WorldWideScience

Sample records for unsteady pressure gradient

  1. Unsteady Magnetohydrodynamic Flow of Liquid Through a Channel Variable Pressure Gradient

    International Nuclear Information System (INIS)

    Singh, C.B.

    1998-01-01

    The article studies the unsteady motion of an electrically conducting, viscous incompressible fluid along a channel in the presence of imposed transverse magnetic field, when the walls do not conduct current, under the influence of pressure gradient which varies linearly with respect to time. Analytical expressions for the velocity of the fluid for various values of Hartman numbers and at different times has been obtained

  2. Exact solution of unsteady flow generated by sinusoidal pressure gradient in a capillary tube

    Directory of Open Access Journals (Sweden)

    M. Abdulhameed

    2015-12-01

    Full Text Available In this paper, the mathematical modeling of unsteady second grade fluid in a capillary tube with sinusoidal pressure gradient is developed with non-homogenous boundary conditions. Exact analytical solutions for the velocity profiles have been obtained in explicit forms. These solutions are written as the sum of the steady and transient solutions for small and large times. For growing times, the starting solution reduces to the well-known periodic solution that coincides with the corresponding solution of a Newtonian fluid. Graphs representing the solutions are discussed.

  3. Dynamic Pressure Gradient Model of Axial Piston Pump and Parameters Optimization

    Directory of Open Access Journals (Sweden)

    Shi Jian

    2014-01-01

    Full Text Available The unsteady pressure gradient can cause flow noise in prepressure rising of piston pump, and the fluid shock comes up due to the large pressure difference of the piston chamber and discharge port in valve plate. The flow fluctuation control is the optimization objective in previous study, which cannot ensure the steady pressure gradient. Our study is to stabilize the pressure gradient in prepressure rising and control the pressure of piston chamber approaching to the pressure in discharge port after prepressure rising. The models for nonoil shock and dynamic pressure of piston chamber in prepressure rising are established. The parameters of prepressure rising angle, cross angle, wrap angle of V-groove, vertex angle of V-groove, and opening angle of V-groove were optimized, based on which the pressure of the piston chamber approached the pressure in discharge port after prepressure rising, and the pressure gradient is more steady compared to the original parameters. The max pressure gradient decreased by 70.8% and the flow fluctuation declined by 21.4%, which showed the effectivness of optimization.

  4. Unsteady separation and vortex shedding from a laminar separation bubble over a bluff body

    Science.gov (United States)

    Das, S. P.; Srinivasan, U.; Arakeri, J. H.

    2013-07-01

    Boundary layers are subject to favorable and adverse pressure gradients because of both the temporal and spatial components of the pressure gradient. The adverse pressure gradient may cause the flow to separate. In a closed loop unsteady tunnel we have studied the initiation of separation in unsteady flow past a constriction (bluff body) in a channel. We have proposed two important scalings for the time when boundary layer separates. One is based on the local pressure gradient and the other is a convective time scale based on boundary layer parameters. The flow visualization using a dye injection technique shows the flow structure past the body. Nondimensional shedding frequency (Strouhal number) is calculated based on boundary layer and momentum thicknesses. Strouhal number based on the momentum thickness shows a close agreement with that for flat plate and circular cylinder.

  5. Unsteady wall pressure field of a model A-pillar conical vortex

    International Nuclear Information System (INIS)

    Hoarau, C.; Boree, J.; Laumonier, J.; Gervais, Y.

    2008-01-01

    The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct

  6. A pressure-gradient mechanism for vortex shedding in constricted channels

    Science.gov (United States)

    Boghosian, M. E.; Cassel, K. W.

    2013-01-01

    Numerical simulations of the unsteady, two-dimensional, incompressible Navier–Stokes equations are performed for a Newtonian fluid in a channel having a symmetric constriction modeled by a two-parameter Gaussian distribution on both channel walls. The Reynolds number based on inlet half-channel height and mean inlet velocity ranges from 1 to 3000. Constriction ratios based on the half-channel height of 0.25, 0.5, and 0.75 are considered. The results show that both the Reynolds number and constriction geometry have a significant effect on the behavior of the post-constriction flow field. The Navier–Stokes solutions are observed to experience a number of bifurcations: steady attached flow, steady separated flow (symmetric and asymmetric), and unsteady vortex shedding downstream of the constriction depending on the Reynolds number and constriction ratio. A sequence of events is described showing how a sustained spatially growing flow instability, reminiscent of a convective instability, leads to the vortex shedding phenomenon via a proposed streamwise pressure-gradient mechanism. PMID:24399860

  7. Unsteady wall pressure field of a model A-pillar conical vortex

    Energy Technology Data Exchange (ETDEWEB)

    Hoarau, C. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France); Boree, J. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)], E-mail: jacques.boree@lea.ensma.fr; Laumonier, J.; Gervais, Y. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)

    2008-06-15

    The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct.

  8. Three-Dimensional Unsteady Simulation of Aerodynamics and Heat Transfer in a Modern High Pressure Turbine Stage

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali

    2009-01-01

    Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  9. Unsteady Correlation between pressure and Temperature Field on Impinging Plate for Dual Underexpanded Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Hiroyuki HIGA; MATSUDA; lzuru SENAHA

    2009-01-01

    eady behavior of the jets. After the confirmation of the cor-relation, a simple way to find the severe fluctuating region can be provided according to the two dimensional un-steady temperature images without a lot of unsteady pressure measurements.

  10. Experimental Study of Unsteady Flow Separation in a Laminar Boundary Layer

    Science.gov (United States)

    Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leonardo

    2017-11-01

    Flow separation, caused by an adverse pressure gradient, is a major problem in many applications. Reversing flow near the wall is the first sign of incipient separation and can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An investigation of how this backflow forms and how it interacts with shark skin is of interest due to the fact that this could be used as a bioinspired means of initiating flow control. A water tunnel experiment aims to study unsteady separation with a focus on the reversing flow development near the wall within a flat plate laminar boundary layer (Re on order of 105) as an increasing adverse pressure gradient is induced by a rotating cylinder. Unsteady reversing flow development is documented using DPIV. Funding was provided by the National Science Foundation under the Research Experience for Undergraduates (REU) program (EEC 1659710) and the Army Research Office.

  11. Minnowbrook IV: 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows

    Science.gov (United States)

    LaGraff, John E. (Editor); Ashpis, David E.

    2004-01-01

    This Minnowbrook IV 2003 workshop on Transition and Unsteady Aspects of Turbomachinery Flows includes the following topics: 1) Current Issues in Unsteady Turbomachinery Flows; 2) Global Instability and Control of Low-Pressure Turbine Flows; 3) Influence of End Wall Leakage on Secondary Flow Development in Axial Turbines; 4) Active and Passive Flow Control on Low Pressure Turbine Airfoils; 5) Experimental and Numerical Investigation of Transitional Flows as Affected by Passing Wakes; 6) Effects of Freestream Turbulence on Turbine Blade Heat Transfer; 7) Bypass Transition Via Continuous Modes and Unsteady Effects on Film Cooling; 8) High Frequency Surface Heat Flux Imaging of Bypass Transition; 9) Skin Friction and Heat Flux Oscillations in Upstream Moving Wave Packets; 10) Transition Mechanisms and Use of Surface Roughness to Enhance the Benefits of Wake Passing in LP Turbines; 11) Transient Growth Approach to Roughness-Induced Transition; 12) Roughness- and Freestream-Turbulence-Induced Transient Growth as a Bypass Transition Mechanism; 13) Receptivity Calculations as a Means to Predicting Transition; 14) On Streamwise Vortices in a Curved Wall Jet and Their Effect on the Mean Flow; 15) Plasma Actuators for Separation Control of Low Pressure Turbine Blades; 16) Boundary-Layer Separation Control Under Low-Pressure-Turbine Conditions Using Glow-Discharge Plasma Actuators; 17) Control of Separation for Low Pressure Turbine Blades: Numerical Simulation; 18) Effects of Elevated Free-Stream Turbulence on Active Control of a Separation Bubble; 19) Wakes, Calming and Transition Under Strong Adverse Pressure Gradients; 20) Transitional Bubble in Periodic Flow Phase Shift; 21) Modelling Spots: The Calmed Region, Pressure Gradient Effects and Background; 22) Modeling of Unsteady Transitional Flow on Axial Compressor Blades; 23) Challenges in Predicting Component Efficiencies in Turbomachines With Low Reynolds Number Blading; 24) Observations on the Causal Relationship Between

  12. Tearing modes with pressure gradient effect in pair plasmas

    International Nuclear Information System (INIS)

    Cai Huishan; Li Ding; Zheng Jian

    2009-01-01

    The general dispersion relation of tearing mode with pressure gradient effect in pair plasmas is derived analytically. If the pressure gradients of positron and electron are not identical in pair plasmas, the pressure gradient has significant influence at tearing mode in both collisionless and collisional regimes. In collisionless regime, the effects of pressure gradient depend on its magnitude. For small pressure gradient, the growth rate of tearing mode is enhanced by pressure gradient. For large pressure gradient, the growth rate is reduced by pressure gradient. The tearing mode can even be stabilized if pressure gradient is large enough. In collisional regime, the growth rate of tearing mode is reduced by the pressure gradient. While the positron and electron have equal pressure gradient, tearing mode is not affected by pressure gradient in pair plasmas.

  13. Vortex Formation During Unsteady Boundary-Layer Separation

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.

  14. Computational aspects of unsteady flows

    Science.gov (United States)

    Cebeci, T.; Carr, L. W.; Khattab, A. A.; Schimke, S. M.

    1985-01-01

    The calculation of unsteady flows and the development of numerical methods for solving unsteady boundary layer equations and their application to the flows around important configurations such as oscillating airfoils are presented. A brief review of recent work is provided with emphasis on the need for numerical methods which can overcome possible problems associated with flow reversal and separation. The zig-zag and characteristic box schemes are described in this context, and when embodied in a method which permits interaction between solutions of inviscid and viscous equations, the characteristic box scheme is shown to avoid the singularity associated with boundary layer equations and prescribed pressure gradient. Calculations were performed for a cylinder started impulsively from rest and oscillating airfoils. The results are presented and discussed. It is conlcuded that turbulence models based on an algebraic specification of eddy viscosity can be adequate, that location of translation is important to the calculation of the location of flow separation and, therefore, to the overall lift of an oscillating airfoil.

  15. Pore-scale modelling of the effect of viscous pressure gradients during heavy oil depletion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bondino, I. [Total E and P UK Ltd., London (United Kingdom); McDougall, S.R. [Heriot-Watt Univ., Edinburgh (United Kingdom); Hamon, G. [Total E and P Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    In solution gas drive, when the reservoir pressure is lowered below the bubble point, bubbles nucleate and grow within saturated oil. A period of internal gas-phase expansion maintains reservoir pressure, driving oil to the wellbore region. Continued pressure reduction eventually leads to the formation of a connected gas phase that is capable of being produced along with the oleic phase. As a result, the total produced gas-oil ratio in the well begins to increase. Once the connected gas phase develops, oil production begins to decrease. This general description can be inadequate in the context of heavy oils where additional characteristics, such as foamy oil, and atypically high recoveries are observed. In order to improve the simulation of solution gas drive for heavy oil in the framework of a pre-existing pore-scale network simulator, a dynamic gas-oil interface tracking algorithm was used to determine the mobilization of bubbles under intense pressure gradients. The model was used to characterize both the stationary capillary controlled growth of bubbles characteristic of slow depletion rates in the far wellbore region and the flow phenomena in the near wellbore region. A rationale for interpreting a range of flow mechanism, their associated gas relative permeabilities and critical gas saturations was also proposed. The paper first presented a description of the dynamic pore network model in terms of its' ability to model the porous space; and mobilize gas under viscous pressure gradients and unsteady-state gas relative permeabilities. The dynamic network modelling of heavy oil depletion experiments at different rates and the prediction of the experimental gas saturations were then presented along with a discussion on critical gas saturations. It was concluded that foamy oil behaviour can be observed in situations where capillary pressures are overcome by viscous pressure gradients. 47 refs., 5 tabs., 17 figs.

  16. Investigation of Unsteady Pressure-Sensitive Paint (uPSP) and a Dynamic Loads Balance to Predict Launch Vehicle Buffet Environments

    Science.gov (United States)

    Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.; hide

    2016-01-01

    This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production

  17. Unsteady pressures on a blunt trailing edge measured with an embedded pressure scanner

    Science.gov (United States)

    Naughton, Jonathan; Nikoueeyan, Pourya; Hind, Michael; Strike, John; Dahland, Matz; Keeter, Steven

    2017-11-01

    Development of direct-mount pressure scanners can decrease the pneumatic tubing length required to connect the measurement ports to the scanner manifold resulting in improved dynamic range for unsteady pressure measurements. In this work, the performance of a direct-mount pressure scanner for time-resolved pressure measurement is demonstrated in a well-established flow; the pressure fluctuations near the base of flat plate is considered. The additive manufactured model is instrumented with a pressure scanner and flush-mounted high-speed pressure transducers. The configuration of the ports on the model allows for side-by-side comparison of the pressures measured via embedded pneumatic tubing routed to a pressure scanner with that measured by high-speed transducers. Prior to testing, the dynamic response of each embedded pressure port is dynamically calibrated via an in-situ calibration technique. Pressure data is then acquired for fixed angle-of-attack and different dynamic pitching conditions. The dynamic range of the measurements acquired via direct-mount scanner will be compared to those acquired by the high speed transducers for both static and dynamic pitching configurations. The uncertainties associated with Weiner deconvolution are also quantified for the measurements.

  18. Evaluation of the constant pressure panel method (CPM) for unsteady air loads prediction

    Science.gov (United States)

    Appa, Kari; Smith, Michael J. C.

    1988-01-01

    This paper evaluates the capability of the constant pressure panel method (CPM) code to predict unsteady aerodynamic pressures, lift and moment distributions, and generalized forces for general wing-body configurations in supersonic flow. Stability derivatives are computed and correlated for the X-29 and an Oblique Wing Research Aircraft, and a flutter analysis is carried out for a wing wind tunnel test example. Most results are shown to correlate well with test or published data. Although the emphasis of this paper is on evaluation, an improvement in the CPM code's handling of intersecting lifting surfaces is briefly discussed. An attractive feature of the CPM code is that it shares the basic data requirements and computational arrangements of the doublet lattice method. A unified code to predict unsteady subsonic or supersonic airloads is therefore possible.

  19. Unsteady effects at the interface between impeller-vaned diffuser in a low pressure centrifugal compressor

    Directory of Open Access Journals (Sweden)

    Mihai Leonida NICULESCU

    2013-03-01

    Full Text Available In this paper, Proper Orthogonal Decomposition (POD is applied to the analysis of the unsteady rotor-stator interaction in a low-pressure centrifugal compressor. Numerical simulations are carried out through finite volumes method using the Unsteady Reynolds-Averaged Navier-Stokes Equations (URANS model. Proper Orthogonal Decomposition allows an accurate reconstruction of flow field using only a small number of modes; therefore, this method is one of the best tools for data storage. The POD results and the data obtained by the Adamczyk decomposition are compared. Both decompositions show the behavior of unsteady rotor-stator interaction, but the POD modes allow quantifying better the numerical errors.

  20. Three-Dimensional Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Luk, Daniel F.; Chen, Jen-Ping

    2010-01-01

    Unsteady three-dimensional RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as experiment. A low Reynolds number k- turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the periodic direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  1. A study on the unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel: A numerical approach

    Science.gov (United States)

    Devakar, M.; Raje, Ankush

    2018-05-01

    The unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel is considered. In addition to the classical no-slip and hyper-stick conditions at the boundary, it is assumed that the fluid velocities and shear stresses are continuous across the fluid-fluid interface. Three cases for the applied pressure gradient are considered to study the problem: one with constant pressure gradient and the other two cases with time-dependent pressure gradients, viz. periodic and decaying pressure gradient. The Crank-Nicolson approach has been used to obtain numerical solutions for fluid velocity and microrotation for diverse sets of fluid parameters. The nature of fluid velocities and microrotation with various values of pressure gradient, Reynolds number, ratio of viscosities, micropolarity parameter and time is illustrated through graphs. It has been observed that micropolarity parameter and ratio of viscosities reduce the fluid velocities.

  2. Numerical Investigation of Periodically Unsteady Pressure Field in a High Power Centrifugal Diffuser Pump

    Directory of Open Access Journals (Sweden)

    Ji Pei

    2014-05-01

    Full Text Available Pressure fluctuations are the main factors that can give rise to reliability problems in centrifugal pumps. The periodically unsteady pressure characteristics caused by rotor-stator interaction have been investigated by CFD calculation in a residual heat removal pump. Side chamber flow effect is also considered for the simulation to accurately predict the flow in whole flow passage. The pressure fluctuation results in time and frequency domains were considered for several typical monitoring points in impeller and diffuser channels. In addition, the pressure fluctuation intensity coefficient (PFIC based on standard deviation was defined on each grid node for entire space and impeller revolution period. The results show that strong pressure fluctuation intensity can be found in the gap between impeller and diffuser. As a source, the fluctuation can spread to the upstream and downstream flow channels as well as the side chamber channels. Meanwhile, strong pressure fluctuation intensity can be found in the discharge tube of the circular casing. In addition, the obvious influence of operational flow rate on the PFIC distribution can be found. The analysis indicates that the pressure fluctuations in the aspects of both frequency and intensity can be used to comprehensively evaluate the unsteady pressure characteristics in centrifugal pumps.

  3. An Experimental Investigation of Unsteady Surface Pressure on an Airfoil in Turbulence

    Science.gov (United States)

    Mish, Patrick F.; Devenport, William J.

    2003-01-01

    Measurements of fluctuating surface pressure were made on a NACA 0015 airfoil immersed in grid generated turbulence. The airfoil model has a 2 ft chord and spans the 6 ft Virginia Tech Stability Wind Tunnel test section. Two grids were used to investigate the effects of turbulence length scale on the surface pressure response. A large grid which produced turbulence with an integral scale 13% of the chord and a smaller grid which produced turbulence with an integral scale 1.3% of the chord. Measurements were performed at angles of attack, alpha from 0 to 20 . An array of microphones mounted subsurface was used to measure the unsteady surface pressure. The goal of this measurement was to characterize the effects of angle of attack on the inviscid response. Lift spectra calculated from pressure measurements at each angle of attack revealed two distinct interaction regions; for omega(sub r) = omega b / U(sub infinity) is less than 10 a reduction in unsteady lift of up to 7 decibels (dB) occurs while an increase occurs for omega(sub r) is greater than 10 as the angle of attack is increased. The reduction in unsteady lift at low omega(sub r) with increasing angle of attack is a result that has never before been shown either experimentally or theoretically. The source of the reduction in lift spectral level appears to be closely related to the distortion of inflow turbulence based on analysis of surface pressure spanwise correlation length scales. Furthermore, while the distortion of the inflow appears to be critical in this experiment, this effect does not seem to be significant in larger integral scale (relative to the chord) flows based on the previous experimental work of McKeough suggesting the airfoils size relative to the inflow integral scale is critical in defining how the airfoil will respond under variation of angle of attack. A prediction scheme is developed that correctly accounts for the effects of distortion when the inflow integral scale is small relative

  4. Hepatic venous pressure gradients measured by duplex ultrasound

    International Nuclear Information System (INIS)

    Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M.

    2002-01-01

    AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P -2 provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)

  5. Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method

    KAUST Repository

    Louaked, Mohammed; Seloula, Nour; Trabelsi, Saber

    2017-01-01

    In this work, we propose and analyze the pressure stabilization method for the unsteady incompressible Brinkman-Forchheimer equations. We present a time discretization scheme which can be used with any consistent finite element space approximation. Second-order error estimate is proven. Some numerical results are also given.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2017

  6. Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method

    KAUST Repository

    Louaked, Mohammed

    2017-07-20

    In this work, we propose and analyze the pressure stabilization method for the unsteady incompressible Brinkman-Forchheimer equations. We present a time discretization scheme which can be used with any consistent finite element space approximation. Second-order error estimate is proven. Some numerical results are also given.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2017

  7. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  8. Unsteady supercritical/critical dual flowpath inlet flow and its control methods

    Directory of Open Access Journals (Sweden)

    Jun LIU

    2017-12-01

    Full Text Available The characteristics of unsteady flow in a dual-flowpath inlet, which was designed for a Turbine Based Combined Cycle (TBCC propulsion system, and the control methods of unsteady flow were investigated experimentally and numerically. It was characterized by large-amplitude pressure oscillations and traveling shock waves. As the inlet operated in supercritical condition, namely the terminal shock located in the throat, the shock oscillated, and the period of oscillation was about 50 ms, while the amplitude was 6 mm. The shock oscillation was caused by separation in the diffuser. This shock oscillation can be controlled by extending the length of diffuser which reduces pressure gradient along the flowpath. As the inlet operated in critical condition, namely the terminal shock located at the shoulder of the third compression ramp, the shock oscillated, and the period of oscillation was about 7.5 ms, while the amplitude was 12 mm. At this condition, the shock oscillation was caused by an incompatible backpressure in the bleed region. It can be controlled by increasing the backpressure of the bleed region. Keywords: Airbreathing hypersonic vehicle, Dual flowpath inlet, Terminal shock oscillation, Turbine based combined cycle, Unsteady flow

  9. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    Science.gov (United States)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  10. Vertebrate pressure-gradient receivers

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob

    2011-01-01

    The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and stro......The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum....... Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural...

  11. Unsteady State Two Phase Flow Pressure Drop Calculations

    OpenAIRE

    Ayatollahi, Shahaboddin

    1992-01-01

    A method is presented to calculate unsteady state two phase flow in a gas-liquid line based on a quasi-steady state approach. A computer program for numerical solution of this method was prepared. Results of calculations using the computer program are presented for several unsteady state two phase flow systems

  12. Hepatic venous pressure gradients measured by duplex ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M

    2002-08-01

    AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P < 0.0001) and with the Child-Pugh score (r = 0.63, P < 0.0001). An acceleration index cut-off value of 1 m.s{sup -2} provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)

  13. The Grid Density Dependence of the Unsteady Pressures of the J-2X Turbines

    Science.gov (United States)

    Schmauch, Preston B.

    2011-01-01

    The J-2X engine was originally designed for the upper stage of the cancelled Crew Launch Vehicle. Although the Crew Launch Vehicle was cancelled the J-2X engine, which is currently undergoing hot-fire testing, may be used on future programs. The J-2X engine is a direct descendent of the J-2 engine which powered the upper stage during the Apollo program. Many changes including a thrust increase from 230K to 294K lbf have been implemented in this engine. As part of the design requirements, the turbine blades must meet minimum high cycle fatigue factors of safety for various vibrational modes that have resonant frequencies in the engine's operating range. The unsteady blade loading is calculated directly from CFD simulations. A grid density study was performed to understand the sensitivity of the spatial loading and the magnitude of the on blade loading due to changes in grid density. Given that the unsteady blade loading has a first order effect on the high cycle fatigue factors of safety, it is important to understand the level of convergence when applying the unsteady loads. The convergence of the unsteady pressures of several grid densities will be presented for various frequencies in the engine's operating range.

  14. Airfoil optimization for unsteady flows with application to high-lift noise reduction

    Science.gov (United States)

    Rumpfkeil, Markus Peer

    The use of steady-state aerodynamic optimization methods in the computational fluid dynamic (CFD) community is fairly well established. In particular, the use of adjoint methods has proven to be very beneficial because their cost is independent of the number of design variables. The application of numerical optimization to airframe-generated noise, however, has not received as much attention, but with the significant quieting of modern engines, airframe noise now competes with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated noise. In this thesis, a general framework is formulated to calculate the gradient of a cost function in a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimization algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based optimizer uses the quasi-Newton method BFGS, Newton's method is applied to the nonlinear flow problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence model, which are discretized using structured grids and a finite difference approach. The effectiveness of the unsteady optimization algorithm is demonstrated by applying it to several problems of interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting, and an unsteady trailing-edge flow. In order to address radiated far-field noise, an acoustic wave propagation program based on the Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimization algorithm in order to be able to optimize the shape of airfoils based on their calculated far

  15. LES of the adverse-pressure gradient turbulent boundary layer

    International Nuclear Information System (INIS)

    Inoue, M.; Pullin, D.I.; Harun, Z.; Marusic, I.

    2013-01-01

    Highlights: • The adverse-pressure gradient turbulent boundary layer at high Re is studied. • Wall-model LES works well for nonequilibrium turbulent boundary layer. • Relationship of skin-friction to Re and Clauser pressure parameter is explored. • Self-similarity is observed in the velocity statistics over a wide range of Re. -- Abstract: We describe large-eddy simulations (LES) of the flat-plate turbulent boundary layer in the presence of an adverse pressure gradient. The stretched-vortex subgrid-scale model is used in the domain of the flow coupled to a wall model that explicitly accounts for the presence of a finite pressure gradient. The LES are designed to match recent experiments conducted at the University of Melbourne wind tunnel where a plate section with zero pressure gradient is followed by section with constant adverse pressure gradient. First, LES are described at Reynolds numbers based on the local free-stream velocity and the local momentum thickness in the range 6560–13,900 chosen to match the experimental conditions. This is followed by a discussion of further LES at Reynolds numbers at approximately 10 times and 100 times these values, which are well out of range of present day direct numerical simulation and wall-resolved LES. For the lower Reynolds number runs, mean velocity profiles, one-point turbulent statistics of the velocity fluctuations, skin friction and the Clauser and acceleration parameters along the streamwise, adverse pressure-gradient domain are compared to the experimental measurements. For the full range of LES, the relationship of the skin-friction coefficient, in the form of the ratio of the local free-stream velocity to the local friction velocity, to both Reynolds number and the Clauser parameter is explored. At large Reynolds numbers, a region of collapse is found that is well described by a simple log-like empirical relationship over two orders of magnitude. This is expected to be useful for constant adverse-pressure

  16. Pressure gradients fail to predict diffusio-osmosis

    Science.gov (United States)

    Liu, Yawei; Ganti, Raman; Frenkel, Daan

    2018-05-01

    We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct approaches that have been proposed for computing such flows and compare them with a reference calculation based on direct, non-equilibrium molecular dynamics simulations. As alternatives, we consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of the constituent species and from the gradient of the component of the pressure tensor parallel to the interface. We find that the approach based on treating chemical potential gradients as external forces acting on various species agrees with the direct simulations, thereby supporting the approach of Marbach et al (2017 J. Chem. Phys. 146 194701). In contrast, an approach based on computing the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium results.

  17. Pressure fluctuation prediction in pump mode using large eddy simulation and unsteady Reynolds-averaged Navier–Stokes in a pump–turbine

    Directory of Open Access Journals (Sweden)

    De-You Li

    2016-06-01

    Full Text Available For pump–turbines, most of the instabilities couple with high-level pressure fluctuations, which are harmful to pump–turbines, even the whole units. In order to understand the causes of pressure fluctuations and reduce their amplitudes, proper numerical methods should be chosen to obtain the accurate results. The method of large eddy simulation with wall-adapting local eddy-viscosity model was chosen to predict the pressure fluctuations in pump mode of a pump–turbine compared with the method of unsteady Reynolds-averaged Navier–Stokes with two-equation turbulence model shear stress transport k–ω. Partial load operating point (0.91QBEP under 15-mm guide vane opening was selected to make a comparison of performance and frequency characteristics between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes based on the experimental validation. Good agreement indicates that the method of large eddy simulation could be applied in the simulation of pump–turbines. Then, a detailed comparison of variation for peak-to-peak value in the whole passage was presented. Both the methods show that the highest level pressure fluctuations occur in the vaneless space. In addition, the propagation of amplitudes of blade pass frequency, 2 times of blade pass frequency, and 3 times of blade pass frequency in the circumferential and flow directions was investigated. Although the difference exists between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes, the trend of variation in different parts is almost the same. Based on the analysis, using the same mesh (8 million, large eddy simulation underestimates pressure characteristics and shows a better result compared with the experiments, while unsteady Reynolds-averaged Navier–Stokes overestimates them.

  18. A parametric study of adverse pressure gradient turbulent boundary layers

    International Nuclear Information System (INIS)

    Monty, J.P.; Harun, Z.; Marusic, I.

    2011-01-01

    There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.

  19. Flow-related Right Ventricular - Pulmonary Arterial Pressure Gradients during Exercise.

    Science.gov (United States)

    Wright, Stephen P; Opotowsky, Alexander R; Buchan, Tayler A; Esfandiari, Sam; Granton, John T; Goodman, Jack M; Mak, Susanna

    2018-06-06

    The assumption of equivalence between right ventricular and pulmonary arterial systolic pressure is fundamental to several assessments of right ventricular or pulmonary vascular hemodynamic function. Our aims were to 1) determine whether systolic pressure gradients develop across the right ventricular outflow tract in healthy adults during exercise, 2) examine the potential correlates of such gradients, and 3) consider the effect of such gradients on calculated indices of right ventricular function. Healthy untrained and endurance-trained adult volunteers were studied using right-heart catheterization at rest and during submaximal cycle ergometry. Right ventricular and pulmonary artery pressures were simultaneously transduced, and cardiac output was determined by thermodilution. Systolic pressures, peak and mean gradients, and indices of chamber, vascular, and valve function were analyzed offline. Summary data are reported as mean ± standard deviation or median [interquartile range]. No significant right ventricular outflow tract gradients were observed at rest (mean gradient = 4 [3-5] mmHg), and calculated effective orifice area was 3.6±1.0 cm2. Right ventricular systolic pressure increases during exercise were greater than that of pulmonary artery systolic pressure. Accordingly, mean gradients developed during light exercise (8 [7-9] mmHg) and increased during moderate exercise (12 [9-14] mmHg, p < 0.001). The magnitude of the mean gradient was linearly related to cardiac output (r2 = 0.70, p < 0.001). In healthy adults without pulmonic stenosis, systolic pressure gradients develop during exercise, and the magnitude is related to blood flow rate.

  20. Unsteady flow analysis of combustion processes in a Davis gun

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H.-C.; Shin, H.D. [Korea Advanced Inst. of Science and Technology, Mechanical Engineering Dept., Taejon (Korea, Republic of); Yoon, J.-K. [Hansung Univ., School of Industrial and System Engineering, Seoul (Korea, Republic of)

    1999-09-01

    The Davis gun, a type of recoilless gun, had the advantages of requiring less rear area and less powder than a conventional recoilless gun. The unsteady pressure and flow fields of a Davis gun were numerically simulated by using a two-phase fluid dynamic model. Numerical simulation results were compared with experimental values to evaluate the feasibility of the interior ballistic model. The interior ballistics in a Davis gun with a simple countermass were predicted with the computational model. It was shown that the pressure-time curves matched well between experimental data and numerical analysis except in the vicinity of the peak pressure and steep pressure gradient. The predicted muzzle velocity of projectile and countermass was closely similar to the experimental one. In this study, large pressure waves were not observed since the initial porosity was relatively high ({phi}{sub 0}0.867) and the charge was ignited at the centre of the granular bed. (Author)

  1. Pressure Gradients in the Inner Surf and Outer Swash Zone

    Science.gov (United States)

    Kidwell, A.; Puleo, J. A.; Torres-Freyermuth, A.

    2010-12-01

    The swash zone is a highly dynamic region of the beach profile. Although there has been significant progression in understanding the complex hydrodynamics of the swash zone, an improvement in the understanding of the sediment transport mechanisms deserves further investigation. Prior studies have demonstrated that the existing formulations derived from the energetics-type formulation do not accurately and consistently predict sediment transport. Thus, measurements and numerical modeling can contribute in the improvement of the current predictive capability of sediment transport. A potential enhancement to nearshore sediment transport is the horizontal pressure gradient. However, measuring the dynamic pressure gradient in nearshore flows is a difficult task. For instance, standard pressure sensors are generally ill-suited for this type of measurement in shallow swash flows due to the obstructing size of the sensor and the potential for flow interference. With improved measurement apparati and techniques, it is possible to obtain measurements of the horizontal pressure gradient. Our current research includes laboratory and numerical model investigation of the horizontal pressure gradient in the inner surf and outer swash zone. An inexpensive differential pressure gauge is employed allowing for a pressure port on the order of 2 mm diameter. Four pressure sensor pairs are installed 1 cm above the bed with a cross-shore spacing of 8 cm. The sensors are deployed just outside of and at various locations within the outer swash zone to determine spatio-temporal pressure variations. The measurement of total pressure coupled with the corresponding free surface measurements from co-located capacitance wave gauges yields time series of the hydrostatic and dynamic pressure and pressure gradients. A VOF-type RANS model is employed in this investigation. Firstly, the numerical model is validated with swash measurements. Then, model simulations will be performed in order to

  2. Improved plenum pressure gradient facemaps for PKL reactors

    International Nuclear Information System (INIS)

    Crowley, D.A.; Hamm, L.L.

    1988-05-01

    This report documents the development of improved plenum pressure gradient facemaps* for PKL Mark 16--31 and Mark 22 reactor charges. These new maps are based on the 1985 L-area AC flow tests. Use of the L-area data base for estimating C-area plenum pressure gradient maps is inappropriate because the nozzle geometry plays a major role in determining the shape of the plenum pressure profile. These plenum pressure gradient facemaps are used in the emergency cooling system (ECS) and in the flow instability (FI) loss of coolant accident (LOCA) limits calculations. For the ECS LOCA limits calculations, the maps are used as input to the FLOWZONE computer code to determine the average flow within a flowzone during normal operating conditions. For the FI LOCA limits calculations, the maps are used as plenum pressure boundary conditions in the FLOWTRAN computer code to determine the maximum pre-incident assembly flow within a flowzone. These maps will also be used for flowzoning and transient protection limits analyses

  3. Fifty shades of gradients: does the pressure gradient in venous sinus stenting for idiopathic intracranial hypertension matter? A systematic review.

    Science.gov (United States)

    McDougall, Cameron M; Ban, Vin Shen; Beecher, Jeffrey; Pride, Lee; Welch, Babu G

    2018-03-02

    OBJECTIVE The role of venous sinus stenting (VSS) for idiopathic intracranial hypertension (IIH) is not well understood. The aim of this systematic review is to attempt to identify subsets of patients with IIH who will benefit from VSS based on the pressure gradients of their venous sinus stenosis. METHODS MEDLINE/PubMed was searched for studies reporting venous pressure gradients across the stenotic segment of the venous sinus, pre- and post-stent pressure gradients, and clinical outcomes after VSS. Findings are reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. RESULTS From 32 eligible studies, a total of 186 patients were included in the analysis. Patients who had favorable outcomes had higher mean pressure gradients (22.8 ± 11.5 mm Hg vs 17.4 ± 8.0 mm Hg, p = 0.033) and higher changes in pressure gradients after stent placement (19.4 ± 10.0 mm Hg vs 12.0 ± 6.0 mm Hg, p = 0.006) compared with those with unfavorable outcomes. The post-stent pressure gradients between the 2 groups were not significantly different (2.8 ± 4.0 mm Hg vs 2.7 ± 2.0 mm Hg, p = 0.934). In a multivariate stepwise logistic regression controlling for age, sex, body mass index, CSF opening pressure, pre-stent pressure gradient, and post-stent pressure gradient, the change in pressure gradient with stent placement was found to be an independent predictor of favorable outcome (p = 0.028). Using a pressure gradient of 21 as a cutoff, 81/86 (94.2%) of patients with a gradient > 21 achieved favorable outcomes, compared with 82/100 (82.0%) of patients with a gradient ≤ 21 (p = 0.022). CONCLUSIONS There appears to be a relationship between the pressure gradient of venous sinus stenosis and the success of VSS in IIH. A randomized controlled trial would help elucidate this relationship and potentially guide patient selection.

  4. Comparison of analytical and experimental steadyand unsteady-pressure distributions at Mach number 0.78 for a high-aspect-ratio supercritical wing model with oscillating control surfaces

    Science.gov (United States)

    Mccain, W. E.

    1984-01-01

    The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.

  5. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  6. Unsteady influence of Self Recirculation Casing Treatment (SRCT) on high pressure ratio centrifugal compressor

    International Nuclear Information System (INIS)

    Mingyang, Yang; Ricardo, Martines-botas; Kangyao, Deng; Yangjun, Zhang; Xinqian, Zheng

    2016-01-01

    Highlights: • Reduced order model proves flow flucturations in impeller to be downstream disturbance propagation. • Fluctuations depression is attributed by the effect of energy bypass via rear slot of SRCT. • Flow distortion in diffuser results in disturbance with swing flow direction due to unbalanced forces. - Abstract: Self-Recirculation-Casing-Treatment (SRCT) is a widely employed method to enhance aerodynamic stability of a centrifugal compressor. This paper investigated unsteady effects of SRCT on the flow in a transonic centrifugal compressor via numerical method validated by experimental test. Firstly the static pressure distribution in the compressor without SRCT is measured for information of boundary conditions as well as validation. Then a 1-D unsteady model of a single passage is built and validated based on the experimental results. Next, the 1-D model of a passage with SRCT is built to investigate the unsteady influence of the SRCT on the flow in the passage. Finally 3-D unsteady CFD is employed to investigate the detailed influence of SRCT on the flow field in impeller passages. Results show that the topology of the passage with SRCT can remarkably damp the distortion propagating from downstream, hence depress the magnitude of the inlet flow distortion. Furthermore, the width of the rear slot in SRCT is the key factor for the damping effect. The 3-D simulation results further show that the fluctuations of the re-circulated flow rate via the front slot is depressed by the SRCT which is attributed to the damping effect of its configuration.

  7. Unsteady flow measurements in centrifugal compressors

    International Nuclear Information System (INIS)

    Bammert, K.; Mobarak, A.; Rautenberg, M.

    1976-01-01

    Centrifugal compressors and blowers are often used for recycling the coolant gas in gas-cooled reactors. To achieve the required high pressure ratios, highly loaded centrifugal compressors are built. The paper deals with unsteady flow measurements on highly loaded centrifugal impellers. Measurements of the approaching flow have been done with hot wires. The method of measurement enabled us to get the velocity distribution across the pitch ahead of the inducer. The static pressure signals along the shroud line has been discussed on the basis of some theoretical considerations. Accordingly the form of flow in the impeller and the wave flow or separation zones in the impeller can now be better interpreted. The importance of the unsteady nature of the relative flow, especially at impeller exit, is clearly demonstrated. Measurements with high responsive total pressure probes in the vicinity of impeller exit and the subsequent calculations have shown, that the instantaneous energy transfer at a certain point after the impeller may differ by more than 30% from the Euler work. Lastly, unsteady pressure measurements along the shroud line have been performed during surge and rotating stall. The surge signal have been analyzed in more detail and the mechanism of flow rupture and pressure recovery during a surge cycle is thoroughly discussed. (orig.) [de

  8. The pressure gradient in the human respiratory tract

    Directory of Open Access Journals (Sweden)

    Chovancová Michaela

    2014-03-01

    Full Text Available Respiratory airways cause resistance to air flow during inhalation and exhalation. The pressure gradient is necessary to transport the air from the mount (or nose to pulmonary alveoli. The knowledge of pressure gradient (i.e. respiratory airways resistance is also needed to solve the question of aerosol deposition in the human respiratory tract. The obtained data will be used as boundary conditions for CFD simulations of aerosol transport. Understanding of aerosol transport in the human lungs can help us to determine the health hazard of harmful particles. On the other hand it can be used to set the conditions for transport of medication to the desirable place. This article deals with the description of the mathematical equations defining the pressure gradient and resistance in the bronchial three and describes the geometry used in the calculation.

  9. Unsteady potential flow past a propeller blade section

    Science.gov (United States)

    Takallu, M. A.

    1990-01-01

    An analytical study was conducted to predict the effect of an oscillating stream on the time dependent sectional pressure and lift coefficients of a model propeller blade. The assumption is that as the blade sections encounter a wake, the actual angles of attack vary in a sinusoidal manner through the wake, thus each blade is exposed to an unsteady stream oscillating about a mean value at a certain reduced frequency. On the other hand, an isolated propeller at some angle of attack can experience periodic changes in the value of the flow angle causing unsteady loads on the blades. Such a flow condition requires the inclusion of new expressions in the formulation of the unsteady potential flow around the blade sections. These expressions account for time variation of angle of attack and total shed vortices in the wake of each airfoil section. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficients exhibit a hysteresis loop.

  10. Comparison of analytical and experimental subsonic steady and unsteady pressure distributions for a high-aspect-ratio-supercritical wing model with oscillating control surfaces

    Science.gov (United States)

    Mccain, W. E.

    1982-01-01

    The results of a comparative study using the unsteady aerodynamic lifting surface theory, known as the Doublet Lattice method, and experimental subsonic steady- and unsteady-pressure measurements, are presented for a high-aspect-ratio supercritical wing model. Comparisons of pressure distributions due to wing angle of attack and control-surface deflections were made. In general, good correlation existed between experimental and theoretical data over most of the wing planform. The more significant deviations found between experimental and theoretical data were in the vicinity of control surfaces for both static and oscillatory control-surface deflections.

  11. Prediction of the dynamic response of complex transmission line systems for unsteady pressure measurements

    International Nuclear Information System (INIS)

    Antonini, C; Persico, G; Rowe, A L

    2008-01-01

    Among the measurement and control systems of gas turbine engines, a recent new issue is the possibility of performing unsteady pressure measurements to detect flow anomalies in an engine or to evaluate loads on aerodynamic surfaces. A possible answer to this demand could be extending the use of well known and widely used transmission line systems, which have been applied so far to steady monitoring, to unsteady measurements thanks to proper dynamic modeling and compensation. Despite the huge number of models existing in the literature, a novel method has been developed, which is at the same time easy-to-handle, flexible and capable of reproducing the actual physics of the problem. Furthermore, the new model is able to deal with arbitrary complex networks of lines and cavities, and thus its applicability is not limited to series-connected systems. The main objectives of this paper are to show the derivation of the model, its validation against experimental tests and example of its applicability

  12. Evolution of a Planar Wake in Adverse Pressure Gradient

    Science.gov (United States)

    Driver, David M.; Mateer, George G.

    2016-01-01

    In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.

  13. Arterial Pressure Gradients during Upright Posture and 30 deg Head Down Tilt

    Science.gov (United States)

    Sanchez, E. R; William, J. M.; Ueno, T.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)

    1997-01-01

    Gravity alters local blood pressure within the body so that arterial pressures in the head and foot are lower and higher, respectively, than that at heart level. Furthermore, vascular responses to local alterations of arterial pressure are probably important to maintain orthostatic tolerance upon return to the Earth after space flight. However, it has been difficult to evaluate the body's arterial pressure gradient due to the lack of noninvasive technology. This study was therefore designed to investigate whether finger arterial pressure (FAP), measured noninvasively, follows a normal hydrostatic pressure gradient above and below heart level during upright posture and 30 deg head down tilt (HDT). Seven healthy subjects gave informed consent and were 19 to 52 years old with a height range of 158 to 181 cm. A Finapres device measured arterial pressure at different levels of the body by moving the hand from 36 cm below heart level (BH) to 72 cm above heart level (AH) in upright posture and from 36 cm BH to 48 cm AH during HDT in increments of 12 cm. Mean FAP creased by 85 mmHg transitioning from BH to AH in upright posture, and the pressure gradient calculated from hydrostatic pressure difference (rho(gh)) was 84 mmHg. In HDT, mean FAP decreased by 65 mmHg from BH to AH, and the calculated pressure gradient was also 65 mmHg. There was no significant difference between the measured FAP gradient and the calculated pressure gradient, although a significant (p = 0.023) offset was seen for absolute arterial pressure in upright posture. These results indicate that arterial pressure at various levels can be obtained from the blood pressure at heart level by calculating rho(gh) + an offset. The offset equals the difference between heart level and the site of measurement. In summary, we conclude that local blood pressure gradients can be measured by noninvasive studies of FAP.

  14. Comparison of distributed vortex receptivity coefficients at excitation of 3D TS-waves in presence and absence of surface waviness and pressure gradient

    Science.gov (United States)

    Borodulin, V. I.; Ivanov, A. V.; Kachanov, Y. S.; Mischenko, D. A.; Fedenkova, A. A.

    2016-10-01

    The paper is devoted to quantitative experimental investigation of effective mechanisms of excitation of 3D TS instability waves due to distributed boundary layer receptivity to free-stream vortices. Experiments carried out in a self-similar boundary layer with Hartree parameter βH = -0.115 and concentrated on studying two receptivity mechanisms connected with distributed scattering of 3D unsteady free-stream vortices both on the natural boundary layer nonuniformity (smooth surface) and on 2D surface nonuniformity (waviness). Obtained quantitative characteristics (distributed receptivity coefficients) are compared directly with those obtained in Blasius boundary layer. It is found that the adverse pressure gradient leads to reduction of efficiency of the vortex-roughness receptivity mechanism.

  15. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    Science.gov (United States)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  16. Quantifying dynamic changes in plantar pressure gradient in diabetics with peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Chi-Wen Lung

    2016-07-01

    Full Text Available Diabetic foot ulcers remain one of the most serious complications of diabetes. Peak plantar pressure (PPP and peak pressure gradient (PPG during walking have been shown to be associated with the development of diabetic foot ulcers. To gain further insight into the mechanical etiology of diabetic foot ulcers, examination of the pressure gradient angle (PGA has been recently proposed. The PGA quantifies directional variation or orientation of the pressure gradient during walking, and provides a measure of whether pressure gradient patterns are concentrated or dispersed along the plantar surface. We hypothesized that diabetics at risk of foot ulceration would have smaller PGA in key plantar regions, suggesting less movement of the pressure gradient over time. A total of 27 participants were studied, including 19 diabetics with peripheral neuropathy and 8 non-diabetic control subjects. A foot pressure measurement system was used to measure plantar pressures during walking. PPP, PPG and PGA were calculated for four foot regions - 1st toe (T1, 1st metatarsal head (M1, 2nd metatarsal head (M2, and heel (HL. Consistent with prior studies, PPP and PPG were significantly larger in the diabetic group compared to non-diabetic controls in the T1 and M1 regions, but not M2 or HL. For example, PPP was 165% (P=0.02 and PPG was 214% (P<0.001 larger in T1. PGA was found to be significantly smaller in the diabetic group in T1 (46%, P=0.04, suggesting a more concentrated pressure gradient pattern under the toe. The proposed PGA may improve our understanding of the role of pressure gradient on the risk of diabetic foot ulcers.

  17. Portosystemic pressure reduction achieved with TIPPS and impact of portosystemic collaterals for the prediction of the portosystemic-pressure gradient in cirrhotic patients

    Energy Technology Data Exchange (ETDEWEB)

    Grözinger, Gerd, E-mail: gerd.groezinger@med.uni-tuebingen.de [Department of Diagnostic Radiology, Department of Radiology, University of Tübingen (Germany); Wiesinger, Benjamin; Schmehl, Jörg; Kramer, Ulrich [Department of Diagnostic Radiology, Department of Radiology, University of Tübingen (Germany); Mehra, Tarun [Department of Dermatology, University of Tübingen (Germany); Grosse, Ulrich; König, Claudius [Department of Diagnostic Radiology, Department of Radiology, University of Tübingen (Germany)

    2013-12-01

    Purpose: The portosystemic pressure gradient is an important factor defining prognosis in hepatic disease. However, noninvasive prediction of the gradient and the possible reduction by establishment of a TIPSS is challenging. A cohort of patients receiving TIPSS was evaluated with regard to imaging features of collaterals in cross-sectional imaging and the achievable reduction of the pressure gradient by establishment of a TIPSS. Methods: In this study 70 consecutive patients with cirrhotic liver disease were retrospectively evaluated. Patients received either CT or MR imaging before invasive pressure measurement during TIPSS procedure. Images were evaluated with regard to esophageal and fundus varices, splenorenal collaterals, short gastric vein and paraumbilical vein. Results were correlated with Child stage, portosystemic pressure gradient and post-TIPSS reduction of the pressure gradient. Results: In 55 of the 70 patients TIPSS reduced the pressure gradient to less than 12 mmHg. The pre-interventional pressure and the pressure reduction were not significantly different between Child stages. Imaging features of varices and portosystemic collaterals did not show significant differences. The only parameter with a significant predictive value for the reduction of the pressure gradient was the pre-TIPSS pressure gradient (r = 0.8, p < 0.001). Conclusions: TIPSS allows a reliable reduction of the pressure gradient even at high pre-interventional pressure levels and a high collateral presence. In patients receiving TIPSS the presence and the characteristics of the collateral vessels seem to be too variable to draw reliable conclusions concerning the portosystemic pressure gradient.

  18. Portosystemic pressure reduction achieved with TIPPS and impact of portosystemic collaterals for the prediction of the portosystemic-pressure gradient in cirrhotic patients

    International Nuclear Information System (INIS)

    Grözinger, Gerd; Wiesinger, Benjamin; Schmehl, Jörg; Kramer, Ulrich; Mehra, Tarun; Grosse, Ulrich; König, Claudius

    2013-01-01

    Purpose: The portosystemic pressure gradient is an important factor defining prognosis in hepatic disease. However, noninvasive prediction of the gradient and the possible reduction by establishment of a TIPSS is challenging. A cohort of patients receiving TIPSS was evaluated with regard to imaging features of collaterals in cross-sectional imaging and the achievable reduction of the pressure gradient by establishment of a TIPSS. Methods: In this study 70 consecutive patients with cirrhotic liver disease were retrospectively evaluated. Patients received either CT or MR imaging before invasive pressure measurement during TIPSS procedure. Images were evaluated with regard to esophageal and fundus varices, splenorenal collaterals, short gastric vein and paraumbilical vein. Results were correlated with Child stage, portosystemic pressure gradient and post-TIPSS reduction of the pressure gradient. Results: In 55 of the 70 patients TIPSS reduced the pressure gradient to less than 12 mmHg. The pre-interventional pressure and the pressure reduction were not significantly different between Child stages. Imaging features of varices and portosystemic collaterals did not show significant differences. The only parameter with a significant predictive value for the reduction of the pressure gradient was the pre-TIPSS pressure gradient (r = 0.8, p < 0.001). Conclusions: TIPSS allows a reliable reduction of the pressure gradient even at high pre-interventional pressure levels and a high collateral presence. In patients receiving TIPSS the presence and the characteristics of the collateral vessels seem to be too variable to draw reliable conclusions concerning the portosystemic pressure gradient

  19. An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure

    International Nuclear Information System (INIS)

    Ma Yanbao; Sun, Chien-Pin; Fields, Michael; Ho, Chih-Ming; Li Yang; Haake, David A; Churchill, Bernard M

    2008-01-01

    An unsteady microfluidic T-form mixer driven by pressure disturbances was designed and investigated. The performance of the mixer was examined both through numerical simulation and experimentation. Linear Stokes equations were used for these low Reynolds number flows. Unsteady mixing in a micro-channel of two aqueous solutions differing in concentrations of chemical species was described using a convection-dominated diffusion equation. The task was greatly simplified by employing linear superimposition of a velocity field for solving a scalar species concentration equation. Low-order-based numerical codes were found not to be suitable for simulation of a convection-dominated mixing process due to erroneous computational dissipation. The convection-dominated diffusion problem was addressed by designing a numerical algorithm with high numerical accuracy and computational-cost effectiveness. This numerical scheme was validated by examining a test case prior to being applied to the mixing simulation. Parametric analysis was performed using this newly developed numerical algorithm to determine the best mixing conditions. Numerical simulation identified the best mixing condition to have a Strouhal number (St) of 0.42. For a T-junction mixer (with channel width = 196 µm), about 75% mixing can be finished within a mixing distance of less than 3 mm (i.e. 15 channel width) at St = 0.42 for flow with a Reynolds number less than 0.24. Numerical results were validated experimentally by mixing two aqueous solutions containing yellow and blue dyes. Visualization of the flow field under the microscope revealed a high level of agreement between numerical simulation and experimental results

  20. Development of a nonlinear unsteady transonic flow theory

    Science.gov (United States)

    Stahara, S. S.; Spreiter, J. R.

    1973-01-01

    A nonlinear, unsteady, small-disturbance theory capable of predicting inviscid transonic flows about aerodynamic configurations undergoing both rigid body and elastic oscillations was developed. The theory is based on the concept of dividing the flow into steady and unsteady components and then solving, by method of local linearization, the coupled differential equation for unsteady surface pressure distribution. The equations, valid at all frequencies, were derived for two-dimensional flows, numerical results, were obtained for two classses of airfoils and two types of oscillatory motions.

  1. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    Science.gov (United States)

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  2. The mechanics of locomotion in the squid Loligo pealei: locomotory function and unsteady hydrodynamics of the jet and intramantle pressure.

