulting data are used to validate aerodynamic and structural dynamics models, which are an important part of wind turbine design and engineering codes. Improvements in these models are needed to better characterize aerodynamic response in both the steady-state post-stall and dynamic-stall regimes. Much of the effort in the first phase of the Unsteady Aerodynamics Experiment focused on developing required data acquisition systems. Complex instrumentation and equipment was needed to meet stringent data requirements while operating under the harsh environmental conditions of a wind turbine rotor. Once the data systems were developed, subsequent phases of experiments were then conducted to collect data for use in answering specific research questions. A description of the experiment configuration used during Phase V of the experiment is contained in this report
Directory of Open Access Journals (Sweden)
Qijun ZHAO
2018-02-01
Full Text Available A robust unsteady rotor flowfield solver CLORNS code is established to predict the complex unsteady aerodynamic characteristics of rotor flowfield. In order to handle the difficult problem about grid generation around rotor with complex aerodynamic shape in this CFD code, a parameterized grid generated method is established, and the moving-embedded grids are constructed by several proposed universal methods. In this work, the unsteady Reynolds-Averaged Navier-Stokes (RANS equations with Spalart-Allmaras are selected as the governing equations to predict the unsteady flowfield of helicopter rotor. The discretization of convective fluxes is accomplished by employing the second-order central difference scheme, third-order MUSCL-Roe scheme, and fifth-order WENO-Roe scheme. Aimed at simulating the unsteady aerodynamic characteristics of helicopter rotor, the dual-time scheme with implicit LU-SGS scheme is employed to accomplish the temporal discretization. In order to improve the computational efficiency of hole-cells and donor elements searching of the moving-embedded grid technology, the “disturbance diffraction method” and “minimum distance scheme of donor elements method” are established in this work. To improve the computational efficiency, Message Passing Interface (MPI parallel method based on subdivision of grid, local preconditioning method and Full Approximation Storage (FAS multi-grid method are combined in this code. By comparison of the numerical results simulated by CLORNS code with test data, it is illustrated that the present code could simulate the aerodynamic loads and aerodynamic noise characteristics of helicopter rotor accurately. Keywords: Aerodynamic characteristics, Helicopter rotor, Moving-embedded grid, Navier-Stokes equations, Upwind schemes
Wind Turbines: Unsteady Aerodynamics and Inflow Noise
DEFF Research Database (Denmark)
Broe, Brian Riget
in order to estimate the lift fluctuations due to unsteady aerodynamics (Sears, W. R.: 1941, Some aspects of non-stationary airfoil theory and its practical application; Goldstein, M. E. and Atassi, H. M.: 1976, A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust...... (Sears, W. R.: 1941; and Graham, J. M. R.: 1970). An acoustic model is investigated using a model for the lift distribution as input (Amiet, R. K.: 1975, Acoustic radiation from an airfoil in a turbulent stream). The two models for lift distribution are used in the acoustic model. One of the models...
Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan
Hah, Chunill; Rabe, Douglas; Scribben, Angie
2015-01-01
In the present study, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the study is to advance the current understanding of the flow interaction between two different ultra-compact inlets and a transonic fan for future design applications. Both URANS and LES approaches are used to calculate the unsteady flow field and are compared with the available measured data. The present study indicates that stall inception is mildly affected by the distortion pattern generated by the inlet with the current test set-up. The numerical study indicates that the inlet distortion pattern decays significantly before it reaches the fan face for the current configuration. Numerical results with a shorter distance between the inlet and fan show that counter-rotating vortices near the rotor tip due to the serpentine diffuser affects fan characteristics significantly.
Energy Technology Data Exchange (ETDEWEB)
Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong [Inha Univ., Incheon (Korea, Republic of)
2017-01-15
In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.
International Nuclear Information System (INIS)
Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong
2017-01-01
In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.
Mccain, W. E.
1984-01-01
The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.
Wind turbines. Unsteady aerodynamics and inflow noise
Energy Technology Data Exchange (ETDEWEB)
Riget Broe, B.
2009-12-15
Aerodynamical noise from wind turbines due to atmospheric turbulence has the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated in order to estimate the lift fluctuations due to unsteady aerodynamics. Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil. An acoustic model is investigated using a model for the lift distribution as input. The two models for lift distribution are used in the acoustic model. One of the models for lift distribution is for completely anisotropic turbulence and the other for perfectly isotropic turbulence, and so is also the corresponding models for the lift fluctuations derived from the models for lift distribution. The models for lift distribution and lift are compared with pressure data which are obtained by microphones placed flush with the surface of an aerofoil. The pressure data are from two experiments in a wind tunnel, one experiment with a NACA0015 profile and a second with a NACA63415 profile. The turbulence is measured by a triple wired hotwire instrument in the experiment with a NACA0015 profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model and the perfectly isotropic turbulent model. This indicates that the models capture the aerodynamics well. Thus the measurements suggest that the noise due to atmospheric turbulence can be described and modeled by the two models for lift distribution. It was not possible to test the acoustical model by the measurements
Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil
Xia, X.; Mohseni, K.
2017-11-01
Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modeling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad-hoc implementation, the unsteady Kutta condition, the conservation of circulation, as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength, and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for airfoils in steady and unsteady background flows.
Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.
1980-01-01
A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.
Determination of aerodynamic sensitivity coefficients for wings in transonic flow
Carlson, Leland A.; El-Banna, Hesham M.
1992-01-01
The quasianalytical approach is applied to the 3-D full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. The quasianalytical approach is believed to be reasonably accurate and computationally efficient for 3-D problems.
Directory of Open Access Journals (Sweden)
Ilija Jegdic
2015-09-01
Full Text Available We consider a two-dimensional Riemann problem for the unsteady transonic small disturbance equation resulting in diverging rarefaction waves. We write the problem in self-similar coordinates and we obtain a mixed type (hyperbolic-elliptic system. Resolving the one-dimensional discontinuities in the far field, where the system is hyperbolic, and using characteristics, we formulate the problem in a semi-hyperbolic patch that is between the hyperbolic and the elliptic regions. A semi-hyperbolic patch is known as a region where one family out of two nonlinear families of characteristics starts on a sonic curve and ends on a transonic shock. We obtain existence of a smooth local solution in this semi-hyperbolic patch and we prove various properties of global smooth solutions based on a characteristic decomposition using directional derivatives.
Unsteady Aerodynamics Experiment Phases II-IV Test Configurations and Available Data Campaigns
Energy Technology Data Exchange (ETDEWEB)
Simms, D. A.; Hand, M. M.; Fingersh, L. J.; Jager, D. W.
1999-08-19
The main objective of the Unsteady Aerodynamics Experiment is to provide information needed to quantify the full-scale three-dimensional aerodynamic behavior of horizontal axis wind turbines. To accomplish this, an experimental wind turbine configured to meet specific research objectives was assembled and operated at the National Renewable Energy Laboratory (NREL). The turbine was instrumented to characterize rotating blade aerodynamic performance, machine structural responses, and atmospheric inflow conditions. Comprehensive tests were conducted with the turbine operating in an outdoor field environment under diverse conditions. Resulting data are used to validate aerodynamic and structural dynamics models which are an important part of wind turbine design and engineering codes. Improvements in these models are needed to better characterize aerodynamic response in both the steady-state post-stall and dynamic stall regimes. Much of the effort in the earlier phase of the Unsteady Aerodynamics Experiment focused on developing required data acquisition systems. Complex instrumentation and equipment was needed to meet stringent data requirements while operating under the harsh environmental conditions of a wind turbine rotor. Once the data systems were developed, subsequent phases of experiments were then conducted to collect data for use in answering specific research questions. A description of the experiment configuration used during Phases II-IV of the experiment is contained in this report.
Transonic airfoil design for helicopter rotor applications
Hassan, Ahmed A.; Jackson, B.
1989-01-01
Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.
Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology
International Nuclear Information System (INIS)
Cai, Xin; Gu, Rongrong; Pan, Pan; Zhu, Jie
2016-01-01
Highlights: • A full-scale HAWT is simulated under operational conditions of wind shear and yaw. • The CFD method and sliding mesh are adopted to complete the calculation. • Thrust and torque of blades reach the peak and valley at the same time in wind shear. • The wind turbine produces yaw moment during the whole revolution in yaw case. • The torques and thrusts of the three blades present cyclical changes. - Abstract: The aerodynamic performance of wind turbines is significantly influenced by the unsteady flow around the rotor blades. The research on unsteady aerodynamics for Horizontal Axis Wind Turbines (HAWTs) is still poorly understood because of the complex flow physics. In this study, the unsteady aerodynamic configuration of a full-scale HAWT is simulated with consideration of wind shear, tower shadow and yaw motion. The calculated wind turbine which contains tapered tower, rotor overhang and tilted rotor shaft is constructed by making reference of successfully commercial operated wind turbine designed by NEG Micon and Vestas. A validated CFD method is utilized to analyze unsteady aerodynamic characteristics which affect the performance on such a full-scale HAWT. The approach of sliding mesh is used to carefully deal with the interface between static and moving parts in the flow field. The annual average wind velocity and wind profile in the atmospheric border are applied as boundary conditions. Considering the effects of wind shear and tower shadow, the simulation results show that the each blade reaches its maximum and minimum aerodynamic loads almost at the same time during the rotation circle. The blade–tower interaction imposes great impact on the power output performance. The wind turbine produces yaw moment during the whole revolution and the maximum aerodynamic loads appear at the upwind azimuth in the yaw computation case.
Directory of Open Access Journals (Sweden)
Hadar Ben-Gida
Full Text Available Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.
Minimum-domain impulse theory for unsteady aerodynamic force
Kang, L. L.; Liu, L. Q.; Su, W. D.; Wu, J. Z.
2018-01-01
We extend the impulse theory for unsteady aerodynamics from its classic global form to finite-domain formulation then to minimum-domain form and from incompressible to compressible flows. For incompressible flow, the minimum-domain impulse theory raises the finding of Li and Lu ["Force and power of flapping plates in a fluid," J. Fluid Mech. 712, 598-613 (2012)] to a theorem: The entire force with discrete wake is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures. For compressible flows, we find that the global form in terms of the curl of momentum ∇ × (ρu), obtained by Huang [Unsteady Vortical Aerodynamics (Shanghai Jiaotong University Press, 1994)], can be generalized to having an arbitrary finite domain, but the formula is cumbersome and in general ∇ × (ρu) no longer has discrete structures and hence no minimum-domain theory exists. Nevertheless, as the measure of transverse process only, the unsteady field of vorticity ω or ρω may still have a discrete wake. This leads to a minimum-domain compressible vorticity-moment theory in terms of ρω (but it is beyond the classic concept of impulse). These new findings and applications have been confirmed by our numerical experiments. The results not only open an avenue to combine the theory with computation-experiment in wide applications but also reveal a physical truth that it is no longer necessary to account for all wake vortical structures in computing the force and moment.
NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM
Directory of Open Access Journals (Sweden)
M. Y. Habib
2015-07-01
Full Text Available During this work, we simulated an unsteady flow around an airfoil type NACA0012 using the Fluent software. The objective is to control the code on the one hand and on the other hand the simulation of unsteady flows. By simulating an unsteady flow Reynolds number (Re = 6.85 * 106 and Mach number (M = 0.3, we have the flowing with a grid (mesh adequate numerical results and experimental data are in good agreement. To represent the results of the simulation we have validated by comparing the values of aerodynamic coefficients with those of experimental data.
Energy Technology Data Exchange (ETDEWEB)
Pan, Tianmin; Lu, Yingjie; Yan, Wenxuan; We, Xiaolu
1990-01-01
The present conference discusses a novel method for high speed propeller flutter prediction, blade loads due to unsteady flow in turbomachine cascades, the flow field around an oscillating cascade, axial flow compressor response to inlet periodic dynamic distortion, dynamic breaking in the compressor stall/surge limit, a numerical solution of the two-dimensional transonic flow through an axial turbine stage, the interaction between vibrating cascade blades and shear flow, and the rotating stall of centrifugal compressors. Also discussed are the effects of blade mistuning and coupled disk-blade on cascade flutter boundaries, cavity resonance in an aircraft engine casing during rig testing, noise generation by swept cascades, an advanced Pelton steam turbine rotor design with waste heat recovery, and aerodynamic losses in conventional high bypass ratio turbofan blades.
Suzuki, Masahiro; Nakade, Koji; Ido, Atsushi
As the maximum speed of high-speed trains increases, flow-induced vibration of trains in tunnels has become a subject of discussion in Japan. In this paper, we report the result of a study on use of modifications of train shapes as a countermeasure for reducing an unsteady aerodynamic force by on-track tests and a wind tunnel test. First, we conduct a statistical analysis of on-track test data to identify exterior parts of a train which cause the unsteady aerodynamic force. Next, we carry out a wind tunnel test to measure the unsteady aerodynamic force acting on a train in a tunnel and examined train shapes with a particular emphasis on the exterior parts identified by the statistical analysis. The wind tunnel test shows that fins under the car body are effective in reducing the unsteady aerodynamic force. Finally, we test the fins by an on-track test and confirmed its effectiveness.
Global optimization methods for the aerodynamic shape design of transonic cascades
International Nuclear Information System (INIS)
Mengistu, T.; Ghaly, W.
2003-01-01
Two global optimization algorithms, namely Genetic Algorithm (GA) and Simulated Annealing (SA), have been applied to the aerodynamic shape optimization of transonic cascades; the objective being the redesign of an existing turbomachine airfoil to improve its performance by minimizing the total pressure loss while satisfying a number of constraints. This is accomplished by modifying the blade camber line; keeping the same blade thickness distribution, mass flow rate and the same flow turning. The objective is calculated based on an Euler solver and the blade camber line is represented with non-uniform rational B-splines (NURBS). The SA and GA methods were first assessed for known test functions and their performance in optimizing the blade shape for minimum loss is then demonstrated on a transonic turbine cascade where it is shown to produce a significant reduction in total pressure loss by eliminating the passage shock. (author)
Effect of chordwise deformation on unsteady aerodynamic mechanisms in hovering flapping flight
Noyon, T.A.; Tay, W.B.; Van Oudheusden, B.W.; Bijl, H.
2014-01-01
A three-dimensional simulation of hovering flapping wings was performed using an immersed boundary method. This was done to investigate the effects of chordwise wing deformation on three important unsteady aerodynamic mechanisms found in flapping flight, namely Leading Edge Vortex (LEV) shedding,
Morino, L.; Tseng, K.
1978-01-01
The Green's function method and the computer program SOUSSA (Steady Oscillatory and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed. The Green's function method is applied to the fully unsteady potential equation yielding an integro-differential-delay equation. This equation is approximated by a set of differential-delay equations in time using the finite element method. The Laplace transform is used to yield a matrix relating the velocity potential to the normal wash. The matrix of the generalized aerodynamic forces is obtained by premultiplying and postmultiplying the matrices relating generalized forces to the potential and the normal wash by the generalized coordinates. The program SOUSSA is compared with existing numerical results. Results indicate that the program is not only general, flexible, and easy to use, but also accurate and fast.
Blended-Wing-Body Transonic Aerodynamics: Summary of Ground Tests and Sample Results
Carter, Melissa B.; Vicroy, Dan D.; Patel, Dharmendra
2009-01-01
The Blended-Wing-Body (BWB) concept has shown substantial performance benefits over conventional aircraft configuration with part of the benefit being derived from the absence of a conventional empennage arrangement. The configuration instead relies upon a bank of trailing edge devices to provide control authority and augment stability. To determine the aerodynamic characteristics of the aircraft, several wind tunnel tests were conducted with a 2% model of Boeing's BWB-450-1L configuration. The tests were conducted in the NASA Langley Research Center's National Transonic Facility and the Arnold Engineering Development Center s 16-Foot Transonic Tunnel. Characteristics of the configuration and the effectiveness of the elevons, drag rudders and winglet rudders were measured at various angles of attack, yaw angles, and Mach numbers (subsonic to transonic speeds). The data from these tests will be used to develop a high fidelity simulation model for flight dynamics analysis and also serve as a reference for CFD comparisons. This paper provides an overview of the wind tunnel tests and examines the effects of Reynolds number, Mach number, pitch-pause versus continuous sweep data acquisition and compares the data from the two wind tunnels.
CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode
Directory of Open Access Journals (Sweden)
Li Peng
2015-12-01
Full Text Available In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode, a virtual blade model (VBM and an real blade model (RBM are established respectively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM is established to search corresponding donor elements in the present moving-embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum–Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are validated by comparing the calculated results with available experimental data. Then, unsteady aerodynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60° and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these
Continuous-time state-space unsteady aerodynamic modelling for efficient aeroelastic load analysis
Werter, N.P.M.; De Breuker, R.; Abdalla, M.M.
2015-01-01
Over the years, wings have become lighter and more flexible, making them more prone to aeroelastic effects. Thus, aeroelasticity in design becomes more important. In order to determine the response of an aircraft to, for example, a gust, an unsteady aerodynamic model is required to determine the
Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils
González, A.; Gomez-Iradi, S.; Munduate, X.
2014-06-01
From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.
Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils
International Nuclear Information System (INIS)
González, A; Gomez-Iradi, S; Munduate, X
2014-01-01
From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling
Energy Technology Data Exchange (ETDEWEB)
Delhaye, D.; Paniagua, G. [von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Rhode-Saint-Genese (Belgium); Fernandez Oro, J.M. [Universidad de Oviedo, Area de Mecanica de Fluidos, Gijon (Spain); Denos, R. [European Commission, Directorate General for Research, Brussels (Belgium)
2011-01-15
The paper presents the development and application of a three-sensor wedge probe to measure unsteady aerodynamics in a transonic turbine. CFD has been used to perform a detailed uncertainty analysis related to probe-induced perturbations, in particular the separation zones appearing on the wedge apex. The effects of the Reynolds and Mach numbers are studied using both experimental data together with CFD simulations. The angular range of the probe and linearity of the calibration maps are enhanced with a novel zonal calibration technique, used for the first time in compressible flows. The data reduction methodology is explained and demonstrated with measurements performed in a single-stage high-pressure turbine mounted in the compression tube facility of the von Karman Institute. The turbine was operated at subsonic and transonic pressure ratios (2.4 and 5.1) for a Reynolds number of 10{sup 6}, representative of modern engine conditions. Complete maps of the unsteady flow angle and rotor outlet Mach number are documented. These data allow the study of secondary flows and rotor trailing edge shocks. (orig.)
Shyam, Vikram; Ameri, Ali
2009-01-01
Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.
Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory
Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.
2015-01-01
An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.
Contribution to the study of unsteady condensation in transonic flow
International Nuclear Information System (INIS)
Collignan, B.; Laali, A.R.
1993-12-01
The aim of this thesis is the study of transonic steam flows with condensation, especially at high pressure. This study includes a numerical part an experimental one. The modelling has consisted of introducing a spontaneous condensation model in a one-dimensional Euler code using steam-water thermodynamic tables. Calculations, performed with this code, are in good agreement with experimental results at low pressure. The experimental study has been undertaken on a high pressure experimental loop installed at the Bugey nuclear power plant. We have studied steam flows in nozzles. The results obtained show that a partial heterogeneous condensation occurs in these flows. This proportion is stronger if the expansion rate of the flow is low and if the inlet pressure is high. However, a correction factor is obtained for high pressure nucleation rate model from experimental results. No unsteady condensation has been observed for flows between 15 bars and 50 bars with the steam available at Bugey power plant. (authors). figs., 71 refs., 6 annexes
Unsteady aerodynamic coefficients obtained by a compressible vortex lattice method.
Fabiano Hernandes
2009-01-01
Unsteady solutions for the aerodynamic coefficients of a thin airfoil in compressible subsonic or supersonic flows are studied. The lift, the pitch moment, and pressure coefficients are obtained numerically for the following motions: the indicial response (unit step function) of the airfoil, i.e., a sudden change in the angle of attack; a thin airfoil penetrating into a sharp edge gust (for several gust speed ratios); a thin airfoil penetrating into a one-minus-cosine gust and sinusoidal gust...
Batina, John T.
1990-01-01
Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.
A finite wake theory for two-dimensional rotary wing unsteady aerodynamics
Couch, Mark A.
1993-01-01
Approved for public release; distribution is unlimited. The unsteady aerodynamic forces and moments of an oscillating airfoil for the fixed wing case were determined by Theodorsen along with the development of a lift deficiency function. Loewy subsequently developed an analogous lift deficiency function for the rotary wing case in which there are an infinite number of layers of shed vorticity, or wakes, below the reference airfoil. With the advent of computer panel codes that calculate the...
Conversion of Phase II Unsteady Aerodynamics Experiment Data to Common Format; TOPICAL
International Nuclear Information System (INIS)
Hand, M. M.
1999-01-01
A vast amount of aerodynamic, structural, and turbine performance data were collected during three phases of the National Renewable Energy Laboratory's Unsteady Aerodynamics Experiment (UAE). To compare data from the three phases, a similar format of engineering unit data is required. The process of converting Phase II data from a previous engineering unit format to raw integer counts is discussed. The integer count files can then be input to the new post-processing software, MUNCH. The resulting Phase II engineering unit files are in a common format with current and future UAE engineering unit files. An additional objective for changing the file format was to convert the Phase II data from English units to SI units of measurement
Directory of Open Access Journals (Sweden)
Cui Michael M.
2005-01-01
Full Text Available To reduce vibration and noise level, the impeller and diffuser blade numbers inside an industrial compressor are typically chosen without common divisors. The shapes of volutes or collectors in these compressors are also not axis-symmetric. When impeller blades pass these asymmetric structures, the flow field in the compressor is time-dependent and three-dimensional. To obtain a fundamental physical understanding of these three-dimensional unsteady flow fields and assess their impact on the compressor performance, the flow field inside the compressors needs to be studied as a whole to include asymmetric and unsteady interaction between the compressor components. In the current study, a unified three-dimensional numerical model was built for a transonic centrifugal compressor including impeller, diffusers, and volute. HFC 134a was used as the working fluid. The thermodynamic and transport properties of the refrigerant gas were modeled by the Martin-Hou equation of state and power laws, respectively. The three-dimensional unsteady flow field was simulated with a Navier-Stokes solver using the k−ϵ turbulent model. The overall performance parameters are obtained by integrating the field quantities. Both the unsteady flow field and the overall performance are analyzed comparatively for each component. The compressor was tested in a water chiller system instrumented to obtain both the overall performance data and local flow-field quantities. The experimental and numerical results agree well. The correlation between the overall compressor performance and local flow-field quantities is defined. The methodology developed and data obtained in these studies can be applied to the centrifugal compressor design and optimization.
Transonic Experimental Research Facility
Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...
Tseng, K.; Morino, L.
1975-01-01
A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.
Unsteady aerodynamic modelling of wind turbines
Energy Technology Data Exchange (ETDEWEB)
Coton, F.N.; Galbraith, R.A. [Univ. og Glasgow, Dept. of Aerospace Engineering, Glasgow (United Kingdom)
1997-08-01
The following current and future work is discussed: Collaborative wind tunnel based PIV project to study wind turbine wake structures in head-on and yawed flow. Prescribed wake model has been embedded in a source panel representation of the wind tunnel walls to allow comparison with experiment; Modelling of tower shadow using high resolution but efficient vortex model in tower shadow domain; Extension of model to yawing flow; Upgrading and tuning of unsteady aerodynamic model for low speed, thick airfoil flows. Glasgow has a considerable collection of low speed dynamic stall data. Currently, the Leishman - Beddoes model is not ideally suited to such flows. For example: Range of stall onset criteria used for dynamic stall prediction including Beddoes. Wide variation of stall onset prediction. Beddoes representation was developed primarily with reference to compressible flows. Analyses of low speed data from Glasgow indicate deficiencies in the current model; Predicted versus measured response during ramp down motion. Modification of the Beddoes representation is required to obtain a fit with the measured data. (EG)
Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.
Xu, B F; Wang, T G; Yuan, Y; Cao, J F
2015-02-28
A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
National Aeronautics and Space Administration — CFD-based design-oriented (DO) steady/unsteady aerodynamic analysis tools for Aeroelastic / Aeroservoelastic (AE/ASE) evaluation lag significantly behind other...
Experimental Investigation of Unsteady Aerodynamic Forces on Airfoil in Harmonic Translatory Motion
DEFF Research Database (Denmark)
Gaunaa, Mac; Sørensen, Jens Nørkær
2003-01-01
The present paper describes the main results from an experimental investigation of the unsteady aerodynamic forces on a NACA 0015 airfoil subject to 1-degree-of-freedom (DOF) harmonic translatory motion. The focus of the experimental investigations was to determine the factors that influence...... maximum lift for both stationary and moving airfoil configurations. The mean as well as the dynamic characteristics of the different stall levels were found to differ from each other. An investigation of the negative aerodynamically damped cases showed that the damping decrease as the reduced frequency...... is decreased. Comparison between the experimental data, 2D Navier-Stokes computations and two commonly used dynamic stall models reveal that all models failed to reproduce the dynamic characteristics of the flow for incidences above maximum lift, however the Navier-Stokes computations generally captured...
8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines
1998-01-01
Twenty-one years have passed since the first symposium in this series was held in Paris (1976). Since then there have been meetings in Lausanne (1980), Cambridge (1984), Aachen (1987), Beijing (1989), Notre Dame (1991) and Fukuoka (1994). During this period a tremendous development in the field of unsteady aerodynamics and aeroelasticity in turbomachines has taken place. As steady-state flow conditions become better known, and as blades in the turbomachine are constantly pushed towards lower weight, and higher load and efficiency, the importance of unsteady phenomena appear more clearly. th The 8 Symposium was, as the previous ones, of high quality. Furthermore, it presented the audience with the latest developments in experimental, numerical and theoretical research. More papers than ever before were submitted to the conference. As the organising committee wanted to preserve the uniqueness of the symposium by having single sessions, and thus mingle speakers and audience with different backgrounds in this int...
Aerodynamic coefficients in generalized unsteady thin airfoil theory
Williams, M. H.
1980-01-01
Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).
Hessenius, K. A.; Goorjian, P. M.
1981-01-01
A high frequency extension of the unsteady, transonic code LTRAN2 was created and is evaluated by comparisons with experimental results. The experimental test case is a NACA 64A010 airfoil in pitching motion at a Mach number of 0.8 over a range of reduced frequencies. Comparisons indicate that the modified code is an improvement of the original LTRAN2 and provides closer agreement with experimental lift and moment coefficients. A discussion of the code modifications, which involve the addition of high frequency terms of the boundary conditions of the numerical algorithm, is included.
Howlett, James T.; Bland, Samuel R.
1987-01-01
A method is described for calculating unsteady transonic flow with viscous interaction by coupling a steady integral boundary-layer code with an unsteady, transonic, inviscid small-disturbance computer code in a quasi-steady fashion. Explicit coupling of the equations together with viscous -inviscid iterations at each time step yield converged solutions with computer times about double those required to obtain inviscid solutions. The accuracy and range of applicability of the method are investigated by applying it to four AGARD standard airfoils. The first-harmonic components of both the unsteady pressure distributions and the lift and moment coefficients have been calculated. Comparisons with inviscid calcualtions and experimental data are presented. The results demonstrate that accurate solutions for transonic flows with viscous effects can be obtained for flows involving moderate-strength shock waves.
Lee, Daniel H.
The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.
The effects of gusts on the fluctuating airloads of airfoils in transonic flow
Mccroskey, W. J.
1984-01-01
Unsteady interactions of distributed and sharp-edged gusts with a stationary airfoil have been analyzed in two-dimensional transonic flow.A simple method of introducing such disturbances has been numerically implemented within the framework of unsteady, transonic small-disturbance theory. Representative solutions for various airfoils subjected to chordwise and transverse gusts show that the strength and unsteady motion of the shock wave on the airfoil significantly affect the flowfield development and, consequently, the dynamic airloads. Also a study was made of the reductions in the unsteady airloads that can be achieved by the proper active control motion of a trailing-edge flap, and a simple gust-alleviation strategy was developed. However, the chordwise pressure distributions associated with gusts are very different from those produced by trailing-edge flap oscillations. Consequently, the fluctuating lift and the unsteady pitching moments cannot both be eliminated simultaneously.
Liu, Hongrui; Liu, Jun; Ji, Lucheng; Du, Qiang; Liu, Guang; Wang, Pei
2018-06-01
The ultra-high bypass ratio turbofan engine attracts more and more attention in modern commercial engine due to advantages of high efficiency and low Specific Fuel Consumption (SFC). One of the characteristics of ultra-high bypass ratio turbofan is the intermediate turbine duct which guides the flow leaving high pressure turbine (HPT) to low pressure turbine (LPT) at a larger diameter, and this kind of design will lead to aggressive intermediate turbine duct (AITD) design concept. Thus, it is important to design the AITD without any severe loss. From the unsteady flow's point of view, in actual operating conditions, the incoming wake generated by HPT is unsteady which will take influence on boundary layer's transition within the ITD and LPT. In this paper, the three-dimensional unsteady aerodynamics of an AITD taken from a real engine is studied. The results of fully unsteady three-dimensional numerical simulations, performed with ANSYS-CFX (RANS simulation with transitional model), are critically evaluated against experimental data. After validation of the numerical model, the physical mechanisms inside the flow channel are analyzed, with an aim to quantify the sensitivities of different Reynolds number effect on both the ITD and LPT nozzle. Some general physical mechanisms can be recognized in the unsteady environment. It is recognized that wake characteristics plays a crucial role on the loss within both the ITD and LPT nozzle section, determining both time-averaged and time-resolved characteristics of the flow field. Meanwhile, particular attention needs to be paid to the unsteady effect on the boundary layer of LPT nozzle's suction side surface.
Numerical and experimental investigations on unsteady aerodynamics of flapping wings
Yu, Meilin
The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating
AERFORCE: Subroutine package for unsteady blade-element/momentum calculations
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, Anders
2000-05-01
A subroutine package, called AERFORCE, for the calculation of aerodynamic forces of wind turbine rotors has been written. The subroutines are written in FORTRAN. AERFORCE requires the input of airfoil aerodynamic data via tables as function of angle of attack, the turbine blade and rotor geometry and wind and blade velocities as input. The method is intended for use in an aeroelastic code. Wind and blade velocities are given at a sequence of time steps and blade forces are returned. The aerodynamic method is basically a Blade-Element/Momentum method. The method is fast and coded to be used in time simulations. In order to obtain a steady state solution a time simulation to steady state conditions has to be carried out. The BEM-method in AERFORCE includes extensions for: Dynamic inflow: Unsteady modeling of the inflow for cases with unsteady blade loading or unsteady wind. Extensions to BEM-theory for inclined flow to the rotor disc (yaw model). Unsteady blade aerodynamics: The inclusion of 2D attached flow unsteady aerodynamics and a semi-empirical model for 2D dynamic stall.
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
Mangalam, Arun S.; Moes, Timothy R.
2004-01-01
Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.
Airfoil optimization for unsteady flows with application to high-lift noise reduction
Rumpfkeil, Markus Peer
The use of steady-state aerodynamic optimization methods in the computational fluid dynamic (CFD) community is fairly well established. In particular, the use of adjoint methods has proven to be very beneficial because their cost is independent of the number of design variables. The application of numerical optimization to airframe-generated noise, however, has not received as much attention, but with the significant quieting of modern engines, airframe noise now competes with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated noise. In this thesis, a general framework is formulated to calculate the gradient of a cost function in a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimization algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based optimizer uses the quasi-Newton method BFGS, Newton's method is applied to the nonlinear flow problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence model, which are discretized using structured grids and a finite difference approach. The effectiveness of the unsteady optimization algorithm is demonstrated by applying it to several problems of interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting, and an unsteady trailing-edge flow. In order to address radiated far-field noise, an acoustic wave propagation program based on the Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimization algorithm in order to be able to optimize the shape of airfoils based on their calculated far
Morino, L.
1980-01-01
Recent developments of the Green's function method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed and summarized. Applying the Green's function method to the fully unsteady (transient) potential equation yields an integro-differential-delay equation. With spatial discretization by the finite-element method, this equation is approximated by a set of differential-delay equations in time. Time solution by Laplace transform yields a matrix relating the velocity potential to the normal wash. Premultiplying and postmultiplying by the matrices relating generalized forces to the potential and the normal wash to the generalized coordinates one obtains the matrix of the generalized aerodynamic forces. The frequency and mode-shape dependence of this matrix makes the program SOUSSA useful for multiple frequency and repeated mode-shape evaluations.
Directory of Open Access Journals (Sweden)
Dan MATEESCU
2015-12-01
Full Text Available This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV flying at low speed and very low Reynolds number. The unsteady aerodynamic analysis is performed with an efficient time-accurate numerical method developed for the solution of the Navier-Stokes equations at low Reynolds numbers, which is second-order-accurate in time and space. The paper presents solutions for the unsteady aerodynamic coefficients of lift and drag and for the lift-to-drag ratio of several symmetric and cambered airfoils with Gurney flaps. It was found that although the airfoil is considered stationary, starting from a relatively small incidence (about 8 degrees the flow becomes unsteady due to the unsteadiness of the flow separations occurring at low Reynolds numbers, and the aerodynamic coefficients display periodic oscillations in time. A detailed study is presented in the paper on the influence of various geometric and flow parameters, such as the Gurney flap height, Reynolds number, airfoil relative thickness and relative camber, on the aerodynamic coefficients of lift, drag and lift-to-drag ratio. The flow separation is also studied with the aid of flow visualizations illustrating the changes in the flow pattern at various moments in time.
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping
2010-01-01
In a previous study, vane-rotor shock interactions and heat transfer on the rotor blade of a highly loaded transonic turbine stage were simulated. The geometry consists of a high pressure turbine vane and downstream rotor blade. This study focuses on the physics of flow and heat transfer in the rotor tip, casing and hub regions. The simulation was performed using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) code MSU-TURBO. A low Reynolds number k-epsilon model was utilized to model turbulence. The rotor blade in question has a tip gap height of 2.1 percent of the blade height. The Reynolds number of the flow is approximately 3x10(exp 6) per meter. Unsteadiness was observed at the tip surface that results in intermittent "hot spots". It is demonstrated that unsteadiness in the tip gap is governed by inviscid effects due to high speed flow and is not strongly dependent on pressure ratio across the tip gap contrary to published observations that have primarily dealt with subsonic tip flows. The high relative Mach numbers in the tip gap lead to a choking of the leakage flow that translates to a relative attenuation of losses at higher loading. The efficacy of new tip geometry is discussed to minimize heat flux at the tip while maintaining choked conditions. In addition, an explanation is provided that shows the mechanism behind the rise in stagnation temperature on the casing to values above the absolute total temperature at the inlet. It is concluded that even in steady mode, work transfer to the near tip fluid occurs due to relative shearing by the casing. This is believed to be the first such explanation of the work transfer phenomenon in the open literature. The difference in pattern between steady and time-averaged heat flux at the hub is also explained.
Periodic transonic flow simulation using fourier-based algorithm
International Nuclear Information System (INIS)
Mohaghegh, Mohammad Reza; Malekjafarian, Majid
2014-01-01
The present research simulates time-periodic unsteady transonic flow around pitching airfoils via the solution of unsteady Euler and Navier-Stokes equations, using time spectral method (TSM) and compares it with the traditional methods like BDF and explicit structured adaptive grid method. The TSM uses a Fourier representation in time and hence solves for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. The TSM has been validated with 2D external aerodynamics test cases. These test cases are NACA 64A010 (CT6) and NACA 0012 (CT1 and CT5) pitching airfoils. Because of turbulent nature of flow, Baldwin-Lomax turbulence model has been used in viscous flow analysis with large oscillation amplitude (CT5 type). The results presented by the TSM are compared with experimental data and the two other methods. By enforcing periodicity and using Fourier representation in time that has a spectral accuracy, tremendous reduction of computational cost has been obtained compared to the conventional time-accurate methods. Results verify the small number of time intervals per pitching cycle (just four time intervals) required to capture the flow physics with small oscillation amplitude (CT6) and large oscillation amplitude (CT5) as compared to the other two methods.
Cassetti, Marlowe D.; Re, Richard J.; Igoe, William B.
1961-01-01
An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5 deg. with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0 deg. to 14 deg., with Reynolds numbers based on mean aerodynamic chord varying from 7 x 10(exp 6) to 8 x 10(exp 6). Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced the transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.
Sudalaimuthu, Vignesh; Liu, Xiaofeng
2017-11-01
A series of wind tunnel aerodynamic force measurements have been conducted on a 2D hollow cylinder with perforated holes uniformly-distributed on its surface to evaluate the efficacy of perforation as a means of passive flow control in reducing unsteady aerodynamic forces. Both smooth and perforated cylinders were tested for comparison at Reynolds numbers ranging from 50,000 to 200,000 corresponding to free stream velocities varying from 5 to 20 m/s (at an increment of 5 m/s) and a cylinder diameter of 0.152 m. The aerodynamic forces acting on the testing model were measured using a 6-component load cell. For each tunnel speed, the test has been repeated for 10 runs at a sampling rate of 10 kHz for 60 seconds each, with a total of 6,000,000 samples acquired for each test. Both mean and r.m.s. values of the lift and drag coefficients were calculated. Power spectral density distributions of the unsteady aerodynamic force loading was analyzed to investigate the effect of the perforation on the frequency composition. Comparisons indicate that the perforated cylinder with a 8% porosity and a hole diameter of about 2% of that of the cylinder gives both substantially less unsteady drag and lift than those of the smooth cylinder for the entire Reynolds number range tested, with the r.m.s. force reduction from 8% to 82% for the drag and 64% to 85% for the lift, confirming a corresponding beneficial reduction in flow-induced cylinder vibration as observed during the experiments. Sponsor: San Diego State University.
Aerodynamic analysis for aircraft with nacelles, pylons, and winglets at transonic speeds
Boppe, Charles W.
1987-01-01
A computational method has been developed to provide an analysis for complex realistic aircraft configurations at transonic speeds. Wing-fuselage configurations with various combinations of pods, pylons, nacelles, and winglets can be analyzed along with simpler shapes such as airfoils, isolated wings, and isolated bodies. The flexibility required for the treatment of such diverse geometries is obtained by using a multiple nested grid approach in the finite-difference relaxation scheme. Aircraft components (and their grid systems) can be added or removed as required. As a result, the computational method can be used in the same manner as a wind tunnel to study high-speed aerodynamic interference effects. The multiple grid approach also provides high boundary point density/cost ratio. High resolution pressure distributions can be obtained. Computed results are correlated with wind tunnel and flight data using four different transport configurations. Experimental/computational component interference effects are included for cases where data are available. The computer code used for these comparisons is described in the appendices.
Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number
Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo
2018-05-01
Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.
Ruhlin, C. L.; Bhatia, K. G.; Nagaraja, K. S.
