WorldWideScience

Sample records for unsaturation upregulating reactive

  1. Reactive distillation: an attractive alternative for the synthesis of unsaturated polyester

    NARCIS (Netherlands)

    Shah, M.R.; Zondervan, E.; Oudshoorn, M.L.; Haan, de A.B.

    2011-01-01

    Unsaturated polyester is traditionally produced in a batch wise operating reaction vessel connected to a distillation unit. An attractive alternative for the synthesis of unsaturated polyester is a reactive distillation. To value such alternative synthesis route reliable process models need to be

  2. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.

    2007-01-01

    Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed at...... parameters; for example, the time to approach steady state depends exponentially on the distance between the soil surface and the subsurface reactive zone. Copyright 2007 by the American Geophysical Union....... at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...

  3. Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.

    2007-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of engineered and natural geologic barriers. The occurrence of several nonlinear interactions during the radionuclide migration process may render burdensome the classical analytical-numerical approaches. Moreover, the heterogeneity of the barriers' media forces approximations to the classical analytical-numerical models, thus reducing their fidelity to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov-Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under transient flow conditions and in presence of nonlinear interchange phenomena between the liquid and solid phases. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content and from the contaminant concentration, which change in space and time during the water infiltration process. The corresponding Monte Carlo simulation approach is verified with respect to a case of nonreactive transport under transient unsaturated flow and to a case of nonlinear reactive transport under stationary saturated flow. Numerical applications regarding linear and nonlinear reactive transport under transient unsaturated flow are reported

  4. Study of reactive solutes transport and PAH migration in unsaturated soils

    International Nuclear Information System (INIS)

    Gujisaite, V.; Simonnot, M.O.; Gujisaite, V.; Morel, J.L.; Ouvrard, S.; Simonnot, M.O.; Gaudet, J.P.

    2005-01-01

    Experimental studies about solute transport in soil have most of the time been conducted under saturated conditions, whereas studies with unsaturated media are usually limited to hydrodynamic analysis. Those are mainly concerning the prediction of water flow, which is the main vector for the transport of contaminants in soil. Only a few studies have made the link between unsaturated flow and physical, chemical and biological interactions, which are controlling the availability of pollutants. However, the presence of a gaseous phase in soil can modify not only the movement of soil solution, but also chemical interactions and exchanges between soil aggregates and solution. Study of reactive solute transport in the vadose zone seems thus to be a necessary stage to predict contaminant fate in natural soils, for risk assessment as well as for the design of effective processes for the remediation of contaminated soils. This question is the main objective of the present work developed in the frame of our French Scientific Interest Group Industrial Wastelands called 'GISFI' (www.gisfi.prd.fr), based around a scientific and technological project dedicated to acquisition of knowledge for sustainable requalification of degraded sites polluted by past industrial activities. We will focus here on Polycyclic Aromatic Hydrocarbons (PAH), which are among the most widely discussed environmental contaminants because of their toxicity for human health and ecosystems. They are present in large quantities in soils polluted by former industrial activities, especially in relation to the coal extraction, exploitation and treatment. An experimental system has been specifically designed at the laboratory scale to carry out experiments under controlled conditions, with an unsaturated steady-state flow. The first experiments are performed on model soils, in order to investigate unsaturated steady-state flow in relation to interactions mechanisms. We have thus chosen to use a sandy

  5. Oxidation of volatile organic compound vapours by potassium permanganate in a horizontal permeable reactive barrier under unsaturated conditions: experiments and modeling

    NARCIS (Netherlands)

    Ghareh Mahmoodlu, Mojtaba|info:eu-repo/dai/nl/357287746

    2014-01-01

    In this research we evaluated the potential of using solid potassium permanganate to create a horizontal permeable reactive barrier (HPRB) for oxidizing VOC vapours in the unsaturated zone. We have performed batch experiments, short column, and long column experiments, and have fully analyzed the

  6. Unsaturated compounds induce up-regulation of CD86 on dendritic cells in the in vitro sensitization assay LCSA.

    Science.gov (United States)

    Frohwein, Thomas Armin; Sonnenburg, Anna; Zuberbier, Torsten; Stahlmann, Ralf; Schreiner, Maximilian

    2016-04-01

    Unsaturated compounds are known to cause false-positive reactions in the local lymph node assay (LLNA) but not in the guinea pig maximization test. We have tested a panel of substances (succinic acid, undecylenic acid, 1-octyn-3-ol, fumaric acid, maleic acid, linoleic acid, oleic acid, alpha-linolenic acid, squalene, and arachidonic acid) in the loose-fit coculture-based sensitization assay (LCSA) to evaluate whether unspecific activation of dendritic cells is a confounder for sensitization testing in vitro. Eight out of 10 tested substances caused significant up-regulation of CD86 on dendritic cells cocultured with keratinocytes and would have been classified as sensitizers; only succinic acid was tested negative, and squalene had to be excluded from data analysis due to poor solubility in cell culture medium. Based on human data, only undecylenic acid can be considered a true sensitizer. The true sensitizing potential of 1-octyn-3-ol is uncertain. Fumaric acid and its isomer maleic acid are not known as sensitizers, but their esters are contact allergens. A group of 18- to 20-carbon chain unsaturated fatty acids (linoleic acid, oleic acid, alpha-linolenic acid, and arachidonic acid) elicited the strongest reaction in vitro. This is possibly due to the formation of pro-inflammatory lipid mediators in the cell culture causing nonspecific activation of dendritic cells. In conclusion, both the LLNA and the LCSA seem to provide false-positive results for unsaturated fatty acids. The inclusion of T cells in dendritic cell-based in vitro sensitization assays may help to eliminate false-positive results due to nonspecific dendritic cell activation. This would lead to more accurate prediction of sensitizers, which is paramount for consumer health protection and occupational safety.

  7. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

    Directory of Open Access Journals (Sweden)

    Yoon TH

    2012-03-01

    Full Text Available Ki-Chun Yoo1, Chang-Hwan Yoon1, Dongwook Kwon2, Kyung-Hwan Hyun1, Soo Jung Woo1, Rae-Kwon Kim1, Eun-Jung Lim1, Yongjoon Suh1, Min-Jung Kim1, Tae Hyun Yoon2, Su-Jae Lee11Laboratory of Molecular Biochemistry, 2Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, Hanyang University, Seoul, Republic of KoreaBackground: Titanium dioxide (TiO2 has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25–70 together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25–70 and ultraviolet A irradiation.Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein

  8. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  9. Unsaturated carbone and allenylidene ruthenium complexes from alkynes

    International Nuclear Information System (INIS)

    Bozek, Yu.L.; Diznev, P.A.