    Science.gov (United States)

    Anderson, E J; DeMont, M E

    2000-09-01

    High-speed, high-resolution digital video recordings of swimming squid (Loligo pealei) were acquired. These recordings were used to determine very accurate swimming kinematics, body deformations and mantle cavity volume. The time-varying squid profile was digitized automatically from the acquired swimming sequences. Mantle cavity volume flow rates were determined under the assumption of axisymmetry and the condition of incompressibility. The data were then used to calculate jet velocity, jet thrust and intramantle pressure, including unsteady effects. Because of the accurate measurements of volume flow rate, the standard use of estimated discharge coefficients was avoided. Equations for jet and whole-cycle propulsive efficiency were developed, including a general equation incorporating unsteady effects. Squid were observed to eject up to 94 % of their intramantle working fluid at relatively high swimming speeds. As a result, the standard use of the so-called large-reservoir approximation in the determination of intramantle pressure by the Bernoulli equation leads to significant errors in calculating intramantle pressure from jet velocity and vice versa. The failure of this approximation in squid locomotion also implies that pressure variation throughout the mantle cannot be ignored. In addition, the unsteady terms of the Bernoulli equation and the momentum equation proved to be significant to the determination of intramantle pressure and jet thrust. Equations of propulsive efficiency derived for squid did not resemble Froude efficiency. Instead, they resembled the equation of rocket motor propulsive efficiency. The Froude equation was found to underestimate the propulsive efficiency of the jet period of the squid locomotory cycle and to overestimate whole-cycle propulsive efficiency when compared with efficiencies calculated from equations derived with the squid locomotory apparatus in mind. The equations for squid propulsive efficiency reveal that the refill

  3. Use of Active Learning to Design Wind Tunnel Runs for Unsteady Cavity Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Ankur Srivastava

    2014-01-01

    Full Text Available Wind tunnel tests to measure unsteady cavity flow pressure measurements can be expensive, lengthy, and tedious. In this work, the feasibility of an active machine learning technique to design wind tunnel runs using proxy data is tested. The proposed active learning scheme used scattered data approximation in conjunction with uncertainty sampling (US. We applied the proposed intelligent sampling strategy in characterizing cavity flow classes at subsonic and transonic speeds and demonstrated that the scheme has better classification accuracies, using fewer training points, than a passive Latin Hypercube Sampling (LHS strategy.

  4. Turbine-99 unsteady simulations - Validation

    International Nuclear Information System (INIS)

    Cervantes, M J; Andersson, U; Loevgren, H M

    2010-01-01

    The Turbine-99 test case, a Kaplan draft tube model, aimed to determine the state of the art within draft tube simulation. Three workshops were organized on the matter in 1999, 2001 and 2005 where the geometry and experimental data were provided as boundary conditions to the participants. Since the last workshop, computational power and flow modelling have been developed and the available data completed with unsteady pressure measurements and phase resolved velocity measurements in the cone. Such new set of data together with the corresponding phase resolved velocity boundary conditions offer new possibilities to validate unsteady numerical simulations in Kaplan draft tube. The present work presents simulation of the Turbine-99 test case with time dependent angular resolved inlet velocity boundary conditions. Different grids and time steps are investigated. The results are compared to experimental time dependent pressure and velocity measurements.

  5. Turbine-99 unsteady simulations - Validation

    Science.gov (United States)

    Cervantes, M. J.; Andersson, U.; Lövgren, H. M.

    2010-08-01

    The Turbine-99 test case, a Kaplan draft tube model, aimed to determine the state of the art within draft tube simulation. Three workshops were organized on the matter in 1999, 2001 and 2005 where the geometry and experimental data were provided as boundary conditions to the participants. Since the last workshop, computational power and flow modelling have been developed and the available data completed with unsteady pressure measurements and phase resolved velocity measurements in the cone. Such new set of data together with the corresponding phase resolved velocity boundary conditions offer new possibilities to validate unsteady numerical simulations in Kaplan draft tube. The present work presents simulation of the Turbine-99 test case with time dependent angular resolved inlet velocity boundary conditions. Different grids and time steps are investigated. The results are compared to experimental time dependent pressure and velocity measurements.

  6. Experimental investigations of the unsteady flow in a Francis turbine draft tube cone

    International Nuclear Information System (INIS)

    Baya, A; Muntean, S; Campian, V C; Cuzmos, A; Diaconescu, M; Balan, G

    2010-01-01

    Operating Francis turbines at partial discharge is often hindered by the development of the helical vortex (so-called vortex rope) downstream the runner, in the draft tube cone. The unsteady pressure field induced by precessing vortex rope leads to pressure fluctuations. The paper presents the experimental investigations of the unsteady pressure field generated by precessing vortex rope and its associated pressure fluctuations into a draft tube of the Francis turbine operating at partial discharge. In situ measurements are performed in order to evaluate the pressure fluctuations and vortex rope frequency at partial load operation. Three pressure taps are installed on the cone wall of the draft tube in order to record the unsteady pressure. As a result, the Fourier spectra are obtained in order to evaluate the amplitude of pressure fluctuations and vortex rope frequency. Moreover, the wall pressure recovery along to the draft tube cone is acquired. Finally, conclusions are drawn in order to present the vortex rope effects.

  7. Experimental investigations of the unsteady flow in a Francis turbine draft tube cone

    Energy Technology Data Exchange (ETDEWEB)

    Baya, A [Department of Hydraulic Machinery, ' Politehnica' University of Timisoara Bv. Mihai Viteazu 1, RO-300222, Timisoara (Romania); Muntean, S [Centre of Advanced Research in Engineering Sciences, Romanian Academy - Timisoara Branch Bv. Mihai Viteazu 24, RO-300223, Timisoara (Romania); Campian, V C; Cuzmos, A [Research Center in Hydraulics, Automation and Heat Transfer, ' Eftimie Murgu' University of Resita P-ta. Traian Vuia 1-4, RO-320085, Resita (Romania); Diaconescu, M; Balan, G, E-mail: abaya@mh.mec.upt.r [Ramnicu Valcea Subsidiary, S.C. Hidroelectrica S.A. Str. Decebal 11, RO-240255, Ramnicu Valcea (Romania)

    2010-08-15

    Operating Francis turbines at partial discharge is often hindered by the development of the helical vortex (so-called vortex rope) downstream the runner, in the draft tube cone. The unsteady pressure field induced by precessing vortex rope leads to pressure fluctuations. The paper presents the experimental investigations of the unsteady pressure field generated by precessing vortex rope and its associated pressure fluctuations into a draft tube of the Francis turbine operating at partial discharge. In situ measurements are performed in order to evaluate the pressure fluctuations and vortex rope frequency at partial load operation. Three pressure taps are installed on the cone wall of the draft tube in order to record the unsteady pressure. As a result, the Fourier spectra are obtained in order to evaluate the amplitude of pressure fluctuations and vortex rope frequency. Moreover, the wall pressure recovery along to the draft tube cone is acquired. Finally, conclusions are drawn in order to present the vortex rope effects.

  8. A dynamic response model for pressure sensors in continuum and high Knudsen number flows with large temperature gradients

    Science.gov (United States)

    Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.

    1996-01-01

    This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.

  9. Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Intermittency Behavior Along the Suction Surface of a Low Pressure Turbine Blade

    Science.gov (United States)

    Schobeiri, M. T.; Ozturk, B.; Ashpis, David E.

    2007-01-01

    The paper experimentally studies the effects of periodic unsteady wake flow and different Reynolds numbers on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. The experiments were carried out at Reynolds numbers of 110,000 and 150,000 (based on suction surface length and exit velocity). One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies chosen cover the operating range of LP turbines. In addition to the unsteady boundary layer measurements, surface pressure measurements were performed. The inception, onset, and the extent of the separation bubble information collected from the pressure measurements were compared with the hot wire measurements. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds number. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations defining the separation bubble were determined carefully analyzing and examining the pressure and mean velocity profile data. The location of the boundary layer separation was dependent of the Reynolds number. It is observed that starting point of the separation bubble and the re-attachment point move further downstream by increasing Reynolds number from 110,000 to 150,000. Also, the size of the separation bubble is smaller when compared to that for Re=110,000.

  10. Entropy Generation in Steady Laminar Boundary Layers with Pressure Gradients

    Directory of Open Access Journals (Sweden)

    Donald M. McEligot

    2014-07-01

    Full Text Available In an earlier paper in Entropy [1] we hypothesized that the entropy generation rate is the driving force for boundary layer transition from laminar to turbulent flow. Subsequently, with our colleagues we have examined the prediction of entropy generation during such transitions [2,3]. We found that reasonable predictions for engineering purposes could be obtained for flows with negligible streamwise pressure gradients by adapting the linear combination model of Emmons [4]. A question then arises—will the Emmons approach be useful for boundary layer transition with significant streamwise pressure gradients as by Nolan and Zaki [5]. In our implementation the intermittency is calculated by comparison to skin friction correlations for laminar and turbulent boundary layers and is then applied with comparable correlations for the energy dissipation coefficient (i.e., non-dimensional integral entropy generation rate. In the case of negligible pressure gradients the Blasius theory provides the necessary laminar correlations.

  11. Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements

    Science.gov (United States)

    Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter

    2009-01-01

    In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.

  12. Implementing unsteady friction in pressure-time measurements

    OpenAIRE

    Jonsson, Pontus; Ramdal, Jorgen; Cervantes, Michel; Nielsen, Torbjørn Kristian

    2012-01-01

    Laboratory measurements using the pressure‐time method showed a velocity or Reynolds number dependent error of the flow estimate. It was suspected that the quasi steady friction formulation of the method was the cause. This was investigated, and it was proved that implementing a model for unsteady friction into the calculations improved the result. This paper presents the process of this investigation, and proposes a new method for treatment of the friction term in the pressure‐time method.

  13. Investigation of the correlation between noise and vibration characteristics and unsteady flow in a circulator pump

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Denghao; Ren, Yun; Mou, Jiegang; Gu, Yunqing [Zhejiang University of Technology, Hangzhou (China)

    2017-05-15

    Circulator pumps have wide engineering applications but the acoustics, vibration and unsteady flow structures of the circulator pump are still not fully understood. We investigated the noise and vibration characteristics and unsteady flow structures in a circulator pump at different flow rates. Three-dimensional, unsteady RANS equations were solved on high-quality structured meshes with SST k-ω turbulence model numerically. Measurements were made in a semi-anechoic chamber to get an overview of noise and vibration level of a pump at different flow rates. The 1/3 octave-band filter technique was applied to obtain the explicit frequency spectra of sound, pressure fluctuations and vibration signals and their principal frequencies were identified successfully. The air-borne noise level of the designed condition is lower than that of the off-design conditions, and the highest sound pressure level is found at part-load condition. The acoustic emission from the pump is mainly caused by unsteady flow structures and pressure fluctuations. In addition, both the link between air- borne noise and pressure fluctuation, and the correlation between vibration and unsteady hydrodynamic forces, were quantitatively examined and verified. This work offers good data to understand noise and vibration characteristics of circulator pumps and the relationships among the noise, vibration and unsteady flow structures.

  14. Shock unsteadiness in a thrust optimized parabolic nozzle

    Science.gov (United States)

    Verma, S. B.

    2009-07-01

    This paper discusses the nature of shock unsteadiness, in an overexpanded thrust optimized parabolic nozzle, prevalent in various flow separation modes experienced during start up {(δ P0 /δ t > 0)} and shut down {(δ P0/δ t The results are based on simultaneously acquired data from real-time wall pressure measurements using Kulite pressure transducers, high-speed schlieren (2 kHz) of the exhaust flow-field and from strain-gauges installed on the nozzle bending tube. Shock unsteadiness in the separation region is seen to increase significantly just before the onset of each flow transition, even during steady nozzle operation. The intensity of this measure ( rms level) is seen to be strongly influenced by relative locations of normal and overexpansion shock, the decrease in radial size of re-circulation zone in the back-flow region, and finally, the local nozzle wall contour. During restricted shock separation, the pressure fluctuations in separation region exhibit periodic characteristics rather than the usually observed characteristics of intermittent separation. The possible physical mechanisms responsible for the generation of flow unsteadiness in various separation modes are discussed. The results are from an experimental study conducted in P6.2 cold-gas subscale test facility using a thrust optimized parabolic nozzle of area-ratio 30.

  15. Unsteady Probabilistic Analysis of a Gas Turbine System

    Science.gov (United States)

    Brown, Marilyn

    2003-01-01

    In this work, we have considered an annular cascade configuration subjected to unsteady inflow conditions. The unsteady response calculation has been implemented into the time marching CFD code, MSUTURBO. The computed steady state results for the pressure distribution demonstrated good agreement with experimental data. We have computed results for the amplitudes of the unsteady pressure over the blade surfaces. With the increase in gas turbine engine structural complexity and performance over the past 50 years, structural engineers have created an array of safety nets to ensure against component failures in turbine engines. In order to reduce what is now considered to be excessive conservatism and yet maintain the same adequate margins of safety, there is a pressing need to explore methods of incorporating probabilistic design procedures into engine development. Probabilistic methods combine and prioritize the statistical distributions of each design variable, generate an interactive distribution and offer the designer a quantified relationship between robustness, endurance and performance. The designer can therefore iterate between weight reduction, life increase, engine size reduction, speed increase etc.

  16. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  17. Measurement of carotid bifurcation pressure gradients using the Bernoulli principle.

    Science.gov (United States)

    Illig, K A; Ouriel, K; DeWeese, J A; Holen, J; Green, R M

    1996-04-01

    Current randomized prospective studies suggest that the degree of carotid stenosis is a critical element in deciding whether surgical or medical treatment is appropriate. Of potential interest is the actual pressure drop caused by the blockage, but no direct non-invasive means of quantifying the hemodynamic consequences of carotid artery stenoses currently exists. The present prospective study examined whether preoperative pulsed-Doppler duplex ultrasonographic velocity (v) measurements could be used to predict pressure gradients (delta P) caused by carotid artery stenoses, and whether such measurements could be used to predict angiographic percent diameter reduction. Preoperative Doppler velocity and intraoperative direct pressure measurements were obtained, and per cent diameter angiographic stenosis measured in 76 consecutive patients who underwent 77 elective carotid endarterectomies. Using the Bernoulli principle (delta P = 4v(2), pressure gradients across the stenoses were calculated. The predicted delta P, as well as absolute velocities and internal carotid artery/common carotid velocity ratios were compared with the actual delta P measured intraoperatively and with preoperative angiography and oculopneumoplethysmography (OPG) results. An end-diastolic velocity of > or = 1 m/s and an end-diastolic internal carotid artery/common carotid artery velocity ratio of > or = 10 predicted a 50% diameter angiographic stenosis with 100% specificity. Although statistical significance was reached, preoperative pressure gradients derived from the Bernoulli equation could not predict actual individual intraoperative pressure gradients with enough accuracy to allow decision making on an individual basis. Velocity measurements were as specific and more sensitive than OPG results. Delta P as predicted by the Bernoulli equation is not sufficiently accurate at the carotid bifurcation to be useful for clinical decision making on an individual basis. However, end

  18. Influence of transition on steady and unsteady wind-turbine airfoil aerodynamics

    Science.gov (United States)

    Paterson, Eric; Lavely, Adam; Vijayakumar, Ganesh; Brasseur, James

    2011-11-01

    Laminar-flow airfoils for large stall-regulated horizontal-axis wind turbines are designed to achieve a restrained maximum lift coefficient and a broad laminar low- drag bucket under steady flow conditions and at specific Reynolds numbers. Blind- comparisons of the 2000 NREL Unsteady Aerodynamics Experiment showed large discrepancies and illustrated the need for improved physics modeling. We have studied the S809 airfoil under static and dynamic (ramp-up, ramp-down, and oscillatory) conditions, using the four-equation transition model of Langtry and Menter (2009), which has been implemented as a library accessible by an OpenFOAM RANS solver. Model validation is performed using surface-pressure and lift/drag data from U. Glasgow (2009) and OSU (1995) wind tunnel experiments. Performance of the transition model is assessed by analyzing integrated performance metrics, as well as detailed surface pressure and pressure gradient, wall-shear stress, and boundary-layer profiles and separation points. Demonstration of model performance in the light- and deep-stall regimes of dynamic stall is an important step in reducing uncertainties in full 3D simulations of turbines operating in the atmospheric boundary layer. Supported by NSF Grant 0933647.

  19. Comparative study of interventricular phase difference and pressure gradient in cases of isolated ventricular septal defect

    Energy Technology Data Exchange (ETDEWEB)

    Elhaddad, SH; Moustafa, H; Ziada, G; Seleem, Z; Elsabban, KH; Mahmoud, F [Nuclear medicine department and pediatric cardiology department Faculty of medicine, Cairo university, Cairo, (Egypt)

    1995-10-01

    One hundred and fifty patients with isolated VSD were evaluated by radionuclide MUGA study and Echo-Doppler. Difference between phase angle of the right and left ventricles as detected by MUGA had been divided into main four groups according to pressure gradient between the two ventricles : group I (with pressure gradient {<=}30 mmHg and phase difference 80.10 degree{+-}34.1), group III (with pressure gradient > 70 mmHg and phase difference -0.5 degree {+-} 8.4). It has been found that there was a significant difference between the 4 groups as regards right - to - left ventricular phase difference (P<0.0001). There was significant delay in emptying of right ventricle in groups with pressure gradient < 50 mmHg. Regression analysis revealed inverse correlation between right -to- left ventricular phase difference with changes in pressure gradient (r= 0.81). Similarly, significant correlation had been found between right -to-left ventricular phase difference in relation Qp/Qs (r=0.85); conclusion: interventricular phase difference can be used to evaluate interventricular pressure gradient in cases of isolated VSD. 4 figs., 2 tabs.

  20. Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar

    Science.gov (United States)

    Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian

    2017-06-01

    Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.type="synopsis">type="main">Plain Language SummaryThe pressure gradient present within the seabed beneath breaking waves may be an important physical mechanism transporting sediment. A large-scale laboratory was used to replicate realistic surfzone conditions in controlled tests, allowing for horizontal and vertical pressure gradient magnitudes and the resulting sediment bed response to be observed with precise instruments

  1. Investigation of the Unsteady Total Pressure Profile Corresponding to Counter-Rotating Vortices in an Internal Flow Application

    Science.gov (United States)

    Gordon, Kathryn; Morris, Scott; Jemcov, Aleksandar; Cameron, Joshua

    2013-11-01

    The interaction of components in a compressible, internal flow often results in unsteady interactions between the wakes and moving blades. A prime example in which this flow feature is of interest is the interaction between the downstream rotor blades in a transonic axial compressor with the wake vortices shed from the upstream inlet guide vane (IGV). Previous work shows that a double row of counter-rotating vortices convects downstream into the rotor passage as a result of the rotor blade bow shock impinging on the IGV. The rotor-relative time-mean total pressure distribution has a region of high total pressure corresponding to the pathline of the vortices. The present work focuses on the relationship between the magnitude of the time-mean rotor-relative total pressure profile and the axial spacing between the IGV and the rotor. A survey of different axial gap sizes is performed in a two-dimensional computational study to obtain the sensitivity of the pressure profile amplitude to IGV-rotor axial spacing.

  2. The impact of edge gradients in the pressure, density, ion temperature, and electron temperature on edge-localized modes

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2011-01-01

    The magnitude of the energy and particle fluxes in simulations of edge-localized modes (ELMs) is determined by the edge gradients in the pressure, density, ion temperature, and electron temperature. The total edge pressure gradient is the dominant influence on ELMs by far. An increase (decrease) of merely 2% in the pressure gradient results in an increase (decrease) of more than a factor of ten in the size of the ELM bursts. At a fixed pressure gradient, the size of the ELM bursts decreases as the density gradient increases, while the size of the bursts increases as the electron temperature gradient or, especially, the ion temperature gradient increases.

  3. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    International Nuclear Information System (INIS)

    Huang, W D; Fan, H G; Chen, N X

    2012-01-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  4. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    Science.gov (United States)

    Huang, W. D.; Fan, H. G.; Chen, N. X.

    2012-11-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  5. Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

    Science.gov (United States)

    Mangalam, Arun S.; Moes, Timothy R.

    2004-01-01

    Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

  6. Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows

    Science.gov (United States)

    Cadel, Daniel; Lowe, K. Todd

    2015-11-01

    Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.

  7. Numerical simulation of the unsteady progress in centrifuge

    International Nuclear Information System (INIS)

    Wei Chunlin; Zeng Shi

    2006-01-01

    Unsteady flow equations for the centrifuge are solved on a staggered grid by a finite volume method. The transient process that the axial flow in the centrifuge is established under a steady thermal driving. It can be concluded that the influence which causes the perturbing fluid is different at the beginning and the end of the processing. The flow is caused by the imbalance of temperature which turns to be caused by the imbalance of pressure. The results show that the numerical simulation is effective at the unsteady fluid in a centrifuge. (authors)

  8. Influence of Impeller Geometry on the Unsteady Flow in a Centrifugal Fan: Numerical and Experimental Analyses

    Directory of Open Access Journals (Sweden)

    M. Younsi

    2007-01-01

    Full Text Available The aim of this study is to evaluate the influence of design parameters on the unsteady flow in a forward-curved centrifugal fan and their impact on the aeroacoustic behavior. To do so, numerical and experimental studies have been carried out on four centrifugal impellers designed with various geometrical parameters. The same volute casing has been used to study these impellers. The effects on the unsteady flow behavior related to irregular blade spacing, blade count and radial distance between the impeller periphery and the volute tongue have been studied. The numerical simulations of the unsteady flow have been carried out using computational fluid dynamics (CFD tools based on the unsteady Reynolds averaged Navier Stokes (URANS approach. The study is focused on the unsteadiness induced by the aerodynamic interaction between the volute and the rotating impeller blades. In order to predict the acoustic pressure at far field, the unsteady flow variables provided by the CFD calculations have been used as inputs in the Ffowcs Williams-Hawkings equations (FW-H. The experimental part of this work concerns measurement of aerodynamic performance of the fans using a test bench built according to ISO 5801 (1997 standard. In addition to this, pressure microphones have been flush mounted on the volute tongue surface in order to measure the wall pressure fluctuations. The sound pressure level (SPL measurements have been carried out in an anechoic room in order to remove undesired noise reflections. Finally, the numerical results have been compared with the experimental measurements and a correlation between the wall pressure fluctuations and the far field noise signals has been found.

  9. Measurement of hepatic venous pressure gradient revisited: Catheter wedge vs balloon wedge techniques

    Directory of Open Access Journals (Sweden)

    S Timothy Chelliah

    2011-01-01

    Full Text Available Aims: To evaluate the accuracy of measurement of hepatic venous pressure gradient by catheter wedge as compared to balloon wedge (the gold standard. Materials and Methods: Forty-five patients having a clinical diagnosis of intrahepatic portal hypertension were subjected to the two different types of pressure measurements (catheter wedge and balloon wedge during transjugular liver biopsy under fluoroscopic guidance. Statistical Analysis: Spearman′s rank correlation coefficient, Bland-Altman plot for agreement, and single measure intraclass correlation were used for analysis of data. Results: There was a close correlation between the results obtained by both the techniques, with highly significant concordance (P < 0.0001. Hepatic venous pressure gradients as measured by the catheter wedge technique were either equal to or less than those obtained by the balloon wedge technique. Conclusions: The difference in hepatic venous pressure gradients measured by the two techniques is insignificant.

  10. Boundary layers affected by different pressure gradients investigated computationally by a zonal RANS-LES method

    International Nuclear Information System (INIS)

    Roidl, B.; Meinke, M.; Schröder, W.

    2014-01-01

    Highlights: • Reformulated synthetic turbulence generation method (RSTGM) is applied. • Zonal RANS-LES method is applied to boundary layers at pressure gradients. • Good agreement with the pure LES and other reference data is obtained. • The RSTGM is applicable to pressure gradient flows without modification. • RANS-to-LES boundary should be located where -1·10 6 6 is satisfied. -- Abstract: The reformulated synthetic turbulence generation (RSTG) method is used to compute by a fully coupled zonal RANS-LES approach turbulent non-zero-pressure gradient boundary layers. The quality of the RSTG method, which is based on the same shape functions and length scale distributions as in zero-pressure gradient flow, is discussed by comparing the zonal RANS-LES findings with pure LES, pure RANS, direct numerical simulation (DNS), and experimental data. For the favorable pressure gradient (FPG) simulation the RANS-to-LES transition occurs in the accelerated flow region and for the adverse pressure gradient (APG) case it is located in the decelerated flow region. The results of the time and spanwise averaged skin-friction distributions, velocity profiles, and Reynolds stress distributions of the zonal RANS-LES simulation show a satisfactory to good agreement with the pure LES, reference DNS, and experimental data. The quality of the findings shows that the rigorous formulation of the synthetic turbulence generation makes the RSTG method applicable without a priori knowledge of the flow properties but those determined by the RANS solution and without using additional control planes to regulate the shear stress budget to a wide range of Reynolds numbers and pressure gradients. The method is a promising approach to formulate embedded RANS-to-LES boundaries in flow regions where the Pohlhausen or acceleration parameter satisfies -1·10 -6 ⩽K⩽2·10 -6

  11. Pressure gradient turbulent transport and collisionless reconnection

    International Nuclear Information System (INIS)

    Connor, J.W.

    1993-01-01

    The scale invariance technique is employed to discuss pressure gradient driven turbulent transport when an Ohm's law with electron inertia, rather than resistivity, is relevant. An expression for thermal diffusivity which has many features appropriate to L-mode transport in tokamaks, is seen to have greater generality than indicated by their particular calculation. The results of applying the technique to a more appropriate collisionless Ohm's law are discussed. (Author)

  12. Stratified steady and unsteady two-phase flows between two parallel plates

    International Nuclear Information System (INIS)

    Sim, Woo Gun

    2006-01-01

    To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated

  13. Experimental validation of an ultrasonic flowmeter for unsteady flows

    Science.gov (United States)

    Leontidis, V.; Cuvier, C.; Caignaert, G.; Dupont, P.; Roussette, O.; Fammery, S.; Nivet, P.; Dazin, A.

    2018-04-01

    An ultrasonic flowmeter was developed for further applications in cryogenic conditions and for measuring flow rate fluctuations in the range of 0 to 70 Hz. The prototype was installed in a flow test rig, and was validated experimentally both in steady and unsteady water flow conditions. A Coriolis flowmeter was used for the calibration under steady state conditions, whereas in the unsteady case the validation was done simultaneously against two methods: particle image velocimetry (PIV), and with pressure transducers installed flush on the wall of the pipe. The results show that the developed flowmeter and the proposed methodology can accurately measure the frequency and amplitude of unsteady fluctuations in the experimental range of 0-9 l s-1 of the mean main flow rate and 0-70 Hz of the imposed disturbances.

  14. An Examination of Unsteady Airloads on a UH-60A Rotor: Computation Versus Measurement

    Science.gov (United States)

    Biedron, Robert T.; Lee-Rausch, Elizabeth

    2012-01-01

    An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids is used to simulate the flow over a UH-60A rotor. Traditionally, the computed pressure and shear stresses are integrated on the computational mesh at selected radial stations and compared to measured airloads. However, the corresponding integration of experimental data uses only the pressure contribution, and the set of integration points (pressure taps) is modest compared to the computational mesh resolution. This paper examines the difference between the traditional integration of computed airloads and an integration consistent with that used for the experimental data. In addition, a comparison of chordwise pressure distributions between computation and measurement is made. Examination of this unsteady pressure data provides new opportunities to understand differences between computation and flight measurement.

  15. Modeling unsteady forces and pressures on a rapidly pitching airfoil

    Science.gov (United States)

    Schiavone, Nicole K.; Dawson, Scott T. M.; Rowley, Clarence W.; Williams, David R.

    2014-11-01

    This work develops models to quantify and understand the unsteady aerodynamic forces arising from rapid pitching motion of a NACA0012 airfoil at a Reynolds number of 50 000. The system identification procedure applies a generalized DMD-type algorithm to time-resolved wind tunnel measurements of the lift and drag forces, as well as the pressure at six locations on the suction surface of the airfoil. Models are identified for 5-degree pitch-up and pitch-down maneuvers within the overall range of 0-20 degrees. The identified models can accurately capture the effects of flow separation and leading-edge vortex formation and convection. We demonstrate that switching between different linear models can give accurate prediction of the nonlinear behavior that is present in high-amplitude maneuvers. The models are accurate for a wide-range of motions, including pitch-and-hold, sinusoidal, and pseudo-random pitching maneuvers. Providing the models access to a subset of the measured data channels can allow for improved estimates of the remaining states via the use of a Kalman filter, suggesting that the modeling framework could be useful for aerodynamic control applications. This work was supported by the Air Force Office of Scientific Research, under Award No. FA9550-12-1-0075.

  16. Transport due to ion pressure gradient turbulence

    International Nuclear Information System (INIS)

    Connor, J.W.

    1986-01-01

    Turbulent transport due to the ion pressure gradient (or temperature drift) instability is thought to be significant when etasub(i)=d(ln Tsub(i))/d(ln n)>1. The invariance properties of the governing equations under scale transformations are used to discuss the characteristics of this turbulence. This approach not only clarifies the relationships between earlier treatments but also, in certain limits, completely determines the scaling properties of the fluctuations and the consequent thermal transport. (author)

  17. Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids

    Science.gov (United States)

    Ahmad, Jasim; Duque, Earl P. N.

    1996-01-01

    An overset grid thin-layer Navier-Stokes code has been extended to include dynamic motion of helicopter rotor blades through relative grid motion. The unsteady flowfield and airloads on an AH-IG rotor in forward flight were computed to verify the methodology and to demonstrate the method's potential usefulness towards comprehensive helicopter codes. In addition, the method uses the blade's first harmonics measured in the flight test to prescribe the blade motion. The solution was impulsively started and became periodic in less than three rotor revolutions. Detailed unsteady numerical flow visualization techniques were applied to the entire unsteady data set of five rotor revolutions and exhibited flowfield features such as blade vortex interaction and wake roll-up. The unsteady blade loads and surface pressures compare well against those from flight measurements. Details of the method, a discussion of the resulting predicted flowfield, and requirements for future work are presented. Overall, given the proper blade dynamics, this method can compute the unsteady flowfield of a general helicopter rotor in forward flight.

  18. Characterisation of minimal-span plane Couette turbulence with pressure gradients

    Science.gov (United States)

    Sekimoto, Atsushi; Atkinson, Callum; Soria, Julio

    2018-04-01

    The turbulence statistics and dynamics in the spanwise-minimal plane Couette flow with pressure gradients, so-called, Couette-Poiseuille (C-P) flow, are investigated using direct numerical simulation. The large-scale motion is limited in the spanwise box dimension as in the minimal-span channel turbulence of Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704). The effect of the top wall, where normal pressure-driven Poiseuille flow is realised, is distinguished from the events on the bottom wall, where the pressure gradient results in mild or almost-zero wall-shear stress. A proper scaling of turbulence statistics in minimal-span C-P flows is presented. Also the ‘shear-less’ wall-bounded turbulence, where the Corrsin shear parameter is very weak compared to normal wall-bounded turbulence, represents local separation, which is also observed as spanwise streaks of reversed flow in full-size plane C-P turbulence. The local separation is a multi-scale event, which grows up to the order of the channel height even in the minimal-span geometry.

  19. Forum on unsteady flow - 1985

    International Nuclear Information System (INIS)

    Rothe, P.H.

    1985-01-01

    This book presents the papers given at a conference on fluid flow and hydraulics. Topics considered at the conference included a numerical study of pressure transients in a borehole due to pipe movement, laminar fluid transients in conduits of unconventional shape, water hammer analysis needs in nuclear power plant design, modeling blockage in unsteady slurry flow in conduits, and check valve slamming in a BWR feedwater system following a postulated pipe break

  20. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    Science.gov (United States)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  1. Simulating unsteady conduit flows with smoothed particle hydrodynamics

    NARCIS (Netherlands)

    Hou, Q.

    2012-01-01

    Pipelines are widely used for transport and cooling in industries such as oil and gas, chemical, water supply and sewerage, and hydro, fossil-fuel and nuclear power plants. Unsteady pipe flows with large pressure variations may cause a range of problems such as pipe rapture, support failure, pipe

  2. Quantitative angiography of the left anterior descending coronary artery: correlations with pressure gradient and exercise thallium scintigraphy

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Serruys, P.W.; Slager, C.J.; Erasmus Univ., Rotterdam

    1986-01-01

    In order to evaluate during cardiac catheterization what constitutes a physiologically significant obstruction to blood flow in the human coronary system, computer based quantitative analysis of coronary angiograms was performed in 31 patients with isolated proximal left anterior descending coronary artery disease. The angiographic severity of the stenosis was compared with the transstenotic pressure gradient measured with the dilatation catheter during angioplasty and the results of exercise thallium scintigraphy. A curvilinear relation was found between the pressure gradient across the stenosis (normalized for the mean aortic pressure) and the residual minimal obstruction area (after subtracting the area of the angioplasty catheter). This relation was best fitted by the equation: normalized mean pressure gradient = a + b · log [obstruction area], r = 0.74. The measurements of the percent area stenosis (cut-off 80%) and of the transstenotic pressure gradient (cut-off 0.30) obtained at rest, correctly predicted the occurrence of thallium perfusion defects induced by exercise in 83% of the patients. (Auth.)

  3. Calculation of pressure gradients from MR velocity data in a laminar flow model

    International Nuclear Information System (INIS)

    Adler, R.S.; Chenevert, T.L.; Fowlkes, J.B.; Pipe, J.G.; Rubin, J.M.

    1990-01-01

    This paper reports on the ability of current imaging modalities to provide velocity-distribution data that offers the possibility of noninvasive pressure-gradient determination from an appropriate rheologic model of flow. A simple laminar flow model is considered at low Reynolds number, RE calc = 0.59 + (1.13 x (dp/dz) meas ), R 2 = .994, in units of dyne/cm 2 /cm for the range of flows considered. The authors' results indicate the potential usefulness of noninvasive pressure-gradient determinations from quantitative analysis of imaging-derived velocity data

  4. A practical model for pressure probe system response estimation (with review of existing models)

    Science.gov (United States)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  5. Influence of Reynolds Number on the Unsteady Aerodynamics of Integrated Aggressive Intermediate Turbine Duct

    Science.gov (United States)

    Liu, Hongrui; Liu, Jun; Ji, Lucheng; Du, Qiang; Liu, Guang; Wang, Pei

    2018-06-01

    The ultra-high bypass ratio turbofan engine attracts more and more attention in modern commercial engine due to advantages of high efficiency and low Specific Fuel Consumption (SFC). One of the characteristics of ultra-high bypass ratio turbofan is the intermediate turbine duct which guides the flow leaving high pressure turbine (HPT) to low pressure turbine (LPT) at a larger diameter, and this kind of design will lead to aggressive intermediate turbine duct (AITD) design concept. Thus, it is important to design the AITD without any severe loss. From the unsteady flow's point of view, in actual operating conditions, the incoming wake generated by HPT is unsteady which will take influence on boundary layer's transition within the ITD and LPT. In this paper, the three-dimensional unsteady aerodynamics of an AITD taken from a real engine is studied. The results of fully unsteady three-dimensional numerical simulations, performed with ANSYS-CFX (RANS simulation with transitional model), are critically evaluated against experimental data. After validation of the numerical model, the physical mechanisms inside the flow channel are analyzed, with an aim to quantify the sensitivities of different Reynolds number effect on both the ITD and LPT nozzle. Some general physical mechanisms can be recognized in the unsteady environment. It is recognized that wake characteristics plays a crucial role on the loss within both the ITD and LPT nozzle section, determining both time-averaged and time-resolved characteristics of the flow field. Meanwhile, particular attention needs to be paid to the unsteady effect on the boundary layer of LPT nozzle's suction side surface.

  6. Correlations for modeling transitional boundary layers under influences of freestream turbulence and pressure gradient

    International Nuclear Information System (INIS)

    Suluksna, Keerati; Dechaumphai, Pramote; Juntasaro, Ekachai

    2009-01-01

    This paper presents mathematical expressions for two significant parameters which control the onset location and length of transition in the γ-Re θ transition model of Menter et al. [Menter, F.R., Langtry, R.B., Volker, S., Huang, P.G., 2005. Transition modelling for general purpose CFD codes. In: ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements]. The expressions are formulated and calibrated by means of numerical experiments for predicting transitional boundary layers under the influences of freestream turbulence and pressure gradient. It was also found that the correlation for transition momentum thickness Reynolds number needs only to be expressed in terms of local turbulence intensity, so that the more complex form that includes pressure gradient effects is unnecessary. Transitional boundary layers on a flat plate both with and without pressure gradients are employed to assess the performance of these two expressions for predicting the transition. The results show that the proposed expressions can work well with the model of Menter et al. (2005)

  7. Numerical investigation of unsteady cavitation around a NACA 66 hydrofoil using OpenFOAM

    International Nuclear Information System (INIS)

    Hidalgo, V H; Luo, X W; Ji, J; Escaler, X; Aguinaga, A

    2014-01-01

    The prediction and control of cavitation damage in pumps, propellers, hydro turbines and fluid machinery in general is necessary during the design stage. The present paper deals with a numerical investigation of unsteady cloud cavitation around a NACA 66 hydrofoil. The current study is focused on understanding the dynamic pressures generated during the cavity collapses as a fundamental characteristic in cavitation erosion. A 2D and 3D unsteady flow simulation has been carried out using OpenFOAM. Then, Paraview and Python programming language have been used to characterize dynamic pressure field. Adapted Large Eddy Simulation (LES) and Zwart cavitation model have been implemented to improve the analysis of cloud motion and to visualize the bubble expansions. Additional results also confirm the correlation between cavity formation and generated pressures

  8. Measurement of unsteady airflow velocity at nozzle outlet

    Science.gov (United States)

    Pyszko, René; Machů, Mário

    2017-09-01

    The paper deals with a method of measuring and evaluating the cooling air flow velocity at the outlet of the flat nozzle for cooling a rolled steel product. The selected properties of the Prandtl and Pitot sensing tubes were measured and compared. A Pitot tube was used for operational measurements of unsteady dynamic pressure of the air flowing from nozzles to abtain the flow velocity. The article also discusses the effects of air temperature, pressure and relative air humidity on air density, as well as the influence of dynamic pressure filtering on the error of averaged velocity.

  9. Applications of Coupled Explicit–Implicit Solution of SWEs for Unsteady Flow in Yangtze River

    Directory of Open Access Journals (Sweden)

    Yufei Ding

    2017-02-01

    Full Text Available In engineering practice, the unsteady flows generated from the operation of hydropower station in the upstream region could significantly change the navigation system of waterways located in the middle-lower reaches of the river. In order to study the complex propagation, convergence and superposition characteristics of unsteady flows in a long channel with flow confluence, a numerical model based on the coupling of implicit and explicit solution algorithms of Shallow Water Equations (SWEs has been applied to two large rivers in the reach of Yangtze River, China, which covers the distance from Yibin to Chongqing located upstream side of the Three Gorges Dam. The accuracy of numerical model has been validated by both the steady and unsteady flows using the prototype hydrological data. It is found that the unsteady flows show much more complex water level and discharge behaviors than the steady ones. The studied unsteady flows arising from the water regulation of two upstream hydropower stations could influence the region as far as Zhutuo hydrologic station, which is close to the city of Chongqing. Meanwhile, the computed stage–discharge rating curves at all observation stations demonstrate multi-value loop patterns because of the presence of additional water surface gradient. The present numerical model proves to be robust for simulating complex flows in very long engineering rivers up to 400 km.

  10. Development of the CARS method for measurement of pressure and temperature gradients in centrifuges

    International Nuclear Information System (INIS)

    Zeltmann, A.H.; Valentini, J.J.

    1983-12-01

    These experiments evaluated the feasibility of applying the CARS technique to the measurement of UF 6 concentrations and pressure gradients in a gas centrifuge. The resultant CARS signals were properly related to system parameters as suggested by theory. The results have been used to guide design of an apparatus for making CARS measurements in a UF 6 gas centrifuge. Ease of measurement is expected for pressures as low as 0.1 torr. Temperature gradients can be measured by this technique with changes in the data acquisition method. 16 references, 8 figures, 2 tables

  11. Evaluation of effervescent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meng; Duan, YuFeng; Zhang, TieNan [School of Energy and Environment, Southeast University, Sipailou 2, Nanjing 210096 (China)

    2010-09-15

    The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distance increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)

  12. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Roy, Titob [Department of Mathematics, Vikarunnesa Nun School and College, Boshundhara, Dhaka (Bangladesh); Yanase, Shinichiro, E-mail: yanase@okayama-u.ac.jp [Department of Mechanical and Systems Engineering, Okayama University, Okayama 700-8530 (Japan)

    2016-07-12

    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

  13. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling

    Science.gov (United States)

    Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, pforces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.

  14. Axisymmetric, Ventilated Supercavitation in Unsteady, Horizontal Flow

    Science.gov (United States)

    Kawakami, Ellison; Lee, Seung-Jae; Arndt, Roger

    2012-11-01

    Drag reduction and/or speed augmentation of marine vehicles by means of supercavitation is a topic of great interest. During the initial launch of a supercavitating vehicle, an artificial supercavity is required until the vehicle can reach conditions at which a natural supercavity can be sustained. Previous studies at Saint Anthony Falls Laboratory (SAFL) focused on the behavior of ventilated supercavities in steady horizontal flows. In open waters, vehicles can encounter unsteady flows, especially when traveling under waves. A study has been carried out at SAFL to investigate the effects of unsteady flow on axisymmetric supercavities. An attempt is made to duplicate sea states seen in open waters. In an effort to track cavity dimensions throughout a wave cycle, an automated cavity tracking script has been developed. Using a high speed camera and the proper software, it is possible to synchronize cavity dimensions with pressure measurements taken inside the cavity. Results regarding supercavity shape, ventilation demand, cavitation parameters and closure methods are presented. It was found that flow unsteadiness caused a decrease in the overall length of the supercavity while having only a minimal effect on the maximum diameter. The supercavity volume varied with cavitation number and a possible relationship between the two is being explored. (Supported by ONR)

  15. Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow

    Science.gov (United States)

    Howlett, J. T.

    1985-01-01

    An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flows.

  16. Unsteady, Cooled Turbine Simulation Using a PC-Linux Analysis System

    Science.gov (United States)

    List, Michael G.; Turner, Mark G.; Chen, Jen-Pimg; Remotigue, Michael G.; Veres, Joseph P.

    2004-01-01

    The fist stage of the high-pressure turbine (HPT) of the GE90 engine was simulated with a three-dimensional unsteady Navier-Sokes solver, MSU Turbo, which uses source terms to simulate the cooling flows. In addition to the solver, its pre-processor, GUMBO, and a post-processing and visualization tool, Turbomachinery Visual3 (TV3) were run in a Linux environment to carry out the simulation and analysis. The solver was run both with and without cooling. The introduction of cooling flow on the blade surfaces, case, and hub and its effects on both rotor-vane interaction as well the effects on the blades themselves were the principle motivations for this study. The studies of the cooling flow show the large amount of unsteadiness in the turbine and the corresponding hot streak migration phenomenon. This research on the GE90 turbomachinery has also led to a procedure for running unsteady, cooled turbine analysis on commodity PC's running the Linux operating system.

  17. Quantitative angiography of the left anterior descending coronary artery: correlations with pressure gradient and results of exercise thallium scintigraphy

    International Nuclear Information System (INIS)

    Wijns, W.; Serruys, P.W.; Reiber, J.H.; van den Brand, M.; Simoons, M.L.; Kooijman, C.J.; Balakumaran, K.; Hugenholtz, P.G.

    1985-01-01

    To evaluate, during cardiac catheterization, what constitutes a physiologically significant obstruction to blood flow in the human coronary system, computer-based quantitative analysis of coronary angiograms was performed on the angiograms of 31 patients with isolated disease of the proximal left anterior descending coronary artery. The angiographic severity of stenosis was compared with the transstenotic pressure gradient measured with the dilation catheter during angioplasty and with the results of exercise thallium scintigraphy. A curvilinear relationship was found between the pressure gradient across the stenosis (normalized for the mean aortic pressure) and the residual minimal area of obstruction (after subtracting the area of the angioplasty catheter). This relationship was best fitted by the equation: normalized mean pressure gradient . a + b . log [obstruction area], r . .74. The measurements of the percent area of stenosis (cutoff 80%) and of the transstenotic pressure gradient (cutoff 0.30) obtained at rest correctly predicted the occurrence of thallium perfusion defects induced by exercise in 83% of the patients

  18. Inhaled Beta Agonist Bronchodilator Does Not Affect Trans-diaphragmatic Pressure Gradient but Decreases Lower Esophageal Sphincter Retention Pressure in Patients with Chronic Obstructive Pulmonary Disease (COPD) and Gastroesophageal Reflux Disease (GERD).

    Science.gov (United States)

    Del Grande, Leonardo M; Herbella, Fernando A M; Bigatao, Amilcar M; Jardim, Jose R; Patti, Marco G

    2016-10-01

    Chronic obstructive pulmonary disease (COPD) patients have a high incidence of gastroesophageal reflux disease (GERD) whose pathophysiology seems to be linked to an increased trans-diaphragmatic pressure gradient and not to a defective esophagogastric barrier. Inhaled beta agonist bronchodilators are a common therapy used by patients with COPD. This drug knowingly not only leads to a decrease in the lower esophageal sphincter (LES) resting pressure, favoring GERD, but also may improve ventilatory parameters, therefore preventing GERD. This study aims to evaluate the effect of inhaled beta agonist bronchodilators on the trans-diaphragmatic pressure gradient and the esophagogastric barrier. We studied 21 patients (mean age 67 years, 57 % males) with COPD and GERD. All patients underwent high-resolution manometry and esophageal pH monitoring. Abdominal and thoracic pressure, trans-diaphragmatic pressure gradient (abdominal-thoracic pressure), and the LES retention pressure (LES basal pressure-transdiaphragmatic gradient) were measured before and 5 min after inhaling beta agonist bronchodilators. The administration of inhaled beta agonist bronchodilators leads to the following: (a) a simultaneous increase in abdominal and thoracic pressure not affecting the trans-diaphragmatic pressure gradient and (b) a decrease in the LES resting pressure with a reduction of the LES retention pressure. In conclusion, inhaled beta agonist bronchodilators not only increase the thoracic pressure but also lead to an increased abdominal pressure favoring GERD by affecting the esophagogastric barrier.

  19. AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines. Volume 1. Unsteady Turbomachinery Aerodynamics

    Science.gov (United States)

    1987-03-01

    MACHI, K. 1905 Unsteady Plow in a Turbine Rotor, VDI -Berichte 572.2p 1 9,5, pp. 273-292. FRANSSON, T.1!. and SUTER, P. 1983 Two-Dimensional and...Schaufelreihen in Axialverdichtern und Axialturbinen, VDI -Berichte No. 361, pp. 33-43. I[;RA, T. and RANNIE, W.D. 1953 Observations of Propagating Stall in...NASA-CR-3940. VICTORY, M. 1943 Flutter at High Incidence. Brit. A.R.C. R & M 2048 . VOGELER, K. 1984 The Unsteady Pressure Distribution on Parabolic

  20. Combining Unsteady Blade Pressure Measurements and a Free-Wake Vortex Model to Investigate the Cycle-to-Cycle Variations in Wind Turbine Aerodynamic Blade Loads in Yaw

    Directory of Open Access Journals (Sweden)

    Moutaz Elgammi

    2016-06-01

    Full Text Available Prediction of the unsteady aerodynamic flow phenomenon on wind turbines is challenging and still subject to considerable uncertainty. Under yawed rotor conditions, the wind turbine blades are subjected to unsteady flow conditions as a result of the blade advancing and retreating effect and the development of a skewed vortical wake created downstream of the rotor plane. Blade surface pressure measurements conducted on the NREL Phase VI rotor in yawed conditions have shown that dynamic stall causes the wind turbine blades to experience significant cycle-to-cycle variations in aerodynamic loading. These effects were observed even though the rotor was subjected to a fixed speed and a uniform and steady wind flow. This phenomenon is not normally predicted by existing dynamic stall models integrated in wind turbine design codes. This paper couples blade pressure measurements from the NREL Phase VI rotor to a free-wake vortex model to derive the angle of attack time series at the different blade sections over multiple rotor rotations and three different yaw angles. Through the adopted approach it was possible to investigate how the rotor self-induced aerodynamic load fluctuations influence the unsteady variations in the blade angles of attack and induced velocities. The hysteresis loops for the normal and tangential load coefficients plotted against the angle of attack were plotted over multiple rotor revolutions. Although cycle-to-cycle variations in the angles of attack at the different blade radial locations and azimuth positions are found to be relatively small, the corresponding variations in the normal and tangential load coefficients may be significant. Following a statistical analysis, it was concluded that the load coefficients follow a normal distribution at the majority of blade azimuth angles and radial locations. The results of this study provide further insight on how existing engineering models for dynamic stall may be improved through

  1. Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers

    Science.gov (United States)

    Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas

    2017-11-01

    Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.

  2. Computational analysis of transient gas release from a high pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, G.; Oshkai, P.; Djilali, N. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems; Penau, F. [CERAM Euro-American Inst. of Technology, Sophia Antipolis (France)

    2006-07-01

    Gas jets exiting from compressed vessels can undergo several regimes as the pressure in the vessel decreases, and a greater understanding of the characteristics of gas jets is needed to determine safety requirements in the transport, distribution, and use of hydrogen. This paper provided a study of the bow shock waves that typically occur during the initial stage of a gas jet incident. The transient behaviour of an initiated jet was investigated using unsteady, compressible flow simulations. The gas was considered to be ideal, and the domain was considered to be axisymmetric. Tank pressure for the analysis was set at a value of 100 atm. Jet structure was examined, as well as the shock structures and separation due to adverse pressure gradients at the nozzle. Shock structure displacement was also characterized.

  3. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    Science.gov (United States)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  4. Unsteady Sail Dynamics in Olympic Class Sailboats

    Science.gov (United States)

    Williamson, Charles; Schutt, Riley

    2016-11-01

    Unsteady sailing techniques have evolved in competitive sailboat fleets, in cases where the relative weight of the sailor is sufficient to impart unsteady motions to the boat and sails. We will discuss three types of motion that are used by athletes to propel their boats on an Olympic race course faster than using the wind alone. In all of our cases, body weight movements induce unsteady sail motion, increasing driving force and speed through the water. In this research, we explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and a 6-GoPro camera array. We shall briefly discuss "sail flicking", whereby the helmsman periodically rolls the sail into the apparent wind, at an angle which is distinct from classical heave (in our case, the oscillations are not normal to the apparent flow). We also demonstrate "roll tacking", where there are considerable advantages to rolling the boat during such a maneuver, especially in light wind. In both of the above examples from on-the-water studies, corresponding experiments using a towing tank exhibit increases in the driving force, associated with the formation of strong vortex pairs into the flow. Finally, we focus on a technique known as "S-curving" in the case where the boat sails downwind. In contrast to the previous cases, it is drag force rather than lift force that the sailor is trying to maximise as the boat follows a zig-zag trajectory. The augmented apparent wind strength due to the oscillatory sail motion, and the growth of strong synchronised low-pressure wake vortices on the low-pressure side of the sail, contribute to the increase in driving force, and velocity-made-good downwind.

  5. Unsteady Flows Control Hydrologic Turnover Rates in Antarctic Hyporheic Zones

    Science.gov (United States)

    Wlostowski, A. N.; Gooseff, M. N.; McKnight, D. M.; Lyons, W. B.; Saelens, E.

    2016-12-01

    Hydrologic turnover of the hyporheic zone (HZ) is the process of HZ flowpaths receiving water and solutes from the stream channel while simultaneously contributing water and solutes from the HZ back to the stream channel. The influence of hydrologic turnover on HZ solute storage depends on the relative magnitude of hyporheic exchange rates (i.e. physical transport) and biogeochemical reaction rates. Because both exchange rates and reaction rates are unsteady in natural systems, the availability of solutes in the HZ is controlled by the legacy of hydraulic and biological conditions. In this study, we quantify the influence of unsteady flows on hydrologic turnover of the HZ. We study a glacial melt stream in the McMurdo Dry Valleys of Antarctica (MDVs). The MDVs provide an ideal setting for investigating hydrologic and chemical storage characteristics of HZs, because nearly all streamflow is generated from glacier melt and the HZ is vertically bounded by continuous permafrost. A dense network of shallow groundwater wells and piezometers was installed along a 60-meter reach of Von Guerard Stream. 12 days of continuous water level data in each well was used to compute the magnitude and direction of 2D hydraulic gradients between the stream channel and lateral hyporheic aquifer. Piezometers were sampled daily for stable isotope abundances. The direction and magnitude of the cross-valley (CV), perpendicular to the thalweg, component of hydraulic gradients is sensitive to daily flood events and exhibits significant spatial heterogeneity. CV gradients are consistently oriented from the hyporheic aquifer towards the stream channel on 2 sections of the study reach, whereas CV gradients are consistently oriented from the stream channel towards the hyporheic aquifer on 1 section. Three sections show diel changes in orientation of CV gradients, coincident with the passage of daily flood events. During a 4-day period of low flows, the HZ is isotopically distinct from the stream

  6. Ejector-Enhanced, Pulsed, Pressure-Gain Combustor

    Science.gov (United States)

    Paxson, Daniel E.; Dougherty, Kevin T.