1986-01-01
A transonic model and a low-speed model were flutter tested in the Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90. Transonic flutter boundaries were measured for 10 different model configurations, which included variations in wing fuel, nacelle pylon stiffness, and wingtip configuration. The winglet effects were evaluated by testing the transonic model, having a specific wing fuel and nacelle pylon stiffness, with each of three wingtips, a nonimal tip, a winglet, and a nominal tip ballasted to simulate the winglet mass. The addition of the winglet substantially reduced the flutter speed of the wing at transonic Mach numbers. The winglet effect was configuration-dependent and was primarily due to winglet aerodynamics rather than mass. Flutter analyses using modified strip-theory aerodynamics (experimentally weighted) correlated reasonably well with test results. The four transonic flutter mechanisms predicted by analysis were obtained experimentally. The analysis satisfactorily predicted the mass-density-ratio effects on subsonic flutter obtained using the low-speed model. Additional analyses were made to determine the flutter sensitivity to several parameters at transonic speeds.
Directory of Open Access Journals (Sweden)
Xu Liu
2015-01-01
Full Text Available Unsteady aerodynamic system modeling is widely used to solve the dynamic stability problems encountering aircraft design. In this paper, single degree-of-freedom (SDF vibration model and forced simple harmonic motion (SHM model for dynamic derivative prediction are developed on the basis of modified Etkin model. In the light of the characteristics of SDF time domain solution, the free vibration identification methods for dynamic stability parameters are extended and applied to the time domain numerical simulation of blunted cone calibration model examples. The dynamic stability parameters by numerical identification are no more than 0.15% deviated from those by experimental simulation, confirming the correctness of SDF vibration model. The acceleration derivatives, rotary derivatives, and combination derivatives of Army-Navy Spinner Rocket are numerically identified by using unsteady N-S equation and solving different SHV patterns. Comparison with the experimental result of Army Ballistic Research Laboratories confirmed the correctness of the SHV model and dynamic derivative identification. The calculation result of forced SHM is better than that by the slender body theory of engineering approximation. SDF vibration model and SHM model for dynamic stability parameters provide a solution to the dynamic stability problem encountering aircraft design.
Interpreting Aerodynamics of a Transonic Impeller from Static Pressure Measurements
Directory of Open Access Journals (Sweden)
Fangyuan Lou
2018-01-01
Full Text Available This paper investigates the aerodynamics of a transonic impeller using static pressure measurements. The impeller is a high-speed, high-pressure-ratio wheel used in small gas turbine engines. The experiment was conducted on the single stage centrifugal compressor facility in the compressor research laboratory at Purdue University. Data were acquired from choke to near-surge at four different corrected speeds (Nc from 80% to 100% design speed, which covers both subsonic and supersonic inlet conditions. Details of the impeller flow field are discussed using data acquired from both steady and time-resolved static pressure measurements along the impeller shroud. The flow field is compared at different loading conditions, from subsonic to supersonic inlet conditions. The impeller performance was strongly dependent on the inducer, where the majority of relative diffusion occurs. The inducer diffuses flow more efficiently for inlet tip relative Mach numbers close to unity, and the performance diminishes at other Mach numbers. Shock waves emerging upstream of the impeller leading edge were observed from 90% to 100% corrected speed, and they move towards the impeller trailing edge as the inlet tip relative Mach number increases. There is no shock wave present in the inducer at 80% corrected speed. However, a high-loss region near the inducer throat was observed at 80% corrected speed resulting in a lower impeller efficiency at subsonic inlet conditions.
International Nuclear Information System (INIS)
Mingyang, Yang; Ricardo, Martines-botas; Kangyao, Deng; Yangjun, Zhang; Xinqian, Zheng
2016-01-01
Highlights: • Reduced order model proves flow flucturations in impeller to be downstream disturbance propagation. • Fluctuations depression is attributed by the effect of energy bypass via rear slot of SRCT. • Flow distortion in diffuser results in disturbance with swing flow direction due to unbalanced forces. - Abstract: Self-Recirculation-Casing-Treatment (SRCT) is a widely employed method to enhance aerodynamic stability of a centrifugal compressor. This paper investigated unsteady effects of SRCT on the flow in a transonic centrifugal compressor via numerical method validated by experimental test. Firstly the static pressure distribution in the compressor without SRCT is measured for information of boundary conditions as well as validation. Then a 1-D unsteady model of a single passage is built and validated based on the experimental results. Next, the 1-D model of a passage with SRCT is built to investigate the unsteady influence of the SRCT on the flow in the passage. Finally 3-D unsteady CFD is employed to investigate the detailed influence of SRCT on the flow field in impeller passages. Results show that the topology of the passage with SRCT can remarkably damp the distortion propagating from downstream, hence depress the magnitude of the inlet flow distortion. Furthermore, the width of the rear slot in SRCT is the key factor for the damping effect. The 3-D simulation results further show that the fluctuations of the re-circulated flow rate via the front slot is depressed by the SRCT which is attributed to the damping effect of its configuration.
Distributed Aerodynamic Sensing and Processing Toolbox
Brenner, Martin; Jutte, Christine; Mangalam, Arun
2011-01-01
A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.
Unsteady Aerodynamics & Aeromechanics of Multi-Stage Turbomachinery Blading
National Research Council Canada - National Science Library
Fleeter, Sanford
2002-01-01
.... A benchmark-standard multistage transonic research compressor was developed by modifying the Purdue High-Speed Axial Compressor to feature new IGV and stator rows representative of modern high pressure compressors...
DEFF Research Database (Denmark)
Kim, Taeseong; Shin, SangJoon; Kim, Do-Hyung
2012-01-01
A further improvement is attempted of an existing analytical model for an accurate prediction of the aeroelastic stability of a tiltrotor aircraft. A rigid-bladed rotor structural model with the natural frequencies selected appropriately in both the flapping and lagging motions is used. The geome......A further improvement is attempted of an existing analytical model for an accurate prediction of the aeroelastic stability of a tiltrotor aircraft. A rigid-bladed rotor structural model with the natural frequencies selected appropriately in both the flapping and lagging motions is used....... The geometric coupling between the wing vertical bending and torsion is also included. The pitch-flap and pitch-lag couplings are also added. Three different aerodynamic models are combined with the structural model: two quasi-steady and one full unsteady aerodynamics models. Frequency domain analysis...... structural modes, especially between the lower frequency rotor modes and the wing modes, are observed from the frequency and damping prediction....
International Nuclear Information System (INIS)
Luhur, M.R.
2014-01-01
This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum) model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes. (author)
Directory of Open Access Journals (Sweden)
Muhammad Ramzan Luhur
2014-01-01
Full Text Available This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes
Suzuki, Masahiro; Nakade, Koji
A basic study of flow controls using air blowing was conducted to reduce unsteady aerodynamic force acting on trains running in tunnels. An air blowing device is installed around a model car in a wind tunnel. Steady and periodic blowings are examined utilizing electromagnetic valves. Pressure fluctuations are measured and the aerodynamic force acting on the car is estimated. The results are as follows: a) The air blowing allows reducing the unsteady aerodynamic force. b) It is effective to blow air horizontally at the lower side of the car facing the tunnel wall. c) The reduction rate of the unsteady aerodynamic force relates to the rate of momentum of the blowing to that of the uniform flow. d) The periodic blowing with the same frequency as the unsteady aerodynamic force reduces the aerodynamic force in a manner similar to the steady blowing.
Unsteady Flow in a Supersonic Turbine with Variable Specific Heats
Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)
2001-01-01
Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier
Computationally efficient simulation of unsteady aerodynamics using POD on the fly
Energy Technology Data Exchange (ETDEWEB)
Moreno-Ramos, Ruben [Gulfstream Aerospace Corporation, Savannah, GA 31408 (United States); Vega, José M; Varas, Fernando, E-mail: ruben.morenoramos@altran.com [E.T.S.I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, E-28040 Madrid (Spain)
2016-12-15
Modern industrial aircraft design requires a large amount of sufficiently accurate aerodynamic and aeroelastic simulations. Current computational fluid dynamics (CFD) solvers with aeroelastic capabilities, such as the NASA URANS unstructured solver FUN3D, require very large computational resources. Since a very large amount of simulation is necessary, the CFD cost is just unaffordable in an industrial production environment and must be significantly reduced. Thus, a more inexpensive, yet sufficiently precise solver is strongly needed. An opportunity to approach this goal could follow some recent results (Terragni and Vega 2014 SIAM J. Appl. Dyn. Syst. 13 330–65; Rapun et al 2015 Int. J. Numer. Meth. Eng. 104 844–68) on an adaptive reduced order model that combines ‘on the fly’ a standard numerical solver (to compute some representative snapshots), proper orthogonal decomposition (POD) (to extract modes from the snapshots), Galerkin projection (onto the set of POD modes), and several additional ingredients such as projecting the equations using a limited amount of points and fairly generic mode libraries. When applied to the complex Ginzburg–Landau equation, the method produces acceleration factors (comparing with standard numerical solvers) of the order of 20 and 300 in one and two space dimensions, respectively. Unfortunately, the extension of the method to unsteady, compressible flows around deformable geometries requires new approaches to deal with deformable meshes, high-Reynolds numbers, and compressibility. A first step in this direction is presented considering the unsteady compressible, two-dimensional flow around an oscillating airfoil using a CFD solver in a rigidly moving mesh. POD on the Fly gives results whose accuracy is comparable to that of the CFD solver used to compute the snapshots. (paper)
Igoe, William B.; Re, Richard J.; Cassetti, Marlowe
1961-01-01
An investigation has been made of the effects of conical wing camber and supersonic body indentation on the aerodynamic characteristics of a wing-body configuration at transonic speeds. Wing aspect ratio was 3.0, taper ratio was 0.1, and quarter-chord line sweepback was 52.5 deg with airfoil sections of 0.03 thickness ratio. The tests were conducted in the Langley 16-foot transonic tunnel at various Mach numbers from 0.80 to 1.05 at angles of attack from -4 deg to 14 deg. The cambered-wing configuration achieved higher lift-drag ratios than a similar plane-wing configuration. The camber also reduced the effects of wing-tip flow separation on the aerodynamic characteristics. In general, no stability or trim changes below wing-tip flow separation resulted from the use of camber. The use of supersonic body indentation improved the lift-drag ratios at Mach numbers from 0.96 to 1.05.
Airfoil Shape Optimization in Transonic Flow
International Nuclear Information System (INIS)
Islam, Z.
2004-01-01
A computationally efficient and adaptable design tool is constructed by coupling a flow analysis code based on Euler equations, with the well established numerical optimization algorithms. Optimization technique involving two analysis methods of Simplex and Rosenbrock have been used. The optimization study involves the minimization of wave drag for two different airfoils with geometric constraints on the airfoil maximum thickness or the cross sectional area along with aerodynamic constraint on lift coefficient. The method is applied to these airfoils transonic flow design points, and the results are compared with the original values. This study shows that the conventional low speed airfoils can be optimized to become supercritical for transonic flight speeds, while existing supercritical airfoils can still be improved further at particular design condition. (author)
Aeroservoelasticity modeling and control
Tewari, Ashish
2015-01-01
This monograph presents the state of the art in aeroservoelastic (ASE) modeling and analysis and develops a systematic theoretical and computational framework for use by researchers and practicing engineers. It is the first book to focus on the mathematical modeling of structural dynamics, unsteady aerodynamics, and control systems to evolve a generic procedure to be applied for ASE synthesis. Existing robust, nonlinear, and adaptive control methodology is applied and extended to some interesting ASE problems, such as transonic flutter and buffet, post-stall buffet and maneuvers, and flapping flexible wing. The author derives a general aeroservoelastic plant via the finite-element structural dynamic model, unsteady aerodynamic models for various regimes in the frequency domain, and the associated state-space model by rational function approximations. For more advanced models, the full-potential, Euler, and Navier-Stokes methods for treating transonic and separated flows are also briefly addressed. Essential A...
Spotts, Nathan
As modern trends in commercial aircraft design move toward high-bypass-ratio fan systems of increasing diameter with shorter, nonaxisymmetric nacelle geometries, inlet distortion is becoming common in all operating regimes. The distortion may induce aerodynamic instabilities within the fan system, leading to catastrophic damage to fan blades, should the surge margin be exceeded. Even in the absence of system instability, the heterogeneity of the flow affects aerodynamic performance significantly. Therefore, an understanding of fan-distortion interaction is critical to aircraft engine system design. This thesis research elucidates the complex fluid dynamics and fan-distortion interaction by means of computational fluid dynamics (CFD) modeling of a complete engine fan system; including rotor, stator, spinner, nacelle and nozzle; under conditions typical of those encountered by commercial aircraft. The CFD simulations, based on a Reynolds-averaged Navier-Stokes (RANS) approach, were unsteady, three-dimensional, and of a full-annulus geometry. A thorough, systematic validation has been performed for configurations from a single passage of a rotor to a full-annulus system by comparing the predicted flow characteristics and aerodynamic performance to those found in literature. The original contributions of this research include the integration of a complete engine fan system, based on the NASA rotor 67 transonic stage and representative of the propulsion systems in commercial aircraft, and a benchmark case for unsteady RANS simulations of distorted flow in such a geometry under realistic operating conditions. This study is unique in that the complex flow dynamics, resulting from fan-distortion interaction, were illustrated in a practical geometry under realistic operating conditions. For example, the compressive stage is shown to influence upstream static pressure distributions and thus suppress separation of flow on the nacelle. Knowledge of such flow physics is
Directory of Open Access Journals (Sweden)
Moutaz Elgammi
2016-06-01
Full Text Available Prediction of the unsteady aerodynamic flow phenomenon on wind turbines is challenging and still subject to considerable uncertainty. Under yawed rotor conditions, the wind turbine blades are subjected to unsteady flow conditions as a result of the blade advancing and retreating effect and the development of a skewed vortical wake created downstream of the rotor plane. Blade surface pressure measurements conducted on the NREL Phase VI rotor in yawed conditions have shown that dynamic stall causes the wind turbine blades to experience significant cycle-to-cycle variations in aerodynamic loading. These effects were observed even though the rotor was subjected to a fixed speed and a uniform and steady wind flow. This phenomenon is not normally predicted by existing dynamic stall models integrated in wind turbine design codes. This paper couples blade pressure measurements from the NREL Phase VI rotor to a free-wake vortex model to derive the angle of attack time series at the different blade sections over multiple rotor rotations and three different yaw angles. Through the adopted approach it was possible to investigate how the rotor self-induced aerodynamic load fluctuations influence the unsteady variations in the blade angles of attack and induced velocities. The hysteresis loops for the normal and tangential load coefficients plotted against the angle of attack were plotted over multiple rotor revolutions. Although cycle-to-cycle variations in the angles of attack at the different blade radial locations and azimuth positions are found to be relatively small, the corresponding variations in the normal and tangential load coefficients may be significant. Following a statistical analysis, it was concluded that the load coefficients follow a normal distribution at the majority of blade azimuth angles and radial locations. The results of this study provide further insight on how existing engineering models for dynamic stall may be improved through
Applications of Laplace transform methods to airfoil motion and stability calculations
Edwards, J. W.
1979-01-01
This paper reviews the development of generalized unsteady aerodynamic theory and presents a derivation of the generalized Possio integral equation. Numerical calculations resolve questions concerning subsonic indicial lift functions and demonstrate the generation of Kutta waves at high values of reduced frequency, subsonic Mach number, or both. The use of rational function approximations of unsteady aerodynamic loads in aeroelastic stability calculations is reviewed, and a reformulation of the matrix Pade approximation technique is given. Numerical examples of flutter boundary calculations for a wing which is to be flight tested are given. Finally, a simplified aerodynamic model of transonic flow is used to study the stability of an airfoil exposed to supersonic and subsonic flow regions.
Aerodynamic tailoring of the Learjet Model 60 wing
Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.
1993-01-01
The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.
Flegel, Ashlie B.; Welch, Gerard E.; Giel, Paul W.; Ames, Forrest E.; Long, Jonathon A.
2015-01-01
Two independent experimental studies were conducted in linear cascades on a scaled, two-dimensional mid-span section of a representative Variable Speed Power Turbine (VSPT) blade. The purpose of these studies was to assess the aerodynamic performance of the VSPT blade over large Reynolds number and incidence angle ranges. The influence of inlet turbulence intensity was also investigated. The tests were carried out in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility and at the University of North Dakota (UND) High Speed Compressible Flow Wind Tunnel Facility. A large database was developed by acquiring total pressure and exit angle surveys and blade loading data for ten incidence angles ranging from +15.8deg to -51.0deg. Data were acquired over six flow conditions with exit isentropic Reynolds number ranging from 0.05×106 to 2.12×106 and at exit Mach numbers of 0.72 (design) and 0.35. Flow conditions were examined within the respective facility constraints. The survey data were integrated to determine average exit total-pressure and flow angle. UND also acquired blade surface heat transfer data at two flow conditions across the entire incidence angle range aimed at quantifying transitional flow behavior on the blade. Comparisons of the aerodynamic datasets were made for three "match point" conditions. The blade loading data at the match point conditions show good agreement between the facilities. This report shows comparisons of other data and highlights the unique contributions of the two facilities. The datasets are being used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range.
1992-03-01
calculations. This the UST3D code, flutter analysis was carried out on the activity was motivated by the need to supplement the AGARD 445.6 wing. The flutter...are given as Bi() = 0: i= I ..... p: ps4 . 3. GRID GENERATION i.e. after differencing with respect to time The grid generation needed to compute the...or dis- unsteady disturbances are small and non-linear advantages which may motivate the development of a unsteady effects can be neglected. When this
Application of computational aerodynamics methods to the design and analysis of transport aircraft
Da Costa, A. L.
1978-01-01
The application and validation of several computational aerodynamic methods in the design and analysis of transport aircraft is established. An assessment is made concerning more recently developed methods that solve three-dimensional transonic flow and boundary layers on wings. Capabilities of subsonic aerodynamic methods are demonstrated by several design and analysis efforts. Among the examples cited are the B747 Space Shuttle Carrier Aircraft analysis, nacelle integration for transport aircraft, and winglet optimization. The accuracy and applicability of a new three-dimensional viscous transonic method is demonstrated by comparison of computed results to experimental data
Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil
Directory of Open Access Journals (Sweden)
Sun Wei
2015-06-01
Full Text Available The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 104 to 106. In order to reveal the fundamental mechanism, the unsteady flow around a stationary two-dimensional elliptic airfoil with 16% relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt‾ transition turbulence model at different angles of attack for flow Reynolds number of 5 × 105. The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data, which indicates that the numerical method works well. Through this study, the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results. It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case. Furthermore, a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.
Bending mode flutter in a transonic linear cascade
Govardhan, Raghuraman; Jutur, Prahallada
2017-11-01
Vibration related issues like flutter pose a serious challenge to aircraft engine designers. The phenomenon has gained relevance for modern engines that employ thin and long fan blade rows to satisfy the growing need for compact and powerful engines. The tip regions of such blade rows operate with transonic relative flow velocities, and are susceptible to bending mode flutter. In such cases, the flow field around individual blades of the cascade is dominated by shock motions generated by the blade motions. In the present work, a new transonic linear cascade facility with the ability to oscillate a blade at realistic reduced frequencies has been developed. The facility operates at a Mach number of 1.3, with the central blade being oscillated in heave corresponding to the bending mode of the rotor. The susceptibility of the blade to undergo flutter at different reduced frequencies is quantified by the cycle-averaged power transfer to the blade calculated using the measured unsteady load on the oscillating blade. These measurements show fluid excitation (flutter) at low reduced frequencies and fluid damping (no flutter) at higher reduced frequencies. Simultaneous measurements of the unsteady shock motions are done with high speed shadowgraphy to elucidate the differences in shock motions between the excitation and damping cases.
Investigation of oscillating airfoil shock phenomena
Giordano , Daniel; Fleeter , Sanford
1992-01-01
Fundamental experiments were performed in an unsteady flow water table facility to investigate and quantify the unsteady aerodynamics of a biconvex airfoil executing torsion mode oscillations at realistic reduced frequencies. A computer-based image enhancement system was used to measure the oscillating supersonic and transonic shock flow phenomena. By utilizing the hydraulic analogy to compare experimental results with a linear theoretical prediction, magnitude and phase relationships for the...
Influence of transition on steady and unsteady wind-turbine airfoil aerodynamics
Paterson, Eric; Lavely, Adam; Vijayakumar, Ganesh; Brasseur, James
2011-11-01
Laminar-flow airfoils for large stall-regulated horizontal-axis wind turbines are designed to achieve a restrained maximum lift coefficient and a broad laminar low- drag bucket under steady flow conditions and at specific Reynolds numbers. Blind- comparisons of the 2000 NREL Unsteady Aerodynamics Experiment showed large discrepancies and illustrated the need for improved physics modeling. We have studied the S809 airfoil under static and dynamic (ramp-up, ramp-down, and oscillatory) conditions, using the four-equation transition model of Langtry and Menter (2009), which has been implemented as a library accessible by an OpenFOAM RANS solver. Model validation is performed using surface-pressure and lift/drag data from U. Glasgow (2009) and OSU (1995) wind tunnel experiments. Performance of the transition model is assessed by analyzing integrated performance metrics, as well as detailed surface pressure and pressure gradient, wall-shear stress, and boundary-layer profiles and separation points. Demonstration of model performance in the light- and deep-stall regimes of dynamic stall is an important step in reducing uncertainties in full 3D simulations of turbines operating in the atmospheric boundary layer. Supported by NSF Grant 0933647.
Computation of viscous transonic flow about a lifting airfoil
Walitt, L.; Liu, C. Y.
1976-01-01
The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.
DEFF Research Database (Denmark)
Ferreira, C.; Gonzalez, A.; Baldacchino, D.
2016-01-01
, for different angle of attack and flap settings, including unsteady oscillatory trailing-edge-flap motion, carried out within the framework of WP3: Models for Flow Devices and Flow Control, Task 3.1: CFD and Experimental Database. The aerodynamics codes are: AdaptFoil2D, Foil2W, FLOWer, MaPFlow, OpenFOAM, Q3UIC...
PyFly: A fast, portable aerodynamics simulator
Garcia, D.; Ghommem, M.; Collier, N.; Varga, B.O.N.; Calo, V.M.
2018-01-01
We present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approach to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. We simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.
PyFly: A fast, portable aerodynamics simulator
Garcia, D.
2018-03-18
We present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approach to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. We simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.
Dan MATEESCU
2015-01-01
This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV) flying at low speed and very low Reynolds numb...
Numerical studies of transverse curvature effects on transonic flow stability
Macaraeg, M. G.; Daudpota, Q. I.
1992-01-01
A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.
International Nuclear Information System (INIS)
Emanuel, G.
1986-01-01
This presentation of traditional and new material moves from an introductory discussion of compressible flow to graduate/practitioner level background on transonic or hypersonic flow and on computational fluid dynamics (CFD). Applications include steady and unsteady flows with shock waves, minimum length nozzles, aerowindows, and waveriders. The contents are: Introduction; Thermodynamics; One dimensional conservation equations; steady streamtube flow; Normal and oblique shock waves; Prandtl-Meyer Flow and shock-expansion theory; Nozzle and diffuser flow; Ducts with area change, heat transfer, and friction; Unsteady, one-dimensional flow; Applications of unsteady, one-dimensional flow; Governing equations; Shock waves; Transformation of the conservation equations; Definitions and theorems; Exact solutions of steady homentropic flow of a perfect gas; Theory of characteristics; Minimum length nozzles; Aerodynamic window; Flows with shock waves; and Waverider aerodynamics
The aerodynamic design of an advanced rotor airfoil
Blackwell, J. A., Jr.; Hinson, B. L.
1978-01-01
An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.
Matthews, Megan; Sponberg, Simon
2017-11-01
Birds, insects, and many animals use unsteady aerodynamic mechanisms to achieve stable hovering flight. Natural environments are often characterized by unsteady flows causing animals to dynamically respond to perturbations while performing complex tasks, such as foraging. Little is known about how unsteady flow around an animal interacts with already unsteady flow in the environment or how this impacts performance. We study how the environment impacts maneuverability to reveal any coupling between body dynamics and aerodynamics for hawkmoths, Manduca sexta,tracking a 3D-printed robotic flower in a wind tunnel. We also observe the leading-edge vortex (LEV), a known lift-generating mechanism for insect flight with smoke visualization. Moths in still and unsteady air exhibit near perfect tracking at low frequencies, but tracking in the flower wake results in larger overshoot at mid-range. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite the large effect on flight dynamics, the LEV remains bound to the wing and thorax throughout the wingstroke. In general, unsteady wind seems to decrease maneuverability, but LEV stability seems decoupled from changes in flight dynamics.
Estimation of Aircraft Nonlinear Unsteady Parameters From Wind Tunnel Data
Klein, Vladislav; Murphy, Patrick C.
1998-01-01
Aerodynamic equations were formulated for an aircraft in one-degree-of-freedom large amplitude motion about each of its body axes. The model formulation based on indicial functions separated the resulting aerodynamic forces and moments into static terms, purely rotary terms and unsteady terms. Model identification from experimental data combined stepwise regression and maximum likelihood estimation in a two-stage optimization algorithm that can identify the unsteady term and rotary term if necessary. The identification scheme was applied to oscillatory data in two examples. The model identified from experimental data fit the data well, however, some parameters were estimated with limited accuracy. The resulting model was a good predictor for oscillatory and ramp input data.
Unsteady transonic flow analysis for low aspect ratio, pointed wings.
Kimble, K. R.; Ruo, S. Y.; Wu, J. M.; Liu, D. Y.
1973-01-01
Oswatitsch and Keune's parabolic method for steady transonic flow is applied and extended to thin slender wings oscillating in the sonic flow field. The parabolic constant for the wing was determined from the equivalent body of revolution. Laplace transform methods were used to derive the asymptotic equations for pressure coefficient, and the Adams-Sears iterative procedure was employed to solve the equations. A computer program was developed to find the pressure distributions, generalized force coefficients, and stability derivatives for delta, convex, and concave wing planforms.
Transonic airfoil and axial flow rotary machine
Nagai, Naonori; Iwatani, Junji
2015-09-01
Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.
Ruhlin, C. L.; Rauch, F. J., Jr.; Waters, C.
1982-01-01
The model was a 1/6.5-size, semipan version of a wing proposed for an executive-jet-transport airplane. The model was tested with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers (M) from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M=0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5 percent, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect.
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.
Lee, Eun Seok
2000-10-01
An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with
Recent developments in rotary-wing aerodynamic theory
Johnson, W.
1986-01-01
Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.
Aerodynamic Modeling of Oscillating Wing in Hypersonic Flow: a Numerical Study
Zhu, Jian; Hou, Ying-Yu; Ji, Chen; Liu, Zi-Qiang
2016-06-01
Various approximations to unsteady aerodynamics are examined for the unsteady aerodynamic force of a pitching thin double wedge airfoil in hypersonic flow. Results of piston theory, Van Dyke’s second-order theory, Newtonian impact theory, and CFD method are compared in the same motion and Mach number effects. The results indicate that, for this thin double wedge airfoil, Newtonian impact theory is not suitable for these Mach number, while piston theory and Van Dyke’s second-order theory are in good agreement with CFD method for Ma<7.
Simulation on a car interior aerodynamic noise control based on statistical energy analysis
Chen, Xin; Wang, Dengfeng; Ma, Zhengdong
2012-09-01
How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.
Energy Technology Data Exchange (ETDEWEB)
Stetter, H.; Urban, B.; Bauer, H.
1999-12-01
For experimental investigations on shock-induced flutter in a linear transonic turbine cascade an elastic suspension system has been developed so that only aerodynamic coupling occurs in the system. The test facility uses super-heated steam as working fluid and enables Mach and Reynolds numbers to vary independently. The investigated cascade consists of seven prismatic blades. The profiles are taken from the tip section of a transonic low pressure steam turbine blade. Each blade is suspended by an elastic spring system which allows the respective blade to vibrate in a mode similar to the real blade's first bending mode. The examination mainly deals with the oscillatory behavior of the blades with respect to a variation in the isentropic outlet Mach number. In addition, the complex shock-boundary-layer interactions on the blades' suction sides are described. Flow computations are run by a finite volume Navier-Stokes solver that accounts for moving boundaries. A volume grid generator is integrated into the flow solver producing combined O- and H-type grids. Turbulence is modeled by a k-{epsilon} turbulence model using wall functions because of performance reasons. Some acceleration techniques for unsteady flow computations are investigated. Shock oscillations which occur on a DCA profile are simulated. For the simulation of the experimental setup the blade motions are prescribed. (orig.) [German] Fuer ein Spitzenschnittprofil einer ND-Endstufenschaufel sowie eine Gasturbinenschaufel wurden lineare Gitter bestehend aus jeweils sieben elastisch aufgehaengten Schaufeln entwickelt. Die Konstruktion der Aufhaengung gewaehrleistet, dass die Schaufeln lediglich durch aerodynamische Effekte zu freien Schwingungen angeregt werden koennen und in ihrem Schwingungsverhalten der ersten Biegeschwingung ihrer Originalschaufeln entsprechen. Ein gestimmtes und ungestimmtes ebenes Gitter wurde in einem Dampfversuchsstand mit Heissdampf durchstroemt, wobei das
Numerical method for the unsteady potential flow about pitching airfoils
International Nuclear Information System (INIS)
Parrouffe, J.-M.; Paraschivoiu, I.
1985-01-01
This paper presents a numerical method for the unsteady potential flow about an aerodynamic profile and in its wake. This study has many applications such as airplane wings and propellers, guide vanes, subcavitant hydrofoils and wind turbine blades. Typical of such nonstationary configurations is the rotor of the Darrieus vertical-axis wind turbine whose blades are exposed to cyclic aerodynamic loads in the operating state
Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil
Ghia, K. N.; Osswald, G. A.; Ghia, U.
1986-01-01
The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.
Adams, William M., Jr.; Hoadley, Sherwood T.
1993-01-01
This paper discusses the capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrate some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.
The role of flow field structure in determining the aerodynamic response of a delta wing
Addington, Gregory Alan
Delta wings have long been known to exhibit nonlinear aerodynamic responses as a result of the presence of helical leading-edge vortices. This nonlinearity, found under both steady-state and unsteady conditions, is particularly profound in the presence of vortex burst. Modeling such aerodynamic responses with the Nonlinear Indicial Response (NIR) methodology provides a means of simulating these nonlinearities through its inclusion of motion history in addition to superposition. The NIR model also includes provisions for a finite number of discrete locations where the aerodynamic response is discontinuous with response to a state variable. These critical states also separate regions of states where the unsteady aerodynamic responses are potentially of highly-disparate characters. Although these critical states have been found in the past, their relationship with flow field bifurcation is uncertain. The purpose of this dissertation is to explore the relationship between nonlinear aerodynamic responses, critical states and flow field bifurcations from an experimental approach. This task has been accomplished by comparing a comprehensive database of skin-friction line topologies with static and unsteady aerodynamic responses. These data were collected using a 65sp° delta wing which rolled about an inclined longitudinal body axis. In this study, compelling, but not conclusive, evidence was found to suggest that a bifurcation in the skin-friction line topology was a necessary condition for the presence of a critical state. Although the presence of critical states was well predicted through careful observation and analysis of highly-resolved static loading data alone, their precise placement as a function of the independent variable was aided through the consideration of the locations of skin-friction line bifurcations. Furthermore, these static data were found to contain indications of the basic lagged or unlagged behavior of the unsteady aerodynamic response. This
Energy Technology Data Exchange (ETDEWEB)
Simms, D.; Schreck, S.; Hand, M.; Fingersh, L.; Cotrell, J.; Pierce, K.; Robinson, M.
2000-08-28
Currently, the NREL Unsteady Aerodynamics Experiment (UAE) research turbine is scheduled to enter the NASA Ames 80-ft x 120-ft wind tunnel in early 2000. To prepare for this 3-week test, a Science Panel meeting was convened at the National Wind Technology Center (NWTC) in October 1998. During this meeting, the Science Panel and representatives from the wind energy community provided numerous detailed recommendations regarding test activities and priorities. The Unsteady Aerodynamics team of the NWTC condensed this guidance and drafted a detailed test plan. This test plan represents an attempt to balance diverse recommendations received from the Science Panel meeting, while taking into account multiple constraints imposed by the UAE research turbine, the NASA Ames 80-ft x 120-ft wind tunnel, and other sources. The NREL-NASA Ames wind tunnel tests will primarily be focused on obtaining rotating blade pressure data. NREL has been making these types of measurements since 1987 and has considerable experience in doing so. The purpose of this wind tunnel test is to acquire accurate quantitative aerodynamic and structural measurements, on a wind turbine that is geometrically and dynamically representative of full-scale machines, in an environment free from pronounced inflow anomalies. These data will be exploited to develop and validate enhanced engineering models for designing and analyzing advanced wind energy machines.
Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case
Directory of Open Access Journals (Sweden)
Irina Carmen ANDREI
2014-06-01
Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.
Unsteady CFD modeling of micro-adaptive flow control for an axisymmetric body
International Nuclear Information System (INIS)
Sahu, J.; Heavey, K.R.
2005-01-01
This paper describes a computational study undertaken, as part of a grand challenge project, to consider the aerodynamic effect of micro-adaptive flow control as a means to provide the divert authority needed to maneuver a projectile at a low subsonic speed. A time-accurate Navier-Stokes computational technique has been used to obtain numerical solutions for the unsteady microjet-interaction flow field for the axisymmetric projectile body at subsonic speeds, Mach = 0.11 and 0.24 and angles of attack, 0 o to 4 o . Numerical solutions have been obtained using both Renolds-Averaged Navier-Stokes (RANS) and a hybrid RANS/Large Eddy Simulation (LES) turbulence models. Unsteady numerical results show the effect of the jet on the flow field and the aerodynamic coefficients, in particular the lift force. This research has provided an increased fundamental understanding of the complex, three-dimensional, time-dependent, aerodynamic interactions associated with micro-jet control for yawing spin-stabilized munitions. (author)
Unsteady CFD modeling of micro-adaptive flow control for an axisymmetric body
Energy Technology Data Exchange (ETDEWEB)
Sahu, J.; Heavey, K.R. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD (United States)]. E-mail: sahu@arl.army.mil
2005-07-01
This paper describes a computational study undertaken, as part of a grand challenge project, to consider the aerodynamic effect of micro-adaptive flow control as a means to provide the divert authority needed to maneuver a projectile at a low subsonic speed. A time-accurate Navier-Stokes computational technique has been used to obtain numerical solutions for the unsteady microjet-interaction flow field for the axisymmetric projectile body at subsonic speeds, Mach = 0.11 and 0.24 and angles of attack, 0{sup o} to 4{sup o}. Numerical solutions have been obtained using both Renolds-Averaged Navier-Stokes (RANS) and a hybrid RANS/Large Eddy Simulation (LES) turbulence models. Unsteady numerical results show the effect of the jet on the flow field and the aerodynamic coefficients, in particular the lift force. This research has provided an increased fundamental understanding of the complex, three-dimensional, time-dependent, aerodynamic interactions associated with micro-jet control for yawing spin-stabilized munitions. (author)
Appraisal of numerical methods in predicting the aerodynamics of forward-swept wings
CSIR Research Space (South Africa)
Lombardi, G
1998-07-01
Full Text Available The capabilities of different numerical methods in evaluating the aerodynamic characteristics of a forward-swept wing in subsonic and transonic now are analyzed. The numerical results, obtained by means of potential, Euler, and Navier-Stokes solvers...
Unsteady computational fluid dynamics in aeronautics
Tucker, P G
2014-01-01
The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and...
Aerodynamics power consumption for mechanical flapping wings undergoing flapping and pitching motion
Razak, N. A.; Dimitriadis, G.; Razaami, A. F.
2017-07-01
Lately, due to the growing interest in Micro Aerial Vehicles (MAV), interest in flapping flight has been rekindled. The reason lies in the improved performance of flapping wing flight at low Reynolds number regime. Many studies involving flapping wing flight focused on the generation of unsteady aerodynamic forces such as lift and thrust. There is one aspect of flapping wing flight that received less attention. The aspect is aerodynamic power consumption. Since most mechanical flapping wing aircraft ever designed are battery powered, power consumption is fundamental in improving flight endurance. This paper reports the results of experiments carried out on mechanical wings under going active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the power consumption of flapping wings via generation of unsteady aerodynamic forces. The experiments were repeated for different airspeeds, flapping and pitching kinematics, geometric angle of attack and wing sections with symmetric and cambered airfoils. A specially designed mechanical flapper modelled on large migrating birds was used. It will be shown that, under pitch leading conditions, less power is required to overcome the unsteady aerodnamics forces. The study finds less power requirement for downstroke compared to upstroke motion. Overall results demonstrate power consumption depends directly on the unsteady lift force.
Directory of Open Access Journals (Sweden)
Jinpeng JIANG
2017-12-01
Full Text Available The turbine in an LH2/LOX rocket engine is designed as a two-stage supersonic partial-admission turbine. Three-dimensional steady and unsteady simulations were conducted to analyze turbine performance and aerodynamic forces on rotor blades. Different configurations were employed to investigate the effects of the axial gap and nozzle distribution on the predicted performance and aerodynamic forces. Rotor blades experience unsteady aerodynamic forces because of the partial admission. Aerodynamic forces show periodicity in the admission region, and are close to zero after leaving the admission region. The unsteady forces in frequency domain indicate that components exist in a wide frequency region, and the admission passing frequency is dominant. Those multiples of the rotational frequency which are multiples of the nozzle number in a full-admission turbine are notable components. Results show that the turbine efficiency decreases as the axial gap between nozzles and the 1st stage rotor (rotor 1 increases. Fluctuation of the circumferential aerodynamic force on rotor 1 blades decreases with the axial gap increasing. The turbine efficiency decreases as the circumferential spacing between nozzles increases. Fluctuations of the circumferential and axial aerodynamic forces increase as the circumferential spacing increases. As for the non-equidistant nozzle distribution, it produces similar turbine performance and amplitude-frequency characteristics of forces to those of the normal configuration, when the mean spacing is equal to that of the normal case. Keywords: Aerodynamic force, Axial gap, Computational fluid dynamics (CFD, Nozzle distribution, Partial admission, Turbine
Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance
Ngo, Christina L.; Powell, Jessica M.; Ross, James C.
2017-01-01
A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.
Numerical simulation of aerodynamic sound radiated from a two-dimensional airfoil
飯田, 明由; 大田黒, 俊夫; 加藤, 千幸; Akiyoshi, Iida; Toshio, Otaguro; Chisachi, Kato; 日立機研; 日立機研; 東大生研; Mechanical Engineering Research Laboratory, Hitachi Ltd.; Mechanical Engineering Research Laboratory, Hitachi Ltd.; University of Tokyo
2000-01-01
An aerodynamic sound radiated from a two-dimensional airfoil has been computed with the Lighthill-Curle's theory. The predicted sound pressure level is agreement with the measured one. Distribution of vortex sound sources is also estimated based on the correlation between the unsteady vorticity fluctuations and the aerodynamic sound. The distribution of vortex sound source reveals that separated shear layers generate aerodynamic sound. This result is help to understand noise reduction method....