    1995-01-01

    The author's studies aimed at activation of terminal alkynes by metal complexes, reactivity patterns and selective preparations of unsaturated carbene, allenylidene and cumulenylidene derivatives of (arene)ruthenium complexes are reviewed. 48 refs

  10. Solid waste leach characteristics and contaminant-sediment interactions Volume 2: Contaminant transport under unsaturated moisture contents

    International Nuclear Information System (INIS)

    Lindenmeier, C.W.; Serne, R.J.; Conca, J.L.

    1995-09-01

    The objectives of this report and subsequent volumes include describing progress on (1) development and optimization of experimental methods to quantify the release of contaminants from solid wastes and their subsequent interactions with unsaturated sediments and (2) the creation of empirical data that become input parameters to performance assessment (PA) analyses for future Hanford Site disposal units and baseline risk assessments for inactive and existing solid waste disposal units. For this report, efforts focused on developing methodologies to evaluate contaminant transport in Trench 8 (W-5 Burial Ground) sediments under unsaturated (vadose zone) conditions. To accomplish this task, a series of flow-through column tests were run using standard saturated column systems, Wierenga unsaturated column systems (both commercial and modified), and the Unsaturated Flow Apparatus (UFA). The reactants investigated were 85 Sr, 236 U, and 238 U as reactive tracers, and tritium as a non-reactive tracer. Results indicate that for moderately unsaturated conditions (volumetric water contents >50 % of saturation), the Wierenga system performed reasonably well such that long water residence times (50-147 h) were achieved, and reasonably good steady-state flow conditions were maintained. The major drawbacks in using this system for reactive tracer work included (1) the inability to achieve reproducible and constant moisture content below 50% of saturation, (2) the four to six month time required to complete a single test, and (3) the propensity for mechanical failure resulting from laboratory power outages during the prolonged testing period

  11. Unsaturated transport of inorganic cations in undisturbed soil columns

    International Nuclear Information System (INIS)

    Jardine, P.M.; Jacobs, G.K.

    1990-01-01

    The unsaturated transport of Sr, Co, and Ca were studied in undisturbed soil columns (14 x 40 cm) of saprolitic shale to evaluate the significance of time dependent mass transfer and multispecies competitive exchange during transport. Observed breakthrough curves (BTCs) for Sr and Co were delayed relative to nonreactive Br BTC indicating that the former tracers were adsorbed by the soil. Effluent concentrations of Sr and Co were modeled with the classical convective dispersive (CD) equation and nonequilibrium mass transfer considerations did not appear necessary. Cation exchange equilibria relationships obtained from both shake batch and miscible displacement methods adequately described the thermodynamic processes which were prevalent during transport. These results suggest that the preferential transport of a reactive tracer is negligible for the realistic unsaturated conditions used in the study, and that the massive saprolite within the soil is a chemically active constituent during transport of reactive solutes. The implications of these findings for modeling in-situ subsurface contaminant transport are discussed. 7 refs., 9 figs

  12. Unsaturated Fatty Acids Supplementation Reduces Blood Lead Level in Rats

    Science.gov (United States)

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: “super lecithin” (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  13. Up-regulation of A1M/α1-microglobulin in skin by heme and reactive oxygen species gives protection from oxidative damage.

    Science.gov (United States)

    Olsson, Magnus G; Allhorn, Maria; Larsson, Jörgen; Cederlund, Martin; Lundqvist, Katarina; Schmidtchen, Artur; Sørensen, Ole E; Mörgelin, Matthias; Akerström, Bo

    2011-01-01

    During bleeding the skin is subjected to oxidative insults from free heme and radicals, generated from extracellular hemoglobin. The lipocalin α(1)-microglobulin (A1M) was recently shown to have reductase properties, reducing heme-proteins and other substrates, and to scavenge heme and radicals. We investigated the expression and localization of A1M in skin and the possible role of A1M in the protection of skin tissue from damage induced by heme and reactive oxygen species. Skin explants, keratinocyte cultures and purified collagen I were exposed to heme, reactive oxygen species, and/or A1M and investigated by biochemical methods and electron microscopy. The results demonstrate that A1M is localized ubiquitously in the dermal and epidermal layers, and that the A1M-gene is expressed in keratinocytes and up-regulated after exposure to heme and reactive oxygen species. A1M inhibited the heme- and reactive oxygen species-induced ultrastructural damage, up-regulation of antioxidation and cell cycle regulatory genes, and protein carbonyl formation in skin and keratinocytes. Finally, A1M bound to purified collagen I (K(d) = 0.96×10(-6) M) and could inhibit and repair the destruction of collagen fibrils by heme and reactive oxygen species. The results suggest that A1M may have a physiological role in protection of skin cells and matrix against oxidative damage following bleeding.

  14. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed

  15. Structural Analysis of Unsaturated Glycosphingolipids Using Shotgun Ozone-Induced Dissociation Mass Spectrometry

    Science.gov (United States)

    Barrientos, Rodell C.; Vu, Ngoc; Zhang, Qibin

    2017-08-01

    Glycosphingolipids are essential biomolecules widely distributed across biological kingdoms yet remain relatively underexplored owing to both compositional and structural complexity. While the glycan head group has been the subject of most studies, there is paucity of reports on the lipid moiety, particularly the location of unsaturation. In this paper, ozone-induced dissociation mass spectrometry (OzID-MS) implemented in a traveling wave-based quadrupole time-of-flight (Q-ToF) mass spectrometer was applied to study unsaturated glycosphingolipids using shotgun approach. Resulting high resolution mass spectra facilitated the unambiguous identification of diagnostic OzID product ions. Using [M+Na]+ adducts of authentic standards, we observed that the long chain base and fatty acyl unsaturation had distinct reactivity with ozone. The reactivity of unsaturation in the fatty acyl chain was about 8-fold higher than that in the long chain base, which enables their straightforward differentiation. Influence of the head group, fatty acyl hydroxylation, and length of fatty acyl chain on the oxidative cleavage of double bonds was also observed. Application of this technique to bovine brain galactocerebrosides revealed co-isolated isobaric and regioisomeric species, which otherwise would be incompletely identified using contemporary collision-induced dissociation (CID) alone. These results highlight the potential of OzID-MS in glycosphingolipids research, which not only provides complementary structural information to existing CID technique but also facilitates de novo structural determination of these complex biomolecules. [Figure not available: see fulltext.