    2009-01-01

    An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.

  7. Rotor cascade shape optimization with unsteady passing wakes using implicit dual time stepping method

    Science.gov (United States)

    Lee, Eun Seok

    2000-10-01

    An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with

  8. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2013-07-26

    This study aims to clarify the mechanism of generating unsteady hydrodynamic forces acting on a hand during swimming in order to directly measure the forces, pressure distribution, and flow field around the hand by using a robotic arm and particle image velocimetry (PIV). The robotic arm consisted of the trunk, shoulder, upper arm, forearm, and hand, and it was independently computer controllable in five degrees of freedom. The elbow-joint angle of the robotic arm was fixed at 90°, and the arm was moved in semicircles around the shoulder joint in a plane perpendicular to the water surface. Two-component PIV was used for flow visualization around the hand. The data of the forces and pressure acting on the hand were sampled at 200Hz and stored on a PC. When the maximum resultant force acting on the hand was observed, a pair of counter-rotating vortices appeared on the dorsal surface of the hand. A vortex attached to the hand increased the flow velocity, which led to decreased surface pressure, increasing the hydrodynamic forces. This phenomenon is known as the unsteady mechanism of force generation. We found that the drag force was 72% greater and the lift force was 4.8 times greater than the values estimated under steady flow conditions. Therefore, it is presumable that swimmers receive the benefits of this unsteady hydrodynamic force. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Wind turbine noise propagation modelling: An unsteady approach

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects of unste...... Pressure Level (SPL).......Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects...... of unsteady flow around it and time dependent source characteristics. For the acoustics modelling we employ the Parabolic Equation (PE) method while Large Eddy Simulation (LES) as well as synthetically generated turbulence fields are used to generate the medium flow upon which sound propagates. Unsteady...

  10. New Models for Velocity/Pressure-Gradient Correlations in Turbulent Boundary Layers

    Science.gov (United States)

    Poroseva, Svetlana; Murman, Scott

    2014-11-01

    To improve the performance of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, one has to improve the accuracy of models for three physical processes: turbulent diffusion, interaction of turbulent pressure and velocity fluctuation fields, and dissipative processes. The accuracy of modeling the turbulent diffusion depends on the order of a statistical closure chosen as a basis for a RANS model. When the Gram-Charlier series expansions for the velocity correlations are used to close the set of RANS equations, no assumption on Gaussian turbulence is invoked and no unknown model coefficients are introduced into the modeled equations. In such a way, this closure procedure reduces the modeling uncertainty of fourth-order RANS (FORANS) closures. Experimental and direct numerical simulation data confirmed the validity of using the Gram-Charlier series expansions in various flows including boundary layers. We will address modeling the velocity/pressure-gradient correlations. New linear models will be introduced for the second- and higher-order correlations applicable to two-dimensional incompressible wall-bounded flows. Results of models' validation with DNS data in a channel flow and in a zero-pressure gradient boundary layer over a flat plate will be demonstrated. A part of the material is based upon work supported by NASA under award NNX12AJ61A.

  11. Rocket Engine Turbine Blade Surface Pressure Distributions Experiment and Computations

    Science.gov (United States)

    Hudson, Susan T.; Zoladz, Thomas F.; Dorney, Daniel J.; Turner, James (Technical Monitor)

    2002-01-01

    Understanding the unsteady aspects of turbine rotor flow fields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with miniature surface mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in two respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. A three-dimensional unsteady Navier-Stokes analysis was also used to blindly predict the unsteady flow field in the turbine at the design operating conditions and at +15 degrees relative incidence to the first-stage rotor. The predicted time-averaged and unsteady pressure distributions show good agreement with the experimental data. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools are contributing significantly to current Space Launch Initiative turbine airflow test and blade surface pressure prediction efforts.

  12. Investigation into the behaviors of ventilated supercavities in unsteady flow

    Science.gov (United States)

    Shao, Siyao; Wu, Yue; Haynes, Joseph; Arndt, Roger E. A.; Hong, Jiarong

    2018-05-01

    A systematic investigation of ventilated supercavitation behaviors in an unsteady flow is conducted using a high-speed water tunnel at the Saint Anthony Falls Laboratory. The cavity is generated with a forward facing model under varying ventilation rates and cavitator sizes. The unsteady flow is produced by a gust generator consisting of two hydrofoils flapping in unison with a varying angle of attack (AoA) and frequency (fg). The current experiment reveals five distinct cavity states, namely, the stable state, wavy state, pulsating state I, pulsating state II, and collapsing state, based on the variation of cavity geometry and pressure signatures inside the cavity. The distribution of cavity states over a broad range of unsteady conditions is summarized in a cavity state map. It shows that the transition of the supercavity from the stable state to pulsating and collapsing states is primarily induced by increasing AoA while the transition to the wavy state triggers largely by increasing fg. Remarkably, the state map over the non-dimensionalized half wavelength and wave amplitude of the perturbation indicates that the supercavity loses its stability and transitions to pulsating or collapsing states when the level of its distortion induced by the flow unsteadiness exceeds the cavity dimension under a steady condition. The state maps under different ventilation rates and cavitator sizes yield similar distribution but show that the occurrence of the cavity collapse can be suppressed with increasing ventilation coefficient or cavitator size. Such knowledge can be integrated into designing control strategies for the supercavitating devices operating under different unsteady conditions.

  13. Sildenafil does not influence hepatic venous pressure gradient in patients with cirrhosis

    DEFF Research Database (Denmark)

    Clemmesen, Jens-Otto; Giraldi, Annamaria; Ott, Peter

    2008-01-01

    AIM: To investigate if sildenafil increases splanchnic blood flow and changes the hepatic venous pressure gradient (HVPG) in patients with cirrhosis. Phosphodiesterase type-5 inhibitors are valuable in the treatment of erectile dysfunction and pulmonary hypertension in patients with end-stage liver...

  14. Two-dimensional unsteady lift problems in supersonic flight

    Science.gov (United States)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  15. Unsteady adjoint for large eddy simulation of a coupled turbine stator-rotor system

    Science.gov (United States)

    Talnikar, Chaitanya; Wang, Qiqi; Laskowski, Gregory

    2016-11-01

    Unsteady fluid flow simulations like large eddy simulation are crucial in capturing key physics in turbomachinery applications like separation and wake formation in flow over a turbine vane with a downstream blade. To determine how sensitive the design objectives of the coupled system are to control parameters, an unsteady adjoint is needed. It enables the computation of the gradient of an objective with respect to a large number of inputs in a computationally efficient manner. In this paper we present unsteady adjoint solutions for a coupled turbine stator-rotor system. As the transonic fluid flows over the stator vane, the boundary layer transitions to turbulence. The turbulent wake then impinges on the rotor blades, causing early separation. This coupled system exhibits chaotic dynamics which causes conventional adjoint solutions to diverge exponentially, resulting in the corruption of the sensitivities obtained from the adjoint solutions for long-time simulations. In this presentation, adjoint solutions for aerothermal objectives are obtained through a localized adjoint viscosity injection method which aims to stabilize the adjoint solution and maintain accurate sensitivities. Preliminary results obtained from the supercomputer Mira will be shown in the presentation.

  16. Transition of a Three-Dimensional Unsteady Viscous Flow Analysis from a Research Environment to the Design Environment

    Science.gov (United States)

    Dorney, Suzanne; Dorney, Daniel J.; Huber, Frank; Sheffler, David A.; Turner, James E. (Technical Monitor)

    2001-01-01

    The advent of advanced computer architectures and parallel computing have led to a revolutionary change in the design process for turbomachinery components. Two- and three-dimensional steady-state computational flow procedures are now routinely used in the early stages of design. Unsteady flow analyses, however, are just beginning to be incorporated into design systems. This paper outlines the transition of a three-dimensional unsteady viscous flow analysis from the research environment into the design environment. The test case used to demonstrate the analysis is the full turbine system (high-pressure turbine, inter-turbine duct and low-pressure turbine) from an advanced turboprop engine.

  17. CFD simulation of flow through single and multi vane spiral pump for low pressure application using moving node unsteady computation

    International Nuclear Information System (INIS)

    Banerjee, I.; Mahendra, A.K.; Chandresh, B.G.; Srikanthan, M.R.; Bera, T.K.

    2010-01-01

    A spiral pump uses two interleaved spirals (it can be involutes of a circle, involutes of a square, hybrid wraps, Archimedean spiral, logarithmic spirals and so on). Interleaved spiral orbits eccentrically without rotation around a fixed scroll, thereby trapping and compressing pockets of fluids between the spirals. Another method of providing the compression motion is by virtue of co-rotating the spirals synchronously with an offset in centers of rotation thereby providing relative motion similar to orbiting. Recently spiral pumps for low-pressure application have become popular. Since spiral pumps contain gas volumes, whose shapes and size change continuously, the flow fields inside the pumps is time dependent. The unsteadiness controls the mechanisms responsible for the behavior of the spiral pump components. To improve the spiral pump design for better performance as per our process requirement and reliability, information is required to understand the detailed physics of the unsteady flows inside the spiral pumps. The unsteady flows in a pump are studied numerically. The system simulated includes one side gap between fixed and moving spirals as the other side lies just in the reverse symmetry of the one side. Heavy molecular weight, condensable gas is used as the moving fluid. The mesh free Least Square Kinetic Upwind Method (LSKUM) for moving node is applied for numerical analysis of wobbling spiral. Nodes and boundaries change their positions, for every real time step hence at every iteration nodes take new coordinates. Our work consists of identifying various spiral dimensions and geometry, geometric modeling of suction process, identifying the eccentric orbiting motion of the moving spiral, formation of variable velocity moving nodes. Flow analysis of the spiral pump is done with a view to design and develop new pump as per our requirement. Experimental data from an existing spiral pump is used to carryout validation of the code. (author)

  18. Riblet drag reduction in mild adverse pressure gradients: A numerical investigation

    International Nuclear Information System (INIS)

    Boomsma, Aaron; Sotiropoulos, Fotis

    2015-01-01

    Highlights: • We model several differently sized scalloped riblets using LES. • Riblets were modeled in both ZPG and mild APG and compared to each other and to a baseline (flat plate) case. • Scalloped riblets in the mild APG reduce drag only slightly more than those in ZPG. • Maximum values of streamwise turbulence intensities, streamwise vorticity, and TKE are proportional to riblet width. • Primary Reynolds shear stresses and turbulence energy production scale with riblet drag reduction. - Abstract: Riblet films are a passive method of turbulent boundary layer control that can reduce viscous drag. They have been studied with great detail for over 30 years. Although common riblet applications include flows with Adverse Pressure Gradients (APG), nearly all research thus far has been performed in channel flows. Recent research has provided motivation to study riblets in more complicated turbulent flows with claims that riblet drag reduction can double in mild APG common to airfoils at moderate angles of attack. Therefore, in this study, we compare drag reduction by scalloped riblet films between riblets in a zero pressure gradient and those in a mild APG using high-resolution large eddy simulations. In order to gain a fundamental understanding of the relationship between drag reduction and pressure gradient, we simulated several different riblet sizes that encompassed a broad range of s"+ (riblet width in wall units), similarly to many previously published experimental studies. We found that there was only a slight improvement in drag reduction for riblets in the mild APG. We also observed that peak values of streamwise turbulence intensity, turbulent kinetic energy, and streamwise vorticity scale with riblet width. Primary Reynolds shear stresses and turbulence kinetic energy production however scale with the ability of the riblet to reduce skin-friction.

  19. Blade Surface Pressure Distributions in a Rocket Engine Turbine: Experimental Work With On-Blade Pressure Transducers

    Science.gov (United States)

    Hudson, Susan T.; Zoladz, Thomas F.; Griffin, Lisa W.; Turner, James E. (Technical Monitor)

    2000-01-01

    Understanding the unsteady aspects of turbine rotor flowfields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with surface-mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in three respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, two independent unsteady data acquisition systems and fundamental signal processing approaches were used. Finally, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools will contribute to future turbine programs such as those for reusable launch vehicles.

  20. A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples

    DEFF Research Database (Denmark)

    Kallmeyer, J.; Ferdelman, TG; Jansen, KH

    2003-01-01

    Details about the construction and use of a high-pressure thermal gradient block for the simultaneous incubation of multiple samples are presented. Most parts used are moderately priced off-the-shelf components that easily obtainable. In order to keep the pressure independent of thermal expansion....... Sulfate reduction rates increase with increasing pressure and show maximum values at pressures higher than in situ. (C) 2003 Elsevier Science B.V. All rights reserved....

  1. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  2. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis.

    Science.gov (United States)

    Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong

    2014-09-24

    We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.

  3. Aortic-Brachial Pulse Wave Velocity Ratio: A Measure of Arterial Stiffness Gradient Not Affected by Mean Arterial Pressure.

    Science.gov (United States)

    Fortier, Catherine; Desjardins, Marie-Pier; Agharazii, Mohsen

    2018-03-01

    Aortic stiffness, measured by carotid-femoral pulse wave velocity (cf-PWV), is used for the prediction of cardiovascular risk. This mini-review describes the nonlinear relationship between cf-PWV and operational blood pressure, presents the proposed methods to adjust for this relationship, and discusses a potential place for aortic-brachial PWV ratio (a measure of arterial stiffness gradient) as a blood pressure-independent measure of vascular aging. PWV is inherently dependent on the operational blood pressure. In cross-sectional studies, PWV adjustment for mean arterial pressure (MAP) is preferred, but still remains a nonoptimal approach, as the relationship between PWV and blood pressure is nonlinear and varies considerably among individuals due to heterogeneity in genetic background, vascular tone, and vascular remodeling. Extrapolations from the blood pressure-independent stiffness parameter β (β 0 ) have led to the creation of stiffness index β, which can be used for local stiffness. A similar approach has been used for cardio-ankle PWV to generate a blood pressure-independent cardio-ankle vascular index (CAVI). It was recently demonstrated that stiffness index β and CAVI remain slightly blood pressure-dependent, and a more appropriate formula has been proposed to make the proper adjustments. On the other hand, the negative impact of aortic stiffness on clinical outcomes is thought to be mediated through attenuation or reversal of the arterial stiffness gradient, which can also be influenced by a reduction in peripheral medium-sized muscular arteries in conditions that predispose to accelerate vascular aging. Arterial stiffness gradient, assessed by aortic-brachial PWV ratio, is emerging to be at least as good as cf-PWV for risk prediction, but has the advantage of not being affected by operating MAP. The negative impacts of aortic stiffness on clinical outcomes are proposed to be mediated through attenuation or reversal of arterial stiffness gradient

  4. Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory

    Science.gov (United States)

    Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.

    2015-01-01

    An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.

  5. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows

    International Nuclear Information System (INIS)

    Venturelli, Roberto; Akanyeti, Otar; Visentin, Francesco; Fiorini, Paolo; Ježov, Jaas; Toming, Gert; Kruusmaa, Maarja; Chambers, Lily D; Brown, Jennifer; Megill, William M

    2012-01-01

    With the overall goal being a better understanding of the sensing environment from the local perspective of a situated agent, we studied uniform flows and Kármán vortex streets in a frame of reference relevant to a fish or swimming robot. We visualized each flow regime with digital particle image velocimetry and then took local measurements using a rigid body with laterally distributed parallel pressure sensor arrays. Time and frequency domain methods were used to characterize hydrodynamically relevant scenarios in steady and unsteady flows for control applications. Here we report that a distributed pressure sensing mechanism has the capability to discriminate Kármán vortex streets from uniform flows, and determine the orientation and position of the platform with respect to the incoming flow and the centre axis of the Kármán vortex street. It also enables the computation of hydrodynamic features which may be relevant for a robot while interacting with the flow, such as vortex shedding frequency, vortex travelling speed and downstream distance between vortices. A Kármán vortex street was distinguished in this study from uniform flows by analysing the magnitude of fluctuations present in the sensor measurements and the number of sensors detecting the same dominant frequency. In the Kármán vortex street the turbulence intensity was 30% higher than that in the uniform flow and the sensors collectively sensed the vortex shedding frequency as the dominant frequency. The position and orientation of the sensor platform were determined via a comparative analysis between laterally distributed sensor arrays; the vortex travelling speed was estimated via a cross-correlation analysis among the sensors. (paper)

  6. Vandenberg Air Force Base Pressure Gradient Wind Study

    Science.gov (United States)

    Shafer, Jaclyn A.

    2013-01-01

    Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.

  7. Can postoperative mean transprosthetic pressure gradient predict survival after aortic valve replacement?

    NARCIS (Netherlands)

    Koene, Bart M.; Hamad, Mohamed A. Soliman; Bouma, Wobbe; Mariani, Massimo A.; Peels, Kathinka C.; van Dantzig, Jan-Melle; van Straten, Albert H.

    In this study, we sought to determine the effect of the mean transprosthetic pressure gradient (TPG), measured at 6 weeks after aortic valve replacement (AVR) or AVR with coronary artery bypass grafting (CABG) on late all-cause mortality. Between January 1998 and March 2012, 2,276 patients (mean age

  8. Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique

    International Nuclear Information System (INIS)

    Huang, S; Guo, J; Yang, F X

    2013-01-01

    In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects

  9. Thermal mathematical modeling of a multicell common pressure vessel nickel-hydrogen battery

    Science.gov (United States)

    Kim, Junbom; Nguyen, T. V.; White, R. E.

    1992-01-01

    A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.

  10. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    Science.gov (United States)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  11. Unsteady flow damping force prediction of MR dampers subjected to sinusoidal loading

    Science.gov (United States)

    Yu, M.; Wang, S. Q.; Fu, J.; Peng, Y. X.

    2013-02-01

    So far quasi-steady models are usually used to design magnetorheological (MR) dampers, but these models are not sufficient to describe the MR damper behavior under unsteady dynamic loading, for fluid inertia is neglected in quasi-steady models, which will bring more error between computer simulation and experimental results. Under unsteady flow model, the fluid inertia terms will bring error calculated upto 10%, so it is necessary to be considered in the governing equation. In this paper, force-stroke behavior of MR damper with flow mode due to sinusoidal loading excitation is mainly investigated, to simplify the analysis, the one-dimensional axisymmetric annular duct geometry of MR dampers is approximated as a rectangular duct. The rectangular duct can be divided into 3 regions for the velocity profile of the incompressible MR fluid flow, in each region, a partial differential equation is composed of by Navier-Stokes equations, boundary conditions and initial conditions to determine the velocity solution. In addition, in this work, not only Bingham plastic model but the Herschel—Bulkley model is adopted to analyze the MR damper performance. The damping force resulting from the pressure drop of unsteady MR dampers can be obtained and used to design or size MR dampers. Compared with the quasi-steady flow damping force, the damping force of unsteady MR dampers is more close to practice, particularly for the high-speed unsteady movement of MR dampers.

  12. Unsteady flow damping force prediction of MR dampers subjected to sinusoidal loading

    International Nuclear Information System (INIS)

    Yu, M; Fu, J; Wang, S Q; Peng, Y X

    2013-01-01

    So far quasi-steady models are usually used to design magnetorheological (MR) dampers, but these models are not sufficient to describe the MR damper behavior under unsteady dynamic loading, for fluid inertia is neglected in quasi-steady models, which will bring more error between computer simulation and experimental results. Under unsteady flow model, the fluid inertia terms will bring error calculated upto 10%, so it is necessary to be considered in the governing equation. In this paper, force-stroke behavior of MR damper with flow mode due to sinusoidal loading excitation is mainly investigated, to simplify the analysis, the one-dimensional axisymmetric annular duct geometry of MR dampers is approximated as a rectangular duct. The rectangular duct can be divided into 3 regions for the velocity profile of the incompressible MR fluid flow, in each region, a partial differential equation is composed of by Navier-Stokes equations, boundary conditions and initial conditions to determine the velocity solution. In addition, in this work, not only Bingham plastic model but the Herschel—Bulkley model is adopted to analyze the MR damper performance. The damping force resulting from the pressure drop of unsteady MR dampers can be obtained and used to design or size MR dampers. Compared with the quasi-steady flow damping force, the damping force of unsteady MR dampers is more close to practice, particularly for the high-speed unsteady movement of MR dampers.

  13. Effect of an applied pressure gradient on a magnetically collimated arc

    Energy Technology Data Exchange (ETDEWEB)

    Neidigh, R V [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Weaver, C H [University of Tennessee (United States)

    1958-07-01

    This report describes experimental observations made in connection with a magnetically collimated arc having an applied pressure gradient along its length and presents possible explanations of the phenomena observed. It is believed to be pertinent to thermonuclear research because it involves the transport of plasma across a magnetic field and the acceleration of ions without use of solid electrodes and furnishes evidence concerning the behavior inside magnetically collimated arc discharges as the pressure is decreased. The observations are repeatable to an unusual degree and are believed to be sufficiently interesting to be reported at this time, even though a thorough understanding of the entire mechanism involved has not been reached.

  14. Unsteady flow characteristics through a human nasal airway.

    Science.gov (United States)

    Lee, Jong-Hoon; Na, Yang; Kim, Sung-Kyun; Chung, Seung-Kyu

    2010-07-31

    Time-dependent characteristics of the flow in a human nasal airway constructed from the CT image of a healthy volunteer were investigated using a computational fluid dynamics (CFD) technique. To capture the time-varying nature of the flow as well as pressure and temperature fields, the large eddy simulation (LES) technique instead of the RANS (Reynolds Averaged Navier-Stokes) approach was adopted. To make the present analysis more relevant to a real human breathing cycle, the flow was designed to be induced by the pressure difference and the time-varying pressure at the end of trachea was described to reproduce the flow rate data from the measurement. Comparison of the present results with those of typical steady simulations showed that the difference in flow characteristics is magnified in the expiration phase. This fact may suggest that the inertial effect associated with unsteady flow is more important during the expiration period. Also, the fact that the distribution of the flow rate in a given cross-section of the airway changes significantly with time implies the importance of unsteady data for clinical decision. The wall shear stress was found to have relatively high values at the locations near nasopharynx and larynx but the magnitude changes with time during the whole respiratory cycle. Analysis of the temperature field showed that most of the temperature change occurs in the nasal cavity when the air is incoming and thus, the nasal cavity acts as a very efficient heat exchanger during an inspiration period. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Unsteady lift forces on highly cambered airfoils moving through a gust

    Science.gov (United States)

    Atassi, H.; Goldstein, M.

    1974-01-01

    An unsteady airfoil theory in which the flow is linearized about the steady potential flow of the airfoil is presented. The theory is applied to an airfoil entering a gust. After transformation to the W-plane, the problem is formulated in terms of a Poisson's equation. The solutions are expanded in a Fourier-Bessel series. The theory is applied to a circular arc with arbitrary camber. Closed form expressions for the velocity and pressure on the surface of the airfoil are obtained. The unsteady aerodynamic forces are then calculated and shown to contain two terms. One in an explicit closed analytical form represents the contribution of the oncoming vortical disturbance, the other depends on a single quadrature and accounts for the effect of the wake.

  16. Research of fluid-induced pressure fluctuation due to impeller-volute interaction in a centrifugal pump

    International Nuclear Information System (INIS)

    Liu, Q Z; Yang, K; Li, D Y; Gong, R Z

    2013-01-01

    The fluid pressure fluctuation generated by unsteady flow is a very important factor to induce vibration of the centrifugal pump. The relative movement between impeller and volute generates an unsteady interaction which affects not only the overall pump performance, but is also responsible for pressure fluctuations. Pressure fluctuations interact with the volute casing or even with the circuit and give rise to dynamic effects over the mechanical parts, which are one of the most important sources of vibration and hydraulic noise. To investigate the flow characteristic in the centrifugal pump, the unsteady flow is simulated by CFD methods in this paper. Unsteady flow characteristic in the centrifugal pump is obtained considering the impeller-volute interaction in the whole flow field. Based on the unsteady flow simulation, amplitude-frequency characteristics of the pressure fluctuation in the centrifugal pump are obtained through setting up monitoring point at the impeller outlet. The research shows that the frequency component include the blade passing frequency as the main component, the multiplication of blade passing frequency, and the harmonic interference due to the unsteady flow

  17. The Difference in Translaminar Pressure Gradient and Neuroretinal Rim Area in Glaucoma and Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Lina Siaudvytyte

    2014-01-01

    Full Text Available Purpose. To assess differences in translaminar pressure gradient (TPG and neuroretinal rim area (NRA in patients with normal tension glaucoma (NTG, high tension glaucoma (HTG, and healthy controls. Methods. 27 patients with NTG, HTG, and healthy controls were included in the prospective pilot study (each group consisted of 9 patients. Intraocular pressure (IOP, intracranial pressure (ICP, and confocal laser scanning tomography were assessed. TPG was calculated as the difference of IOP minus ICP. ICP was measured using noninvasive two-depth transcranial Doppler device. The level of significance P 0.05. The difference between TPG for healthy (5.4(7.7 mmHg and glaucomatous eyes (NTG 6.3(3.1 mmHg, HTG 15.7(7.7 mmHg was statistically significant (P < 0.001. Higher TPG was correlated with decreased NRA (r = −0.83; P = 0.01 in the NTG group. Conclusion. Translaminar pressure gradient was higher in glaucoma patients. Reduction of NRA was related to higher TPG in NTG patients. Further prospective studies are warranted to investigate the involvement of TPG in glaucoma management.

  18. Automatic Calculation of Hydrostatic Pressure Gradient in Patients with Head Injury: A Pilot Study.

    Science.gov (United States)

    Moss, Laura; Shaw, Martin; Piper, Ian; Arvind, D K; Hawthorne, Christopher

    2016-01-01

    The non-surgical management of patients with traumatic brain injury is the treatment and prevention of secondary insults, such as low cerebral perfusion pressure (CPP). Most clinical pressure monitoring systems measure pressure relative to atmospheric pressure. If a patient is managed with their head tilted up, relative to their arterial pressure transducer, then a hydrostatic pressure gradient (HPG) can act against arterial pressure and cause significant errors in calculated CPP.To correct for HPG, the arterial pressure transducer should be placed level with the intracranial pressure transducer. However, this is not always achieved. In this chapter, we describe a pilot study investigating the application of speckled computing (or "specks") for the automatic monitoring of the patient's head tilt and subsequent automatic calculation of HPG. In future applications this will allow us to automatically correct CPP to take into account any HPG.

  19. Behaviours of reinforced concrete containment models under thermal gradient and internal pressure

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Ohnuma, H.; Yoshioka, Y.; Okada, K.; Ueda, M.

    1979-01-01

    The provisions for design concepts in Japanese Technical Standard of Concrete Containments for Nuclear Power Plants require to take account of thermal effects into design. The provisions also propose that the thermal effects could be relieved according to the degree of crack formation and creep of concrete, and may be neglected in estimating the ultimate strength capacity in extreme environmental loading conditions. This experimental study was carried out to clarify the above provisions by investigating the crack and deformation behaviours of two identical reinforced cylindrical models with dome and basement (wall outer diameter 160 cm, and wall thickness 10 cm). One of these models was hydraulically pressurized up to failure at room temperature and the other was subjected to similar internal pressure combined with the thermal gradient of approximately 40 to 50 0 C across the wall. Initial visual cracks were recognized when the stress induced by the thermal gradient reached at about 85% of bending strength of concrete used. The thermal stress of reinforcement calculated with the methods proposed by the authors using an average flexural rigidity considering the contribution of concrete showed good agreement with test results. The method based on the fully cracked section, however, was recognized to underestimate the measured stress. These cracks considerably reduced the initial deformation caused by subsequent internal pressure. (orig.)

  20. Constant pressure mode extended simple gradient liquid chromatography system for micro and nanocolumns

    Czech Academy of Sciences Publication Activity Database

    Šesták, Jozef; Kahle, Vladislav

    2014-01-01

    Roč. 1350, Jul (2014), s. 68-71 ISSN 0021-9673 R&D Projects: GA MV VG20102015023 Institutional support: RVO:68081715 Keywords : constant pressure HPLC * gradient elution * simple liquid chromatograph Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.169, year: 2014 http://hdl.handle.net/11104/0233990

  1. Universal Rim Thickness in Unsteady Sheet Fragmentation

    Science.gov (United States)

    Wang, Y.; Dandekar, R.; Bustos, N.; Poulain, S.; Bourouiba, L.

    2018-05-01

    Unsteady fragmentation of a fluid bulk into droplets is important for epidemiology as it governs the transport of pathogens from sneezes and coughs, or from contaminated crops in agriculture. It is also ubiquitous in industrial processes such as paint, coating, and combustion. Unsteady fragmentation is distinct from steady fragmentation on which most theoretical efforts have been focused thus far. We address this gap by studying a canonical unsteady fragmentation process: the breakup from a drop impact on a finite surface where the drop fluid is transferred to a free expanding sheet of time-varying properties and bounded by a rim of time-varying thickness. The continuous rim destabilization selects the final spray droplets, yet this process remains poorly understood. We combine theory with advanced image analysis to study the unsteady rim destabilization. We show that, at all times, the rim thickness is governed by a local instantaneous Bond number equal to unity, defined with the instantaneous, local, unsteady rim acceleration. This criterion is found to be robust and universal for a family of unsteady inviscid fluid sheet fragmentation phenomena, from impacts of drops on various surface geometries to impacts on films. We discuss under which viscous and viscoelastic conditions the criterion continues to govern the unsteady rim thickness.

  2. A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples

    DEFF Research Database (Denmark)

    Kallmeyer, J.; Ferdelman, TG; Jansen, KH

    2003-01-01

    Details about the construction and use of a high-pressure thermal gradient block for the simultaneous incubation of multiple samples are presented. Most parts used are moderately priced off-the-shelf components that easily obtainable. In order to keep the pressure independent of thermal expansion...... range of temperatures and pressures and can easily be modified to accommodate different experiments, either biological or chemical. As an application, we present measurements of bacterial sulfate reduction rates in hydrothermal sediments from Guyamas Basin over a wide range of temperatures and pressures...

  3. Numerical analysis of compressible steady, unsteady, and inviscid, viscous flows in ca scads and effects of viscosity on the flows

    International Nuclear Information System (INIS)

    Shirani, E.; Zirak, S.

    2001-01-01

    Compressible flows for unsteady, inviscid and viscous cases have been studied. Important features of flows such as formation of shock waves across the flow in an unsteady flow as well as interaction of shock waves with boundary layers and their effects on the flow around the blades have been analyzed. Jameson control volume approach was used to spatially integrate the flow equations and the fourth order Runge-Kutta method was used for time integration. The obtained finite difference equations were used to simulate inviscid and viscous flows in V KI cascades and the effects of viscosity, angle of attack, bal de pitches and back pressure on the flow were obtained. It was shown that when the flow was assumed inviscid, the error on the distribution of pressure on the blades were about ten percent. Finally, unsteady flow were simulated and formation of shock waves and their motions were analyzed

  4. Pressure fluctuation prediction of a model pump turbine at no load opening by a nonlinear k-ε turbulence model

    International Nuclear Information System (INIS)

    Liu, J T; Zuo, Z G; Liu, S H; Wu, Y L

    2014-01-01

    In this paper, a new nonlinear k-ε turbulence model based on RNG k-ε turbulence model and Wilcox's k-ω turbulence model was proposed to simulate the unsteady flow and to predict the pressure fluctuation through a model pump turbine for engineering application. Calculations on a curved rectangular duct proved that the nonlinear k-ε turbulence model is applicable for high pressure gradient flows and large curvature flows. The numerically predicted relative pressure amplitude (peak to peak) in time domain to the pump turbine head at no load condition is very close to the experimental data. It is indicated that the prediction of the pressure fluctuation is valid by the present nonlinear k-ε method. The high pressure fluctuation in this area is the main issue for pump turbine design, especially at high head condition

  5. Unsteady Flow Dynamics and Acoustics of Two-Outlet Centrifugal Fan Design

    Science.gov (United States)

    Wong, I. Y. W.; Leung, R. C. K.; Law, A. K. Y.

    2011-09-01

    In this study, a centrifugal fan design with two flow outlets is investigated. This design aims to provide high mass flow rate but low noise performance. Two dimensional unsteady flow simulation with CFD code (FLUENT 6.3) is carried out to analyze the fan flow dynamics and its acoustics. The calculations were done using the unsteady Reynolds averaged Navier Stokes (URANS) approach in which effects of turbulence were accounted for using κ-ɛ model. This work aims to provide an insight how the dominant noise source mechanisms vary with a key fan geometrical paramters, namely, the ratio between cutoff distance and the radius of curvature of the fan housing. Four new fan designs were calculated. Simulation results show that the unsteady flow-induced forces on the fan blades are found to be the main noise sources. The blade force coefficients are then used to build the dipole source terms in Ffowcs Williams and Hawkings (FW-H) Equation for estimating their noise effects. It is found that one design is able to deliver a mass flow 34% more, but with sound pressure level (SPL) 10 dB lower, than the existing design .

  6. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  7. Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient

    Science.gov (United States)

    Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.

    2002-01-01

    The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.

  8. An Experimental Study of Pressure Gradients for Flow of Boiling Water in a Vertical Round Duct. (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-03-15

    The present report contains the results of the second phase of an experimental investigation concerning frictional pressure gradients for the flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 7.76 mm inner diameter. Data were obtained for pressures between 6 and 41 ata, steam qualities between 0 and 70 per cent, flow rates between 0.025 and 0.210 Kg/sec and surface heat flux between 30 and 91 W/cm. The results are in excellent agreement with our earlier data for flow in a 9.93 mm inner diameter ducts which were presented in report AE-69. From the measurements we conclude that in the range investigated the non dimensional pressure gradient ratio, {phi}{sup 2} is independent of mass flow rate, inlet sub-cooling and surface heat flux. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use, {phi}{sup 2} = 1 + 2400 (x/p){sup 0.96} This equation correlates our data (more than 1000 points) with a discrepancy of less than {+-} 15 per cent.

  9. Predicted and experimental steady and unsteady transonic flows about a biconvex airfoil

    Science.gov (United States)

    Levy, L. L., Jr.

    1981-01-01

    Results of computer code time dependent solutions of the two dimensional compressible Navier-Stokes equations and the results of independent experiments are compared to verify the Mach number range for instabilities in the transonic flow field about a 14 percent thick biconvex airfoil at an angle of attack of 0 deg and a Reynolds number of 7 million. The experiments were conducted in a transonic, slotted wall wind tunnel. The computer code included an algebraic eddy viscosity turbulence model developed for steady flows, and all computations were made using free flight boundary conditions. All of the features documented experimentally for both steady and unsteady flows were predicted qualitatively; even with the above simplifications, the predictions were, on the whole, in good quantitative agreement with experiment. In particular, predicted time histories of shock wave position, surface pressures, lift, and pitching moment were found to be in very good agreement with experiment for an unsteady flow. Depending upon the free stream Mach number for steady flows, the surface pressure downstream of the shock wave or the shock wave location was not well predicted.

  10. Model and prototype investigations of upper partial load unsteady phenomena on the Francis turbine designed for head up to 120 m

    International Nuclear Information System (INIS)

    Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" data-affiliation=" (OJSC Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" >Kuznetsov, I; Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" data-affiliation=" (OJSC Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" >Zakharov, A; Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" data-affiliation=" (OJSC Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" >Arm, V; Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" data-affiliation=" (OJSC Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" >Akulaev, R

    2014-01-01

    The upper partial load unsteady phenomena are often observed at model tests for Francis turbine with high and middle specific speed. It is appears approximately between 7085% of optima point discharge for constant unit speed value and has accompanied by additional phenomenon with much higher frequency than draft tube vortex precession frequency and also runner rotational frequency. There are some discussions about nature of this phenomena and transposition of unsteady model test results to the prototype. In this paper are presented the results of above mentioned phenomena model investigations and some results of investigation at prototype turbine. Based on the results of model tests the following extensive data have been obtained: pressure fluctuation in the draft tube cone and spiral case, axial force fluctuations, it is demonstrated the significant influence of cavitation on upper partial load unsteady phenomena. The result of measurements of bearing vibrations and pressure pulsations are presented for prototype turbine at corresponded or very close operation points to model. In accordance with obtained data it is demonstrated that at upper partial load operation the unsteady phenomenon is observed as for the model also for the prototype turbine. On the base of model investigation has been demonstrated the influence of air admission and special design solutions to diminish unsteady phenomena at upper partial load range. All investigations were based on the physical experiment. Thus, based on model and prototype experimental investigations it is obtained additional information about upper partial load unsteady phenomenon and confirmed the transposition of model results to prototype turbine

  11. MRI measurements of intracranial pressure in the upright posture: The effect of the hydrostatic pressure gradient.

    Science.gov (United States)

    Alperin, Noam; Lee, Sang H; Bagci, Ahmet M

    2015-10-01

    To add the hydrostatic component of the cerebrospinal fluid (CSF) pressure to magnetic resonance imaging (MRI)-derived intracranial pressure (ICP) measurements in the upright posture for derivation of pressure value in a central cranial location often used in invasive ICP measurements. Additional analyses were performed using data previously collected from 10 healthy subjects scanned in supine and sitting positions with a 0.5T vertical gap MRI scanner (GE Medical). Pulsatile blood and CSF flows to and from the brain were quantified using cine phase-contrast. Intracranial compliance and pressure were calculated using a previously described method. The vertical distance between the location of the CSF flow measurement and a central cranial location was measured manually in the mid-sagittal T1 -weighted image obtained in the upright posture. The hydrostatic pressure gradient of a CSF column with similar height was then added to the MR-ICP value. After adjustment for the hydrostatic component, the mean ICP value was reduced by 7.6 mmHg. Mean ICP referenced to the central cranial level was -3.4 ± 1.7 mmHg compared to the unadjusted value of +4.3 ± 1.8 mmHg. In the upright posture, the hydrostatic pressure component needs to be added to the MRI-derived ICP values for compatibility with invasive ICP at a central cranial location. © 2015 Wiley Periodicals, Inc.

  12. Sildenafil does not influence hepatic venous pressure gradient in patients with cirrhosis

    DEFF Research Database (Denmark)

    Clemmesen, Jens-Otto; Giraldi, Annamaria; Ott, Peter

    2008-01-01

    AIM: To investigate if sildenafil increases splanchnic blood flow and changes the hepatic venous pressure gradient (HVPG) in patients with cirrhosis. Phosphodiesterase type-5 inhibitors are valuable in the treatment of erectile dysfunction and pulmonary hypertension in patients with end-stage liv...... type-5 inhibitor sildenafil, the present study could not demonstrate any clinical relevant influence on splanichnic blood flow, oxygen consumption or the HVPG....

  13. A Broyden numerical Kutta condition for an unsteady panel method

    International Nuclear Information System (INIS)

    Liu, P.; Bose, N.; Colbourne, B.

    2003-01-01

    In panel methods, numerical Kutta conditions are applied in order to ensure that pressure differences between the surfaces at the trailing edges of lifting surface elements are close to zero. Previous numerical Kutta conditions for 3-D panel methods have focused on use of the Newton-Raphson iterative procedure. For extreme unsteady motions, such as for oscillating hydrofoils or for a propeller behind a blockage, the Newton-Raphson procedure can have severe convergence difficulties. The Broyden iteration, a modified Newton-Raphson iteration procedure, is applied here to obtain improved convergence behavior. Using the Broyden iteration increases the reliability, robustness and in many cases computing efficiency for unsteady, multi-body interactive flows. This method was tested in a time domain code for an ice class propeller in both open water flow and during interaction with a nearby ice blockage. Predictions showed that the method was effective in these extreme flows. (author)

  14. Simulations of Flame Acceleration and DDT in Mixture Composition Gradients

    Science.gov (United States)

    Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).

  15. Sensitivity of ITER MHD global stability to edge pressure gradients

    International Nuclear Information System (INIS)

    Hogan, J.T.; Martynov, A.

    1994-01-01

    In view of the preliminary nature of boundary models for reactor tokamaks, the sensitivity to edge gradients of the global mode MHD stability of the ITER EDA configuration has been examined. The POLAR-2D equilibrium and TORUS stability codes developed by the Keldysh Institute have been used. Transport-related profiles from the PRETOR transport code (developed by the ITER Joint Central Team) and axisymmetric equilibria for these profiles from the TEQ code (L.D. Pearlstein, LLNL) were taken as a starting point for the study. These baseline profiles are found to have quite high global stability limits, in the range g(Troyon) = 4-5. The major focus of this study is to examine global mode stability assuming small variations about the baseline profiles, changing the pressure gradients near the boundary. Such changes can be expected with an improved boundary model. Reduced stability limits are found in such cases, and unstable cases with g = 2-3 are found. Thus, the assumption of ITER stability limits higher than g = 2 must be treated with caution

  16. Sildenafil does not influence hepatic venous pressure gradient in patients with cirrhosis

    DEFF Research Database (Denmark)

    Clemmesen, J.O.; Giraldi, A.; Ott, P.

    2008-01-01

    AIM: To investigate if sildenafil increases splanchnic blood flow and changes the hepatic venous pressure gradient (HVPG) in patients with cirrhosis. Phosphodiesterase type-5 inhibitors are valuable in the treatment of erectile dysfunction and pulmonary hypertension in patients with end-stage liv...... type-5 inhibitor sildenafil, the present study could not demonstrate any clinical relevant influence on splanichnic blood flow, oxygen consumption or the HVPG Udgivelsesdato: 2008/10/28...

  17. An Experimental Study of Pressure Gradients for Flow of Boiling Water in a Vertical Round Duct. (Part 3)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-07-01

    The present report contains the results of the third phase of an experimental investigation concerning frictional pressure gradients for flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 3.94 mm inner diameter. Data were obtained for pressures between 8 and 41 ata, steam qualities between 0 and 58 %, flow rates between 0.0075 and 0.048 kg/sec and surface heat flux between 20 and 83 W/cm. The results are in excellent agreement with our earlier data for flow in 9.93 and 7.76 mm inner diameter ducts which were presented in reports AE-69 and AE-70. The present measurements substantiate our earlier conclusion that the non dimensional pressure gradient ratio, {psi}{sup 2} , is, in the range investigated, independent of mass flow rate, inlet subcooling and surface heat flux. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use: {psi}{sup 2} = 1 + 2400(x/p){sup 0.96} This equation correlates our data (about 800 points) with a discrepancy less than {+-} 15 per cent and is identical with the corresponding equation obtained from measurements with the 7.76 mm duct.

  18. Numerical and experimental research on unsteady cavitating flow around NACA 2412 hydrofoil

    International Nuclear Information System (INIS)

    Sedlář, M; Komárek, M; Rudolf, P; Kozák, J; Huzlík, R

    2015-01-01

    This work deals with the numerical and experimental investigation of unsteady cavitating flow around a prismatic NACA 2412 hydrofoil. The main attention is focussed on the dependence of cavitation dynamics on the cavitation number at high incidence angles. The experimental research is carried out in the cavitation water tunnel the rectangular test section of which has inner dimensions 150×150×500 mm. Currently tested hydrofoils have a chord length of 120 mm and are equipped with pressure transducers at the leading edge and on the suction side. The PVDF hydrophone enables to measure high-frequency pressure pulses behind the hydrofoil trailing edge. The visualizations are based on two simultaneous high-speed cameras, recording the hydrofoil from the top and from one side. A comprehensive CFD analysis has been done with the ANSYS CFX package for a wide range of flow regimes. Different turbulence models including SAS-SST and Reynolds-stress models have been tested to capture highly unsteady phenomena on the hydrofoil. The numerical simulations show, that the dominant frequency of the cavity oscillation depends on the cavitation number and that there is a certain range of this number in which the 'resonance' effect can be reached. In such regime the amplitudes of the pressure pulses on the suction side of the hydrofoil dramatically increase. The calculated results have been verified by both the visualizations and the pressure measurements carried out at the hydrofoil incidence angle of 8 degrees

  19. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode

    Directory of Open Access Journals (Sweden)

    Li Peng

    2015-12-01

    Full Text Available In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode, a virtual blade model (VBM and an real blade model (RBM are established respectively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM is established to search corresponding donor elements in the present moving-embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum–Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are validated by comparing the calculated results with available experimental data. Then, unsteady aerodynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60° and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these

  20. Unsteady Navier-Stokes computations over airfoils using both fixed and dynamic meshes

    Science.gov (United States)

    Rumsey, Christopher L.; Anderson, W. Kyle

    1989-01-01

    A finite volume implicit approximate factorization method which solves the thin layer Navier-Stokes equations was used to predict unsteady turbulent flow airfoil behavior. At a constant angle of attack of 16 deg, the NACA 0012 airfoil exhibits an unsteady periodic flow field with the lift coefficient oscillating between 0.89 and 1.60. The Strouhal number is 0.028. Results are similar at 18 deg, with a Strouhal number of 0.033. A leading edge vortex is shed periodically near maximum lift. Dynamic mesh solutions for unstalled airfoil flows show general agreement with experimental pressure coefficients. However, moment coefficients and the maximum lift value are underpredicted. The deep stall case shows some agreement with experiment for increasing angle of attack, but is only qualitatively comparable past stall and for decreasing angle of attack.

  1. Hemodynamic and metabolic characteristics associated with development of a right ventricular outflow tract pressure gradient during upright exercise

    NARCIS (Netherlands)

    van Riel, Annelieke C. M. J.; Systrom, David M.; Oliveira, Rudolf K. F.; Landzberg, Michael J.; Mulder, Barbara J. M.; Bouma, Berto J.; Maron, Bradley A.; Shah, Amil M.; Waxman, Aaron B.; Opotowsky, Alexander R.

    2017-01-01

    We recently reported a novel observation that many patients with equal resting supine right ventricular(RV) and pulmonary artery(PA) systolic pressures develop an RV outflow tract(RVOT) pressure gradient during upright exercise. The current work details the characteristics of patients who develop

  2. Contribution to the study of unsteady condensation in transonic flow

    International Nuclear Information System (INIS)

    Collignan, B.; Laali, A.R.

    1993-12-01

    The aim of this thesis is the study of transonic steam flows with condensation, especially at high pressure. This study includes a numerical part an experimental one. The modelling has consisted of introducing a spontaneous condensation model in a one-dimensional Euler code using steam-water thermodynamic tables. Calculations, performed with this code, are in good agreement with experimental results at low pressure. The experimental study has been undertaken on a high pressure experimental loop installed at the Bugey nuclear power plant. We have studied steam flows in nozzles. The results obtained show that a partial heterogeneous condensation occurs in these flows. This proportion is stronger if the expansion rate of the flow is low and if the inlet pressure is high. However, a correction factor is obtained for high pressure nucleation rate model from experimental results. No unsteady condensation has been observed for flows between 15 bars and 50 bars with the steam available at Bugey power plant. (authors). figs., 71 refs., 6 annexes

  3. Unsteady aerodynamic coefficients obtained by a compressible vortex lattice method.

    OpenAIRE

    Fabiano Hernandes

    2009-01-01

    Unsteady solutions for the aerodynamic coefficients of a thin airfoil in compressible subsonic or supersonic flows are studied. The lift, the pitch moment, and pressure coefficients are obtained numerically for the following motions: the indicial response (unit step function) of the airfoil, i.e., a sudden change in the angle of attack; a thin airfoil penetrating into a sharp edge gust (for several gust speed ratios); a thin airfoil penetrating into a one-minus-cosine gust and sinusoidal gust...

  4. Wind turbines. Unsteady aerodynamics and inflow noise

    Energy Technology Data Exchange (ETDEWEB)

    Riget Broe, B.

    2009-12-15

    Aerodynamical noise from wind turbines due to atmospheric turbulence has the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated in order to estimate the lift fluctuations due to unsteady aerodynamics. Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil. An acoustic model is investigated using a model for the lift distribution as input. The two models for lift distribution are used in the acoustic model. One of the models for lift distribution is for completely anisotropic turbulence and the other for perfectly isotropic turbulence, and so is also the corresponding models for the lift fluctuations derived from the models for lift distribution. The models for lift distribution and lift are compared with pressure data which are obtained by microphones placed flush with the surface of an aerofoil. The pressure data are from two experiments in a wind tunnel, one experiment with a NACA0015 profile and a second with a NACA63415 profile. The turbulence is measured by a triple wired hotwire instrument in the experiment with a NACA0015 profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model and the perfectly isotropic turbulent model. This indicates that the models capture the aerodynamics well. Thus the measurements suggest that the noise due to atmospheric turbulence can be described and modeled by the two models for lift distribution. It was not possible to test the acoustical model by the measurements

  5. Study of Boundary Layer Convective Heat Transfer with Low Pressure Gradient Over a Flat Plate Via He's Homotopy Perturbation Method

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Aroujalian, A.

    2012-01-01

    The boundary layer convective heat transfer equations with low pressure gradient over a flat plate are solved using Homotopy Perturbation Method, which is one of the semi-exact methods. The nonlinear equations of momentum and energy solved simultaneously via Homotopy Perturbation Method are in good agreement with results obtained from numerical methods. Using this method, a general equation in terms of Pr number and pressure gradient (λ) is derived which can be used to investigate velocity and temperature profiles in the boundary layer.

  6. Characterizing developing adverse pressure gradient flows subject to surface roughness

    Science.gov (United States)

    Brzek, Brian; Chao, Donald; Turan, Özden; Castillo, Luciano

    2010-04-01

    An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T ∞, U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41-60, surfaces with Reynolds number based on momentum thickness, 3,000 carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91-108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33-79, 1998a) scaling of the mean velocity deficit, U ∞δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.

  7. Influence of Pressure-gradient and Shear on Ballooning Stability in Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.; Nakajima, N.

    2005-01-01

    Pressure-driven, ideal ballooning stability calculations are often used to predict the achievable plasma in stellarator configurations. In this paper, the sensitivity of ballooning stability to plasmas profile variations is addressed. A simple, semi-analytic method for expressing the ballooning growth rate, for each field line, as a polynomial function of the variation in the pressure gradient and the average magnetic shear from an original equilibrium has recently been introduced [Phys. Plasmas 11:9 (September 2004) L53]. This paper will apply the expression to various stellarator configurations and comment on the validity of various truncated forms of the polynomial expression. In particular, it is shown that in general it is insufficient to consider only the second order terms as previously assumed, and that higher order terms must be included to obtain accurate predictions of stability

  8. Numerical investigation of unsteady vortex breakdown past 80°/65° double-delta wing

    Directory of Open Access Journals (Sweden)

    Liu Jian

    2014-06-01

    Full Text Available An improved delayed detached eddy simulation (IDDES method based on the k-ω-SST (shear stress transport turbulence model was applied to predict the unsteady vortex breakdown past an 80°/65° double-delta wing (DDW, where the angles of attack (AOAs range from 30° to 40°. Firstly, the IDDES model and the relative numerical methods were validated by simulating the massively separated flow around an NACA0021 straight wing at the AOA of 60°. The fluctuation properties of the lift and pressure coefficients were analyzed and compared with the available measurements. For the DDW case, the computations were compared with such measurements as the mean lift, drag, pitching moment, pressure coefficients and breakdown locations. Furthermore, the unsteady properties were investigated in detail, such as the frequencies of force and moments, pressure fluctuation on the upper surface, typical vortex breakdown patterns at three moments, and the distributions of kinetic turbulence energy at a stream wise section. Two dominated modes are observed, in which their Strouhal numbers are 1.0 at the AOAs of 30°, 32° and 34° and 0.7 at the AOAs of 36°, 38° and 40°. The breakdown vortex always moves upstream and downstream and its types change alternatively. Furthermore, the vortex can be identified as breakdown or not through the mean pressure, root mean square of pressure, or even through correlation analysis.

  9. Chlorine decay under steady and unsteady-state hydraulic conditions

    DEFF Research Database (Denmark)

    Stoianov, Ivan; Aisopou, Angeliki

    2014-01-01

    This paper describes a simulation framework for the scale-adaptive hydraulic and chlorine decay modelling under steady and unsteady-state flows. Bulk flow and pipe wall reaction coefficients are replaced with steady and unsteady-state reaction coefficients. An unsteady decay coefficient is defined...... which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. A preliminary experimental and analytical investigation was carried out in a water transmission main. The results were used to model monochloramine decay...... and these demonstrate that the dynamic hydraulic conditions have a significant impact on water quality deterioration and the rapid loss of disinfectant residual. © 2013 The Authors....