High angle of attack aerodynamics subsonic, transonic, and supersonic flows
Rom, Josef
1992-01-01
The aerodynamics of aircraft at high angles of attack is a subject which is being pursued diligently, because the modern agile fighter aircraft and many of the current generation of missiles must perform well at very high incidence, near and beyond stall. However, a comprehensive presentation of the methods and results applicable to the studies of the complex aerodynamics at high angle of attack has not been covered in monographs or textbooks. This book is not the usual textbook in that it goes beyond just presenting the basic theoretical and experimental know-how, since it contains reference material to practical calculation methods and technical and experimental results which can be useful to the practicing aerospace engineers and scientists. It can certainly be used as a text and reference book for graduate courses on subjects related to high angles of attack aerodynamics and for topics related to three-dimensional separation in viscous flow courses. In addition, the book is addressed to the aerodynamicist...
Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach
Nakata, Toshiyuki; Liu, Hao
2011-01-01
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated comp...
A fully unsteady prescribed wake model for HAWT performance prediction in yawed flow
Energy Technology Data Exchange (ETDEWEB)
Coton, F.N.; Tongguang, Wang; Galbraith, R.A.M.; Lee, D. [Univ. of Glasgow (United Kingdom)
1997-12-31
This paper describes the development of a fast, accurate, aerodynamic prediction scheme for yawed flow on horizontal axis wind turbines (HAWTs). The method is a fully unsteady three-dimensional model which has been developed over several years and is still being enhanced in a number of key areas. The paper illustrates the current ability of the method by comparison with field data from the NREL combined experiment and also describes the developmental work in progress. In particular, an experimental test programme designed to yield quantitative wake convection information is summarised together with modifications to the numerical model which are necessary for meaningful comparison with the experiments. Finally, current and future work on aspects such as tower-shadow and improved unsteady aerodynamic modelling are discussed.
Unsteady bio-fluid dynamics in flying and swimming
Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen
2017-08-01
Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.
Flow field analysis of a pentagonal-shaped bridge deck by unsteady RANS
Directory of Open Access Journals (Sweden)
Md. Naimul Haque
2016-01-01
Full Text Available Long-span cable-stayed bridges are susceptible to dynamic wind effects due to their inherent flexibility. The fluid flow around the bridge deck should be well understood for the efficient design of an aerodynamically stable long-span bridge system. In this work, the aerodynamic features of a pentagonal-shaped bridge deck are explored numerically. The analytical results are compared with past experimental work to assess the capability of two-dimensional unsteady RANS simulation for predicting the aerodynamic features of this type of deck. The influence of the bottom plate slope on aerodynamic response and flow features was investigated. By varying the Reynolds number (2 × 104 to 20 × 104 the aerodynamic behavior at high wind speeds is clarified.
Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design, Phase I
National Aeronautics and Space Administration — We propose the development of a modern panel code for calculation of steady and unsteady aerodynamic loads needed for dynamic servoelastic (DSE) analysis of flight...
Transonic buffet control research with two types of shock control bump based on RAE2822 airfoil
Directory of Open Access Journals (Sweden)
Yun TIAN
2017-10-01
Full Text Available Current research shows that the traditional shock control bump (SCB can weaken the intensity of shock and better the transonic buffet performance. The author finds that when SCB is placed downstream of the shock, it can decrease the adverse pressure gradient. This may prevent the shock foot separation bubble to merge with the trailing edge separation and finally improve the buffet performance. Based on RAE2822 airfoil, two types of SCB are designed according to the two different mechanisms. By using Reynolds-averaged Navier-Stokes (RANS and unsteady Reynolds-averaged Navier-Stokes (URANS methods to analyze the properties of RAE2822 airfoil with and without SCB, the results show that the downstream SCB can better the buffet performance under a wide range of freestream Mach number and the steady aerodynamics characteristic is similar to that of RAE2822 airfoil. The traditional SCB can only weaken the intensity of the shock under the design condition. Under the off-design conditions, the SCB does not do much to or even worsen the buffet performance. Indeed, the use of backward bump can flatten the leeward side of the airfoil, and this is similar to the mechanism that supercritical airfoil can weaken the recompression of shock wave.
Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows
LaGraff, John E. (Editor); Ashpis, David E.
2004-01-01
Blade Count and Developing Rotating Stall in a Four Stage Axial Compressor; 25) Experimental and Numerical Study of Non-Linear Interactions in Transonic Nozzle Flow; 26) Clocking Effects on a Modern Stage and One-Half Transonic Turbine; 27) DNS and LES of Transition on Turbine Blades; 28) The Use of Cellular Automata in Modeling the Transition; 29) Predicting Unsteady Buffet Onset Using RANS Solutions; 30) Transition Modelling With the SST Turbulence Model and an Intermittency Transport; and 31) Equation Workshop Summary Transcript
An experimental study of airfoil-spoiler aerodynamics
Mclachlan, B. G.; Karamcheti, K.
1985-01-01
The steady/unsteady flow field generated by a typical two dimensional airfoil with a statically deflected flap type spoiler was investigated. Subsonic wind tunnel tests were made over a range of parameters: spoiler deflection, angle of attack, and two Reynolds numbers; and comprehensive measurements of the mean and fluctuating surface pressures, velocities in the boundary layer, and velocities in the wake. Schlieren flow visualization of the near wake structure was performed. The mean lift, moment, and surface pressure characteristics are in agreement with previous investigations of spoiler aerodynamics. At large spoiler deflections, boundary layer character affects the static pressure distribution in the spoiler hingeline region; and, the wake mean velocity fields reveals a closed region of reversed flow aft of the spoiler. It is shown that the unsteady flow field characteristics are as follows: (1) the unsteady nature of the wake is characterized by vortex shedding; (2) the character of the vortex shedding changes with spoiler deflection; (3) the vortex shedding characteristics are in agreement with other bluff body investigations; and (4) the vortex shedding frequency component of the fluctuating surface pressure field is of appreciable magnitude at large spoiler deflections. The flow past an airfoil with deflected spoiler is a particular problem in bluff body aerodynamics is considered.
Directory of Open Access Journals (Sweden)
Paolo Gaetani
2017-03-01
Full Text Available The need of a continuous improvement in gas turbine efficiency for propulsion and power generation, as well as the more demanding operating conditions and power control required to these machines, still ask for great efforts in the design and analysis of the high pressure section of the turbo-expander. To get detailed insights and improve the comprehension of the flow physics, a wide experimental campaign has been performed in the last ten years at Politecnico di Milano on the unsteady aerodynamics of a high-pressure turbine stage considering several operating conditions. This paper presents and discusses the experimental results obtained for the stage operating with different expansion ratios and rotor loading. The turbine stage under study is representative of a modern high-pressure turbine and can be operated in both subsonic and transonic conditions. The experimental tools applied for the current research represents the state of the art when unsteady investigations are foreseen. The detailed flow field, the blade–rows interaction and the overall performance are described and discussed; efforts have been devoted to the discussion of the various contribution to the overall stage efficiency. The direct effects of the expansion ratio, affecting the Reynolds and the Mach numbers, have been highlighted and quantified; similarly, the indirect effects, accounting for a change in the rotor loading, have been commented and quantified as well, thanks to a dedicated set of experiments where different rotor loadings at the same expansion ratio have been prescribed.
Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep
Hah, Chunill; Shin, Hyoun-Woo
2011-01-01
Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.
System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality
Buehrle, Ralph David
1997-01-01
The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal
Scott, James R.; Atassi, Hafiz M.
1990-01-01
A linearized unsteady aerodynamic analysis is presented for unsteady, subsonic vortical flows around lifting airfoils. The analysis fully accounts for the distortion effects of the nonuniform mean flow on the imposed vortical disturbances. A frequency domain numerical scheme which implements this linearized approach is described, and numerical results are presented for a large variety of flow configurations. The results demonstrate the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. The results show that mean flow distortion can have a very strong effect on the airfoil unsteady response, and that the effect depends strongly upon the reduced frequency, Mach number, and gust wave numbers.
Efficient parallel implicit methods for rotary-wing aerodynamics calculations
Wissink, Andrew M.
Euler/Navier-Stokes Computational Fluid Dynamics (CFD) methods are commonly used for prediction of the aerodynamics and aeroacoustics of modern rotary-wing aircraft. However, their widespread application to large complex problems is limited lack of adequate computing power. Parallel processing offers the potential for dramatic increases in computing power, but most conventional implicit solution methods are inefficient in parallel and new techniques must be adopted to realize its potential. This work proposes alternative implicit schemes for Euler/Navier-Stokes rotary-wing calculations which are robust and efficient in parallel. The first part of this work proposes an efficient parallelizable modification of the Lower Upper-Symmetric Gauss Seidel (LU-SGS) implicit operator used in the well-known Transonic Unsteady Rotor Navier Stokes (TURNS) code. The new hybrid LU-SGS scheme couples a point-relaxation approach of the Data Parallel-Lower Upper Relaxation (DP-LUR) algorithm for inter-processor communication with the Symmetric Gauss Seidel algorithm of LU-SGS for on-processor computations. With the modified operator, TURNS is implemented in parallel using Message Passing Interface (MPI) for communication. Numerical performance and parallel efficiency are evaluated on the IBM SP2 and Thinking Machines CM-5 multi-processors for a variety of steady-state and unsteady test cases. The hybrid LU-SGS scheme maintains the numerical performance of the original LU-SGS algorithm in all cases and shows a good degree of parallel efficiency. It experiences a higher degree of robustness than DP-LUR for third-order upwind solutions. The second part of this work examines use of Krylov subspace iterative solvers for the nonlinear CFD solutions. The hybrid LU-SGS scheme is used as a parallelizable preconditioner. Two iterative methods are tested, Generalized Minimum Residual (GMRES) and Orthogonal s-Step Generalized Conjugate Residual (OSGCR). The Newton method demonstrates good
Turbomachinery: latest developments in a changing scene
International Nuclear Information System (INIS)
1991-01-01
The contributions to the 1991 European Conference on the latest developments in turbomachinery are presented. The topics covered include: computational fluid dynamics methods applied to the aerodynamics of turbine blades; developments associated with steam turbines and gas turbines; flow patterns for turbine blades; compressor design and development; turbine test facilities; film cooling; heat transfer; theoretical treatment of transonic and unsteady flow; condensation phenomena and wet steam flow; water extraction from steam turbine blades; wetness losses in steam turbines in nuclear power plants and pressure loss reduction; aerodynamic instabilities arising from governing valves in Pressurized Water Reactor steam turbines. (UK)
Application of unsteady airfoil theory to rotary wings
Kaza, K. R. V.; Kvaternik, R. G.
1981-01-01
A clarification is presented on recent work concerning the application of unsteady airfoil theory to rotary wings. The application of this theory may be seen as consisting of four steps: (1) the selection of an appropriate unsteady airfoil theory; (2) the resolution of that velocity which is the resultant of aerodynamic and dynamic velocities at a point on the elastic axis into radial, tangential and perpendicular components, and the angular velocity of a blade section about the deformed axis; (3) the expression of lift and pitching moments in terms of the three components; and (4) the derivation of explicit expressions for the components in terms of flight velocity, induced flow, rotor rotational speed, blade motion variables, etc.
Effect of flapping kinematics on aerodynamic force of a flapping two ...
Indian Academy of Sciences (India)
G Senthilkumar
2018-05-10
May 10, 2018 ... important unsteady mechanisms that enhance the aerodynamic forces. ... and remote observation of hazardous environments. Also they can be used for civil ... observation, traffic monitoring and hazardous places inaccessible ...
Kandil, Osama A.; Menzies, Margaret A.
1996-01-01
Unsteady, transonic vortex-breakdown flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The initial condition of the flow is characterized by a transverse terminating shock which induces of the leading edge vortex cores to breakdown. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex-breakdown flow by varying oscillation frequency and phase angle while keeping the maximum pitch and roll amplitude equal.
Research on Aerodynamic Noise Reduction for High-Speed Trains
Zhang, Yadong; Zhang, Jiye; Li, Tian; Zhang, Liang; Zhang, Weihua
2016-01-01
A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...
Sensitivity Analysis of Transonic Flow over J-78 Wings
Directory of Open Access Journals (Sweden)
Alexander Kuzmin
2015-01-01
Full Text Available 3D transonic flow over swept and unswept wings with an J-78 airfoil at spanwise sections is studied numerically at negative and vanishing angles of attack. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver on unstructured meshes. The numerical simulation shows that adverse Mach numbers, at which the lift coefficient is highly sensitive to small perturbations, are larger than those obtained earlier for 2D flow. Due to the larger Mach numbers, there is an onset of self-exciting oscillations of shock waves on the wings. The swept wing exhibits a higher sensitivity to variations of the Mach number than the unswept one.
Unsteady aerodynamic behavior of an airfoil with and without a slat
Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.
1993-01-01
Unsteady flow behavior and load characteristics of a 2D VR-7 airfoil with and without a leading-edge slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 deg at Re = 200,000 to obtain the unsteady lift, drag, and pitching moment data. A fluorescent dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flowfield and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.
Unsteady subsonic and supersonic potential aerodynamics for complex configurations
Morino, L.; Tseng, K.
1977-01-01
A recently developed general theory for unsteady compressible potential fluid dynamics for complex-configuration aircraft is reviewed. The method is based on a combination of the following techniques: Green's function method (to transform the differential equation into an integral differential-delay equation), finite element method (to transform the equation into a set of differential-delay equations in time), and the Laplace transform method (to transform the differential-delay equations into algebraic equations).
Directory of Open Access Journals (Sweden)
Eun Seok Lee
2003-01-01
Full Text Available An axial turbine rotor cascade-shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using an unsteady flow, Reynolds-averaged Navier-Stokes equations solver that was based on explicit, finite difference; Runge-Kutta multistage time marching; and the diagonalized alternating direction implicit scheme. The code utilized Baldwin-Lomax algebraic and k-ε turbulence modeling. The full approximation storage multigrid method and preconditioning were implemented as iterative convergence-acceleration techniques. An implicit dual-time stepping method was incorporated in order to simulate the unsteady flow fields. The objective function was defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed during the optimization. The design variables were several geometric parameters characterizing airfoil leading edge, camber, stagger angle, and inter-row spacing. The genetic algorithm was used as an optimizer, and the penalty method was introduced for combining the constraints with the objective function. Each individual's objective function was computed simultaneously by using a 32-processor distributedmemory computer. The optimization results indicated that only minor improvements are possible in unsteady rotor/stator aerodynamics by varying these geometric parameters.
Hieser, Gerald; Kudlacik, Louis; Gray, W. H.
1956-01-01
During the course of an aerodynamic loads investigation of a model of the Martin XP6M-1 flying boat in the.Langley 16-foot transonic tunnel, longitudinal-aerodynamic-performance information was obtained. Data were obtained at speeds up to and exceeding those anticipated for the seaplane in level flight and included the Mach number range from 0.84. to 1.09. The angle of attack was varied from -2deg to 6deg and the average Reynolds number, based on wing mean aerodyn&ic chord, was about 3.7 x 10(exp 6). This seaplane, although not designed to maintain level flight at Mach numbers beyond the force break, was found to have a transonic drag-rise coefficient of 0.0728, with an accompanying drag-rise Mach number of about 0.85. A large portion of the.drag rise and the relatively low value of drag-rise Mach number result from the axial coincidence of the maximum areas of the principal airplane components.
Transonic flutter study of a wind-tunnel model of a supercritical wing with/without winglet
Ruhlin, C. L.; Rauch, F. J., Jr.; Waters, C.
1982-01-01
The scaled flutter model was a 1/6.5-size, semispan version of a supercritical wing (SCW) proposed for an executive-jet-transport airplane. The model was tested cantilever-mounted with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M = 0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5%, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect. Flutter characteristics calculated using a doublet-lattice analysis (which included interference effects) were in good agreement with the experimental results up to M = 0.82. Comparisons of measured static aerodynamic data with predicted data indicated that the model was aerodynamically representative of the airplane SCW.
Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer
Energy Technology Data Exchange (ETDEWEB)
Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)
1995-10-01
The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.
Elbanna, Hesham M.; Carlson, Leland A.
1992-01-01
The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. Results are compared to those obtained by the direct finite difference approach and both methods are evaluated to determine their computational accuracy and efficiency. The quasi-analytical approach is shown to be accurate and efficient for large aerodynamic systems.
International Nuclear Information System (INIS)
Ragni, D; Ashok, A; Van Oudheusden, B W; Scarano, F
2009-01-01
The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to evaluate pressure fields, whereas lift and drag coefficients are inferred from the evaluation of momentum contour and wake integrals. The PIV-based results are compared to those derived from conventional loads determination procedures involving surface pressure transducers and a wake rake. The method applied in this investigation is an extension to the compressible flow regime of that considered by van Oudheusden et al (2006 Non-intrusive load characterization of an airfoil using PIV Exp. Fluids 40 988–92) at low speed conditions. The application of a high-speed imaging system allows the acquisition in relatively short time of a sufficient ensemble size to compute converged velocity statistics, further translated in turbulent fluctuations included in the pressure and loads calculation, notwithstanding their verified negligible influence in the computation. Measurements are performed at varying spatial resolution to optimize the loads determination in the wake region and around the airfoil, further allowing us to assess the influence of spatial resolution in the proposed procedure. Specific interest is given to the comparisons between the PIV-based method and the conventional procedures for determining the pressure coefficient on the surface, the drag and lift coefficients at different angles of attack. Results are presented for the experiments at a free-stream Mach number M = 0.6, with the angle of attack ranging from 0° to 8°
1987-03-01
MACHI, K. 1905 Unsteady Plow in a Turbine Rotor, VDI -Berichte 572.2p 1 9,5, pp. 273-292. FRANSSON, T.1!. and SUTER, P. 1983 Two-Dimensional and...Schaufelreihen in Axialverdichtern und Axialturbinen, VDI -Berichte No. 361, pp. 33-43. I[;RA, T. and RANNIE, W.D. 1953 Observations of Propagating Stall in...NASA-CR-3940. VICTORY, M. 1943 Flutter at High Incidence. Brit. A.R.C. R & M 2048 . VOGELER, K. 1984 The Unsteady Pressure Distribution on Parabolic
Generic Wing-Body Aerodynamics Data Base
Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)
2001-01-01
The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.
Study of the Unsteady Aerodynamics associated with a Cycloidally Rotating Blade
Agarwal, Nishant
Cycloidal Rotors have been studied for over 100 years, with a focus on applications for vertical axis wind turbines (VAWTs) for energy production and vertical-take-off-and-landing (VTOL) vehicles. Although, numerous experimental and analytical studies have demonstrated their potential competency compared to conventional horizontal-axis rotors, it is not until recently that the focus of these studies has shifted towards understanding the fundamental science behind how these complex systems function. The present study extends the existing fundamental knowledge about cycloidal rotors by particularly focusing on the unsteady aerodynamic phenomena associated with a single-fixed NACA 0012 blade cycloidal rotor as the system translates across an advance ratio (mu = Uinfinity/oR ) of 1. This phenomena was studied both experimentally, making use of particle image velocimetry (PIV) measurements on the system, and computationally, making use of both simple analytical tools and two-dimensional Unsteady Reynolds-Averaged Navier Stokes computational fluid dynamics (URANS-CFD) simulations. It is important to study the transition of the system through mu = 1 in order to better understand the incapability of VAWTs to self-start, and also the progression of VTOL vehicles into forward flight. When the advance ratio is less than one the blade cuts through its own wake. As it approaches one the local airspeed of the flow over the airfoil approaches zero during the retreating portion of the cycle. Finally, as the advance ratio increases beyond one the airfoil will experience reversed flow relative to its direction of rotation. The analysis of the PIV results show that the flow just downstream of the rotor is similar for cases at the same advance ratios, and that the wake structures do not depend upon the Reynolds number, within the range investigated. The phase-history velocity contour plots of the wake structure show a distinct cycloidal pattern for the advance ratio of mu = 1.25, a
In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.
Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers
2015-03-06
Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.
International Nuclear Information System (INIS)
Lee, Sae Il; Lee, Dong Ho; Kim, Kyu Hong; Park, Tae Choon; Lim, Byeung Jun; Kang, Young Seok
2013-01-01
The multidisciplinary design optimization method, which integrates aerodynamic performance and structural stability, was utilized in the development of a single-stage transonic axial compressor. An approximation model was created using artificial neural network for global optimization within given ranges of variables and several design constraints. The genetic algorithm was used for the exploration of the Pareto front to find the maximum objective function value. The final design was chosen after a second stage gradient-based optimization process to improve the accuracy of the optimization. To validate the design procedure, numerical simulations and compressor tests were carried out to evaluate the aerodynamic performance and safety factor of the optimized compressor. Comparison between numerical optimal results and experimental data are well matched. The optimum shape of the compressor blade is obtained and compared to the baseline design. The proposed optimization framework improves the aerodynamic efficiency and the safety factor.
Steady and Unsteady Analysis of NACA 0018 Airfoil in Vertical-Axis Wind Turbine
DEFF Research Database (Denmark)
Rogowski, Krzysztof; Hansen, Martin Otto Laver; Maronski, Ryszard
2018-01-01
Numerical results are presented for aerodynamic unsteady and steady airfoil characteristtcs of the NACA 0018 airfoil of a two-dimensional vertical-axis wind turbine. A geometrical model of the Darrieus-type wind turbine and the rotor operating parameters used for nurnerieal simulation are taken...
Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine
Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi
This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.
Computational Prediction of the Aerodynamic Characteristics of SSTO Vehicle Configurations
Keiichiro, FUJIMOTO; Kozo, FUJI
2003-01-01
Flow-fields around basic SSTO-rocket configurations are numerically simulated by the Navier-Stokes computations. The study starts with the simulations of the Apollo-type configuration, in which the simulated results arecomparing with NASA's experiments and the capability of CFD approach is discussed.Computed aerodynamic coeffcients of Apollo configuration agree well with the experiments at subsonic, transonic and supersonic regime at all angles of attack and the present computational approach...
Shyam, Vikram; Ameri, Ali; Luk, Daniel F.; Chen, Jen-Ping
2010-01-01
Unsteady three-dimensional RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as experiment. A low Reynolds number k- turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the periodic direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.
Development of an engineering level prediction method for high angle of attack aerodynamics
Reisenthel, Patrick H.; Rodman, Laura C.; Nixon, David
1993-01-01
The present work is concerned with predicting the unsteady flow considered to be the cause of the structural failure of twin vertical tail aircraft. An engineering tool has been produced for high angle of attack aerodynamics using the simplest physical models. The main innovation behind this work is its emphasis on the modeling of two key aspects of the dominant physics associated with high angle-of-attack airflows, namely unsteady separation and vortex breakdown.
Energy Technology Data Exchange (ETDEWEB)
Belkheir, N. [Khemis Miliana Univ., Ain Defla (Algeria); Dizene, R. [Univ. des Sciences et de la Technologie Houari Boumediene, Algiers (Algeria). Laboratoire de Mecanique Avancee; Khelladi, S.; Massouh, F.; Dobrev, I. [Arts et Metiers Paris Tech., Paris (France)
2010-07-01
The shape of an airfoil is designed to achieve the best aerodynamic performance. An aerofoil section undergoes dynamic stall when subjected to any form of unsteady angle of pitch. The study of a horizontal-axis wind turbine (HAWT) under wind operating conditions is complex because it is subject to instantaneous speed and wind direction variation. When turbine blades are driven into a dynamic stall, the lift coefficient drops suddenly resulting in a degradation in aerodynamic performance. This study presented steady and unsteady wind load predictions over an oscillating S809 airfoil tested in a subsonic wind tunnel. A model of sinusoidal pitch oscillations was used. The values for the angles of attack in steady state ranged from -20 to +40 degrees. The model considered 3 frequencies and 2 amplitudes. The two-dimensional numerical model simulated the instantaneous change of wind direction with respect to the turbine blade. Results were compared with data measurements of S809 aerofoil. Reasonable deviations were obtained between the predicted and experimental results for pitch oscillations. The URANS approach was used to predict the stall while the software FLUENT was used for the numerical solution. It was concluded that the behaviour of the unsteady flow in the wind farm must be considered in order to obtain an accurate estimate of the wind turbine aerodynamic load. 12 refs., 5 figs.
Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori
2005-01-01
Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25 percent of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.
Directory of Open Access Journals (Sweden)
M. Younsi
2007-01-01
Full Text Available The aim of this study is to evaluate the influence of design parameters on the unsteady flow in a forward-curved centrifugal fan and their impact on the aeroacoustic behavior. To do so, numerical and experimental studies have been carried out on four centrifugal impellers designed with various geometrical parameters. The same volute casing has been used to study these impellers. The effects on the unsteady flow behavior related to irregular blade spacing, blade count and radial distance between the impeller periphery and the volute tongue have been studied. The numerical simulations of the unsteady flow have been carried out using computational fluid dynamics (CFD tools based on the unsteady Reynolds averaged Navier Stokes (URANS approach. The study is focused on the unsteadiness induced by the aerodynamic interaction between the volute and the rotating impeller blades. In order to predict the acoustic pressure at far field, the unsteady flow variables provided by the CFD calculations have been used as inputs in the Ffowcs Williams-Hawkings equations (FW-H. The experimental part of this work concerns measurement of aerodynamic performance of the fans using a test bench built according to ISO 5801 (1997 standard. In addition to this, pressure microphones have been flush mounted on the volute tongue surface in order to measure the wall pressure fluctuations. The sound pressure level (SPL measurements have been carried out in an anechoic room in order to remove undesired noise reflections. Finally, the numerical results have been compared with the experimental measurements and a correlation between the wall pressure fluctuations and the far field noise signals has been found.
Energy Technology Data Exchange (ETDEWEB)
Bergami, L.; Gaunaa, M.
2012-02-15
The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)
Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings
Dhruv, Akash V.
Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed
Unsteady adjoint for large eddy simulation of a coupled turbine stator-rotor system
Talnikar, Chaitanya; Wang, Qiqi; Laskowski, Gregory
2016-11-01
Unsteady fluid flow simulations like large eddy simulation are crucial in capturing key physics in turbomachinery applications like separation and wake formation in flow over a turbine vane with a downstream blade. To determine how sensitive the design objectives of the coupled system are to control parameters, an unsteady adjoint is needed. It enables the computation of the gradient of an objective with respect to a large number of inputs in a computationally efficient manner. In this paper we present unsteady adjoint solutions for a coupled turbine stator-rotor system. As the transonic fluid flows over the stator vane, the boundary layer transitions to turbulence. The turbulent wake then impinges on the rotor blades, causing early separation. This coupled system exhibits chaotic dynamics which causes conventional adjoint solutions to diverge exponentially, resulting in the corruption of the sensitivities obtained from the adjoint solutions for long-time simulations. In this presentation, adjoint solutions for aerothermal objectives are obtained through a localized adjoint viscosity injection method which aims to stabilize the adjoint solution and maintain accurate sensitivities. Preliminary results obtained from the supercomputer Mira will be shown in the presentation.
Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics
LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark
2010-01-01
Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session
Examination of forced unsteady separated flow fields on a rotating wind turbine blade
Energy Technology Data Exchange (ETDEWEB)
Huyer, S [Univ. of Colorado, Boulder, CO (US)
1993-04-01
The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.
Quasi-3d aerodynamic code for analyzing dynamic flap response
DEFF Research Database (Denmark)
Ramos García, Néstor
A computational model for predicting the aerodynamic behavior of wind turbine airfoil profiles subjected to steady and unsteady motions has been developed. The model is based on a viscous-inviscid interaction technique using strong coupling between the viscous and inviscid parts. The inviscid part...... transition model. Validation of the steady two dimensional version of the code has been carried out against experiments for different airfoil geometries and Reynolds numbers. The unsteady version of the code has been benchmarked against experiments for different airfoil geometries at various reduced...... frequencies and oscillation amplitudes, and generally a good agreement is obtained. The capability of the code to simulate a trailing edge flap under steady or unsteady flow conditions has been proven. A parametric study on rotational effects induced by Coriolis and centrifugal forces in the boundary layer...
Shape optimization for aerodynamic efficiency and low observability
Vinh, Hoang; Van Dam, C. P.; Dwyer, Harry A.
1993-01-01
Field methods based on the finite-difference approximations of the time-domain Maxwell's equations and the potential-flow equation have been developed to solve the multidisciplinary problem of airfoil shaping for aerodynamic efficiency and low radar cross section (RCS). A parametric study and an optimization study employing the two analysis methods are presented to illustrate their combined capabilities. The parametric study shows that for frontal radar illumination, the RCS of an airfoil is independent of the chordwise location of maximum thickness but depends strongly on the maximum thickness, leading-edge radius, and leadingedge shape. In addition, this study shows that the RCS of an airfoil can be reduced without significant effects on its transonic aerodynamic efficiency by reducing the leading-edge radius and/or modifying the shape of the leading edge. The optimization study involves the minimization of wave drag for a non-lifting, symmetrical airfoil with constraints on the airfoil maximum thickness and monostatic RCS. This optimization study shows that the two analysis methods can be used effectively to design aerodynamically efficient airfoils with certain desired RCS characteristics.
Use of Active Learning to Design Wind Tunnel Runs for Unsteady Cavity Pressure Measurements
Directory of Open Access Journals (Sweden)
Ankur Srivastava
2014-01-01
Full Text Available Wind tunnel tests to measure unsteady cavity flow pressure measurements can be expensive, lengthy, and tedious. In this work, the feasibility of an active machine learning technique to design wind tunnel runs using proxy data is tested. The proposed active learning scheme used scattered data approximation in conjunction with uncertainty sampling (US. We applied the proposed intelligent sampling strategy in characterizing cavity flow classes at subsonic and transonic speeds and demonstrated that the scheme has better classification accuracies, using fewer training points, than a passive Latin Hypercube Sampling (LHS strategy.
Sandford, M. C.; Ricketts, R. H.; Watson, J. J.
1981-01-01
A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.
Energy Technology Data Exchange (ETDEWEB)
Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.; Schreck, S.; Larwood, S. M.
2001-12-01
The primary objective of the insteady aerodynamics experiment was to provide information needed to quantify the full-scale, three-dimensional aerodynamic behavior of horizontal-axis wind turbines. This report is intended to familiarize the user with the entire scope of the wind tunnel test and to support the use of the resulting data.
Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades
International Nuclear Information System (INIS)
Ernst, Benedikt; Schmitt, Henning; Seume, Jörg R
2014-01-01
Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made
Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis
Zhang, Yue
2015-01-01
This paper investigates the wind-induced vibration of the CAARC standard tall building model, via unsteady Computational Fluid Dynamics (CFD) and a structural modal analysis. In this numerical procedure, the natural unsteady wind in the atmospheric boundary layer is modeled with an artificial inflow turbulence generation method. Then, the turbulent flow is simulated by the second mode of a Zonal Detached-Eddy Simulation, and a conservative quadrature-projection scheme is adopted to transfer unsteady loads from fluid to structural nodes. The aerodynamic damping that represents the fluid-structure interaction mechanism is determined by empirical functions extracted from wind tunnel experiments. Eventually, the flow solutions and the structural responses in terms of mean and root mean square quantities are compared with experimental measurements, over a wide range of reduced velocities. The significance of turbulent inflow conditions and aeroelastic effects is highlighted. The current methodology provides predictions of good accuracy and can be considered as a preliminary design tool to evaluate the unsteady wind effects on tall buildings.
Software development for subsonic aircraft’s unsteady longitudinal stability derivatives calculation
Directory of Open Access Journals (Sweden)
Maričić Nikola
2005-01-01
Full Text Available Subsonic general configuration aircrafts’ unsteady longitudinal aerodynamic stability derivatives can be estimated using finite element methodology based on the Doublet Lattice Method (DLM, the Slender Body Theory (SBT and the Method of Images (MI. Applying this methodology, software DERIV is developed. The obtained results from DERIV are compared to NASTRAN examples HA21A and HA75H. A good agreement is achieved.
Transonic flow of steam with non-equilibrium and homogenous condensation
Virk, Akashdeep Singh; Rusak, Zvi
2017-11-01
A small-disturbance model for studying the physical behavior of a steady transonic flow of steam with non-equilibrium and homogeneous condensation around a thin airfoil is derived. The steam thermodynamic behavior is described by van der Waals equation of state. The water condensation rate is calculated according to classical nucleation and droplet growth models. The current study is based on an asymptotic analysis of the fluid flow and condensation equations and boundary conditions in terms of the small thickness of the airfoil, small angle of attack, closeness of upstream flow Mach number to unity and small amount of condensate. The asymptotic analysis gives the similarity parameters that govern the problem. The flow field may be described by a non-homogeneous transonic small-disturbance equation coupled with a set of four ordinary differential equations for the calculation of the condensate mass fraction. An iterative numerical scheme which combines Murman & Cole's (1971) method with Simpson's integration rule is applied to solve the coupled system of equations. The model is used to study the effects of energy release from condensation on the aerodynamic performance of airfoils operating at high pressures and temperatures and near the vapor-liquid saturation conditions.
Numerical modeling of wind turbine aerodynamic noise in the time domain.
Lee, Seunghoon; Lee, Seungmin; Lee, Soogab
2013-02-01
Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.
V. I. Shevyakov
2014-01-01
There are considered new tasks in aerodynamics in the process of certification of airplanes of transport category. The procedure for optimal location of ice detector at the transonic airplane and means of compliance with certification requirements for automatic engagement of anti-ice protection.
Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties
Directory of Open Access Journals (Sweden)
Xiaojing WU
2018-05-01
Full Text Available The uncertainties can generate fluctuations with aerodynamic characteristics. Uncertainty Quantification (UQ is applied to compute its impact on the aerodynamic characteristics. In addition, the contribution of each uncertainty to aerodynamic characteristics should be computed by uncertainty sensitivity analysis. Non-Intrusive Polynomial Chaos (NIPC has been successfully applied to uncertainty quantification and uncertainty sensitivity analysis. However, the non-intrusive polynomial chaos method becomes inefficient as the number of random variables adopted to describe uncertainties increases. This deficiency becomes significant in stochastic aerodynamic analysis considering the geometric uncertainty because the description of geometric uncertainty generally needs many parameters. To solve the deficiency, a Sparse Grid-based Polynomial Chaos (SGPC expansion is used to do uncertainty quantification and sensitivity analysis for stochastic aerodynamic analysis considering geometric and operational uncertainties. It is proved that the method is more efficient than non-intrusive polynomial chaos and Monte Carlo Simulation (MSC method for the stochastic aerodynamic analysis. By uncertainty quantification, it can be learnt that the flow characteristics of shock wave and boundary layer separation are sensitive to the geometric uncertainty in transonic region. The uncertainty sensitivity analysis reveals the individual and coupled effects among the uncertainty parameters. Keywords: Non-intrusive polynomial chaos, Sparse grid, Stochastic aerodynamic analysis, Uncertainty sensitivity analysis, Uncertainty quantification
The evolution of whole field optical diagnostics for external transonic testing
Fry, K. A.; Bryanston-Cross, P.
1992-09-01
The diagnostic use of quantitative laser flow visualization techniques has increased rapidly over recent years. The limitations imposed by conventional single point techniques such as laser Doppler anemometry are addressed and how they have been overcome by the development of a new family of whole field measurement techniques is demonstrated. In particular near instantaneous whole field velocity data was obtained in a relatively hostile, industrial 2.74 m x 2.44 m transonic wind tunnel (TWT) at the Aircraft Research Association (ARA). The techniques were evaluated for their suitability for making quantitative measurements in the wing/pylon region of a model wing and engine combination. Three optical diagnostic techniques were successfully developed within the context of the ARA facility. The first technique, laser light sheet (LLS), combines the operation of a pulse laser and video capture system to provide a 'real time' visualization of the flow, whereas a second pulse laser technique, Particle Image Velocimetry (PIV) can be used to make specific quantitative whole field instantaneous velocity measurements. The third method, holography, was used to produce a stored three dimensional visualization of the unsteady and shock wave features of the transonic flow in the gully region. A description is made of their installation and operation, and examples are presented of current test results.
Janetzke, David C.; Murthy, Durbha V.
1991-01-01
Aeroelastic analysis is multi-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic capability on a distributed memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a 3-D unsteady aerodynamic model and a parallel discretization. Efficiencies up to 85 percent were demonstrated using 32 processors. The effect of subtask ordering, problem size, and network topology are presented. A comparison to results on a shared memory computer indicates that higher speedup is achieved on the distributed memory system.
Janetzke, D. C.; Murthy, D. V.
1991-01-01
Aeroelastic analysis is mult-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic analysis capability on a distributed-memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a three-dimensional unsteady aerodynamic model and a panel discretization. Efficiencies up to 85 percent are demonstrated using 32 processors. The effects of subtask ordering, problem size and network topology are presented. A comparison to results on a shared-memory computer indicates that higher speedup is achieved on the distributed-memory system.
Unsteady Particle Deposition in a Human Nasal Cavity during Inhalation
Directory of Open Access Journals (Sweden)
Camby M.K. Se
2010-12-01
Full Text Available The present study investigates the deposition efficiency during the unsteady inhalation cycle by using Computational Fluid Dynamics (CFD. The unsteady inhalation profile was applied at the outlet of nasopharynx, which had a maximum flow rate of 40.3L/min which corresponds to an equivalent steady inhalation tidal volume flow rate of 24.6L/min. Aerodynamic particle sizes of 5μm and 20μm were studied in order to reflect contrasting Stokes numbered particle behaviour. Two particle deposition efficiencies in the nasal cavity versus time are presented. In general, the deposition of 5μm particles was much less than 20μm particles. The first 0.2 second of the inhalation cycle was found to be significant to the particle transport, since the majority of particles were deposited during this period (i.e. its residence time. Comparisons were also made with its equivalent steady inhalation flow rate which found that the unsteady inhalation produced lower deposition efficiency for both particle sizes.
Unsteady lift forces on highly cambered airfoils moving through a gust
Atassi, H.; Goldstein, M.
1974-01-01
An unsteady airfoil theory in which the flow is linearized about the steady potential flow of the airfoil is presented. The theory is applied to an airfoil entering a gust. After transformation to the W-plane, the problem is formulated in terms of a Poisson's equation. The solutions are expanded in a Fourier-Bessel series. The theory is applied to a circular arc with arbitrary camber. Closed form expressions for the velocity and pressure on the surface of the airfoil are obtained. The unsteady aerodynamic forces are then calculated and shown to contain two terms. One in an explicit closed analytical form represents the contribution of the oncoming vortical disturbance, the other depends on a single quadrature and accounts for the effect of the wake.
Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.
2015-01-01
Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.
Characteristics of transonic moist air flows around butterfly valves with spontaneous condensation
Directory of Open Access Journals (Sweden)
A.B.M. Toufique Hasan
2015-06-01
Full Text Available Effects of spontaneous condensation of moist air on the shock wave dynamics around butterfly valves in transonic flows are investigated by experimental and numerical simulations. Two symmetric valve disk shapes namely- a flat rectangular plate and a mid-plane cross-section of a prototype butterfly valve have been studied in the present research. Results showed that in case with spontaneous condensation, the root mean square of pressure oscillation (induced by shock dynamics is reduced significantly with those without condensation for both shapes of the valves. Moreover, local aerodynamic moments were reduced in case with condensation which is considered to be beneficial in torque requirement in case of on/off applications of valves as flow control devices. However, total pressure loss was increased with spontaneous condensation in both the valves. Furthermore, the disk shape of a prototype butterfly valve showed better aerodynamic performances compared to flat rectangular plate profile in respect of total pressure loss and vortex shedding frequency in the wake region.