  16. Effect of water content on dispersion of transferred solute in unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Latrille, C. [CEA Saclay, DEN/DANS/DPC/SECR/L3MR, 91191 Gif sur Yvette (France)

    2013-07-01

    Estimating contaminant migration in the context of waste disposal and/or environmental remediation of polluted soils requires a complete understanding of the underlying transport processes. In unsaturated porous media, water content impacts directly on porous solute transfer. Depending on the spatial distribution of water content, the flow pathway is more complex than in water saturated media. Dispersivity is consequently dependent on water content. Non-reactive tracer experiments performed using unsaturated sand columns confirm the dependence of dispersivity with pore velocity; moreover, a power law relationship between dispersivity and water content is evidenced. (authors)

  17. Modelling flow through unsaturated zones: Sensitivity to unsaturated ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    soil properties are studied by varying the unsaturated parameters α and n over a wide range. ... Keywords. Unsaturated zone; capillary fringe; finite element method. ... and radioactive wastes. Several .... The length (L) of the soil sample is 1 m.

  18. Radiation-curable coatings containing reactive pigment dispersants

    International Nuclear Information System (INIS)

    Ansel, R.E.

    1985-01-01

    Liquid coating compositions adapted to be cured by exposure to penetrating radiation are disclosed in which a liquid vehicle of coating viscosity having an ethylenically unsaturated portion comprising one or more polyethylenically unsaturated materials adapted to cure on radiation exposure, pigment dispersed in the vehicle, and an ethylenically unsaturated radiation-curable dispersant containing a carboxyl group for wetting the pigment and assisting in the stable dipsersion of the pigment in the vehicle. This dispersant is a half amide or half ester of an ethylenically unsaturated polycarboxylic acid anhydride, such as maleic anhydride, with an organic compound having a molecular weight of from 100 to 4000 and which contains a single hydroxy group or a single amino group as the sole reactive group thereof

  19. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    Directory of Open Access Journals (Sweden)

    Katherine M. Byrd

    2015-04-01

    Full Text Available The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

  20. Saturated and unsaturated salt transport in peat from a constructed fen

    Science.gov (United States)

    Simhayov, Reuven B.; Weber, Tobias K. D.; Price, Jonathan S.

    2018-02-01

    The underlying processes governing solute transport in peat from an experimentally constructed fen peatland were analyzed by performing saturated and unsaturated solute breakthrough experiments using Na+ and Cl- as reactive and non-reactive solutes, respectively. We tested the performance of three solute transport models, including the classical equilibrium convection-dispersion equation (CDE), a chemical non-equilibrium one-site adsorption model (OSA) and a model to account for physical non-equilibrium, the mobile-immobile (MIM) phases. The selection was motivated by the fact that the applicability of the MIM in peat soils finds a wide consensus. However, results from inverse modeling and a robust statistical evaluation of this peat provide evidence that the measured breakthrough of the conservative tracer, Cl-, could be simulated well using the CDE. Furthermore, the very high Damköhler number (which approaches infinity) suggests instantaneous equilibration between the mobile and immobile phases underscoring the redundancy of the MIM approach for this particular peat. Scanning electron microscope images of the peat show the typical multi-pore size distribution structures have been homogenized sufficiently by decomposition, such that physical non-equilibrium solute transport no longer governs the transport process. This result is corroborated by the fact the soil hydraulic properties were adequately described using a unimodal van Genuchten-Mualem model between saturation and a pressure head of ˜ -1000 cm of water. Hence, MIM was not the most suitable choice, and the long tailing of the Na+ breakthrough curve was caused by chemical non-equilibrium. Successful description was possible using the OSA model. To test our results for the unsaturated case, we conducted an unsaturated steady-state evaporation experiment to drive Na+ and Cl- transport. Using the parameterized transport models from the saturated experiments, we could numerically simulate the unsaturated

  1. Monte Carlo simulation of radioactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.; Zio, E.

    2005-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of artificial and natural geologic barriers. The complexity of the transport process in the barriers' heterogeneous media forces approximations to the classical analytical-numerical models, thus reducing their adherence to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov and Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under unsteady flow conditions. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content, which changes in space and time during the water infiltration process. The approach is verified with respect to a case of non-reactive transport under transient unsaturated field conditions by a comparison with a standard code based on the classical advection-dispersion equations. An application regarding linear reactive transport is then presented. (authors)

  2. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis

    Science.gov (United States)

    Fang, Xianjie; Cacherat, Bastien; Morandi, Bill

    2017-11-01

    The synthesis of carboxylic acid derivatives from unsaturated hydrocarbons is an important process for the preparation of polymers, pharmaceuticals, cosmetics and agrochemicals. Despite its industrial relevance, the traditional Reppe-type carbonylation reaction using pressurized CO is of limited applicability to laboratory-scale synthesis because of: (1) the safety hazards associated with the use of CO, (2) the need for special equipment to handle pressurized gas, (3) the low reactivity of several relevant nucleophiles and (4) the necessity to employ different, often tailor-made, catalytic systems for each nucleophile. Herein we demonstrate that a shuttle-catalysis approach enables a CO- and HCl-free transfer process between an inexpensive reagent, butyryl chloride, and a wide range of unsaturated substrates to access the corresponding acid chlorides in good yields. This new transformation provides access to a broad range of carbonyl-containing products through the in situ transformation of the reactive acid chloride intermediate. In a broader context, this work demonstrates that isodesmic shuttle-catalysis reactions can unlock elusive catalytic reactions.