  10. The disparate impact of the ion temperature gradient and the density gradient on edge transport and the low-high transition in tokamaks

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2009-01-01

    Steepening of the ion temperature gradient in nonlinear fluid simulations of the edge region of a tokamak plasma causes a rapid degradation in confinement. As the density gradient steepens, there is a continuous improvement in confinement analogous to the low (L) to high (H) transition observed in tokamaks. In contrast, as the ion temperature gradient steepens, there is a rapid increase in the particle and energy fluxes and no L-H transition. For a given pressure gradient, confinement always improves when more of the pressure gradient arises from the density gradient, and less of the pressure gradient arises from the ion temperature gradient.

  11. Unsteady Stokes equations: Some complete general solutions

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    homogeneous unsteady Stokes equations are examined. A necessary and sufficient condition for a divergence-free vector to represent the velocity field of a possible unsteady Stokes flow in the absence of body forces is derived. Keywords. Complete ...

  12. High Fidelity Simulations for Unsteady Flow Through the Orbiter LH2 Feedline Flowliner

    Science.gov (United States)

    Kiris, Cetin C.; Kwak, Dochan; Chan, William; Housman, Jeffrey

    2005-01-01

    High fidelity computations were carried out to analyze the orbiter M2 feedline flowliner. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. An incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.

  13. The effect of electron thermal conduction on plasma pressure gradient during reconnection of magnetic field lines

    International Nuclear Information System (INIS)

    Chu, T.K.

    1987-12-01

    The interplay of electron cross-field thermal conduction and the reconnection of magnetic field lines around an m = 1 magnetic island prior to a sawtooth crash can generate a large pressure gradient in a boundary layer adjacent to the reconnecting surface, leading to an enhanced gradient of poloidal beta to satisfy the threshold condition for ideal MHD modes. This narrow boundary layer and the short onset time of a sawtooth crash can be supported by fine-grained turbulent processes in a tokamak plasma. 11 refs

  14. Investigation on steady and unsteady performance of a SCO2 centrifugal compressor with splitters

    Directory of Open Access Journals (Sweden)

    Guo Ding

    2017-01-01

    Full Text Available Supercritical carbon dioxide (SCO2 is widely concerned with its excellent physical properties. Its high density helps to achieve a compact mechanical structure, especially in all kinds of turbomachinery. In this paper, a SCO2 centrifugal compressor with splitter blades is displayed and numerically investigated. A thorough numerical analysis of the steady and unsteady performance of this SCO2 centrifugal compressor is performed in ANSYS-CFX with SST turbulence model. Streamlines, pressure and temperature under steady- and unsteady-state are compared and analyzed. Moreover, the trans-critical phenomenon at the leading edge of the rotor blade and the aerodynamic performance are covered. The results in this paper provide the foundation for the design and numerical investigation of SCO2 centrifugal compressors.

  15. Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, John

    2009-01-01

    Adiabatic soliton compression by means of a pressure gradient in a hollow-core photonic bandgap fiber is investigated theoretically and numerically. It is shown that the dureation of the compressed pulse is limited mainly by the interplay between third-order dispersion and the Raman-induced soliton...... frequency shift. Analytical expressions for this limit are derived and compared with results of detailed numerical simulations for a realistic fiber structure....

  16. Rotor Cascade Shape Optimization with Unsteady Passing Wakes Using Implicit Dual-Time Stepping and a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Eun Seok Lee

    2003-01-01

    Full Text Available An axial turbine rotor cascade-shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using an unsteady flow, Reynolds-averaged Navier-Stokes equations solver that was based on explicit, finite difference; Runge-Kutta multistage time marching; and the diagonalized alternating direction implicit scheme. The code utilized Baldwin-Lomax algebraic and k-ε turbulence modeling. The full approximation storage multigrid method and preconditioning were implemented as iterative convergence-acceleration techniques. An implicit dual-time stepping method was incorporated in order to simulate the unsteady flow fields. The objective function was defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed during the optimization. The design variables were several geometric parameters characterizing airfoil leading edge, camber, stagger angle, and inter-row spacing. The genetic algorithm was used as an optimizer, and the penalty method was introduced for combining the constraints with the objective function. Each individual's objective function was computed simultaneously by using a 32-processor distributedmemory computer. The optimization results indicated that only minor improvements are possible in unsteady rotor/stator aerodynamics by varying these geometric parameters.

  17. Utilization of a pressure sensor guidewire to measure bileaflet mechanical valve gradients: hemodynamic and echocardiographic sequelae.

    Science.gov (United States)

    Doorey, Andrew J; Gakhal, Mandip; Pasquale, Michael J

    2006-04-01

    Suspected prosthetic valve dysfunction is a difficult clinical problem, because of the high risk of repeat valvular surgery. Echocardiographic measurements of prosthetic valvular dysfunction can be misleading, especially with bileaflet valves. Direct measurement of trans-valvular gradients is problematic because of potentially serious catheter entrapment issues. We report a case in which a high-fidelity pressure sensor angioplasty guidewire was used to cross prosthetic mitral and aortic valves in a patient, with hemodynamic and echocardiographic assessment. This technique was safe and effective, refuting the inaccurate non-invasive tests that over-estimated the aortic valvular gradient.

  18. Unsteady single-phase natural circulation flow mixing prediction using CATHARE three-dimensional capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Anis Bousbia; Vlassenbroeck, Jacques [Bel V - Subsidiary of the Belgian Federal Agency for Nuclear Contro, Brussels (Belize)

    2017-04-15

    Coolant mixing under natural circulation flow regime constitutes a key parameter that may play a role in the course of an accidental transient in a nuclear pressurized water reactor. This issue has motivated some experimental investigations carried out within the OECD/NEA PKL projects. The aim was to assess the coolant mixing phenomenon in the reactor pressure vessel downcomer and the core lower plenum under several asymmetric steady and unsteady flow conditions, and to provide experimental data for code validations. Former studies addressed the mixing phenomenon using, on the one hand, one-dimensional computational approaches with cross flows that are not fully validated under transient conditions and, on the other hand, expensive computational fluid dynamic tools that are not always justified for large-scale macroscopic phenomena. In the current framework, an unsteady coolant mixing experiment carried out in the Rossendorf coolant mixing test facility is simulated using the three-dimensional porous media capabilities of the thermal–hydraulic system CATHARE code. The current study allows highlighting the current capabilities of these codes and their suitability for reproducing the main phenomena occurring during asymmetric transient natural circulation mixing conditions.

  19. Local pressure gradients due to incipience of boiling in subcooled flows

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, A.E.; McDuffee, J.L. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-09-01

    Models for vapor bubble behavior and nucleation site density during subcooled boiling are integrated with boundary layer theory in order to predict the local pressure gradient and heat transfer coefficient. Models for bubble growth rate and bubble departure diameter are used to scale the movement of displaced liquid in the laminar sublayer. An added shear stress, analogous to a turbulent shear stress, is derived by considering the liquid movement normal to the heated surface. The resulting mechanistic model has plausible functional dependence on wall superheat, mass flow, and heat flux and agrees well with data available in the literature.

  20. Unsteady effects in flows past stationary airfoils with Gurney flaps due to unsteady flow separations at low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Dan MATEESCU

    2015-12-01

    Full Text Available This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV flying at low speed and very low Reynolds number. The unsteady aerodynamic analysis is performed with an efficient time-accurate numerical method developed for the solution of the Navier-Stokes equations at low Reynolds numbers, which is second-order-accurate in time and space. The paper presents solutions for the unsteady aerodynamic coefficients of lift and drag and for the lift-to-drag ratio of several symmetric and cambered airfoils with Gurney flaps. It was found that although the airfoil is considered stationary, starting from a relatively small incidence (about 8 degrees the flow becomes unsteady due to the unsteadiness of the flow separations occurring at low Reynolds numbers, and the aerodynamic coefficients display periodic oscillations in time. A detailed study is presented in the paper on the influence of various geometric and flow parameters, such as the Gurney flap height, Reynolds number, airfoil relative thickness and relative camber, on the aerodynamic coefficients of lift, drag and lift-to-drag ratio. The flow separation is also studied with the aid of flow visualizations illustrating the changes in the flow pattern at various moments in time.

  1. Unsteady wake of a rotating tire

    Science.gov (United States)

    Lombard, Jean-Eloi; Moxey, Dave; Xu, Hui; Sherwin, Spencer; Sherwin Lab Team

    2015-11-01

    For open wheel race-cars, such as IndyCar and Formula One, the wheels are responsible for 40% of the total drag. For road cars drag associated to the wheels and under-carriage can represent 60% of total drag at highway cruise speeds. Experimental observations have reported two or three pairs of counter rotating vortices, the relative importance of which still remains an open question, that interact to form a complex wake. Traditional RANS based methods are typically not well equipped to deal with such highly unsteady flows which motivates research into more physical, unsteady models. Leveraging a high-fidelity spectral/hp element based method a Large Eddy Simulation is performed to give further insight into unsteady characteristics of the wake. In particular the unsteady nature of both the jetting and top vortex pair is reported as well as the time and length scales associated with the vortex core trajectories. Correlation with experimentally obtained particle image velocimetry is presented. The authors acknowledge support from the United Kingdom Turbulence Consortium (UKTC) as well as from the Engineering and Physical Sciences Research Council (EPSRC) for access to ARCHER UK National Supercomputing Service.

  2. An investigation of noise produced by unsteady gas flow through silencer elements

    Science.gov (United States)

    Mawhinney, Graeme Hugh

    This thesis presents an investigation of the noise produced by unsteady gas flow through silencer elements. The central aim of the research project was to produce a tool for assistance in the design of the exhaust systems of diesel powered electrical generator sets, with the modelling techniques developed having a much wider application in reciprocating internal combustion engine exhaust systems. An automotive cylinder head was incorporated in a purpose built test rig to supply exhaust pulses, typical of those found in the exhaust system of four stroke diesel engines, to various experimental exhaust systems. Exhaust silencer elements evaluated included expansion, re- entrant, concentric tube resonator and absorptive elements. Measurements taken on the test rig included, unsteady superposition pressure in the exhaust ducting, cyclically averaged mass flow rate through the system and exhaust noise levels radiated into a semi-anechoic measurement chamber. The entire test rig was modelled using the 1D finite volume method developed previously developed at Queen's University Belfast. Various boundary conditions, developed over the years, were used to model the various silencer elements being evaluated. The 1D gas dynamic simulation thus estimated the mass flux history at the open end of the exhaust system. The mass flux history was then broken into its harmonic components and an acoustic radiation model was developed to model the sound pressure level produced by an acoustic monopole over a reflecting plane. The accuracy of the simulation technique was evaluated by correlation of measured and simulated superposition pressure and noise data. In general correlation of superposition pressure was excellent for all of the silencer elements tested. Predicted sound pressure level radiated from the open end of the exhaust tailpipe was seen to be accurate in the 100 Hz to 1 kHz frequency range for all of the silencer elements tested.

  3. Experimental Pressure Measurements on Hydropower Turbine Runners

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Samuel F.; Richmond, Marshall C.

    2017-04-28

    The range of hydrodynamic operating conditions to which the turbine is exposed results in significant pressure fluctuations on both the pressure and suction sides of the blades. Understanding these dynamic pressures has a range of applications. Structurally, the resulting dynamic loads are significant in understanding the design life and maintenance schedule of the bearing, shafts and runner components. The pulsing pressures have also been seen to have a detrimental effect on the surface condition of the blades. Biologically, the pressure gradients and pressure extremes are the primary driver of barotrauma for fish passing through hydroturbines. Improvements in computational fluid dynamics (CFD) can be used to simulate such unsteady pressures in the regions of concern. High frequency model scale and prototype measurements of pressures at the blade are important in the validation of these models. Experimental characterization of pressure fields over hydroturbine blades has been demonstrated by a number of studies which using multiple pressure transducers to map the pressure contours on the runner blades. These have been performed at both model and prototype scales, often to validate computational models of the pressure and flow fields over the blades. This report provides a review of existing studies in which the blade pressure was measured in situ. The report assesses the technology for both model and prototype scale testing. The details of the primary studies in this field are reported and used to inform the types of hardware required for similar experiments based on the Ice Harbor Dam owned by the US Corps of Engineers on the Snake River, WA, USA. Such a study would be used to validate the CFD performed for the BioPA.

  4. Retrospective cost adaptive Reynolds-averaged Navier-Stokes k-ω model for data-driven unsteady turbulent simulations

    Science.gov (United States)

    Li, Zhiyong; Hoagg, Jesse B.; Martin, Alexandre; Bailey, Sean C. C.

    2018-03-01

    This paper presents a data-driven computational model for simulating unsteady turbulent flows, where sparse measurement data is available. The model uses the retrospective cost adaptation (RCA) algorithm to automatically adjust the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k- ω turbulence equations to improve agreement between the simulated flow and the measurements. The RCA-RANS k- ω model is verified for steady flow using a pipe-flow test case and for unsteady flow using a surface-mounted-cube test case. Measurements used for adaptation of the verification cases are obtained from baseline simulations with known closure coefficients. These verification test cases demonstrate that the RCA-RANS k- ω model can successfully adapt the closure coefficients to improve agreement between the simulated flow field and a set of sparse flow-field measurements. Furthermore, the RCA-RANS k- ω model improves agreement between the simulated flow and the baseline flow at locations at which measurements do not exist. The RCA-RANS k- ω model is also validated with experimental data from 2 test cases: steady pipe flow, and unsteady flow past a square cylinder. In both test cases, the adaptation improves agreement with experimental data in comparison to the results from a non-adaptive RANS k- ω model that uses the standard values of the k- ω closure coefficients. For the steady pipe flow, adaptation is driven by mean stream-wise velocity measurements at 24 locations along the pipe radius. The RCA-RANS k- ω model reduces the average velocity error at these locations by over 35%. For the unsteady flow over a square cylinder, adaptation is driven by time-varying surface pressure measurements at 2 locations on the square cylinder. The RCA-RANS k- ω model reduces the average surface-pressure error at these locations by 88.8%.

  5. Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures

    International Nuclear Information System (INIS)

    Bodet, L.; Dhemaied, A.; Mourgues, R.; Tournat, V.; Rejiba, F.

    2012-01-01

    Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

  6. Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    Science.gov (United States)

    Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.

    2017-04-01

    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.

  7. Experiments during flow boiling of a R22 drop-in: R422D adiabatic pressure gradients

    International Nuclear Information System (INIS)

    Rosato, A.; Mauro, A.W.; Mastrullo, R.; Vanoli, G.P.

    2009-01-01

    R22, the HCFC most widely used in refrigeration and air-conditioning systems in the last years, is phasing-out. R422D, a zero ozone-depleting mixture of R125, R134a and R600a (65.1%/31.5%/3.4% by weight, respectively), has been recently proposed as a drop-in substitute. For energy consumption calculations and temperature control, it is of primary importance to estimate operating conditions after substitution. To determine pressure drop in the evaporator and piping line to the compressor, in this paper the experimental adiabatic pressure gradients during flow boiling of R422D are reported for a circular smooth horizontal tube (3.00 mm inner radius) in a range of operating conditions of interest for dry-expansion evaporators. The data are used to establish the best predictive method for calculations and its accuracy: the Moreno-Quiben and Thome method provided the best predictions for the whole database and also for the segregated data in the annular flow regime. Finally, the experimental data have been compared with the adiabatic pressure gradients of both R22 and its much used alternative R407C available in the literature.

  8. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.; Ghoniem, Ahmed F.

    2011-01-01

    simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re

  9. Numerical investigation on vibration and noise induced by unsteady flow in an axial-flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Eryun; Ma, Zui Ling; Yang, Ai Ling; Nan, Guo Fang [School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai (China); Zhao, Gai Ping [School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai (China); Li, Guo Ping [Shanghai Marine Equipment Research Institute, Shanghai (China)

    2016-12-15

    Full-scale structural vibration and noise induced by flow in an axial-flow pump was simulated by a hybrid numerical method. An unsteady flow field was solved by a large eddy simulation-based computational fluid dynamics commercial code, Fluent. An experimental validation on pressure fluctuations was performed to impose an appropriate vibration exciting source. The consistency between the computed results and experimental tests were interesting. The modes of the axial-flow pump were computed by the finite element method. After that, the pump vibration and sound field were solved using a coupled vibro-acoustic model. The numerical results indicated that the the blade-passing frequency was the dominant frequency of the vibration acceleration of the pump. This result was consistent with frequency spectral characteristics of unsteady pressure fluctuation. Finally, comparisons of the vibration acceleration between the computed results and the experimental test were conducted. These comparisons validated the computed results. This study shows that using the hybrid numerical method to evaluate the flow-induced vibration and noise generated in an axial-flow pump is feasible.

  10. Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor with LES And PIV

    Science.gov (United States)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David

    2015-01-01

    fields inside the tip gap agree fairly well. Instantaneous velocity vectors inside the tip gap from both the PIV and LES do show flow separation and reattachment at the entrance of tip gap as some earlier studies suggested. This area at the entrance of tip gap flow (the pressure side of the blade) is confined very close to the rotor tip section. With a small tip gap (0.5mm), the gap flow looks like a simple two-dimensional channel flow with larger velocity near the casing for both flow rates. A small area with a sharp velocity gradient is observed just above the rotor tip. This strong shear layer is turned radially inward when it collides with the incoming flow and forms the core structure of the tip clearance vortex. When tip gap size is increased to 2.4 mm at the design operation, the radial profile of the tip gap flow changes drastically. With the large tip gap, the gap flow looks like a two-dimensional channel flow only near the casing. Near the rotor top section, a bigger region with very large shear and reversed flow is observed.

  11. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); André, Julien; Millet, Francois; Perin, Jean Paul [Service des Basses Températures, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054 (France)

    2013-10-15

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced.

  12. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    International Nuclear Information System (INIS)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos; Valougeorgis, Dimitris; André, Julien; Millet, Francois; Perin, Jean Paul

    2013-01-01

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced

  13. MATHEMATICAL MODELING OF UNSTEADY FILTRATION OF ELASTIC LIQUID IN AN INHOMOGENEOUS RESERVOIR

    Directory of Open Access Journals (Sweden)

    A. G. Balamirzoev

    2013-01-01

    Full Text Available The article considers the possibility of numerical solution of two-dimensional problem of unsteady filtration in an inhomogeneous elastic liquid reservoir. The problem of finding the distribution of the pressure p(x,y,t in the process of exploitation of deposits is reduced to the solution of a differential equation of parabolic type with variable coefficients. The problem is solved approximately by using the method of finite differences.

  14. Note on the Physical Basis of the Kutta Condition in Unsteady Two-Dimensional Panel Methods

    Directory of Open Access Journals (Sweden)

    M. La Mantia

    2015-01-01

    Full Text Available Force generation in avian and aquatic species is of considerable interest for possible engineering applications. The aim of this work is to highlight the theoretical and physical foundations of a new formulation of the unsteady Kutta condition, which postulates a finite pressure difference at the trailing edge of the foil. The condition, necessary to obtain a unique solution and derived from the unsteady Bernoulli equation, implies that the energy supplied for the wing motion generates trailing-edge vortices and their overall effect, which depends on the motion initial parameters, is a jet of fluid that propels the wing. The postulated pressure difference (the value of which should be experimentally obtained models the trailing-edge velocity difference that generates the thrust-producing jet. Although the average thrust values computed by the proposed method are comparable to those calculated by assuming null pressure difference at the trailing edge, the latter (commonly used approach is less physically meaningful than the present one, as there is a singularity at the foil trailing edge. Additionally, in biological applications, that is, for autonomous flapping, the differences ought to be more significant, as the corresponding energy requirements should be substantially altered, compared to the studied oscillatory motions.

  15. Probability density function method for variable-density pressure-gradient-driven turbulence and mixing

    International Nuclear Information System (INIS)

    Bakosi, Jozsef; Ristorcelli, Raymond J.

    2010-01-01

    Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.

  16. Pressure gradient effect at distributed excitation of 3D TS waves by freestream and wall disturbances

    Directory of Open Access Journals (Sweden)

    Borodulin Vladimir

    2017-01-01

    Full Text Available The present work is a continuation of previous experiments (carried out in the Blasius boundary layer and devoted to quantitative investigation of influence of an adverse pressure gradient on two efficient mechanisms of excitation of 3D TS instability waves due to a distributed boundary layer receptivity to free-stream vortices. These mechanisms are associated with distributed scattering of 3D amplified free-stream vortices both on the natural boundary-layer nonuniformity (on smooth surface and on 2D surface nonuniformities (waviness. The corresponding detailed hotwire measurements were carried out in a self-similar boundary layer with Hartree parameter βH = –0.115 in a wide range of the problem parameters. Complex values of quantitative characteristics of the physical phenomenon under study (the distributed receptivity coefficients are evaluated by based on the obtained experimental data. It is found that the adverse pressure gradient leads to reduction of efficiency of the investigated vortexroughness receptivity mechanism.

  17. Synchronous Surface Pressure and Velocity Measurements of standard model in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Zhijun Sun

    2018-01-01

    Full Text Available Experiments in the Hypersonic Wind tunnel of NUAA(NHW present synchronous measurements of bow shockwave and surface pressure of a standard blunt rotary model (AGARD HB-2, which was carried out in order to measure the Mach-5-flow above a blunt body by PIV (Particle Image Velocimetry as well as unsteady pressure around the rotary body. Titanium dioxide (Al2O3 Nano particles were seeded into the flow by a tailor-made container. With meticulous care designed optical path, the laser was guided into the vacuum experimental section. The transient pressure was obtained around model by using fast-responding pressure-sensitive paint (PSPsprayed on the model. All the experimental facilities were controlled by Series Pulse Generator to ensure that the data was time related. The PIV measurements of velocities in front of the detached bow shock agreed very well with the calculated value, with less than 3% difference compared to Pitot-pressure recordings. The velocity gradient contour described in accord with the detached bow shock that showed on schlieren. The PSP results presented good agreement with the reference data from previous studies. Our work involving studies of synchronous shock-wave and pressure measurements proved to be encouraging.

  18. Unsteady Double Wake Model for the Simulation of Stalled Airfoils

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Cayron, Antoine; Sørensen, Jens Nørkær

    2015-01-01

    In the present work, the recent developed Unsteady Double Wake Model, USDWM, is used to simulate separated flows past a wind turbine airfoil at high angles of attack. The solver is basically an unsteady two-dimensional panel method which uses the unsteady double wake technique to model flow separ...

  19. Unsteady load on an oscillating Kaplan turbine runner

    Science.gov (United States)

    Puolakka, O.; Keto-Tokoi, J.; Matusiak, J.

    2013-02-01

    A Kaplan turbine runner oscillating in turbine waterways is subjected to a varying hydrodynamic load. Numerical simulation of the related unsteady flow is time-consuming and research is very limited. In this study, a simplified method based on unsteady airfoil theory is presented for evaluation of the unsteady load for vibration analyses of the turbine shaft line. The runner is assumed to oscillate as a rigid body in spin and axial heave, and the reaction force is resolved into added masses and dampings. The method is applied on three Kaplan runners at nominal operating conditions. Estimates for added masses and dampings are considered to be of a magnitude significant for shaft line vibration. Moderate variation in the added masses and minor variation in the added dampings is found in the frequency range of interest. Reference results for added masses are derived by solving the boundary value problem for small motions of inviscid fluid using the finite element method. Good correspondence is found in the added mass estimates of the two methods. The unsteady airfoil method is considered accurate enough for design purposes. Experimental results are needed for validation of unsteady load analyses.

  20. Unsteady bio-fluid dynamics in flying and swimming

    Science.gov (United States)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  1. Unsteady Aerodynamics of Deformable Thin Airfoils

    OpenAIRE

    Walker, William Paul

    2009-01-01

    Unsteady aerodynamic theories are essential in the analysis of bird and insect flight. The study of these types of locomotion is vital in the development of flapping wing aircraft. This paper uses potential flow aerodynamics to extend the unsteady aerodynamic theory of Theodorsen and Garrick (which is restricted to rigid airfoil motion) to deformable thin airfoils. Frequency-domain lift, pitching moment and thrust expressions are derived for an airfoil undergoing harmonic oscillations and def...

  2. An Experimental Study of Pressure Gradients for Flow of Boiling Water in a Vertical Round Duct. (Part 1)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-03-15

    Frictional pressure gradients for flow of boiling water in a vertical channel have been measured in a wide range of variables. The test section consisted of an electrically heated 10 mm inner diameter stainless steel tube of 3120 mm length. Data were obtained for pressures between 6 and 42 ata, steam qualities between 0 and 80 %, flow rates between 0.03 and 0.40 kg/sec and surface heat flux between 24 and 80 W/cm{sup 2}. Preliminary measurements of heat transfer and pressure drop for one phase flow of water showed an excellent agreement with one phase flow theory. Extrapolating our data to 100 % quality, an excellent agreement with one-phase flow theory is also found for this case. The two phase flow results are generally 0 - 40 % higher than the results of Martinelli and Nelson. Extrapolating our data to 137 ata fine agreement is found with the results of Sher and Green. On the basis of the measured pressure gradients, a very simple empirical equation has been established for engineering use. This equation correlates our data (more than 1000 points) with a maximum discrepancy of - 20 % and with an average discrepancy of - 5 %.

  3. The structure of a three-dimensional boundary layer subjected to streamwise-varying spanwise-homogeneous pressure gradient

    International Nuclear Information System (INIS)

    Bentaleb, Y.; Leschziner, M.A.

    2013-01-01

    Highlights: • We study a spatially-evolving three-dimensional boundary layer. • We impose a streamwise-varying spanwise-homogeneous pressure gradient. • A collateral flow is formed close to the wall, and this is investigated alongside the skewed upper part of the boundary layer. • A wide range of flow-physical properties have been studied. -- Abstract: A spatially-evolving three-dimensional boundary layer, subjected to a streamwise-varying spanwise-homogeneous pressure gradient, equivalent to a body force, is investigated by way of direct numerical simulation. The pressure gradient, prescribed to change its sign half-way along the boundary layer, provokes strong skewing of the velocity vector, with a layer of nearly collateral flow forming close to the wall up to the position of maximum spanwise velocity. A wide range of flow-physical properties have been studied, with particular emphasis on the near-wall layer, including second-moments, major budget contributions and wall-normal two-point correlations of velocity fluctuations and their angles, relative to wall-shear fluctuations. The results illustrate the complexity caused by skewing, including a damping in turbulent mixing and a significant lag between strains and stresses. The study has been undertaken in the context of efforts to develop and test novel hybrid LES–RANS schemes for non-equilibrium near-wall flows, with an emphasis on three-dimensional near-wall straining. Fundamental flow-physical issues aside, the data derived should be of particular relevance to a priori studies of second-moment RANS closure and the development and validation of RANS-type near-wall approximations implemented in LES schemes for high-Reynolds-number complex flows

  4. Reynolds averaged simulation of unsteady separated flow

    International Nuclear Information System (INIS)

    Iaccarino, G.; Ooi, A.; Durbin, P.A.; Behnia, M.

    2003-01-01

    The accuracy of Reynolds averaged Navier-Stokes (RANS) turbulence models in predicting complex flows with separation is examined. The unsteady flow around square cylinder and over a wall-mounted cube are simulated and compared with experimental data. For the cube case, none of the previously published numerical predictions obtained by steady-state RANS produced a good match with experimental data. However, evidence exists that coherent vortex shedding occurs in this flow. Its presence demands unsteady RANS computation because the flow is not statistically stationary. The present study demonstrates that unsteady RANS does indeed predict periodic shedding, and leads to much better concurrence with available experimental data than has been achieved with steady computation

  5. An expression for the water-sediment moving layer in unsteady flows valid for open channels and embankments

    Directory of Open Access Journals (Sweden)

    A. M. Berta

    2010-05-01

    Full Text Available During the floods, the effects of sediment transport in river beds are particulary significant and can be studied through the evolution of the water-sediment layer which moves in the lower part of a flow, named "moving layer". Moving layer variations along rivers lead to depositions and erosions and are typically unsteady, but are often tackled with expressions developed for steady (equilibrium conditions. In this paper, we develop an expression for the moving layer in unsteady conditions and calibrate it with experimental data. During laboratory tests, we have in fact reproduced a rapidly changing unsteady flow by the erosion of a granular steep slope. Results have shown a clear tendency of the moving layer, for fixed discharges, toward equilibrium conditions. Knowing the equilibrium achievement has presented many difficulties, being influenced by the choice of the equilibrium expression and moreover by the estimation of the parameters involved (for example friction angle. Since we used only data relevant to hyper-concentrated mono-dimensional flows for the calibration – occurring for slope gradients in the range 0.03–0.20 – our model can be applied both on open channels and on embankments/dams, providing that the flows can be modelled as mono-dimensional, and that slopes and applied shear stress levels fall within the considered ranges.

  6. The influence of body position on cerebrospinal fluid pressure gradient and movement in cats with normal and impaired craniospinal communication.

    Science.gov (United States)

    Klarica, Marijan; Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana; Orešković, Darko

    2014-01-01

    Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.

  7. The influence of body position on cerebrospinal fluid pressure gradient and movement in cats with normal and impaired craniospinal communication.

    Directory of Open Access Journals (Sweden)

    Marijan Klarica

    Full Text Available Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.

  8. Effects of water compressibility on the pressure fluctuation prediction in pump turbine

    International Nuclear Information System (INIS)

    Yin, J L; Wang, D Z; Wang, L Q; Wu, Y L; Wei, X Z

    2012-01-01

    The compressible effect of water is a key factor in transient flows. However, it is always neglected in the unsteady simulations for hydraulic machinery. In light of this, the governing equation of the flow is deduced to combine the compressibility of water, and then simulations with compressible and incompressible considerations to the typical unsteady flow phenomenon (Rotor stator interaction) in a pump turbine model are carried out and compared with each other. The results show that water compressibility has great effects on the magnitude and frequency of pressure fluctuation. As the operating condition concerned, the compressibility of water will induce larger pressure fluctuation, which agrees better with measured data. Moreover, the lower frequency component of the pressure signal can only be captured with the combination of water compressibility. It can be concluded that water compressibility is a fatal factor, which cannot be neglected in the unsteady simulations for pump turbines.

  9. Preretinal partial pressure of oxygen gradients before and after experimental pars plana vitrectomy.

    Science.gov (United States)

    Petropoulos, Ioannis K; Pournaras, Jean-Antoine C; Stangos, Alexandros N; Pournaras, Constantin J

    2013-01-01

    To evaluate preretinal partial pressure of oxygen (PO2) gradients before and after experimental pars plana vitrectomy. Arteriolar, venous, and intervascular preretinal PO2 gradients were recorded in 7 minipigs during slow withdrawal of oxygen-sensitive microelectrodes (10-μm tip diameter) from the vitreoretinal interface to 2 mm into the vitreous cavity. Recordings were repeated after pars plana vitrectomy and balanced salt solution (BSS) intraocular perfusion. Arteriolar, venous, and intervascular preretinal PO2 at the vitreoretinal interface were 62.3 ± 13.8, 22.5 ± 3.3, and 17.0 ± 7.5 mmHg, respectively, before vitrectomy; 97.7 ± 19.9, 40.0 ± 21.9, and 56.3 ± 28.4 mmHg, respectively, immediately after vitrectomy; and 59.0 ± 27.4, 25.2 ± 3.0, and 21.5 ± 4.5 mmHg, respectively, 2½ hours after interruption of BSS perfusion. PO2 2 mm from the vitreoretinal interface was 28.4 ± 3.6 mmHg before vitrectomy; 151.8 ± 4.5 mmHg immediately after vitrectomy; and 34.8 ± 4.1 mmHg 2½ hours after interruption of BSS perfusion. PO2 gradients were still present after vitrectomy, with the same patterns as before vitrectomy. Preretinal PO2 gradients are not eliminated after pars plana vitrectomy. During BSS perfusion, vitreous cavity PO2 is very high. Interruption of BSS perfusion evokes progressive equilibration of vitreous cavity PO2 with concomitant progressive return of preretinal PO2 gradients to their previtrectomy patterns. This indicates that preretinal diffusion of oxygen is not altered after vitrectomy. The beneficial effect of vitrectomy in ischemic retinal diseases or macular edema may be related to other mechanisms, such as increased oxygen convection currents or removal of growth factors and cytokines secreted in the vitreous.

  10. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.

    Science.gov (United States)

    Suslov, D; Schulz, A; Wittig, S

    2001-05-01

    The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.

  11. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2012-05-01

    The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In this study, we carry out a thermodynamic and energy efficiency analysis of PRO work extraction. First, we present a reversible thermodynamic model for PRO and verify that the theoretical maximum extractable work in a reversible PRO process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible constant-pressure PRO process is then examined. We derive an expression for the maximum extractable work in a constant-pressure PRO process and show that it is less than the ideal work (i.e., Gibbs free energy of mixing) due to inefficiencies intrinsic to the process. These inherent inefficiencies are attributed to (i) frictional losses required to overcome hydraulic resistance and drive water permeation and (ii) unutilized energy due to the discontinuation of water permeation when the osmotic pressure difference becomes equal to the applied hydraulic pressure. The highest extractable work in constant-pressure PRO with a seawater draw solution and river water feed solution is 0.75 kWh/m(3) while the free energy of mixing is 0.81 kWh/m(3)-a thermodynamic extraction efficiency of 91.1%. Our analysis further reveals that the operational objective to achieve high power density in a practical PRO process is inconsistent with the goal of maximum energy extraction. This study demonstrates thermodynamic and energetic approaches for PRO and offers insights on actual energy accessible for utilization in PRO power generation through salinity gradients. © 2012 American Chemical Society

  12. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Science.gov (United States)

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  13. AERFORCE: Subroutine package for unsteady blade-element/momentum calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, Anders

    2000-05-01

    A subroutine package, called AERFORCE, for the calculation of aerodynamic forces of wind turbine rotors has been written. The subroutines are written in FORTRAN. AERFORCE requires the input of airfoil aerodynamic data via tables as function of angle of attack, the turbine blade and rotor geometry and wind and blade velocities as input. The method is intended for use in an aeroelastic code. Wind and blade velocities are given at a sequence of time steps and blade forces are returned. The aerodynamic method is basically a Blade-Element/Momentum method. The method is fast and coded to be used in time simulations. In order to obtain a steady state solution a time simulation to steady state conditions has to be carried out. The BEM-method in AERFORCE includes extensions for: Dynamic inflow: Unsteady modeling of the inflow for cases with unsteady blade loading or unsteady wind. Extensions to BEM-theory for inclined flow to the rotor disc (yaw model). Unsteady blade aerodynamics: The inclusion of 2D attached flow unsteady aerodynamics and a semi-empirical model for 2D dynamic stall.

  14. Temperature-dependent transformation thermotics for unsteady states: Switchable concentrator for transient heat flow

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying, E-mail: 13110290008@fudan.edu.cn [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Shen, Xiangying, E-mail: 13110190068@fudan.edu.cn [Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Huang, Jiping, E-mail: jphuang@fudan.edu.cn [Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Ni, Yushan, E-mail: niyushan@fudan.edu.cn [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2016-04-22

    For manipulating heat flow efficiently, recently we established a theory of temperature-dependent transformation thermotics which holds for steady-state cases. Here, we develop the theory to unsteady-state cases by considering the generalized Fourier's law for transient thermal conduction. As a result, we are allowed to propose a new class of intelligent thermal metamaterial — switchable concentrator, which is made of inhomogeneous anisotropic materials. When environmental temperature is below or above a critical value, the concentrator is automatically switched on, namely, it helps to focus heat flux in a specific region. However, the focusing does not affect the distribution pattern of temperature outside the concentrator. We also perform finite-element simulations to confirm the switching effect according to the effective medium theory by assembling homogeneous isotropic materials, which bring more convenience for experimental fabrication than inhomogeneous anisotropic materials. This work may help to figure out new intelligent thermal devices, which provide more flexibility in controlling heat flow, and it may also be useful in other fields that are sensitive to temperature gradient, such as the Seebeck effect. - Highlights: • Established the unsteady-state temperature dependent transformation thermotics. • A thermal concentrator with switchable functionality. • An effective-medium design for experimental realization.

  15. Unsteady computational fluid dynamics in aeronautics

    CERN Document Server

    Tucker, P G

    2014-01-01

    The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined.  One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES.  This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and...

  16. Numerical Analysis of the Unsteady Propeller Performance in the Ship Wake Modified By Different Wake Improvement Devices

    Directory of Open Access Journals (Sweden)

    Bugalski Tomasz

    2014-10-01

    Full Text Available The paper presents the summary of results of the numerical analysis of the unsteady propeller performance in the non-uniform ship wake modified by the different wake improvement devices. This analysis is performed using the lifting surface program DUNCAN for unsteady propeller analysis. Te object of the analysis is a 7000 ton chemical tanker, for which four different types of the wake improvement devices have been designed: two vortex generators, a pre-swirl stator, and a boundary layer alignment device. These produced five different cases of the ship wake structure: the original hull and hull equipped alternatively with four wake improvement devices. Two different propellers were analyzed in these five wake fields, one being the original reference propeller P0 and the other - a specially designed, optimized propeller P3. Te analyzed parameters were the pictures of unsteady cavitation on propeller blades, harmonics of pressure pulses generated by the cavitating propellers in the selected points and the fluctuating bearing forces on the propeller shaft. Some of the calculated cavitation phenomena were confronted with the experimental. Te objective of the calculations was to demonstrate the differences in the calculated unsteady propeller performance resulting from the application of different wake improvement devices. Te analysis and discussion of the results, together with the appropriate conclusions, are included in the paper.

  17. Ponderomotive force effects on temperature-gradient-driven instabilities

    International Nuclear Information System (INIS)

    Sundaram, A.K.; Hershkowitz, N.

    1992-01-01

    The modification of temperature-gradient-driven instabilities due to the presence of nonuniform radio-frequency fields near the ion cyclotron frequency is investigated in the linear regime. Employing the fluid theory, it is shown that the induced field line compression caused by ion cyclotron range of frequencies (ICRF) fields makes the net parallel compressibility positive, and thus provides a stabilizing influence on the ion-temperature-gradient-driven mode for an appropriately tailored profile of radio-frequency (rf) pressure. Concomitantly, the radial ponderomotive force generates an additional contribution via coupling between the perturbed fluid motion and the equilibrium ponderomotive force and this effect plays the role of dissipation to enhance or decrease the growth of temperature-gradient-driven modes depending upon the sign of rf pressure gradients. For decreased growth of temperature-gradient-driven instabilities, the plasma density gradients and rf pressure gradients must have opposite signs while enhancement in growth arises when both gradients have the same sign. Finally, the kinetic effects associated with these modes are briefly discussed

  18. Evaluation of an unsteady flamelet progress variable model for autoignition and flame development in compositionally stratified mixtures

    Science.gov (United States)

    Mukhopadhyay, Saumyadip; Abraham, John

    2012-07-01

    The unsteady flamelet progress variable (UFPV) model has been proposed by Pitsch and Ihme ["An unsteady/flamelet progress variable method for LES of nonpremixed turbulent combustion," AIAA Paper No. 2005-557, 2005] for modeling the averaged/filtered chemistry source terms in Reynolds averaged simulations and large eddy simulations of reacting non-premixed combustion. In the UFPV model, a look-up table of source terms is generated as a function of mixture fraction Z, scalar dissipation rate χ, and progress variable C by solving the unsteady flamelet equations. The assumption is that the unsteady flamelet represents the evolution of the reacting mixing layer in the non-premixed flame. We assess the accuracy of the model in predicting autoignition and flame development in compositionally stratified n-heptane/air mixtures using direct numerical simulations (DNS). The focus in this work is primarily on the assessment of accuracy of the probability density functions (PDFs) employed for obtaining averaged source terms. The performance of commonly employed presumed functions, such as the dirac-delta distribution function, the β distribution function, and statistically most likely distribution (SMLD) approach in approximating the shapes of the PDFs of the reactive and the conserved scalars is evaluated. For unimodal distributions, it is observed that functions that need two-moment information, e.g., the β distribution function and the SMLD approach with two-moment closure, are able to reasonably approximate the actual PDF. As the distribution becomes multimodal, higher moment information is required. Differences are observed between the ignition trends obtained from DNS and those predicted by the look-up table, especially for smaller gradients where the flamelet assumption becomes less applicable. The formulation assumes that the shape of the χ(Z) profile can be modeled by an error function which remains unchanged in the presence of heat release. We show that this

  19. Characterization of the startup transient electrokinetic flow in rectangular channels of arbitrary dimensions, zeta potential distribution, and time-varying pressure gradient.

    Science.gov (United States)

    Miller, Andrew; Villegas, Arturo; Diez, F Javier

    2015-03-01

    The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reynolds stress structures in a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation.

    Science.gov (United States)

    Atkinson, C.; Sekimoto, A.; Jiménez, J.; Soria, J.

    2018-04-01

    Mean Reynolds stress profiles and instantaneous Reynolds stress structures are investigated in a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL) at the verge of separation using data from direct numerical simulations. The use of a self-similar APG-TBL provides a flow domain in which the flow gradually approaches a constant non-dimensional pressure gradient, resulting in a flow in which the relative contribution of each term in the governing equations is independent of streamwise position over a domain larger than two boundary layer thickness. This allows the flow structures to undergo a development that is less dependent on the upstream flow history when compared to more rapidly decelerated boundary layers. This APG-TBL maintains an almost constant shape factor of H = 2.3 to 2.35 over a momentum thickness based Reynolds number range of Re δ 2 = 8420 to 12400. In the APG-TBL the production of turbulent kinetic energy is still mostly due to the correlation of streamwise and wall-normal fluctuations, 〈uv〉, however the contribution form the other components of the Reynolds stress tensor are no longer negligible. Statistical properties associated with the scale and location of sweeps and ejections in this APG-TBL are compared with those of a zero pressure gradient turbulent boundary layer developing from the same inlet profile, resulting in momentum thickness based range of Re δ 2 = 3400 to 3770. In the APG-TBL the peak in both the mean Reynolds stress and the production of turbulent kinetic energy move from the near wall region out to a point consistent with the displacement thickness height. This is associated with a narrower distribution of the Reynolds stress and a 1.6 times higher relative number of wall-detached negative uv structures. These structures occupy 5 times less of the boundary layer volume and show a similar reduction in their streamwise extent with respect to the boundary layer thickness. A significantly lower percentage

  1. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  2. Theory and Low-Order Modeling of Unsteady Airfoil Flows

    Science.gov (United States)

    Ramesh, Kiran

    Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It

  3. Numerical Investigation of Pressure Fluctuation Characteristics in a Centrifugal Pump with Variable Axial Clearance

    Directory of Open Access Journals (Sweden)

    Lei Cao

    2016-01-01

    Full Text Available Clearance flows in the sidewall gaps of centrifugal pumps are unsteady as well as main flows in the volute casing and impeller, which may cause vibration and noise, and the corresponding pressure fluctuations are related to the axial clearance size. In this paper, unsteady numerical simulations were conducted to predict the unsteady flows within the entire flow passage of a centrifugal pump operating in the design condition. Pressure fluctuation characteristics in the volute casing, impeller, and sidewall gaps were investigated with three axial clearance sizes. Results show that an axial clearance variation affects the pressure fluctuation characteristics in each flow domain by different degree. The greatest pressure fluctuation occurs at the blade pressure surface and is almost not influenced by the axial clearance variation which has a certainly effect on the pressure fluctuation characteristics around the tongue. The maximum pressure fluctuation amplitude in the sidewall gaps is larger than that in the volute casing, and different spectrum characteristics show up in the three models due to the interaction between the clearance flow and the main flow as well as the rotor-stator interaction. Therefore, clearance flow should be taken into consideration in the hydraulic design of centrifugal pumps.

  4. Unsteady characteristics of a slat-cove flow field

    Science.gov (United States)

    Pascioni, Kyle A.; Cattafesta, Louis N.

    2018-03-01

    The leading-edge slat of a multielement wing is a significant contributor to the acoustic signature of an aircraft during the approach phase of the flight path. An experimental study of the two-dimensional 30P30N geometry is undertaken to further understand the flow physics and specific noise source mechanisms. The mean statistics from particle image velocimetry (PIV) shows the differences in the flow field with angle of attack, including the interaction between the cove and trailing-edge flow. Phase-locked PIV successfully links narrow-band peaks found in the surface pressure spectrum to shear layer instabilities and also reveals that a bulk cove oscillation at a Strouhal number based on a slat chord of 0.15 exists, indicative of shear layer flapping. Unsteady surface pressure measurements are documented and used to estimate spanwise coherence length scales. A narrow-band frequency prediction scheme is also tested and found to agree well with the data. Furthermore, higher-order spectral analysis suggests that nonlinear effects cause additional peaks to arise in the power spectrum, particularly at low angles of attack.

  5. Unsteady flow model for circulation-control airfoils

    Science.gov (United States)

    Rao, B. M.

    1979-01-01

    An analysis and a numerical lifting surface method are developed for predicting the unsteady airloads on two-dimensional circulation control airfoils in incompressible flow. The analysis and the computer program are validated by correlating the computed unsteady airloads with test data and also with other theoretical solutions. Additionally, a mathematical model for predicting the bending-torsion flutter of a two-dimensional airfoil (a reference section of a wing or rotor blade) and a computer program using an iterative scheme are developed. The flutter program has a provision for using the CC airfoil airloads program or the Theodorsen hard flap solution to compute the unsteady lift and moment used in the flutter equations. The adopted mathematical model and the iterative scheme are used to perform a flutter analysis of a typical CC rotor blade reference section. The program seems to work well within the basic assumption of the incompressible flow.

  6. A Coordinate Transformation for Unsteady Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    Paul G. A. CIZMAS

    2011-12-01

    Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.

  7. Unsteady hydrodynamic forces acting on a hand and its flow field during sculling motion.

    Science.gov (United States)

    Takagi, Hideki; Shimada, Shohei; Miwa, Takahiro; Kudo, Shigetada; Sanders, Ross; Matsuuchi, Kazuo

    2014-12-01

    The goal of this research is to clarify the mechanism by which unsteady forces are generated during sculling by a skilled swimmer and thereby to contribute to improving propulsive techniques. We used particle image velocimetry (PIV) to acquire data on the kinematics of the hand during sculling, such as fluid forces and flow field. By investigating the correlations between these data, we expected to find a new propulsion mechanism. The experiment was performed in a flow-controlled water channel. The participant executed sculling motions to remain at a fixed position despite constant water flow. PIV was used to visualize the flow-field cross-section in the plane of hand motion. Moreover, the fluid forces acting on the hand were estimated from pressure distribution measurements performed on the hand and simultaneous three-dimensional motion analysis. By executing the sculling motion, a skilled swimmer produces large unsteady fluid forces when the leading-edge vortex occurs on the dorsal side of the hand and wake capture occurs on the palm side. By using a new approach, we observed interesting unsteady fluid phenomena similar to those of flying insects. The study indicates that it is essential for swimmers to fully exploit vortices. A better understanding of these phenomena might lead to an improvement in sculling techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    CERN Document Server

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  9. Unsteady three-dimensional behavior of natural convection in horizontal annulus

    International Nuclear Information System (INIS)

    Ohya, Toshizo; Miki, Yasutomi; Morita, Kouji; Fukuda, Kenji; Hasegawa, Shu

    1988-01-01

    An numerical analysis has been performed on unsteady three-dimensional natural convection in a concentric horizontal annulus filled with air. The explicit leap-frog scheme is used for integrating three-dimensional time-dependent equations and the fast Fourier transform (FFT) for solving the Poisson equations for pressure. An oscillatory flow is found to occur at high Rayleigh numbers, which agree qualitatively with the experimental observation made by Bishop et al. An experiment is also conducted to measure temperature fluctuations; a comparison between periods of fluctuations obtained numerically and experimentally shows a good agreement. Numerical calculations yield various statistical parameters of turbulence at higher Rayleigh numbers, which wait experimental verificaions, however. (author)

  10. Unsteady response of flow system around balance piston in a rocket pump

    Science.gov (United States)

    Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.

    2013-03-01

    In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.

  11. Unsteady Flow in a Supersonic Turbine with Variable Specific Heats

    Science.gov (United States)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2001-01-01

    Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier

  12. Unsteady effects in flows past stationary airfoils with Gurney flaps due to unsteady flow separations at low Reynolds numbers

    OpenAIRE

    Dan MATEESCU

    2015-01-01

    This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV) flying at low speed and very low Reynolds numb...

  13. Review of the physics of enhancing vortex lift by unsteady excitation

    Science.gov (United States)

    Wu, J. Z.; Vakili, A. D.; Wu, J. M.

    1991-01-01

    A review aimed at providing a physical understanding of the crucial mechanisms for obtaining super lift by means of unsteady excitations is presented. Particular attention is given to physical problems, including rolled-up vortex layer instability and receptivity, wave-vortex interaction and resonance, nonlinear streaming, instability of vortices behind bluff bodies and their shedding, and vortex breakdown. A general theoretical framework suitable for handling the unsteady vortex flows is introduced. It is suggested that wings with swept and sharp leading edges, equipped with devices for unsteady excitations, could yield the first breakthrough of the unsteady separation barrier and provide super lift at post-stall angle of attack.

  14. Pressure-gradient-driven nearshore circulation on a beach influenced by a large inlet-tidal shoal system

    Science.gov (United States)

    Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.

    2011-01-01

    The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.

  15. Association between portal vein pressure drop gradient after transjugular intrahepatic portosystemic shunt and clinical prognosis

    Directory of Open Access Journals (Sweden)

    XU Zhengguo

    2016-12-01

    Full Text Available ObjectiveTo investigate the association between portal vein pressure drop gradient in patients with cirrhotic portal hypertension treated by transjugular intrahepatic portosystemic shunt (TIPS and clinical prognosis, as well as the ideal range of portal vein pressure drop. MethodsA total of 58 patients who underwent TIPS in Xinqiao Hospital of Third Military Medical University from November 2013 to December 2015 were enrolled. All the patients underwent TIPS and embolization of the gastric coronary vein and the short gastric veins, and the change intervals of portal vein pressure gradient were monitored. The follow-up time ranged from 3 days to 2 years, and the association of portal vein pressure drop gradient with postoperative liver function, splenic function, rebleeding rate, hepatic encephalopathy, and portal hypertensive gastrointestinal diseases was analyzed. The paired t-test was used for comparison of parameters before and after treatment. ResultsThe patients had a significant reduction in liver function on day 3 after surgery. At 2 month after surgery, the levels of TBil was rised and had significant changes[(49.81±27.82μmol/L vs (31.64±17.67 μmol/L,t=5.372,P<0.001]. At 6 months after surgery, red blood cell count and platelet count had no significant changes,but,white blood cell count was reduced[(3.79±1.37)×109/L vs (4.57±2.24×109/L,t=2.835,P=0.006]. There was a 23% reduction in portal vein pressure after surgery (from 30.62±3.56 mmHg before surgery to 21.21±2.90 mmHg after surgery, t=23.318,P<0.001. All the patients had varying degrees of relief of gastrointestinal symptoms associated with portal vein hypertension, such as abdominal distension, poor appetite, and diarrhea. Of all patients, none experienced in-stent restenosis or occlusion and 13 experienced hepatic encephalopathy after surgery, which tended to occur at the time when postoperative portal vein pressure was reduced to 14.7-25.7 mmHg, i

  16. Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    In a previous study, vane-rotor shock interactions and heat transfer on the rotor blade of a highly loaded transonic turbine stage were simulated. The geometry consists of a high pressure turbine vane and downstream rotor blade. This study focuses on the physics of flow and heat transfer in the rotor tip, casing and hub regions. The simulation was performed using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) code MSU-TURBO. A low Reynolds number k-epsilon model was utilized to model turbulence. The rotor blade in question has a tip gap height of 2.1 percent of the blade height. The Reynolds number of the flow is approximately 3x10(exp 6) per meter. Unsteadiness was observed at the tip surface that results in intermittent "hot spots". It is demonstrated that unsteadiness in the tip gap is governed by inviscid effects due to high speed flow and is not strongly dependent on pressure ratio across the tip gap contrary to published observations that have primarily dealt with subsonic tip flows. The high relative Mach numbers in the tip gap lead to a choking of the leakage flow that translates to a relative attenuation of losses at higher loading. The efficacy of new tip geometry is discussed to minimize heat flux at the tip while maintaining choked conditions. In addition, an explanation is provided that shows the mechanism behind the rise in stagnation temperature on the casing to values above the absolute total temperature at the inlet. It is concluded that even in steady mode, work transfer to the near tip fluid occurs due to relative shearing by the casing. This is believed to be the first such explanation of the work transfer phenomenon in the open literature. The difference in pattern between steady and time-averaged heat flux at the hub is also explained.

  17. Suppressing unsteady flow in arterio-venous fistulae

    Science.gov (United States)

    Grechy, L.; Iori, F.; Corbett, R. W.; Shurey, S.; Gedroyc, W.; Duncan, N.; Caro, C. G.; Vincent, P. E.