Energy Technology Data Exchange (ETDEWEB)
Dugeai, A.; Sens, A.S. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France); Madec, A. [Societe Nationale d' Etude et de Construction de Moteurs d' Aviation SNECMA, 77 - Villaroche (France)
2001-07-01
A computational tool for the prediction of aeronautical machineries aeroelastic stability is presented. Numerical features of the quasi-3D Navier-Stokes unsteady solver are discussed: turbulence models, grid deformation techniques, specific boundary conditions. Isolated profile and cascade computational results are compared to experimental data, for steady and unsteady cases. (authors)
CONDITIONS OF PHYSICAL MODELING AERODYNAMIC CHARACTERISTICS OF AIRCRAFT WITH CHASSIS HOVERCRAFT
Directory of Open Access Journals (Sweden)
Yu. Yu. Merzlikin
2015-01-01
Full Text Available The features of the physical modeling in the experimental determination of aerodynamics-cal tubes (WT of low-velocity steady and unsteady aerodynamic characteristics at takeoff and landing of aircraft (LA with the chassis air-cushion (ball screw and in studies to determine the stability of equilibrium regimes of movement and shock-absorbing properties of ball screws. Are conscdered the requirements for the experimental facilities, model aircraft with ball screws and re-test of the latest zhimam on the free stream velocity, flow and pressure blowers VР, the frequencies and amplitudes of the oscillations are formulated.
A Synthesis of Hybrid RANS/LES CFD Results for F-16XL Aircraft Aerodynamics
Luckring, James M.; Park, Michael A.; Hitzel, Stephan M.; Jirasek, Adam; Lofthouse, Andrew J.; Morton, Scott A.; McDaniel, David R.; Rizzi, Arthur M.
2015-01-01
A synthesis is presented of recent numerical predictions for the F-16XL aircraft flow fields and aerodynamics. The computational results were all performed with hybrid RANS/LES formulations, with an emphasis on unsteady flows and subsequent aerodynamics, and results from five computational methods are included. The work was focused on one particular low-speed, high angle-of-attack flight test condition, and comparisons against flight-test data are included. This work represents the third coordinated effort using the F-16XL aircraft, and a unique flight-test data set, to advance our knowledge of slender airframe aerodynamics as well as our capability for predicting these aerodynamics with advanced CFD formulations. The prior efforts were identified as Cranked Arrow Wing Aerodynamics Project International, with the acronyms CAWAPI and CAWAPI-2. All information in this paper is in the public domain.
Historical Review of Uncommanded Lateral-Directional Motions at Transonic Conditions
Chambers, Joseph R.; Hall, Robert M.
2003-01-01
information regarding the historical challenge of uncommanded lateral-directional motions at transonic conditions and the associated aerodynamic phenomena.
Directory of Open Access Journals (Sweden)
V. I. Shevyakov
2014-01-01
Full Text Available There are considered new tasks in aerodynamics in the process of certification of airplanes of transport category. The procedure for optimal location of ice detector at the transonic airplane and means of compliance with certification requirements for automatic engagement of anti-ice protection.
ERCOFTAC Symposium on Unsteady Separation in Fluid-Structure Interaction
Bottaro, Alessandro; Thompson, Mark
2016-01-01
This book addresses flow separation within the context of fluid-structure interaction phenomena. Here, new findings from two research communities focusing on fluids and structures are brought together, emphasizing the importance of a unified multidisciplinary approach. The book covers the theory, experimental findings, numerical simulations, and modeling in fluid dynamics and structural mechanics for both incompressible and compressible separated unsteady flows. There is a focus on the morphing of lifting structures in order to increase their aerodynamic and/or hydrodynamic performances, to control separation and to reduce noise, as well as to inspire the design of novel structures. The different chapters are based on contributions presented at the ERCOFTAC Symposium on Unsteady Separation in Fluid-Structure Interaction held in Mykonos, Greece, 17-21 June, 2013 and include extended discussions and new highlights. The book is intended for students, researchers and practitioners in the broad field of computatio...
Newman, James C., III
1995-01-01
The limiting factor in simulating flows past realistic configurations of interest has been the discretization of the physical domain on which the governing equations of fluid flow may be solved. In an attempt to circumvent this problem, many Computational Fluid Dynamic (CFD) methodologies that are based on different grid generation and domain decomposition techniques have been developed. However, due to the costs involved and expertise required, very few comparative studies between these methods have been performed. In the present work, the two CFD methodologies which show the most promise for treating complex three-dimensional configurations as well as unsteady moving boundary problems are evaluated. These are namely the structured-overlapped and the unstructured grid schemes. Both methods use a cell centered, finite volume, upwind approach. The structured-overlapped algorithm uses an approximately factored, alternating direction implicit scheme to perform the time integration, whereas, the unstructured algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and limitations of each scheme, they are applied to the same steady complex multicomponent configurations and unsteady moving boundary problems. The steady complex cases consist of computing the subsonic flow about a two-dimensional high-lift multielement airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. Accuracy was accessed through the comparison of computed and experimentally measured pressure coefficient data on several of the wing/pylon/finned store assembly's components and at numerous angles-of-attack for the pitching airfoil. From this study, it was found that both the structured-overlapped and the unstructured grid schemes yielded flow solutions of
Uncertainty Quantification in Numerical Aerodynamics
Litvinenko, Alexander
2017-05-16
We consider uncertainty quantification problem in aerodynamic simulations. We identify input uncertainties, classify them, suggest an appropriate statistical model and, finally, estimate propagation of these uncertainties into the solution (pressure, velocity and density fields as well as the lift and drag coefficients). The deterministic problem under consideration is a compressible transonic Reynolds-averaged Navier-Strokes flow around an airfoil with random/uncertain data. Input uncertainties include: uncertain angle of attack, the Mach number, random perturbations in the airfoil geometry, mesh, shock location, turbulence model and parameters of this turbulence model. This problem requires efficient numerical/statistical methods since it is computationally expensive, especially for the uncertainties caused by random geometry variations which involve a large number of variables. In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al \\'17]. For modeling we used the TAU code, developed in DLR, Germany.
Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts
Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.
2014-01-01
Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.
Chan, David T.; Brauckmann, Gregory J.
2011-01-01
A 6%-scale unpowered model of the Orion Launch Abort Vehicle (LAV) ALAS-11-rev3c configuration was tested in the NASA Langley National Transonic Facility to obtain static aerodynamic data at flight Reynolds numbers. Subsonic and transonic data were obtained for Mach numbers between 0.3 and 0.95 for angles of attack from -4 to +22 degrees and angles of sideslip from -10 to +10 degrees. Data were also obtained at various intermediate Reynolds numbers between 2.5 million and 45 million depending on Mach number in order to examine the effects of Reynolds number on the vehicle. Force and moment data were obtained using a 6-component strain gauge balance that operated both at warm temperatures (+120 . F) and cryogenic temperatures (-250 . F). Surface pressure data were obtained with electronically scanned pressure units housed in heated enclosures designed to survive cryogenic temperatures. Data obtained during the 3-week test entry were used to support development of the LAV aerodynamic database and to support computational fluid dynamics code validation. Furthermore, one of the outcomes of the test was the reduction of database uncertainty on axial force coefficient for the static unpowered LAV. This was accomplished as a result of good data repeatability throughout the test and because of decreased uncertainty on scaling wind tunnel data to flight.
Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter
Mahajan, A. J.; Kaza, K. R. V.; Dowell, E. H.
1993-01-01
A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.
(YIP 2011) Unsteady Output-based Adaptive Simulation of Separated and Transitional Flows
2015-03-19
Investigator Aerospace Eng. U. Michigan Marco Ceze Ph.D. student/postdoctoral associate Aerospace Eng. U. Michigan Steven Kast Ph.D. student Aerospace...13] S. M. Kast , M. A. Ceze, and K. J. Fidkowski. Output-adaptive solution strategies for unsteady aerodynamics on deformable domains. Seventh...International Conference on Computational Fluid Dynamics ICCFD7-3802, 2012. [14] S. M. Kast and K. J. Fidkowski. Output-based mesh adaptation for high order
Pendergraft, O. C., Jr.; Bare, E. A.
1982-01-01
An investigation was conducted in the Langley 16 foot transonic tunnel to determine the longitudinal aerodynamic characteristics of twin two dimensional nozzles and twin baseline axisymmetric nozzles installed on a fully metric 0.047 scale model of the F-15 three surface configuration (canards, wing, horizontal tails). The effects on performance of two dimensional nozzle in flight thrust reversing, locations and orientation of the vertical tails, and deflections of the horizontal tails were also determined. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.20 over an angle of attack range from -2 deg to 15 deg. Nozzle pressure ratio was varied from jet off to about 6.5.
Understanding the unsteady aerodynamics of a revolving wing with pitching-flapping perturbations
Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Eslam Panah, Azar; Cheng, Bo
2017-11-01
Revolving wings become less efficient for lift generation at low Reynolds numbers. Unlike flying insects using reciprocating revolving wings to exploit unsteady mechanisms for lift enhancement, an alternative that introduces unsteadiness through vertical flapping perturbation, is studied via experiments and simulations. Substantial drag reduction, linearly dependent on Strouhal number, is observed for a flapping-perturbed revolving wing at zero angle of attack (AoA), which can be explained by changes in the effective angle of attack and formation of reverse Karman vortex streets. When the AoA increases, flapping perturbations improve the maximum lift coefficient attainable by the revolving wing, with minor increases of drag or even minor drag reductions depending on Strouhal number and normalized flapping amplitude. When the pitching perturbations are further introduced, more substantial drag reduction and lift enhancement can be achieved in zero and positive AoAs, respectively. As the flapping-perturbed wings are less efficient compared with revolving wings in terms of power loading, the pitching-flapping perturbations can achieve a higher power loading at 20°AoA and thus have potential applications in micro air vehicle designs. This research was supported by NSF, DURIP, NSFC and Penn State Multi-Campus SEED Grant.
Thermal lift generation and drag reduction in rarefied aerodynamics
Pekardan, Cem; Alexeenko, Alina
2016-11-01
With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.
Historical Review of Uncommanded Lateral-Directional Motions At Transonic Conditions (Invited)
Chambers, Joseph R.; Hall, Robert M.
2003-01-01
regarding the historical challenge of uncommanded lateral-directional motions at transonic conditions and the associated aerodynamic phenomena.
Computational Aerodynamic Modeling of Small Quadcopter Vehicles
Yoon, Seokkwan; Ventura Diaz, Patricia; Boyd, D. Douglas; Chan, William M.; Theodore, Colin R.
2017-01-01
High-fidelity computational simulations have been performed which focus on rotor-fuselage and rotor-rotor aerodynamic interactions of small quad-rotor vehicle systems. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, low Mach number preconditioning, and hybrid turbulence modeling. Computational results for isolated rotors are shown to compare well with available experimental data. Computational results in hover reveal the differences between a conventional configuration where the rotors are mounted above the fuselage and an unconventional configuration where the rotors are mounted below the fuselage. Complex flow physics in forward flight is investigated. The goal of this work is to demonstrate that understanding of interactional aerodynamics can be an important factor in design decisions regarding rotor and fuselage placement for next-generation multi-rotor drones.
Wind energy conversion. Volume II. Aerodynamics of horizontal axis wind turbines
Energy Technology Data Exchange (ETDEWEB)
Miller, R.H.; Dugundji, J.; Martinez-Sanchez, M.; Gohard, J.; Chung, S.; Humes, T.
1978-09-01
The basic aerodynamic theory of the wind turbine is presented, starting with the simple momentum theory based on uniform inflow and an infinite number of blades. The basic vortex theory is then developed. Following these basics, the more complete momentum theory, including swirl, non-uniform inflow, the effect of a finite number of blades, and empirical correction for the vortex ring condition is presented. The more complete vortex theory is presented which includes unsteady aerodynamic effects but based on a semi-rigid wake. Methods of applying this theory for performance estimation are discussed as well as for the purpose of computing time varying airloads due to windshear and tower interference.
An introduction to generalized functions with some applications in aerodynamics and aeroacoustics
Farassat, F.
1994-01-01
In this paper, we start with the definition of generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support. The concept of generalization differentiation is introduced next. This is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some of the results of classical analysis, such as Leibniz rule of differentiation under the integral sign and the divergence theorem, are derived using the generalized function theory. It is shown that the divergence theorem remains valid for discontinuous vector fields provided that the derivatives are all viewed as generalized derivatives. This implies that all conservation laws of fluid mechanics are valid as they stand for discontinuous fields with all derivatives treated as generalized deriatives. Once these derivatives are written as ordinary derivatives and jumps in the field parameters across discontinuities, the jump conditions can be easily found. For example, the unsteady shock jump conditions can be derived from mass and momentum conservation laws. By using a generalized function theory, this derivative becomes trivial. Other applications of the generalized function theory in aerodynamics discussed in this paper are derivation of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of finite part of divergent integrals, derivation of Oswatiitsch integral equation of transonic flow, and analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics presented here include the derivation of the Kirchoff formula for moving surfaces,the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.
Energy Technology Data Exchange (ETDEWEB)
Rusanov, A V; Yershov, S V [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)
1998-12-31
The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.
Energy Technology Data Exchange (ETDEWEB)
Rusanov, A.V.; Yershov, S.V. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)
1997-12-31
The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.
DEFF Research Database (Denmark)
Skrzypinski, Witold Robert
analyzes based on engineering models and Computational Fluid Dynamics. Twodimensional, three-degree-of-freedom, elastically-mounted-airfoil engineering models were created. These models aimed at investigating the effect of temporal lag in the aerodynamic response of an airfoil on the aeroelastic stability...... was that even a relatively low amount of temporal lag in the aerodynamic response may significantly increase the aerodynamic damping and therefore influence the aeroelastic stability limits, relative to quasisteady aerodynamic response. Two- and three-dimensional CFD computations included non-moving, prescribed...... and drag resulting from 2D and 3D CFD computations carried out around 25 degrees angle of attack showed loops with the slopes of opposite signs indicating that further investigations are needed and that simple models in connection with aeroelastic simulations might not be sufficient to accurately predict...
A Comparative Assessment of Aerodynamic Models for Buffeting and Flutter of Long-Span Bridges
Directory of Open Access Journals (Sweden)
Igor Kavrakov
2017-12-01
Full Text Available Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff concrete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a wind-speed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow. Keywords: Buffeting, Flutter, Long-span bridges, Bridge aerodynamics, Bridge aeroelasticity, Erection stage
Unsteady fluid dynamics around a hovering wing
Krishna, Swathi; Green, Melissa; Mulleners, Karen
2017-11-01
The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.
The efficiency of aerodynamic force production in Drosophila.
Lehmann, F O
2001-12-01
Total efficiency of aerodynamic force production in insect flight depends on both the efficiency with which flight muscles turn metabolic energy into muscle mechanical power and the efficiency with which this power is converted into aerodynamic flight force by the flapping wings. Total efficiency has been estimated in tethered flying fruit flies Drosophila by modulating their power expenditures in a virtual reality flight simulator while simultaneously measuring stroke kinematics, locomotor performance and metabolic costs. During flight, muscle efficiency increases with increasing flight force production, whereas aerodynamic efficiency of lift production decreases with increasing forces. As a consequence of these opposite trends, total flight efficiency in Drosophila remains approximately constant within the kinematic working range of the flight motor. Total efficiency is broadly independent of different profile power estimates and typically amounts to 2-3%. The animal achieves maximum total efficiency near hovering flight conditions, when the beating wings produce flight forces that are equal to the body weight of the insect. It remains uncertain whether this small advantage in total efficiency during hovering flight was shaped by evolutionary factors or results from functional constraints on both the production of mechanical power by the indirect flight muscles and the unsteady aerodynamic mechanisms in flapping flight.
Steady and Unsteady Force and Moment Data on a DARPA2 Submarine
Whitfield, Cindy Carol
1999-01-01
Steady and unsteady force and moment experiments were conducted in the Virginia Tech Stability wind tunnel using the Dynamic Plunge-Pitch-Roll (DyPPiR) model mount to perform rapid time-dependent,high-excursion maneuvers. The experiments were performed for a DARPA2 submarine model using three widely spaced 2-force-component loadcells and three tri-axial accelerometers to extract the aerodynamic loads. The DARPA2 model was tested with different body configurations in two different test sect...
Computational Aerodynamics and Aeroacoustics for Wind Turbines
DEFF Research Database (Denmark)
Shen, Wen Zhong
and applied to laminar flows. An aero-acoustic formulation for turbulent flows was in [15] developed for Large Eddy Simulation (LES), Unsteady Reynolds Averaged Navier-Stokes Simulation (URANS) and Detached Eddy Simulation (DES). In [16] a collocated grid / finite volume method for aero-acoustic computations...... with Computational Aero-Acoustics (CAA). With the spread of wind turbines near urban areas, there is an increasing need for accurate predictions of aerodynamically generated noise. Indeed, noise has become one of the most important issues for further development of wind power, and the ability of controlling...... and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind...
Supersonic and transonic Mach probe for calibration control in the Trisonic Wind Tunnel
Directory of Open Access Journals (Sweden)
Alexandru Marius PANAIT
2017-12-01
Full Text Available A supersonic and high speed transonic Pitot Prandtl is described as it can be implemented in the Trisonic Wind Tunnel for calibration and verification of Mach number precision. A new calculation method for arbitrary precision Mach numbers is proposed and explained. The probe is specially designed for the Trisonic wind tunnel and would greatly simplify obtaining a precise Mach calibration in the critical high transonic and low supersonic regimes, where typically wind tunnels exhibit poor performance. The supersonic Pitot Prandtl combined probe is well known in the aerospace industry, however the proposed probe is a derivative of the standard configuration, combining a stout cone-cylinder probe with a supersonic Pitot static port which allows this configuration to validate the Mach number by three methods: conical flow method – using the pressure ports on a cone generatrix, the Schlieren-optical method of shock wave angle photogrammetry and the Rayleigh supersonic Pitot equation, while having an aerodynamic blockage similar to that of a scaled rocket model commonly used in testing. The proposed probe uses an existing cone-cylinder probe forebody and support, adding only an afterbody with a support for a static port.
Investigation on steady and unsteady performance of a SCO2 centrifugal compressor with splitters
Directory of Open Access Journals (Sweden)
Guo Ding
2017-01-01
Full Text Available Supercritical carbon dioxide (SCO2 is widely concerned with its excellent physical properties. Its high density helps to achieve a compact mechanical structure, especially in all kinds of turbomachinery. In this paper, a SCO2 centrifugal compressor with splitter blades is displayed and numerically investigated. A thorough numerical analysis of the steady and unsteady performance of this SCO2 centrifugal compressor is performed in ANSYS-CFX with SST turbulence model. Streamlines, pressure and temperature under steady- and unsteady-state are compared and analyzed. Moreover, the trans-critical phenomenon at the leading edge of the rotor blade and the aerodynamic performance are covered. The results in this paper provide the foundation for the design and numerical investigation of SCO2 centrifugal compressors.
International Nuclear Information System (INIS)
Anon.
1990-01-01
The present conference discusses topics in CFD methods and their validation, vortices and vortical flows, STOL/VSTOL aerodynamics, boundary layer transition and separation, wing airfoil aerodynamics, laminar flow, supersonic and hypersonic aerodynamics, CFD for wing airfoil and nacelle applications, wind tunnel testing, flight testing, missile aerodynamics, unsteady flow, configuration aerodynamics, and multiple body/interference flows. Attention is given to the numerical simulation of vortical flows over close-coupled canard-wing configuration, propulsive lift augmentation by side fences, road-vehicle aerodynamics, a shock-capturing method for multidimensional flow, transition-detection studies in a cryogenic environment, a three-dimensional Euler analysis of ducted propfan flowfields, multiple vortex and shock interaction at subsonic and supersonic speeds, and a Navier-Stokes simulation of waverider flowfields. Also discussed are the induced drag of crescent-shaped wings, the preliminary design aerodynamics of missile inlets, finite wing lift prediction at high angles-of-attack, optimal supersonic/hypersonic bodies, and adaptive grid embedding for the two-dimensional Euler equations
Evaluation of the constant pressure panel method (CPM) for unsteady air loads prediction
Appa, Kari; Smith, Michael J. C.
1988-01-01
This paper evaluates the capability of the constant pressure panel method (CPM) code to predict unsteady aerodynamic pressures, lift and moment distributions, and generalized forces for general wing-body configurations in supersonic flow. Stability derivatives are computed and correlated for the X-29 and an Oblique Wing Research Aircraft, and a flutter analysis is carried out for a wing wind tunnel test example. Most results are shown to correlate well with test or published data. Although the emphasis of this paper is on evaluation, an improvement in the CPM code's handling of intersecting lifting surfaces is briefly discussed. An attractive feature of the CPM code is that it shares the basic data requirements and computational arrangements of the doublet lattice method. A unified code to predict unsteady subsonic or supersonic airloads is therefore possible.
Directory of Open Access Journals (Sweden)
Yonghui Xie
2013-01-01
Full Text Available Air turbines are widely used to convert kinetic energy into power output in power engineering. The unsteady performance of air turbines with partial admission not only influences the aerodynamic performance and thermodynamic efficiency of turbine but also generates strong excitation force on blades to impair the turbine safely operating. Based on three-dimensional viscous compressible Navier-stokes equations, the present study employs RNG (Renormalization group k-ε turbulence model with finite volume discretization on air turbine with partial admission. Numerical models of four different admission rates with full annulus are built and analyzed via CFD (computational fluid dynamics modeling unsteady flows. Results indicate that the unsteady time-averaged isentropic efficiency is lower than the steady isentropic efficiency, and this difference rises as unsteady isentropic efficiency fluctuates stronger when the admission rate is reduced. The rotor axial and tangential forces with time are provided for all four admission rates. The low frequency excitation forces generated by partial admission are extraordinarily higher than the high frequency excitation forces by stator wakes.
Winglet Geometry Impact on DLR-F4 Aerodynamics and an Analysis of a Hyperbolic Winglet Concept
Djahid Gueraiche; Sergey Popov
2017-01-01
In this article, the growth of aerodynamic efficiency and the growth of the wing structural stress is studied for DLR-F4 typical transport aircraft wing-body, after installing classical Whitcomb winglets of different configurations and a delta wingtip fence. A new-concept curved-span winglet was mathematically developed and approved through Computational Fluid Dynamics (CFD) and static structural experiments, revealing the interaction of sub- and transonic air flow dynamics with the wingtip d...
Application of the Green's function method for 2- and 3-dimensional steady transonic flows
Tseng, K.
1984-01-01
A Time-Domain Green's function method for the nonlinear time-dependent three-dimensional aerodynamic potential equation is presented. The Green's theorem is being used to transform the partial differential equation into an integro-differential-delay equation. Finite-element and finite-difference methods are employed for the spatial and time discretizations to approximate the integral equation by a system of differential-delay equations. Solution may be obtained by solving for this nonlinear simultaneous system of equations in time. This paper discusses the application of the method to the Transonic Small Disturbance Equation and numerical results for lifting and nonlifting airfoils and wings in steady flows are presented.
Unsteady wall pressure field of a model A-pillar conical vortex
International Nuclear Information System (INIS)
Hoarau, C.; Boree, J.; Laumonier, J.; Gervais, Y.
2008-01-01
The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct
Reciprocity relations in aerodynamics
Heaslet, Max A; Spreiter, John R
1953-01-01
Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.
Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
Nakata, Toshiyuki; Liu, Hao
2012-02-22
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.
Parallel computing techniques for rotorcraft aerodynamics
Ekici, Kivanc
The modification of unsteady three-dimensional Navier-Stokes codes for application on massively parallel and distributed computing environments is investigated. The Euler/Navier-Stokes code TURNS (Transonic Unsteady Rotor Navier-Stokes) was chosen as a test bed because of its wide use by universities and industry. For the efficient implementation of TURNS on parallel computing systems, two algorithmic changes are developed. First, main modifications to the implicit operator, Lower-Upper Symmetric Gauss Seidel (LU-SGS) originally used in TURNS, is performed. Second, application of an inexact Newton method, coupled with a Krylov subspace iterative method (Newton-Krylov method) is carried out. Both techniques have been tried previously for the Euler equations mode of the code. In this work, we have extended the methods to the Navier-Stokes mode. Several new implicit operators were tried because of convergence problems of traditional operators with the high cell aspect ratio (CAR) grids needed for viscous calculations on structured grids. Promising results for both Euler and Navier-Stokes cases are presented for these operators. For the efficient implementation of Newton-Krylov methods to the Navier-Stokes mode of TURNS, efficient preconditioners must be used. The parallel implicit operators used in the previous step are employed as preconditioners and the results are compared. The Message Passing Interface (MPI) protocol has been used because of its portability to various parallel architectures. It should be noted that the proposed methodology is general and can be applied to several other CFD codes (e.g. OVERFLOW).
Application of porous material to reduce aerodynamic sound from bluff bodies
International Nuclear Information System (INIS)
Sueki, Takeshi; Takaishi, Takehisa; Ikeda, Mitsuru; Arai, Norio
2010-01-01
Aerodynamic sound derived from bluff bodies can be considerably reduced by flow control. In this paper, the authors propose a new method in which porous material covers a body surface as one of the flow control methods. From wind tunnel tests on flows around a bare cylinder and a cylinder with porous material, it has been clarified that the application of porous materials is effective in reducing aerodynamic sound. Correlation between aerodynamic sound and aerodynamic force fluctuation, and a surface pressure distribution of cylinders are measured to investigate a mechanism of aerodynamic sound reduction. As a result, the correlation between aerodynamic sound and aerodynamic force fluctuation exists in the flow around the bare cylinder and disappears in the flow around the cylinder with porous material. Moreover, the aerodynamic force fluctuation of the cylinder with porous material is less than that of the bare cylinder. The surface pressure distribution of the cylinder with porous material is quite different from that of the bare cylinder. These facts indicate that aerodynamic sound is reduced by suppressing the motion of vortices because aerodynamic sound is induced by the unstable motion of vortices. In addition, an instantaneous flow field in the wake of the cylinder is measured by application of the PIV technique. Vortices that are shed alternately from the bare cylinder disappear by application of porous material, and the region of zero velocity spreads widely behind the cylinder with porous material. Shear layers between the stationary region and the uniform flow become thin and stable. These results suggest that porous material mainly affects the flow field adjacent to bluff bodies and reduces aerodynamic sound by depriving momentum of the wake and suppressing the unsteady motion of vortices. (invited paper)
Forced Rolling Oscillation of a 65 deg-Delta Wing in Transonic Vortex-Breakdown Flow
Menzies, Margaret A.; Kandil, Osama A.; Kandil, Hamdy A.
1996-01-01
Unsteady, transonic, vortex dominated flow over a 65 deg. sharp-edged, cropped-delta wing of zero thickness undergoing forced rolling oscillations is investigated computationally. The wing angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock which induces vortex breakdown of the leading edge vortex cores. The computational investigation uses the time accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux difference splitting, finite-volume scheme. While the maximum roll amplitude is kept constant at 4.0 deg., both Reynolds number and roll frequency are varied covering three cases of forced sinusoidal rolling. First, the Reynolds number is held at 3.23 x 10(exp 6) and the wing is forced to oscillate in roll around the axis of geometric symmetry at a reduced frequency of 2(pi). Second, the Reynolds number is reduced to 0.5 x 10(exp 6) to observe the effects of added viscosity on the vortex breakdown. Third, with the Reynolds number held at 0.5 x 10(exp 6), the roll frequency is reduced to 1(pi) to complete the study.
Directory of Open Access Journals (Sweden)
KIM YANGKYUN
2010-12-01
Full Text Available This paper describes the computational analysis and visualization of flow around the model of a commercial airplane, Boeing 747-400. The geometry was realized through reverse engineering technique based on the photo scanning measurement. The steady three-dimensional viscous compressible governing equations were solved in the unstructured grid system. The basic conditions for computation were chosen as the same to those of Boeing 747-400’s cruising state. The high Reynolds turbulence models are tried. The angle of attack is varied to investigate the effect of the flight conditions to the aerodynamic performance. And flow and aerodynamic characteristics due to the existence of winglet were compared.
Badavi, F. F.
1989-01-01
Aerodynamic loads on a multi-bladed helicopter rotor in forward flight at transonic tip conditions are calculated. The unsteady, three-dimensional, time-accurate compressible Reynolds-averaged thin layer Navier-Stokes equations are solved in a rotating coordinate system on a body-conformed, curvilinear grid of C-H topology. Detailed boundary layer and global numerical comparisons of NACA-0012 symmetrical and CAST7-158 supercritical airfoils are made under identical forward flight conditions. The rotor wake effects are modeled by applying a correction to the geometric angle of attack of the blade. This correction is obtained by computing the local induced downwash velocity with a free wake analysis program. The calculations are performed on the Numerical Aerodynamic Simulation Cray 2 and the VPS32 (a derivative of a Cyber 205 at the Langley Research Center) for a model helicopter rotor in forward flight.
Asymmetric Uncertainty Expression for High Gradient Aerodynamics
Pinier, Jeremy T
2012-01-01
When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.
Mccain, W. E.
1982-01-01
The results of a comparative study using the unsteady aerodynamic lifting surface theory, known as the Doublet Lattice method, and experimental subsonic steady- and unsteady-pressure measurements, are presented for a high-aspect-ratio supercritical wing model. Comparisons of pressure distributions due to wing angle of attack and control-surface deflections were made. In general, good correlation existed between experimental and theoretical data over most of the wing planform. The more significant deviations found between experimental and theoretical data were in the vicinity of control surfaces for both static and oscillatory control-surface deflections.
Unsteady wall pressure field of a model A-pillar conical vortex
Energy Technology Data Exchange (ETDEWEB)
Hoarau, C. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France); Boree, J. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)], E-mail: jacques.boree@lea.ensma.fr; Laumonier, J.; Gervais, Y. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)
2008-06-15
The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct.
Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications
Wolff, T.; Ernst, B.; Seume, J. R.
2014-06-01
The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated.
Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications
International Nuclear Information System (INIS)
Wolff, T; Ernst, B; Seume, J R
2014-01-01
The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated
Freedman, M. I.; Sipcic, S.; Tseng, K.
1985-01-01
A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.
International Nuclear Information System (INIS)
Mateescu, D.
1985-01-01
A method of solution is developed in the present paper for studying the unsteady supersonic flow past a cruciform canard - conical body system, represented in the figure, which executes an oscillatory pitching motion of rotation. The generality of the analysis permits particular solutions such as the case of symmetrical cruciform canards (for l 1 =l 2 =l) used mainly in missile applications, and tail-body configurations (for l 2 =0 pr l 2 →∞ used in aeronautical applications, as well as more general solutions. Attached supersonic flow past the system, associated with small amplitude oscillations of reasonably low frequency with respect to a mean equilibrium position are assumed in this paper. As a result, the steady flow past the canard-body system at an attitude defined by the mean equilibrium position can be separated from the actual flow; general methods of solution for this steady flow have been established. The aim of the present analysis is to develop a method of solution for the unsteady motion resulting from the actual flow after the above separation, which incorporates the effects of the system oscillations. (author)
Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings
International Nuclear Information System (INIS)
Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L
2011-01-01
Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.
Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings
Energy Technology Data Exchange (ETDEWEB)
Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)
2011-03-15
Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.
Modeling the Aerodynamic Lift Produced by Oscillating Airfoils at Low Reynolds Number
Khalid, Muhammad Saif Ullah; Akhtar, Imran
2014-01-01
For present study, setting Strouhal Number (St) as control parameter, numerical simulations for flow past oscillating NACA-0012 airfoil at 1,000 Reynolds Numbers (Re) are performed. Temporal profiles of unsteady forces; lift and thrust, and their spectral analysis clearly indicate the solution to be a period-1 attractor for low Strouhal numbers. This study reveals that aerodynamic forces produced by plunging airfoil are independent of initial kinematic conditions of airfoil that proves the ex...
Theory and Low-Order Modeling of Unsteady Airfoil Flows
Ramesh, Kiran
Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It
Energy Technology Data Exchange (ETDEWEB)
Eulitz, F
2000-04-01
The present work is devoted to the development of a computational technique for the Reynolds-averaged, time-resolved simulation of the undsteady, viscous flow in turbomachinery. After identification of model criteria, a novel turbulence and transition model, based on the extension of a one-equation turbulence model, is derived in order to incorporate the Reynolds-averaged effects of boundary-layer transition in unsteady turbomachinery flow. Preserving low numerical dissipation and dispersion errors, the explicit time integration method is accelerated through a time-consistent two-grid approach to allow for an efficient use of parallel computers. The model development is carefully assessed by considering various test cases of steady and unsteady turbine flow with various transition modes or of transonic channel flow with self-excited shock-oscillation. The application of the computational technique is demonstrated for the case of a single-stage, transonic compressor component and of a three-stage low-pressure turbine at low Reynolds-number operation. (orig.) [German] In dieser Arbeit wird ein numerisches Verfahren zur zeitgenauen Simulation der instationaeren, reibungsbehafteten Stroemung in Turbomaschinen auf Grundlage der Reynolds-gemittelten Navier-Stokes-Gleichungen entwickelt. Nach Aufarbeitung der Modellierungsanforderungen wird basierend auf einem Eingleichungsturbulenzmodell ein neuartiges Turbulenz- und Transitionsmodell abgeleitet, mit dem verschiedene Transitionsmoden der instationaeren Turbomaschinenstroemung in ihrer Reynolds-gemittelten Wirkung beschrieben werden koennen. Durch einen zeitkonsistenten Zweigitter-Ansatz wird die Zeitintegration fuer Navier-Stokes-Simulationen auf Parallelrechnern unter Wahrung geringer numerischer Phasen- und Amplitudenfehler beschleunigt. Die Entwicklung wird an einer Reihe von Testfaellen, zur stationaeren und instationaeren Turbinenstroemung mit unterschiedlicher Grenzschichttransition oder zur transsonischen
International Nuclear Information System (INIS)
Gonzalez, Alvaro; Munduate, Xabier
2007-01-01
An implementation of the Beddoes-Leishman dynamic stall model has been developed at CENER, for modelling the unsteady aerodynamics on oscillating blade sections. The parameters of the model were adjusted for the S809 aerofoil, using an optimization based on genetic algorithms, and taking into account the values found in the literature and the physics of the aerodynamic process. Once the parameters were fixed to a unique set, oscillating cases of the 2D S809 aerofoil were computed, and compared with experimental data. Thus, the accuracy of the model was evaluated. On the other hand, oscillating cases of different span stations of the NREL phase VI parked blade were computed and compared with experimental data, to analyze the three-dimensionality of the dynamic stall on the blade sections. For the unsteady computations on the blade, the model was fed with the steady data of the blade section, to directly consider the geometry influence. In general, the results of the computations for the 2D aerofoil and 3D blade sections were very encouraging
Membrane wing aerodynamics for micro air vehicles
Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning
2003-10-01
The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.
Streuber, Gregg Mitchell
Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.
Simulating the dynamic behavior of a vertical axis wind turbine operating in unsteady conditions
Battisti, L.; Benini, E.; Brighenti, A.; Soraperra, G.; Raciti Castelli, M.
2016-09-01
The present work aims at assessing the reliability of a simulation tool capable of computing the unsteady rotational motion and the associated tower oscillations of a variable speed VAWT immersed in a coherent turbulent wind. As a matter of fact, since the dynamic behaviour of a variable speed turbine strongly depends on unsteady wind conditions (wind gusts), a steady state approach can't accurately catch transient correlated issues. The simulation platform proposed here is implemented using a lumped mass approach: the drive train is described by resorting to both the polar inertia and the angular position of rotating parts, also considering their speed and acceleration, while rotor aerodynamic is based on steady experimental curves. The ultimate objective of the presented numerical platform is the simulation of transient phenomena, driven by turbulence, occurring during rotor operation, with the aim of supporting the implementation of efficient and robust control algorithms.
A stochastic aerodynamic model for stationary blades in unsteady 3D wind fields
International Nuclear Information System (INIS)
Fluck, Manuel; Crawford, Curran
2016-01-01
Dynamic loads play an important roll in the design of wind turbines, but establishing the life-time aerodynamic loads (e.g. extreme and fatigue loads) is a computationally expensive task. Conventional (deterministic) methods to analyze long term loads, which rely on the repeated analysis of multiple different wind samples, are usually too expensive to be included in optimization routines. We present a new stochastic approach, which solves the aerodynamic system equations (Lagrangian vortex model) in the stochastic space, and thus arrive directly at a stochastic description of the coupled loads along a turbine blade. This new approach removes the requirement of analyzing multiple different realizations. Instead, long term loads can be extracted from a single stochastic solution, a procedure that is obviously significantly faster. Despite the reduced analysis time, results obtained from the stochastic approach match deterministic result well for a simple test-case (a stationary blade). In future work, the stochastic method will be extended to rotating blades, thus opening up new avenues to include long term loads into turbine optimization. (paper)
Simulation of Casing Treatments of a Transonic Compressor Stage
Directory of Open Access Journals (Sweden)
M. Hembera
2008-01-01
Full Text Available This article presents the study of casing treatments on an axial compressor stage for improving stability and enhancing stall margin. So far, many simulations of casing treatments on single rotor or rotor-stator configurations were performed. But as the application of casing treatments in engines will be in a multistage compressor, in this study, the axial slots are applied to a typical transonic first stage of a high-pressure 4.5-stage compressor including an upstream IGV, rotor, and stator. The unsteady simulations are performed with a three-dimensional time accurate Favre-averaged Navier-stokes flow solver. In order to resolve all important flow mechanisms appearing through the use of casing treatments, a computational multiblock grid consisting of approximately 2.4 million nodes was used for the simulations. The configurations include axial slots in 4 different variations with an axial extension ranging into the blade passage of the IGV. Their shape is semicircular with no inclination in circumferential direction. The simulations proved the effectiveness of casing treatments with an upstream stator. However, the results also showed that the slots have to be carefully positioned relative to the stator location.
Directory of Open Access Journals (Sweden)
Tao Jun
2016-10-01
Full Text Available With the progress of high-bypass turbofan and the innovation of silencing nacelle in engine noise reduction, airframe noise has now become another important sound source besides the engine noise. Thus, reducing airframe noise makes a great contribution to the overall noise reduction of a civil aircraft. However, reducing airframe noise often leads to aerodynamic performance loss in the meantime. In this case, an approach based on artificial neural network is introduced. An established database serves as a basis and the training sample of a back propagation (BP artificial neural network, which uses confidence coefficient reasoning method for optimization later on. Then the most satisfactory configuration is selected for validating computations through the trained BP network. On the basis of the artificial neural network approach, an optimization process of slat cove filler (SCF for high lift devices (HLD on the Trap Wing is presented. Aerodynamic performance of both the baseline and optimized configurations is investigated through unsteady detached eddy simulations (DES, and a hybrid method, which combines unsteady DES method with acoustic analogy theory, is employed to validate the noise reduction effect. The numerical results indicate not merely a significant airframe noise reduction effect but also excellent aerodynamic performance retention simultaneously.