  3. Effects of Unsaturated Fat Dietary Supplements on Blood Lipids, and on Markers of Malnutrition and Inflammation in Hemodialysis Patients

    DEFF Research Database (Denmark)

    Ewers, Bettina; Riserus, Ulf; Marckmann, Peter

    2009-01-01

    OBJECTIVE: We examined the effects of commercially available unsaturated fat dietary supplements on blood lipids, and on markers of malnutrition and inflammation, in an adult population of hemodialysis (HD) patients. DESIGN: This was a restricted, randomized (equal blocks), investigator-blinded 2x6...... as assessed according to C-reactive protein serum concentrations. Adding unsaturated fat to the diet seems to be a safe and effective way to prevent and treat malnutrition in hemodialysis patients....

  4. Upregulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis

    Science.gov (United States)

    Fernández-Trapero, María; Espejo-Porras, Francisco; Rodríguez-Cueto, Carmen; Coates, Joan R.; Pérez-Díaz, Carmen; de Lago, Eva; Fernández-Ruiz, Javier

    2017-01-01

    ABSTRACT Targeting of the CB2 receptor results in neuroprotection in the SOD1G93A mutant mouse model of amyotrophic lateral sclerosis (ALS). The neuroprotective effects of CB2 receptors are facilitated by their upregulation in the spinal cord of the mutant mice. Here, we investigated whether similar CB2 receptor upregulation, as well as parallel changes in other endocannabinoid elements, is evident in the spinal cord of dogs with degenerative myelopathy (DM), caused by mutations in the superoxide dismutase 1 gene (SOD1). We used well-characterized post-mortem spinal cords from unaffected and DM-affected dogs. Tissues were used first to confirm the loss of motor neurons using Nissl staining, which was accompanied by glial reactivity (elevated GFAP and Iba-1 immunoreactivity). Next, we investigated possible differences in the expression of endocannabinoid genes measured by qPCR between DM-affected and control dogs. We found no changes in expression of the CB1 receptor (confirmed with CB1 receptor immunostaining) or NAPE-PLD, DAGL, FAAH and MAGL enzymes. In contrast, CB2 receptor levels were significantly elevated in DM-affected dogs determined by qPCR and western blotting, which was confirmed in the grey matter using CB2 receptor immunostaining. Using double-labelling immunofluorescence, CB2 receptor immunolabelling colocalized with GFAP but not Iba-1, indicating upregulation of CB2 receptors on astrocytes in DM-affected dogs. Our results demonstrate a marked upregulation of CB2 receptors in the spinal cord in canine DM, which is concentrated in activated astrocytes. Such receptors could be used as a potential target to enhance the neuroprotective effects exerted by these glial cells. PMID:28069688

  5. Upregulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    María Fernández-Trapero

    2017-05-01

    Full Text Available Targeting of the CB2 receptor results in neuroprotection in the SOD1G93A mutant mouse model of amyotrophic lateral sclerosis (ALS. The neuroprotective effects of CB2 receptors are facilitated by their upregulation in the spinal cord of the mutant mice. Here, we investigated whether similar CB2 receptor upregulation, as well as parallel changes in other endocannabinoid elements, is evident in the spinal cord of dogs with degenerative myelopathy (DM, caused by mutations in the superoxide dismutase 1 gene (SOD1. We used well-characterized post-mortem spinal cords from unaffected and DM-affected dogs. Tissues were used first to confirm the loss of motor neurons using Nissl staining, which was accompanied by glial reactivity (elevated GFAP and Iba-1 immunoreactivity. Next, we investigated possible differences in the expression of endocannabinoid genes measured by qPCR between DM-affected and control dogs. We found no changes in expression of the CB1 receptor (confirmed with CB1 receptor immunostaining or NAPE-PLD, DAGL, FAAH and MAGL enzymes. In contrast, CB2 receptor levels were significantly elevated in DM-affected dogs determined by qPCR and western blotting, which was confirmed in the grey matter using CB2 receptor immunostaining. Using double-labelling immunofluorescence, CB2 receptor immunolabelling colocalized with GFAP but not Iba-1, indicating upregulation of CB2 receptors on astrocytes in DM-affected dogs. Our results demonstrate a marked upregulation of CB2 receptors in the spinal cord in canine DM, which is concentrated in activated astrocytes. Such receptors could be used as a potential target to enhance the neuroprotective effects exerted by these glial cells.

  6. Permeable barrier materials for strontium immobilization: Unsaturated flow apparatus determination of hydraulic conductivity -- Column sorption experiments

    International Nuclear Information System (INIS)

    Moody, T.E.; Conca, J.

    1996-09-01

    Selected materials were tested to emulate a permeable barrier and to examine the (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium (Cr 6+ ) in Hanford Site groundwater; and (2) hydraulic conductivity of the barrier material relative to the surrounding area. The emplacement method investigated was a permeable reactive barrier to treat contaminated groundwater as it passes through the barrier. The hydraulic conductivity function was measured for each material, and retardation column experiments were performed for each material. Measurements determining the hydraulic conductivity at unsaturated through saturated water content were executed using the Unsaturated Flow Apparatus

  7. Homogeneously catalysed hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols

    NARCIS (Netherlands)

    Stouthamer, B.; Vlugter, J.C.

    1965-01-01

    The use of copper and cadmium oxides or soaps as catalysts for the hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols has been investigated. It is shown that copper soaps homogeneously activate hydrogen. When copper and cadmium oxides are used as catalysts, they react with the

  8. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments

    International Nuclear Information System (INIS)

    Khan, Ali M.; Wick, Lukas Y.; Harms, Hauke; Thullner, Martin

    2016-01-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. - Highlights: • The column setup allows resolving vapor-phase VOC concentration gradients at cm scale resolution. • Vapor-phase and liquid-phase concentrations are measured simultaneously. • Isotopically labelled VOC was used as reference species of low biodegradability. • Biodegradation rates in the unsaturated zone can be very high and act at a cm scale. • Unsaturated material can be an effective bio-barrier avoiding biodegradable VOC emissions. - Microbial degradation activity can be sufficient to remove VOC from unsaturated porous media after a few centimeter of vapor-phase diffusive transport and mayeffectively avoid atmospheric emissions.

  9. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    NARCIS (Netherlands)

    Binning, P. J.; POSTMA, D; Russell, T. F.; Wesselingh, J. A.; Boulin, P. F.

    2007-01-01

    [1] Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed

  10. α,β-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress.