    2017-10-01

    Arterio-Venous Fistulae (AVF) are regarded as the "gold standard" method of vascular access for patients with end-stage renal disease who require haemodialysis. However, a large proportion of AVF do not mature, and hence fail, as a result of various pathologies such as Intimal Hyperplasia (IH). Unphysiological flow patterns, including high-frequency flow unsteadiness, associated with the unnatural and often complex geometries of AVF are believed to be implicated in the development of IH. In the present study, we employ a Mesh Adaptive Direct Search optimisation framework, computational fluid dynamics simulations, and a new cost function to design a novel non-planar AVF configuration that can suppress high-frequency unsteady flow. A prototype device for holding an AVF in the optimal configuration is then fabricated, and proof-of-concept is demonstrated in a porcine model. Results constitute the first use of numerical optimisation to design a device for suppressing potentially pathological high-frequency flow unsteadiness in AVF.

  18. An Experimental Study of Pressure Gradients for Flow of Boiling Water in Vertical Round Ducts (Part 4)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred

    1962-07-01

    The present report contains the experimental results from the fourth and last phase of an investigation concerning frictional pressure gradients for flow of boiling water in vertical channels. The test section for this phase consisted of an electric heated stainless steel tube of 3120 mm length and 12.99 mm inner diameter. Data were obtained for pressures between 6 and 10 ata, steam qualities between 0 and 0.70, mass flow rates between 0.04 and 0.164 kg/sec. Only one value of 65 W/cm{sup 2} were used for the surface heat flux. The results are in excellent agreement with our earlier data for flow in 9. 93, 7. 76 and 3. 94 mm inner diameter ducts previously presented, and our conclusions given in those reports have been verified. On the basis of the measured pressure gradients, the following empirical equation has been established for engineering use. {chi}{sup 2} = 1 + 2600*(x/p){sup 0.96} This equation correlates our data within an accuracy of {+-} 15 per cent. Considering the data from all four ducts investigated, we have found that the following equation correlates the data with a discrepancy less than {+-} 20 per cent: {chi}{sup 2} = 1 + 2500*(x/p){sup 0.96} and we conclude that for engineering purposes, the effect of diameter is of no significance.

  19. Unsteady MHD stagnation flow over a moving wall

    International Nuclear Information System (INIS)

    Kumari, M.; Nath, G.

    2006-01-01

    The unsteady viscous stagnation flow of an electrically conducting fluid over a continuously moving wall with an applied magnetic field has been investigated when the free stream and wall velocities increase arbitrarily with time. The flow is initially (t = 0) steady and at time t > 0, it becomes unsteady. The semi-similar solution of the unsteady Navier-Stokes equations along with the energy equation governing the flow and heat transfer has been obtained numerically. Also the self-similar solution is obtained when the surface and free stream velocities vary inversely as a linear function of time. The shear stress and the heat transfer increase with time and magnetic field. The surface shear stress vanishes for certain value of the ratio of the wall velocity to the free stream velocity. (author)

  20. Influence of unsteady aerodynamics on driving dynamics of passenger cars

    Science.gov (United States)

    Huemer, Jakob; Stickel, Thomas; Sagan, Erich; Schwarz, Martin; Wall, Wolfgang A.

    2014-11-01

    Recent approaches towards numerical investigations with computational fluid dynamics methods on unsteady aerodynamic loads of passenger cars identified major differences compared with steady-state aerodynamic excitations. Furthermore, innovative vehicle concepts such as electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore, the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve handling and ride characteristics at high velocity of the actual range of vehicle layouts, the influence of unsteady excitations on the vehicle response was investigated. For this purpose, a simulation of the vehicle dynamics through multi-body simulation was used. The impact of certain unsteady aerodynamic load characteristics on the vehicle response was quantified and key factors were identified. Through a series of driving simulator tests, the identified differences in the vehicle response were evaluated regarding their significance on the subjective driver perception of cross-wind stability. Relevant criteria for the subjective driver assessment of the vehicle response were identified. As a consequence, a design method for the basic layout of passenger cars and chassis towards unsteady aerodynamic excitations was defined.

  1. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  2. Unsteady cavity flow around a rectangular cylinder; Kakuchu mawari no hiteijo cavitation nagare

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T.; Kaga, T.; Ota, T. [Tohoku University, Sendai (Japan). Faculty of Engineering; Mori, T. [Hachinohe Institute of Technology, Aomori (Japan)

    1995-08-25

    Unsteady cavity flow around a rectangular cylinder was observed using a high-speed camera. To clarify the correlation between the cavity behavior and fluid dynamic characteristics in the transitional region and supercavitation, fluctuating forces and surface pressures on the cylinder surface were recorded simultaneously. The tested cylinder has a critical width-to-height ration 2.8, in which the shear layer separated from the leading edge intermittently reattaches near the trailing edge. Bubbly cloud originating from the separated region near the leading edge causes fluctuation of cavity termination and induces large oscillations of fluid forces and pressures. As the cavitation number decreases, the low-frequency fluctuation of the cavity developing downstream of the rear surface increases in the fluid dynamic behavior. 24 refs., 12 figs.

  3. Unsteady Aerodynamic Force Sensing from Measured Strain

    Science.gov (United States)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  4. Unsteady Flame Embedding (UFE) Subgrid Model for Turbulent Premixed Combustion Simulations

    KAUST Repository

    El-Asrag, Hossam

    2010-01-04

    We present a formulation for an unsteady subgrid model for premixed combustion in the flamelet regime. Since chemistry occurs at the unresolvable scales, it is necessary to introduce a subgrid model that accounts for the multi-scale nature of the problem using the information available on the resolved scales. Most of the current models are based on the laminar flamelet concept, and often neglect the unsteady effects. The proposed model\\'s primary objective is to encompass many of the flame/turbulence interactions unsteady features and history effects. In addition it provides a dynamic and accurate approach for computing the subgrid flame propagation velocity. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames. A set of elemental one dimensional flames is used to describe the turbulent flame structure at the subgrid level. The stretched flame calculations are performed on the stagnation line of a strained flame using the unsteady filtered strain rate computed from the resolved- grid. The flame iso-surface is tracked using an accurate high-order level set formulation to propagate the flame interface at the coarse resolution with minimum numerical diffusion. In this paper the solver and the model components are introduced and used to investigate two unsteady flames with different Lewis numbers in the thin reaction zone regime. The results show that the UFE model captures the unsteady flame-turbulence interactions and the flame propagation speed reasonably well. Higher propagation speed is observed for the lower than unity Lewis number flame because of the impact of differential diffusion.

  5. Unsteady force estimation using a Lagrangian drift-volume approach

    Science.gov (United States)

    McPhaden, Cameron J.; Rival, David E.

    2018-04-01

    A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.

  6. Modeling of Unsteady Sheet Cavitation on Marine Propeller Blades

    Directory of Open Access Journals (Sweden)

    Spyros A. Kinnas

    2003-01-01

    Full Text Available Unsteady sheet cavitation is very common on marine propulsor blades. The authors summarize a lifting-surface and a surface-panel model to solve for the unsteady cavitating flow around a propeller that is subject to nonaxisymmetric inflow. The time-dependent extent and thickness of the cavity were determined by using an iterative method. The cavity detachment was determined by applying the smooth detachment criterion in an iterative manner. A nonzeroradius developed vortex cavity model was utilized at the tip of the blade, and the trailing wake geometry was determined using a fully unsteady wake-alignment process. Comparisons of predictions by the two models and measurements from several experiments are given.

  7. Prospective assessment of the frequency of low gradient severe aortic stenosis with preserved left ventricular ejection fraction: Critical impact of aortic flow misalignment and pressure recovery phenomenon.

    Science.gov (United States)

    Ringle, Anne; Castel, Anne-Laure; Le Goffic, Caroline; Delelis, François; Binda, Camille; Bohbot, Yohan; Ennezat, Pierre Vladimir; Guerbaai, Raphaëlle A; Levy, Franck; Vincentelli, André; Graux, Pierre; Tribouilloy, Christophe; Maréchaux, Sylvestre

    2018-02-10

    The frequency of paradoxical low-gradient severe aortic stenosis (AS) varies widely across studies. The impact of misalignment of aortic flow and pressure recovery phenomenon on the frequency of low-gradient severe AS with preserved left ventricular ejection fraction (LVEF) has not been evaluated in prospective studies. To investigate prospectively the impact of aortic flow misalignment by Doppler and lack of pressure recovery phenomenon correction on the frequency of low-gradient (LG) severe aortic stenosis (AS) with preserved LVEF. Aortic jet velocities and mean pressure gradient (MPG) were obtained by interrogating all windows in 68 consecutive patients with normal LVEF and severe AS (aortic valve area [AVA] ≤1cm 2 ) on the basis of the apical imaging window alone (two-dimensional [2D] apical approach). Patients were classified as having LG or high-gradient (HG) AS according to MPG 35mL/m 2 or ≤35mL/m 2 , on the basis of the 2D apical approach, the multiview approach (multiple windows evaluation) and AVA corrected for pressure recovery. The proportion of LG severe AS was 57% using the 2D apical approach alone. After the multiview approach and correction for pressure recovery, the proportion of LG severe AS decreased from 57% to 13% (LF-LG severe AS decreased from 23% to 3%; NF-LG severe AS decreased from 34% to 10%). As a result, 25% of patients were reclassified as having HG severe AS (AVA ≤1cm 2 and MPG ≥40mmHg) and 19% as having moderate AS. Hence, 77% of patients initially diagnosed with LG severe AS did not have "true" LG severe AS when the multiview approach and the pressure recovery phenomenon correction were used. Aortic flow misevaluation, resulting from lack of use of multiple windows evaluation and pressure recovery phenomenon correction, accounts for a large proportion of incorrectly graded AS and considerable overestimation of the frequency of LG severe AS with preserved LVEF. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Quantifying predation pressure along an urbanisation gradient in Denmark using artificial caterpillars

    DEFF Research Database (Denmark)

    Ferrante, Marco; Lo Cacciato, Alessandro; Lövei, Gabor L

    2014-01-01

    Urbanisation results in a marked modification of habitats and influences several ecological processes, some of which give rise to beneficial ecological services. Natural pest control, the effect of predators on prey is one of such services. We quantified changes in the incidence of predation...... an urbanisation gradient (rural-suburban-urban). Artificial caterpillars were placed on the ground in order to obtain an estimate of the incidence of predation at ground level. Half (50%) of the 1398 caterpillars were "attacked" and 28.8% of the bites were those of chewing insects. We attributed the majority.......3% in suburban and 16.4% in urban forest fragments. Mammals exerted the highest predation pressure in suburban habitats (22.2% vs. 4.9% in forest, and 8.1% in urban forest fragments)....

  9. Computational aeroelasticity using a pressure-based solver

    Science.gov (United States)

    Kamakoti, Ramji

    A computational methodology for performing fluid-structure interaction computations for three-dimensional elastic wing geometries is presented. The flow solver used is based on an unsteady Reynolds-Averaged Navier-Stokes (RANS) model. A well validated k-ε turbulence model with wall function treatment for near wall region was used to perform turbulent flow calculations. Relative merits of alternative flow solvers were investigated. The predictor-corrector-based Pressure Implicit Splitting of Operators (PISO) algorithm was found to be computationally economic for unsteady flow computations. Wing structure was modeled using Bernoulli-Euler beam theory. A fully implicit time-marching scheme (using the Newmark integration method) was used to integrate the equations of motion for structure. Bilinear interpolation and linear extrapolation techniques were used to transfer necessary information between fluid and structure solvers. Geometry deformation was accounted for by using a moving boundary module. The moving grid capability was based on a master/slave concept and transfinite interpolation techniques. Since computations were performed on a moving mesh system, the geometric conservation law must be preserved. This is achieved by appropriately evaluating the Jacobian values associated with each cell. Accurate computation of contravariant velocities for unsteady flows using the momentum interpolation method on collocated, curvilinear grids was also addressed. Flutter computations were performed for the AGARD 445.6 wing at subsonic, transonic and supersonic Mach numbers. Unsteady computations were performed at various dynamic pressures to predict the flutter boundary. Results showed favorable agreement of experiment and previous numerical results. The computational methodology exhibited capabilities to predict both qualitative and quantitative features of aeroelasticity.

  10. Unsteady characteristics of the static stall of an airfoil subjected to freestream turbulence level up to 16%

    Energy Technology Data Exchange (ETDEWEB)

    Sicot, Christophe; Aubrun, Sandrine; Loyer, Stephane; Devinant, Philippe [Laboratoire de Mecanique et d' Energetique, Orleans (France)

    2006-10-15

    Fluctuation of the separation point on an airfoil under high turbulence level is investigated using pressure measurements and flow visualisations. The characteristics of the unsteady loads induced by Karman vortex shedding are studied. This is related with a local approach based on the study of the oscillation zone. A method based on the pressure standard deviation is proposed to obtain the length of this zone, which is found to be independent of the turbulence level. This result is in agreement with that obtained by spectral analysis which shows no effect of the turbulence level on the Karman vortex shedding frequency. (orig.)

  11. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel,n-Heptane, andiso-Octane Fuels under Low Temperature Conditions

    KAUST Repository

    Yang, Seung Yeon

    2015-11-02

    Effects of temperature, pressure and global equivalence ratio on total ignition delay time in a constant volume spray combustion chamber were investigated for diesel fuel along with the primary reference fuels (PRFs) of n-heptane and iso-octane in relatively low temperature conditions to simulate unsteady spray ignition behavior. A KAUST Research ignition quality tester (KR-IQT) was utilized, which has a feature of varying temperature, pressure and equivalence ratio using a variable displacement fuel pump. A gradient method was adopted in determining the start of ignition in order to compensate pressure increase induced by low temperature heat release. Comparison of this method with other existing methods was discussed. Ignition delay times were measured at various equivalence ratios (0.5-1.7) with the temperatures of initial charge air in the range from 698 to 860 K and the pressures in the range of 1.5 to 2.1 MPa, pertinent to low temperature combustion (LTC) conditions. An attempt to scale the effect of pressure on total ignition delay was undertaken and the equivalence ratio exponent and activation energy in the Arrhenius expression of total ignition delay were determined. Ignition delay results indicated that there were strong correlations of pressure, temperature, and equivalence ratio under most conditions studied except at relatively low pressures. Diesel (DCN 52.5) and n-heptane (DCN 54) fuels exhibited reasonably similar ignition delay characteristics, while iso-octane showed a distinct behavior under low temperature regime having a two-stage ignition, which substantiate the adoption of the gradient method in determining ignition delay.

  12. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.

    Science.gov (United States)

    Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W

    2002-10-01

    Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of

  13. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2010-01-01

    This introduction to the principles of unsteady aerodynamics covers all the core concepts, provides readers with a review of the fundamental physics, terminology and basic equations, and covers hot new topics such as the use of flapping wings for propulsion.

  14. Direct numerical simulation of thermally-stratified turbulent boundary layer subjected to adverse pressure gradient

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Kono, Amane; Houra, Tomoya

    2016-01-01

    Highlights: • We study various thermally-stratified turbulent boundary layers having adverse pressure gradient (APG) by means of DNS. • The detailed turbulent statistics and structures in various thermally-stratified turbulent boundary layers having APG are discussed. • It is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification. • In the case of strong stable stratification with or without APG, the flow separation is observed in the downstream region. - Abstract: The objective of this study is to investigate and observe turbulent heat transfer structures and statistics in thermally-stratified turbulent boundary layers subjected to a non-equilibrium adverse pressure gradient (APG) by means of direct numerical simulation (DNS). DNSs are carried out under conditions of neutral, stable and unstable thermal stratifications with a non-equilibrium APG, in which DNS results reveal heat transfer characteristics of thermally-stratified non-equilibrium APG turbulent boundary layers. In cases of thermally-stratified turbulent boundary layers affected by APG, heat transfer performances increase in comparison with a turbulent boundary layer with neutral thermal stratification and zero pressure gradient (ZPG). Especially, it is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification (WSBL). Thus, the analysis for both the friction coefficient and Stanton number in the case of WSBL with/without APG is conducted using the FIK identity in order to investigate contributions from the transport equations, in which it is found that both Reynolds-shear-stress and the mean convection terms

  15. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.

    Science.gov (United States)

    Righter, K; Ghiorso, M S

    2012-07-24

    Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO(2)), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO(2) that is based on the ratio of Fe and FeO [called "ΔIW (ratio)" hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO(2) + O(2) = Fe(2)SiO(4) to calculate absolute fO(2) and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO(2) in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO(2) may evolve from high to low fO(2) during Earth (and other differentiated bodies) accretion. Any

  16. Implicit Large-Eddy Simulations of Zero-Pressure Gradient, Turbulent Boundary Layer

    Science.gov (United States)

    Sekhar, Susheel; Mansour, Nagi N.

    2015-01-01

    A set of direct simulations of zero-pressure gradient, turbulent boundary layer flows are conducted using various span widths (62-630 wall units), to document their influence on the generated turbulence. The FDL3DI code that solves compressible Navier-Stokes equations using high-order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Results are analyzed at two different Re values (500 and 1,400), and compared with spectral DNS data. They show that a minimum span width is required for the mere initiation of numerical turbulence. Narrower domains ((is) less than 100 w.u.) result in relaminarization. Wider spans ((is) greater than 600 w.u.) are required for the turbulent statistics to match reference DNS. The upper-wall boundary condition for this setup spawns marginal deviations in the mean velocity and Reynolds stress profiles, particularly in the buffer region.

  17. Transition of unsteady velocity profiles with reverse flow

    OpenAIRE

    Das, Debopam; Arakeri, Jaywant H

    1998-01-01

    This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channe...

  18. Unsteady force characteristics on foils undergoing pitching motion

    International Nuclear Information System (INIS)

    Yang, Chang Jo

    2006-01-01

    In the present study the unsteady forces acting on the pitching foils such as a flat plate, NACA0010, NACA0020, NACA65-0910 and BTE have been measured by using a six-axis sensor in a circulating water tunnel at a low Reynolds number region. The unsteady characteristics of the dynamic drag and lift have been compared to the quasi-steady ones which are measured under the stationary condition. The pitching motion is available for keeping the lift higher after the separation occurs. Especially, the characteristics of the dynamic lift are quite different from the quasi-steady one at high pitching frequency regions. As the pitching frequency deceases, the amplitude of the dynamic lift becomes closer to the quasi-steady one. However, the phase remains different between the steady and unsteady conditions even at low pitching frequencies. On the other hand, the dynamic drag is governed strongly by the angle of attack

  19. Pressure drops in low pressure local boiling

    International Nuclear Information System (INIS)

    Courtaud, Michel; Schleisiek, Karl

    1969-01-01

    For prediction of flow reduction in nuclear research reactors, it was necessary to establish a correlation giving the pressure drop in subcooled boiling for rectangular channels. Measurements of pressure drop on rectangular channel 60 and 90 cm long and with a coolant gap of 1,8 and 3,6 mm were performed in the following range of parameters. -) 3 < pressure at the outlet < 11 bars abs; -) 25 < inlet temperature < 70 deg. C; -) 200 < heat flux < 700 W/cm 2 . It appeared that the usual parameter, relative length in subcooled boiling, was not sufficient to correlate experimental pressure losses on the subcooled boiling length and that there was a supplementary influence of pressure, heat flux and subcooling. With an a dimensional parameter including these terms a correlation was established with an error band of ±10%. With a computer code it was possible to derive the relation giving the overall pressure drop along the channel and to determine the local gradients of pressure drop. These local gradients were then correlated with the above parameter calculated in local conditions. 95 % of the experimental points were computed with an accuracy of ±10% with this correlation of gradients which can be used for non-uniform heated channels. (authors) [fr

  20. Unsteady natural convection flow past an accelerated vertical plate in a thermally stratified fluid

    Directory of Open Access Journals (Sweden)

    Deka Rudra Kt.

    2009-01-01

    Full Text Available An exact solution to one-dimensional unsteady natural convection flow past an infinite vertical accelerated plate, immersed in a viscous thermally stratified fluid is investigated. Pressure work term and the vertical temperature advection are considered in the thermodynamic energy equation. The dimensionless governing equations are solved by Laplace Transform techniques for the Prandtl number unity. The velocity and temperature profiles as well as the skin-friction and the rate of heat transfer are presented graphically and discussed the effects of the Grashof number Gr, stratification parameter S at various times t.

  1. Wind Turbines: Unsteady Aerodynamics and Inflow Noise

    DEFF Research Database (Denmark)

    Broe, Brian Riget

    in order to estimate the lift fluctuations due to unsteady aerodynamics (Sears, W. R.: 1941, Some aspects of non-stationary airfoil theory and its practical application; Goldstein, M. E. and Atassi, H. M.: 1976, A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust...... (Sears, W. R.: 1941; and Graham, J. M. R.: 1970). An acoustic model is investigated using a model for the lift distribution as input (Amiet, R. K.: 1975, Acoustic radiation from an airfoil in a turbulent stream). The two models for lift distribution are used in the acoustic model. One of the models...

  2. Unsteady flow challenges tracking performance at vortex shedding frequencies without disrupting lift mechanisms

    Science.gov (United States)

    Matthews, Megan; Sponberg, Simon

    2017-11-01

    Birds, insects, and many animals use unsteady aerodynamic mechanisms to achieve stable hovering flight. Natural environments are often characterized by unsteady flows causing animals to dynamically respond to perturbations while performing complex tasks, such as foraging. Little is known about how unsteady flow around an animal interacts with already unsteady flow in the environment or how this impacts performance. We study how the environment impacts maneuverability to reveal any coupling between body dynamics and aerodynamics for hawkmoths, Manduca sexta,tracking a 3D-printed robotic flower in a wind tunnel. We also observe the leading-edge vortex (LEV), a known lift-generating mechanism for insect flight with smoke visualization. Moths in still and unsteady air exhibit near perfect tracking at low frequencies, but tracking in the flower wake results in larger overshoot at mid-range. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite the large effect on flight dynamics, the LEV remains bound to the wing and thorax throughout the wingstroke. In general, unsteady wind seems to decrease maneuverability, but LEV stability seems decoupled from changes in flight dynamics.

  3. Numerical Investigations of Unsteady Flow in a Centrifugal Pump with a Vaned Diffuser

    Directory of Open Access Journals (Sweden)

    Olivier Petit

    2013-01-01

    Full Text Available Computational fluid dynamics (CFD analyses were made to study the unsteady three-dimensional turbulence in the ERCOFTAC centrifugal pump test case. The simulations were carried out using the OpenFOAM Open Source CFD software. The test case consists of an unshrouded centrifugal impeller with seven blades and a radial vaned diffuser with 12 vanes. A large number of measurements are available in the radial gap between the impeller and the diffuse, making this case ideal for validating numerical methods. Results of steady and unsteady calculations of the flow in the pump are compared with the experimental ones, and four different turbulent models are analyzed. The steady simulation uses the frozen rotor concept, while the unsteady simulation uses a fully resolved sliding grid approach. The comparisons show that the unsteady numerical results accurately predict the unsteadiness of the flow, demonstrating the validity and applicability of that methodology for unsteady incompressible turbomachinery flow computations. The steady approach is less accurate, with an unphysical advection of the impeller wakes, but accurate enough for a crude approximation. The different turbulence models predict the flow at the same level of accuracy, with slightly different results.

  4. Viscous-inviscid method for the simulation of turbulent unsteady wind turbine airfoil flow

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, L.; Velazquez, A.; Matesanz, A. [Thermal Engineering Area, Carlos III University of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain)

    2002-06-01

    A Viscous-inviscid interaction method is presented that allows for the simulation of unsteady airfoil flow in the context of wind turbine applications. The method couples a 2-D external unsteady potential flow to a 2-D unsteady turbulent boundary layer. The separation point on the airfoil leeward side is determined in a self-consistent way from the boundary-layer equations, and the separated flow region is modelled independently. Wake shape and motion are also determined in a self-consistent way, while an unsteady Kutta condition is implemented. The method is able to deal with attached flow and light stall situations characterised by unsteady turbulent boundary-layer separation size up to 50% of the airfoil chord length. The results of the validation campaign show that the method could be used for industrial design purposes because of its numerical robustness, reasonable accuracy, and limited computational time demands.

  5. Transition from resistive ballooning to neoclassical magnetohydrodynamic pressure-gradient-driven instability

    International Nuclear Information System (INIS)

    Spong, D.A.; Shaing, K.C.; Carreras, B.A.; Charlton, L.A.; Callen, J.D.; Garcia, L.

    1988-10-01

    The linearized neoclassical magnetohydrodynamic equations, including perturbed neoclassical flows and currents, have been solved for parameter regimes where the neoclassical pressure-gradient-driven instability becomes important. This instability is driven by the fluctuating bootstrap current term in Ohm's law. It begins to dominate the conventional resistive ballooning mode in the banana-plateau collisionality regime [μ/sub e//ν/sub e/ /approximately/ √ε/(1 + ν/sub *e/) > ε 2 ] and is characterized by a larger radial mode width and higher growth rate. The neoclassical instability persists in the absence of the usual magnetic field curvature drive and is not significantly affected by compressibility. Scalings with respect to β, n (toroidal mode number), and μ (neoclassical viscosity) are examined using a large-aspect-ratio, three-dimensional initial-value code that solves linearized equations for the magnetic flux, fluid vorticity, density, and parallel ion flow velocity in axisymmetric toroidal geometry. 13 refs., 10 figs

  6. Social class-related gradient in the association of skeletal growth with blood pressure among adolescent boys in India.

    Science.gov (United States)

    Rao, Shobha; Apte, Priti

    2009-12-01

    In view of the fact that height differences between socio-economic groups are apparent early in childhood, it is of interest to examine whether skeletal growth is reflective of the social class gradient in CVD risk. The present study examined blood pressure levels, adiposity and growth of adolescent boys from high and low social classes. In a cross-sectional study, skeletal growth (height and sitting height), adiposity (weight, BMI and body fat) and blood pressure levels of the adolescents were measured. Pune, India. Adolescent schoolboys (9-16 years) from high socio-economic (HSE; n 1146) and low socio-economic (LSE; n 932) class. LSE boys were thin, short and undernourished (mean BMI: 15.5 kg/m2 v. 19.3 kg/m2 in HSE boys, P = 0.00). Social gradient was revealed in differing health risks. The prevalence of high systolic blood pressure (HSBP) was high in HSE class (10.5 % v. 2.7 % in LSE class, P = 0.00) and was associated with adiposity, while the prevalence of high diastolic blood pressure (HDBP) was high in LSE class (9.8 % v. 7.0 % in HSE class, P = 0.00) and had only a weak association with adiposity. Despite this, lower ratio of leg length to height was associated with significantly higher respective health risks, i.e. for HDBP in LSE class (OR = 1.99, 95 % CI 1.14, 3.47) and for HSBP in HSE class (OR = 1.69, 95 % CI 1.02, 2.77). As stunting in childhood is a major problem in India and Asia, the leg length to height indicator needs to be validated in different populations to understand CVD risks.

  7. Experimental investigation of a reacting transverse jet in a high pressure oscillating vitiated crossflow

    Science.gov (United States)

    Fugger, Christopher A.

    Staged combustion is one design approach in a gas turbine engine to reduce pollutant emission levels. In axially staged combustion, portions of the air and fuel are injected downstream of a lean premixed low NOx primary combustion zone. The gas residence time at elevated temperatures is decreased resulting in lower thermal NOx, and the reduced oxygen and high temperature vitiated primary zone flow further help to reduce pollutant emissions and quickly complete combustion. One implementation of axially staged combustion is transverse fuel jet injection. An important consideration for staged combustion systems, though, is how the primary and secondary combustion zones can couple through the acoustic resonances of the chamber. These couplings can lead to additional source terms that pump energy into the resonant acoustic field and help sustain the high-amplitude combustor pressure oscillations. An understanding of these couplings is important so that it may be possible to design a secondary combustion system that provides inherent damping to the combustor system. To systematically characterize the coupling of a reacting jet in unsteady crossflow in detail, the effects of an an unsteady pressure flowfield and an unsteady velocity flowfield are separately investigated. An optically accessible resonant combustion chamber was designed and built as part of this work to generate a standing wave unsteady vitiated crossflow at a chamber pressure of 0.9 MPa. The location of transverse jet injection corresponds to one of two locations, where one location is the pressure node and the other location the pressure anti-node of the resonant chamber acoustic mode. The injection location is optically accessible, and the dynamic interactions between the transverse jet flow and the 1st and 2nd axial combustor modes are measured using 10 kHz OH-PLIF and 2D PIV. This document analyzes five test cases: two non-reacting jets and three reacting jets. All cases correspond to jet injection

  8. Validation of a CFD code for Unsteady Flows with cyclic boundary Conditions

    International Nuclear Information System (INIS)

    Kim, Jong-Tae; Kim, Sang-Baik; Lee, Won-Jae

    2006-01-01

    Currently Lilac code is under development to analyze thermo-hydraulics of a high-temperature gas-cooled reactor (GCR). Interesting thermo-hydraulic phenomena in a nuclear reactor are usually unsteady and turbulent. The analysis of the unsteady flows by using a three dimension CFD code is time-consuming if the flow domain is very large. Hopefully, flow domains commonly encountered in the nuclear thermo-hydraulics is periodic. So it is better to use the geometrical characteristics in order to reduce the computational resources. To get the benefits from reducing the computation domains especially for the calculations of unsteady flows, the cyclic boundary conditions are implemented in the parallelized CFD code LILAC. In this study, the parallelized cyclic boundary conditions are validated by solving unsteady laminar and turbulent flows past a circular cylinder

  9. Influence of a pressure gradient distal to implanted bare-metal stent on in-stent restenosis after percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Jensen, Lisette Okkels; Thayssen, Per; Thuesen, Leif

    2007-01-01

    pullback recording in the entire length of the artery. METHODS AND RESULTS: In 98 patients with angina pectoris, 1 de novo coronary lesion was treated with a bare-metal stent. After stent implantation, pressure wire measurements (P(d)=mean hyperemic coronary pressure and P(a)=mean aortic pressure) were......-stent restenosis after 9 months. CONCLUSIONS: A residual abnormal P(d)/P(a) distal to a bare-metal stent was an independent predictor of in-stent restenosis after implantation of a coronary bare-metal stent. Udgivelsesdato: 2007-Dec-11......BACKGROUND: Fractional flow reserve predicts cardiac events after coronary stent implantation. The aim of the present study was to assess the 9-month angiographic in-stent restenosis rate in the setting of optimal stenting and a persisting gradient distal to the stent as assessed by a pressure wire...

  10. Overdrainage after ventriculoperitoneal shunting in a patient with a wide depressed skull bone defect: The effect of atmospheric pressure gradient.

    Science.gov (United States)

    Zhou, Lixiang; Yu, Jinlu; Sun, Lichao; Han, Yanwu; Wang, Guangming

    2016-01-01

    In patients with traumatic brain injury, an effective approach for managing refractory intracranial hypertension is wide decompressive craniectomy. Postoperative hydrocephalus is a frequent complication requiring cerebrospinal fluid (CSF) diversion. A 50-year-old male who underwent decompressive craniectomy after traumatic brain injury. He developed hydrocephalus postoperatively, and accordingly we placed a ventriculoperitoneal shunt. However, an imbalance between the intra- and extra-cranial atmospheric pressures led to overdrainage, and he suffered cognitive disorders and extremity weakness. He remained supine for 5days to avoid the effect of gravity on CSF diversion. After 20days, we performed a cranioplasty using a titanium plate. The postoperative course was uneventful, and the patient achieved satisfactory recovery. The gravitational effect and the atmospheric pressure gradient effect are two factors associated in the ventriculoperitoneal (VP) shunt treatment of hydrocephalus for the patient who had decompressive craniectomy. These effects can be eliminated by supine bed rest and cranioplasty. We herein emphasize the efficacy of VP shunt, supine bed rest and cranioplasty in treating hydrocephalus patients who have undergone craniectomy. A flexible application of these procedures to change the gravitational effect and the atmospheric pressure gradient effect should promote a favorable outcome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Flow Measurements of a Plunging Wing in Unsteady Environment

    Science.gov (United States)

    Wengel, Jesse; Nathan, Rungun; Cheng, Bo; Eslam-Panah, Azar

    2017-11-01

    Despite the great progress in their design and control, Unmanned Aerial Vehicles (UAVs) are tremendously troubled while flying in turbulent environments, which are common in the lower atmospheric boundary layer (ABL). A nominally 2D plunging wing was developed and tested in the presence of unsteady wake to investigate the effect of the flow disturbances on vorticity fields. The experiments were conducted in a water channel facility with test section width of 0.76 m, and a water depth of 0.6 m. The unsteady wake in the form of von Kármán Vortex Street was generated by a cylinder located upstream of the plunging wing. The plunge amplitude and frequency of the oscillation were adjusted to bracket the range of Strouhal numbers relevant to the biological locomotion (0.25PIV) was employed to quantitatively study the effect of unsteady wake on the flow measurements of the plunging wing.

  12. MATHEMATICAL MODEL OF UNSTEADY HEAT TRANSFER OF PASSENGER CAR WITH HEATING SYSTEM

    Directory of Open Access Journals (Sweden)

    E. V. Biloshytskyi

    2018-02-01

    Full Text Available Purpose. The existing mathematical models of unsteady heat processes in a passenger car do not fully reflect the thermal processes, occurring in the car wits a heating system. In addition, unsteady heat processes are often studied in steady regime, when the heat fluxes and the parameters of the thermal circuit are constant and do not depend on time. In connection with the emergence of more effective technical solutions to the life support system there is a need for creating a new mathematical apparatus, which would allow taking into account these features and their influence on the course of unsteady heat processes throughout the travel time. The purpose of this work is to create a mathematical model of the heat regime of a passenger car with a heating system that takes into account the unsteady heat processes. Methodology. To achieve this task the author composed a system of differential equations, describing unsteady heat processes during the heating of a passenger car. For the solution of the composed system of equations, the author used the method of elementary balances. Findings. The paper presents the developed numerical algorithm and computer program for simulation of transitional heat processes in a locomotive traction passenger car, which allows taking into account the various constructive solutions of the life support system of passenger cars and to simulate unsteady heat processes at any stage of the trip. Originality. For the first time the author developed a mathematical model of heat processes in a car with a heating system, that unlike existing models, allows to investigate the unsteady heat engineering performance in the cabin of the car under different operating conditions and compare the work of various life support systems from the point of view their constructive solutions. Practical value. The work presented the developed mathematical model of the unsteady heat regime of the passenger car with a heating system to estimate

  13. METHOD FOR NUMERICAL MODELING OF UNSTEADY SEPARATED FLOW AROUND AIRFOILS MOVING CLOSE TO FLAT SCREEN

    Directory of Open Access Journals (Sweden)

    V. Pogrebnaya Tamara

    2017-01-01

    Full Text Available In this article an attempt is made to explain the nature of differences in measurements of forces and moments, which influence an aircraft at take-off and landing when testing on different types of stands. An algorithm for numerical simulation of unsteady separated flow around airfoil is given. The algorithm is based on the combination of discrete vortex method and turbulent boundary layer equations. An unsteady flow separation modeling has been used. At each interval vortex method was used to calculate the potential flow around airfoils located near a screen. Calculated pressures and velocities were then used in boundary layer calculations to determine flow separation points and separated vortex in- tensities. After that calculation were made to determine free vortex positions to next time step and the process was fulfilled for next time step. The proposed algorithm allows using numeric visualization to understand physical picture of flow around airfoil moving close to screen. Three different ways of flow modeling (mirror method, fixed or movable screens were tested. In each case the flow separation process, which determines pressure distribution over airfoil surface and influ- ences aerodynamic performance, was viewed. The results of the calculations showed that at low atitudes of airfoil over screen mirror method over predicts lift force compared with movable screen, while fixed screen under predicts it. The data obtained can be used when designing equipment for testing in wind tunnels.

  14. On the Unsteady-Motion Theory of Magnetic Forces for Maglev

    Science.gov (United States)

    1993-11-01

    DivisionEnergy Technology Division Forces for Maglev Energy Technology DivisionEnergy Technology Division by S. S. Chen, S. Zhu, and Y. Cai APQ 4 袲...On the Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S. Chen, S. Zhu, and Y. Cai Energy Technology Division November 1993 Work supported...vi On The Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S

  15. Influence of Unsteady Aerodynamics on Driving Dynamics of Passenger Cars

    OpenAIRE

    Huemer, J.; Stickel, T.; Sagan, E.; Schwarz, M.; Wall, W.A.

    2015-01-01

    Recent approaches towards numerical investigations with CFD-Methods on unsteady aerodynamic loads of passenger cars identified major differences compared to steady state aerodynamic excitations. Furthermore innovative vehicle concepts like electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve...

  16. Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor

    Science.gov (United States)

    Papalia, John J.

    Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA

  17. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient

    International Nuclear Information System (INIS)

    Dubois, F.

    1965-01-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm 2 ; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  18. Analytical prediction of the unsteady lift on a rotor caused by downstream struts

    Science.gov (United States)

    Taylor, A. C., III; Ng, W. F.

    1987-01-01

    A two-dimensional, inviscid, incompressible procedure is presented for predicting the unsteady lift on turbomachinery blades caused by the upstream potential disturbance of downstream flow obstructions. Using the Douglas-Neumann singularity superposition potential flow computer program to model the downstream flow obstructions, classical equations of thin airfoil theory are then employed, to compute the unsteady lift on the upstream rotor blades. The method is applied to a particular geometry which consists of a rotor, a downstream stator, and downstream struts which support the engine casing. Very good agreement between the Douglas-Neumann program and experimental measurements was obtained for the downstream stator-strut flow field. The calculations for the unsteady lift due to the struts were in good agreement with the experiments in showing that the unsteady lift due to the struts decays exponentially with increased axial separation of the rotor and the struts. An application of the method showed that for a given axial spacing between the rotor and the strut, strut-induced unsteady lift is a very weak function of the axial or circumferential position of the stator.

  19. Numerical investigation of unsteady detonation waves in combustion chamber using Shchelkin spirals

    Directory of Open Access Journals (Sweden)

    Repaka Ramesh

    2016-09-01

    Full Text Available : Pulse Detonation Engine (PDE is considered to be a propulsive system of future air vehicles. The main objective is to minimizing the Deflagration to Detonation transition run-up distance and time by placing Shchelkin spiral with varying pitch length. Here we have considered blockage-area ratio is 0.5 as optimal value from review of previous studies. In the present study the detonation initiation and propagation is modeled numerically using commercial CFD codes GAMBIT and FLUENT. The unsteady and two-dimensional compressible Reynolds Averaged Navier-Stokes equation is used to simulate the model. Fuel-air mixture of Hydrogen-air is used for better efficiency of PDE. It is very simple straight tube with Shchelkin spirals, one of the methods which is used to initiate detonation is creation of high pressure and temperature chamber region with 0.5cm from closed end of tube where shock will generate and transition into low pressure and temperature region propagates towards end of the tube. Two different zones namely high and low pressure zones are used as interface in modeling and patching has been used to fill the zones with hydrogen and oxygen with different pressure and temperatures hence shock leads to propagate inside the combustion chamber.

  20. Condensation of refrigerant CFC 11 in horizontal microfin tubes. Proposal of a correlation equation for frictional pressure gradient; Reibai CFC11 no microfin tsuki suihei kannai gyoshuku. Atsuryoku koka no jikkenshiki no teian

    Energy Technology Data Exchange (ETDEWEB)

    Nozu, S [Univ. of Okayama Prefecture, Okayama (Japan); Katayama, H [Mitsubishi Chemical Co., Inc., Tokyo (Japan); Nakata, H [Daikin Industries, Ltd., Osaka (Japan); Honda, H [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-09-25

    Local heat transfer and pressure drop measurements were made during condensation of CFC 11 in microfin tubes. A smooth tube and two microfin tubes with different fin dimensions were used. Flow observation study with use of an industrial bore-scope revealed that the condensate swirled along the grooves, and a thick condensate film covered fins in the lower part of the tube in the low quality region. Static pressure gradients in the microfin tubes were up to 70 percent larger than that in a smooth tube. A correlation equation for the local frictional pressure gradient was derived, in which the effect of refrigerant mass velocity was introduced on the basis of the flow regime consideration. The measured frictional pressure gradient data were found by the present method to have a mean absolute deviation of 8.3 percent. 24 refs., 11 figs., 3 tabs.

  1. Investigation of the effects of time periodic pressure and engpotential gradients on viscoelastic fluid flow in circular narrow confinements

    DEFF Research Database (Denmark)

    Nguyen, Trieu; van der Meer, Devaraj; van den Berg, Albert

    2017-01-01

    -Boltzmann equation, together with the incompressible Cauchy momentum equation under no-slip boundary conditions for viscoelastic fluid in the case of a combination of time periodic pressure-driven and electro-osmotic flow. The resulting solutions allow us to predict the electrical current and solution flow rate...... conversion applications. We also found that time periodic electro-osmotic flow in many cases is much stronger enhanced than time periodic pressure-driven flow when comparing the flow profiles of oscillating PDF and EOF in micro-and nanochannels. The findings advance our understanding of time periodic......In this paper we present an in-depth analysis and analytical solution for time periodic hydrodynamic flow (driven by a time-dependent pressure gradient and electric field) of viscoelastic fluid through cylindrical micro-and nanochannels. Particularly, we solve the linearized Poisson...

  2. NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM

    Directory of Open Access Journals (Sweden)

    M. Y. Habib

    2015-07-01

    Full Text Available During this work, we simulated an unsteady flow around an airfoil type NACA0012 using the Fluent software. The objective is to control the code on the one hand and on the other hand the simulation of unsteady flows. By simulating an unsteady flow Reynolds number (Re = 6.85 * 106 and Mach number (M = 0.3, we have the flowing with a grid (mesh adequate numerical results and experimental data are in good agreement. To represent the results of the simulation we have validated by comparing the values of aerodynamic coefficients with those of experimental data.

  3. Visualization of unsteady computational fluid dynamics

    Science.gov (United States)

    Haimes, Robert

    1994-11-01

    A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.

  4. Application of LES for Analysis of Unsteady Effects on Combustion Processes and Misfires in DISI Engine

    Directory of Open Access Journals (Sweden)

    Goryntsev D.

    2013-10-01

    Full Text Available Cycle-to-cycle variations of combustion processes strongly affect the emissions, specific fuel consumption and work output. Internal combustion engines such as Direct Injection Spark-Ignition (DISI are very sensitive to the cyclic fluctuations of the flow, mixing and combustion processes. Multi-cycle Large Eddy Simulation (LES analysis has been used in order to characterize unsteady effects of combustion processes and misfires in realistic DISI engine. A qualitative analysis of the intensity of cyclic variations of in-cylinder pressure, temperature and fuel mass fraction is presented. The effect of ignition probability and analysis of misfires are pointed out. Finally, the fuel history effects along with the effect of residual gas on in-cylinder pressure and temperature as well as misfires are discussed.

  5. A novel method for unsteady flow field segmentation based on stochastic similarity of direction

    Science.gov (United States)

    Omata, Noriyasu; Shirayama, Susumu

    2018-04-01

    Recent developments in fluid dynamics research have opened up the possibility for the detailed quantitative understanding of unsteady flow fields. However, the visualization techniques currently in use generally provide only qualitative insights. A method for dividing the flow field into physically relevant regions of interest can help researchers quantify unsteady fluid behaviors. Most methods at present compare the trajectories of virtual Lagrangian particles. The time-invariant features of an unsteady flow are also frequently of interest, but the Lagrangian specification only reveals time-variant features. To address these challenges, we propose a novel method for the time-invariant spatial segmentation of an unsteady flow field. This segmentation method does not require Lagrangian particle tracking but instead quantitatively compares the stochastic models of the direction of the flow at each observed point. The proposed method is validated with several clustering tests for 3D flows past a sphere. Results show that the proposed method reveals the time-invariant, physically relevant structures of an unsteady flow.

  6. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    Science.gov (United States)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  7. Analytical and experimental investigation of chlorine decay in water supply systems under unsteady hydraulic conditions

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel

    2013-01-01

    This paper investigates the impact of the dynamic hydraulic conditions on the kinetics of chlorine decay in water supply systems. A simulation framework has been developed for the scale-adaptive hydraulic and chlorine decay modelling under steady- and unsteady-state flows. An unsteady decay coeff...... of experimental data provides new insights for the near real-time modelling and management of water quality as well as highlighting the uncertainty and challenges of accurately modelling the loss of disinfectant in water supply networks.......This paper investigates the impact of the dynamic hydraulic conditions on the kinetics of chlorine decay in water supply systems. A simulation framework has been developed for the scale-adaptive hydraulic and chlorine decay modelling under steady- and unsteady-state flows. An unsteady decay...... coefficient is defined which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. By coupling novel instrumentation technologies for continuous hydraulic monitoring and water quality sensors for in-pipe water quality sensing...

  8. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    Science.gov (United States)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  9. Numerical solutions of the linearized Euler equations for unsteady vortical flows around lifting airfoils

    Science.gov (United States)

    Scott, James R.; Atassi, Hafiz M.

    1990-01-01

    A linearized unsteady aerodynamic analysis is presented for unsteady, subsonic vortical flows around lifting airfoils. The analysis fully accounts for the distortion effects of the nonuniform mean flow on the imposed vortical disturbances. A frequency domain numerical scheme which implements this linearized approach is described, and numerical results are presented for a large variety of flow configurations. The results demonstrate the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. The results show that mean flow distortion can have a very strong effect on the airfoil unsteady response, and that the effect depends strongly upon the reduced frequency, Mach number, and gust wave numbers.

  10. Unsteady analytical solutions to the Poisson–Nernst–Planck equations

    International Nuclear Information System (INIS)

    Schönke, Johannes

    2012-01-01

    It is shown that the Poisson–Nernst–Planck equations for a single ion species can be formulated as one equation in terms of the electric field. This previously not analyzed equation shows similarities to the vector Burgers equation and is identical with it in the one dimensional case. Several unsteady exact solutions for one and multidimensional cases are presented. Besides new mathematical insights which these first known unsteady solutions give, they can serve as test cases in computer simulations to analyze numerical algorithms and to verify code. (paper)

  11. Analysis of unswept and swept wing chordwise pressure data from an oscillating NACA 0012 airfoil experiment. Volume 1: Technical Report

    Science.gov (United States)

    St.hilaire, A. O.; Carta, F. O.

    1983-01-01

    The unsteady chordwise force response on the airfoil surface was investigated and its sensitivity to the various system parameters was examined. A further examination of unsteady aerodynamic data on a tunnel spanning wing (both swept and unswept), obtained in a wind tunnel, was performed. The main body of this data analysis was carried out by analyzing the propagation speed of pressure disturbances along the chord and by studying the behavior of the unsteady part of the chordwise pressure distribution at various points of the airfoil pitching cycle. It was found that Mach number effects dominate the approach to and the inception of both static and dynamic stall. The stall angle decreases as the Mach number increases. However, sweep dominates the load behavior within the stall regime. Large phase differences between unswept and swept responses, that do not exist at low lift coefficient, appear once the stall boundary is penetrated. It was also found that reduced frequency is not a reliable indicator of the unsteady aerodynamic response in the high angle of attack regime.

  12. Effect of pool rotation on three-dimensional flow in a shallow annular pool of silicon melt with bidirectional temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quan-Zhuang; Peng, Lan; Liu, Jia [Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, College of Power Engineering, Chongqing University, Chongqing, 400044 (China); Wang, Fei, E-mail: penglan@cqu.edu.cn [Chongqing Special Equipment Inspection and Research Institute, Chongqing, 401121 (China)

    2016-08-15

    In order to understand the effect of pool rotation on silicon melt flow with the bidirectional temperature gradients, we conducted a series of unsteady three-dimensional (3D) numerical simulations in a shallow annular pool. The bidirectional temperature gradients are produced by the temperature difference between outer and inner walls as well as a constant heat flux at the bottom. Results show that when Marangoni number is small, a 3D steady flow is common without pool rotation. But it bifurcates to a 3D oscillatory flow at a low rotation Reynolds number. Subsequently, the flow becomes steady and axisymmetric at a high rotation Reynolds number. When the Marangoni number is large, pool rotation can effectively suppress the temperature fluctuation on the free surface, meanwhile, it improves the flow stability. The critical heat flux density diagrams are mapped, and the effects of radial and vertical temperature gradients on the flow are discussed. Additionally, the transition process from the flow dominated by the radial temperature gradient to the one dominated by the vertical temperature gradient is presented. (paper)

  13. Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface

    International Nuclear Information System (INIS)

    Mukhopadhyay, Swati

    2011-01-01

    Highlights: ► Unsteady boundary layer flow and heat transfer over a non-isothermal stretching sheet in a magnetic field are studied. ► Fluid velocity and temperature decrease for increasing unsteadiness parameter. ► Fluid velocity decreases but temperature increases with the increasing values of the Hartman number. ► The sheet temperature in respect of distance and time has analogous effects on the heat transfer. - Abstract: An analysis is made for the unsteady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching surface having a variable and general form of surface temperature which removes the restrictions of the particular forms of prescribed surface temperature. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the unsteadiness parameter, magnetic parameter, the temperature exponent parameters. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. It is found that the fluid velocity and temperature decrease for increasing unsteadiness parameter. Fluid velocity decreases with the increasing values of the Hartman number resulting an increase in the temperature field in steady as well in unsteady case. It is observed that the variation of the sheet temperature in respect of distance and time has analogous effects both on the free surface temperature and on the heat transfer rate (Nusselt number) at the sheet.

  14. NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... objective of this study is to control the simulation of unsteady flows around structures. ... Aerospace, our results were in good agreement with experimental .... Two-Equation Eddy-Viscosity Turbulence Models for Engineering.

  15. Catalytic combustion of propane in a membrane reactor with separate feed of reactants—II. Operation in presence of trans-membrane pressure gradients

    NARCIS (Netherlands)

    Saracco, Guido; Veldsink, Jan Willem; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    This is the second communication of a series dealing with an experimental and modelling study on propane catalytic combustion in a membrane reactor with separate feed of reactants. In paper I the behaviour of the reactor in the absence of trans-membrane pressure gradients was presented and

  16. Extension of a nonlinear systems theory to general-frequency unsteady transonic aerodynamic responses

    Science.gov (United States)

    Silva, Walter A.

    1993-01-01

    A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.

  17. Characteristics of pressure gradients in downflow condensing of nitrogen in plain, brazed aluminium, plate-fin heat exchanger passages

    International Nuclear Information System (INIS)

    Robertson, J.M.; Blundell, N.; Clarke, R.H.

    1987-01-01

    Measurements of the total two-phase gradients have been made during the downflow condensing of nitrogen in a vertical plain, plate-fin test-section. The results show that pressure recovery occurs only at very low qualities, at low mass flux the falling film is smooth and at high mass flux it is rough. A relationship between the apparent film roughness and the calculated film thickness has been established. The implications for designers of heat exchangers are discussed

  18. Unsteady computational fluid dynamics in front crawl swimming.

    Science.gov (United States)

    Samson, Mathias; Bernard, Anthony; Monnet, Tony; Lacouture, Patrick; David, Laurent

    2017-05-01

    The development of codes and power calculations currently allows the simulation of increasingly complex flows, especially in the turbulent regime. Swimming research should benefit from these technological advances to try to better understand the dynamic mechanisms involved in swimming. An unsteady Computational Fluid Dynamics (CFD) study is conducted in crawl, in order to analyse the propulsive forces generated by the hand and forearm. The k-ω SST turbulence model and an overset grid method have been used. The main objectives are to analyse the evolution of the hand-forearm propulsive forces and to explain this relative to the arm kinematics parameters. In order to validate our simulation model, the calculated forces and pressures were compared with several other experimental and numerical studies. A good agreement is found between our results and those of other studies. The hand is the segment that generates the most propulsive forces during the aquatic stroke. As the pressure component is the main source of force, the orientation of the hand-forearm in the absolute coordinate system is an important kinematic parameter in the swimming performance. The propulsive forces are biggest when the angles of attack are high. CFD appears as a very valuable tool to better analyze the mechanisms of swimming performance and offers some promising developments, especially for optimizing the performance from a parametric study.

  19. Unsteady 3D flow simulations in cranial arterial tree

    Science.gov (United States)

    Grinberg, Leopold; Anor, Tomer; Madsen, Joseph; Karniadakis, George

    2008-11-01

    High resolution unsteady 3D flow simulations in major cranial arteries have been performed. Two cases were considered: 1) a healthy volunteer with a complete Circle of Willis (CoW); and 2) a patient with hydrocephalus and an incomplete CoW. Computation was performed on 3344 processors of the new half petaflop supercomputer in TACC. Two new numerical approaches were developed and implemented: 1) a new two-level domain decomposition method, which couples continuous and discontinuous Galerkin discretization of the computational domain; and 2) a new type of outflow boundary conditions, which imposes, in an accurate and computationally efficient manner, clinically measured flow rates. In the first simulation, a geometric model of 65 cranial arteries was reconstructed. Our simulation reveals a high degree of asymmetry in the flow at the left and right parts of the CoW and the presence of swirling flow in most of the CoW arteries. In the second simulation, one of the main findings was a high pressure drop at the right anterior communicating artery (PCA). Due to the incompleteness of the CoW and the pressure drop at the PCA, the right internal carotid artery supplies blood to most regions of the brain.