Energy Technology Data Exchange (ETDEWEB)
Skrzypinski, W.
2012-02-15
Wind turbine blade vibrations at standstill conditions were investigated in the present work. These included vortex-induced and stall-induced vibrations. Thus, it was investigated whether the stand still vibrations are vortex-induced, stall-induced or a combination of both types. The work comprised analyzes based on engineering models and Computational Fluid Dynamics. Two-dimensional, three-degree-of-freedom, elastically-mounted-airfoil engineering models were created. These models aimed at investigating the effect of temporal lag in the aerodynamic response of an airfoil on the aeroelastic stability limits. The motivation for it was that the standard aerodynamics existing in state-of-the-art aeroelastic codes is effectively quasi-steady in deep stall. If such an assumption was incorrect, these codes could predict stall-induced vibrations inaccurately. The main conclusion drawn from these analyses was that even a relatively low amount of temporal lag in the aerodynamic response may significantly increase the aerodynamic damping and therefore influence the aeroelastic stability limits, relative to quasisteady aerodynamic response. Two- and three-dimensional CFD computations included non-moving, prescribed-motion and elastically mounted airfoil suspensions. 2D and 3D prescribed-motion CFD computations performed on a DU96-W-180 airfoil predicted vortex-induced vibrations at 90 degrees angle of attack at the frequency close to the stationary vortex shedding frequency predicted by 2D CFD computations. Significant discrepancies were observed between 2D and 3D computations around 25 degrees angle of attack. 3D computations predicted occurrence of vortex-induced vibrations while the wind speed necessary for the occurrence of stall-induced vibrations was predicted too high to occur in normal conditions. Analysis of the dynamic lift and drag resulting from 2D and 3D CFD computations carried out around 25 degrees angle of attack showed loops with the slopes of opposite signs
Application of FLEET Velocimetry in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel
Burns, Ross A.; Danehy, Paul M.; Halls, Benjamin R.; Jiang, Naibo
2015-01-01
Femtosecond laser electronic excitation and tagging (FLEET) velocimetry is demonstrated in a large-scale transonic cryogenic wind tunnel. Test conditions include total pressures, total temperatures, and Mach numbers ranging from 15 to 58 psia, 200 to 295 K, and 0.2 to 0.75, respectively. Freestream velocity measurements exhibit accuracies within 1 percent and precisions better than 1 m/s. The measured velocities adhere closely to isentropic flow theory over the domain of temperatures and pressures that were tested. Additional velocity measurements are made within the tunnel boundary layer; virtual trajectories traced out by the FLEET signal are indicative of the characteristic turbulent behavior in this region of the flow, where the unsteadiness increases demonstrably as the wall is approached. Mean velocities taken within the boundary layer are in agreement with theoretical velocity profiles, though the fluctuating velocities exhibit a greater deviation from theoretical predictions.
Jump conditions in transonic equilibria
International Nuclear Information System (INIS)
Guazzotto, L.; Betti, R.; Jardin, S. C.
2013-01-01
In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that “standard” (low-β, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-β, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large β, while they agree with the results obtained with the old implementation of FLOW in lower-β equilibria.
Aerodynamic performance analysis of an airborne wind turbine system with NREL Phase IV rotor
International Nuclear Information System (INIS)
Saeed, Muhammad; Kim, Man-Hoe
2017-01-01
Highlights: • Aerodynamic predictions for a buoyant airborne system at an altitude of 400 m. • Aerodynamic characteristics of NREL Phase IV rotor operating in a shell casing. • Buoyant shell aerodynamics under varying wind conditions. - Abstract: Wind energy becomes more powerful and consistent with an increase in altitude, therefore, harvesting the wind energy at high altitude results in a naturally restocked source of energy which is cheaper and far more efficient than the conventional wind power system. Airborne wind turbine (AWT), one of the many techniques being employed for this purpose, stands out due to its uninterrupted scheme of energy production. This paper presents the aerodynamic performance of AWT system with NREL Phase IV rotor at an altitude of 400 m. Unsteady simulation of the airborne system has been carried out and variations in the rotor’s torque for a complete revolution are reported and discussed. In order to compare the performance of the shell mounted configuration of Phase IV rotor with its standard test configuration, steady state simulations of the rotor are also conducted under various wind conditions for both configurations. Finally, for stable design of the buoyant airborne system, aerodynamic forces on the shell body are computed and reported.
Erickson, Gary E.
1991-01-01
The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.
Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel
Nguyen, Nhan; Ardema, Mark
2006-01-01
This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch
L Khadir; H Mrad
2016-01-01
The use of several developmental approaches is the researchers’ major preoccupation with the DARRIEUS wind turbine. This paper presents the first approach and results of a wide computational investigation on the aerodynamics of a vertical axis DARRIEUS wind turbine based on the MAGNUS effect. Consequently, wind tunnel tests were carried out to ascertain overall performance of the turbine and two-dimensional unsteady computational fluid dynamics (CFD) models were generated to help understand t...
Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.
2015-01-01
A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.
Kandil, Osama A.; Menzies, Margaret A.
1996-01-01
Unsteady, transonic vortex dominated flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The wing mean angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock and vortex breakdown of the leading edge vortex cores. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex breakdown flow by varying oscillation frequency and phase angle while the maximum pitch and roll amplitude is kept constant at 4.0 deg. Four cases demonstrate the following: simultaneous motion at a frequency of 1(pi), motion with a 90 deg. phase lead in pitch, motion with a rolling frequency of twice the pitching frequency, and simultaneous motion at a frequency of 2(pi). Comparisons with single mode motion at these frequencies complete this study and illustrate the effects of coupling the oscillations.
International Nuclear Information System (INIS)
Antonini, C; Persico, G; Rowe, A L
2008-01-01
Among the measurement and control systems of gas turbine engines, a recent new issue is the possibility of performing unsteady pressure measurements to detect flow anomalies in an engine or to evaluate loads on aerodynamic surfaces. A possible answer to this demand could be extending the use of well known and widely used transmission line systems, which have been applied so far to steady monitoring, to unsteady measurements thanks to proper dynamic modeling and compensation. Despite the huge number of models existing in the literature, a novel method has been developed, which is at the same time easy-to-handle, flexible and capable of reproducing the actual physics of the problem. Furthermore, the new model is able to deal with arbitrary complex networks of lines and cavities, and thus its applicability is not limited to series-connected systems. The main objectives of this paper are to show the derivation of the model, its validation against experimental tests and example of its applicability
Unsteady 2D potential-flow forces on a thin variable geometry airfoil undergoing arbitrary motion
DEFF Research Database (Denmark)
Gaunaa, M.
2006-01-01
In this report analytical expressions for the unsteady 2D force distribution on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by itscamberline as in classic thin-airfoil theory...... using an indicial function approach, making the practical calculation of the aerodynamic response numerically very efficient by use ofDuhamel superposition. Furthermore, the indicial function expressions for the time-lag terms are formulated in their equivalent state-space form, allowing for use...
Richard, M.; Harrison, B. A.
1979-01-01
The program input presented consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic file (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.
RAXBOD- INVISCID TRANSONIC FLOW OVER AXISYMMETRIC BODIES
Keller, J. D.
1994-01-01
The problem of axisymmetric transonic flow is of interest not only because of the practical application to missile and launch vehicle aerodynamics, but also because of its relation to fully three-dimensional flow in terms of the area rule. The RAXBOD computer program was developed for the analysis of steady, inviscid, irrotational, transonic flow over axisymmetric bodies in free air. RAXBOD uses a finite-difference relaxation method to numerically solve the exact formulation of the disturbance velocity potential with exact surface boundary conditions. Agreement with available experimental results has been good in cases where viscous effects and wind-tunnel wall interference are not important. The governing second-order partial differential equation describing the flow potential is replaced by a system of finite difference equations, including Jameson's "rotated" difference scheme at supersonic points. A stretching is applied to both the normal and tangential coordinates such that the infinite physical space is mapped onto a finite computational space. The boundary condition at infinity can be applied directly and there is no need for an asymptotic far-field solution. The system of finite difference equations is solved by a column relaxation method. In order to obtain both rapid convergence and any desired resolution, the relaxation is performed iteratively on successively refined grids. Input to RAXBOD consists of a description of the body geometry, the free stream conditions, and the desired resolution control parameters. Output from RAXBOD includes computed geometric parameters in the normal and tangential directions, iteration history information, drag coefficients, flow field data in the computational plane, and coordinates of the sonic line. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6600 computer with an overlayed central memory requirement of approximately 40K (octal) of 60 bit words. Optional plotted output
Balakrishna, S.; Kilgore, W. Allen
1995-01-01
The NASA Langley 0.3-m Transonic Cryogenic Tunnel was modified in 1994, to operate with any one of the three test gas media viz., air, cryogenic nitrogen gas, or sulfur hexafluoride gas. This document provides the initial test results with respect to the tunnel performance and tunnel control, as a part of the commissioning activities on the microcomputer based controller. The tunnel can provide precise and stable control of temperature to less than or equal to +/- 0.3 K in the range 80-320 K in cyro mode or 300-320 K in air/SF6 mode, pressure to +/- 0.01 psia in the range 15-88 psia and Mach number to +/- O.0015 in the range 0.150 to transonic Mach numbers up to 1.000. A new heat exchanger has been included in the tunnel circuit and is performing adequately. The tunnel airfoil testing benefits considerably by precise control of tunnel states and helps in generating high quality aerodynamic test data from the 0.3-m TCT.
Numerical studies of static aeroelastic effects on grid fin aerodynamic performances
Directory of Open Access Journals (Sweden)
Chengde HUANG
2017-08-01
Full Text Available The grid fin is an unconventional control surface used on missiles and rockets. Although aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects. In this paper, the static aeroelastic simulations are performed by the coupled viscous computational fluid dynamics with structural flexibility method in transonic and supersonic regimes. The developed coupling strategy including fluid–structure interpolation and volume mesh motion schemes is based on radial basis functions. Results are presented for a vertical and a horizontal grid fin mounted on a body. Horizontal fin results show that the deformed fin is swept backward and the axial force is increased. The deformations also induce the movement of center of pressure, causing the reduction and reversal in hinge moment for the transonic flow and the supersonic flow, respectively. For the vertical fin, the local effective incidences are increased due to the deformations so that the deformed normal force is greater than the original one. At high angles of attack, both the deformed and original normal forces experience a sudden reduction due to the interference of leeward separated vortices on the fin. Additionally, the increment in axial force is shown to correlate strongly with the increment in the square of normal force.
Wiley, Harleth G; Taylor, Robert T
1954-01-01
This paper present results of an investigation of the lateral-control and hinge-moment characteristics of a 0.67 semispan flap-type spoiler aileron on a semispan thin 60 degree delta wing at transonic speeds by the reflection-plane technique. The spoiler-aileron had a constant chord of 10.29 percent mean aerodynamic chord and was hinged at the 81.9-percent-wing-root-chord station. Tests were made with the spoiler aileron slot open, partially closed, and closed. Incremental rolling-moment coefficients were obtained through a Mach number range of 0.62 to 1.08. Results indicated reasonably linear variations of rolling-moment and hinge-moment coefficients with spoiler projection except at spoiler projections of less than -2 percent mean aerodynamic chord and angles of attack greater than 12 degrees with results generally independent of slot geometry.
Computation of Aerodynamic Noise Radiated from Ducted Tail Rotor Using Boundary Element Method
Directory of Open Access Journals (Sweden)
Yunpeng Ma
2017-01-01
Full Text Available A detailed aerodynamic performance of a ducted tail rotor in hover has been numerically studied using CFD technique. The general governing equations of turbulent flow around ducted tail rotor are given and directly solved by using finite volume discretization and Runge-Kutta time integration. The calculations of the lift characteristics of the ducted tail rotor can be obtained. In order to predict the aerodynamic noise, a hybrid method combining computational aeroacoustic with boundary element method (BEM has been proposed. The computational steps include the following: firstly, the unsteady flow around rotor is calculated using the CFD method to get the noise source information; secondly, the radiate sound pressure is calculated using the acoustic analogy Curle equation in the frequency domain; lastly, the scattering effect of the duct wall on the propagation of the sound wave is presented using an acoustic thin-body BEM. The aerodynamic results and the calculated sound pressure levels are compared with the known technique for validation. The sound pressure directivity and scattering effect are shown to demonstrate the validity and applicability of the method.
Fold points and singularity induced bifurcation in inviscid transonic flow
International Nuclear Information System (INIS)
Marszalek, Wieslaw
2012-01-01
Transonic inviscid flow equation of elliptic–hyperbolic type when written in terms of the velocity components and similarity variable results in a second order nonlinear ODE having several features typical of differential–algebraic equations rather than ODEs. These features include the fold singularities (e.g. folded nodes and saddles, forward and backward impasse points), singularity induced bifurcation behavior and singularity crossing phenomenon. We investigate the above properties and conclude that the quasilinear DAEs of transonic flow have interesting properties that do not occur in other known quasilinear DAEs, for example, in MHD. Several numerical examples are included. -- Highlights: ► A novel analysis of inviscid transonic flow and its similarity solutions. ► Singularity induced bifurcation, singular points of transonic flow. ► Projection method, index of transonic flow DAEs, linearization via matrix pencil.
Overview of Current Turbine Aerodynamic Analysis and Testing at MSFC
Griffin, Lisa W.; Hudson, Susan T.; Zoladz, Thomas F.
1999-01-01
An overview of the current turbine aerodynamic analysis and testing activities at NASA/Marshall Space Flight Center (MSFC) is presented. The presentation is divided into three areas. The first area is the three-dimensional (3D), unsteady Computational Fluid Dynamics (CFD) analysis of the Fastrac turbine. Results from a coupled nozzle, blade, and exit guide vane analysis and from an uncoupled nozzle and coupled blade and exit guide vane will be presented. Unsteady pressure distributions, frequencies, and exit profiles from each analysis will be compared and contrasted. The second area is the testing and analysis of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine with instrumented first stage blades. The SSME HPFTP turbine was tested in air at the MSFC Turbine Test Equipment (TTE). Pressure transducers were mounted on the first stage blades. Unsteady, 3D CFD analysis was performed for this geometry and flow conditions. A sampling of the results will be shown. The third area is a status of the Turbine Performance Optimization task. The objective of this task is to improve the efficiency of a turbine for potential use on a next generation launch vehicle. This task includes global optimization for the preliminary design, detailed optimization for blade shapes and spacing, and application of advanced CFD analysis. The final design will be tested in the MSFC TTE.
Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data
Klein, Vladislav; Murphy, Patrick C.
1998-01-01
A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.
Aerodynamic shape optimization using preconditioned conjugate gradient methods
Burgreen, Greg W.; Baysal, Oktay
1993-01-01
In an effort to further improve upon the latest advancements made in aerodynamic shape optimization procedures, a systematic study is performed to examine several current solution methodologies as applied to various aspects of the optimization procedure. It is demonstrated that preconditioned conjugate gradient-like methodologies dramatically decrease the computational efforts required for such procedures. The design problem investigated is the shape optimization of the upper and lower surfaces of an initially symmetric (NACA-012) airfoil in inviscid transonic flow and at zero degree angle-of-attack. The complete surface shape is represented using a Bezier-Bernstein polynomial. The present optimization method then automatically obtains supercritical airfoil shapes over a variety of freestream Mach numbers. Furthermore, the best optimization strategy examined resulted in a factor of 8 decrease in computational time as well as a factor of 4 decrease in memory over the most efficient strategies in current use.
Arash Mahboubidoust; Abas Ramiar; Morteza Dardel
2017-01-01
In this work, numerical study of two dimensional laminar incompressible flow around an oscillating NACA0012 airfoil is proceeded using the open source code OpenFOAM. Oscillatory motion types including pitching and flapping are considered. Reynolds number for these motions is assumed to be 12000 and effects of these motions and also different unsteady parameters such as amplitude and reduced frequency on aerodynamic coefficients are studied. For flow control on airfoil, dielectric barrier disc...
Aerodynamic Impact of an Aft-Facing Slat-Step on High Re Airfoils
Kibble, Geoffrey; Petrin, Chris; Jacob, Jamey; Elbing, Brian; Ireland, Peter; Black, Buddy
2016-11-01
Typically, the initial aerodynamic design and subsequent testing and simulation of an aircraft wing assumes an ideal wing surface without imperfections. In reality, however the surface of an in-service aircraft wing rarely matches the surface characteristics of the test wings used during the conceptual design phase and certification process. This disconnect is usually deemed negligible or overlooked entirely. Specifically, many aircraft incorporate a leading edge slat; however, the mating between the slat and the top surface of the wing is not perfectly flush and creates a small aft-facing step behind the slat. In some cases, the slat can create a step as large as one millimeter tall, which is entirely submerged within the boundary layer. This abrupt change in geometry creates a span-wise vortex behind the step and in transonic flow causes a shock to form near the leading edge. This study investigates both experimentally and computationally the implications of an aft-facing slat-step on an aircraft wing and is compared to the ideal wing surface for subsonic and transonic flow conditions. The results of this study are useful for design of flow control modifications for aircraft currently in service and important for improving the next generation of aircraft wings.
High-Fidelity Aerodynamic Shape Optimization for Natural Laminar Flow
Rashad, Ramy
To ensure the long-term sustainability of aviation, serious effort is underway to mitigate the escalating economic, environmental, and social concerns of the industry. Significant improvement to the energy efficiency of air transportation is required through the research and development of advanced and unconventional airframe and engine technologies. In the quest to reduce airframe drag, this thesis is concerned with the development and demonstration of an effective design tool for improving the aerodynamic efficiency of subsonic and transonic airfoils. The objective is to advance the state-of-the-art in high-fidelity aerodynamic shape optimization by incorporating and exploiting the phenomenon of laminar-turbulent transition in an efficient manner. A framework for the design and optimization of Natural Laminar Flow (NLF) airfoils is developed and demonstrated with transition prediction capable of accounting for the effects of Reynolds number, freestream turbulence intensity, Mach number, and pressure gradients. First, a two-dimensional Reynolds-averaged Navier-Stokes (RANS) flow solver has been extended to incorporate an iterative laminar-turbulent transition prediction methodology. The natural transition locations due to Tollmien-Schlichting instabilities are predicted using the simplified eN envelope method of Drela and Giles or, alternatively, the compressible form of the Arnal-Habiballah-Delcourt criterion. The boundary-layer properties are obtained directly from the Navier-Stokes flow solution, and the transition to turbulent flow is modeled using an intermittency function in conjunction with the Spalart-Allmaras turbulence model. The RANS solver is subsequently employed in a gradient-based sequential quadratic programming shape optimization framework. The laminar-turbulent transition criteria are tightly coupled into the objective and gradient evaluations. The gradients are obtained using a new augmented discrete-adjoint formulation for non-local transition
Paryz, Roman W.
2014-01-01
Several upgrade projects have been completed at the NASA Langley Research Center National Transonic Facility over the last 1.5 years in an effort defined as STARBUKS - Subsonic Transonic Applied Refinements By Using Key Strategies. This multi-year effort was undertaken to improve NTF's overall capabilities by addressing Accuracy and Validation, Productivity, and Reliability areas at the NTF. This presentation will give a brief synopsis of each of these efforts.
Mueller, T. J. (Editor)
1985-01-01
Topics of interest in the design, flow modeling and visualization, and turbulence and flow separation effects for low Reynolds number (Re) airfoils are discussed. Design methods are presented for Re from 50,000-500,000, including a viscous-inviscid coupling method and by using a constrained pitching moment. The effects of pressure gradients, unsteady viscous aerodynamics and separation bubbles are investigated, with particular note made of factors which most influence the size and location of separation bubbles and control their effects. Attention is also given to experimentation with low Re airfoils and to numerical models of symmetry breaking and lift hysteresis from separation. Both steady and unsteady flow experiments are reviewed, with the trials having been held in wind tunnels and the free atmosphere. The topics discussed are of interest to designers of RPVs, high altitude aircraft, sailplanes, ultralights and wind turbines.
Numerical Investigation of Aerodynamic Performance and Loads of a Novel Dual Rotor Wind Turbine
Directory of Open Access Journals (Sweden)
Behnam Moghadassian
2016-07-01
Full Text Available The objective of this paper is to numerically investigate the effects of the atmospheric boundary layer on the aerodynamic performance and loads of a novel dual-rotor wind turbine (DRWT. Large eddy simulations are carried out with the turbines operating in the atmospheric boundary layer (ABL and in a uniform inflow. Two stability conditions corresponding to neutral and slightly stable atmospheres are investigated. The turbines are modeled using the actuator line method where the rotor blades are modeled as body forces. Comparisons are drawn between the DRWT and a comparable conventional single-rotor wind turbine (SRWT to assess changes in aerodynamic efficiency and loads, as well as wake mixing and momentum and kinetic energy entrainment into the turbine wake layer. The results show that the DRWT improves isolated turbine aerodynamic performance by about 5%–6%. The DRWT also enhances turbulent axial momentum entrainment by about 3.3 %. The highest entrainment is observed in the neutral stability case when the turbulence in the ABL is moderately high. Aerodynamic loads for the DRWT, measured as out-of-plane blade root bending moment, are marginally reduced. Spectral analyses of ABL cases show peaks in unsteady loads at the rotor passing frequency and its harmonics for both rotors of the DRWT.
Unsteady airfoil flows with application to aeroelastic stability
Energy Technology Data Exchange (ETDEWEB)
Johansen, Jeppe
1999-09-01
The present report describes numerical investigation of two-dimensional unsteady airfoil flows with application to aeroelastic stability. The report is divided in two parts. Part A describes the purely aerodynamic part, while Part B includes the aeroelastic part. In Part A a transition prediction algorithm based on a simplified version of the e{sup n} method is proposed. Laminar Boundary Layer instability data are stored in a database from which stability characteristics can be extracted by interpolation. Input to the database are laminar integral boundary layer parameters. These are computed from an integral boundary layer formulation coupled to a Navier-Stokes flow solver. Five different airfoils are considered at fixed angle of attack, and the flow is computed assuming both fully turbulent and transitional flow and compared with experimental data. Results indicate that using a transition model the drag prediction is improved considerably. Also the lift is slightly improved. At high angles of attack transition will affect leading edge separation which again will affect the overall vortex shedding. If the transition point is not properly predicted this will affect the whole hysteresis curve. The transition model developed in the present work showed more stable predictions compared to the empirical transition model. In Part B a simple three degrees-of-freedom (DOF) structural dynamics model is developed and coupled to the aerodynamics models from Part A. A 2nd order accurate time integration scheme is used to solve the equations of motion. Two airfoils are investigated. The aeroelastic models predict stable conditions well at low angle of attack. But at high angles of attack, and where unstable behaviour is expected, only the Navier-Stokes solver predict correct aeroelastic response. The semi-empirical dynamic stall model does not predict vortex shedding and moment correctly leading to an erroneous aerodynamic damping. (au) 5 tabs.; 55 ills., 52 refs.
Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics
Farassat, F.
1994-01-01
Generalized functions have many applications in science and engineering. One useful aspect is that discontinuous functions can be handled as easily as continuous or differentiable functions and provide a powerful tool in formulating and solving many problems of aerodynamics and acoustics. Furthermore, generalized function theory elucidates and unifies many ad hoc mathematical approaches used by engineers and scientists. We define generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support, then introduce the concept of generalized differentiation. Generalized differentiation is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some results of classical analysis, are derived with the generalized function theory. Other applications of the generalized function theory in aerodynamics discussed here are the derivations of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of the finite part of divergent integrals, the derivation of the Oswatitsch integral equation of transonic flow, and the analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics include the derivation of the Kirchhoff formula for moving surfaces, the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.
Transonic Dynamics Tunnel (TDT)
Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...
Intermittent Flow Regimes in a Transonic Fan Airfoil Cascade
Directory of Open Access Journals (Sweden)
J. Lepicovsky
2004-01-01
velocity.To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the by-product of an endwall restricted linear cascade.
International Nuclear Information System (INIS)
Witteveen, Jeroen A.S.; Bijl, Hester
2009-01-01
The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.
Modeling unsteady forces and pressures on a rapidly pitching airfoil
Schiavone, Nicole K.; Dawson, Scott T. M.; Rowley, Clarence W.; Williams, David R.
2014-11-01
This work develops models to quantify and understand the unsteady aerodynamic forces arising from rapid pitching motion of a NACA0012 airfoil at a Reynolds number of 50 000. The system identification procedure applies a generalized DMD-type algorithm to time-resolved wind tunnel measurements of the lift and drag forces, as well as the pressure at six locations on the suction surface of the airfoil. Models are identified for 5-degree pitch-up and pitch-down maneuvers within the overall range of 0-20 degrees. The identified models can accurately capture the effects of flow separation and leading-edge vortex formation and convection. We demonstrate that switching between different linear models can give accurate prediction of the nonlinear behavior that is present in high-amplitude maneuvers. The models are accurate for a wide-range of motions, including pitch-and-hold, sinusoidal, and pseudo-random pitching maneuvers. Providing the models access to a subset of the measured data channels can allow for improved estimates of the remaining states via the use of a Kalman filter, suggesting that the modeling framework could be useful for aerodynamic control applications. This work was supported by the Air Force Office of Scientific Research, under Award No. FA9550-12-1-0075.
Directory of Open Access Journals (Sweden)
Pierre Tchakoua
2016-10-01
Full Text Available The complex and unsteady aerodynamics of vertical axis wind turbines (VAWTs pose significant challenges for simulation tools. Recently, significant research efforts have focused on the development of new methods for analysing and optimising the aerodynamic performance of VAWTs. This paper presents an electric circuit model for Darrieus-type vertical axis wind turbine (DT-VAWT rotors. The novel Tchakoua model is based on the mechanical description given by the Paraschivoiu double-multiple streamtube model using a mechanical‑electrical analogy. Model simulations were conducted using MATLAB for a three-bladed rotor architecture, characterized by a NACA0012 profile, an average Reynolds number of 40,000 for the blade and a tip speed ratio of 5. The results obtained show strong agreement with findings from both aerodynamic and computational fluid dynamics (CFD models in the literature.
2014-12-31
frequency A/C motor. The drive chain is configured such that a belt rotates an eccentric disk and a momentum fly wheel to minimize the unsteady...b) thrust bearing for pitch oscillation. Connection Bar Movement Lever Arm Fly Wheel Eccentric Disk V-Belt 5-hp A/C Motor Flow Pulley diameter... eccentric disk and drive mechanism, and (b) thrust bearing for pitch oscillation
Extension of analytical indicial aerodynamics to generic trapezoidal wings in subsonic flow
Directory of Open Access Journals (Sweden)
Andrea DA RONCH
2018-04-01
Full Text Available Analytical indicial aerodynamic functions are calculated for several trapezoidal wings in subsonic flow, with a Mach number 0.3 ≤ Ma ≤ 0.7. The formulation herein proposed extends well-known aerodynamic theories, which are limited to thin aerofoils in incompressible flow, to generic trapezoidal wing planforms. Firstly, a thorough study is executed to assess the accuracy and limitation of analytical predictions, using unsteady results from two state-of-the-art computational fluid dynamics solvers as cross-validated benchmarks. Indicial functions are calculated for a step change in the angle of attack and for a sharp-edge gust, each for four wing configurations and three Mach numbers. Then, analytical and computational indicial responses are used to predict dynamic derivatives and the maximum lift coefficient following an encounter with a one-minus-cosine gust. It is found that the analytical results are in excellent agreement with the computational results for all test cases. In particular, the deviation of the analytical results from the computational results is within the scatter or uncertainty in the data arising from using two computational fluid dynamics solvers. This indicates the usefulness of the developed analytical theories. Keywords: Analytical approach, CFD, Compressible flow, Gust response, Indicial aerodynamics, Trapezoidal wing
International Nuclear Information System (INIS)
Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol
2013-01-01
The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff
Ball, J. W.; Edwards, C. R.
1976-01-01
Tests were conducted in the NASA/LaRC 8 foot transonic wind tunnel from March 26 through 31, 1976. The model was a 0.015 scale SSV Orbiter with forebody modifications to simulate slight reductions in the reusable surface insulation (RSI) thickness. Six component aerodynamic force and moment data were obtained at Mach numbers from 0.35 to 1.20 over an angle of attack range from -2 deg to 20 deg at sideslip angles of 0 deg and 5 deg.
Directory of Open Access Journals (Sweden)
YOUNES EL KHCHINE
2017-11-01
Full Text Available The design of rotor blades has a great effect on the aerodynamics performances of horizontal axis wind turbine and its efficiency. This work presents the effects of mesh refinement and boundary layer on aerodynamic performances of wind turbine S809 rotor. Furthermore, the simulation of fluid flow is taken for S809 airfoil wind turbine blade using ANSYS/FLUENT software. The problem is solved by the conservation of mass and momentum equations for unsteady and incompressible flow using advanced SST k-ω turbulence model, in order to predict the effects of mesh refinement and boundary layer on aerodynamics performances. Lift and drag coefficients are the most important parameters in studying the wind turbine performance, these coefficients are calculated for four meshes refinement and different angles of attacks with Reynolds number is 106. The study is applied to S809 airfoil which has 21% thickness, specially designed by NREL for horizontal axis wind turbines.
Erickson, Gary E.
2013-01-01
A wind tunnel experiment was conducted in the NASA Langley 8-Foot Transonic Pressure Tunnel to determine the effects of passive porosity on vortex flow interactions about a slender wing configuration at subsonic and transonic speeds. Flow-through porosity was applied in several arrangements to a leading-edge extension, or LEX, mounted to a 65-degree cropped delta wing as a longitudinal instability mitigation technique. Test data were obtained with LEX on and off in the presence of a centerline vertical tail and twin, wing-mounted vertical fins to quantify the sensitivity of the aerodynamics to tail placement and orientation. A close-coupled canard was tested as an alternative to the LEX as a passive flow control device. Wing upper surface static pressure distributions and six-component forces and moments were obtained at Mach numbers of 0.50, 0.85, and 1.20, unit Reynolds number of 2.5 million, angles of attack up to approximately 30 degrees, and angles of sideslip to +/-8 degrees. The off-surface flow field was visualized in cross planes on selected configurations using a laser vapor screen flow visualization technique. Tunnel-to-tunnel data comparisons and a Reynolds number sensitivity assessment were also performed. 15.
A comparison of two closely-related approaches to aerodynamic design optimization
Shubin, G. R.; Frank, P. D.
1991-01-01
Two related methods for aerodynamic design optimization are compared. The methods, called the implicit gradient approach and the variational (or optimal control) approach, both attempt to obtain gradients necessary for numerical optimization at a cost significantly less than that of the usual black-box approach that employs finite difference gradients. While the two methods are seemingly quite different, they are shown to differ (essentially) in that the order of discretizing the continuous problem, and of applying calculus, is interchanged. Under certain circumstances, the two methods turn out to be identical. We explore the relationship between these methods by applying them to a model problem for duct flow that has many features in common with transonic flow over an airfoil. We find that the gradients computed by the variational method can sometimes be sufficiently inaccurate to cause the optimization to fail.
Aerodynamic loading on a cylinder behind an airfoil
Energy Technology Data Exchange (ETDEWEB)
Zhang, H.J.; Huang, L.; Zhou, Y. [Hong Kong Polytechnic University, Department of Mechanical Engineering, Kowloon (Hong Kong)
2005-05-01
The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Re{sub d}=2,100-20,000, and the airfoil chord-length-based Reynolds numbers of Re{sub c}=14,700-140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as Tincreases. For Re{sub c}<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Re{sub c}>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding. (orig.)
Hu, Hui; Ning, Zhe
2016-11-01
Due to the auto-rotating trait of maple seeds during falling down process, flow characteristics of rotating maple seeds have been studied by many researchers in recent years. In the present study, an experimental investigation was performed to explore maple-seed-inspired UAV propellers for improved aerodynamic and aeroacoustic performances. Inspired by the auto-rotating trait of maple seeds, the shape of a maple seed is leveraged for the planform design of UAV propellers. The aerodynamic and aeroacoustic performances of the maple-seed-inspired propellers are examined in great details, in comparison with a commercially available UAV propeller purchased on the market (i.e., a baseline propeller). During the experiments, in addition to measuring the aerodynamic forces generated by the maple-seed-inspired propellers and the baseline propeller, a high-resolution Particle Image Velocimetry (PIV) system was used to quantify the unsteady flow structures in the wakes of the propellers. The aeroacoustic characteristics of the propellers are also evaluated by leveraging an anechoic chamber available at the Aerospace Engineering Department of Iowa State University. The research work is supported by National Science Foundation under Award Numbers of OSIE-1064235.
Aerodynamics, sensing and control of insect-scale flapping-wing flight
Shyy, Wei; Kang, Chang-kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao
2016-01-01
There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted. PMID:27118897
Panel method for the wake effects on the aerodynamics of vertical-axis wind turbines
Goyal, Udit; Rempfer, Dietmar
2011-11-01
A formulation based on the panel method is implemented for studying the unsteady aerodynamics of straight-bladed vertical-axis wind turbines. A combination of source and vortex distributions is used to represent an airfoil in Darrieus type motion. Our approach represents a low-cost computational technique that takes into account the dynamic changes in angle of attack of the blade during a cycle. A time-stepping mechanism is introduced for the wake convection, and its effects on the aerodynamic forces on the blade are discussed. The focus of the study is to describe the effect of the trailing wakes on the upstream flow conditions and coefficient of performance of the turbines. Results show a decrease in Cp until the wake structure develops and assumes a quasi-steady behavior. A comparison with other models such as single and multiple streamtubes is discussed, and optimization of the blade pitch angle is performed to increase the instantaneous torque and hence the power output from the turbine.
Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.
Directory of Open Access Journals (Sweden)
Dmitry Kolomenskiy
Full Text Available Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering.
Leading-Edge Flow Sensing for Aerodynamic Parameter Estimation
Saini, Aditya
ow over a at plate at different freestream velocities in the NCSU subsonic wind tunnel. Experiments were also conducted to characterize the directional sensitivity of the microstructures by creating ow reversal at the sensor location to assess the sensor response. The results show that the direction of microfence deflection correctly reflects the local ow behavior as the ow direction is reversed at the sensor location and the magnitude of deflection correlates qualitatively to an increase in the freestream velocity. The knowledge of the ow-separation location integrated with the LEFS algorithm allows the possibility of extending the LEFS analysis to post-stall flight regimes, which is explored in the current work. Finally, the application of the LEFS algorithm to unsteady aerodynamics is investigated to identify the critical sequence of events associated with the formation of leading-edge vortices. Signatures of vortex formation on the airfoil surface can be captured in the surface-pressure measurements. Real-time knowledge of the unsteady ow phenomena holds significant potential for exploiting the enhanced-lift characteristics related to vortex formation and inhibiting the detrimental effects of dynamic stall in engineering applications such as helicopters, wind turbines, bio-inspired flight, and energy harvesting devices. Computational data was used to assess the capability of the LEFS outputs to identity the signatures associated with vortex formation, i.e. onset of vortex shedding, detachment, and termination. The results demonstrate useful correlation between the LEFS outputs and the LEV signatures.
Energy Technology Data Exchange (ETDEWEB)
Funazaki, K [Iwate University, Iwate (Japan). Faculty of Engineering
1991-09-25
Interference between fan blades in a turbo-fan engine and struts also being a structural member may induce fan blade oscillation and noise, thereby presenting itself as an obstacle in development efforts. Therefore, this paper proposes a method to analyze unsteady aerodynamic responses of mistuned cascade with varied stagger angles, as well as elucidates the effects of the mistuned stagger angles by means of numerical calculations. The non-steady pressure distribution on the blades is affected by the mistuning, but its extent varies with phase difference in the incoming viscid wake. As its result, the non-steady lift acting on the blades varies with the mistuning. In this case, it is possible to reduce the size of the non-steady lift depending on the conditions of blade arrangement and incoming phase difference. The size of the non-steady lift under the same phase incoming condition has a close correlation with the steady lift. It was shown that the quasi-steady analysis is effective in the case of the same phase condition. 8 refs., 14 figs., 1 tab.
Cadel, Daniel R.; Zhang, Di; Lowe, K. Todd; Paterson, Eric G.
2018-04-01
Wind turbines with thick blade profiles experience turbulent, periodic approach flow, leading to unsteady blade loading and large torque fluctuations on the turbine drive shaft. Presented here is an experimental study of a surrogate problem representing some key aspects of the wind turbine unsteady fluid mechanics. This experiment has been designed through joint consideration by experiment and computation, with the ultimate goal of numerical model development for aerodynamics in unsteady and turbulent flows. A cylinder at diameter Reynolds number of 65,000 and Strouhal number of 0.184 is placed 10.67 diameters upstream of a NACA 63215b airfoil with chord Reynolds number of 170,000 and chord-reduced frequency of k=2π fc/2/V=1.5. Extensive flow field measurements using particle image velocimetry provide a number of insights about this flow, as well as data for model validation and development. Velocity contours on the airfoil suction side in the presence of the upstream cylinder indicate a redistribution of turbulent normal stresses from transverse to streamwise, consistent with rapid distortion theory predictions. A study of the boundary layer over the suction side of the airfoil reveals very low Reynolds number turbulent mean streamwise velocity profiles. The dominance of the high amplitude large eddy passages results in a phase lag in streamwise velocity as a function of distance from the wall. The results and accompanying description provide a new test case incorporating moderate-reduced frequency inflow for computational model validation and development.
Colera, Manuel; Pérez-Saborid, Miguel
2017-09-01
A finite differences scheme is proposed in this work to compute in the time domain the compressible, subsonic, unsteady flow past an aerodynamic airfoil using the linearized potential theory. It improves and extends the original method proposed in this journal by Hariharan, Ping and Scott [1] by considering: (i) a non-uniform mesh, (ii) an implicit time integration algorithm, (iii) a vectorized implementation and (iv) the coupled airfoil dynamics and fluid dynamic loads. First, we have formulated the method for cases in which the airfoil motion is given. The scheme has been tested on well known problems in unsteady aerodynamics -such as the response to a sudden change of the angle of attack and to a harmonic motion of the airfoil- and has been proved to be more accurate and efficient than other finite differences and vortex-lattice methods found in the literature. Secondly, we have coupled our method to the equations governing the airfoil dynamics in order to numerically solve problems where the airfoil motion is unknown a priori as happens, for example, in the cases of the flutter and the divergence of a typical section of a wing or of a flexible panel. Apparently, this is the first self-consistent and easy-to-implement numerical analysis in the time domain of the compressible, linearized coupled dynamics of the (generally flexible) airfoil-fluid system carried out in the literature. The results for the particular case of a rigid airfoil show excellent agreement with those reported by other authors, whereas those obtained for the case of a cantilevered flexible airfoil in compressible flow seem to be original or, at least, not well-known.