    Science.gov (United States)

    Wu, Zhenbiao; He, Emily Y; Scott, Glenda I; Ren, Jun

    2015-01-01

    Air pollution is associated with an increased prevalence of heart disease and is known to trigger a proinflammatory response via stimulation of transient receptor potential vanilloid cation channels (TRPV1, also known as the capsaicin receptor). This study was designed to examine the effect of acrolein, an essential α,β-unsaturated aldehyde pollutant, on myocardial contractile function and the underlying mechanism involved with a focus on TRPV1 and oxidative stress. Cardiomyocyte mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix MyoCam® system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90 ), fura-2 fluorescence intensity (FFI) and intracellular Ca(2+) decay. Changes in apoptosis and TRPV1 were evaluated using Western blot analysis. The degree of oxidative stress was assessed using the ratio between reduced and oxidized glutathione. Results obtained revealed that exposure of cardiomyocytes to acrolein acutely compromised contractile and intracellular Ca(2+) properties including depressed PS, ± dL/dt and ΔFFI, as well as prolonged TR90 and intracellular Ca(2+) decay. In addition, acrolein exposure upregulated TRPV1 associated with an increase in both apoptosis and oxidative stress. However, the acrolein-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, as well as apoptosis (as evidenced by Bcl-2, Bax, FasL, Caspase-3 and -8), were negated by the reactive oxygen species (ROS) scavenger glutathione or the TRPV1 antagonist capsazepine. Collectively these data suggest that the α,β-unsaturated aldehyde pollutant acrolein may play a role in the pathogenesis and sequelae of air pollution-induced heart disease via a TRPV1- and oxidative stress-dependent mechanism. © 2013 Wiley Periodicals, Inc.

  11. Kinetic study of the degradation of C5 and C6 unsaturated aldehydes and alcohols by ozone

    Science.gov (United States)

    Kalalian, Carmen; Roth, Estelle; Chakir, Abdelkhaleq

    2017-04-01

    Emissions of biogenic volatile organic compounds (VOCs) are higher than those from anthropogenic sources. They are therefore likely to have a great influence on atmospheric chemistry both locally and regionally, through their impact on the HOx balance (HOx = HO + HO2), ozone production and ability to form secondary organic aerosols (SOA). Among the volatile organic compounds of biogenic origin are the family of C5 and C6 unsaturated aldehydes and alcohols. Few information exist regarding the fate of these compounds in the atmosphere especially there reaction with ozone. In this work, we studied the kinetics of the reaction of three unsaturated aldehydes (trans-2-pentenal, trans-2-hexenal and 2-methyl-2-pentenal) and three unsaturated alcohols (1-penten-3-ol, cis-2-penten-1-ol and trans-3-hexen-1-ol) with ozone O3 in a rigid atmospheric simulation chamber coupled to an FTIR spectrometer at four different temperatures (273, 298, 333 and 353 K) and at atmospheric pressure. The rate constants of the ozonolysis reaction of the unsaturated aldehydes and the unsaturated alcohols studied were determined and the following Arrhenius expression was obtained (cm3 molecule -1 s -1): k (Trans -2-pentenal)= (3.83 ± 3.71) x 10-16 exp (- (1706 ± 295) / T) k (Trans-2-hexenal)= (1.43 ± 0.67) x 10-16 exp (- (1369 ± 141) / T) k(2-Methyl-2-pentenal)= (3.62± 0.22) x 10-18 exp (- (121 ± 20) / T) k(1-penten-3-ol) = (1.42 ± 1.24) x 10-16 exp (- (642 ± 250) / T) k(Cis-2-penten-1-ol)= (3.14 ± 0.45) x 10-15 exp (- (1045 ± 40) / T) k(Trans-3-hexen-1-ol)= (6.38 ± 1.75) x 10-16 exp (- (686 ± 89) / T) The obtained data will be discussed in terms of structure-reactivity relationship and compared with the reported reactivity with OH radicals. The atmospheric implications derived from this study are discussed as well.

  12. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the inc......The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase...... in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4â10......-10 mol FeS2/gâs are measured, and the rates are only weakly correlated with the sediment pyrite content. The reactivity of pyrite, including the inhibition by FeOOH layers formed on its surface, apparently has a major effect on the rate of oxidation. The code PHREEQC 2.0 was used to calculate...

  13. Effects of water content on reactive transport of Sr in Chernobyl sand columns

    International Nuclear Information System (INIS)

    Szenknect, S.; Dewiere, L.; Ardois, C.; Gaudet, J.P.

    2005-01-01

    Full text of publication follows: While transport of non-reactive solutes has been studied extensively in unsaturated porous media, much less is known about the factors that control the transport of sorbing solutes in unsaturated conditions. Three laboratory techniques were used to analyze the transport of Sr in the aeolian sand from Chernobyl Pilot Site [1] in both saturated and unsaturated flow conditions. Batch experiments were performed to study the chemical equilibrium state of the soil/solution system. Stirred flow-through reactor (SFTR) experiments were performed to study the kinetics and reversibility of sorption reactions at the surface of solid particles. Column experiments were also performed in saturated and unsaturated steady flow conditions. Experimental data pointed out a non-linear, instantaneous and reversible sorption process of Sr. A suitable cation-exchange model was used to describe the solute/soil reaction. The former model was coupled with transport models to describe behavior of Sr in saturated [2] and unsaturated flow conditions. Transport properties of sand packed columns have been determined with an inert tracer (HTO). BTCs obtained under saturated conditions exhibit a small amount of dispersion compared to those obtained under unsaturated conditions. Classical advection-dispersion model described successfully saturated tritium breakthrough curves (BTCs), whereas a mobile-immobile model (MIM) was required to described asymmetrical unsaturated BTCs. The MIM assumes that the porous medium contains a mobile water phase in which convective-dispersive transport occurs, and a immobile water phase with which solutes can exchange with a first order kinetic. In our experiments, transport by advection in the mobile phase is the predominant process whatever the flow conditions and mass transfer rate between the mobile and immobile regions is the predominant process for broadening the BTCs. Since dispersion is blurred by mass transfer resistance, the

  14. Pollutant transport in clayey sands: reactive flows in saturated porous media and unsaturated flows

    International Nuclear Information System (INIS)

    Cadalen, Sebastien

    2008-01-01

    In the context of nuclear risk control associated to nuclear waste storage, the french nuclear agency plays an increasing role in terms of research and development in the area of subsurface contamination. This study focuses on an homogeneous porous media constituted of Fontainebleau sand and clay grains (illite) presenting sorption capacities. The modeling of the complex geometry and physical phenomena at different scales enables us to describe the average transport at Darcy's scale. The two main axes developed are the impact of an heterogeneous sorption on transport phenomena and the dispersivity of an unsaturated porous media. (author) [fr

  15. Development of a model for the synthesis of unsaturated polyester by reactive distillation

    NARCIS (Netherlands)

    Shah, M.R.; Zondervan, E.; Oudshoorn, M.L.; Haan, de A.B.; Haan, de A.B.; Kooijman, H.; Górak, A.