  20. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...

  1. Application of unsteady airfoil theory to rotary wings

    Science.gov (United States)

    Kaza, K. R. V.; Kvaternik, R. G.

    1981-01-01

    A clarification is presented on recent work concerning the application of unsteady airfoil theory to rotary wings. The application of this theory may be seen as consisting of four steps: (1) the selection of an appropriate unsteady airfoil theory; (2) the resolution of that velocity which is the resultant of aerodynamic and dynamic velocities at a point on the elastic axis into radial, tangential and perpendicular components, and the angular velocity of a blade section about the deformed axis; (3) the expression of lift and pitching moments in terms of the three components; and (4) the derivation of explicit expressions for the components in terms of flight velocity, induced flow, rotor rotational speed, blade motion variables, etc.

  2. Fluid-flow measurements in low permeability media with high pressure gradients using neutron imaging: Application to concrete

    Science.gov (United States)

    Yehya, Mohamad; Andò, Edward; Dufour, Frédéric; Tengattini, Alessandro

    2018-05-01

    This article focuses on a new experimental apparatus for investigating fluid flow under high pressure gradients within low-permeability porous media by means of neutron imaging. A titanium Hassler cell which optimises neutron transparency while allowing high pressure confinement (up to 50 MPa) and injection is designed for this purpose and presented here. This contribution focuses on the development of the proposed methodology thanks to some preliminary results obtained using a new neutron imaging facility named NeXT on the D50 beamline at the Institute Laue Langevin (Grenoble). The preliminary test was conducted by injecting normal water into concrete sample prepared and saturated with heavy water to take advantage of the isotope sensitivity of neutrons. The front between these two types of water is tracked in space and time with a combination of neutron radiography and tomography.

  3. Unsteady flow over a decelerating rotating sphere

    Science.gov (United States)

    Turkyilmazoglu, M.

    2018-03-01

    Unsteady flow analysis induced by a decelerating rotating sphere is the main concern of this paper. A revolving sphere in a still fluid is supposed to slow down at an angular velocity rate that is inversely proportional to time. The governing partial differential equations of motion are scaled in accordance with the literature, reducing to the well-documented von Kármán equations in the special circumstance near the pole. Both numerical and perturbation approaches are pursued to identify the velocity fields, shear stresses, and suction velocity far above the sphere. It is detected that an induced flow surrounding the sphere acts accordingly to adapt to the motion of the sphere up to some critical unsteadiness parameters at certain latitudes. Afterward, the decay rate of rotation ceases such that the flow at the remaining azimuths starts revolving freely. At a critical unsteadiness parameter corresponding to s = -0.681, the decelerating sphere rotates freely and requires no more torque. At a value of s exactly matching the rotating disk flow at the pole identified in the literature, the entire flow field around the sphere starts revolving faster than the disk itself. Increasing values of -s almost diminish the radial outflow. This results in jet flows in both the latitudinal and meridional directions, concentrated near the wall region. The presented mean flow results will be useful for analyzing the instability features of the flow, whether of a convective or absolute nature.

  4. Unsteady numerical simulation of the flow in the U9 Kaplan turbine model

    International Nuclear Information System (INIS)

    Javadi, Ardalan; Nilsson, Håkan

    2014-01-01

    The Reynolds-averaged Navier-Stokes equations with the RNG k-ε turbulence model closure are utilized to simulate the unsteady turbulent flow throughout the whole flow passage of the U9 Kaplan turbine model. The U9 Kaplan turbine model comprises 20 stationary guide vanes and 6 rotating blades (696.3 RPM), working at best efficiency load (0.71 m 3 /s). The computations are conducted using a general finite volume method, using the OpenFOAM CFD code. A dynamic mesh is used together with a sliding GGI interface to include the effect of the rotating runner. The clearance is included in the guide vane. The hub and tip clearances are also included in the runner. An analysis is conducted of the unsteady behavior of the flow field, the pressure fluctuation in the draft tube, and the coherent structures of the flow. The tangential and axial velocity distributions at three sections in the draft tube are compared against LDV measurements. The numerical result is in reasonable agreement with the experimental data, and the important flow physics close to the hub in the draft tube is captured. The hub and tip vortices and an on-axis forced vortex are captured. The numerical results show that the frequency of the forced vortex in 1/5 of the runner rotation

  5. Unsteady numerical simulation of the flow in the U9 Kaplan turbine model

    Science.gov (United States)

    Javadi, Ardalan; Nilsson, Håkan

    2014-03-01

    The Reynolds-averaged Navier-Stokes equations with the RNG k-ε turbulence model closure are utilized to simulate the unsteady turbulent flow throughout the whole flow passage of the U9 Kaplan turbine model. The U9 Kaplan turbine model comprises 20 stationary guide vanes and 6 rotating blades (696.3 RPM), working at best efficiency load (0.71 m3/s). The computations are conducted using a general finite volume method, using the OpenFOAM CFD code. A dynamic mesh is used together with a sliding GGI interface to include the effect of the rotating runner. The clearance is included in the guide vane. The hub and tip clearances are also included in the runner. An analysis is conducted of the unsteady behavior of the flow field, the pressure fluctuation in the draft tube, and the coherent structures of the flow. The tangential and axial velocity distributions at three sections in the draft tube are compared against LDV measurements. The numerical result is in reasonable agreement with the experimental data, and the important flow physics close to the hub in the draft tube is captured. The hub and tip vortices and an on-axis forced vortex are captured. The numerical results show that the frequency of the forced vortex in 1/5 of the runner rotation.

  6. MODELING AND ANALYSIS OF UNSTEADY FLOW BEHAVIOR IN DEEPWATER CONTROLLED MUD-CAP DRILLING

    Directory of Open Access Journals (Sweden)

    Jiwei Li

    Full Text Available Abstract A new mathematical model was developed in this study to simulate the unsteady flow in controlled mud-cap drilling systems. The model can predict the time-dependent flow inside the drill string and annulus after a circulation break. This model consists of the continuity and momentum equations solved using the explicit Euler method. The model considers both Newtonian and non-Newtonian fluids flowing inside the drill string and annular space. The model predicts the transient flow velocity of mud, the equilibrium time, and the change in the bottom hole pressure (BHP during the unsteady flow. The model was verified using data from U-tube flow experiments reported in the literature. The result shows that the model is accurate, with a maximum average error of 3.56% for the velocity prediction. Together with the measured data, the computed transient flow behavior can be used to better detect well kick and a loss of circulation after the mud pump is shut down. The model sensitivity analysis show that the water depth, mud density and drill string size are the three major factors affecting the fluctuation of the BHP after a circulation break. These factors should be carefully examined in well design and drilling operations to minimize BHP fluctuation and well kick. This study provides the fundamentals for designing a safe system in controlled mud-cap drilling operati.

  7. Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis

    KAUST Repository

    Zhang, Yue; Habashi, Wagdi G (Ed); Khurram, Rooh Ul Amin

    2015-01-01

    This paper investigates the wind-induced vibration of the CAARC standard tall building model, via unsteady Computational Fluid Dynamics (CFD) and a structural modal analysis. In this numerical procedure, the natural unsteady wind in the atmospheric

  8. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Rimple [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Poirel, Dominique [Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston, Ontario (Canada); Pettit, Chris [Department of Aerospace Engineering, United States Naval Academy, Annapolis, MD (United States); Khalil, Mohammad [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Sarkar, Abhijit, E-mail: abhijit.sarkar@carleton.ca [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada)

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.

  9. Relationships between fluid pressure and capillary pressure in ...

    African Journals Online (AJOL)

    In this work, the Bower's and Gardner's technique of velocity-to fluid pressure gradient methods were applied on seismic reflection data in order to predict fluid pressure of an X- oil field in Niger Delta Basin. Results show significant deflection common with fluid pressure zones . With average connate water saturation Swc ...

  10. Detection of small-amplitude periodic surface pressure fluctuation by pressure-sensitive paint measurements using frequency-domain methods

    Science.gov (United States)

    Noda, Takahiro; Nakakita, Kazuyki; Wakahara, Masaki; Kameda, Masaharu

    2018-06-01

    Image measurement using pressure-sensitive paint (PSP) is an effective tool for analyzing the unsteady pressure field on the surface of a body in a low-speed air flow, which is associated with wind noise. In this study, the surface pressure fluctuation due to the tonal trailing edge (TE) noise for a two-dimensional NACA 0012 airfoil was quantitatively detected using a porous anodized aluminum PSP (AA-PSP). The emission from the PSP upon illumination by a blue laser diode was captured using a 12-bit high-speed complementary metal-oxide-semiconductor (CMOS) camera. The intensities of the captured images were converted to pressures using a standard intensity-based method. Three image-processing methods based on the fast Fourier transform (FFT) were tested to determine their efficiency in improving the signal-to-noise ratio (SNR) of the unsteady PSP data. In addition to two fundamental FFT techniques (the full data and ensemble averaging FFTs), a technique using the coherent output power (COP), which involves the cross correlation between the PSP data and the signal measured using a pointwise sound-level meter, was tested. Preliminary tests indicated that random photon shot noise dominates the intensity fluctuations in the captured PSP emissions above 200 Hz. Pressure fluctuations associated with the TE noise, whose dominant frequency is approximately 940 Hz, were successfully measured by analyzing 40,960 sequential PSP images recorded at 10 kfps. Quantitative validation using the power spectrum indicates that the COP technique is the most effective method of identification of the pressure fluctuation directly related to TE noise. It is possible to distinguish power differences with a resolution of 10 Pa^2 (4 Pa in amplitude) when the COP was employed without use of another wind-off data. This resolution cannot be achieved by the ensemble averaging FFT because of an insufficient elimination of the background noise.

  11. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  12. Numerical Simulation of Unsteady Large Scale Separated Flow around Oscillating Airfoil

    OpenAIRE

    Isogai, Koji; 磯貝, 紘二

    1991-01-01

    Numerical simulations of dynamic stall phenomenon of NACA0012 airfoil oscillating in pitch near static stalling angle are performed by using the compressible Navier-Stokes equations. In the present computations, a TVD scheme and an algebraic turbulence model are employed for the simulations of the unsteady separated flows at Reynolds number of 1.1x105. The hysteresis loops of the unsteady pitching moment during dynamic stall are compared with the existing experimental data. The flow pattern a...

  13. Steady and unsteady calculations on thermal striping phenomena in triple-parallel jet

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.Q., E-mail: yyu@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Merzari, E.; Thomas, J.W. [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Obabko, A. [Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Aithal, S.M. [Computing, Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2017-02-15

    Highlights: • Both steady (RANS) and unsteady (URANS, LES) methods were applied to study thermal striping. • The unsteady results exhibited reasonably good agreement with experimental results. • The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. - Abstract: The phenomenon of thermal striping is encountered in liquid metal cooled fast reactors (LMFR), in which temperature fluctuation due to convective mixing between hot and cold fluids can lead to a possibility of crack initiation and propagation in the structure due to high cycle thermal fatigue. Using sodium experiments of parallel triple jets configuration performed by Japan Atomic Energy Agency (JAEA) as benchmark, numerical simulations were carried out to evaluate the temperature fluctuation characteristics in fluid and the transfer characteristics of temperature fluctuation from fluid to structure, which is important to assess the potential thermal fatigue damage. In this study, both steady (RANS) and unsteady (URANS, LES) methods were applied to predict the temperature fluctuations of thermal striping. The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. The velocity, temperature and temperature fluctuation intensity distribution were compared with the experimental data. As expected, steady calculation has limited success in predicting the thermal–hydraulic characteristics of the thermal striping, highlighting the limitations of the RANS approach in unsteady heat transfer simulations. The unsteady results exhibited reasonably good agreement with experimental results for temperature fluctuation intensity, as well as the average temperature and velocity components at the measurement locations.

  14. Steady and unsteady calculations on thermal striping phenomena in triple-parallel jet

    International Nuclear Information System (INIS)

    Yu, Y.Q.; Merzari, E.; Thomas, J.W.; Obabko, A.; Aithal, S.M.

    2017-01-01

    Highlights: • Both steady (RANS) and unsteady (URANS, LES) methods were applied to study thermal striping. • The unsteady results exhibited reasonably good agreement with experimental results. • The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. - Abstract: The phenomenon of thermal striping is encountered in liquid metal cooled fast reactors (LMFR), in which temperature fluctuation due to convective mixing between hot and cold fluids can lead to a possibility of crack initiation and propagation in the structure due to high cycle thermal fatigue. Using sodium experiments of parallel triple jets configuration performed by Japan Atomic Energy Agency (JAEA) as benchmark, numerical simulations were carried out to evaluate the temperature fluctuation characteristics in fluid and the transfer characteristics of temperature fluctuation from fluid to structure, which is important to assess the potential thermal fatigue damage. In this study, both steady (RANS) and unsteady (URANS, LES) methods were applied to predict the temperature fluctuations of thermal striping. The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. The velocity, temperature and temperature fluctuation intensity distribution were compared with the experimental data. As expected, steady calculation has limited success in predicting the thermal–hydraulic characteristics of the thermal striping, highlighting the limitations of the RANS approach in unsteady heat transfer simulations. The unsteady results exhibited reasonably good agreement with experimental results for temperature fluctuation intensity, as well as the average temperature and velocity components at the measurement locations.

  15. Helicopter noise footprint prediction in unsteady maneuvers

    NARCIS (Netherlands)

    Gennaretti, Massimo; Bernardini, Giovanni; Serafini, Jacopo; Anobile, A.; Hartjes, S.

    2017-01-01

    This paper investigates different methodologies for the evaluation of the acoustic disturbance emitted by helicopter’s main rotors during unsteady maneuvers. Nowadays, the simulation of noise emitted by helicopters is of great interest to designers, both for the assessment of the acoustic impact

  16. Unsteady Particle Deposition in a Human Nasal Cavity during Inhalation

    Directory of Open Access Journals (Sweden)

    Camby M.K. Se

    2010-12-01

    Full Text Available The present study investigates the deposition efficiency during the unsteady inhalation cycle by using Computational Fluid Dynamics (CFD. The unsteady inhalation profile was applied at the outlet of nasopharynx, which had a maximum flow rate of 40.3L/min which corresponds to an equivalent steady inhalation tidal volume flow rate of 24.6L/min. Aerodynamic particle sizes of 5μm and 20μm were studied in order to reflect contrasting Stokes numbered particle behaviour. Two particle deposition efficiencies in the nasal cavity versus time are presented. In general, the deposition of 5μm particles was much less than 20μm particles. The first 0.2 second of the inhalation cycle was found to be significant to the particle transport, since the majority of particles were deposited during this period (i.e. its residence time. Comparisons were also made with its equivalent steady inhalation flow rate which found that the unsteady inhalation produced lower deposition efficiency for both particle sizes.

  17. Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients

    Science.gov (United States)

    Coleman, G. N.; Garbaruk, A.; Spalart, P. R.

    2014-01-01

    A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.

  18. An investigation of unsteady 3-D effects on trailing edge flaps

    Directory of Open Access Journals (Sweden)

    E. Jost

    2017-05-01

    Full Text Available The present study investigates the impact of unsteady 3-D aerodynamic effects on a wind turbine blade with trailing edge flap by means of computational fluid dynamics (CFD. Harmonic oscillations are simulated on the DTU 10 MW rotor with a morphing flap of 10 % chord extent ranging from 70 to 80 % blade radius. The deflection frequency is varied in the range between 1 and 6 p. To quantify 3-D effects, rotor simulations are compared to 2-D airfoil computations and the 2-D theory by Theodorsen. It was found that the deflection of the flap on the 3-D rotor causes a complex wake development and induction which influences the loads over large parts of the blade. In particular, the rotor near wake with its trailing and shed vortex structures revealed a great impact. Trailing vorticity, a 3-D phenomenon, is caused by the gradient of bound circulation along the blade span. Shed vorticity originates from the temporal bound circulation gradient and is thus also apparent in 2-D. Both lead to an amplitude reduction and shed vorticity additionally to a hysteresis of the lift response with regard to the deflection signal in the flap section. A greater amplitude reduction and a less pronounced hysteresis is observed on the 3-D rotor compared to the 2-D airfoil case. Blade sections neighboring the flap experience, however, an opposing impact and hence partly compensate for the negative effect of trailing vortices in the flap section with respect to integral loads. Comparisons to steady flap deflections at the 3-D rotor revealed the high influence of dynamic inflow effects.

  19. Experimental study of unsteady thermally stratified flow

    International Nuclear Information System (INIS)

    Lee, Sang Jun; Chung, Myung Kyoon

    1985-01-01

    Unsteady thermally stratified flow caused by two-dimensional surface discharge of warm water into a oblong channel was investigated. Experimental study was focused on the rapidly developing thermal diffusion at small Richardson number. The basic objectives were to study the interfacial mixing between a flowing layer of warm water and an underlying body of cold water and to accumulate experimental data to test computational turbulence models. Mean velocity field measurements were carried out by using NMR-CT(Nuclear Magnetic Resonance-Computerized Tomography). It detects quantitative flow image of any desired section in any direction of flow in short time. Results show that at small Richardson number warm layer rapidly penetrates into the cold layer because of strong turbulent mixing and instability between the two layers. It is found that the transfer of heat across the interface is more vigorous than that of momentum. It is also proved that the NMR-CT technique is a very valuable tool to measure unsteady three dimensional flow field. (Author)

  20. Unsteady performance of a cavitating hydrofoil in stall conditions. Shissoku jotai ni okeru yokukei no hiteijo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, H. (Tohoku University, Sendai (Japan)); Ito, Y. (Hachinoe Institutea of Technology, Aomori (Japan)); Oba, R. (Tohoku University, Sendai (Japan). Institute of Fluid Science); Sunayama, Y.; Abe, J. (Suzuki Co. Ltd., Shizuoka (Japan))

    1991-11-25

    To elucidate the unsteady performance of cavitating hydrofoils in a stall condition, this paper describes a survey on unsteady conditions without cavitations and stall conditions as to their characteristics from a cavitation to a supercavitation, lift and drag. Flows with cavitations were also analyzed. As a result of comparing also data for the subcavitation regions, it was found that a large-scale vortex generation on the hydrofoil back-pressure plane in near stall condition has a close relation with the changes in lifts and drags or the cavitation breakdown. The experiment used a testing water tank of circulation flow type having a rectangular measuring cross section (70 mm in width and 190 mm in height), and the hydrofoil specimens of two-dimensional symmetric type with a chord length of 70 mm and an aspect ratio of 1.0. The test condition used a cavitation coefficient of 0.18-6.33 (from a supercavitation to non-cavitation). A numerical analysis proved that the power spectra around the hydrofoils having no cavitations agreed with the experimental results, and verified the reasonability of the application. 18 refs., 8 figs., 2 tabs.

  1. Experimental investigation of unsteady fluid dynamic forces acting on tube array

    International Nuclear Information System (INIS)

    Tanaka, Hiroki; Takahara, Shigeru; Tanaka, Mitsutoshi

    1981-01-01

    It is well-known that the cylinder bundle vibrates in cross flow. Many studies of the vibration have been made, and it has been clarified that the vibration is caused by fluid-elastic vibration coupling to neighboring cylinders. The theory given in this paper considers unsteady fluid dynamic forces to be composed of inertia forces due to added mass of fluid, damping forces of fluid which are in phase to cylinder vibrating velocity, and stiffness forces which are proportional to cylinder displacements. Furthermore, taking account of the influences of neighboring cylinder vibrations, ten kinds of unsteady fluid dynamic forces are considered to act on a cylinder in cylinder bundles. Equations of motion of cylinders were deduced and the critical velocities were calculated with the measured unsteady fluid dynamic forces. Critical velocity tests were also conducted with cylinders which were supported with elastic spars. The calculated critical velocities coincided well with the test results. (author)

  2. Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis

    KAUST Repository

    Zhang, Yue

    2015-01-01

    This paper investigates the wind-induced vibration of the CAARC standard tall building model, via unsteady Computational Fluid Dynamics (CFD) and a structural modal analysis. In this numerical procedure, the natural unsteady wind in the atmospheric boundary layer is modeled with an artificial inflow turbulence generation method. Then, the turbulent flow is simulated by the second mode of a Zonal Detached-Eddy Simulation, and a conservative quadrature-projection scheme is adopted to transfer unsteady loads from fluid to structural nodes. The aerodynamic damping that represents the fluid-structure interaction mechanism is determined by empirical functions extracted from wind tunnel experiments. Eventually, the flow solutions and the structural responses in terms of mean and root mean square quantities are compared with experimental measurements, over a wide range of reduced velocities. The significance of turbulent inflow conditions and aeroelastic effects is highlighted. The current methodology provides predictions of good accuracy and can be considered as a preliminary design tool to evaluate the unsteady wind effects on tall buildings.

  3. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Geir Ringstad

    Full Text Available Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of "true" normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43. Pulse pressure gradients were also similar in patients and healthy controls (P = .26, and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97. Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate

  4. Viscosity measurement in the capillary tube viscometer under unsteady flow

    International Nuclear Information System (INIS)

    Park, Heung Jun; Yoo, Sang Sin; Suh, Sang Ho

    2000-01-01

    The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load cell system that measures the mass flow rate, interfaces, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force

  5. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  6. Unsteady two-dimensional potential-flow model for thin variable geometry airfoils

    DEFF Research Database (Denmark)

    Gaunaa, Mac

    2010-01-01

    In the present work, analytical expressions for distributed and integral unsteady two-dimensional forces on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by its camber line...... in their equivalent state-space form, allowing for use of the present theory in problems employing the eigenvalue approach, such as stability analysis. The analytical expressions for the integral forces can be reduced to Munk's steady and Theodorsen's unsteady results for thin airfoils, and numerical evaluation shows...

  7. Unit Reynolds number, Mach number and pressure gradient effects on laminar-turbulent transition in two-dimensional boundary layers

    Science.gov (United States)

    Risius, Steffen; Costantini, Marco; Koch, Stefan; Hein, Stefan; Klein, Christian

    2018-05-01

    The influence of unit Reynolds number (Re_1=17.5× 106-80× 106 {m}^{-1}), Mach number (M= 0.35-0.77) and incompressible shape factor (H_{12} = 2.50-2.66) on laminar-turbulent boundary layer transition was systematically investigated in the Cryogenic Ludwieg-Tube Göttingen (DNW-KRG). For this investigation the existing two-dimensional wind tunnel model, PaLASTra, which offers a quasi-uniform streamwise pressure gradient, was modified to reduce the size of the flow separation region at its trailing edge. The streamwise temperature distribution and the location of laminar-turbulent transition were measured by means of temperature-sensitive paint (TSP) with a higher accuracy than attained in earlier measurements. It was found that for the modified PaLASTra model the transition Reynolds number (Re_{ {tr}}) exhibits a linear dependence on the pressure gradient, characterized by H_{12}. Due to this linear relation it was possible to quantify the so-called `unit Reynolds number effect', which is an increase of Re_{ {tr}} with Re_1. By a systematic variation of M, Re_1 and H_{12} in combination with a spectral analysis of freestream disturbances, a stabilizing effect of compressibility on boundary layer transition, as predicted by linear stability theory, was detected (`Mach number effect'). Furthermore, two expressions were derived which can be used to calculate the transition Reynolds number as a function of the amplitude of total pressure fluctuations, Re_1 and H_{12}. To determine critical N-factors, the measured transition locations were correlated with amplification rates, calculated by incompressible and compressible linear stability theory. By taking into account the spectral level of total pressure fluctuations at the frequency of the most amplified Tollmien-Schlichting wave at transition location, the scatter in the determined critical N-factors was reduced. Furthermore, the receptivity coefficients dependence on incidence angle of acoustic waves was used to

  8. Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways.

    Science.gov (United States)

    Bramley, Helen; Turner, Neil C; Turner, David W; Tyerman, Stephen D

    2007-07-01

    Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in

  9. Modelling and Experimental Investigation of Unsteady Behaviour of a Screw Compressor Plant

    OpenAIRE

    Chukanova, Ekatarina; Stosic, Nikola; Kovacevic, Ahmed

    2014-01-01

    Majority of air compressor plants installed worldwide operate permanently under unsteady conditions, however, there is still a lack of published papers which describe the plant dynamics and offer quantification parameters of the phenomenon. An experimental and analytical study of a screw compressor operation under unsteady conditions has been carried out. For this purpose a one dimensional model of the processes within a screw compressor based on the differential equations of conservation of ...

  10. Summary of Pressure Gain Combustion Research at NASA

    Science.gov (United States)

    Perkins, H. Douglas; Paxson, Daniel E.

    2018-01-01

    NASA has undertaken a systematic exploration of many different facets of pressure gain combustion over the last 25 years in an effort to exploit the inherent thermodynamic advantage of pressure gain combustion over the constant pressure combustion process used in most aerospace propulsion systems. Applications as varied as small-scale UAV's, rotorcraft, subsonic transports, hypersonics and launch vehicles have been considered. In addition to studying pressure gain combustor concepts such as wave rotors, pulse detonation engines, pulsejets, and rotating detonation engines, NASA has studied inlets, nozzles, ejectors and turbines which must also process unsteady flow in an integrated propulsion system. Other design considerations such as acoustic signature, combustor material life and heat transfer that are unique to pressure gain combustors have also been addressed in NASA research projects. In addition to a wide range of experimental studies, a number of computer codes, from 0-D up through 3-D, have been developed or modified to specifically address the analysis of unsteady flow fields. Loss models have also been developed and incorporated into these codes that improve the accuracy of performance predictions and decrease computational time. These codes have been validated numerous times across a broad range of operating conditions, and it has been found that once validated for one particular pressure gain combustion configuration, these codes are readily adaptable to the others. All in all, the documentation of this work has encompassed approximately 170 NASA technical reports, conference papers and journal articles to date. These publications are very briefly summarized herein, providing a single point of reference for all of NASA's pressure gain combustion research efforts. This documentation does not include the significant contributions made by NASA research staff to the programs of other agencies, universities, industrial partners and professional society

  11. Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil

    Science.gov (United States)

    Xia, X.; Mohseni, K.

    2017-11-01

    Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modeling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad-hoc implementation, the unsteady Kutta condition, the conservation of circulation, as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength, and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for airfoils in steady and unsteady background flows.

  12. CFD Simulations for the Effect of Unsteady Wakes on the Boundary Layer of a Highly Loaded Low-Pressure Turbine Airfoil (L1A)

    Science.gov (United States)

    Vinci, Samuel, J.

    2012-01-01

    This report is the third part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part was published as NASA/CR-2012-217415. The second part was published as NASA/CR-2012-217416. The study of the very high lift low-pressure turbine airfoil L1A in the presence of unsteady wakes was performed computationally and compared against experimental results. The experiments were conducted in a low speed wind tunnel under high (4.9%) and then low (0.6%) freestream turbulence intensity for Reynolds number equal to 25,000 and 50,000. The experimental and computational data have shown that in cases without wakes, the boundary layer separated without reattachment. The CFD was done with LES and URANS utilizing the finite-volume code ANSYS Fluent (ANSYS, Inc.) under the same freestream turbulence and Reynolds number conditions as the experiment but only at a rod to blade spacing of 1. With wakes, separation was largely suppressed, particularly if the wake passing frequency was sufficiently high. This was validated in the 3D CFD efforts by comparing the experimental results for the pressure coefficients and velocity profiles, which were reasonable for all cases examined. The 2D CFD efforts failed to capture the three dimensionality effects of the wake and thus were less consistent with the experimental data. The effect of the freestream turbulence intensity levels also showed a little more consistency with the experimental data at higher intensities when compared with the low intensity cases. Additional cases with higher wake passing frequencies which were not run experimentally were simulated. The results showed that an initial 25% increase from the experimental wake passing greatly reduced the size of the separation bubble, nearly completely suppressing it.

  13. Numerical modelling of unsteady flow behaviour in the rectangular jets with oblique opening

    Directory of Open Access Journals (Sweden)

    James T. Hart

    2016-09-01

    Full Text Available Vortex shedding in a bank of three rectangular burner-jets was investigated using a CFD model. The jets were angled to the wall and the whole burner was recessed into a cavity in the wall; the ratio of velocities between the jets varied from 1 to 3. The model was validated against experimentally measured velocity profiles and wall pressure tapings from a physical model of the same burner geometry, and was generally found to reproduce the mean flow field faithfully. The CFD model showed that vortex shedding was induced by a combination of an adverse pressure gradient, resulting from the diffuser-like geometry of the recess, and the entrainment of fluid into the spaces separating the jets. The asymmetry of the burner, a consequence of being angled to the wall, introduced a cross-stream component into the adverse pressure gradient that forced the jets to bend away from their geometric axes, the extent of which depended upon the jet velocity. The vortex shedding was also found to occur in different jets depending on the jet velocity ratio.

  14. Restoration of Liver Function and Portosystemic Pressure Gradient after TIPSS and Late TIPSS Occlusion

    International Nuclear Information System (INIS)

    Maedler, U.; Hansmann, J.; Duex, M.; Noeldge, G.; Sauer, P.; Richter, G.M.

    2002-01-01

    TIPSS (transjugular intrahepatic portosystemic shunt) may be indicated to control bleeding from esophageal and gastric varicose veins, to reduce ascites, and to treat patients with Budd-Chiari syndrome and veno-occlusive disease. Numerous measures to improve the safety and methodology of the procedure have helped to increase the technical and clinical success. Follow-up of TIPSS patients has revealed shunt stenosis to occur more often in patients with preserved liver function (Child A, Child B). In addition, the extent of liver cirrhosis is the main factor that determines prognosis in the long term. Little is known about the effects of TIPSS with respect to portosystemic hemodynamics. This report deals with a cirrhotic patient who stopped drinking 7 months prior to admission. He received TIPSS to control ascites and recurrent esophageal bleeding. Two years later remarkable hypertrophy of the left liver lobe and shunt occlusion was observed. The portosystemic pressure gradient dropped from 24 mmHg before TIPSS to 11 mmHg and remained stable after shunt occlusion. The Child's B cirrhosis prior to TIPSS turned into Child's A cirrhosis and remained stable during the follow-up period of 32 months. This indicates that liver function of TIPSS patients may recover due to hypertrophy of the remaining non-cirrhotic liver tissue. In addition the hepatic hemodynamics may return to normal. In conclusion, TIPSS cannot cure cirrhosis but its progress may be halted if the cause can be removed. This may result in a normal portosystemic gradient, leading consequently to shunt occlusion

  15. Transition of unsteady velocity profiles with reverse flow

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channel for arbitrary piston motions. By changing the piston speed and the length of piston travel we cover a range of values of Reynolds number and boundary layer thickness. The velocity profiles during the decay of the flow are unsteady with reverse flow near the wall, and are highly unstable due to their inflectional nature. In the pipe, we observe from flow visualization that the flow becomes unstable with the formation of what appears to be a helical vortex. The wavelength of the instability [simeq R: similar, equals]3[delta] where [delta] is the average boundary layer thickness, the average being taken over the time the flow is unstable. The time of formation of the vortices scales with the average convective time scale and is [simeq R: similar, equals]39/([Delta]u/[delta]), where [Delta]u=(umax[minus sign]umin) and umax, umin and [delta] are the maximum velocity, minimum velocity and boundary layer thickness respectively at each instant of time. The time to transition to turbulence is [simeq R: similar, equals]33/([Delta]u/[delta]). Quasi-steady linear stability analysis of the velocity profiles brings out two important results. First that the stability characteristics of velocity profiles with reverse flow near the wall collapse when scaled with the above variables. Second that the wavenumber corresponding to maximum growth does not change much during the instability even though the velocity profile does change substantially. Using the results from the experiments and the

  16. Numerical method for calculation of 3D viscous turbomachine flow taking into account stator/rotor unsteady interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rusanov, A V; Yershov, S V [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)

    1998-12-31

    The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.

  17. Numerical method for calculation of 3D viscous turbomachine flow taking into account stator/rotor unsteady interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rusanov, A.V.; Yershov, S.V. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)

    1997-12-31

    The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.

  18. Normal Reflection Characteristics of One-Dimensional Unsteady Flow Shock Waves on Rigid Walls from Pulse Discharge in Water

    Directory of Open Access Journals (Sweden)

    Dong Yan

    2017-01-01

    Full Text Available Strong shock waves can be generated by pulse discharge in water, and the characteristics due to the shock wave normal reflection from rigid walls have important significance to many fields, such as industrial production and defense construction. This paper investigates the effects of hydrostatic pressures and perturbation of wave source (i.e., charging voltage on normal reflection of one-dimensional unsteady flow shock waves. Basic properties of the incidence and reflection waves were analyzed theoretically and experimentally to identify the reflection mechanisms and hence the influencing factors and characteristics. The results indicated that increased perturbation (i.e., charging voltage leads to increased peak pressure and velocity of the reflected shock wave, whereas increased hydrostatic pressure obviously inhibited superposition of the reflection waves close to the rigid wall. The perturbation of wave source influence on the reflected wave was much lower than that on the incident wave, while the hydrostatic pressure obviously affected both incident and reflection waves. The reflection wave from the rigid wall in water exhibited the characteristics of a weak shock wave, and with increased hydrostatic pressure, these weak shock wave characteristics became more obvious.

  19. Studies on unsteady pressure fields in the region of separating and reattaching flows

    Science.gov (United States)

    Govinda Ram, H. S.; Arakeri, V. H.

    1990-12-01

    Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.

  20. Efficient design and operation of a data acquisition system for pressurized pipeline systems.

    Science.gov (United States)

    Kim, S

    2006-01-01

    The unsteady flow analysis of pipeline systems provides useful guidelines for implementing data acquisition components such as data filtering ranges, sensor locations and sampling frequencies. A theoretical integration among hydraulics, free vibration analysis and signal processing is proposed for a comprehensive approach aiming at enhanced design and operation of data acquisition system. Transient analysis is performed to extract flow variation by a valve modulation in a pipeline system. Frequency transformation analysis is developed to convert pressure variations between time domain and frequency domain. Free vibration analysis provides spatial distribution of impedance characteristics and pressure variation for determining optimum sensor location. A real-time filter can be designed to secure valid signals of any particular unsteady event. Hypothetical and experimental applications show that the proposed method has potentials of the leakage detection of a pipeline system as well as an efficient design of data acquisition system.

  1. Performance Characteristics of a Cross-Flow Hydrokinetic Turbine under Unsteady Conditions

    Science.gov (United States)

    Flack, Karen; Lust, Ethan; Bailin, Ben

    2017-11-01

    Performance characteristics are presented for a cross-flow hydrokinetic turbine designed for use in a riverine environment. The test turbine is a 1:6 scale model of a three-bladed device (9.5 m span, 6.5 m diameter) that has been proposed by the Department of Energy. Experiments are conducted in the large towing tank (116 m long, 7.9 m wide, 5 m deep) at the United States Naval Academy. The turbine is towed beneath a moving carriage at a constant speed in combination with a shaft motor to achieve the desired tip speed ratio (TSR) range. The measured quantities of turbine thrust, torque and RPM result in power and thrust coefficients for a range of TSR. Results will be presented for cases with quiescent flow at a range of Reynolds numbers and flow with mild surface waves, representative of riverine environments. The impact of unsteady flow conditions on the average turbine performance was not significant. Unsteady flow conditions did have an impact on instantaneous turbine performance which operationally would result in unsteady blade loading and instantaneous power quality.

  2. [Discordance between mitral valve area (MVA) and pressure gradient in patients with mitral valve stenosis: mean transmitral valve gradient is a severity index or a tolerance index of severity of mitralss valve stenosis?

    Science.gov (United States)

    Najih, Hayat; Arous, Salim; Laarje, Aziza; Baghdadi, Dalila; Benouna, Mohamed Ghali; Azzouzi, Leila; Habbal, Rachida

    2016-01-01

    between 60 and 100 bpm and no patient had decompensated heart failure. In group 2, 54% (13 patients) had a HR> 100 bpm and 7 of them (53%) had left decompensated heart failure. The analysis of systolic pulmonary artery pressure conducted in both groups of the study revealed the existence of a statistically significant correlation (R: 0,518 and P: 0,001) between systolic pulmonary artery pressure (SPAP) and MTG. Ventricular rhythm regularity and right ventricular function were not correlated with MTG (R: 0,038 and R: - 0,002 respectively). Mean transmitral gradient is a good indicator of mitral stenosis tolerance but it imperfectly reflects mitral stenosis severity as this depends on several hemodynamic parameters. True severe mitral stenosis may have mean transmitral gradient < 10mmHg, that is why the value of MTG should never be interpreted as single value.

  3. MATHEMATICAL MODEL OF UNSTEADY HEAT TRANSFER OF PASSENGER CAR WITH HEATING SYSTEM

    OpenAIRE

    E. V. Biloshytskyi

    2018-01-01

    Purpose. The existing mathematical models of unsteady heat processes in a passenger car do not fully reflect the thermal processes, occurring in the car wits a heating system. In addition, unsteady heat processes are often studied in steady regime, when the heat fluxes and the parameters of the thermal circuit are constant and do not depend on time. In connection with the emergence of more effective technical solutions to the life support system there is a need for creating a new mathematical...

  4. Consolidation by Prefabricated Vertical Drains with a Threshold Gradient

    Directory of Open Access Journals (Sweden)

    Xiao Guo

    2014-01-01

    Full Text Available This paper shows the development of an approximate analytical solution of radial consolidation by prefabricated vertical drains with a threshold gradient. To understand the effect of the threshold gradient on consolidation, a parametric analysis was performed using the present solution. The applicability of the present solution was demonstrated in two cases, wherein the comparisons with Hansbo’s results and observed data were conducted. It was found that (1 the flow with the threshold gradient would not occur instantaneously throughout the whole unit cell. Rather, it gradually occurs from the vertical drain to the outside; (2 the moving boundary would never reach the outer radius of influence if R+1pressure will not be dissipated completely, but it will maintain a long-term stable value at the end of consolidation; (4 the larger the threshold gradient is, the greater the long-term excess pore pressure will be; and (5 the present solution could predict the consolidation behavior in soft clay better than previous methods.

  5. The Effects of Synthetic Cannabinoids on Alveolar-Arterial Oxygen Gradient

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2016-09-01

    Full Text Available Aim: Synthetic cannabinoids are chemicals that produce several marijuana-like effects in humans. Aim of this study is to investigate the effects of synthetic cannabinoids on to alveolar-arterial oxygen gradient. Material and Method: A total of 112 patients, who admitted directly to emergency clinic with synthetic cannabinoid usage, were determined between February 2014 and August 2014. Blood gases of 41 patients were determined as arterial blood gases on room air, and included in to study. Patients were evaluated according to age, sex, decade, partial pressure of arterial oxygen, partial pressure of arterial carbon dioxide, pH, bicarbonate, metabolic status, age consistent expected alveolar-arterial oxygen gradient and calculated alveolar-arterial oxygen gradient. Results: Synthetic cannabinoid using was higher in males, mean age of patients was 23.32±6.14 years. Number of patients in the third decade were significantly higher than the other decades. The calculated alveolar-arterial oxygen gradient value of patients was significantly higher than age consistent expected alveolar-arterial oxygen gradient value. Respiratory acidosis, was significantly higher than the other types of the metabolic disorders. The best cutoff point for calculated alveolar-arterial oxygen gradient was 12.70, with sensitivity of 90% and specifity of 85%. Area under curve was 0.70 for calculated alveolar-arterial oxygen gradient. Discussion: The value of alveolar-arterial oxygen gradient has been increased due to synthetic cannabinoid usage. This can be used as a supportive parameter in the diagnosis of synthetic cannabinoid usage.

  6. Modelling of pressure tube Quench using PDETWO

    International Nuclear Information System (INIS)

    Parlatan, Y.; Lei, Q.M.; Kwee, M.

    2004-01-01

    Transient two-dimensional heat conduction calculations have been carried out to determine the time-dependent temperature distribution in an overheated pressure tube during quenching with water. The purpose of the calculations is to provide input for evaluation of thermal (secondary) stresses in the pressure tube due to quench. The quench phenomenon in pressure tubes could occur in several hypothetical accident scenarios, including incidents involving intermittent buoyancy-induced flow during outages. In these scenarios, there will be two (radial and axial) or three dimensional temperature gradients, resulting in thermal stresses in the pressure tube, as the water front reaches and starts to cool down the hot pressure tube. The transient, two-dimensional heat conduction equation in the pressure tube during quench is solved using a FORTRAN package called PDETWO, available in the open literature for solving time-dependent coupled systems of non-linear partial differential equations over a two-dimensional rectangular region. This routine is based on finite difference solution of coupled, non-linear partial differential equations. Temperature gradient in the circumferential gradient is neglected for conservatism and convenience. The advancing water front is not modelled explicitly, and assumed to be at a uniform temperature and moving at a constant velocity inferred from experimental data. For outer surface and both ends of the pressure tube in the axial direction, a zero-heat flux boundary condition is assumed, while for the inner surface a moving water-quench front is assumed by appropriately varying the fluid temperature and the heat transfer coefficient. The pressure tube is assumed to be at a uniform temperature of 400 o C initially, to represent conditions expected during an intermittent buoyancy-influenced flow scenario. The results confirm the expectations that axial temperature gradients and associated heat fluxes are small in comparison with those in the

  7. On wall pressure fluctuations and their coupling with vortex dynamics in a separated–reattached turbulent flow over a blunt flat plate

    International Nuclear Information System (INIS)

    Tenaud, C.; Podvin, B.; Fraigneau, Y.; Daru, V.

    2016-01-01

    Highlights: • Study devoted to the compressible LES of the separated/reattached turbulent flow over a blunt flat plate with a right-angled leading edge. • Original contribution using a compressible approach to analyze main coherent structure features and their relation to the unsteady pressure field in the separated/reattached turbulent flow. • The present study provides a well resolved LES reference data-basis that is compared to incompressible results for validation. • It contributes to a better understanding of the coupling between the vortex dynamics and the wall pressure fluctuations, especially in connection with either the vortex shedding or the low frequency shear-layer flapping. - Abstract: This study deals with the numerical predictions through Large-Eddy Simulation (LES) of the separated–reattached turbulent flow over a blunt flat plate for analyzing main coherent structure features and their relation to the unsteady pressure field. A compressible approach that inherently includes acoustic propagation is here followed to describe the relationship between pressure fluctuations and vortex dynamics around the separation bubble. The objective of the present work is then to contribute to a better understanding of the coupling between the vortex dynamics and the wall pressure fluctuations. The filtered compressible Navier–Stokes equations are then solved with a numerical method that follows a Lax–Wendroff approach to recover a high accuracy in both time and space. For validations, the present numerical results are compared to experimental measurements, coming from both the Pprime laboratory (Sicot el al., 2012) and the literature (Cherry et al., 1984; Kiya and Sasaki, 1985; Tafti and Vanka,1991; Sicot et al., 2012). Our numerical results very well predict mean and fluctuating pressure and velocity fields. Flapping, shedding as well as Kelvin–Helmholtz characteristic frequencies educed by present simulations are in very good agreement with the

  8. Estimation of Aircraft Nonlinear Unsteady Parameters From Wind Tunnel Data

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    Aerodynamic equations were formulated for an aircraft in one-degree-of-freedom large amplitude motion about each of its body axes. The model formulation based on indicial functions separated the resulting aerodynamic forces and moments into static terms, purely rotary terms and unsteady terms. Model identification from experimental data combined stepwise regression and maximum likelihood estimation in a two-stage optimization algorithm that can identify the unsteady term and rotary term if necessary. The identification scheme was applied to oscillatory data in two examples. The model identified from experimental data fit the data well, however, some parameters were estimated with limited accuracy. The resulting model was a good predictor for oscillatory and ramp input data.

  9. Advanced compositional gradient and compartmentalization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Canas, Jesus A.; Petti, Daniela; Mullins, Oliver [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Acquisition of hydrocarbons samples from the reservoir prior to oil or gas production is essential in order to design production strategies and production facilities. In addition, reservoir compartmentalization and hydrocarbon compositional grading magnify the necessity to map fluid properties vertically and laterally in the reservoir prior to production. Formation testers supply a wealth of information to observe and predict the state of fluids in hydrocarbon reservoirs, through detailed pressure and fluid analysis measurements. With the correct understanding of the state of fluids in the reservoirs, reserve calculations and adequate development plans can be prepared. Additionally, flow barriers may then be revealed. This paper describes a new Downhole Fluid Analysis technology (DFA) for improved reservoir management. DFA is a unique process that combines new fluid identification sensors, which allow real time monitoring of a wide range of parameters as GOR, fluid density, viscosity, fluorescence and composition (CH{sub 4}, C2- C5, C6 +, CO{sub 2}), free gas and liquid phases detection, saturation pressure, as well WBM and OBM filtrate differentiation and pH. This process is not limited to light fluid evaluation and we extended to heavy oil (HO) reservoirs analysis successfully. The combination of DFA Fluid Profiling with pressure measurements has shown to be very effective for compartmentalization characterization. The ability of thin barriers to hold off large depletion pressures has been established, as the gradual variation of hydrocarbon quality in biodegraded oils. In addition, heavy oils can show large compositional variation due to variations in source rock charging but without fluid mixing. Our findings indicates that steep gradients are common in gas condensates or volatile oils, and that biodegradation is more common in HO than in other hydrocarbons, which generate fluid gradients and heavy ends tars near the OWC, limiting the aquifer activity and

  10. Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine

    International Nuclear Information System (INIS)

    Xiao, Y X; Wang, Z W; Yan, Z G; Cui, T

    2012-01-01

    Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.

  11. Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine

    Science.gov (United States)

    Xiao, Y. X.; Cui, T.; Wang, Z. W.; Yan, Z. G.

    2012-11-01

    Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.

  12. Simulation of the unsteady, turbulent flow in hydraulic machineries; Berechnung der instationaeren, turbulenten Stroemung in hydraulischen Stroemungsmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Ginter, F.

    1997-12-31

    The unsteady flow in a hydraulic machinery, affected by the interaction between guide vane and impeller, is simulated by a Finite-Element program. Based on the standard-k-{epsilon}-model modifications are investigated to model the turbulent flow. The low-Re-model of Lam-Brenhorst and a two-layer model is implemented for the calculation of the boundary layer. An algebraic Reynolds stress model is investigated for the simulation of the anisotropy of the turbulence structure. The turbulence models are compared by flows with characteristic properties. The pressure field of the incompressible flow is calculated by the mixed formulation and by solving the Poisson equation. The mixed formulation shows oscillations for the pressure field using elements with bilinear shape functions for the velocity and constant shape functions for the pressure, which are eliminated with a smoothing algorithm. An algorithm is implemented for the calculation of the unsteady interaction between fixed and moved blade rows, based on the method of overlapping regions, and is applied to the two-dimensional flow in an axial expansion turbine. (orig.) [Deutsch] Die instationaere Stroemung in einer hydraulischen Stroemungsmaschine, beruhend auf den Wechselwirkungen zwischen Leitrad und Laufrad, wird mit einem Finite-Elemente-Programm berechnet. Ausgehend vom Standard-k-{epsilon}-Modell werden Erweiterungen zur Modellierung der turbulenten Stroemung untersucht. Fuer die Berechnung der Grenzschicht werden das Low-Re-Modell nach Lam-Brenhorst und ein Zweischichtenmodell implementiert. Zur Erfassung der Anisotropie der Turbulenzstruktur wird ein algebraisches Reynoldsspannungsmodell untersucht. Die Turbulenzmodelle werden anhand von Stroemungen mit charakterischen Eigenschaften verglichen. Die Druckberechnung der inkompressiblen Stroemung erfolgt auf der Bais der gemischten Formulierung bzw. durch Loesung der Poissongleichung. Fuer die gemischte Formulierung zeigt das Druckfeld Oszillationen fuer

  13. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... is investigated numerically using a unit cell model with periodic boundary conditions containing a single fiber deformed under generalized plane strain conditions. The homogenized response can be modeled by conventional plasticity with an anisotropic yield surface and a free energy depending on plastic strain...

  14. Flow simulations about steady-complex and unsteady moving configurations using structured-overlapped and unstructured grids

    Science.gov (United States)

    Newman, James C., III

    1995-01-01

    The limiting factor in simulating flows past realistic configurations of interest has been the discretization of the physical domain on which the governing equations of fluid flow may be solved. In an attempt to circumvent this problem, many Computational Fluid Dynamic (CFD) methodologies that are based on different grid generation and domain decomposition techniques have been developed. However, due to the costs involved and expertise required, very few comparative studies between these methods have been performed. In the present work, the two CFD methodologies which show the most promise for treating complex three-dimensional configurations as well as unsteady moving boundary problems are evaluated. These are namely the structured-overlapped and the unstructured grid schemes. Both methods use a cell centered, finite volume, upwind approach. The structured-overlapped algorithm uses an approximately factored, alternating direction implicit scheme to perform the time integration, whereas, the unstructured algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and limitations of each scheme, they are applied to the same steady complex multicomponent configurations and unsteady moving boundary problems. The steady complex cases consist of computing the subsonic flow about a two-dimensional high-lift multielement airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. Accuracy was accessed through the comparison of computed and experimentally measured pressure coefficient data on several of the wing/pylon/finned store assembly's components and at numerous angles-of-attack for the pitching airfoil. From this study, it was found that both the structured-overlapped and the unstructured grid schemes yielded flow solutions of

  15. Morphogengineering roots: comparing mechanisms of morphogen gradient formation

    Science.gov (United States)

    2012-01-01

    Background In developmental biology, there has been a recent focus on the robustness of morphogen gradients as possible providers of positional information. It was shown that functional morphogen gradients present strong biophysical constraints and lack of robustness to noise. Here we explore how the details of the mechanism which underlies the generation of a morphogen gradient can influence those properties. Results We contrast three gradient-generating mechanisms, (i) a source-decay mechanism; and (ii) a unidirectional transport mechanism; and (iii) a so-called reflux-loop mechanism. Focusing on the dynamics of the phytohormone auxin in the root, we show that only the reflux-loop mechanism can generate a gradient that would be adequate to supply functional positional information for the Arabidopsis root, for biophysically reasonable kinetic parameters. Conclusions We argue that traits that differ in spatial and temporal time-scales can impose complex selective pressures on the mechanism of morphogen gradient formation used for the development of the particular organism. PMID:22583698

  16. Renal Artery Stenosis Evaluated with 3D-Gd-Magnetic Resonance Angiography Using Transstenotic Pressure Gradient as the Standard of Reference. A Multireader Study

    International Nuclear Information System (INIS)

    Ekloef, H.; Ahlstrom, H.; Bostrom, A.; Bergqvist, D.; Andren, B.; Karacagil, S.; Nyman, R.

    2005-01-01

    Purpose: To evaluate 3D-Gd-magnetic resonance angiography (MRA) in detecting hemodynamically significant renal artery stenosis (RAS). Material and Methods: Thirty patients evaluated for atherosclerotic RAS by MRA and digital subtraction angiography (DSA) were retrospectively included. Standard of reference for hemodynamically significant RAS was a transstenotic gradient of 15 mmHg. DSA visualized 60 main renal arteries and 9 accessory arteries. Pressure gradient measurement (PGM) was available from 61 arteries. Three radiologists evaluated all examinations independently in a blinded fashion. Results: RAS was present in 26 arteries. On MRA, each reader identified 4 of 9 accessory renal arteries, a detection rate of 44%. The three readers correctly classified 22/25/22 of the 26 vessels with a significant gradient as >60% RAS and 31/25/32 of the 35 with a significant gradient as <60% RAS on MRA. Interobserver agreement was substantial. MRA image quality was adequate for RAS evaluations in all patients. ROC curves indicated that MRA is an adequate method for evaluating RAS. When screening for RAS, a 50% diameter reduction cut-off is better than 60%. RAS with 40-80% diameter reductions accounted for 65% of discrepancies. Conclusion: MRA is an adequate method for evaluating RAS limited mainly by poor detection rate for accessory renal arteries

  17. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor

    Directory of Open Access Journals (Sweden)

    Qijun ZHAO

    2018-02-01

    Full Text Available A robust unsteady rotor flowfield solver CLORNS code is established to predict the complex unsteady aerodynamic characteristics of rotor flowfield. In order to handle the difficult problem about grid generation around rotor with complex aerodynamic shape in this CFD code, a parameterized grid generated method is established, and the moving-embedded grids are constructed by several proposed universal methods. In this work, the unsteady Reynolds-Averaged Navier-Stokes (RANS equations with Spalart-Allmaras are selected as the governing equations to predict the unsteady flowfield of helicopter rotor. The discretization of convective fluxes is accomplished by employing the second-order central difference scheme, third-order MUSCL-Roe scheme, and fifth-order WENO-Roe scheme. Aimed at simulating the unsteady aerodynamic characteristics of helicopter rotor, the dual-time scheme with implicit LU-SGS scheme is employed to accomplish the temporal discretization. In order to improve the computational efficiency of hole-cells and donor elements searching of the moving-embedded grid technology, the “disturbance diffraction method” and “minimum distance scheme of donor elements method” are established in this work. To improve the computational efficiency, Message Passing Interface (MPI parallel method based on subdivision of grid, local preconditioning method and Full Approximation Storage (FAS multi-grid method are combined in this code. By comparison of the numerical results simulated by CLORNS code with test data, it is illustrated that the present code could simulate the aerodynamic loads and aerodynamic noise characteristics of helicopter rotor accurately. Keywords: Aerodynamic characteristics, Helicopter rotor, Moving-embedded grid, Navier-Stokes equations, Upwind schemes

  18. Minimum-domain impulse theory for unsteady aerodynamic force

    Science.gov (United States)

    Kang, L. L.; Liu, L. Q.; Su, W. D.; Wu, J. Z.