Rarefaction Effects in Low Reynolds Number Subsonic and Transonic Aerodynamics
Pekardan, Cem
The quantification of rarefaction effects for low Reynolds number (Reefficient. It was also shown that when the Reynolds number of the flow decreased from 10,000 to 1,000, slip effects become dominant. The flow becomes fully rarefied at Re=10. Furthermore, rarefaction effects were quantified for the NACA 0007 and the NACA 2407 at 0 and 10 degrees of angle of attack to investigate the effects of thickness, camber, and the angle of attack. It was observed that flow separation due to increase in thickness resulted in higher rarefaction effects. It was concluded that thin airfoils with very smooth shape changes minimize continuum breakdown / rarefaction effects. Rarefied gas phenomena that only appear in low pressures (such as thermal effects) can be exploited for performance enhancement of applications in slightly rarefied aerodynamics. In this study, feasibility and advantages of using thermal control to reduce drag and mitigate vortex shedding for airfoils are studied. NACA 0012 airfoil with a temperature difference applied between the upper and the lower surface is simulated in the continuum regime with a Navier-Stokes solver and compared to experimental data for verification of parameters and turbulence modelling. At lower pressures, an elevated temperature on the bottom surface of the airfoil is investigated to create lift and understand the rarefaction effects. Continuum NS results were compared to the rarefied ES-BGK solver for the rarefaction effects. It was shown that an elevated temperature enhances the lift by 25 % and reduces the drag at high angles of attack. In the second part, a temperature gradient on the upper surface is applied and it was seen that drag is reduced by 4 % and vortex shedding frequency is reduced due to gradients introduced in the flow by thermal transpiration.
A reduced-order vortex model of three-dimensional unsteady non-linear aerodynamics
Eldredge, Jeff D.
2014-11-01
Rapid, large-amplitude maneuvers of low aspect ratio wings are inherent to biologically-inspired flight. These give rise to unsteady phenomena associated with the interactions among the coherent structures shed from wing edges. The objective of this work is to distill these phenomena into a low-order physics-based dynamical model. The model is based on interconnected vortex loops, composed of linear segments between a small number of vertices. Thus, the dynamics of the fluid are reduced to tracking the evolution of the vertices, whose motions are determined from the velocity field induced by the loops and wing motion. The feature that distinguishes this method from previous treatments is that the vortex loops, analogous to point vortices in our two-dimensional model, have time-varying strength. That is, the flux of vorticity from the wing is concentrated in the constituent segments. Chains of interconnected loops can be shed from any edge of the wing. The evolution equation for the loop vertices is based on the impulse matching principle developed in previous work. We demonstrate the model in various maneuvers, including impulse starts of low aspect ratio wings, oscillatory pitching, etc., and compare with experimental results and high-fidelity simulations where applicable. This work was supported by AFOSR under Award FA9550-11-1-0098.
Gordon, Kathryn; Morris, Scott; Jemcov, Aleksandar; Cameron, Joshua
2013-11-01
The interaction of components in a compressible, internal flow often results in unsteady interactions between the wakes and moving blades. A prime example in which this flow feature is of interest is the interaction between the downstream rotor blades in a transonic axial compressor with the wake vortices shed from the upstream inlet guide vane (IGV). Previous work shows that a double row of counter-rotating vortices convects downstream into the rotor passage as a result of the rotor blade bow shock impinging on the IGV. The rotor-relative time-mean total pressure distribution has a region of high total pressure corresponding to the pathline of the vortices. The present work focuses on the relationship between the magnitude of the time-mean rotor-relative total pressure profile and the axial spacing between the IGV and the rotor. A survey of different axial gap sizes is performed in a two-dimensional computational study to obtain the sensitivity of the pressure profile amplitude to IGV-rotor axial spacing.
Flow structure and aerodynamic performance of a hovering bristled wing in low Re
Lee, Seunghun; Lahooti, Mohsen; Kim, Daegyoum
2017-11-01
Previous studies on a bristled wing have mainly focused on simple kinematics of the wing such as translation or rotation. The aerodynamic performance of a bristled wing in a quasi-steady phase is known to be comparable to that of a smooth wing without a gap because shear layers in the gaps of the bristled wing are sufficiently developed to block the gaps. However, we point out that, in the starting transient phase where the shear layers are not fully developed, the force generation of a bristled wing is not as efficient as that of a quasi-steady state. The performance in the transient phase is important to understand the aerodynamics of a bristled wing in an unsteady motion. In the hovering motion, due to repeated stroke reversals, the formation and development of shear layers inside the gaps is repeated in each stroke. In this study, a bristled wing in hovering is numerically investigated in the low Reynolds number of O(10). We especially focus on the development of shear layers during a stroke reversal and its effect on the overall propulsive performance. Although the aerodynamic force generation is slightly reduced due to the gap vortices, the asymmetric behavior of vortices in a gap between bristles during a stroke reversal makes the bristled wing show higher lift to drag ratio than a smooth wing.
Directory of Open Access Journals (Sweden)
Arash Mahboubidoust
2017-07-01
Full Text Available In this work, numerical study of two dimensional laminar incompressible flow around an oscillating NACA0012 airfoil is proceeded using the open source code OpenFOAM. Oscillatory motion types including pitching and flapping are considered. Reynolds number for these motions is assumed to be 12000 and effects of these motions and also different unsteady parameters such as amplitude and reduced frequency on aerodynamic coefficients are studied. For flow control on airfoil, dielectric barrier discharge plasma actuator is used in two different positions on airfoil and its effect is compared for the two types of considered oscillating motions. It is observed that in pitching motion, imposing plasma leads to an improvement in aerodynamic coefficients, but it does not have any positive effect on flapping motion. Also, for the amplitudes and frequencies investigated in this paper, the trailing edge plasma had a more desirable effect than other positions. Keywords: Airfoil, Flapping, Oscillating, Plasma, Pitching
Zhang, Lucy T; Yang, Jubiao
2016-12-01
In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli's principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli's principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions.
Universal Rim Thickness in Unsteady Sheet Fragmentation
Wang, Y.; Dandekar, R.; Bustos, N.; Poulain, S.; Bourouiba, L.
2018-05-01
Unsteady fragmentation of a fluid bulk into droplets is important for epidemiology as it governs the transport of pathogens from sneezes and coughs, or from contaminated crops in agriculture. It is also ubiquitous in industrial processes such as paint, coating, and combustion. Unsteady fragmentation is distinct from steady fragmentation on which most theoretical efforts have been focused thus far. We address this gap by studying a canonical unsteady fragmentation process: the breakup from a drop impact on a finite surface where the drop fluid is transferred to a free expanding sheet of time-varying properties and bounded by a rim of time-varying thickness. The continuous rim destabilization selects the final spray droplets, yet this process remains poorly understood. We combine theory with advanced image analysis to study the unsteady rim destabilization. We show that, at all times, the rim thickness is governed by a local instantaneous Bond number equal to unity, defined with the instantaneous, local, unsteady rim acceleration. This criterion is found to be robust and universal for a family of unsteady inviscid fluid sheet fragmentation phenomena, from impacts of drops on various surface geometries to impacts on films. We discuss under which viscous and viscoelastic conditions the criterion continues to govern the unsteady rim thickness.
Rahman, M. Mostaqur; Hasan, A. B. M. Toufique; Rabbi, M. S.
2017-06-01
In transonic flow conditions, self-sustained shock wave oscillation on biconvex airfoils is initiated by the complex shock wave boundary layer interaction which is frequently observed in several modern internal aeronautical applications such as inturbine cascades, compressor blades, butterfly valves, fans, nozzles, diffusers and so on. Shock wave boundary layer interaction often generates serious problems such as unsteady boundary layer separation, self-excited shock waveoscillation with large pressure fluctuations, buffeting excitations, aeroacoustic noise, nonsynchronous vibration, high cycle fatigue failure and intense drag rise. Recently, the control of the self-excited shock oscillation around an airfoil using passive control techniques is getting intense interest. Among the passive means, control using open cavity has found promising. In this study, the effect of cavity size on the control of self-sustained shock oscillation was investigated numerically. The present computations are validated with available experimental results. The results showed that the average root mean square (RMS) of pressure oscillation around the airfoil with open cavity has reduced significantly when compared to airfoil without cavity (clean airfoil).
Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism
International Nuclear Information System (INIS)
Li, Qing'an; Kamada, Yasunari; Maeda, Takao; Murata, Junsuke; Iida, Kohei; Okumura, Yuta
2016-01-01
Wind turbines mounted on floating platforms are subjected to completely different and soft foundation properties, rather than onshore wind turbines. Due to the flexibility of their mooring systems, floating offshore wind turbines are susceptible to large oscillations such as aerodynamic force of the wind and hydrodynamic force of the wave, which may compromise their performance and structural stability. This paper focuses on the evaluation of aerodynamic forces depending on suppressing undesired turbine's motion by a rotor thrust control which is controlled by pitch changes with wind tunnel experiments. In this research, the aerodynamic forces of wind turbine are tested at two kinds of pitch control system: steady pitch control and cyclic pitch control. The rotational speed of rotor is controlled by a variable speed generator, which can be measured by the power coefficient. Moment and force acts on model wind turbine are examined by a six-component balance. From cyclic pitch testing, the direction and magnitude of moment can be arbitrarily controlled by cyclic pitch control. Moreover, the fluctuations of thrust coefficient can be controlled by collective pitch control. The results of this analysis will help resolve the fundamental design of suppressing undesired turbine's motion by cyclic pitch control. - Highlights: • Offshore wind offers additional options in regions with low onshore potential. • Two kinds of pitch control system: Steady pitch control and Cyclic pitch control. • Performance curves and unsteady aerodynamics are investigated in wind tunnel. • Fluctuations of thrust coefficient can be controlled by collective pitch control.
Transonic Performance Characteristics of Several Jet Noise Suppressors
Schmeer, James W.; Salters, Leland B., Jr.; Cassetti, Marlowe D.
1960-01-01
An investigation of the transonic performance characteristics of several noise-suppressor configurations has been conducted in the Langley 16-foot transonic tunnel. The models were tested statically and over a Mach number range from 0.70 to 1.05 at an angle of attack of 0 deg. The primary jet total-pressure ratio was varied from 1.0 (jet off) to about 4.5. The effect of secondary air flow on the performance of two of the configurations was investigated. A hydrogen peroxide turbojet-engine simulator was used to supply the hot-jet exhaust. An 8-lobe afterbody with centerbody, short shroud, and secondary air had the highest thrust-minus-drag coefficients of the six noise-suppressor configurations tested. The 12-tube and 12-lobe afterbodies had the lowest internal losses. The presence of an ejector shroud partially shields the external pressure distribution of the 8-lobe after-body from the influence of the primary jet. A ring-airfoil shroud increased the static thrust of the annular nozzle but generally decreased the thrust minus drag at transonic Mach numbers.
Alaminos-Quesada, Javier; Fernandez-Feria, Ramon
2017-11-01
The effect of leading-edge vortices (LEVs) on the lift, thrust and moment of a two-dimensional heaving and pitching foil is analyzed from the unsteady, linear potential theory. General expressions taking into account the effect of unsteady point vortices interacting with the oscillatory trailing wake are first derived. Then, simplified expressions for the initial stages of the growing LEV on each half-stroke are used to obtain analytical closed expressions for the main contribution of these vortices to the lift, thrust and moment. It is found that, within the linear potential framework and the Brown-Michael model, the LEV contributes to the aerodynamic forces and moment only for combined pitching and heaving motions of the foil, being a relevant contribution for sufficiently large values of the product of the reduced frequency and the amplitude of the heaving and/or pitching motions. The results are compared with available experimental data and numerical simulations. Supported by the Ministerio de Economia y Competitividad of Spain Grants No. DPI2013-40479-P and DPI2016-76151-C2-1-R.
Directory of Open Access Journals (Sweden)
Gang Chen
2012-01-01
Full Text Available It is not easy for the system identification-based reduced-order model (ROM and even eigenmode based reduced-order model to predict the limit cycle oscillation generated by the nonlinear unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter variation. In order to deal with this problem, a support vector machine- (SVM- based ROM was investigated and the general construction framework was proposed. The two-DOF aeroelastic system for the NACA 64A010 airfoil in transonic flow was then demonstrated for the new SVM-based ROM. The simulation results show that the new ROM can capture the LCO behavior of the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and computational efficiency of the SVM-based ROM would provide a promising tool for real-time flight simulation including nonlinear aeroelastic effects.
Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements
Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan
2004-01-01
A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.
El-Asrag, Hossam A.
2011-01-01
Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.
Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.
Rao, Chen; Liu, Hao
2018-06-08
Owls are a master to achieve silent flight in gliding and flapping flights under natural turbulent environments owing to their unique wing morphologies. While the leading-edge serrations are recently revealed, as a passive flow control micro-device, to play a crucial role in aerodynamic force production and sound suppression [25], the characteristics of wind-gust rejection associated with leading-edge serrations remain unclear. Here we address a large-eddy simulation (LES)-based study of aerodynamic robustness in owl-inspired leading-edge serrations, which is conducted with clean and serrated wing models through mimicking wind-gusts under a longitudinal fluctuation in free-stream inflow and a lateral fluctuation in pitch angle over a broad range of angles of attack (AoAs) over 0° ≤ Φ ≤ 20°. Our results show that the leading-edge serration-based passive flow control mechanisms associated with laminar-turbulent transition work effectively under fluctuated inflow and wing pitch, indicating that the leading-edge serrations are of potential gust fluctuation rejection or robustness in aerodynamic performance. Moreover, it is revealed that the tradeoff between turbulent flow control (i.e., aero-acoustic suppression) and force production in the serrated model holds independently to the wind-gust environments: poor at lower AoAs but capable of achieving equivalent aerodynamic performance at higher AoAs > 15o compared to the clean model. Our results reveal that the owl-inspired leading-edge serrations can be a robust micro-device for aero-acoustic control coping with unsteady and complex wind environments in biomimetic rotor designs for various fluid machineries. © 2018 IOP Publishing Ltd.
Energy Technology Data Exchange (ETDEWEB)
Nicklas, M.
2000-11-01
Aero and thermodynamic measurements at the endwall of a turbine nozzle guide vane were carried out. These investigations are the first where the complete blade passage at the endwall in a transonic flow field is analysed for heat transfer and adiabatic film-cooling effectiveness. The aerodynamic measurements identify an intensive interaction between the coolant air and the secondary flow field. Similarly strong variations in heat transfer and film-cooling effectiveness were found. Analysis of the heat transfer measurements indicates that the heat transfer represents an indispensable tool for the evaluation of platform film-cooling design. On the basis of infrared temperature measurements, a procedure for accurate analysis of heat transfer and film-cooling effectiveness in a complex transonic flow field was developed. This measurement technique combines high accuracy with flexibility of application. These investigations have led to design improvements for film-cooling systems at the platform. (orig.) [German] Aero- und thermodynamische Messungen an einer Plattform eines Turbinenleitrads werden beschrieben. Erstmals wird in einem transsonischen Stroemungsfeld die komplette Seitenwand bezueglich des Waermeuebergangs und der adiabaten Filmkuehleffektivitaet untersucht. Die aerodynamischen Messungen zeigen eine intensive Wechselwirkung der Kuehlluft mit dem Sekundaerstroemungsfeld. Daraus resultierend treten starke Aenderungen des Waermeuebergangs und der Filmkuehleffektivitaet auf. Die Resultate der Waermeuebergangsmessungen zeigen, dass der Waermeuebergang eine wichtige Groesse fuer die Bewertung eines Filmkuehldesigns an einer Plattform darstellt. Ein Messverfahren auf der Grundlage von Infrarot-Temperaturmessungen fuer eine genaue Analyse des Waermeuebergangs und der Filmkuehleffektivitaet in den komplexen Verhaeltnissen einer transsonischen Stroemung wurde entwickelt. Mit der verwendeten Messtechnik wird eine hohe Genauigkeit bei der Ermittlung der quantitativen
Parrell, H.; Gamble, J. D.
1977-01-01
Transonic Wind Tunnel tests were run on a .015 scale model of the space shuttle orbiter vehicle in the 8-foot transonic wind tunnel. Purpose of the test program was to obtain basic shuttle aerodynamic data through a full range of elevon and aileron deflections, verification of data obtained at other facilities, and effects of Reynolds number. Tests were performed at Mach numbers from .35 to 1.20 and Reynolds numbers from 3,500,000 to 8,200,000 per foot. The high Reynolds number conditions (nominal 8,000,000/foot) were obtained using the ejector augmentation system. Angle of attack was varied from -2 to +20 degrees at sideslip angles of -2, 0, and +2 degrees. Sideslip was varied from -6 to +8 degrees at constant angles of attack from 0 to +20 degrees. Aileron settings were varied from -5 to +10 degrees at elevon deflections of -10, 0, and +10 degrees. Fixed aileron settings of 0 and 2 degrees in combination with various fixed elevon settings between -20 and +5 degrees were also run at varying angles of attack.
Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle
International Nuclear Information System (INIS)
Nakata, T; Liu, H; Nishihashi, N; Wang, X; Sato, A; Tanaka, Y
2011-01-01
MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s −1 , operate in a Reynolds number regime of 10 5 or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4–3.0 g and a wingspan of 10–12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.
Proposed aeroelastic and flutter tests for the National Transonic Facility
Stevenson, J. R.
1981-01-01
Tests that can exploit the capability of the NTF and the transonic cryogenic tunnel, or lead to improvements that could enhance testing in the NTF are discussed. Shock induced oscillation, supersonic single degree control surface flutter, and transonic flutter speed as a function of the Reynolds number are considered. Honeycombs versus screens to smooth the tunnel flow and a rapid tunnel dynamic pressure reducer are recommended to improve tunnel performance.
Energy Technology Data Exchange (ETDEWEB)
Stetter, H.; Margot-Peters, X.; Kraus, P.
1999-12-01
The tip gap between rotor blades and the casing of a turbomachine is essential for a safe operation. Behind the last stage the resulting leakage jet may however cause a supersonic flow region at the outer diffuser casing which can induce - due to shock/boundary layer interactions - unsteady shock oscillations. Until now this process can't be described numerically. Therefore the scope of this project was to provide an extensive validated numerical code which can be used simultaneously to optimize the diffuser's flow properties and to minimize the blade loading due to shock oscillations. Fundamental questions such as shock oscillation amplitudes and influence area of the leakage jet had been answered by using the hydraulic analogy. To realize the flow properties steady and unsteady flow measurements had been carried out at an air test rig to deliver boundary conditions and validation data for the numerical code. Concerning the numerical work an existent steady Navier-Stokes-Code had been upgraded to unsteady calculations. Some turbulence models had been tested to proof its qualification for separated unsteady flows. However with the intended solution approach - no full threedimensional discretisation - it has been found impossible to converge the unsteady shock/boundary layer interaction calculations. Reasons are re-entry flow at the diffuser outlet and the measured, significant circumferential variation of flow properties. However important insights to the continuous work could be extracted from the preliminary negative results of the numerical studies: The circumferential variation of the flow properties can locally cause re-entry flow at the diffuser outlet. In addition the unsteady shock/boundary-interactions vary round the periphere, but they could be influenced by locally applied methods. Therefore a proofed numerical treatment supposes detailed solutions for the modelling of boundary conditions for re-entry flow and unsteady circumferentially varying
DEFF Research Database (Denmark)
Bergami, Leonardo; Riziotis, Vasilis A.; Gaunaa, Mac
2015-01-01
The study presents and compares aerodynamic simulations for an airfoil section with an adaptive trailing edge flap, which deflects following a smooth deformation shape. The simulations are carried out with three substantially different methods: a Reynolds-averaged Navier–Stokes solver, a viscous–inviscid...... to separated conditions and accounting for the effects of flap deflection; the steady results from the Navier–Stokes solver and the viscous–inviscid interaction method are used as input data for the simpler dynamic stall model. The paper characterizes then the dynamics of the unsteady forces and moments...
Peters, David A.
1988-01-01
The purpose of this research is the development of an unsteady aerodynamic model for rotors such that it can be used in conventional aeroelastic analysis (e.g., eigenvalue determination and control system design). For this to happen, the model must be in a state-space formulation such that the states of the flow can be defined, calculated and identified as part of the analysis. The fluid mechanics of the problem is given by a closed-form inversion of an acceleration potential. The result is a set of first-order differential equations in time for the unknown flow coefficients. These equations are hierarchical in the sense that they may be truncated at any number of radial or azimuthal terms.
Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids
Nielsen, Eric J.; Diskin, Boris
2012-01-01
A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.
Subsonic/Transonic Configuration Aerodynamics.
1980-09-01
et de braquage statique. Outre le moment de charnilre donnd par un pont de jauges de torsion bur l’axe de I& gouverne, ces eesa comportaient...par ls bout d’aile , slenroule sur deux 4lectrofreina 3 et parvient au-dsus de la veins A un tendeur 1 et A un dynamom~tre A jauges de contraintes 2...Ia surveillance de Ia tenue m~canique de l’ensemble se fait A partir des indications de is balance et de jauges de contrainte colldes our Is
Wilson, R. E.
1981-01-01
Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.
Directory of Open Access Journals (Sweden)
Jianchi Xin
2016-03-01
Full Text Available In engineering practice, most centrifugal compressors use variable inlet guide vanes which can provide pre-whirl and control volume flow rates. As the impeller of a centrifugal compressor passes through the wakes created from the guide vanes, the aerodynamic parameters change significantly. The concept of adding dual slots at the trailing-edge of the guide vanes is proposed for reducing the aerodynamic load on the compressor impeller blades. In this article, the steady and unsteady performances of the new guide vanes are analysed under two compressor operating conditions (winter and design conditions. The results show that the average amplitude of the impeller passing frequency at the leading edge has a 13% decrease under the winter condition, especially at the middle and root parts. Moreover, the dual slots structure has no effect on the overall compressor performance.
Drones for aerodynamic and structural testing /DAST/ - A status report
Murrow, H. N.; Eckstrom, C. V.
1978-01-01
A program for providing research data on aerodynamic loads and active control systems on wings with supercritical airfoils in the transonic speed range is described. Analytical development, wind tunnel tests, and flight tests are included. A Firebee II target drone vehicle has been modified for use as a flight test facility. The program currently includes flight experiments on two aeroelastic research wings. The primary purpose of the first flight experiment is to demonstrate an active control system for flutter suppression on a transport-type wing. Design and fabrication of the wing are complete and after installing research instrumentation and the flutter suppression system, flight testing is expected to begin in early 1979. The experiment on the second research wing - a fuel-conservative transport type - is to demonstrate multiple active control systems including flutter suppression, maneuver load alleviation, gust load alleviation, and reduce static stability. Of special importance for this second experiment is the development and validation of integrated design methods which include the benefits of active controls in the structural design.
Computational Analysis of an effect of aerodynamic pressure on the side view mirror geometry
Murukesavan, P.; Mu'tasim, M. A. N.; Sahat, I. M.
2013-12-01
This paper describes the evaluation of aerodynamic flow effects on side mirror geometry for a passenger car using ANSYS Fluent CFD simulation software. Results from analysis of pressure coefficient on side view mirror designs is evaluated to analyse the unsteady forces that cause fluctuations to mirror surface and image blurring. The fluctuation also causes drag forces that increase the overall drag coefficient, with an assumption resulting in higher fuel consumption and emission. Three features of side view mirror design were investigated with two input velocity parameters of 17 m/s and 33 m/s. Results indicate that the half-sphere design shows the most effective design with less pressure coefficient fluctuation and drag coefficient.
Marroquin, J.; Lemoine, P.
1992-01-01
An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.
Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes
International Nuclear Information System (INIS)
Park, Hyungmin; Choi, Haecheon
2012-01-01
In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α md ) and mid-upstroke (α mu ), and the duration (Δτ) and time of initiation (τ p ) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α md and low α mu produces larger vertical force with less aerodynamic power, and low α md and high α mu is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α md and high α mu is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The present
Winglet Geometry Impact on DLR-F4 Aerodynamics and an Analysis of a Hyperbolic Winglet Concept
Directory of Open Access Journals (Sweden)
Djahid Gueraiche
2017-12-01
Full Text Available In this article, the growth of aerodynamic efficiency and the growth of the wing structural stress is studied for DLR-F4 typical transport aircraft wing-body, after installing classical Whitcomb winglets of different configurations and a delta wingtip fence. A new-concept curved-span winglet was mathematically developed and approved through Computational Fluid Dynamics (CFD and static structural experiments, revealing the interaction of sub- and transonic air flow dynamics with the wingtip device geometry. The design space of the winglet geometry was explored briefly, and an evaluation of the lift-to-drag ratio increment depending on various winglet input parameters was performed. In particular, the winglet cant angle effect on lift and drag was thoroughly analyzed at various flow regimes and angles of attack, revealing an ambiguity and a conflicting character of results between highly canted winglets and nearly vertical ones. As a result of cant angle impact analysis, a curved winglet concept is suggested and mathematically parametrized, that could provide an innovative solution, alternative to a morphing winglet, but much simpler with a fixed structure. In conclusion, a multidisciplinary winglet efficiency estimation criterion is suggested for comparing the aerodynamic efficiency of different wingtip devices with respect to their structural weight penalty in real flight conditions.
Historical review and future perspectives for Pilot Transonic Wind Tunnel of IAE
Directory of Open Access Journals (Sweden)
João Batista P. Falcão Filho
2009-01-01
Full Text Available The Pilot Transonic Wind Tunnel of Institute of Aeronautics and Space (PTT Pilot Transonic Wind Tunnel is an important result of a tremendous effort to install a high speed wind tunnel complex (TTS acronyms for Transonic and Supersonic Tunnels, in Portuguese at the IAE, to support Brazilian aerospace research. Its history is described below, starting from the moment the TTS project was first conceived, highlighting each successive phase, mentioning the main difficulties encountered, and the solutions chosen, up until the final installation of the Pilot facility. A brief description of the tunnel's shakedown and calibration phases is also given, together with the present campaigns and proposed activities for the near future.
Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed
DEFF Research Database (Denmark)
Matsushita, Hiroshi; Miyata, T.; Christiansen, Lasse Engbo
2002-01-01
The procedure of obtaining the two-degrees-of-freedom, finite dimensional. nonlinear mathematical model. which models the nonlinear features of aircraft flutter in transonic speed is reported. The model enables to explain every feature of the transonic flutter data of the wind tunnel tests...... conducted at National Aerospace Laboratory in Japan for a high aspect ratio wing. It explains the nonlinear features of the transonic flutter such as the subcritical Hopf bifurcation of a limit cycle oscillation (LCO), a saddle-node bifurcation, and an unstable limit cycle as well as a normal (linear...
Chlorine decay under steady and unsteady-state hydraulic conditions
DEFF Research Database (Denmark)
Stoianov, Ivan; Aisopou, Angeliki
2014-01-01
This paper describes a simulation framework for the scale-adaptive hydraulic and chlorine decay modelling under steady and unsteady-state flows. Bulk flow and pipe wall reaction coefficients are replaced with steady and unsteady-state reaction coefficients. An unsteady decay coefficient is defined...... which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. A preliminary experimental and analytical investigation was carried out in a water transmission main. The results were used to model monochloramine decay...... and these demonstrate that the dynamic hydraulic conditions have a significant impact on water quality deterioration and the rapid loss of disinfectant residual. © 2013 The Authors....
Zhang, Lucy T.; Yang, Jubiao
2017-01-01
In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli’s principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli’s principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions. PMID:29527541
Buffet test in the National Transonic Facility
Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.
1992-01-01
A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.
Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database
Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.
2011-01-01
Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.
Unsteady Stokes equations: Some complete general solutions
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
homogeneous unsteady Stokes equations are examined. A necessary and sufficient condition for a divergence-free vector to represent the velocity field of a possible unsteady Stokes flow in the absence of body forces is derived. Keywords. Complete ...
Institute of Scientific and Technical Information of China (English)
Hu Zhou; Decheng Wan
2015-01-01
Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.
Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance
Rivera, Jose A.; Florance, James R.
2000-01-01
The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.
Numerical estimation of aircrafts' unsteady lateral-directional stability derivatives
Directory of Open Access Journals (Sweden)
Maričić N.L.
2006-01-01
Full Text Available A technique for predicting steady and oscillatory aerodynamic loads on general configuration has been developed. The prediction is based on the Doublet-Lattice Method, Slender Body Theory and Method of Images. The chord and span wise loading on lifting surfaces and longitudinal bodies (in horizontal and vertical plane load distributions are determined. The configuration may be composed of an assemblage of lifting surfaces (with control surfaces and bodies (with circular cross sections and a longitudinal variation of radius. Loadings predicted by this method are used to calculate (estimate steady and unsteady (dynamic lateral-directional stability derivatives. The short outline of the used methods is given in [1], [2], [3], [4] and [5]. Applying the described methodology software DERIV is developed. The obtained results from DERIV are compared to NASTRAN examples HA21B and HA21D from [4]. In the first example (HA21B, the jet transport wing (BAH wing is steady rolling and lateral stability derivatives are determined. In the second example (HA21D, lateral-directional stability derivatives are calculated for forward- swept-wing (FSW airplane in antisymmetric quasi-steady maneuvers. Acceptable agreement is achieved comparing the results from [4] and DERIV.
Marroquin, J.; Lemoine, P.
1992-01-01
An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.
Influences of mach number and flow incidence on aerodynamic losses of steam turbine blade
International Nuclear Information System (INIS)
Yoo, Seok Jae; Ng, Wing Fai
2000-01-01
An experiment was conducted to investigate the aerodynamic losses of high pressure steam turbine nozzle (526A) subjected to a large range of incident angles (-34 .deg. to 26 .deg. ) and exit Mach numbers (0.6 and 1.15). Measurements included downstream pitot probe traverses, upstream total pressure, and endwall static pressures. Flow visualization techniques such as shadowgraph and color oil flow visualization were performed to complement the measured data. When the exit Mach number for nozzles increased from 0.9 to 1.1 the total pressure loss coefficient increased by a factor of 7 as compared to the total pressure losses measured at subsonic conditions (M 2 <0.9). For the range of incidence tested, the effect of flow incidence on the total pressure losses is less pronounced. Based on the shadowgraphs taken during the experiment, it's believed that the large increase in losses at transonic conditions is due to strong shock/ boundary layer interaction that may lead to flow separation on the blade suction surface
Zonal structure of unbounded external-flow and aerodynamics
Energy Technology Data Exchange (ETDEWEB)
Liu, L Q; Kang, L L; Wu, J Z, E-mail: lqliu@pku.edu.cn [State Key Laboratory of Turbulence and Complex System, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China)
2017-08-15
This paper starts from the far-field behaviors of velocity field in externally unbounded flow. We find that the well-known algebraic decay of disturbance velocity as derived kinematically is too conservative. Once the kinetics are taken into account by working on the fundamental solutions of far-field linearized Navier–Stokes equations, it is proven that the furthest far-field zone adjacent to the uniform fluid at infinity must be unsteady, viscous and compressible, where all disturbances degenerate to sound waves that decay exponentially. But this optimal rate does not exist in some commonly used simplified flow models, such as steady flow, incompressible flow and inviscid flow, because they actually work in true subspaces of the unbounded free space, which are surrounded by further far fields of different nature. This finding naturally leads to a zonal structure of externally unbounded flow field. The significance of the zonal structure is demonstrated by its close relevance to existing theories of aerodynamic force and moment in external flows, including the removal of the difficulties or paradoxes inherent in the simplified models. (paper)
Unsteady wake of a rotating tire
Lombard, Jean-Eloi; Moxey, Dave; Xu, Hui; Sherwin, Spencer; Sherwin Lab Team
2015-11-01
For open wheel race-cars, such as IndyCar and Formula One, the wheels are responsible for 40% of the total drag. For road cars drag associated to the wheels and under-carriage can represent 60% of total drag at highway cruise speeds. Experimental observations have reported two or three pairs of counter rotating vortices, the relative importance of which still remains an open question, that interact to form a complex wake. Traditional RANS based methods are typically not well equipped to deal with such highly unsteady flows which motivates research into more physical, unsteady models. Leveraging a high-fidelity spectral/hp element based method a Large Eddy Simulation is performed to give further insight into unsteady characteristics of the wake. In particular the unsteady nature of both the jetting and top vortex pair is reported as well as the time and length scales associated with the vortex core trajectories. Correlation with experimentally obtained particle image velocimetry is presented. The authors acknowledge support from the United Kingdom Turbulence Consortium (UKTC) as well as from the Engineering and Physical Sciences Research Council (EPSRC) for access to ARCHER UK National Supercomputing Service.
Unsteady potential flow past a propeller blade section
Takallu, M. A.
1990-01-01
An analytical study was conducted to predict the effect of an oscillating stream on the time dependent sectional pressure and lift coefficients of a model propeller blade. The assumption is that as the blade sections encounter a wake, the actual angles of attack vary in a sinusoidal manner through the wake, thus each blade is exposed to an unsteady stream oscillating about a mean value at a certain reduced frequency. On the other hand, an isolated propeller at some angle of attack can experience periodic changes in the value of the flow angle causing unsteady loads on the blades. Such a flow condition requires the inclusion of new expressions in the formulation of the unsteady potential flow around the blade sections. These expressions account for time variation of angle of attack and total shed vortices in the wake of each airfoil section. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficients exhibit a hysteresis loop.
El-Asrag, Hossam A.; Ghoniem, Ahmed F.
2011-01-01
simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re
PREFACE: Aerodynamic sound Aerodynamic sound
Akishita, Sadao
2010-02-01
The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the
Enveloping Aerodynamic Decelerator
Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)
2018-01-01
An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.
Aerodynamics and vortical structures in hovering fruitflies
Meng, Xue Guang; Sun, Mao
2015-03-01
We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.
International Nuclear Information System (INIS)
Kim, Dae-Kwan; Han, Jae-Hung; Kwon, Ki-Jung
2009-01-01
In the present study, a biomimetic flexible flapping wing was developed on a real ornithopter scale by using macro-fiber composite (MFC) actuators. With the actuators, the maximum camber of the wing can be linearly changed from −2.6% to +4.4% of the maximum chord length. Aerodynamic tests were carried out in a low-speed wind tunnel to investigate the aerodynamic characteristics, particularly the camber effect, the chordwise flexibility effect and the unsteady effect. Although the chordwise wing flexibility reduces the effective angle of attack, the maximum lift coefficient can be increased by the MFC actuators up to 24.4% in a static condition. Note also that the mean values of the perpendicular force coefficient rise to a value of considerably more than 3 in an unsteady aerodynamic flow region. Additionally, particle image velocimetry (PIV) tests were performed in static and dynamic test conditions to validate the flexibility and unsteady effects. The static PIV results confirm that the effective angle of attack is reduced by the coupling of the chordwise flexibility and the aerodynamic force, resulting in a delay in the stall phenomena. In contrast to the quasi-steady flow condition of a relatively high advance ratio, the unsteady aerodynamic effect due to a leading edge vortex can be found along the wing span in a low advance ratio region. The overall results show that the chordwise wing flexibility can produce a positive effect on flapping aerodynamic characteristics in quasi-steady and unsteady flow regions; thus, wing flexibility should be considered in the design of efficient flapping wings
METHOD FOR NUMERICAL MODELING OF UNSTEADY SEPARATED FLOW AROUND AIRFOILS MOVING CLOSE TO FLAT SCREEN
Directory of Open Access Journals (Sweden)
V. Pogrebnaya Tamara
2017-01-01
Full Text Available In this article an attempt is made to explain the nature of differences in measurements of forces and moments, which influence an aircraft at take-off and landing when testing on different types of stands. An algorithm for numerical simulation of unsteady separated flow around airfoil is given. The algorithm is based on the combination of discrete vortex method and turbulent boundary layer equations. An unsteady flow separation modeling has been used. At each interval vortex method was used to calculate the potential flow around airfoils located near a screen. Calculated pressures and velocities were then used in boundary layer calculations to determine flow separation points and separated vortex in- tensities. After that calculation were made to determine free vortex positions to next time step and the process was fulfilled for next time step. The proposed algorithm allows using numeric visualization to understand physical picture of flow around airfoil moving close to screen. Three different ways of flow modeling (mirror method, fixed or movable screens were tested. In each case the flow separation process, which determines pressure distribution over airfoil surface and influ- ences aerodynamic performance, was viewed. The results of the calculations showed that at low atitudes of airfoil over screen mirror method over predicts lift force compared with movable screen, while fixed screen under predicts it. The data obtained can be used when designing equipment for testing in wind tunnels.
Unsteady 2D potential-flow forces and a thin variable geometry airfoil undergoing arbitrary motion
Energy Technology Data Exchange (ETDEWEB)
Gaunaa, M.
2006-07-15
In this report analytical expressions for the unsteady 2D force distribution on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by its camberline as in classic thin-airfoil theory, and the deflection of the airfoil is given by superposition of chordwise deflection mode shapes. It is shown from the expressions for the forces, that the influence from the shed vorticity in the wake is described by the same time-lag for all chordwise positions on the airfoil. This time-lag term can be approximated using an indicial function approach, making the practical calculation of the aerodynamic response numerically very efficient by use of Duhamel superposition. Furthermore, the indicial function expressions for the time-lag terms are formulated in their equivalent state-space form, allowing for use of the present theory in problems employing the eigenvalue approach, such as stability analysis. The analytical expressions for the forces simplify to all previously known steady and unsteady thin-airfoil solutions. Apart from the obvious applications within active load control/reduction, the current theory can be used for various applications which up to now have been possible only using much more computational costly methods. The propulsive performance of a soft heaving propulsor, and the influence of airfoil camberline elasticity on the flutter limit are two computational examples given in the report that highlight this feature. (au)
Directory of Open Access Journals (Sweden)
L Khadir
2016-10-01
Full Text Available The use of several developmental approaches is the researchers’ major preoccupation with the DARRIEUS wind turbine. This paper presents the first approach and results of a wide computational investigation on the aerodynamics of a vertical axis DARRIEUS wind turbine based on the MAGNUS effect. Consequently, wind tunnel tests were carried out to ascertain overall performance of the turbine and two-dimensional unsteady computational fluid dynamics (CFD models were generated to help understand the aerodynamics of this new performance. Accordingly, a moving mesh technique was used where the geometry of the turbine blade was cylinders. The turbine model was created in Gambit modeling software and then read into fluent software for fluid flow analysis. Flow field characteristics are investigated for several values of tip speed ratio (TSR, in this case we generated a new rotational speed ratio between the turbine and cylinder (δ = ωC/ωT. This new concept based on the MAGNUS approach provides the best configuration for better power coefficient values. The positive results of Cp obtained in this study are used to generate energy; on the other hand, the negative values of Cp could be used in order to supply the engines with energy.
Unsteady Double Wake Model for the Simulation of Stalled Airfoils
DEFF Research Database (Denmark)
Ramos García, Néstor; Cayron, Antoine; Sørensen, Jens Nørkær
2015-01-01
In the present work, the recent developed Unsteady Double Wake Model, USDWM, is used to simulate separated flows past a wind turbine airfoil at high angles of attack. The solver is basically an unsteady two-dimensional panel method which uses the unsteady double wake technique to model flow separ...
Schepers, J.G.