    2010-01-01

    Traditionally polyester production is done in a batch reactor equipped with a separation column for batch distillation. A promising alternative for the intensification of this process is reactive distillation. In this paper, a reactive distillation model is developed for the synthesis of an

  16. The unsaturated bistable stochastic resonance system.

    Science.gov (United States)

    Zhao, Wenli; Wang, Juan; Wang, Linze

    2013-09-01

    We investigated the characteristics of the output saturation of the classical continuous bistable system (saturation bistable system) and its impact on stochastic resonance (SR). We further proposed a piecewise bistable SR system (unsaturated bistable system) and developed the expression of signal-to-noise ratio (SNR) using the adiabatic approximation theory. Compared with the saturation bistable system, the SNR is significantly improved in our unsaturated bistable SR system. The numerical simulation showed that the unsaturated bistable system performed better in extracting weak signals from strong background noise than the saturation bistable system.

  17. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  18. Evaluating sensitivity of unsaturated soil properties

    International Nuclear Information System (INIS)

    Abdel-Rahman, R.O.; El-Kamash, A.M.; Nagy, M.E.; Khalill, M.Y.

    2005-01-01

    The assessment of near surface disposal performance relay on numerical models of groundwater flow and contaminant transport. These models use the unsaturated soil properties as input parameters, which are subject to uncertainty due to measurements errors and the spatial variability in the subsurface environment. To ascertain how much the output of the model will depend on the unsaturated soil properties the parametric sensitivity analysis is used. In this paper, a parametric sensitivity analysis of the Van Genuchten moisture retention characteristic (VGMRC) model will be presented and conducted to evaluate the relative importance of the unsaturated soil properties under different pressure head values that represent various dry and wet conditions. (author)

  19. Regional variability of nitrate fluxes in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant

    2018-01-01

    Process-based modeling of regional NO3− fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3− reactive transport processes make implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3− in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3−, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3−, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3− front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g. limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  20. Regional Variability of Nitrate Fluxes in the Unsaturated Zone and Groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant C.

    2018-01-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3- reactive transport processes makes implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3- in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams, (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3-, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3- front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g., limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  1. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  2. Unsaturated fatty acids in the diet of inpatients

    OpenAIRE

    KONHEFROVÁ, Veronika

    2015-01-01

    The thesis with the name "Unsaturated fatty acids in the diet of inpatients" is divided into a theoretical and a research parts. The theoretical part is focused on sorting out lipids and the recommended daily dosing. Next there are described the chemical structure of fatty acids and basic differences between saturated (SFA) and unsaturated (trans and cis) fatty acids. The biggest part of the theory is formed by the unsaturated fatty acids, their characteristics, food source and their effect o...

  3. Synthesis of porphyryl boronates with (un)saturated side-chains

    OpenAIRE

    SENGE, MATHIAS; SERGEEVA, NATALIA

    2008-01-01

    PUBLISHED Porphyrins with (un)saturated side?chains containing boron residues were developed as synthons for porphyrin functionalization. Porphyrins with mono and bis-substituted unsaturated boronyl residues were prepared in good yields (52?66 %) using a cross?metathesis approach in the presence of Grubbs I-generation catalysts. In all cases complete E?stereoselectivity (100 %) was observed. Furthermore, formal cross?metathesis products with ?,??unsaturated chains smoothly underwent additi...

  4. Disposal of vitrified waste in an unsaturated environment

    International Nuclear Information System (INIS)

    Bates, J.K.

    1991-01-01

    An experimental program is described wherein the effect of important independent variables on glass reaction under conditions that may exist for unsaturated storage is examined. The effect of radioactive vs. simulated glasses is being examined in a set of simple and integrated tests. Results through 140 days show that no major differences exist between the two glass types although some trends are being established that need further examination. The effect of SA/V was examined in preliminary tests done at 10, 50, and 100 m -1 . Analysis of the reacted glass structure indicated that as the SA/V changed, the assemblage of crystalline phases that formed on the reacted glass varied and the process by which the glass structure reacted changed. Finally, the effect of radiation on glass reactivity is being studied. For each variable studied, tests are in progress that will provide information to support startup of the glass processing facilities and licensing of a repository. 16 refs., 2 figs., 3 tabs

  5. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  6. Mechanical, dielectric, and physicochemical properties of impregnating resin based on unsaturated polyesterimides

    Science.gov (United States)

    Fetouhi, Louiza; Petitgas, Benoit; Dantras, Eric; Martinez-Vega, Juan

    2017-10-01

    This work aims to characterize the dielectric and the mechanical properties of a resin based on an unsaturated polyesterimide diluted in methacrylate reactive diluents used in the impregnation of rotating machines. The broadband dielectric spectrometry and the dynamic mechanical analysis were used to quantify the changes in dielectric and mechanical properties of the network PEI resin, as a function of temperature and frequency. The network characterizations highlight the presence of two main relaxations, α and α', confirmed by the differential scanning calorimetry analysis, showing the complexity of the chemical composition of this resin. The dielectric spectroscopy shows a significant increase in the dielectric values due to an increase of the material conductivity, while the mechanical spectroscopy shows an important decrease of the polymer rigidity and viscosity expressed by an important decrease in the storage modulus. The PEI resin shows a high reactivity when it is submitted in successive heating ramps, which involves in a post-cross-linking reaction. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  7. Laboratory experiments to characterize radiochloride diffusion in unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Aldaba, D.; Fernandez-Torrent, R.; Rauret, G.; Vidal, M. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rigol, A. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)], E-mail: annarigol@ub.edu

    2010-03-15

    Diffusion transport of {sup 36}Cl was examined in seven soils under unsaturated conditions in tubes packed with two portions of each soil having different {sup 36}Cl activity concentrations. Apparent diffusion coefficients (D{sub a}) derived from diffusion profiles varied within a narrow range (from 3x10{sup -10} to 7x10{sup -10} m{sup 2} s{sup -1}) confirming the minor effect of soil properties on the diffusion of a non-reactive radionuclide like {sup 36}Cl. Instead, packing conditions had a major effect. Solid-liquid distribution coefficients (K{sub d}) derived from D{sub a} (0.02-0.2 L kg{sup -1}) were systematically lower than those obtained from batch experiments (0.6-1.0 L kg{sup -1}), but with a similar variation pattern among soils. The low values of K{sub d} (Cl) confirmed an almost negligible radiochloride-soil interaction.