    2018-01-01

    We extend the impulse theory for unsteady aerodynamics from its classic global form to finite-domain formulation then to minimum-domain form and from incompressible to compressible flows. For incompressible flow, the minimum-domain impulse theory raises the finding of Li and Lu ["Force and power of flapping plates in a fluid," J. Fluid Mech. 712, 598-613 (2012)] to a theorem: The entire force with discrete wake is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures. For compressible flows, we find that the global form in terms of the curl of momentum ∇ × (ρu), obtained by Huang [Unsteady Vortical Aerodynamics (Shanghai Jiaotong University Press, 1994)], can be generalized to having an arbitrary finite domain, but the formula is cumbersome and in general ∇ × (ρu) no longer has discrete structures and hence no minimum-domain theory exists. Nevertheless, as the measure of transverse process only, the unsteady field of vorticity ω or ρω may still have a discrete wake. This leads to a minimum-domain compressible vorticity-moment theory in terms of ρω (but it is beyond the classic concept of impulse). These new findings and applications have been confirmed by our numerical experiments. The results not only open an avenue to combine the theory with computation-experiment in wide applications but also reveal a physical truth that it is no longer necessary to account for all wake vortical structures in computing the force and moment.

  19. Vortex scale of unsteady separation on a pitching airfoil.

    Science.gov (United States)

    Fuchiwaki, Masaki; Tanaka, Kazuhiro

    2002-10-01

    The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment.

  20. A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications

    Science.gov (United States)

    Cagle, Christopher M.; Jones, Gregory S.

    2002-01-01

    Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.

  1. Spatial Harmonic Decomposition as a tool for unsteady flow phenomena analysis

    International Nuclear Information System (INIS)

    Duparchy, A; Guillozet, J; De Colombel, T; Bornard, L

    2014-01-01

    Hydropower is already the largest single renewable electricity source today but its further development will face new deployment constraints such as large-scale projects in emerging economies and the growth of intermittent renewable energy technologies. The potential role of hydropower as a grid stabilizer leads to operating hydro power plants in ''off-design'' zones. As a result, new methods of analyzing associated unsteady phenomena are needed to improve the design of hydraulic turbines. The key idea of the development is to compute a spatial description of a phenomenon by using a combination from several sensor signals. The spatial harmonic decomposition (SHD) extends the concept of so-called synchronous and asynchronous pulsations by projecting sensor signals on a linearly independent set of a modal scheme. This mathematical approach is very generic as it can be applied on any linear distribution of a scalar quantity defined on a closed curve. After a mathematical description of SHD, this paper will discuss the impact of instrumentation and provide tools to understand SHD signals. Then, as an example of a practical application, SHD is applied on a model test measurement in order to capture and describe dynamic pressure fields. Particularly, the spatial description of the phenomena provides new tools to separate the part of pressure fluctuations that contribute to output power instability or mechanical stresses. The study of the machine stability in partial load operating range in turbine mode or the comparison between the gap pressure field and radial thrust behavior during turbine brake operation are both relevant illustrations of SHD contribution

  2. On the Use of Surface Porosity to Reduce Unsteady Lift

    Science.gov (United States)

    Tinetti, Ana F.; Kelly, Jeffrey J.; Bauer, Steven X. S.; Thomas, Russell H.

    2001-01-01

    An innovative application of existing technology is proposed for attenuating the effects of transient phenomena, such as rotor-stator and rotor-strut interactions, linked to noise and fatigue failure in turbomachinery environments. A computational study was designed to assess the potential of passive porosity technology as a mechanism for alleviating interaction effects by reducing the unsteady lift developed on a stator airfoil subject to wake impingement. The study involved a typical high bypass fan Stator airfoil (solid baseline and several porous configurations), immersed in a free field and exposed to the effects of a transversely moving wake. It was found that, for the airfoil under consideration, the magnitude of the unsteady lift could be reduced more than 18% without incurring significant performance losses.

  3. Effects of degree correlation on scale-free gradient networks

    International Nuclear Information System (INIS)

    Pan Guijun; Yan Xiaoqing; Ma Weichuan; Luo Yihui; Huang Zhongbing

    2010-01-01

    We have studied the effects of degree correlation on congestion pressure in scale-free gradient networks. It is observed that the jamming coefficient J is insensitive to the degree correlation coefficient r for assortative and strongly disassortative scale-free networks, and J markedly decreases with an increase in r for weakly disassortative scale-free networks. We have also investigated the effects of degree correlation on the topology structure of scale-free gradient networks, and discussed the relation between the topology structure properties and transport efficiency of gradient networks.

  4. Fouling behavior and performance of microfiltration membranes for whey treatment in steady and unsteady-state conditions

    Directory of Open Access Journals (Sweden)

    H. Rezaei

    2014-06-01

    Full Text Available Whey pretreatment for protein purification is one of the main applications of cross-flow microfiltration before an ultrafiltration process. In this paper, the effects of the operating pressure and crossflow velocity on the membrane performance and the individual resistances in microfiltration of whey for both unsteady and steady-state conditions were investigated for two 0.45 µm mean pore size polymeric membranes, Polyethersulfone (PES and Polyvinylidene fluoride (PVDF. A laboratory-scale microfiltration setup with a flat rectangular module was used. The Reynolds number and operating pressure showed positive and negative effects on the amount of all resistances, respectively. The dominant effect of the concentration polarization and cake resistances was demonstrated by using a "Resistance-in-Series" model for unsteadystate investigations, which could vary during the filtration time. An empirical model revealed a linear relationship between the Reynolds number and permeate flux and a second-order polynomial relationship between the transmembrane pressure and the permeate flux. This empirical correlation, implemented for the limited range of MF operating parameters tested in this article for whey protein, was validated with experimental data and showed good agreement between calculated and experimental data.

  5. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  6. Unsteady aerodynamic modeling at high angles of attack using support vector machines

    Directory of Open Access Journals (Sweden)

    Wang Qing

    2015-06-01

    Full Text Available Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as selection of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfying learning and generalization performance of LS-SVMs.

  7. The flows structure in unsteady gas flow in pipes with different cross-sections

    OpenAIRE

    Plotnikov Leonid; Nevolin Alexandr; Nikolaev Dmitrij

    2017-01-01

    The results of numerical simulation and experimental study of the structure of unsteady flows in pipes with different cross sections are presented in the article. It is shown that the unsteady gas flow in a circular pipe is axisymmetric without secondary currents. Steady vortex structures (secondary flows) are observed in pipes with cross sections in the form of a square and an equilateral triangle. It was found that these secondary flows have a significant impact on gas flows in pipes of com...

  8. Gastric Varices Bleed at Lower Portosystemic Pressure Gradients than Esophageal Varices.

    Science.gov (United States)

    Morrison, Joseph D; Mendoza-Elias, Nasya; Lipnik, Andrew J; Lokken, R Peter; Bui, James T; Ray, Charles E; Gaba, Ron C

    2018-05-01

    To quantify and compare portosystemic pressure gradients (PSGs) between bleeding esophageal varices (EV) and gastric varices (GV). In a single-center, retrospective study, 149 patients with variceal bleeding (90 men, 59 women, mean age 52 y) with EV (n = 69; 46%) or GV (n = 80; 54%) were selected from 320 consecutive patients who underwent successful transjugular intrahepatic portosystemic shunt (TIPS) creation from 1998 to 2016. GV were subcategorized using the Sarin classification as gastroesophageal varices (GEV) (n = 57) or isolated gastric varices (IGV) (n = 23). PSG before TIPS was measured from the main portal vein to the right atrium. PSGs were compared across EV, GEV, and IGV groups using 1-way analysis of variance. Overall mean baseline PSG was 21 mm Hg ± 6. PSG was significantly higher in patients with EV versus GV (23 mm Hg vs 19 mm Hg; P IGV (16 mm Hg); this difference was statistically significant (P IGV 17 mm Hg; P IGV bled versus 9% (5/57) of GEV and 3% (2/69) of EVs (P = .169). Mean final PSG after TIPS was 8 mm Hg (IGV 6 mm Hg vs EV and GEV 8 mm Hg; P = .005). GV bleed at lower PSGs than EV. EV, GEV, and IGV bleeding is associated with successively lower PSGs. These findings highlight distinct physiology, anatomy, and behavior of GV compared with EV. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  9. Unsteady coupling effects of wet steam in steam turbines flows

    International Nuclear Information System (INIS)

    Blondel, Frederic

    2014-01-01

    In addition to conventional turbomachinery problems, both the behavior and performances of steam turbines are highly dependent on the vapour thermodynamic state and the presence of a liquid phase. EDF, the main French electricity producer, is interested in further developing its' modelling capabilities and expertise in this area to allow for operational studies and long-term planning. This PhD thesis explores the modelling of wetness formation and growth in a steam turbine and an analysis of the coupling between the liquid phase and the main flow unsteadiness. To this end, the work in this thesis took the following approach. Wetness was accounted for using a homogeneous model coupled with transport equations to take into account the effects of non-equilibrium phenomena, such as the growth of the liquid phase and nucleation. The real gas attributes of the problem demanded adapted numerical methods. Before their implementation in the 3D elsA solver, the accuracy of the chosen models was tested using a developed one-dimensional nozzle code. In this manner, various condensation models were considered, including both poly-dispersed and monodispersed behaviours of the steam. Finally, unsteady coupling effects were observed from several perspectives (1D, 1D - 3D, 3D), demonstrating the ability of the method of moments to sustain unsteady phenomena which were not apparent in a simple monodispersed model. (author)

  10. Instability waves and transition in adverse-pressure-gradient boundary layers

    Science.gov (United States)

    Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.

    2018-05-01

    Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.

  11. Unsteady axisymmetric flow of a micropolar fluid between the ...

    African Journals Online (AJOL)

    The influence of several parameters on dimensionless velocities is presented through plots. The behavior of skin friction and couple stress coefficients is tabulated against various values of the pertinent parameters. Keywords: Unsteady flow, micropolar fluid, radial stretching, skin friction coefficient, couple stress coefficient

  12. Perbandingan Hasil Pemodelan Aliran Satu Dimensi Unsteady Flow dan Steady Flow pada Banjir Kota

    Directory of Open Access Journals (Sweden)

    Andreas Tigor Oktaga

    2016-06-01

    Full Text Available One dimensional flow is often used as a flood simulation for the planning capacity of the river. Flood is a type of unsteady non-uniform flow, that can be simulated using HEC-RAS. HEC-RAS software is often used for flood modeling with a one-dimensional flow method. Unsteady flow modeling results in HEC-RAS sometimes refer to error and warning due to unstable analysis program. The stability program among others influenced bend in the river flow, the steep slope of the river bottom, and changes in cross-section shape. Because the flood handling required maximum discharge and maximum flood water level, then a steady flow is often used as an alternative to simulate the flood flow. This study aimed to determine the advantages and disadvantages of modeling unsteady non-uniform and steady non-uniform flow. The research location in the Kanal Banjir Barat, in the Semarang City. Hydraulics modeling uses HEC-RAS 4.1 and for discharge the plan is obtained from the HEC-HMS 3.5. Results of the comparison modeling hydraulics the modeling of steady non-uniform flow has a tendency water level is higher and modeling of unsteady non-uniform flow takes longer to analyze. Results of the comparison the average flood water level maximun is less than 15%  (± 0,3 meters, that is 0.27 meters (13.16% for Q50, 0.25 meters (11.56% for Q100, dan 0.16 meters (4.73% for Q200. So the modeling steady non-uniform flow can still be used as a companion version the modeling unsteady non-uniform flow.

  13. ERCOFTAC Symposium on Unsteady Separation in Fluid-Structure Interaction

    CERN Document Server

    Bottaro, Alessandro; Thompson, Mark

    2016-01-01

    This book addresses flow separation within the context of fluid-structure interaction phenomena. Here, new findings from two research communities focusing on fluids and structures are brought together, emphasizing the importance of a unified multidisciplinary approach. The book covers the theory, experimental findings, numerical simulations, and modeling in fluid dynamics and structural mechanics for both incompressible and compressible separated unsteady flows. There is a focus on the morphing of lifting structures in order to increase their aerodynamic and/or hydrodynamic performances, to control separation and to reduce noise, as well as to inspire the design of novel structures. The different chapters are based on contributions presented at the ERCOFTAC Symposium on Unsteady Separation in Fluid-Structure Interaction held in Mykonos, Greece, 17-21 June, 2013 and include extended discussions and new highlights. The book is intended for students, researchers and practitioners in the broad field of computatio...

  14. Plasma-edge gradients in L-mode and ELM-free H-mode JET plasmas

    International Nuclear Information System (INIS)

    Breger, P.; Zastrow, K.-D.; Davies, S.J.; K ig, R.W.T.; Summers, D.D.R.; Hellermann, M.G. von; Flewin, C.; Hawkes, N.C.; Pietrzyk, Z.A.; Porte, L.

    1998-01-01

    Experimental plasma-edge gradients in JET during the edge-localized-mode (ELM) free H-mode are examined for evidence of the presence and location of the transport barrier region inside the magnetic separatrix. High spatial resolution data in electron density is available in- and outside the separatrix from an Li-beam diagnostic, and in electron temperature inside the separatrix from an ECE diagnostic, while outside the separatrix, a reciprocating probe provides electron density and temperature data in the scrape-off layer. Ion temperatures and densities are measured using an edge charge-exchange diagnostic. A comparison of observed widths and gradients of this edge region with each other and with theoretical expectations is made. Measurements show that ions and electrons form different barrier regions. Furthermore, the electron temperature barrier width (3-4 cm) is about twice that of electron density, in conflict with existing scaling laws. Suitable parametrization of the edge data enables an electron pressure gradient to be deduced for the first time at JET. It rises during the ELM-free phase to reach only about half the marginal pressure gradient expected from ballooning stability before the first ELM. Subsequent type I ELMs occur on a pressure gradient contour roughly consistent with both a constant barrier width model and a ballooning mode envelope model. (author)

  15. A General Algorithm for Reusing Krylov Subspace Information. I. Unsteady Navier-Stokes

    Science.gov (United States)

    Carpenter, Mark H.; Vuik, C.; Lucas, Peter; vanGijzen, Martin; Bijl, Hester

    2010-01-01

    A general algorithm is developed that reuses available information to accelerate the iterative convergence of linear systems with multiple right-hand sides A x = b (sup i), which are commonly encountered in steady or unsteady simulations of nonlinear equations. The algorithm is based on the classical GMRES algorithm with eigenvector enrichment but also includes a Galerkin projection preprocessing step and several novel Krylov subspace reuse strategies. The new approach is applied to a set of test problems, including an unsteady turbulent airfoil, and is shown in some cases to provide significant improvement in computational efficiency relative to baseline approaches.

  16. Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient

    NARCIS (Netherlands)

    Weijerman, M.W.; Fulton, E.A.; Parrish, F.A.

    2013-01-01

    Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all

  17. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    Science.gov (United States)

    Sandeep, N.; Animasaun, I. L.

    2017-06-01

    Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  18. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    Directory of Open Access Journals (Sweden)

    Sandeep N.

    2017-06-01

    Full Text Available Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature. This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  19. Developments in the theory of trapped particle pressure gradient driven turbulence in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Diamond, P.H.; Biglari, H.; Gang, F.Y.

    1991-01-01

    Recent advances in the theory of trapped particle pressure gradient driven turbulence are summarized. A novel theory of trapped ion convective cell turbulence is presented. It is shown that non-linear transfer to small scales occurs, and that saturation levels are not unphysically large, as previously thought. As the virulent saturation mechanism of ion Compton scattering is shown to result in weak turbulence at higher frequencies, it is thus likely that trapped ion convective cells are the major agent of tokamak transport. Fluid like trapped electron modes at short wavelengths (k θ ρ i > 1) are shown to drive an inward particle pinch. The characteristics of convective cell turbulence in flat density discharges are described, as is the stability of dissipative trapped electron modes in stellarators, with flexible magnetic field structure. The role of cross-correlations in the dynamics of multifield models of drift wave turbulence is discussed. (author). 32 refs, 8 figs, 1 tab

  20. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    Science.gov (United States)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  1. Numerical simulation of swirling flow in complex hydroturbine draft tube using unsteady statistical turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Joongcheol [University of Minnesota; Sotiropoulos, Fotis [University of Minnesota; Sale, Michael J [ORNL

    2005-06-01

    A numerical method is developed for carrying out unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and detached-eddy simulations (DESs) in complex 3D geometries. The method is applied to simulate incompressible swirling flow in a typical hydroturbine draft tube, which consists of a strongly curved 90 degree elbow and two piers. The governing equations are solved with a second-order-accurate, finite-volume, dual-time-stepping artificial compressibility approach for a Reynolds number of 1.1 million on a mesh with 1.8 million nodes. The geometrical complexities of the draft tube are handled using domain decomposition with overset (chimera) grids. Numerical simulations show that unsteady statistical turbulence models can capture very complex 3D flow phenomena dominated by geometry-induced, large-scale instabilities and unsteady coherent structures such as the onset of vortex breakdown and the formation of the unsteady rope vortex downstream of the turbine runner. Both URANS and DES appear to yield the general shape and magnitude of mean velocity profiles in reasonable agreement with measurements. Significant discrepancies among the DES and URANS predictions of the turbulence statistics are also observed in the straight downstream diffuser.

  2. Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number

    Science.gov (United States)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo

    2018-05-01

    Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.

  3. Wall modeling for the simulation of highly non-isothermal unsteady flows

    International Nuclear Information System (INIS)

    Devesa, A.

    2006-12-01

    Nuclear industry flows are most of the time characterized by their high Reynolds number, density variations (at low Mach numbers) and a highly unsteady behaviour (low to moderate frequencies). High Reynolds numbers are un-affordable by direct simulation (DNS), and simulations must either be performed by solving averaged equations (RANS), or by solving only the large eddies (LES), both using a wall model. A first investigation of this thesis dealt with the derivation and test of two variable density wall models: an algebraic law (CWM) and a zonal approach dedicated to LES (TBLE-ρ). These models were validated in quasi-isothermal cases, before being used in academic and industrial non-isothermal flows with satisfactory results. Then, a numerical experiment of pulsed passive scalars was performed by DNS, were two forcing conditions were considered: oscillations are imposed in the outer flow; oscillations come from the wall. Several frequencies and amplitudes of oscillations were taken into account in order to gain insights in unsteady effects in the boundary layer, and to create a database for validating wall models in such context. The temporal behaviour of two wall models (algebraic and zonal wall models) were studied and showed that a zonal model produced better results when used in the simulation of unsteady flows. (author)

  4. Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients

    KAUST Repository

    Yip, Ngai Yin

    2011-05-15

    Pressure retarded osmosis has the potential to produce renewable energy from natural salinity gradients. This work presents the fabrication of thin-film composite membranes customized for high performance in pressure retarded osmosis. We also present the development of a theoretical model to predict the water flux in pressure retarded osmosis, from which we can predict the power density that can be achieved by a membrane. The model is the first to incorporate external concentration polarization, a performance limiting phenomenon that becomes significant for high-performance membranes. The fabricated membranes consist of a selective polyamide layer formed by interfacial polymerization on top of a polysulfone support layer made by phase separation. The highly porous support layer (structural parameter S = 349 μm), which minimizes internal concentration polarization, allows the transport properties of the active layer to be customized to enhance PRO performance. It is shown that a hand-cast membrane that balances permeability and selectivity (A = 5.81 L m-2 h-1 bar-1, B = 0.88 L m-2 h-1) is projected to achieve the highest potential peak power density of 10.0 W/m2 for a river water feed solution and seawater draw solution. The outstanding performance of this membrane is attributed to the high water permeability of the active layer, coupled with a moderate salt permeability and the ability of the support layer to suppress the undesirable accumulation of leaked salt in the porous support. Membranes with greater selectivity (i.e., lower salt permeability, B = 0.16 L m-2 h-1) suffered from a lower water permeability (A = 1.74 L m-2 h-1 bar-1) and would yield a lower peak power density of 6.1 W/m2, while membranes with a higher permeability and lower selectivity (A = 7.55 L m-2 h-1 bar-1, B = 5.45 L m-2 h-1) performed poorly due to severe reverse salt permeation, resulting in a similar projected peak power density of 6.1 W/m2. © 2011 American Chemical Society.

  5. Characterization of the unsteady flow in the nacelle region of a modern wind turbine

    DEFF Research Database (Denmark)

    Zahle, Frederik; Sørensen, Niels N.

    2011-01-01

    A three-dimensional Navier–Stokes solver has been used to investigate the flow in the nacelle region of a wind turbine where anemometers are typically placed to measure the flow speed and the turbine yaw angle. A 500 kW turbine was modelled with rotor and nacelle geometry in order to capture...... the complex separated flow in the blade root region of the rotor. A number of steady state and unsteady simulations were carried out for wind speeds ranging from 6 m s−1 to 16 m s−1 as well as two yaw and tilt angles. The flow in the nacelle region was found to be highly unsteady, dominated by unsteady vortex...... anemometry showed significant dependence on both yaw and tilt angles with yaw errors of up to 10 degrees when operating in a tilted inflow. Copyright © 2010 John Wiley & Sons, Ltd....

  6. Unsteady flow field in a mini VAWT with relative rotation blades: analysis of temporal results

    International Nuclear Information System (INIS)

    Bayeul-Lainé, A C; Simonet, S; Bois, G

    2013-01-01

    The present wind turbine is a small one which can be used on roofs or in gardens. This turbine has a vertical axis. Each turbine blade combines a rotating movement around its own axis and around the main rotor axis. Due to this combination of movements, flow around this turbine is highly unsteady and needs to be modelled by unsteady calculation. The present work is an extended study starting in 2009. The benefits of combined rotating blades have been shown. The performance coefficient of this kind of turbine is very good for some blade stagger angles. Spectral analysis of unsteady results on specific points in the domain and temporal forces on blades was already presented for elliptic blades. The main aim here is to compare two kinds of blades in case of the best performances

  7. Cardiovascular Pressures with Venous Gas Embolism and Decompression

    Science.gov (United States)

    Butler, B. D.; Robinson, R.; Sutton, T.; Kemper, G. B.

    1995-01-01

    Venous gas embolism (VGE) is reported with decompression to a decreased ambient pressure. With severe decompression, or in cases where an intracardiac septal defect (patent foramen ovale) exists, the venous bubbles can become arterialized and cause neurological decompression illness. Incidence rates of patent foramen ovale in the general population range from 25-34% and yet aviators, astronauts, and deepsea divers who have decompression-induced venous bubbles do not demonstrate neurological symptoms at these high rates. This apparent disparity may be attributable to the normal pressure gradient across the atria of the heart that must be reversed for there to be flow potency. We evaluated the effects of: venous gas embolism (0.025, 0.05 and 0.15 ml/ kg min for 180 min.) hyperbaric decompression; and hypobaric decompression on the pressure gradient across the left and right atria in anesthetized dogs with intact atrial septa. Left ventricular end-diastolic pressure was used as a measure of left atrial pressure. In a total of 92 experimental evaluations in 22 dogs, there were no reported reversals in the mean pressure gradient across the atria; a total of 3 transient reversals occurred during the peak pressure gradient changes. The reasons that decompression-induced venous bubbles do not consistently cause serious symptoms of decompression illness may be that the amount of venous gas does not always cause sufficient pressure reversal across a patent foramen ovale to cause arterialization of the venous bubbles.

  8. Part 1 - Experimental study of the pressure fluctuations on propeller turbine runner blades during steady-state operation

    Science.gov (United States)

    Houde, S.; Fraser, R.; Ciocan, G. D.; Deschênes, C.

    2012-11-01

    A good evaluation of the unsteady pressure field on hydraulic turbine blades is critical in evaluating the turbine lifespan and its maintenance schedule. Low-head turbines such as Kaplan and Propeller, using a relatively low number of blades supported only at the hub, may also undergo significant deflections at the blade tips which will lead to higher amplitude vibration compared to Francis turbines. Furthermore, the precise evaluation of the unsteady pressure distribution on low-head turbines is still a challenge for computational fluid dynamics (CFD). Within the framework of an international research consortium on low-head turbines, a research project was instigated at the Hydraulic Machines Laboratory in Laval University (LAMH) to perform experimental measurements of the unsteady pressure field on propeller turbine model runner blades. The main objective of the project was to measure the pressure fluctuations on a wide band of frequencies, both in a blade-to-blade channel and on the pressure and suction side of the same blade, to provide validation data for CFD computations. To do so, a 32 channels telemetric data transmission system was used to extract the signal of 31 pressure transducers and two strain gages from the rotating part at an acquisition frequency of 5 KHz. The miniature piezoelectric pressure transducers were placed on two adjacent runner blades according to an estimated pressure distribution coming from flow simulations. Two suction sides and one pressure side were instrumented. The strain gages were mounted in full-bridge on both pressure and suction sides to measure the blade span wise deflection. In order to provide boundary conditions for flow simulations, the test bench conditions during the measurements were acquired. The measurements were made in different operating conditions ranging from part load, where a cavitating vortex occurs, to full load under different heads. The results enabled the identification and the quantification of the

  9. Flow structure and unsteadiness in the supersonic wake of a generic space launcher

    Science.gov (United States)

    Schreyer, Anne-Marie; Stephan, Sören; Radespiel, Rolf

    2015-11-01

    At the junction between the rocket engine and the main body of a classical space launcher, a separation-dominated and highly unstable flow field develops and induces strong wall-pressure oscillations. These can excite structural vibrations detrimental to the launcher. It is desirable to minimize these effects, for which a better understanding of the flow field is required. We study the wake flow of a generic axisymmetric space-launcher model with and without propulsive jet (cold air). Experimental investigations are performed at Mach 2.9 and a Reynolds number ReD = 1 . 3 .106 based on model diameter D. The jet exits the nozzle at Mach 2.5. Velocity measurements by means of Particle Image Velocimetry and mean and unsteady wall-pressure measurements on the main-body base are performed simultaneously. Additionally, we performed hot-wire measurements at selected points in the wake. We can thus observe the evolution of the wake flow along with its spectral content. We describe the mean and turbulent flow topology and evolution of the structures in the wake flow and discuss the origin of characteristic frequencies observed in the pressure signal at the launcher base. The influence of a propulsive jet on the evolution and topology of the wake flow is discussed in detail. The German Research Foundation DFG is gratefully acknowledged for funding this research within the SFB-TR40 ``Technological foundations for the design of thermally and mechanically highly loaded components of future space transportation systems.''

  10. MATHEMATICAL MODELING OF UNSTEADY HEAT EXCHANGE IN A PASSENGER CAR

    Directory of Open Access Journals (Sweden)

    I. Yu. Khomenko

    2013-07-01

    Full Text Available Purpose.Existing mathematicalmodelsofunsteadyheatexchangeinapassengercardonotsatisfytheneedofthedifferentconstructivedecisionsofthelifesupportsystemefficiencyestimation. They also don’t allow comparing new and old life support system constructions influence on the inner environment conditions. Moreoverquite frequently unsteady heat exchange processes were studied at the initial car motion stage. Due to the new competitive engineering decisionsof the lifesupportsystemthe need of a new mathematical instrument that would satisfy the mentioned features and their influence on the unsteadyheatexchangeprocesses during the whole time of the road appeared. The purpose of this work is creation of the mathematicalmodel ofunsteadyheatexchangeinapassengercarthatcan satisfythe above-listed requirements. Methodology. Fortheassigned task realizationsystemofdifferentialequationsthatcharacterizesunsteadyheatexchangeprocessesinapassengercarwascomposed; forthesystemof equationssolution elementary balance method was used. Findings. Computational algorithm was developed andcomputer program for modeling transitional heat processes in the car was designed. It allows comparing different life support system constructions influence on the inner environment conditionsand unsteady heat exchange processes can be studied at every car motion stage. Originality.Mathematicalmodelofunsteadyheatexchangeinapassengercarwasimproved. That is why it can be used for the heat engineering studying of the inner car state under various conditions and for the operation of the different life support systems of passenger cars comparison. Mathematicalmodelingofunsteadyheatexchangeinapassengercarwas made by the elementary balance method. Practical value. Created mathematical model gives the possibility to simulate temperature changes in passenger car on unsteady thermal conditions with enough accuracy and to introduce and remove additional elements to the designed model. Thus different

  11. Aortoseptal angle and pressure gradient reduction following balloon valvuloplasty in dogs with severe subaortic stenosis.

    Science.gov (United States)

    Shen, L; Estrada, A H; Côté, E; Powell, M A; Winter, B; Lamb, K

    2017-04-01

    To determine the relationship between aortoseptal angle (AoSA) and the short- and long-term systolic pressure gradient (PG) reduction following combined cutting and high-pressure balloon valvuloplasty (CB/HPBV) in dogs with severe subaortic stenosis. Retrospective study of 22 client-owned dogs of various breeds with severe subaortic stenosis (mean left ventricular to aortic PG = 143 mmHg; range = 80-322 mmHg) that underwent CB/HPBV. Initial angiographic and left apical and right-sided parasternal long-axis view echocardiographic video loops were used for measuring the angle between the plane of the interventricular septum and the longitudinal axis of the ascending aorta. The PG reduction ratio immediately after CB/HPBV and 6 and 12 months later were compared with AoSA. Weak correlations were observed for all instances of PG reduction ratio and AoSA type. Significantly greater mean differences of PG reduction ratio were observed for angles >160° than for angles 160° mean: 54.45, standard error [SE]: ±3.8; 160° mean: 57.73, SE: ±10.9; 160° mean: 76.11, SE: ±17.5; Dogs with AoSA >160° on right-sided parasternal long-axis view echocardiograms responded with a greater PG reduction following CB/HPBV than did dogs with AoSA dogs that are candidates for CB/HPBV. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  12. Comparison of coral reef ecosystems along a fishing pressure gradient.

    Directory of Open Access Journals (Sweden)

    Mariska Weijerman

    Full Text Available Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs-such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn's cycling index and mean path length-indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai'i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai'i, O'ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community were most robust (i.e., showed the clearest trend and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system's internal structure that can be used to support management in identification of approaches to reverse unfavorable states.

  13. Unsteady axisymmetric flow and heat transfer over time-dependent radially stretching sheet

    Directory of Open Access Journals (Sweden)

    Azeem Shahzad

    2017-03-01

    Full Text Available This article address the boundary layer flow and heat transfer of unsteady and incompressible viscous fluid over an unsteady stretching permeable surface. First of all modeled nonlinear partial differential equations are transformed to a system of ordinary differential equations by using similarity transformations. Analytic solution of the reduced problem is constructed by using homotopy analysis method (HAM. To validate the constructed series solution a numerical counterpart is developed using shooting algorithm based on Runge-Kutta method. Both schemes are in an excellent agreement. The effects of the pertinent parameters on the velocity and energy profile are shown graphically and examined in detail.

  14. Unsteady Viscous Flow Past an Impulsively Started Porous Vertical ...

    African Journals Online (AJOL)

    This paper presents a new numerical approach for solving unsteady two dimensional boundary layer flow past an infinite vertical porous surface with the flow generated by Newtonian heating and impulsive motion in the presence of viscous dissipation and temperature dependent viscosity. The viscosity of the fluid under ...

  15. Heat and mass transfer in the unsteady hydromagnetic free ...

    African Journals Online (AJOL)

    Heat and mass transfer in the unsteady hydromagnetic free-convection flow in a rotating binary fluid I. ... By imposing a time dependent perturbation on the constant plate temperature and concentration and assuming a differential approximation for the radiative flux, the coupled non linear problem is solved for the ...

  16. The Effect of Hemodynamics on Cerebral Aneurysm Morphology

    Science.gov (United States)

    Metcalfe, Ralph; Mantha, Aishwarya; Karmonik, Christof; Strother, Charles

    2004-11-01

    One of the difficulties in applying principles of hemodynamics to the study of blood flow in aneurysms are the drastic variations in possible shape of both the aneurysms and the parent arteries in the region of interest. We have taken data from three para-opthalmic internal carotid artery aneurysms using 3D-digital subtraction angiography (3D-DSA) and performed CFD simulations of steady and unsteady flows through the three different cases using the same pressure gradients and pulsatile flow waveforms (based on the Ku model for flow through the Carotid bifurcation). We have found that the total pressure differential within the aneurysms is consistent with the direction of flow, and that the dynamic pressure gradient within the aneurysm is very small compared with the static pressure variations. Wall shear stresses were highest near regions of sharp arterial curvature, but always remained low inside the aneurysm. These results suggest a more complex role for hemodynamics in aneurysm generation, growth and rupture.

  17. Experimental investigation of the unsteady one-phase flow through perforated plates

    International Nuclear Information System (INIS)

    Casadei, F.

    1982-07-01

    The flow of the coolant through the perforated dip-plate during a hypothetical core-disruptive accident in a sodium-cooled fast breeder reactor was simulated in a one-dimensional model. Several experiments with water as fluid and with various perforation ratios of the dip-plate and different initial heights of the fluid head over the dip plate were run. The pressure drop through the dip-plate and the forces acting on the dip-plate and on the upper plug of the reactor vessel in a wide range of the Reynolds and Strouhal numbers were measured. The flow pattern downstreams the perforated plate was filmed with high-speed cameras. The resistance coefficients for the unsteady flow of the coolant through the perforated plate were obtained as a function of the acceleration. The forces acting on the upper plug and their time integral were compared with those acting on the dip-plate. Finally, using the high-speed film pictures the formation of fluid jets downstream the dip-plate was investigated. (orig.) [de

  18. A new numerical investigation of some thermo-physical properties on unsteady MHD non-Darcian flow past an impulsively started vertical surface

    Directory of Open Access Journals (Sweden)

    Motsa Sandile Sydney

    2015-01-01

    Full Text Available The behaviour of unsteady non-Darcian magnetohydrodynamic fluid flow past an impulsively started vertical porous surface is investigated. The effect of thermophoresis due to migration of colloidal particles in response to a macroscopic temperature gradient is taken into account. It is assumed that both dynamic viscosity and thermal conductivity are linear functions of temperature. The governing equations are non-dimensionalized by using suitable similarity transformation which can unravel the behaviour of the flow at short time and long time periods. A novel iteration scheme, called bivariate spectral local linearization method is developed for solving the corresponding systems of highly non-linear partial differential equations. The results of the numerical solutions obtained are presented graphically and analyzed for the effects of the various important parameters entering into the problem on velocity, temperature, and concentration field within the boundary layer.

  19. Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes in vitro.

    Science.gov (United States)

    Li, Hui; Huang, Linjian; Xie, Qianyang; Cai, Xieyi; Yang, Chi; Wang, Shaoyi; Zhang, Min

    2017-01-01

    To investigate the effects of gradient mechanical pressure on chondrocyte proliferation, apoptosis, and the expression of markers of chondrogenesis and chondrocyte hypertrophy. Mandibular condylar chondrocytes from 5 rabbits were cultured in vitro, and pressed with static pressures of 50kPa, 100kPa, 150kPa and 200kPa for 3h, respectively. The chondrocytes cultured without pressure (0kPa) were used as control. Cell proliferation, apoptosis, and the expression of aggrecan (AGG), collagen II (COL2), collagen X (COL10), alkaline phosphatase (ALP) were investigated. Ultrastructures of the pressurized chondrocytes under transmission electron microscopy (TEM) were observed. Chondrocyte proliferation increased at 100kPa and decreased at 200kPa. Chondrocyte apoptosis increased with peak pressure at 200kPa in a dose-dependent manner. Chondrocyte necrosis increased at 200kPa. The expression of AGG increased at 200kPa. The expression of COL2 decreased at 50kPa and increased at 150kPa. The expression of COL10 and ALP increased at 150kPa. Ultrastructure of the pressurized chondrocytes under TEM showed: at 100kPa, cells were enlarged with less cellular microvillus and a bigger nucleus; at 200kPa, cells shrank with the sign of apoptosis, and apoptosis cells were found. The mechanical loading of 150kPa is the moderate pressure for chondrocyte: cell proliferation and apoptosis is balanced, necrosis is reduced, and chondrogenesis and chondrocyte hypertrophy are promoted. When the pressure is lower, chondrogenesis and chondrocyte hypertrophy are inhibited. At 200kPa, degeneration of cartilage is implied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    International Nuclear Information System (INIS)

    Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi

    2008-01-01

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies

  1. Comparison of Engine/Inlet Distortion Measurements with MEMS and ESP Pressure Sensors

    Science.gov (United States)

    Soto, Hector L.; Hernandez, Corey D.

    2004-01-01

    A study of active-flow control in a small-scale boundary layer ingestion inlet was conducted at the NASA Langley Basic Aerodynamic Research Tunnel (BART). Forty MEMS pressure sensors, in a rake style configuration, were used to examine both the mean (DC) and high frequency (AC) components of the total pressure across the inlet/engine interface plane. The mean component was acquired and used to calculate pressure distortion. The AC component was acquired separately, at a high sampling rate, and is used to study the unsteady effects of the active-flow control. An identical total pressure rake, utilizing an Electronically Scanned Pressure (ESP) system, was also used to calculate distortion; a comparison of the results obtained using the two rakes is presented.

  2. Numerical unsteady aerodynamics for turbomachinery aeroelasticity; Simulation numerique en aerodynamique instationnaire pour l'aeroelasticite des turbomachines

    Energy Technology Data Exchange (ETDEWEB)

    Dugeai, A.; Sens, A.S. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France); Madec, A. [Societe Nationale d' Etude et de Construction de Moteurs d' Aviation SNECMA, 77 - Villaroche (France)

    2001-07-01

    A computational tool for the prediction of aeronautical machineries aeroelastic stability is presented. Numerical features of the quasi-3D Navier-Stokes unsteady solver are discussed: turbulence models, grid deformation techniques, specific boundary conditions. Isolated profile and cascade computational results are compared to experimental data, for steady and unsteady cases. (authors)

  3. Pressure fluctuations induced by fluid flow in singular points of industrial circuits

    International Nuclear Information System (INIS)

    Gibert, R.J.; Villard, B.

    1977-01-01

    Flow singularities (enlargements, bards, valves, tees,...) generate in the circuits of industrial plants wall pressure fluctuations which are the main cause of vibration. Two types of pressure fluctuations can be considered. - 'Local ' fluctuations: They are associated to the unsteadiness downstream from the singularity. These fluctuations may be characterized by frequency spectra, correlation length and phase lags. These parameters are used to calculate forces on the walls of the circuit. - 'Acoustic' fluctuations: The singularity acts as an acoustical source; its frequency spectrum and the acoustical transfer function of the circuit are needed to evaluate the acoustical level at any point. A methodical study of the most current singularities has been performed at C.E.A./D.E.M.T.: - On one hand a theory of noise generation by unsteady flow in internal acoustics has been developed. This theory uses the basic idea initiated by LIGHTILL. As a result it is shown that the plane wave propagation is a valid assumption and that a singularity can be acoustically modelled by a pressure and a mass-flow-rate discontinuities. Both are random functions of time, the spectra of which are determined from the local fluctuations characteristics. - On the other hand, characteristics of several singularities have been measured: (i) Intercorrelation spectra of local pressure fluctuations. (ii) Autocorrelation spectra of associated acoustical sources (the measure of the acoustical pressures in the experimental circuit are interpreted by using the D.E.M.T. computer code VIBRAPHONE which gives the acoustical response of a complex circuit). (Auth.)

  4. Unsteady Reynolds Averaged Navier-Stokes and Large Eddy Simulations of Flows across Staggered Tube Bundle for a VHTR Lower Plenum Design

    International Nuclear Information System (INIS)

    Choi, Hyeon Kyeong; Park, Jong Woon

    2013-01-01

    In this work, behavior of unsteady and oscillating flow through a typical tube bundle array are analyzed by unsteady computations: 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) and the results are compared with existing experimental data. In order to confirm appropriateness and limitations of CFD applications in the Korean VHTR design, two types of unsteady computations are performed such as 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) for the existing tube bundle array. The velocity component profiles are compared with the experimental data and it is concluded that the URANS with the standard k-ω model is reasonably appropriate for cost-effective VHTR lower plenum analysis. Nevertheless, if more accurate results are needed, the LES-Smagorinsky computation is recommended considering limitations in the time averaged RANS in capturing small eddies

  5. Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France).

    Science.gov (United States)

    Foti, Ludovic; Dubs, Florence; Gignoux, Jacques; Lata, Jean-Christophe; Lerch, Thomas Z; Mathieu, Jérôme; Nold, François; Nunan, Naoise; Raynaud, Xavier; Abbadie, Luc; Barot, Sébastien

    2017-11-15

    The concentration, degree of contamination and pollution of 7 trace elements (TEs) along an urban pressure gradient were measured in 180 lawn and wood soils of the Paris region (France). Iron (Fe), a major element, was used as reference element. Copper (Cu), cadmium (Cd), lead (Pb) and zinc (Zn) were of anthropogenic origin, while arsenic (As), chromium (Cr) and nickel (Ni) were of natural origin. Road traffic was identified as the main source of anthropogenic TEs. In addition, the industrial activity of the Paris region, especially cement plants, was identified as secondary source of Cd. Soil characteristics (such as texture, organic carbon (OC) and total nitrogen (tot N) contents) tell the story of the soil origins and legacies along the urban pressure gradient and often can explain TE concentrations. The history of the land-use types was identified as a factor that allowed understanding the contamination and pollution by TEs. Urban wood soils were found to be more contaminated and polluted than urban lawns, probably because woods are much older than lawns and because of the legacy of the historical management of soils in the Paris region (Haussmann period). Lawn soils are similar to the fertile agricultural soils and relatively recently (mostly from the 1950s onwards) imported from the surrounding of Paris, so that they may be less influenced by urban conditions in terms of TE concentrations. Urban wood soils are heavily polluted by Cd, posing a high risk to the biological communities. The concentration of anthropogenic TEs increased from the rural to the urban areas, and the concentrations of most anthropogenic TEs in urban areas were equivalent to or above the regulatory reference values, raising the question of longer-term monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Part 1 – Experimental study of the pressure fluctuations on propeller turbine runner blades during steady-state operation

    International Nuclear Information System (INIS)

    Houde, S; Fraser, R; Ciocan, G D; Deschênes, C

    2012-01-01

    A good evaluation of the unsteady pressure field on hydraulic turbine blades is critical in evaluating the turbine lifespan and its maintenance schedule. Low-head turbines such as Kaplan and Propeller, using a relatively low number of blades supported only at the hub, may also undergo significant deflections at the blade tips which will lead to higher amplitude vibration compared to Francis turbines. Furthermore, the precise evaluation of the unsteady pressure distribution on low-head turbines is still a challenge for computational fluid dynamics (CFD). Within the framework of an international research consortium on low-head turbines, a research project was instigated at the Hydraulic Machines Laboratory in Laval University (LAMH) to perform experimental measurements of the unsteady pressure field on propeller turbine model runner blades. The main objective of the project was to measure the pressure fluctuations on a wide band of frequencies, both in a blade-to-blade channel and on the pressure and suction side of the same blade, to provide validation data for CFD computations. To do so, a 32 channels telemetric data transmission system was used to extract the signal of 31 pressure transducers and two strain gages from the rotating part at an acquisition frequency of 5 KHz. The miniature piezoelectric pressure transducers were placed on two adjacent runner blades according to an estimated pressure distribution coming from flow simulations. Two suction sides and one pressure side were instrumented. The strain gages were mounted in full-bridge on both pressure and suction sides to measure the blade span wise deflection. In order to provide boundary conditions for flow simulations, the test bench conditions during the measurements were acquired. The measurements were made in different operating conditions ranging from part load, where a cavitating vortex occurs, to full load under different heads. The results enabled the identification and the quantification of the

  7. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Huyer, S [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  8. Pressure balance inconsistency exhibited in a statistical model of magnetospheric plasma

    Science.gov (United States)

    Garner, T. W.; Wolf, R. A.; Spiro, R. W.; Thomsen, M. F.; Korth, H.

    2003-08-01

    While quantitative theories of plasma flow from the magnetotail to the inner magnetosphere typically assume adiabatic convection, it has long been understood that these convection models tend to overestimate the plasma pressure in the inner magnetosphere. This phenomenon is called the pressure crisis or the pressure balance inconsistency. In order to analyze it in a new and more detailed manner we utilize an empirical model of the proton and electron distribution functions in the near-Earth plasma sheet (-50 RE attributed to gradient/curvature drift for large isotropic energy invariants but not for small invariants. The tailward gradient of the distribution function indicates a violation of the adiabatic drift condition in the plasma sheet. It also confirms the existence of a "number crisis" in addition to the pressure crisis. In addition, plasma sheet pressure gradients, when crossed with the gradient of flux tube volume computed from the [1989] magnetic field model, indicate Region 1 currents on the dawn and dusk sides of the outer plasma sheet.

  9. Computational Fluid Dynamics Modeling Three-Dimensional Unsteady Turbulent Flow and Excitation Force in Partial Admission Air Turbine

    Directory of Open Access Journals (Sweden)

    Yonghui Xie

    2013-01-01

    Full Text Available Air turbines are widely used to convert kinetic energy into power output in power engineering. The unsteady performance of air turbines with partial admission not only influences the aerodynamic performance and thermodynamic efficiency of turbine but also generates strong excitation force on blades to impair the turbine safely operating. Based on three-dimensional viscous compressible Navier-stokes equations, the present study employs RNG (Renormalization group k-ε turbulence model with finite volume discretization on air turbine with partial admission. Numerical models of four different admission rates with full annulus are built and analyzed via CFD (computational fluid dynamics modeling unsteady flows. Results indicate that the unsteady time-averaged isentropic efficiency is lower than the steady isentropic efficiency, and this difference rises as unsteady isentropic efficiency fluctuates stronger when the admission rate is reduced. The rotor axial and tangential forces with time are provided for all four admission rates. The low frequency excitation forces generated by partial admission are extraordinarily higher than the high frequency excitation forces by stator wakes.

  10. Active Flow Control in an Aggressive Transonic Diffuser

    Science.gov (United States)

    Skinner, Ryan W.; Jansen, Kenneth E.

    2017-11-01

    A diffuser exchanges upstream kinetic energy for higher downstream static pressure by increasing duct cross-sectional area. The resulting stream-wise and span-wise pressure gradients promote extensive separation in many diffuser configurations. The present computational work evaluates active flow control strategies for separation control in an asymmetric, aggressive diffuser of rectangular cross-section at inlet Mach 0.7 and Re 2.19M. Corner suction is used to suppress secondary flows, and steady/unsteady tangential blowing controls separation on both the single ramped face and the opposite flat face. We explore results from both Spalart-Allmaras RANS and DDES turbulence modeling frameworks; the former is found to miss key physics of the flow control mechanisms. Simulated baseline, steady, and unsteady blowing performance is validated against experimental data. Funding was provided by Northrop Grumman Corporation, and this research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

  11. Shear stress from hot-film sensors in unsteady gas flow

    International Nuclear Information System (INIS)

    Cole, K.D.

    1991-01-01

    In this paper a data analysis procedure is proposed for obtaining unsteady wall shear stress from flush-mounted hot-film anemometer measurements. The method is based on a two-dimensional heat transfer model of the unsteady heat transfer in both the hot-film sensor and in the gas flow. The sensor thermal properties are found from preliminary calibration experiments at zero flow. Numerical experiments are used to demonstrate the data analysis method using simulated sensor signals that are corrupted with noise. The numerical experiments show that noise in the data propagates into the results so that data smoothing may be important in analyzing experimental data. Because the data analysis procedure is linear, a linear digital filter is constructed that could be used for processing large amounts of experimental data. However, further refinements will be needed before the method can be applied to experimental data

  12. Experimental evaluation of ability of Relap5, Drako, Flowmaster2TM and program using unsteady wall friction model to calculate water hammer loadings on pipelines

    International Nuclear Information System (INIS)

    Marcinkiewicz, Jerzy; Adamowski, Adam; Lewandowski, Mariusz

    2008-01-01

    Mechanical loadings on pipe systems caused by water hammer (hydraulic transients) belong to the most important and most difficult to calculate design loadings in nuclear power plants. The most common procedure in Sweden is to calculate the water hammer loadings on pipe segments, according to the classical one-dimensional (1D) theory of liquid transient flow in a pipeline, and then transfer the results to strength analyses of pipeline structure. This procedure assumes that there is quasi-steady respond of the pipeline structure to pressure surges-no dynamic interaction between the fluid and the pipeline construction. The hydraulic loadings are calculated with 1D so-called 'network' programs. Commonly used in Sweden are Relap5, Drako and Flowmaster2-all using quasi-steady wall friction model. As a third party accredited inspection body Inspecta Nuclear AB reviews calculations of water hammer loadings. The presented work shall be seen as an attempt to illustrate ability of Relap5, Flowmaster2 and Drako programs to calculate the water hammer loadings. A special attention was paid to using of Relap5 for calculation of water hammer pressure surges and forces (including some aspects of influence of Courant number on the calculation results) and also the importance of considering the dynamic (or unsteady) friction models. The calculations are compared with experimental results. The experiments have been conducted at a test rig designed and constructed at the Szewalski Institute of Fluid Flow Machinery of the Polish Academy of Sciences (IMP PAN) in Gdansk, Poland. The analyses show quite small differences between pressures and forces calculated with Relap5, Flowmaster2 and Drako (the differences regard mainly damping of pressure waves). The comparison of calculated and measured pressures and also a force acting on a pre-defined pipe segment shows significant differences. It is shown that the differences can be reduced by using unsteady friction models in calculations

  13. Experimental Investigation of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    Science.gov (United States)

    Hultgren, Lennart S.; Volino, Ralph J.

    2002-01-01

    Modern low-pressure turbine airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and to reduce part count. The adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation, particularly under cruise conditions. Separation bubbles, notably those which fail to reattach, can result in a significant degradation of engine efficiency. Accurate prediction of separation and reattachment is hence crucial to improved turbine design. This requires an improved understanding of the transition flow physics. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions, has a strong influence on subsequent reattachment, and may even eliminate separation. Further complicating the problem are the high free-stream turbulence levels in a real engine environment, the strong pressure gradients along the airfoils, the curvature of the airfoils, and the unsteadiness associated with wake passing from upstream stages. Because of the complicated flow situation, transition in these devices can take many paths that can coexist, vary in importance, and possibly also interact, at different locations and instances in time. The present work was carried out in an attempt to systematically sort out some of these issues. Detailed velocity measurements were made along a flat plate subject to the same nominal dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil ('Pak-B'). The Reynolds number based on wetted plate length and nominal exit velocity, Re, was varied from 50;000 to 300; 000, covering cruise to takeoff conditions. Low, 0.2%, and high, 7%, inlet free-stream turbulence intensities were set using passive grids. These turbulence levels correspond to about 0.2% and 2.5% turbulence intensity in the test section when normalized with the exit velocity. The Reynolds number and free

  14. Unsteady aerodynamic behavior of an airfoil with and without a slat

    Science.gov (United States)

    Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.

    1993-01-01

    Unsteady flow behavior and load characteristics of a 2D VR-7 airfoil with and without a leading-edge slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 deg at Re = 200,000 to obtain the unsteady lift, drag, and pitching moment data. A fluorescent dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flowfield and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.