2012-01-01
The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second
Unsteady load on an oscillating Kaplan turbine runner
Puolakka, O.; Keto-Tokoi, J.; Matusiak, J.
2013-02-01
A Kaplan turbine runner oscillating in turbine waterways is subjected to a varying hydrodynamic load. Numerical simulation of the related unsteady flow is time-consuming and research is very limited. In this study, a simplified method based on unsteady airfoil theory is presented for evaluation of the unsteady load for vibration analyses of the turbine shaft line. The runner is assumed to oscillate as a rigid body in spin and axial heave, and the reaction force is resolved into added masses and dampings. The method is applied on three Kaplan runners at nominal operating conditions. Estimates for added masses and dampings are considered to be of a magnitude significant for shaft line vibration. Moderate variation in the added masses and minor variation in the added dampings is found in the frequency range of interest. Reference results for added masses are derived by solving the boundary value problem for small motions of inviscid fluid using the finite element method. Good correspondence is found in the added mass estimates of the two methods. The unsteady airfoil method is considered accurate enough for design purposes. Experimental results are needed for validation of unsteady load analyses.
International Nuclear Information System (INIS)
Roy, Sukanta; Ducoin, Antoine
2016-01-01
Highlights: • Two-dimensional unsteady simulations on a novel Savonius-style wind turbine. • Instantaneous behavior of drag and lift coefficients, and corresponding moment arms. • Effect of tip speed ratio on the instantaneous force coefficients and moments arms. • Effect of force coefficients and moment arms on the instantaneous moment and power. • Analysis of power and moment coefficients at different tip speed ratios. - Abstract: This paper aims to present a transient analysis on the forces acting on a novel two-bladed Savonius-style wind turbine. Two-dimensional unsteady Reynolds Averaged Navier Stokes equations are solved using shear stress transport k–ω turbulence model at a Reynolds number of 1.23 × 10"5. The instantaneous longitudinal drag and lateral lift forces acting on each of the blades and their acting points are calculated. The corresponding moment arms responsible for the torque generation are obtained. Further, the effect of tip speed ratio on the force coefficients, moment arms and overall turbine performances are observed. Throughout the paper, the obtained results for the new design are discussed with reference to conventional semi-circular design of Savonius turbines. A significant performance improvement is achieved with the new design due to its increased lift and moment arm contribution as compared to the conventional design. More interestingly, the present study sets a platform for future aerodynamic research and improvements for Savonius-style wind turbines.
Multifidelity, multidisciplinary optimization of turbomachines with shock interaction
Joly, Michael Marie
Research on high-speed air-breathing propulsion aims at developing aircraft with antipodal range and space access. Before reaching high speed at high altitude, the flight vehicle needs to accelerate from takeoff to scramjet takeover. Air turbo rocket engines combine turbojet and rocket engine cycles to provide the necessary thrust in the so-called low-speed regime. Challenges related to turbomachinery components are multidisciplinary, since both the high compression ratio compressor and the powering high-pressure turbine operate in the transonic regime in compact environments with strong shock interactions. Besides, lightweight is vital to avoid hindering the scramjet operation. Recent progress in evolutionary computing provides aerospace engineers with robust and efficient optimization algorithms to address concurrent objectives. The present work investigates Multidisciplinary Design Optimization (MDO) of innovative transonic turbomachinery components. Inter-stage aerodynamic shock interaction in turbomachines are known to generate high-cycle fatigue on the rotor blades compromising their structural integrity. A soft-computing strategy is proposed to mitigate the vane downstream distortion, and shown to successfully attenuate the unsteady forcing on the rotor of a high-pressure turbine. Counter-rotation offers promising prospects to reduce the weight of the machine, with fewer stages and increased load per row. An integrated approach based on increasing level of fidelity and aero-structural coupling is then presented and allows achieving a highly loaded compact counter-rotating compressor.
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows
Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William
2015-01-01
The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.
Reynolds averaged simulation of unsteady separated flow
International Nuclear Information System (INIS)
Iaccarino, G.; Ooi, A.; Durbin, P.A.; Behnia, M.
2003-01-01
The accuracy of Reynolds averaged Navier-Stokes (RANS) turbulence models in predicting complex flows with separation is examined. The unsteady flow around square cylinder and over a wall-mounted cube are simulated and compared with experimental data. For the cube case, none of the previously published numerical predictions obtained by steady-state RANS produced a good match with experimental data. However, evidence exists that coherent vortex shedding occurs in this flow. Its presence demands unsteady RANS computation because the flow is not statistically stationary. The present study demonstrates that unsteady RANS does indeed predict periodic shedding, and leads to much better concurrence with available experimental data than has been achieved with steady computation
Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)
1986-01-01
The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.
Computational Analysis of Flow Through a Transonic Compressor Rotor
National Research Council Canada - National Science Library
Bochette, Nikolaus J
2005-01-01
.... In examining this problem two Computational Fluid Dynamic (CFD) codes have been used by the Naval Postgraduate School to predict the performance of a transonic compressor rotor that is being tested with steam ingestion...
Geared-elevator flutter study. [transonic flutter characteristics of empennage
Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.
1976-01-01
The paper describes an experimental and analytical study of the transonic flutter characteristics of an empennage flutter model having an all-movable horizontal tail with a geared elevator. Two configurations were flutter tested: one with a geared elevator and one with a locked elevator with the model cantilever-mounted on a sting in the wind tunnel. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter boundary was nearly flat at transonic speeds for both configurations. It was found that an analysis which treated the elevator as a discrete surface predicted flutter dynamic pressure levels better than analyses which treated the stabilizer and elevator as a warped surface. Warped-surface methods, however, predicted more closely the experimental flutter frequencies and Mach number trends.
Lawless, Patrick B.; Fleeter, Sanford
1991-01-01
A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.
ANALYSIS OF TRANSONIC FLOW PAST CUSPED AIRFOILS
Directory of Open Access Journals (Sweden)
Jiří Stodůlka
2015-06-01
Full Text Available Transonic flow past two cusped airfoils is numerically solved and achieved results are analyzed by means of flow behavior and oblique shocks formation.Regions around sharp trailing edges are studied in detail and parameters of shock waves are solved and compared using classical shock polar approach and verified by reduction parameters for symmetric configurations.
Unsteady State Two Phase Flow Pressure Drop Calculations
Ayatollahi, Shahaboddin
1992-01-01
A method is presented to calculate unsteady state two phase flow in a gas-liquid line based on a quasi-steady state approach. A computer program for numerical solution of this method was prepared. Results of calculations using the computer program are presented for several unsteady state two phase flow systems
Directory of Open Access Journals (Sweden)
G. Q. Zhang
2013-01-01
Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.
Directory of Open Access Journals (Sweden)
Kyung Chun Kim
2014-11-01
Full Text Available A new type of horizontal axis wind turbine adopting the Archimedes spiral blade is introduced for urban-use. Based on the angular momentum conservation law, the design formula for the blade was derived using a variety of shape factors. The aerodynamic characteristics and performance of the designed Archimedes wind turbine were examined using computational fluid dynamics (CFD simulations. The CFD simulations showed that the new type of wind turbine produced a power coefficient (Cp of approximately 0.25, which is relatively high compared to other types of urban-usage wind turbines. To validate the CFD results, experimental studies were carried out using a scaled-down model. The instantaneous velocity fields were measured using the two-dimensional particle image velocimetry (PIV method in the near field of the blade. The PIV measurements revealed the presence of dominant vortical structures downstream the hub and near the blade tip. The interaction between the wake flow at the rotor downstream and the induced velocity due to the tip vortices were strongly affected by the wind speed and resulting rotational speed of the blade. The mean velocity profiles were compared with those predicted by the steady state and unsteady state CFD simulations. The unsteady CFD simulation agreed better with those of the PIV experiments than the steady state CFD simulations.
Erickson, Gary E.; Schreiner, John A.; Rogers, Lawrence W.
1989-01-01
Slender wing vortex flows at subsonic, transonic, and supersonic speeds were investigated in a 6 x 6 ft wind tunnel. Test data obtained include off-body and surface flow visualizations, wing upper surface static pressure distributions, and six-component forces and moments. The results reveal the transition from the low-speed classical vortex regime to the transonic regime, beginning at a freestream Mach number of 0.60, where vortices coexist with shock waves. It is shown that the onset of core breakdown and the progression of core breakdown with the angle of attack were sensitive to the Mach number, and that the shock effects at transonic speeds were reduced by the interaction of the wing and the lead-edge extension (LEX) vortices. The vortex strengths and direct interaction of the wing and LEX cores (cores wrapping around each other) were found to diminish at transonic and supersonic speeds.
CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades
International Nuclear Information System (INIS)
Papadakis, G; Voutsinas, S; Sieros, G; Chaviaropoulos, T
2014-01-01
The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes
Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System
Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II
2016-01-01
The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.
Brandon, Jay M.; Foster, John V.
1998-01-01
As airplane designs have trended toward the expansion of flight envelopes into the high angle of attack and high angular rate regimes, concerns regarding modeling the complex unsteady aerodynamics for simulation have arisen. Most current modeling methods still rely on traditional body axis damping coefficients that are measured using techniques which were intended for relatively benign flight conditions. This paper presents recent wind tunnel results obtained during large-amplitude pitch, roll and yaw testing of several fighter airplane configurations. A review of the similitude requirements for applying sub-scale test results to full-scale conditions is presented. Data is then shown to be a strong function of Strouhal number - both the traditional damping terms, but also the associated static stability terms. Additionally, large effects of sideslip are seen in the damping parameter that should be included in simulation math models. Finally, an example of the inclusion of frequency effects on the data in a simulation is shown.
An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing
Hu, Hui; Clemons, Lucas; Igarashi, Hirofumi
2011-08-01
An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33 , which is well within the optimal range of 0.2 flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.
Hruschka, R.; Klatt, D.
2018-03-01
The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.
Energy Technology Data Exchange (ETDEWEB)
Fottner, L.; Teusch, R.; Kampitsch, M.
2000-09-01
For the aerodynamic design of turbomachine blades current methods generally apply steady flow theory and consider unsteady effects like blade row interaction, shock-boundary layer interaction, potential effects and secondary flow effects only by means of empirical or semi-empirical correlations. In the context of a modern, cost-oriented blade design efforts are made to increase the aerodynamic blade loading by considering these unsteady effects whereby efficiency and performance are kept constant. This results in a blade count reduction and consequently a weight reduction, but entails a highly three-dimensional and unsteady flow field, which makes great demands on numerical design codes. The primary goals of this work was to investigate the unsteady flow behavior in compressor cascades with controlled diffusion blading under the influence of upstream wakes and to obtain a detailed insight into the physics of unsteady boundary layer behavior. With the obtained data base a validation of unsteady codes should be conducted. The investigated cascades V110 and V111 are representative for the mid section of stator blades in a high pressure compressors. At the investigated low Reynolds number a loss reduction up to 20% was observed, while at the high Reynolds number a loss increase up to 30% compared to the steady flow case was noted. The numerical results obtained by the unsteady Reynolds-averaged Navier-Stokes code TRACE{sub U} which includes a transition correlation showed a very good agreement with the experimental results. Further on indications for new design criteria considering unsteady flow effects were provided. (orig.) [German] Bei der aerodynamischen Auslegung von Turbomaschinenbeschaufelungen beruecksichtigten bisherige Verfahren instationaere Stroemungseffekte wie Schaufelreihen-Interaktion, Stoss-Grenzschicht-Wechselwirkung, Einfluss des Potentialfeldes und Sekundaerstroemungseffekte nur partiell ueber empirische und halbempirische Korrelationen. Im Rahmen
Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.; Anders, Scott G.; Melton, Latunia P.; Carter, Melissa B.; Allan, Brian G.; Capone, Francis J.
2013-01-01
A second wind tunnel test of the FAST-MAC circulation control model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 and 60 degrees, along with the transonic cruise configuration with zero degree flap deflection. Testing was again conducted over a wide range of Mach numbers up to 0.88, and Reynolds numbers up to 30 million based on the mean chord. The first wind tunnel test had poor transonic force and moment data repeatability at mild cryogenic conditions due to inadequate thermal conditioning of the balance. The second test demonstrated that an improvement to the balance heating system significantly improved the transonic data repeatability, but also indicated further improvements are still needed. The low-speed highlift performance of the model was improved by testing various blowing slot heights, and the circulation control was again demonstrated to be effective in re-attaching the flow over the wing at off-design transonic conditions. A new tailored spanwise blowing technique was also demonstrated to be effective at transonic conditions with the benefit of reduced mass flow requirements.
International Nuclear Information System (INIS)
Prospathopoulos, John M; Papadakis, Giorgos; Voutsinas, Spyros G; Diakakis, Kostas; Sieros, Giorgos; Chaviaropoulos, Takis K
2014-01-01
The aerodynamic characteristics of thick airfoils in high Reynolds number is assessed using two different CFD RANS solvers: the compressible MaPFlow and the incompressible CRES-flowNS-2D both equipped with the k-ω SST turbulence model. Validation is carried out by comparing simulations against existing high Reynolds experimental data for the NACA 63-018 airfoil in the range of -10° to 20°. The use of two different solvers aims on one hand at increasing the credibility in the results and on the other at quantifying the compressibility effects. Convergence of steady simulations is achieved within a mean range of -10° to 14° which refers to attached or light stall conditions. Over this range the simulations from the two codes are in good agreement. As stall gets deeper, steady convergence ceases and the simulations must switch to unsteady. Lift and drag oscillations are produced which increase in amplitude as the angle of attack increases. Finally in post stall, the average C L is found to decrease up to ∼24° or 32° for the FFA or the NACA 63-018 airfoils respectively, and then recover to higher values indicating a change in the unsteady features of the flow
Wave drag as the objective function in transonic fighter wing optimization
Phillips, P. S.
1984-01-01
The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.
Magnus effects on spinning transonic missiles
Seginer, A.; Rosenwasser, I.
1983-01-01
Magnus forces and moments were measured on a basic-finner model spinning in transonic flow. Spin was induced by canted fins or by full-span or semi-span, outboard and inboard roll controls. Magnus force and moment reversals were caused by Mach number, reduced spin rate, and angle of attack variations. Magnus center of pressure was found to be independent of the angle of attack but varied with the Mach number and model configuration or reduced spin rate.
Unsteady flow model for circulation-control airfoils
Rao, B. M.
1979-01-01
An analysis and a numerical lifting surface method are developed for predicting the unsteady airloads on two-dimensional circulation control airfoils in incompressible flow. The analysis and the computer program are validated by correlating the computed unsteady airloads with test data and also with other theoretical solutions. Additionally, a mathematical model for predicting the bending-torsion flutter of a two-dimensional airfoil (a reference section of a wing or rotor blade) and a computer program using an iterative scheme are developed. The flutter program has a provision for using the CC airfoil airloads program or the Theodorsen hard flap solution to compute the unsteady lift and moment used in the flutter equations. The adopted mathematical model and the iterative scheme are used to perform a flutter analysis of a typical CC rotor blade reference section. The program seems to work well within the basic assumption of the incompressible flow.
Bielat, Ralph P.; Wiley, Harleth G.
1959-01-01
An investigation was made at transonic speeds to determine some of the dynamic stability derivatives of a 45 deg. sweptback-wing airplane model. The model was sting mounted and was rigidly forced to perform a single-degree-of-freedom angular oscillation in pitch or yaw of +/- 2 deg. The investigation was made for angles of attack alpha, from -4 deg. to 14 deg. throughout most of the transonic speed range for values of reduced-frequency parameter from 0.015 to 0.040 based on wing mean aerodynamic chord and from 0.04 to 0.14 based on wing span. The results show that reduced frequency had only a small effect on the damping-in-pitch derivative and the oscillatory longitudinal stability derivative for all Mach numbers M and angles of attack with the exception of the values of damping coefficient near M = 1.03 and alpha = 8 deg. to 14 deg. In this region, the damping coefficient changed rapidly with reduced frequency and negative values of damping coefficient were measured at low values of reduced frequency. This abrupt variation of pitch damping with reduced frequency was a characteristic of the complete model or wing-body-vertical-tail combination. The damping-in-pitch derivative varied considerably with alpha and M for the horizontal-tail-on and horizontal-tail-off configurations, and the damping was relatively high at angles of attack corresponding to the onset of pitch-up for both configurations. The damping-in-yaw derivative was generally independent of reduced frequency and M at alpha = -4 deg. to 4 deg. At alpha = 8 deg. to 14 deg., the damping derivative increased with an increase in reduced frequency and alpha for the configurations having the wing, whereas the damping derivative was either independent of or decreased with increase in reduced frequency for the configuration without the wing. The oscillatory directional stability derivative for all configurations generally decreased with an increase in the reduced-frequency parameter, and, in some instances
A Coordinate Transformation for Unsteady Boundary Layer Equations
Directory of Open Access Journals (Sweden)
Paul G. A. CIZMAS
2011-12-01
Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.
A Numerical Study of Aerodynamic Performance and Noise of a Bionic Airfoil Based on Owl Wing
Directory of Open Access Journals (Sweden)
Xiaomin Liu
2014-08-01
Full Text Available Noise reduction and efficiency enhancement are the two important directions in the development of the multiblade centrifugal fan. In this study, we attempt to develop a bionic airfoil based on the owl wing and investigate its aerodynamic performance and noise-reduction mechanism at the relatively low Reynolds number. Firstly, according to the geometric characteristics of the owl wing, a bionic airfoil is constructed as the object of study at Reynolds number of 12,300. Secondly, the large eddy simulation (LES with the Smagorinsky model is adopted to numerically simulate the unsteady flow fields around the bionic airfoil and the standard NACA0006 airfoil. And then, the acoustic sources are extracted from the unsteady flow field data, and the Ffowcs Williams-Hawkings (FW-H equation based on Lighthill's acoustic theory is solved to predict the propagation of these acoustic sources. The numerical results show that the lift-to-drag ratio of bionic airfoil is higher than that of the traditional NACA 0006 airfoil because of its deeply concave lower surface geometry. Finally, the sound field of the bionic airfoil is analyzed in detail. The distribution of the A-weighted sound pressure levels, the scaled directivity of the sound, and the distribution of dP/dt on the airfoil surface are provided so that the characteristics of the acoustic sources could be revealed.
Analysis of Limit Cycle Oscillation/Transonic High Alpha Flow Visualization
National Research Council Canada - National Science Library
Cunningham, Atlee M
1997-01-01
...) at low alpha condition typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...
Review of the physics of enhancing vortex lift by unsteady excitation
Wu, J. Z.; Vakili, A. D.; Wu, J. M.
1991-01-01
A review aimed at providing a physical understanding of the crucial mechanisms for obtaining super lift by means of unsteady excitations is presented. Particular attention is given to physical problems, including rolled-up vortex layer instability and receptivity, wave-vortex interaction and resonance, nonlinear streaming, instability of vortices behind bluff bodies and their shedding, and vortex breakdown. A general theoretical framework suitable for handling the unsteady vortex flows is introduced. It is suggested that wings with swept and sharp leading edges, equipped with devices for unsteady excitations, could yield the first breakthrough of the unsteady separation barrier and provide super lift at post-stall angle of attack.
Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine
Directory of Open Access Journals (Sweden)
Eduard Dyachuk
2015-08-01
Full Text Available The knowledge of unsteady forces is necessary when designing vertical axis wind turbines (VAWTs. Measurement data for turbines operating at an open site are still very limited. The data obtained from wind tunnels or towing tanks can be used, but have limited applicability when designing large-scale VAWTs. This study presents experimental data on the normal forces of a 12-kW straight-bladed VAWT operated at an open site north of Uppsala, Sweden. The normal forces are measured with four single-axis load cells. The data are obtained for a wide range of tip speed ratios: from 1.7 to 4.6. The behavior of the normal forces is analyzed. The presented data can be used in validations of aerodynamic models and the mechanical design for VAWTs.
A review of recent developments in the understanding of transonic shock buffet
Giannelis, Nicholas F.; Vio, Gareth A.; Levinski, Oleg
2017-07-01
Within a narrow band of flight conditions in the transonic regime, interactions between shock-waves and intermittently separated shear layers result in large amplitude, self-sustained shock oscillations. This phenomenon, known as transonic shock buffet, limits the flight envelope and is detrimental to both platform handling quality and structural integrity. The severity of this instability has incited a plethora of research to ascertain an underlying physical mechanism, and yet, with over six decades of investigation, aspects of this complex phenomenon remain inexplicable. To promote continual progress in the understanding of transonic shock buffet, this review presents a consolidation of recent investigations in the field. The paper begins with a conspectus of the seminal literature on shock-induced separation and modes of shock oscillation. The currently prevailing theories for the governing physics of transonic shock buffet are then detailed. This is followed by an overview of computational studies exploring the phenomenon, where the results of simulation are shown to be highly sensitive to the specific numerical methods employed. Wind tunnel investigations on two-dimensional aerofoils at shock buffet conditions are then outlined and the importance of these experiments for the development of physical models stressed. Research considering dynamic structural interactions in the presence of shock buffet is also highlighted, with a particular emphasis on the emergence of a frequency synchronisation phenomenon. An overview of three-dimensional buffet is provided next, where investigations suggest the governing mechanism may differ significantly from that of two-dimensional sections. Subsequently, a number of buffet suppression technologies are described and their efficacy in mitigating shock oscillations is assessed. To conclude, recommendations for the direction of future research efforts are given.
Suppressing unsteady flow in arterio-venous fistulae
Grechy, L.; Iori, F.; Corbett, R. W.; Shurey, S.; Gedroyc, W.; Duncan, N.; Caro, C. G.; Vincent, P. E.
2017-10-01
Arterio-Venous Fistulae (AVF) are regarded as the "gold standard" method of vascular access for patients with end-stage renal disease who require haemodialysis. However, a large proportion of AVF do not mature, and hence fail, as a result of various pathologies such as Intimal Hyperplasia (IH). Unphysiological flow patterns, including high-frequency flow unsteadiness, associated with the unnatural and often complex geometries of AVF are believed to be implicated in the development of IH. In the present study, we employ a Mesh Adaptive Direct Search optimisation framework, computational fluid dynamics simulations, and a new cost function to design a novel non-planar AVF configuration that can suppress high-frequency unsteady flow. A prototype device for holding an AVF in the optimal configuration is then fabricated, and proof-of-concept is demonstrated in a porcine model. Results constitute the first use of numerical optimisation to design a device for suppressing potentially pathological high-frequency flow unsteadiness in AVF.
Optimization of Root Section for Ultra-long Steam Turbine Rotor Blade
Hála, Jindřich; Luxa, Martin; Šimurda, David; Bobčík, Marek; Novák, Ondřej; Rudas, Bartoloměj; Synáč, Jaroslav
2018-04-01
This study presents the comparison of aerodynamic performances of two successive designs of the root profiles for the ultra-long rotor blade equipped with a straight fir-tree dovetail. Since aerodynamic and strength requirements laid upon the root section design are contradictory, it is necessary to aerodynamically optimize the design within the limits given by the foremost strength requirements. The most limiting criterion of the static strength is the size of the blade cross-section, which is determined by the number of blades in a rotor and also by the shape and size of a blade dovetail. The aerodynamic design requires mainly the zero incidence angle at the inlet of a profile and in the ideal case ensures that the load does not exceed a limit load condition. Moreover, the typical root profile cascades are transonic with supersonic exit Mach number, therefore, the shape of a suction side and a trailing edge has to respect transonic expansion of a working gas. In this paper, the two variants of root section profile cascades are compared and the aerodynamic qualities of both variants are verified using CFD simulation and two mutually independent experimental methods of measurements (optical and pneumatic).
Unsteady MHD stagnation flow over a moving wall
International Nuclear Information System (INIS)
Kumari, M.; Nath, G.
2006-01-01
The unsteady viscous stagnation flow of an electrically conducting fluid over a continuously moving wall with an applied magnetic field has been investigated when the free stream and wall velocities increase arbitrarily with time. The flow is initially (t = 0) steady and at time t > 0, it becomes unsteady. The semi-similar solution of the unsteady Navier-Stokes equations along with the energy equation governing the flow and heat transfer has been obtained numerically. Also the self-similar solution is obtained when the surface and free stream velocities vary inversely as a linear function of time. The shear stress and the heat transfer increase with time and magnetic field. The surface shear stress vanishes for certain value of the ratio of the wall velocity to the free stream velocity. (author)
Internal flow measurement in transonic compressor by PIV technique
Wang, Tongqing; Wu, Huaiyu; Liu, Yin
2001-11-01
The paper presents some research works conducted in National Key Laboratory of Aircraft Engine of China on the shock containing supersonic flow measurement as well as the internal flow measurement of transoijc compressor by PIC technique. A kind of oil particles in diameter about 0.3 micrometers containing in the flow was discovered to be a very good seed for the PIV measurement of supersonic jet flow. The PIV measurement in over-expanded supersonic free jet and in the flow over wages show a very clear shock wave structure. In the PIV internal flow measurement of transonic compressor a kind of liquid particle of glycol was successful to be used as the seed. An illumination periscope with sheet forming optics was designed and manufactured, it leaded the laser shot generated from an integrate dual- cavity Nd:YAG laser of TSI PIV results of internal flow of an advanced low aspect ratio transonic compressor were shown and discussed briefly.
Ricot, Denis; Caussé, René; Misdariis, Nicolas
2005-04-01
The accordion reed is an example of a blown-closed free reed. Unlike most oscillating valves in wind musical instruments, self-sustained oscillations occur without acoustic coupling. Flow visualizations and measurements in water show that the flow can be supposed incompressible and potential. A model is developed and the solution is calculated in the time domain. The excitation force is found to be associated with the inertial load of the unsteady flow through the reed gaps. Inertial effect leads to velocity fluctuations in the reed opening and then to an unsteady Bernoulli force. A pressure component generated by the local reciprocal air movement around the reed is added to the modeled aerodynamic excitation pressure. Since the model is two-dimensional, only qualitative comparisons with air flow measurements are possible. The agreement between the simulated pressure waveforms and measured pressure in the very near-field of the reed is reasonable. In addition, an aeroacoustic model using the permeable Ffowcs Williams-Hawkings integral method is presented. The integral expressions of the far-field acoustic pressure are also computed in the time domain. In agreement with experimental data, the sound is found to be dominated by the dipolar source associated by the strong momentum fluctuations of the flow through the reed gaps. .
Time-domain Green's Function Method for three-dimensional nonlinear subsonic flows
Tseng, K.; Morino, L.
1978-01-01
The Green's Function Method for linearized 3D unsteady potential flow (embedded in the computer code SOUSSA P) is extended to include the time-domain analysis as well as the nonlinear term retained in the transonic small disturbance equation. The differential-delay equations in time, as obtained by applying the Green's Function Method (in a generalized sense) and the finite-element technique to the transonic equation, are solved directly in the time domain. Comparisons are made with both linearized frequency-domain calculations and existing nonlinear results.
Flow control for oblique shock wave reflections
Giepman, R.H.M.
2016-01-01
Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these
Unsteady Flame Embedding (UFE) Subgrid Model for Turbulent Premixed Combustion Simulations
El-Asrag, Hossam
2010-01-04
We present a formulation for an unsteady subgrid model for premixed combustion in the flamelet regime. Since chemistry occurs at the unresolvable scales, it is necessary to introduce a subgrid model that accounts for the multi-scale nature of the problem using the information available on the resolved scales. Most of the current models are based on the laminar flamelet concept, and often neglect the unsteady effects. The proposed model\\'s primary objective is to encompass many of the flame/turbulence interactions unsteady features and history effects. In addition it provides a dynamic and accurate approach for computing the subgrid flame propagation velocity. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames. A set of elemental one dimensional flames is used to describe the turbulent flame structure at the subgrid level. The stretched flame calculations are performed on the stagnation line of a strained flame using the unsteady filtered strain rate computed from the resolved- grid. The flame iso-surface is tracked using an accurate high-order level set formulation to propagate the flame interface at the coarse resolution with minimum numerical diffusion. In this paper the solver and the model components are introduced and used to investigate two unsteady flames with different Lewis numbers in the thin reaction zone regime. The results show that the UFE model captures the unsteady flame-turbulence interactions and the flame propagation speed reasonably well. Higher propagation speed is observed for the lower than unity Lewis number flame because of the impact of differential diffusion.
Unsteady force estimation using a Lagrangian drift-volume approach
McPhaden, Cameron J.; Rival, David E.
2018-04-01
A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.
Modeling of Unsteady Sheet Cavitation on Marine Propeller Blades
Directory of Open Access Journals (Sweden)
Spyros A. Kinnas
2003-01-01
Full Text Available Unsteady sheet cavitation is very common on marine propulsor blades. The authors summarize a lifting-surface and a surface-panel model to solve for the unsteady cavitating flow around a propeller that is subject to nonaxisymmetric inflow. The time-dependent extent and thickness of the cavity were determined by using an iterative method. The cavity detachment was determined by applying the smooth detachment criterion in an iterative manner. A nonzeroradius developed vortex cavity model was utilized at the tip of the blade, and the trailing wake geometry was determined using a fully unsteady wake-alignment process. Comparisons of predictions by the two models and measurements from several experiments are given.
Directory of Open Access Journals (Sweden)
Thanhtoan Tran
2014-08-01
Full Text Available The objective of this study is to illustrate the unsteady aerodynamic effects of a floating offshore wind turbine experiencing the prescribed pitching motion of a supporting floating platform as a sine function. The three-dimensional, unsteady Reynolds Averaged Navier-Stokes equations with the shear-stress transport (SST k-ω turbulence model were applied. Moreover, an overset grid approach was used to model the rigid body motion of a wind turbine blade. The current simulation results are compared to various approaches from previous studies. The unsteady aerodynamic loads of the blade were demonstrated to change drastically with respect to the frequency and amplitude of platform motion.
Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids
Ahmad, Jasim; Duque, Earl P. N.
1996-01-01
An overset grid thin-layer Navier-Stokes code has been extended to include dynamic motion of helicopter rotor blades through relative grid motion. The unsteady flowfield and airloads on an AH-IG rotor in forward flight were computed to verify the methodology and to demonstrate the method's potential usefulness towards comprehensive helicopter codes. In addition, the method uses the blade's first harmonics measured in the flight test to prescribe the blade motion. The solution was impulsively started and became periodic in less than three rotor revolutions. Detailed unsteady numerical flow visualization techniques were applied to the entire unsteady data set of five rotor revolutions and exhibited flowfield features such as blade vortex interaction and wake roll-up. The unsteady blade loads and surface pressures compare well against those from flight measurements. Details of the method, a discussion of the resulting predicted flowfield, and requirements for future work are presented. Overall, given the proper blade dynamics, this method can compute the unsteady flowfield of a general helicopter rotor in forward flight.
Turbine-99 unsteady simulations - Validation
International Nuclear Information System (INIS)
Cervantes, M J; Andersson, U; Loevgren, H M
2010-01-01
The Turbine-99 test case, a Kaplan draft tube model, aimed to determine the state of the art within draft tube simulation. Three workshops were organized on the matter in 1999, 2001 and 2005 where the geometry and experimental data were provided as boundary conditions to the participants. Since the last workshop, computational power and flow modelling have been developed and the available data completed with unsteady pressure measurements and phase resolved velocity measurements in the cone. Such new set of data together with the corresponding phase resolved velocity boundary conditions offer new possibilities to validate unsteady numerical simulations in Kaplan draft tube. The present work presents simulation of the Turbine-99 test case with time dependent angular resolved inlet velocity boundary conditions. Different grids and time steps are investigated. The results are compared to experimental time dependent pressure and velocity measurements.
Turbine-99 unsteady simulations - Validation
Cervantes, M. J.; Andersson, U.; Lövgren, H. M.
2010-08-01
The Turbine-99 test case, a Kaplan draft tube model, aimed to determine the state of the art within draft tube simulation. Three workshops were organized on the matter in 1999, 2001 and 2005 where the geometry and experimental data were provided as boundary conditions to the participants. Since the last workshop, computational power and flow modelling have been developed and the available data completed with unsteady pressure measurements and phase resolved velocity measurements in the cone. Such new set of data together with the corresponding phase resolved velocity boundary conditions offer new possibilities to validate unsteady numerical simulations in Kaplan draft tube. The present work presents simulation of the Turbine-99 test case with time dependent angular resolved inlet velocity boundary conditions. Different grids and time steps are investigated. The results are compared to experimental time dependent pressure and velocity measurements.
Unsteady flow measurements in centrifugal compressors
International Nuclear Information System (INIS)
Bammert, K.; Mobarak, A.; Rautenberg, M.
1976-01-01
Centrifugal compressors and blowers are often used for recycling the coolant gas in gas-cooled reactors. To achieve the required high pressure ratios, highly loaded centrifugal compressors are built. The paper deals with unsteady flow measurements on highly loaded centrifugal impellers. Measurements of the approaching flow have been done with hot wires. The method of measurement enabled us to get the velocity distribution across the pitch ahead of the inducer. The static pressure signals along the shroud line has been discussed on the basis of some theoretical considerations. Accordingly the form of flow in the impeller and the wave flow or separation zones in the impeller can now be better interpreted. The importance of the unsteady nature of the relative flow, especially at impeller exit, is clearly demonstrated. Measurements with high responsive total pressure probes in the vicinity of impeller exit and the subsequent calculations have shown, that the instantaneous energy transfer at a certain point after the impeller may differ by more than 30% from the Euler work. Lastly, unsteady pressure measurements along the shroud line have been performed during surge and rotating stall. The surge signal have been analyzed in more detail and the mechanism of flow rupture and pressure recovery during a surge cycle is thoroughly discussed. (orig.) [de
Stratified steady and unsteady two-phase flows between two parallel plates
International Nuclear Information System (INIS)
Sim, Woo Gun
2006-01-01
To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated
Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...
Ground effect aerodynamics of racing cars
Zhang, Xin; Toet, Willem; Zerihan, Jonathan
2006-01-01
We review the progress made during the last thirty years on ground effect aerodynamics associated with race cars, in particular open wheel race cars. Ground effect aerodynamics of race cars is concerned with generating downforce, principally via low pressure on the surfaces nearest to the ground. The “ground effected” parts of an open wheeled car's aerodynamics are the most aerodynamically efficient and contribute less drag than that associated with, for example, an upper rear wing. Whilst dr...
Theoretical and numerical studies of transonic flow of moist air around a thin airfoil
Energy Technology Data Exchange (ETDEWEB)
Lee, Jang-Chang [School of Mechanical Engineering, Andong National University, Kyongbuk (Korea); Rusak, Zvi [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)
2002-07-01
Numerical studies of a two-dimensional and steady transonic flow of moist air around a thin airfoil with condensation are presented. The computations are guided by a recent transonic small-disturbance (TSD) theory of Rusak and Lee (2000) on this topic. The asymptotic model provides a simplified framework to investigate the changes in the flow field caused by the heat addition from a nonequilibrium process of condensation of water vapor in the air by homogeneous nucleation. An iterative method which is based on a type-sensitive difference scheme is applied to solve the governing equations. The results demonstrate the similarity rules for transonic flow of moist air and the effects of energy supply by condensation on the flow behavior. They provide a method to formulate various cases with different flow properties that have a sufficiently close behavior and that can be used in future computations, experiments, and design of flow systems operating with moist air. Also, the computations show that the TSD solutions of moist air flows represent the essence of the flow character computed from the inviscid fluid flow equations. (orig.)
Aerodynamic Aspects of Wind Energy Conversion
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær
2011-01-01
This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor...
Aerodynamic design on high-speed trains
Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li
2016-04-01
Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
ISAC: A tool for aeroservoelastic modeling and analysis
Adams, William M., Jr.; Hoadley, Sherwood Tiffany
1993-01-01
The capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules is discussed. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrates some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.
Aerodynamic Noise Generated by Shinkansen Cars
KITAGAWA, T.; NAGAKURA, K.
2000-03-01
The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.
Effects of Various Fillet Shapes on a 76/40 Double Delta Wing from Mach 0.18 to 0.7
National Research Council Canada - National Science Library
Gonzalez, Hugo
2003-01-01
.... These fillets were developed to control the shedding, trajectory, and subsequent breakdown of vortices to enhance aircraft aerodynamic performance at subsonic and transonic speeds, and at elevated angles of attack...
Transition of unsteady velocity profiles with reverse flow
Das, Debopam; Arakeri, Jaywant H
1998-01-01
This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channe...
Experimental validation of an ultrasonic flowmeter for unsteady flows
Leontidis, V.; Cuvier, C.; Caignaert, G.; Dupont, P.; Roussette, O.; Fammery, S.; Nivet, P.; Dazin, A.
2018-04-01
An ultrasonic flowmeter was developed for further applications in cryogenic conditions and for measuring flow rate fluctuations in the range of 0 to 70 Hz. The prototype was installed in a flow test rig, and was validated experimentally both in steady and unsteady water flow conditions. A Coriolis flowmeter was used for the calibration under steady state conditions, whereas in the unsteady case the validation was done simultaneously against two methods: particle image velocimetry (PIV), and with pressure transducers installed flush on the wall of the pipe. The results show that the developed flowmeter and the proposed methodology can accurately measure the frequency and amplitude of unsteady fluctuations in the experimental range of 0-9 l s-1 of the mean main flow rate and 0-70 Hz of the imposed disturbances.
Unsteady force characteristics on foils undergoing pitching motion
International Nuclear Information System (INIS)
Yang, Chang Jo
2006-01-01
In the present study the unsteady forces acting on the pitching foils such as a flat plate, NACA0010, NACA0020, NACA65-0910 and BTE have been measured by using a six-axis sensor in a circulating water tunnel at a low Reynolds number region. The unsteady characteristics of the dynamic drag and lift have been compared to the quasi-steady ones which are measured under the stationary condition. The pitching motion is available for keeping the lift higher after the separation occurs. Especially, the characteristics of the dynamic lift are quite different from the quasi-steady one at high pitching frequency regions. As the pitching frequency deceases, the amplitude of the dynamic lift becomes closer to the quasi-steady one. However, the phase remains different between the steady and unsteady conditions even at low pitching frequencies. On the other hand, the dynamic drag is governed strongly by the angle of attack
Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings
Wang, Xiaoming; Zhou, Wenya; Wu, Zhigang
2018-03-01
Aerodynamic properties of flexible wings can be improved via shape morphing using piezocomposite materials. Dynamic shape control of flexible wings is investigated in this study by considering the interactions between structural dynamics, unsteady aerodynamics and piezo-actuations. A novel antisymmetric angle-ply bimorph configuration of piezocomposite actuators is presented to realize coupled bending-torsional shape control. The active aeroelastic model is derived using finite element method and Theodorsen unsteady aerodynamic loads. A time-varying linear quadratic Gaussian (LQG) tracking control system is designed to enhance aerodynamic lift with pre-defined trajectories. Proof-of-concept simulations of static and dynamic shape control are presented for a scaled high-aspect-ratio wing model. Vibrations of the wing and fluctuations in aerodynamic forces are caused by using the static voltages directly in dynamic shape control. The lift response has tracked the trajectories well with favorable dynamic morphing performance via feedback tracking control.