  8. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    OpenAIRE

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  9. Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein

    International Nuclear Information System (INIS)

    Wu, C.C.; Hsieh, C.W.; Lai, P.H.; Lin, J.B.; Liu, Y.C.; Wung, B.S.

    2006-01-01

    Acrolein is a highly electrophilic α,β-unsaturated aldehyde that is present in cigarette smoke. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various such electrophilic compounds. In this study, the regulatory effects of acrolein upon the expression of HO-1 were investigated in endothelial cells (ECs). We demonstrate that acrolein induces the elevation of HO-1 protein levels, and subsequent enzyme activity, at non-cytotoxic concentrations. An additional α,β-unsaturated aldehyde, cinnamaldehyde, was also found to increase HO-1 expression and have less cytotoxicity than acrolein. Moreover, acrolein-mediated HO-1 induction is abrogated in the presence of actinomycin D and cycloheximide. Nrf2 is a transcription factor involved in the induction of HO-1 through an antioxidant response element (ARE) in the promoter region of the HO-1 gene. We show that acrolein induces Nrf2 translocation and ARE-luciferase reporter activity. Acrolein was also found to induce the production of both superoxide and H 2 O 2 at levels greater than 100 μM. However, with the exception of NAC, no antioxidant generated any effect upon acrolein-dependent HO-1 expression in ECs. Our present findings suggest that reactive oxygen species (ROS) may not be a major modulator for HO-1 induction. Using buthionine sulfoximine to deplete the intracellular GSH levels further enhanced the effects of acrolein. We also found that cellular GSH level was rapidly reduced after both 10 and 100 μM acrolein treatment. However, after 6 h of exposure to ECs, only 10 μM acrolein treatment increases GSH level. In addition, only the JNK inhibitor SP600125 and tyrosine kinase inhibitor genistein had any significant inhibitory impact upon the upregulation of HO-1 by acrolein. Pretreatment with a range of other PI3 kinase inhibitors, including wortmannin and LY294002, showed no effects. Hence, we show in our current experiments that a sublethal concentration of acrolein is in fact a novel HO-1 inducer

  10. Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein.

    Science.gov (United States)

    Wu, C C; Hsieh, C W; Lai, P H; Lin, J B; Liu, Y C; Wung, B S

    2006-08-01

    Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde that is present in cigarette smoke. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various such electrophilic compounds. In this study, the regulatory effects of acrolein upon the expression of HO-1 were investigated in endothelial cells (ECs). We demonstrate that acrolein induces the elevation of HO-1 protein levels, and subsequent enzyme activity, at non-cytotoxic concentrations. An additional alpha,beta-unsaturated aldehyde, cinnamaldehyde, was also found to increase HO-1 expression and have less cytotoxicity than acrolein. Moreover, acrolein-mediated HO-1 induction is abrogated in the presence of actinomycin D and cycloheximide. Nrf2 is a transcription factor involved in the induction of HO-1 through an antioxidant response element (ARE) in the promoter region of the HO-1 gene. We show that acrolein induces Nrf2 translocation and ARE-luciferase reporter activity. Acrolein was also found to induce the production of both superoxide and H2O2 at levels greater than 100 microM. However, with the exception of NAC, no antioxidant generated any effect upon acrolein-dependent HO-1 expression in ECs. Our present findings suggest that reactive oxygen species (ROS) may not be a major modulator for HO-1 induction. Using buthionine sulfoximine to deplete the intracellular GSH levels further enhanced the effects of acrolein. We also found that cellular GSH level was rapidly reduced after both 10 and 100 microM acrolein treatment. However, after 6 h of exposure to ECs, only 10 microM acrolein treatment increases GSH level. In addition, only the JNK inhibitor SP600125 and tyrosine kinase inhibitor genistein had any significant inhibitory impact upon the upregulation of HO-1 by acrolein. Pretreatment with a range of other PI3 kinase inhibitors, including wortmannin and LY294002, showed no effects. Hence, we show in our current experiments that a sublethal concentration of acrolein is in fact a

  11. Pumping Test Determination of Unsaturated Aquifer Properties

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum

  12. Deuterium labelling studies with unsaturated acids and nitriles

    International Nuclear Information System (INIS)

    Desai, U.V.; Mane, R.B.

    1986-01-01

    α-Deuteriated α,β-unsaturated acids have been prepared by Knoevenagel condensation of aldehydes with deuteriated malonic acid. The decarboxylation of α,β-unsaturated cyano acid with pyridine/D 2 O yields α- and γ-labelled nitriles. The deuterium incorporation is studied by pmr spectroscopy. (author). 8 refs

  13. Vertical hydrochemical profiles in the unsaturated zone of louga ...

    African Journals Online (AJOL)

    Solutions chemistry of the rainwater and the unsaturated zone interstitial water of Louga (Northern Senegal) local aquifer provide valuable ... together with chemical analysis of the interstitial water carried out through the entire unsaturated ...

  14. Electrokinetic extraction of chromate from unsaturated soils

    International Nuclear Information System (INIS)

    Mattson, E.D.; Lindgren, E.R.

    1993-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode

  15. Electrokinetic extraction of chromate from unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, E.D. [SAT-UNSAT, Inc., Albuquerque, NM (United States); Lindgren, E.R. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode.

  16. Actinic radiation-curable formulations from the reaction product of organic isocyanate, poly(alkylene oxide) polyol and an unsaturated addition-polymerizable monomeric compound having a single isocyanate-reactive hydrogen group

    International Nuclear Information System (INIS)

    Howard, D.D.