  15. Analysis of the Unsteady Flow Field in a Centrifugal Compressor from Peak Efficiency to Near Stall with Full-Annulus Simulations

    Directory of Open Access Journals (Sweden)

    Yannick Bousquet

    2014-01-01

    Full Text Available This study concerns a 2.5 pressure ratio centrifugal compressor stage consisting of a splittered unshrouded impeller and a vaned diffuser. The aim of this paper is to investigate the modifications of the flow structure when the operating point moves from peak efficiency to near stall. The investigations are based on the results of unsteady three-dimensional simulations, in a calculation domain comprising all the blade. A detailed analysis is given in the impeller inducer and in the vaned diffuser entry region through time-averaged and unsteady flow field. In the impeller inducer, this study demonstrates that the mass flow reduction from peak efficiency to near stall leads to intensification of the secondary flow effects. The low momentum fluid accumulated near the shroud interacts with the main flow through a shear layer zone. At near stall condition, the interface between the two flow structures becomes unstable leading to vortices development. In the diffuser entry region, by reducing the mass flow, the high incidence angle from the impeller exit induces a separation on the diffuser vane suction side. At near stall operating point, vorticity from the separation is shed into vortex cores which are periodically formed and convected downstream along the suction side.

  16. Caution: Precision Error in Blade Alignment Results in Faulty Unsteady CFD Simulation

    Science.gov (United States)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2012-11-01

    Turbomachinery components experience unsteady loads at several frequencies. The rotor frequency corresponds to the time for one rotor blade to rotate between two stator vanes, and is normally dominant for rotor torque oscillations. The guide vane frequency corresponds to the time for two rotor blades to pass by one guide vane. The machine frequency corresponds to the machine RPM. Oscillations at the machine frequency are always present due to minor blade misalignments and imperfections resulting from manufacturing defects. However, machine frequency oscillations should not be present in CFD simulations if the mesh is free of both blade misalignment and surface imperfections. The flow through a Francis hydroturbine was modeled with unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD simulations and a dynamic rotating grid. Spectral analysis of the unsteady torque on the rotor blades revealed a large component at the machine frequency. Close examination showed that one blade was displaced by 0 .0001° due to round-off errors during mesh generation. A second mesh without blade misalignment was then created. Subsequently, large machine frequency oscillations were not observed for this mesh. These results highlight the effect of minor geometry imperfections on CFD solutions. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.

  17. Unsteady Aerodynamics Experiment Phase V: Test Configuration and Available Data Campaigns; TOPICAL

    International Nuclear Information System (INIS)

    Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.

    2001-01-01

    The main objective of the Unsteady Aerodynamics Experiment is to provide information needed to quantify the full-scale, three-dimensional, unsteady aerodynamic behavior of horizontal-axis wind turbines (HAWTs). To accomplish this, an experimental wind turbine configured to meet specific research objectives was assembled and operated at the National Renewable Energy Laboratory (NREL). The turbine was instrumented to characterize rotating-blade aerodynamic performance, machine structural responses, and atmospheric inflow conditions. Comprehensive tests were conducted with the turbine operating in an outdoor field environment under diverse conditions. Resulting data are used to validate aerodynamic and structural dynamics models, which are an important part of wind turbine design and engineering codes. Improvements in these models are needed to better characterize aerodynamic response in both the steady-state post-stall and dynamic-stall regimes. Much of the effort in the first phase of the Unsteady Aerodynamics Experiment focused on developing required data acquisition systems. Complex instrumentation and equipment was needed to meet stringent data requirements while operating under the harsh environmental conditions of a wind turbine rotor. Once the data systems were developed, subsequent phases of experiments were then conducted to collect data for use in answering specific research questions. A description of the experiment configuration used during Phase V of the experiment is contained in this report

  18. Critical gradients and plasma flows in the edge plasma of Alcator C-Moda)

    Science.gov (United States)

    Labombard, B.; Hughes, J. W.; Smick, N.; Graf, A.; Marr, K.; McDermott, R.; Reinke, M.; Greenwald, M.; Lipschultz, B.; Terry, J. L.; Whyte, D. G.; Zweben, S. J.; Alcator C-Mod Team

    2008-05-01

    Recent experiments have led to a fundamental shift in our view of edge transport physics; transport near the last-closed flux surface may be more appropriately described in terms of a critical gradient phenomenon rather than a diffusive and/or convective paradigm. Edge pressure gradients, normalized by the square of the poloidal magnetic field strength, appear invariant in plasmas with the same normalized collisionality, despite vastly different currents and magnetic fields—a behavior that connects with first-principles electromagnetic plasma turbulence simulations. Near-sonic scrape-off layer (SOL) flows impose a cocurrent rotation boundary condition on the confined plasma when B ×∇B points toward the active x-point, suggesting a link to the concomitant reduction in input power needed to attain high-confinement modes. Indeed, low-confinement mode plasmas are found to attain higher edge pressure gradients in this configuration, independent of the direction of B, evidence that SOL flows may affect transport and "critical gradient" values in the edge plasma.

  19. pressure analysis and fluid contact prediction for alpha reservoir

    African Journals Online (AJOL)

    HOD

    a pressure gradient profile such that the oil gradient line will intersect the hydrostatic line above the Water-Up-To. (WUT) line to define the OWC if present. The model was also calibrated with data from reservoirs with established contacts in the field. 3. RESULTS AND DISCUSSION. In the field, pressure typically increases ...

  20. The Unsteady Variable – Viscosity Free Convection Flow on a ...

    African Journals Online (AJOL)

    The unsteady variable-viscosity free convection flow of a viscous incompressible fluid near an infinite vertical plate (or wall) is investigated under an arbitrary timedependent heating of the plates, and the governing equations of motion and energy transformed into ordinary differential equations. Employing asymptotic ...

  1. The effect of unsteady and baroclinic forcing on predicted wind profiles in Large Eddy Simulations: Two case studies of the daytime atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik

    2013-01-01

    . The applied domain-scale pressure gradient and its height- and time-dependence are estimated from LIDAR measurements of the wind speed above the atmospheric boundary layer in the Høvsøre case, and from radio soundings and a network of ground-based pressure sensors in the Hamburg case. In the two case studies......-scale subsidence and advection, tend to reduce agreement with measurements, relative to the Høvsøre case. The Hamburg case illustrates that measurements of the surface pressure gradient and relatively infrequent radio soundings alone are not sufficient for accurate estimation of a height- and time...

  2. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    Science.gov (United States)

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  3. Observations and Measurements on Unsteady Cloud Cavitation Flow Structures

    International Nuclear Information System (INIS)

    Gu, L X; Yan, G J; Huang, B

    2015-01-01

    The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases. (paper)

  4. Observations and Measurements on Unsteady Cloud Cavitation Flow Structures

    Science.gov (United States)

    Gu, L. X.; Yan, G. J.; Huang, B.

    2015-12-01

    The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases.

  5. Low-level wind response to mesoscale pressure systems

    Science.gov (United States)

    Garratt, J. R.; Physick, W. L.

    1983-09-01

    Observations are presented which show a strong correlation between low-level wind behaviour (e.g., rotation near the surface) and the passage of mesoscale pressure systems. The latter are associated with frontal transition zones, are dominated by a pressure-jump line and a mesoscale high pressure area, and produce locally large horizontal pressure gradients. The wind observations are simulated by specifying a time sequence of perturbation pressure gradient and subsequently solving the vertically-integrated momentum equations with appropriate initial conditions. Very good agreement is found between observed and calculated winds; in particular, (i) a 360 ° rotation in wind on passage of the mesoscale high; (ii) wind-shift lines produced dynamically by the pressure-jump line; (iii) rapid linear increase in wind speed on passage of the pressure jump.

  6. Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations.

    Science.gov (United States)

    Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan

    2014-11-28

    The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model

    International Nuclear Information System (INIS)

    Stefan, D; Rudolf, P

    2015-01-01

    The simulations of high head Francis turbine model (Tokke) are performed for three operating conditions - Part Load, Best Efficiency Point (BEP) and Full Load using software Ansys Fluent R15 and alternatively OpenFOAM 2.2.2. For both solvers the simulations employ Realizable k-e turbulence model. The unsteady pressure pulsations of pressure signal from two monitoring points situated in the draft tube cone and one behind the guide vanes are evaluated for all three operating conditions in order to compare frequencies and amplitudes with the experimental results. The computed velocity fields are compared with the experimental ones using LDA measurements in two locations situated in the draft tube cone. The proper orthogonal decomposition (POD) is applied on a longitudinal slice through the draft tube cone. The unsteady static pressure fields are decomposed and a spatio-temporal behavior of modes is correlated with amplitude-frequency results obtained from the pressure signal in monitoring points. The main application of POD is to describe which modes are related to an interaction between rotor (turbine runner) and stator (spiral casing and guide vanes) and cause dynamic flow behavior in the draft tube. The numerically computed efficiency is correlated with the experimental one in order to verify the simulation accuracy

  8. Effects of Drought, Pest Pressure and Light Availability on Seedling Establishment and Growth: Their Role for Distribution of Tree Species across a Tropical Rainfall Gradient

    Science.gov (United States)

    Gaviria, Julian; Engelbrecht, Bettina M. J.

    2015-01-01

    Tree species distributions associated with rainfall are among the most prominent patterns in tropical forests. Understanding the mechanisms shaping these patterns is important to project impacts of global climate change on tree distributions and diversity in the tropics. Beside direct effects of water availability, additional factors co-varying with rainfall have been hypothesized to play an important role, including pest pressure and light availability. While low water availability is expected to exclude drought-intolerant wet forest species from drier forests (physiological tolerance hypothesis), high pest pressure or low light availability are hypothesized to exclude dry forest species from wetter forests (pest pressure gradient and light availability hypothesis, respectively). To test these hypotheses at the seed-to-seedling transition, the potentially most critical stage for species discrimination, we conducted a reciprocal transplant experiment combined with a pest exclosure treatment at a wet and a dry forest site in Panama with seeds of 26 species with contrasting origin. Establishment success after one year did not reflect species distribution patterns. However, in the wet forest, wet origin species had a home advantage over dry forest species through higher growth rates. At the same time, drought limited survival of wet origin species in the dry forest, supporting the physiological tolerance hypothesis. Together these processes sort species over longer time frames, and exclude species outside their respective home range. Although we found pronounced effects of pests and some effects of light availability on the seedlings, they did not corroborate the pest pressure nor light availability hypotheses at the seed-to-seedling transition. Our results underline that changes in water availability due to climate change will have direct consequences on tree regeneration and distributions along tropical rainfall gradients, while indirect effects of light and pests

  9. Rule-Based Multidisciplinary Tool for Unsteady Reacting Real-Fluid Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A design and analysis computational tool is proposed for simulating unsteady reacting flows in combustor devices used in reusable launch vehicles. Key aspects...

  10. Soret and Hall effects on unsteady MHD free convection flow of ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... effects on unsteady MHD free convection flow of radiating and chemically reactive fluid ... Expressions for shear stress, rate of heat transfer and rate of mass transfer at the plate ...

  11. Free water transport, small pore transport and the osmotic pressure gradient

    NARCIS (Netherlands)

    Parikova, Alena; Smit, Watske; Zweers, Machteld M.; Struijk, Dirk G.; Krediet, Raymond T.

    2008-01-01

    BACKGROUND: Water transport in peritoneal dialysis (PD) patients occurs through the small pores and water channels, the latter allowing free water transport (FWT). The osmotic gradient is known to be one of the major determinants of water transport. The objective of the study was to analyse the

  12. Numerical investigation of unsteady mixing mechanism in plate film cooling

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2016-09-01

    Full Text Available A large-scale large eddy simulation in high performance personal computer clusters is carried out to present unsteady mixing mechanism of film cooling and the development of films. Simulation cases include a single-hole plate with the inclined angle of 30° and blowing ratio of 0.5, and a single-row plate with hole-spacing of 1.5D and 2D (diameters of the hole. According to the massive simulation results, some new unsteady phenomena of gas films are found. The vortex system is changed in different position with the development of film cooling with the time marching the process of a single-row plate film cooling. Due to the mutual interference effects including mutual exclusion, a certain periodic sloshing and mutual fusion, and the structures of a variety of vortices change between parallel gas films. Macroscopic flow structures and heat transfer behaviors are obtained based on 20 million grids and Reynolds number of 28600.

  13. Vehicle Unsteady Dynamics Characteristics Based on Tire and Road Features

    Directory of Open Access Journals (Sweden)

    Bin Ma

    2013-01-01

    Full Text Available During automotive related accidents, tire and road play an important role in vehicle unsteady dynamics as they have a significant impact on the sliding friction. The calculation of the rubber viscoelastic energy loss modulus and the true contact area model is improved based on the true contact area and the rubber viscoelastic theory. A 10 DOF full vehicle dynamic model in consideration of the kinetic sliding friction coefficient which has good accuracy and reality is developed. The stability test is carried out to evaluate the effectiveness of the model, and the simulation test is done in MATLAB to analyze the impact of tire feature and road self-affine characteristics on the sport utility vehicle (SUV unsteady dynamics under different weights. The findings show that it is a great significance to analyze the SUV dynamics equipped with different tire on different roads, which may provide useful insights into solving the explicit-implicit features of tire prints in systematically and designing active safety systems.

  14. Peristaltic transport of a fractional Burgers' fluid with variable viscosity through an inclined tube

    Science.gov (United States)

    Rachid, Hassan

    2015-12-01

    In the present study,we investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Burgers' model in an inclined tube. We suppose that the viscosity is variable in the radial direction. This analysis has been carried out under low Reynolds number and long-wavelength approximations. An analytical solution to the problem is obtained using a fractional calculus approach. Figures are plotted to show the effects of angle of inclination, Reynolds number, Froude number, material constants, fractional parameters, parameter of viscosity and amplitude ratio on the pressure gradient, pressure rise, friction force, axial velocity and on the mechanical efficiency.

  15. Measurement of unsteady convection in a complex fenestration using laser interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Poulad, M.E.; Naylor, D. [Ryerson Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering; Oosthuizen, P.H. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering

    2009-06-15

    Complex fenestration involving windows with between-panes louvered blinds is gaining interest as a means to control solar gains in buildings. However, the heat transfer performance of this type of shading system is not well understood, especially at high Rayleigh numbers. A Mach-Zehnder interferometer was used in this study to measure the unsteady convective heat transfer in a tall enclosure with between-panes blind that was heated to simulate absorbed solar radiation. Digital cinematography was combined with laser interferometry to make time-averaged measurements of unsteady and turbulent free convective heat transfer. This paper described the procedures used to measure the time-average local heat flux. Under strongly turbulent conditions, the average Nusselt number for the enclosure was found to compare well with empirical correlations. A total sampling time of about ten seconds was needed in this experiment to obtain a stationary time-average heat flux. The time-average heat flux was found to be relatively insensitive to the camera frame rate. The local heat flux was found to be unsteady and periodic. Heating of the blind made the flow more unstable, producing a higher amplitude heat flux variation than for the unheated blind condition. This paper reported on only a small set of preliminary measurements. This study is being extended to other blind angles and glazing spacings. The next phase will focus on flow visualization studies to characterize the nature of the flow. 8 refs., 2 tabs., 7 figs.

  16. Predictors of ventricular tachyarrhythmia occurring late after intracardiac repair of tetralogy of Fallot: combination of QRS duration change rate and tricuspid regurgitation pressure gradient

    Science.gov (United States)

    Takahashi, Masashi; Sugimoto, Ai; Tsuchida, Masanori

    2017-01-01

    Background To determine potential predictors of ventricular tachyarrhythmia and sudden cardiac death (SCD) occurring late after repair of tetralogy of Fallot (TOF). Methods Since 1964, 415 patients had undergone total repair for TOF at Niigata University Hospital. Of these, 89 patients who were followed for more than 10 years at our institute were retrospectively reviewed. Results The mean follow-up period was 24.3 years. During the study period, one patient died of cerebral bleeding, and two patients had SCD. The overall survival rates at 20, 30, and 40 years were 100%, 94.6%, and 94.6%, respectively. Eight (9.0%) patients required re-intervention during the late period associated with right ventricular outflow (n=4), tricuspid valve (n=3), aortic valve (n=2), and others (n=2). Ten (11.2%) patients had a history of ventricular tachycardia (VT) or ventricular fibrillation (VF), and six underwent implantation of an implantable cardiac defibrillator. Multivariate analysis selected the change rate of QRS duration [ms/year; odds ratio (OR), 2.44; 95% confidence interval (CI): 1.28–4.65; P=0.007] and the pressure gradient at tricuspid valve regurgitation on echocardiography (OR, 1.12; 95% CI: 1.02–1.22; P=0.017) as risk factors for VT/VF or SCD. Trans-annular patch (TAP) repair was not an independent risk factor for ventricular arrhythmia. Conclusions The combination of rapid change rate of QRS duration and higher-pressure gradient at tricuspid regurgitation were risk factors for ventricular tachyarrhythmia late after TOF repair. Adequate surgical or catheter intervention for pressure and volume load in the right ventricle might decrease the prevalence of VT/VF and SCD. PMID:29312717

  17. Accurate prediction of retention in hydrophilic interaction chromatography by back calculation of high pressure liquid chromatography gradient profiles.

    Science.gov (United States)

    Wang, Nu; Boswell, Paul G

    2017-10-20

    Gradient retention times are difficult to project from the underlying retention factor (k) vs. solvent composition (φ) relationships. A major reason for this difficulty is that gradients produced by HPLC pumps are imperfect - gradient delay, gradient dispersion, and solvent mis-proportioning are all difficult to account for in calculations. However, we recently showed that a gradient "back-calculation" methodology can measure these imperfections and take them into account. In RPLC, when the back-calculation methodology was used, error in projected gradient retention times is as low as could be expected based on repeatability in the k vs. φ relationships. HILIC, however, presents a new challenge: the selectivity of HILIC columns drift strongly over time. Retention is repeatable in short time, but selectivity frequently drifts over the course of weeks. In this study, we set out to understand if the issue of selectivity drift can be avoid by doing our experiments quickly, and if there any other factors that make it difficult to predict gradient retention times from isocratic k vs. φ relationships when gradient imperfections are taken into account with the back-calculation methodology. While in past reports, the accuracy of retention projections was >5%, the back-calculation methodology brought our error down to ∼1%. This result was 6-43 times more accurate than projections made using ideal gradients and 3-5 times more accurate than the same retention projections made using offset gradients (i.e., gradients that only took gradient delay into account). Still, the error remained higher in our HILIC projections than in RPLC. Based on the shape of the back-calculated gradients, we suspect the higher error is a result of prominent gradient distortion caused by strong, preferential water uptake from the mobile phase into the stationary phase during the gradient - a factor our model did not properly take into account. It appears that, at least with the stationary phase

  18. Analysis of thin film flow over a vertical oscillating belt with a second grade fluid

    Directory of Open Access Journals (Sweden)

    Taza Gul

    2015-06-01

    Full Text Available An analysis is performed to study the unsteady thin film flow of a second grade fluid over a vertical oscillating belt. The governing equation for velocity field with appropriate boundary conditions is solved analytically using Adomian decomposition method (ADM. Expressions for velocity field have been obtained. Optimal asymptotic method (OHAM has also been used for comparison. The effects of Stocks number, frequency parameter and pressure gradient parameters have been sketched graphically and discussed.

  19. Increased gait unsteadiness in community-dwelling elderly fallers

    Science.gov (United States)

    Hausdorff, J. M.; Edelberg, H. K.; Mitchell, S. L.; Goldberger, A. L.; Wei, J. Y.

    1997-01-01

    OBJECTIVE: To test the hypothesis that quantitative measures of gait unsteadiness are increased in community-dwelling elderly fallers. STUDY DESIGN: Retrospective, case-control study. SETTING: General community. PARTICIPANTS: Thirty-five community-dwelling elderly subjects older than 70 years of age who were capable of ambulating independently for 6 minutes were categorized as fallers (age, 82.2 +/- 4.9 yrs [mean +/- SD]; n = 18) and nonfallers (age, 76.5 +/- 4.0 yrs; n = 17) based on history; 22 young (age, 24.6 +/- 1.9 yrs), healthy subjects also participated as a second reference group. MAIN OUTCOME MEASURES: Stride-to-stride variability (standard deviation and coefficient of variation) of stride time, stance time, swing time, and percent stance time measured during a 6-minute walk. RESULTS: All measures of gait variability were significantly greater in the elderly fallers compared with both the elderly nonfallers and the young subjects (p elderly fallers was similar to that of the nonfallers. There were little or no differences in the variability measures of the elderly nonfallers compared with the young subjects. CONCLUSIONS: Stride-to-stride temporal variations of gait are relatively unchanged in community-dwelling elderly nonfallers, but are significantly increased in elderly fallers. Quantitative measurement of gait unsteadiness may be useful in assessing fall risk in the elderly.

  20. Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil

    Science.gov (United States)

    Ghia, K. N.; Osswald, G. A.; Ghia, U.

    1986-01-01

    The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.

  1. Vortical structures and pressure pulsations in draft tube of a Francis-99 turbine at part load: RANS and hybrid RANS/LES analysis

    International Nuclear Information System (INIS)

    Gavrilov, A.A.; Sentyabov, A.V.; Dekterev, A.A.; Hanjalić, K.

    2017-01-01

    Highlights: • Simulations showed the formation of spiralling coherent vortices in the draft tube. • Both hybrid RANS-LES and Re-stress models reproduced well the measured fluctuations. • Re-stress model resolved the precessing vortex core and coherent spiralling vortices. - Abstract: Recognizing the limitations of the conventional linear-eddy-viscosity (LEVM) Reynolds-averaged Navier–Stokes (RANS) models to reproduce complex three-dimensional unsteady flows in hydraulic machinery, we performed a comparative assessment of a second-moment (Re-stress model, RSM) RANS closure and a hybrid RANS/LES method in capturing the flow and vortical structures in the draft tube of a Francis hydroturbine at off-design conditions. Considered is a case of part load (PL) at a flow rate of only 35% of the best efficiency point (BEP) characterised by multiple unsteady vortex systems. Despite some remaining uncertainties in generating the inflow conditions, both approaches reproduced reasonably well the measured mean velocity and the rms of its fluctuations, as well as the pressure spectrum with peaks detecting the precessing vortex core. In contrast to the common LEVMs, the Re-stress closure showed sufficient receptivity to intrinsic unsteadiness and reproduced well the overall flow and vortical patterns as well as the associated pressure pulsations in accord with the experiments. The hybrid RANS/LES method gave similar predictions as the RSM, but resolving a wider range of scales, which however, showed no significant effect on the dynamics of the dominant processing vortex core and the pressure pulsations.

  2. Enhanced settling of nonheavy inertial particles in homogeneous isotropic turbulence: The role of the pressure gradient and the Basset history force.

    Science.gov (United States)

    van Hinsberg, M A T; Clercx, H J H; Toschi, F

    2017-02-01

    The Stokes drag force and the gravity force are usually sufficient to describe the behavior of sub-Kolmogorov-size (or pointlike) heavy particles in turbulence, in particular when the particle-to-fluid density ratio ρ_{p}/ρ_{f}≳10^{3} (with ρ_{p} and ρ_{f} the particle and fluid density, respectively). This is, in general, not the case for smaller particle-to-fluid density ratios, in particular not for ρ_{p}/ρ_{f}≲10^{2}. In that case the pressure gradient force, added mass effects, and the Basset history force also play important roles. In this study we focus on the understanding of the role of these additional forces, all of hydrodynamic origin, in the settling of particles in turbulence. In order to qualitatively elucidate the complex dynamics of such particles in homogeneous isotropic turbulence, we first focus on the case of settling of such particles in the flow field of a single vortex. After having explored this simplified case we extend our analysis to homogeneous isotropic turbulence. In general, we found that the pressure gradient force leads to a decrease in the settling velocity. This can be qualitatively understood by the fact that this force prevents the particles from sweeping out of vortices, a mechanism known as preferential sweeping which causes enhanced settling. Additionally, we found that the Basset history force can both increase and decrease the enhanced settling, depending on the particle Stokes number. Finally, the role of the nonlinear Stokes drag has been explored, confirming that it affects settling of inertial particles in turbulence, but only in a limited way for the parameter settings used in this investigation.

  3. On the Lagrangian description of unsteady boundary-layer separation. I - General theory

    Science.gov (United States)

    Van Dommelen, Leon L.; Cowley, Stephen J.

    1990-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  4. Simulation of unsteady flows through stator and rotor blades of a gas turbine using the Chimera method

    Science.gov (United States)

    Nakamura, S.; Scott, J. N.

    1993-01-01

    A two-dimensional model to solve compressible Navier-Stokes equations for the flow through stator and rotor blades of a turbine is developed. The flow domains for the stator and rotor blades are coupled by the Chimera method that makes grid generation easy and enhances accuracy because the area of the grid that have high turning of grid lines or high skewness can be eliminated from the computational domain after the grids are generated. The results of flow computations show various important features of unsteady flows including the acoustic waves interacting with boundary layers, Karman vortex shedding from the trailing edge of the stator blades, pulsating incoming flow to a rotor blade from passing stator blades, and flow separation from both suction and pressure sides of the rotor blades.

  5. Studies of the process of an unsteady formation of hard nitride coatings in an arc plasma flow

    International Nuclear Information System (INIS)

    Zake, M.

    1996-01-01

    The kinetic studies of an unsteady formation of hard ZrN and TiN coatings on the surface of metallic (Zr, Ti) samples in an Ar-N plasma flow are carried out. The obtained result is that at the initial stage of an unsteady heating of titanium samples nitrogen atoms penetrate into metal lattice and form interstitial compounds of hard nitrogen solutions in α-phase of Ti. This process is followed by a growth of thin surface layers of titanium nitrides with subsequent changes of surface radiance of exposed samples. Unsteady formation of ZrN is a similar two-stage process which includes the ZrN film growth and formation of a α-hard solution with subsequent changes of total normal emissivity of the surface. (author). 1 ref., 1 fig

  6. Pre-Darcy flow in tight and shale formations

    Science.gov (United States)

    Dejam, Morteza; Hassanzadeh, Hassan; Chen, Zhangxin

    2017-11-01

    There are evidences that the fluid flow in tight and shale formations does not follow Darcy law, which is identified as pre-Darcy flow. Here, the unsteady linear flow of a slightly compressible fluid under the action of pre-Darcy flow is modeled and a generalized Boltzmann transformation technique is used to solve the corresponding highly nonlinear diffusivity equation analytically. The effect of pre-Darcy flow on the pressure diffusion in a homogenous formation is studied in terms of the nonlinear exponent, m, and the threshold pressure gradient, G1. In addition, the pressure gradient, flux, and cumulative production per unit area for different m and G1 are compared with the classical solution of the diffusivity equation based on Darcy flow. Department of Petroleum Engineering in College of Engineering and Applied Science at University of Wyoming and NSERC/AI-EES(AERI)/Foundation CMG and AITF (iCORE) Chairs in Department of Chemical and Petroleum Engineering at University of Calgary.

  7. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient; Comportement d'un caisson en beton precontraint soumis a un gradient de temperature eleve

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Bonvalet, Ch; Dawance, G; Marechal, J C [Centre Experimental de Recherches et d' Etudes du Batiment et des Travaux Publics (CEBTP), 76 - Harfleur (France)

    1965-07-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm{sup 2}; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  8. Influence of power-law index on an unsteady exothermic reaction ...

    African Journals Online (AJOL)

    This study presents the solution of an unsteady Arrhenius exothermic reaction where we reduced the exponential term to a power-law approximation. A numerical solution of the problem is obtained using shooting technique with second order Runge-Kuta scheme. It is shown that the temperature of the reactant depends on ...

  9. High-pressure balloon dilation in a dog with supravalvular aortic stenosis.

    Science.gov (United States)

    Pinkos, A; Stauthammer, C; Rittenberg, R; Barncord, K

    2017-02-01

    A 6-month-old female intact Goldendoodle was presented for diagnostic work up of a grade IV/VI left basilar systolic heart murmur. An echocardiogram was performed and revealed a ridge of tissue distal to the aortic valve leaflets at the sinotubular junction causing an instantaneous pressure gradient of 62 mmHg across the supravalvular aortic stenosis and moderate concentric hypertrophy of the left ventricle. Intervention with a high-pressure balloon dilation catheter was pursued and significantly decreased the pressure gradient to 34 mmHg. No complications were encountered. The patient returned in 5 months for re-evaluation and static long-term reduction in the pressure gradient was noted. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Transient response of a liquid injector to a steep-fronted transverse pressure wave

    Science.gov (United States)

    Lim, D.; Heister, S.; Stechmann, D.; Kan, B.

    2017-12-01

    Motivated by the dynamic injection environment posed by unsteady pressure gain combustion processes, an experimental apparatus was developed to visualize the dynamic response of a transparent liquid injector subjected to a single steep-fronted transverse pressure wave. Experiments were conducted at atmospheric pressure with a variety of acrylic injector passage designs using water as the working fluid. High-speed visual observations were made of the injector exit near field, and the extent of backflow and the time to refill the orifice passage were characterized over a range of injection pressures. A companion transient one-dimensional model was developed for interpretation of the results and to elucidate the trends with regard to the strength of the transverse pressure wave. Results from the model were compared with the experimental observations.

  11. Leg intravenous pressure during head-up tilt.

    NARCIS (Netherlands)

    Groothuis, J.T.; Poelkens, F.; Wouters, C.W.; Kooijman, H.M.; Hopman, M.T.E.

    2008-01-01

    Leg vascular resistance is calculated as the arterial-venous pressure gradient divided by blood flow. During orthostatic challenges it is assumed that the hydrostatic pressure contributes equally to leg arterial, as well as to leg venous pressure. Because of venous valves, one may question whether,

  12. Dialysate sodium and sodium gradient in maintenance hemodialysis: a neglected sodium restriction approach?

    OpenAIRE

    Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte

    2011-01-01

    Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.

  13. Topology optimization of unsteady flow problems using the lattice Boltzmann method

    DEFF Research Database (Denmark)

    Nørgaard, Sebastian Arlund; Sigmund, Ole; Lazarov, Boyan Stefanov

    2016-01-01

    This article demonstrates and discusses topology optimization for unsteady incompressible fluid flows. The fluid flows are simulated using the lattice Boltzmann method, and a partial bounceback model is implemented to model the transition between fluid and solid phases in the optimization problems...

  14. Forum on unsteady flow; Proceedings of the Winter Annual Meeting, New Orleans, LA, December 9-14, 1984

    International Nuclear Information System (INIS)

    Rothe, P.H.

    1984-01-01

    Several devices involving unsteady flows are characterized, along with methods of modeling the flows. Analyses are presented of wave rotor propulsive device cycles, MHD channel flow in the presence of magnetic field transients, and propellant sloshing on board spacecraft. The influence of the wing nose radius on unsteady phenomena in large scale flows is examined and a collocation-finite element method is defined for solving the two-dimensional Navier-Stokes equations

  15. Unsteady thermal blooming of intense laser beams

    Science.gov (United States)

    Ulrich, J. T.; Ulrich, P. B.

    1980-01-01

    A four dimensional (three space plus time) computer program has been written to compute the nonlinear heating of a gas by an intense laser beam. Unsteady, transient cases are capable of solution and no assumption of a steady state need be made. The transient results are shown to asymptotically approach the steady-state results calculated by the standard three dimensional thermal blooming computer codes. The report discusses the physics of the laser-absorber interaction, the numerical approximation used, and comparisons with experimental data. A flowchart is supplied in the appendix to the report.

  16. Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux-difference splitting finite-volume scheme. The developed three-dimensional solver has been verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, isolated quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown have been captured. The problem has also been calculated using the Euler solver of the same code and the results are compared with those of the Navier-Stokes solver. The effect of the initial swirl has been tentatively studied.

  17. Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2013-01-01

    Pressure retarded osmosis (PRO) has the potential to produce clean, renewable energy from natural salinity gradients. However, membrane fouling can lead to diminished water flux productivity, thus reducing the extractable energy. This study investigates organic fouling and osmotic backwash cleaning in PRO and the resulting impact on projected power generation. Fabricated thin-film composite membranes were fouled with model river water containing natural organic matter. The water permeation carried foulants from the feed river water into the membrane porous support layer and caused severe water flux decline of ∼46%. Analysis of the water flux behavior revealed three phases in membrane support layer fouling. Initial foulants of the first fouling phase quickly adsorbed at the active-support layer interface and caused a significantly greater increase in hydraulic resistance than the subsequent second and third phase foulants. The water permeability of the fouled membranes was lowered by ∼39%, causing ∼26% decrease in projected power density. A brief, chemical-free osmotic backwash was demonstrated to be effective in removing foulants from the porous support layer, achieving ∼44% recovery in projected power density. The substantial performance recovery after cleaning was attributed to the partial restoration of the membrane water permeability. This study shows that membrane fouling detrimentally impacts energy production, and highlights the potential strategies to mitigate fouling in PRO power generation with natural salinity gradients.

  18. Study of the flow unsteadiness in the human airway using large eddy simulation

    Science.gov (United States)

    Bernate, Jorge A.; Geisler, Taylor S.; Padhy, Sourav; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-08-01

    The unsteady flow in a patient-specific geometry of the airways is studied. The geometry comprises the oral cavity, orophrarynx, larynx, trachea, and the bronchial tree extending to generations 5-8. Simulations are carried out for a constant inspiratory flow rate of 60 liters/min, corresponding to a Reynolds number of 4213 for a nominal tracheal diameter of 2 cm. The computed mean flow field is compared extensively with magnetic resonance velocimetry measurements by Banko et al. [Exp. Fluids 56, 117 (2015), 10.1007/s00348-015-1966-y] carried out in the same computed-tomography-based geometry, showing good agreement. In particular, we focus on the dynamics of the flow in the bronchial tree. After becoming unsteady at a constriction in the oropharynx, the flow is found to be chaotic, exhibiting fluctuations with broad-band spectra even at the most distal airways in which the Reynolds numbers are as low as 300. An inertial range signature is present in the trachea but not in the bronchial tree where a narrower range of scales is observed. The unsteadiness is attributed to the convection of turbulent structures produced at the larynx as well as to local kinetic energy production throughout the bronchial tree. Production occurs predominantly at shear layers bounding geometry-induced separation regions.

  19. Dual gradient drilling: barite separation from the mud using hydrocyclones; Perfuracao com duplo gradiente: a separacao da barita do fluido de perfuracao utilizando hidrociclones

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Aline T.; Medronho, Ricardo A. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2004-07-01

    The proximity of the pores pressure and fracture pressure curves in deep water drilling makes it an expensive and complicated operation. It is possible to minimize this problem by reducing the pressure inside the riser at the sea floor level. Injecting low density drilling mud at that point is an alternative, producing a condition called as dual gradient drilling. Hydrocyclones are simple apparatuses and their high capacity and efficiency make them appropriate for operations were the occupied floor space plays an important hole, as in offshore drilling. The idea behind this work is to divide the drilling mud in two streams, one more concentrated in barite for re-injection into the drilling column, and other more diluted for injecting into the riser at the sea floor. In this work, CFD - computational fluid dynamics - was used to investigate barite separation from drilling mud using hydrocyclones. The results indicate that the injection of a lower density mud, less concentrate in barite, in the riser at sea floor level may be a possible and less complicated alternative for dual gradient drilling. (author)

  20. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation

  1. Unsteady analysis of a bottoming Organic Rankine Cycle for exhaust heat recovery from an Internal Combustion Engine using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zhang, Tao; Zhu, Tong; An, Wei; Song, Xu; Liu, Liuchen; Liu, Hao

    2016-01-01

    Highlights: • An optimization model of ORC for the recovery of ICE exhaust heat is established. • Three unsteady parameters are considered for the design of ICE-ORC system. • The unsteady performances of ICE-ORC are illustrated using Monte Carlo simulation. - Abstract: An optimization model is developed to maximize the net power output of a bottoming Organic Rankine Cycle (ORC) with ten working fluids for exhaust heat recovery from an Internal Combustion Engine (ICE) theoretically. The ICE-ORC system is influenced by several unsteady parameters which make it difficult to determine the optimal design parameters. Therefore, we introduce probability density functions in order to investigate the impacts of the ICE power output, the sink temperature and the pinch point temperature difference on the ORC performances. Each unsteady parameter is illustrated to analyze the performances of the ICE-ORC system. Furthermore, Monte Carlo simulation is introduced to investigate the role played by the unsteady parameters, each of which obeys different probability distributions. By these methods, we obtained the convergence values, the frequency distributions and the cumulative probability distributions of various performance parameters. These results can provide valuable suggestions for the design of ICE-ORC system.

  2. Diagnostic value of computed tomographic findings of nutcracker syndrome: Correlation with renal venography and renocaval pressure gradients

    International Nuclear Information System (INIS)

    Kim, Kyung Won; Cho, Jeong Yeon; Kim, Seung Hyup; Yoon, Jeong-Hee; Kim, Dae Sik; Chung, Jin Wook; Park, Jae Hyung

    2011-01-01

    Purpose: To evaluate the diagnostic values of CT findings of nutcracker syndrome (NCS). Methods and materials: Twenty seven subjects that underwent CT and renal venography, were divided into three groups based on the venographic renocaval pressure gradient (PG) and collateral veins of the left renal vein (LRV): non-compensated NCS patients with PG ≥ 3 mm Hg (group 1, n = 12), partially compensated NCS patients with borderline PG (1 2 test). Mean values of all quantitative CT parameters differed significantly only between groups 1 and 3 (P < .05, one-way ANOVA test). For differentiating the non-compensated NCS from the control group, the beak sign showed 91.7% sensitivity and 88.9% specificity. Of the various CT parameters, the beak sign and LRV diameter ratio of ≥4.9 showed the greatest diagnostic accuracy (AUC 0.903, ROC analysis). Conclusion: Beak sign of the LRV and CT findings can be useful in diagnosing the non-compensated NCS.

  3. Frequency effects of upstream wake and blade interaction on the unsteady boundary layer flow

    International Nuclear Information System (INIS)

    Kang, Dong Jin; Bae, Sang Su

    2002-01-01

    Effects of the reduced frequency of upstream wake on downstream unsteady boundary layer flow were simulated by using a Navier-Stokes code. The Navier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds number turbulence model to close the momentum equations. The geometry used in this paper is the MIT flapping foil experimental set-up and the reduced frequency of the upstream wake is varied in the range of 0.91 to 10.86 to study its effect on the unsteady boundary layer flow. Numerical solutions show that they can be divided into two categories. One is so called the low frequency solution, and behaves quite similar to a Stokes layer. Its characteristics is found to be quite similar to those due to either a temporal or spatial wave. The low frequency solutions are observed clearly when reduced frequency is smaller than 3.26. The other one is the high frequency solution. It is observed for the reduced frequency larger than 7.24. It shows a sudden shift of the phase angle of the unsteady velocity around the edge of the boundary layer. The shift of phase angle is about 180 degree, and leads to separation of the boundary layer flow from corresponding outer flow. The high frequency solution shows the characteristics of a temporal wave whose wave length is half of the upstream frequency. This characteristics of the high frequency solution is found to be caused by the strong interaction between unsteady vortices. This strong interaction also leads to destroy of the upstream wake stripe inside the viscous sublayer as well as the buffer layer

  4. Countermeasures for Reducing Unsteady Aerodynamic Force Acting on High-Speed Train in Tunnel by Use of Modifications of Train Shapes

    Science.gov (United States)

    Suzuki, Masahiro; Nakade, Koji; Ido, Atsushi

    As the maximum speed of high-speed trains increases, flow-induced vibration of trains in tunnels has become a subject of discussion in Japan. In this paper, we report the result of a study on use of modifications of train shapes as a countermeasure for reducing an unsteady aerodynamic force by on-track tests and a wind tunnel test. First, we conduct a statistical analysis of on-track test data to identify exterior parts of a train which cause the unsteady aerodynamic force. Next, we carry out a wind tunnel test to measure the unsteady aerodynamic force acting on a train in a tunnel and examined train shapes with a particular emphasis on the exterior parts identified by the statistical analysis. The wind tunnel test shows that fins under the car body are effective in reducing the unsteady aerodynamic force. Finally, we test the fins by an on-track test and confirmed its effectiveness.

  5. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations for flutter applications

    Science.gov (United States)

    Tseng, K.; Morino, L.

    1975-01-01

    A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.

  6. Effect of viral suppression on hepatic venous pressure gradient in hepatitis C with cirrhosis and portal hypertension.

    Science.gov (United States)

    Afdhal, N; Everson, G T; Calleja, J L; McCaughan, G W; Bosch, J; Brainard, D M; McHutchison, J G; De-Oertel, S; An, D; Charlton, M; Reddy, K R; Asselah, T; Gane, E; Curry, M P; Forns, X

    2017-10-01

    Portal hypertension is a predictor of liver-related clinical events and mortality in patients with hepatitis C and cirrhosis. The effect of interferon-free hepatitis C treatment on portal pressure is unknown. Fifty patients with Child-Pugh-Turcotte (CPT) A and B cirrhosis and portal hypertension (hepatic venous pressure gradient [HVPG] >6 mm Hg) were randomized to receive 48 weeks of open-label sofosbuvir plus ribavirin at Day 1 or after a 24-week observation period. The primary endpoint was sustained virologic response 12 weeks after therapy (SVR12) in patients who received ≥1 dose of treatment. Secondary endpoints included changes in HVPG, laboratory parameters, and MELD and CPT scores. A subset of patients was followed 48 weeks posttreatment to determine late changes in HVPG. SVR12 occurred in 72% of patients (33/46). In the 37 patients with paired HVPG measurements at baseline and the end of treatment, mean HVPG decreased by -1.0 (SD 3.97) mm Hg. Nine patients (24%) had ≥20% decreases in HVPG during treatment. Among 39 patients with pretreatment HVPG ≥12 mm Hg, 27 (69%) achieved SVR12. Four of the 33 (12%) patients with baseline HVPG ≥12 mm Hg had HVPG <12 mm Hg at the end of treatment. Of nine patients with pretreatment HVPG ≥12 mm Hg who achieved SVR12 and completed 48 weeks of follow-up, eight (89%) had a ≥20% reduction in HVPG, and three reduced their pressure to <12 mm Hg. Patients with chronic HCV and compensated or decompensated cirrhosis who achieve SVR can have clinically meaningful reductions in HVPG at long-term follow-up. (EudraCT 2012-002457-29). © 2017 John Wiley & Sons Ltd.

  7. MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Jawad Ahmed

    Full Text Available This paper examines the boundary layer flow and heat transfer characteristic in power law fluid model over unsteady radially stretching sheet under the influence of convective boundary conditions. A uniform magnetic field is applied transversely to the direction of the flow. The governing time dependent nonlinear boundary layer equations are reduced into nonlinear ordinary differential equations with the help of similarity transformations. The transformed coupled ordinary differential equations are then solved analytically by homotopy analysis method (HAM and numerically by shooting procedure. Effects of various governing parameters like, power law index n, magnetic parameter M, unsteadiness A, suction/injection S, Biot number γ and generalized Prandtl number Pr on velocity, temperature, local skin friction and the local Nusselt number are studied and discussed. It is found from the analysis that the magnetic parameter diminishes the velocity profile and the corresponding thermal boundary layer thickness. Keywords: Axisymmetric flow, Power law fluid, Unsteady stretching, Convective boundary conditions

  8. Study of instantaneous unsteady heat transfer in a rapid compression-expansion machine using zero dimensional k- ε turbulence model

    International Nuclear Information System (INIS)

    Bakhshan, Y.; Karim, G. A.; Mansouri, S. H.

    2003-01-01

    In this investigation, the instantaneous unsteady heat transfer within a pneumatically driven rapid compression-expansion machine that offers simple, well-controlled and known boundary conditions was studied. Values of the instantaneous apparent overall heat flux from the cylinder gas to the wall surfaces were calculated using a thermodynamics analysis of the experimentally measured pressure and volume temporal development. Corresponding heat flux values were also calculated through the application of a zero-dimensional k- ε turbulence model the characteristic velocity is a contribution of turbulence kinetic energy, mean kinetic energy of charged air into cylinder and piston motion for the calculation of Reynolds, Nusselt and Prandtl numbers. Comparison of the zero-dimensional k- ε turbulence model prediction with experimental data shows good agreement for all compression ratios

  9. Parallel Computation of Unsteady Flows on a Network of Workstations

    Science.gov (United States)

    1997-01-01

    Parallel computation of unsteady flows requires significant computational resources. The utilization of a network of workstations seems an efficient solution to the problem where large problems can be treated at a reasonable cost. This approach requires the solution of several problems: 1) the partitioning and distribution of the problem over a network of workstation, 2) efficient communication tools, 3) managing the system efficiently for a given problem. Of course, there is the question of the efficiency of any given numerical algorithm to such a computing system. NPARC code was chosen as a sample for the application. For the explicit version of the NPARC code both two- and three-dimensional problems were studied. Again both steady and unsteady problems were investigated. The issues studied as a part of the research program were: 1) how to distribute the data between the workstations, 2) how to compute and how to communicate at each node efficiently, 3) how to balance the load distribution. In the following, a summary of these activities is presented. Details of the work have been presented and published as referenced.

  10. Downhole pressure sensor

    Science.gov (United States)

    Berdahl, C. M.

    1980-01-01

    Sensor remains accurate in spite of varying temperatures. Very accurate, sensitive, and stable downhole pressure measurements are needed for vaiety of reservoir engineering applications, such as deep petroleum reservoirs, especially gas reservoirs, and in areas of high geothermal gradient.

  11. A Note on Unsteady Temperature Equation For Gravity Flow of A ...

    African Journals Online (AJOL)

    We present an analytical study of unsteady temperature energy equation for gravity of a fluid with non – Newtonian behaviour through a porous medium. For the case of radial axisymmetric flow, the governing partial differential equation is transformed into an ordinary differential equation through similarity variables.

  12. Comparative Study of Unsteady Flows in a Transonic Centrifugal Compressor with Vaneless and Vaned Diffusers

    Directory of Open Access Journals (Sweden)

    Cui Michael M.

    2005-01-01

    Full Text Available To reduce vibration and noise level, the impeller and diffuser blade numbers inside an industrial compressor are typically chosen without common divisors. The shapes of volutes or collectors in these compressors are also not axis-symmetric. When impeller blades pass these asymmetric structures, the flow field in the compressor is time-dependent and three-dimensional. To obtain a fundamental physical understanding of these three-dimensional unsteady flow fields and assess their impact on the compressor performance, the flow field inside the compressors needs to be studied as a whole to include asymmetric and unsteady interaction between the compressor components. In the current study, a unified three-dimensional numerical model was built for a transonic centrifugal compressor including impeller, diffusers, and volute. HFC 134a was used as the working fluid. The thermodynamic and transport properties of the refrigerant gas were modeled by the Martin-Hou equation of state and power laws, respectively. The three-dimensional unsteady flow field was simulated with a Navier-Stokes solver using the k−ϵ turbulent model. The overall performance parameters are obtained by integrating the field quantities. Both the unsteady flow field and the overall performance are analyzed comparatively for each component. The compressor was tested in a water chiller system instrumented to obtain both the overall performance data and local flow-field quantities. The experimental and numerical results agree well. The correlation between the overall compressor performance and local flow-field quantities is defined. The methodology developed and data obtained in these studies can be applied to the centrifugal compressor design and optimization.

  13. Hepatic Venous Pressure Gradient Predicts Long-Term Mortality in Patients with Decompensated Cirrhosis

    Science.gov (United States)

    Kim, Tae Yeob; Lee, Jae Gon; Kim, Ji Yeoun; Kim, Sun Min; Kim, Jinoo; Jeong, Woo Kyoung

    2016-01-01

    Purpose The present study aimed to investigate the role of hepatic venous pressure gradient (HVPG) for prediction of long-term mortality in patients with decompensated cirrhosis. Materials and Methods Clinical data from 97 non-critically-ill cirrhotic patients with HVPG measurements were retrospectively and consecutively collected between 2009 and 2012. Patients were classified according to clinical stages and presence of ascites. The prognostic accuracy of HVPG for death, survival curves, and hazard ratios were analyzed. Results During a median follow-up of 24 (interquartile range, 13-36) months, 22 patients (22.7%) died. The area under the receiver operating characteristics curves of HVPG for predicting 1-year, 2-year, and overall mortality were 0.801, 0.737, and 0.687, respectively (all p17 mm Hg, respectively (p=0.015). In the ascites group, the mortality rates at 1 and 2 years were 3.9% and 17.6% with HVPG ≤17 mm Hg and 17.5% and 35.2% with HVPG >17 mm Hg, respectively (p=0.044). Regarding the risk factors for mortality, both HVPG and model for end-stage liver disease were positively related with long-term mortality in all patients. Particularly, for the patients with ascites, both prothrombin time and HVPG were independent risk factors for predicting poor outcomes. Conclusion HVPG is useful for predicting the long-term mortality in patients with decompensated cirrhosis, especially in the presence of ascites. PMID:26632394

  14. A fully unsteady prescribed wake model for HAWT performance prediction in yawed flow

    Energy Technology Data Exchange (ETDEWEB)

    Coton, F.N.; Tongguang, Wang; Galbraith, R.A.M.; Lee, D. [Univ. of Glasgow (United Kingdom)

    1997-12-31

    This paper describes the development of a fast, accurate, aerodynamic prediction scheme for yawed flow on horizontal axis wind turbines (HAWTs). The method is a fully unsteady three-dimensional model which has been developed over several years and is still being enhanced in a number of key areas. The paper illustrates the current ability of the method by comparison with field data from the NREL combined experiment and also describes the developmental work in progress. In particular, an experimental test programme designed to yield quantitative wake convection information is summarised together with modifications to the numerical model which are necessary for meaningful comparison with the experiments. Finally, current and future work on aspects such as tower-shadow and improved unsteady aerodynamic modelling are discussed.

  15. Mark II containment 1/6-scale pressure suppression test program: data report no. 2

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Okazaki, Motoaki; Namatame, Ken; Shiba, Masayoshi

    1979-08-01

    This report documents experimental data from the first test phase of the Mark II Containment 1/6-Scale Pressure Suppression Test. The 1/6-Scale Test was initiated in December, 1976, to investigate the thermohydraulic responses of a BWR Mark II pressure suppression system to a postulated loss-of-coolant accident (LOCA), by means of scale model experiments. From January to June, 1977, a series of tests were performed for the Japanese BWR Owners' Group. These tests consisted of eight air-blowdown pool swell tests, three steam-blowdown pool swell tests, and twelve steam condensation tests. The dynamic responses of pressure and pool water level during the blowdown, pressure oscillation and chugging phenomena associated with unsteady condensation of steam were measured. (author)

  16. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient; Comportement d'un caisson en beton precontraint soumis a un gradient de temperature eleve

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Bonvalet, Ch.; Dawance, G.; Marechal, J.C. [Centre Experimental de Recherches et d' Etudes du Batiment et des Travaux Publics (CEBTP), 76 - Harfleur (France)

    1965-07-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm{sup 2}; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The

  17. 8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines

    CERN Document Server

    1998-01-01

    Twenty-one years have passed since the first symposium in this series was held in Paris (1976). Since then there have been meetings in Lausanne (1980), Cambridge (1984), Aachen (1987), Beijing (1989), Notre Dame (1991) and Fukuoka (1994). During this period a tremendous development in the field of unsteady aerodynamics and aeroelasticity in turbomachines has taken place. As steady-state flow conditions become better known, and as blades in the turbomachine are constantly pushed towards lower weight, and higher load and efficiency, the importance of unsteady phenomena appear more clearly. th The 8 Symposium was, as the previous ones, of high quality. Furthermore, it presented the audience with the latest developments in experimental, numerical and theoretical research. More papers than ever before were submitted to the conference. As the organising committee wanted to preserve the uniqueness of the symposium by having single sessions, and thus mingle speakers and audience with different backgrounds in this int...

  18. A Miniature Four-Hole Probe for Measurement of Three-Dimensional Flow with Large Gradients

    Directory of Open Access Journals (Sweden)

    Ravirai Jangir

    2014-01-01

    Full Text Available A miniature four-hole probe with a sensing area of 1.284 mm2 to minimise the measurement errors due to the large pressure and velocity gradients that occur in highly three-dimensional turbomachinery flows is designed, fabricated, calibrated, and validated. The probe has good spatial resolution in two directions, thus minimising spatial and flow gradient errors. The probe is calibrated in an open jet calibration tunnel at a velocity of 50 m/s in yaw and pitch angles range of ±40 degrees with an interval of 5 degrees. The calibration coefficients are defined, determined, and presented. Sensitivity coefficients are also calculated and presented. A lookup table method is used to determine the four unknown quantities, namely, total and static pressures and flow angles. The maximum absolute errors in yaw and pitch angles are 2.4 and 1.3 deg., respectively. The maximum absolute errors in total, static, and dynamic pressures are 3.4, 3.9, and 4.9% of the dynamic pressures, respectively. Measurements made with this probe, a conventional five-hole probe and a miniature Pitot probe across a calibration section, demonstrated that the errors due to gradient and surface proximity for this probe are considerably reduced compared to the five-hole probe.

  19. Monitoring gradient profile on-line in micro- and nano-high performance liquid chromatography using conductivity detection.

    Science.gov (United States)

    Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong

    2016-08-19

    In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.

  20. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.

    2015-01-01

    In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260