Low-Order Modeling of Dynamic Stall on Airfoils in Incompressible Flow
Narsipur, Shreyas
Unsteady aerodynamics has been a topic of research since the late 1930's and has increased in popularity among researchers studying dynamic stall in helicopters, insect/bird flight, micro air vehicles, wind-turbine aerodynamics, and ow-energy harvesting devices. Several experimental and computational studies have helped researchers gain a good understanding of the unsteady ow phenomena, but have proved to be expensive and time-intensive for rapid design and analysis purposes. Since the early 1970's, the push to develop low-order models to solve unsteady ow problems has resulted in several semi-empirical models capable of effectively analyzing unsteady aerodynamics in a fraction of the time required by high-order methods. However, due to the various complexities associated with time-dependent flows, several empirical constants and curve fits derived from existing experimental and computational results are required by the semi-empirical models to be an effective analysis tool. The aim of the current work is to develop a low-order model capable of simulating incompressible dynamic-stall type ow problems with a focus on accurately modeling the unsteady ow physics with the aim of reducing empirical dependencies. The lumped-vortex-element (LVE) algorithm is used as the baseline unsteady inviscid model to which augmentations are applied to model unsteady viscous effects. The current research is divided into two phases. The first phase focused on augmentations aimed at modeling pure unsteady trailing-edge boundary-layer separation and stall without leading-edge vortex (LEV) formation. The second phase is targeted at including LEV shedding capabilities to the LVE algorithm and combining with the trailing-edge separation model from phase one to realize a holistic, optimized, and robust low-order dynamic stall model. In phase one, initial augmentations to theory were focused on modeling the effects of steady trailing-edge separation by implementing a non-linear decambering
Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng
2017-07-01
The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight
Energy Technology Data Exchange (ETDEWEB)
Liu, Meng; Duan, YuFeng; Zhang, TieNan [School of Energy and Environment, Southeast University, Sipailou 2, Nanjing 210096 (China)
2010-09-15
The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distance increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)
CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows
International Nuclear Information System (INIS)
Noori Rahim Abadi, S.M.A.; Ahmadpour, A.; Abadi, S.M.N.R.; Meyer, J.P.
2017-01-01
Highlights: • CFD-based shape optimization of a nozzle and a turbine blade regarding nucleating steam flow is performed. • Nucleation rate and droplet radius are the best suited objective functions for the optimization process. • Maximum 34% reduction in entropy generation rate is reported for turbine cascade. • A maximum 10% reduction in Baumann factor and a maximum 2.1% increase in efficiency is achieved for a turbine cascade. - Abstract: In this study CFD-based shape optimization of a 3D nozzle and a 2D turbine blade cascade is undertaken in the presence of non-equilibrium condensation within the considered flow channels. A two-fluid formulation is used for the simulation of unsteady, turbulent, supersonic and compressible flow of wet steam accounting for relevant phase interaction between nucleated liquid droplets and continuous vapor phase. An in-house CFD code is developed to solve the governing equations of the two phase flow and was validated against available experimental data. Optimization is carried out in respect to various objective functions. It is shown that nucleation rate and maximum droplet radius are the best suited target functions for reducing thermodynamic and aerodynamic losses caused by the spontaneous nucleation. The maximum increase of 2.1% in turbine blade efficiency is achieved through shape optimization process.
Numerical Investigations of Unsteady Flow in a Centrifugal Pump with a Vaned Diffuser
Directory of Open Access Journals (Sweden)
Olivier Petit
2013-01-01
Full Text Available Computational fluid dynamics (CFD analyses were made to study the unsteady three-dimensional turbulence in the ERCOFTAC centrifugal pump test case. The simulations were carried out using the OpenFOAM Open Source CFD software. The test case consists of an unshrouded centrifugal impeller with seven blades and a radial vaned diffuser with 12 vanes. A large number of measurements are available in the radial gap between the impeller and the diffuse, making this case ideal for validating numerical methods. Results of steady and unsteady calculations of the flow in the pump are compared with the experimental ones, and four different turbulent models are analyzed. The steady simulation uses the frozen rotor concept, while the unsteady simulation uses a fully resolved sliding grid approach. The comparisons show that the unsteady numerical results accurately predict the unsteadiness of the flow, demonstrating the validity and applicability of that methodology for unsteady incompressible turbomachinery flow computations. The steady approach is less accurate, with an unphysical advection of the impeller wakes, but accurate enough for a crude approximation. The different turbulence models predict the flow at the same level of accuracy, with slightly different results.
Viscous-inviscid method for the simulation of turbulent unsteady wind turbine airfoil flow
Energy Technology Data Exchange (ETDEWEB)
Bermudez, L.; Velazquez, A.; Matesanz, A. [Thermal Engineering Area, Carlos III University of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain)
2002-06-01
A Viscous-inviscid interaction method is presented that allows for the simulation of unsteady airfoil flow in the context of wind turbine applications. The method couples a 2-D external unsteady potential flow to a 2-D unsteady turbulent boundary layer. The separation point on the airfoil leeward side is determined in a self-consistent way from the boundary-layer equations, and the separated flow region is modelled independently. Wake shape and motion are also determined in a self-consistent way, while an unsteady Kutta condition is implemented. The method is able to deal with attached flow and light stall situations characterised by unsteady turbulent boundary-layer separation size up to 50% of the airfoil chord length. The results of the validation campaign show that the method could be used for industrial design purposes because of its numerical robustness, reasonable accuracy, and limited computational time demands.
A new unified approach for analyzing wing-body-tail configurations with control surfaces
Tseng, K.; Morino, L.
1976-01-01
A general theory for steady and unsteady, subsonic and supersonic potential aerodynamics for complex configurations is presented. Special attention is given to the theoretical formulation and the corresponding numerical implementation for coplanar interfering surfaces. Applying the Green's function method to the equation of the velocity potential and discretizing the spatial problem by using the finite-element technique, yields a set of differential-delay equations in time relating the potential to the normal wash. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t less than or equal to 0 (steady state) and of small perturbations around the steady state for time t greater than 0; the solution is obtained in the Laplace domain. From the potential, the aerodynamic pressure and the generalized forces are evaluated. The program SOUSSA (Steady, Oscillatory and Unsteady Subsonic and Supersonic Aerodynamics) is briefly described. Numerical results obtained with SOUSSA are presented.
Aeroelastic response and blade loads of a composite rotor in forward flight
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.
Computational aspects of unsteady flows
Cebeci, T.; Carr, L. W.; Khattab, A. A.; Schimke, S. M.
1985-01-01
The calculation of unsteady flows and the development of numerical methods for solving unsteady boundary layer equations and their application to the flows around important configurations such as oscillating airfoils are presented. A brief review of recent work is provided with emphasis on the need for numerical methods which can overcome possible problems associated with flow reversal and separation. The zig-zag and characteristic box schemes are described in this context, and when embodied in a method which permits interaction between solutions of inviscid and viscous equations, the characteristic box scheme is shown to avoid the singularity associated with boundary layer equations and prescribed pressure gradient. Calculations were performed for a cylinder started impulsively from rest and oscillating airfoils. The results are presented and discussed. It is conlcuded that turbulence models based on an algebraic specification of eddy viscosity can be adequate, that location of translation is important to the calculation of the location of flow separation and, therefore, to the overall lift of an oscillating airfoil.
Energy Technology Data Exchange (ETDEWEB)
D' Alessandro, V.; Montelpare, S.; Ricci, R.; Secchiaroli, A. [Universita Politecnica delle Marche, Dipartimento di Energetica, Via Brecce Bianche 1, 60131 Ancona (Italy)
2010-08-15
When compared with of other wind turbine the Savonius wind rotor offers lower performance in terms of power coefficient, on the other hand it offers a number of advantages as it is extremely simple to built, it is self-starting and it has no need to be oriented in the wind direction. Although it is well suited to be integrated in urban environment as mini or micro wind turbine it is inappropriate when high power is requested. For this reason several studies have been carried-out in recent years in order to improve its aerodynamic performance. The aim of this research is to gain an insight into the complex flow field developing around a Savonius wind rotor and to evaluate its performance. A mathematical model of the interaction between the flow field and the rotor blades was developed and validated by comparing its results with data obtained at Environmental Wind Tunnel (EWT) laboratory of the ''Polytechnic University of Marche''. (author)
Transonic shock wave. Boundary layer interaction at a convex wall
Koren, B.; Bannink, W.J.
1984-01-01
A standard finite element procedure has been applied to the problem of transonic shock wave – boundary layer interaction at a convex wall. The method is based on the analytical Bohning-Zierep model, where the boundary layer is perturbed by a weak normal shock wave which shows a singular pressure
Numerical simulation of the unsteady progress in centrifuge
International Nuclear Information System (INIS)
Wei Chunlin; Zeng Shi
2006-01-01
Unsteady flow equations for the centrifuge are solved on a staggered grid by a finite volume method. The transient process that the axial flow in the centrifuge is established under a steady thermal driving. It can be concluded that the influence which causes the perturbing fluid is different at the beginning and the end of the processing. The flow is caused by the imbalance of temperature which turns to be caused by the imbalance of pressure. The results show that the numerical simulation is effective at the unsteady fluid in a centrifuge. (authors)
Parallel computation of fluid-structural interactions using high resolution upwind schemes
Hu, Zongjun
An efficient and accurate solver is developed to simulate the non-linear fluid-structural interactions in turbomachinery flutter flows. A new low diffusion E-CUSP scheme, Zha CUSP scheme, is developed to improve the efficiency and accuracy of the inviscid flux computation. The 3D unsteady Navier-Stokes equations with the Baldwin-Lomax turbulence model are solved using the finite volume method with the dual-time stepping scheme. The linearized equations are solved with Gauss-Seidel line iterations. The parallel computation is implemented using MPI protocol. The solver is validated with 2D cases for its turbulence modeling, parallel computation and unsteady calculation. The Zha CUSP scheme is validated with 2D cases, including a supersonic flat plate boundary layer, a transonic converging-diverging nozzle and a transonic inlet diffuser. The Zha CUSP2 scheme is tested with 3D cases, including a circular-to-rectangular nozzle, a subsonic compressor cascade and a transonic channel. The Zha CUSP schemes are proved to be accurate, robust and efficient in these tests. The steady and unsteady separation flows in a 3D stationary cascade under high incidence and three inlet Mach numbers are calculated to study the steady state separation flow patterns and their unsteady oscillation characteristics. The leading edge vortex shedding is the mechanism behind the unsteady characteristics of the high incidence separated flows. The separation flow characteristics is affected by the inlet Mach number. The blade aeroelasticity of a linear cascade with forced oscillating blades is studied using parallel computation. A simplified two-passage cascade with periodic boundary condition is first calculated under a medium frequency and a low incidence. The full scale cascade with 9 blades and two end walls is then studied more extensively under three oscillation frequencies and two incidence angles. The end wall influence and the blade stability are studied and compared under different
Prediction and Reduction of Aerodynamic Noise of the Multiblade Centrifugal Fan
Directory of Open Access Journals (Sweden)
Shuiqing Zhou
2014-08-01
Full Text Available An aerodynamic and aeroacoustic investigation of the multiblade centrifugal fan is proposed in this paper, and a hybrid technique of combining flow field calculation and acoustic analysis is applied to solve the aeroacoustic problem of multiblade centrifugal fan. The unsteady flow field of the multiblade centrifugal fan is predicted by solving the incompressible Reynolds-averaged Navier-Stokes (RANS equations with conventional computing techniques for fluid dynamics. The principal noise source induced is extracted from the calculation of the flow field by using acoustic principles, and the modeled sources on inner and outer surfaces of the volute are calculated with multiregional boundary element method (BEM. Through qualitative analysis, the sound pressure amplitude distribution of the multiblade centrifugal fan in near field is given and the sound pressure level (SPL spectrum diagram of monitoring points in far field is obtained. Based on the analysis results, the volute tongue structure is adjusted and then a low-noise design for the centrifugal fan is proposed. The comparison of noise tests shows the noise reduction of improved fan model is more obvious, which is in good agreement with the prediction using the hybrid techniques.
Validation of a CFD code for Unsteady Flows with cyclic boundary Conditions
International Nuclear Information System (INIS)
Kim, Jong-Tae; Kim, Sang-Baik; Lee, Won-Jae
2006-01-01
Currently Lilac code is under development to analyze thermo-hydraulics of a high-temperature gas-cooled reactor (GCR). Interesting thermo-hydraulic phenomena in a nuclear reactor are usually unsteady and turbulent. The analysis of the unsteady flows by using a three dimension CFD code is time-consuming if the flow domain is very large. Hopefully, flow domains commonly encountered in the nuclear thermo-hydraulics is periodic. So it is better to use the geometrical characteristics in order to reduce the computational resources. To get the benefits from reducing the computation domains especially for the calculations of unsteady flows, the cyclic boundary conditions are implemented in the parallelized CFD code LILAC. In this study, the parallelized cyclic boundary conditions are validated by solving unsteady laminar and turbulent flows past a circular cylinder
Beatus, Tsevi; Cohen, Itai
2015-08-01
While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.
New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity
Pak, Chan-Gi; Lung, Shun-Fat
2017-01-01
A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.
Unsteady Probabilistic Analysis of a Gas Turbine System
Brown, Marilyn
2003-01-01
In this work, we have considered an annular cascade configuration subjected to unsteady inflow conditions. The unsteady response calculation has been implemented into the time marching CFD code, MSUTURBO. The computed steady state results for the pressure distribution demonstrated good agreement with experimental data. We have computed results for the amplitudes of the unsteady pressure over the blade surfaces. With the increase in gas turbine engine structural complexity and performance over the past 50 years, structural engineers have created an array of safety nets to ensure against component failures in turbine engines. In order to reduce what is now considered to be excessive conservatism and yet maintain the same adequate margins of safety, there is a pressing need to explore methods of incorporating probabilistic design procedures into engine development. Probabilistic methods combine and prioritize the statistical distributions of each design variable, generate an interactive distribution and offer the designer a quantified relationship between robustness, endurance and performance. The designer can therefore iterate between weight reduction, life increase, engine size reduction, speed increase etc.
Flow Measurements of a Plunging Wing in Unsteady Environment
Wengel, Jesse; Nathan, Rungun; Cheng, Bo; Eslam-Panah, Azar
2017-11-01
Despite the great progress in their design and control, Unmanned Aerial Vehicles (UAVs) are tremendously troubled while flying in turbulent environments, which are common in the lower atmospheric boundary layer (ABL). A nominally 2D plunging wing was developed and tested in the presence of unsteady wake to investigate the effect of the flow disturbances on vorticity fields. The experiments were conducted in a water channel facility with test section width of 0.76 m, and a water depth of 0.6 m. The unsteady wake in the form of von Kármán Vortex Street was generated by a cylinder located upstream of the plunging wing. The plunge amplitude and frequency of the oscillation were adjusted to bracket the range of Strouhal numbers relevant to the biological locomotion (0.25PIV) was employed to quantitatively study the effect of unsteady wake on the flow measurements of the plunging wing.
MATHEMATICAL MODEL OF UNSTEADY HEAT TRANSFER OF PASSENGER CAR WITH HEATING SYSTEM
Directory of Open Access Journals (Sweden)
E. V. Biloshytskyi
2018-02-01
Full Text Available Purpose. The existing mathematical models of unsteady heat processes in a passenger car do not fully reflect the thermal processes, occurring in the car wits a heating system. In addition, unsteady heat processes are often studied in steady regime, when the heat fluxes and the parameters of the thermal circuit are constant and do not depend on time. In connection with the emergence of more effective technical solutions to the life support system there is a need for creating a new mathematical apparatus, which would allow taking into account these features and their influence on the course of unsteady heat processes throughout the travel time. The purpose of this work is to create a mathematical model of the heat regime of a passenger car with a heating system that takes into account the unsteady heat processes. Methodology. To achieve this task the author composed a system of differential equations, describing unsteady heat processes during the heating of a passenger car. For the solution of the composed system of equations, the author used the method of elementary balances. Findings. The paper presents the developed numerical algorithm and computer program for simulation of transitional heat processes in a locomotive traction passenger car, which allows taking into account the various constructive solutions of the life support system of passenger cars and to simulate unsteady heat processes at any stage of the trip. Originality. For the first time the author developed a mathematical model of heat processes in a car with a heating system, that unlike existing models, allows to investigate the unsteady heat engineering performance in the cabin of the car under different operating conditions and compare the work of various life support systems from the point of view their constructive solutions. Practical value. The work presented the developed mathematical model of the unsteady heat regime of the passenger car with a heating system to estimate
Axisymmetric, Ventilated Supercavitation in Unsteady, Horizontal Flow
Kawakami, Ellison; Lee, Seung-Jae; Arndt, Roger
2012-11-01
Drag reduction and/or speed augmentation of marine vehicles by means of supercavitation is a topic of great interest. During the initial launch of a supercavitating vehicle, an artificial supercavity is required until the vehicle can reach conditions at which a natural supercavity can be sustained. Previous studies at Saint Anthony Falls Laboratory (SAFL) focused on the behavior of ventilated supercavities in steady horizontal flows. In open waters, vehicles can encounter unsteady flows, especially when traveling under waves. A study has been carried out at SAFL to investigate the effects of unsteady flow on axisymmetric supercavities. An attempt is made to duplicate sea states seen in open waters. In an effort to track cavity dimensions throughout a wave cycle, an automated cavity tracking script has been developed. Using a high speed camera and the proper software, it is possible to synchronize cavity dimensions with pressure measurements taken inside the cavity. Results regarding supercavity shape, ventilation demand, cavitation parameters and closure methods are presented. It was found that flow unsteadiness caused a decrease in the overall length of the supercavity while having only a minimal effect on the maximum diameter. The supercavity volume varied with cavitation number and a possible relationship between the two is being explored. (Supported by ONR)
Investigation into the behaviors of ventilated supercavities in unsteady flow
Shao, Siyao; Wu, Yue; Haynes, Joseph; Arndt, Roger E. A.; Hong, Jiarong
2018-05-01
A systematic investigation of ventilated supercavitation behaviors in an unsteady flow is conducted using a high-speed water tunnel at the Saint Anthony Falls Laboratory. The cavity is generated with a forward facing model under varying ventilation rates and cavitator sizes. The unsteady flow is produced by a gust generator consisting of two hydrofoils flapping in unison with a varying angle of attack (AoA) and frequency (fg). The current experiment reveals five distinct cavity states, namely, the stable state, wavy state, pulsating state I, pulsating state II, and collapsing state, based on the variation of cavity geometry and pressure signatures inside the cavity. The distribution of cavity states over a broad range of unsteady conditions is summarized in a cavity state map. It shows that the transition of the supercavity from the stable state to pulsating and collapsing states is primarily induced by increasing AoA while the transition to the wavy state triggers largely by increasing fg. Remarkably, the state map over the non-dimensionalized half wavelength and wave amplitude of the perturbation indicates that the supercavity loses its stability and transitions to pulsating or collapsing states when the level of its distortion induced by the flow unsteadiness exceeds the cavity dimension under a steady condition. The state maps under different ventilation rates and cavitator sizes yield similar distribution but show that the occurrence of the cavity collapse can be suppressed with increasing ventilation coefficient or cavitator size. Such knowledge can be integrated into designing control strategies for the supercavitating devices operating under different unsteady conditions.
On the Unsteady-Motion Theory of Magnetic Forces for Maglev
1993-11-01
DivisionEnergy Technology Division Forces for Maglev Energy Technology DivisionEnergy Technology Division by S. S. Chen, S. Zhu, and Y. Cai APQ 4 袲...On the Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S. Chen, S. Zhu, and Y. Cai Energy Technology Division November 1993 Work supported...vi On The Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S
Wind Turbine Aerodynamics from an Aerospace Perspective
van Garrel, Arne; ten Pas, Sebastiaan; Venner, Cornelis H.; van Muijden, Jaap
2018-01-01
The current challenges in wind turbine aerodynamics simulations share a number of similarities with the challenges that the aerospace industry has faced in the past. Some of the current challenges in the aerospace aerodynamics community are also relevant for today’s wind turbine aerodynamics
Nonlinear Characteristics of Randomly Excited Transonic Flutter
DEFF Research Database (Denmark)
Christiansen, Lasse Engbo; Lehn-Schiøler, Tue; Mosekilde, Erik
2002-01-01
. When this model is extended by the introduction of nonlinear terms, it can reproduce the subcritical Hopf bifurcation. We hereafter consider the effects of subjecting simplified versions of the model to random external excitations representing the fluctuations present in the airflow. These models can......The paper describes the effects of random external excitations on the onset and dynamical characteristics of transonic flutter (i.e. large-amplitude, self-sustained oscillations) for a high aspect ratio wing. Wind tunnel experiments performed at the National Aerospace Laboratory (NAL) in Japan have...
Re, Richard J.; Pendergraft, Odis C., Jr.; Campbell, Richard L.
2006-01-01
A 1/4-scale wind tunnel model of an airplane configuration developed for short duration flight at subsonic speeds in the Martian atmosphere has been tested in the Langley Research Center Transonic Dynamics Tunnel. The tunnel was pumped down to extremely low pressures to represent Martian Mach/Reynolds number conditions. Aerodynamic data were obtained and upper and lower surface wind pressures were measured at one spanwise station on some configurations. Three unswept wings of the same planform but different airfoil sections were tested. Horizontal tail incidence was varied as was the deflection of plain and split trailing-edge flaps. One unswept wing configuration was tested with the lower part of the fuselage removed and the vertical/horizontal tail assembly inverted and mounted from beneath the fuselage. A sweptback wing was also tested. Tests were conducted at Mach numbers from 0.50 to 0.90. Wing chord Reynolds number was varied from 40,000 to 100,000 and angles of attack and sideslip were varied from -10deg to 20deg and -10deg to 10deg, respectively.
NASA Iced Aerodynamics and Controls Current Research
Addy, Gene
2009-01-01
This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.
Directory of Open Access Journals (Sweden)
Oksana Stalnov
Full Text Available We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion.
Stalnov, Oksana; Ben-Gida, Hadar; Kirchhefer, Adam J; Guglielmo, Christopher G; Kopp, Gregory A; Liberzon, Alexander; Gurka, Roi
2015-01-01
We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion.
Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics
DEFF Research Database (Denmark)
Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan
, and to determine aerodynamic forces and the corresponding ﬂutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefﬁcients found from the current version......The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional ﬂow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the ﬂow ﬁeld around bridge sections...
Aerodynamic drag on intermodal railcars
Kinghorn, Philip; Maynes, Daniel
2014-11-01
The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.
Analytical prediction of the unsteady lift on a rotor caused by downstream struts
Taylor, A. C., III; Ng, W. F.
1987-01-01
A two-dimensional, inviscid, incompressible procedure is presented for predicting the unsteady lift on turbomachinery blades caused by the upstream potential disturbance of downstream flow obstructions. Using the Douglas-Neumann singularity superposition potential flow computer program to model the downstream flow obstructions, classical equations of thin airfoil theory are then employed, to compute the unsteady lift on the upstream rotor blades. The method is applied to a particular geometry which consists of a rotor, a downstream stator, and downstream struts which support the engine casing. Very good agreement between the Douglas-Neumann program and experimental measurements was obtained for the downstream stator-strut flow field. The calculations for the unsteady lift due to the struts were in good agreement with the experiments in showing that the unsteady lift due to the struts decays exponentially with increased axial separation of the rotor and the struts. An application of the method showed that for a given axial spacing between the rotor and the strut, strut-induced unsteady lift is a very weak function of the axial or circumferential position of the stator.
Indian Academy of Sciences (India)
Home; Fellowship. Fellow Profile. Elected: 2007 Section: Engineering & Technology. Mittal, Prof. Sanjay Ph.D. (Minnesota), FNAE, FNA, FNASc. Date of birth: 27 February 1968. Specialization: Unsteady Aerodynamics, Finite Element Analysis, High Performance Computing and Bluff-body Flows, Aerodynamic Shape ...
Wright, A.D.; Fleming, P.; Van Wingerden, J.W.
2011-01-01
Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent
Wu, Chung-Hua
1993-01-01
This report represents a general theory applicable to axial, radial, and mixed flow turbomachines operating at subsonic and supersonic speeds with a finite number of blades of finite thickness. References reflect the evolution of computational methods used, from the inception of the theory in the 50's to the high-speed computer era of the 90's. Two kinds of relative stream surfaces, S(sub 1) and S(sub 2), are introduced for the purpose of obtaining a three-dimensional flow solution through the combination of two-dimensional flow solutions. Nonorthogonal curvilinear coordinates are used for the governing equations. Methods of computing transonic flow along S(sub 1) and S(sub 2) stream surfaces are given for special cases as well as for fully three-dimensional transonic flows. Procedures pertaining to the direct solutions and inverse solutions are presented. Information on shock wave locations and shapes needed for computations are discussed. Experimental data from a Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. (DFVLR) rotor and from a Chinese Academy of Sciences (CAS) transonic compressor rotor are compared with the computed flow properties.
Visualization of unsteady computational fluid dynamics
Haimes, Robert
1994-11-01
A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.
A novel method for unsteady flow field segmentation based on stochastic similarity of direction
Omata, Noriyasu; Shirayama, Susumu
2018-04-01
Recent developments in fluid dynamics research have opened up the possibility for the detailed quantitative understanding of unsteady flow fields. However, the visualization techniques currently in use generally provide only qualitative insights. A method for dividing the flow field into physically relevant regions of interest can help researchers quantify unsteady fluid behaviors. Most methods at present compare the trajectories of virtual Lagrangian particles. The time-invariant features of an unsteady flow are also frequently of interest, but the Lagrangian specification only reveals time-variant features. To address these challenges, we propose a novel method for the time-invariant spatial segmentation of an unsteady flow field. This segmentation method does not require Lagrangian particle tracking but instead quantitatively compares the stochastic models of the direction of the flow at each observed point. The proposed method is validated with several clustering tests for 3D flows past a sphere. Results show that the proposed method reveals the time-invariant, physically relevant structures of an unsteady flow.
DEFF Research Database (Denmark)
Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel
2013-01-01
This paper investigates the impact of the dynamic hydraulic conditions on the kinetics of chlorine decay in water supply systems. A simulation framework has been developed for the scale-adaptive hydraulic and chlorine decay modelling under steady- and unsteady-state flows. An unsteady decay coeff...... of experimental data provides new insights for the near real-time modelling and management of water quality as well as highlighting the uncertainty and challenges of accurately modelling the loss of disinfectant in water supply networks.......This paper investigates the impact of the dynamic hydraulic conditions on the kinetics of chlorine decay in water supply systems. A simulation framework has been developed for the scale-adaptive hydraulic and chlorine decay modelling under steady- and unsteady-state flows. An unsteady decay...... coefficient is defined which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. By coupling novel instrumentation technologies for continuous hydraulic monitoring and water quality sensors for in-pipe water quality sensing...
Analysis of Limit Cycle Oscillation/Transonic High Alpha Flow Visualization. Part 1: Discussion
National Research Council Canada - National Science Library
Cunningham, Atlee M
1998-01-01
...) at low alpha conditions typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...
Katz, Joseph
2006-01-01
Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.
Unsteady analytical solutions to the Poisson–Nernst–Planck equations
International Nuclear Information System (INIS)
Schönke, Johannes
2012-01-01
It is shown that the Poisson–Nernst–Planck equations for a single ion species can be formulated as one equation in terms of the electric field. This previously not analyzed equation shows similarities to the vector Burgers equation and is identical with it in the one dimensional case. Several unsteady exact solutions for one and multidimensional cases are presented. Besides new mathematical insights which these first known unsteady solutions give, they can serve as test cases in computer simulations to analyze numerical algorithms and to verify code. (paper)
Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion
Lee, Elizabeth M.; Batina, John T.
1990-01-01
Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.
Usry, J. W.; Wallace, J. W.
1971-01-01
The forebody drag of a supercritical body of revolution was measured in free flight over a Mach number range of 0.85 to 1.05 and a Reynolds number range of 11.5 x 10 to the 6th power to 19.4 x 10 to the 6th power and was compared with wind-tunnel data. The forebody drag coefficient for a Mach number less than 0.96 was 0.111 compared with the wind-tunnel value of 0.103. A gradual increase in the drag occurred in the Langley 8-foot transonic pressure tunnel at a lower Mach number than in the Langley 16-foot transonic tunnel or in the free-flight test. The sharp drag rise occurred near Mach 0.98 in free flight whereas the rise occurred near Mach 0.99 in the Langley 16-foot transonic tunnel. The sharp rise was not as pronounced in the Langley 8-foot transonic pressure tunnel and was probably affected by tunnel-wall-interference effects. The increase occurred more slowly and at a higher Mach number. These results indicate that the drag measurements made in the wind tunnels near Mach 1 were significantly affected by the relative size of the model and the wind tunnel.
Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface
International Nuclear Information System (INIS)
Mukhopadhyay, Swati
2011-01-01
Highlights: ► Unsteady boundary layer flow and heat transfer over a non-isothermal stretching sheet in a magnetic field are studied. ► Fluid velocity and temperature decrease for increasing unsteadiness parameter. ► Fluid velocity decreases but temperature increases with the increasing values of the Hartman number. ► The sheet temperature in respect of distance and time has analogous effects on the heat transfer. - Abstract: An analysis is made for the unsteady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching surface having a variable and general form of surface temperature which removes the restrictions of the particular forms of prescribed surface temperature. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the unsteadiness parameter, magnetic parameter, the temperature exponent parameters. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. It is found that the fluid velocity and temperature decrease for increasing unsteadiness parameter. Fluid velocity decreases with the increasing values of the Hartman number resulting an increase in the temperature field in steady as well in unsteady case. It is observed that the variation of the sheet temperature in respect of distance and time has analogous effects both on the free surface temperature and on the heat transfer rate (Nusselt number) at the sheet.
NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...
African Journals Online (AJOL)
2014-06-30
Jun 30, 2014 ... objective of this study is to control the simulation of unsteady flows around structures. ... Aerospace, our results were in good agreement with experimental .... Two-Equation Eddy-Viscosity Turbulence Models for Engineering.
Transonic shock wave. Turbulent boundary layer interaction on a curved surface
Nebbeling, C.; Koren, B.
1988-01-01
This paper describes an experimental investigation of a transonic shock wave - turbulent boundary layer interaction in a curved test section, in which the flow has been computed by a 2-D Euler flow method. The test section has been designed such that the flow near the shock wave on the convex curved
Vortex Formation During Unsteady Boundary-Layer Separation
Das, Debopam; Arakeri, Jaywant H.
1998-11-01
Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.
Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions
Yau, J. D.
2010-05-01
This paper intends to present a computational framework of aerodynamic analysis for a maglev (magnetically levitated) vehicle traveling over flexible guideways under oncoming wind loads. The guideway unit is simulated as a series of simple beams with identical span and the maglev vehicle as a rigid car body supported by levitation forces. To carry out the interaction dynamics of maglev vehicle/guideway system, this study adopts an onboard PID (proportional-integral-derivative) controller based on Ziegler-Nicholas (Z-N) method to control the levitation forces. Interaction of wind with high-speed train is a complicated situation arising from unsteady airflow around the train. In this study, the oncoming wind loads acting on the running maglev vehicle are generated in temporal/spatial domain using digital simulation techniques that can account for the moving effect of vehicle's speed and the spatial correlation of stochastic airflow velocity field. Considering the motion-dependent nature of levitation forces and the non-conservative characteristics of turbulent airflows, an iterative approach is used to compute the interaction response of the maglev vehicle/guideway coupling system under wind actions. For the purpose of numerical simulation, this paper employs Galerkin's method to convert the governing equations containing a maglev vehicle into a set of differential equations in generalized systems, and then solve the two sets of differential equations using an iterative approach with the Newmark method. From the present investigation, the aerodynamic forces may result in a significant amplification on acceleration amplitude of the running maglev vehicle at higher speeds. For this problem, a PID+LQR (linear quadratic regulator) controller is proposed to reduce the vehicle's acceleration response for the ride comfort of passengers.
A Bibliography of Transonic Dynamics Tunnel (TDT) Publications
Doggett, Robert V.
2016-01-01
The Transonic Dynamics Tunnel (TDT) at the National Aeronautics and Space Administration's (NASA) Langley Research Center began research operations in early 1960. Since that time, over 600 tests have been conducted, primarily in the discipline of aeroelasticity. This paper presents a bibliography of the publications that contain data from these tests along with other reports that describe the facility, its capabilities, testing techniques, and associated research equipment. The bibliography is divided by subject matter into a number of categories. An index by author's last name is provided.
Effects of Active Sting Damping on Common Research Model Data Quality
Acheson, Michael J.; Balakrishna, S.
2011-01-01
Recent tests using the Common Research Model (CRM) at the Langley National Transonic Facility (NTF) and the Ames 11-foot Transonic Wind Tunnel (11' TWT) produced large sets of data that have been used to examine the effects of active damping on transonic tunnel aerodynamic data quality. In particular, large statistically significant sets of repeat data demonstrate that the active damping system had no apparent effect on drag, lift and pitching moment repeatability during warm testing conditions, while simultaneously enabling aerodynamic data to be obtained post stall. A small set of cryogenic (high Reynolds number) repeat data was obtained at the NTF and again showed a negligible effect on data repeatability. However, due to a degradation of control power in the active damping system cryogenically, the ability to obtain test data post-stall was not achieved during cryogenic testing. Additionally, comparisons of data repeatability between NTF and 11-ft TWT CRM data led to further (warm) testing at the NTF which demonstrated that for a modest increase in data sampling time, a 2-3 factor improvement in drag, and pitching moment repeatability was readily achieved not related with the active damping system.
A numerical analysis of the British Experimental Rotor Program blade
Duque, Earl P. N.
1989-01-01
Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.
Imaging unsteady three-dimensional transport phenomena
Indian Academy of Sciences (India)
2014-01-05
Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...
Aerodynamic analysis of Pegasus - Computations vs reality
Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan
1993-01-01
Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.
Multiple solutions and stability of the steady transonic small-disturbance equation
Directory of Open Access Journals (Sweden)
Ya Liu
2017-09-01
Full Text Available Numerical solutions of the steady transonic small-disturbance (TSD potential equation are computed using the conservative Murman−Cole scheme. Multiple solutions are discovered and mapped out for the Mach number range at zero angle of attack and the angle of attack range at Mach number 0.85 for the NACA 0012 airfoil. We present a linear stability analysis method by directly assembling and evaluating the Jacobian matrix of the nonlinear finite-difference equation of the TSD equation. The stability of all the discovered multiple solutions are then determined by the proposed eigen analysis. The relation of stability to convergence of the iterative method for solving the TSD equation is discussed. Computations and the stability analysis demonstrate the possibility of eliminating the multiple solutions and stabilizing the remaining unique solution by adding a sufficiently long splitter plate downstream the airfoil trailing edge. Finally, instability of the solution of the TSD equation is shown to be closely connected to the onset of transonic buffet by comparing with experimental data.
High-Reynolds Number Circulation Control Testing in the National Transonic Facility
Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.
2012-01-01
A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.
Finite element approximation to a model problem of transonic flow
International Nuclear Information System (INIS)
Tangmanee, S.
1986-12-01
A model problem of transonic flow ''the Tricomi equation'' in Ω is contained in IR 2 bounded by the rectangular-curve boundary is posed in the form of symmetric positive differential equations. The finite element method is then applied. When the triangulation of Ω-bar is made of quadrilaterals and the approximation space is the Lagrange polynomial, we get the error estimates. 14 refs, 1 fig
Shock unsteadiness in a thrust optimized parabolic nozzle
Verma, S. B.
2009-07-01
This paper discusses the nature of shock unsteadiness, in an overexpanded thrust optimized parabolic nozzle, prevalent in various flow separation modes experienced during start up {(δ P0 /δ t > 0)} and shut down {(δ P0/δ t The results are based on simultaneously acquired data from real-time wall pressure measurements using Kulite pressure transducers, high-speed schlieren (2 kHz) of the exhaust flow-field and from strain-gauges installed on the nozzle bending tube. Shock unsteadiness in the separation region is seen to increase significantly just before the onset of each flow transition, even during steady nozzle operation. The intensity of this measure ( rms level) is seen to be strongly influenced by relative locations of normal and overexpansion shock, the decrease in radial size of re-circulation zone in the back-flow region, and finally, the local nozzle wall contour. During restricted shock separation, the pressure fluctuations in separation region exhibit periodic characteristics rather than the usually observed characteristics of intermittent separation. The possible physical mechanisms responsible for the generation of flow unsteadiness in various separation modes are discussed. The results are from an experimental study conducted in P6.2 cold-gas subscale test facility using a thrust optimized parabolic nozzle of area-ratio 30.
Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program
Herron, Andrew J.; Crosby, William A.; Reed, Darren K.
2016-01-01
Characterization of accurate flight vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. The Aerosciences Branch at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center has conducted a test at the NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT) to determine such ascent aeroacoustic environments for the Space Launch System (SLS). Surface static pressure measurements were also collected to aid in determination of local environments for venting, CFD substantiation, and calibration of the flush air data system located on the launch abort system. Additionally, this test supported a NASA Engineering and Safety Center study of alternate booster nose caps. Testing occurred during two test campaigns: August - September 2013 and December 2013 - January 2014. Four primary model configurations were tested for ascent aeroacoustic environment definition. The SLS Block 1 vehicle was represented by a 2.5% full stack model and a 4% truncated model. Preliminary Block 1B payload and manned configurations were also tested, using 2.5% full stack and 4% truncated models respectively. This test utilized the 11 x 11 foot transonic and 9 x 7 foot supersonic tunnel sections at the ARC UPWT to collect data from Mach 0.7 through 2.5 at various total angles of attack. SLS Block 1 design environments were developed primarily using these data. SLS Block 1B preliminary environments have also been prepared using these data. This paper discusses the test and analysis methodology utilized, with a focus on the unsteady data collection and processing.
Unsteady flow over a decelerating rotating sphere
Turkyilmazoglu, M.
2018-03-01
Unsteady flow analysis induced by a decelerating rotating sphere is the main concern of this paper. A revolving sphere in a still fluid is supposed to slow down at an angular velocity rate that is inversely proportional to time. The governing partial differential equations of motion are scaled in accordance with the literature, reducing to the well-documented von Kármán equations in the special circumstance near the pole. Both numerical and perturbation approaches are pursued to identify the velocity fields, shear stresses, and suction velocity far above the sphere. It is detected that an induced flow surrounding the sphere acts accordingly to adapt to the motion of the sphere up to some critical unsteadiness parameters at certain latitudes. Afterward, the decay rate of rotation ceases such that the flow at the remaining azimuths starts revolving freely. At a critical unsteadiness parameter corresponding to s = -0.681, the decelerating sphere rotates freely and requires no more torque. At a value of s exactly matching the rotating disk flow at the pole identified in the literature, the entire flow field around the sphere starts revolving faster than the disk itself. Increasing values of -s almost diminish the radial outflow. This results in jet flows in both the latitudinal and meridional directions, concentrated near the wall region. The presented mean flow results will be useful for analyzing the instability features of the flow, whether of a convective or absolute nature.