    1979-01-01

    Energy-curable compositions which can be cured in the presence of air by exposure to actinic radiation contain at least one unsaturated urethane oligomer. The oligomer comprises the reaction product of at least one poly(alkylene oxide) polyol, at least one polyisocyanate, and at least one unsaturated active hydrogen-containing compound

  17. Chum salmon egg extracts induce upregulation of collagen type I and exert antioxidative effects on human dermal fibroblast cultures

    Science.gov (United States)

    Yoshino, Atsushi; Polouliakh, Natalia; Meguro, Akira; Takeuchi, Masaki; Kawagoe, Tatsukata; Mizuki, Nobuhisa

    2016-01-01

    Components of fish roe possess antioxidant and antiaging activities, making them potentially very beneficial natural resources. Here, we investigated chum salmon eggs (CSEs) as a source of active ingredients, including vitamins, unsaturated fatty acids, and proteins. We incubated human dermal fibroblast cultures for 48 hours with high and low concentrations of CSE extracts and analyzed changes in gene expression. Cells treated with CSE extract showed concentration-dependent upregulation of collagen type I genes and of multiple antioxidative genes, including OXR1, TXNRD1, and PRDX family genes. We further conducted in silico phylogenetic footprinting analysis of promoter regions. These results suggested that transcription factors such as acute myeloid leukemia-1a and cyclic adenosine monophosphate response element-binding protein may be involved in the observed upregulation of antioxidative genes. Our results support the idea that CSEs are strong candidate sources of antioxidant materials and cosmeceutically effective ingredients. PMID:27621603

  18. Movement of radionuclides through unsaturated soils

    International Nuclear Information System (INIS)

    de Sousa, F.N.C.

    1985-01-01

    The advantages of the disposal of low-level radioactive wastes in the unsaturated zone above the fluctuations of the water table have been recognized for some time. However, most the numerical models used to simulate the environmental impact of a shallow land burial site assume that the soils surrounding the waste forms are saturated; this assumption may lead, in many cases, to unrealistic large leach and water flow rates. The main purpose of this study was the development of a procedure which could give a reliable prediction on the movement of radionuclides from shallow land burial sites located in the unsaturated zone. In order to accomplish this objective three different soils having different sand, silt, and clay fractions were selected and characterized. These soils were then used to fill a number of flow columns that were used in tests designed to provide input data for the flow and transport models. A one-dimensional finite element model was developed in order to simulate the water flow and radionuclide transport through unsaturated soils. The results obtained showed that the model accurately described the transport of radionuclides through saturated-unsaturated soils. Simulations were done, for all three soils, involving different degrees of soil saturation, and the results showed that assuming the soils are always saturated may lead to nuclide transport times which are orders of magnitude larger than the real ones, depending on the clay percentage present in the soil

  19. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  20. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Directory of Open Access Journals (Sweden)

    Kamonporn Panngom

    Full Text Available Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  1. Seismic response of earth dams considering dynamic properties of unsaturated zone

    Directory of Open Access Journals (Sweden)

    Ariyan M.

    2016-01-01

    Full Text Available It is conventionally assumed in the analysis and design of earth dams that the soil located above the phreatic line, i.e. the uppermost seepage flow line, is completely dry. However, there is often an unsaturated flow of water through an unsaturated zone above this borderline and variation in moisture content in this zone results in variation of matric suction throughout this region. Variation of matric suction, in turn, results in variation of effective stresses in this zone. In this research, the seismic response of earth dams in terms of the displacement and acceleration at the crown of the dam as well as the stress distribution in the dam body is investigated. Taking into account the effect of unsaturated zone, a comparison is made to investigate the effect of conventional simplification in ignoring the dynamic characteristics of the unsaturated zone above the phreatic line and the more complicated analysis which includes the unsaturated zone. A function for the soil-water retention curve (SWRC was assigned to the soil in the unsaturated zone to determine the variation of matric suction in this zone and analyses were made using finite difference software (FLAC. Results are then compared to the conventional method for homogeneous dams. In these analyzes the soil shear modulus was assumed to vary with the mean effective stress both for saturated and unsaturated zones. Among various results, it was notable that the history of crest x-displacement, and acceleration show higher values in models accounting for the unsaturated region. It was attributed to the considerably lower values of damping ratio in the crest region in the unsaturated models.

  2. Infiltration in Unsaturated Soils

    DEFF Research Database (Denmark)

    Ghotbi, Abdoul R.; Omidvar, M.; Barari, Amin

    2011-01-01

    An approximate analytical solution has been established for the well known Richards’ equation for unsaturated flow of transports in soils. Despite the importance of Richards’ equation in geotechnical and geoenvironmental applications, most solutions to the problem are generally based on numerical...

  3. Actinic-radiation curable polymers prepared from a reactive polymer, halogenated cyclic anhydride and glycidyl ester

    International Nuclear Information System (INIS)

    Pastor, S.D.

    1979-01-01

    A novel class of photosensitive polymers are disclosed which are prepared by the reaction, preferably in the presence of a catalyst, of a reactive polymer, a halogenated cyclic anhydride and glycidyl ester of an alpha, beta-unsaturated carboxylic acid. These polymers are capable of undergoing vinyl-type polymerization when exposed to actinic radiation

  4. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs.

  5. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs

  6. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  7. Abstracts of the symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport

  8. Principles of Physical Modelling of Unsaturated Soils

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc

    2014-01-01

    Centrifuge modelling has been widely used to simulate the performance of a variety of geotechnical works, most of them focusing on saturated clays or dry sands. On the other hand, the performance of some geotechnical works depends on the behaviour of shallow layers in the soil deposit where it is frequently unsaturated. Centrifuge modelling could be a powerful tool to study the performance of shallow geotechnical works. However all the experimental complexities related to unsaturated soils, w...

  9. Quantifying Preferential Flow and Seasonal Storage in an Unsaturated Fracture-Facial Domain

    Science.gov (United States)

    Nimmo, J. R.; Malek-Mohammadi, S.

    2012-12-01

    Preferential flow through deep unsaturated zones of fractured rock is hydrologically important to a variety of contaminant transport and water-resource issues. The unsaturated zone of the English Chalk Aquifer provides an important opportunity for a case study of unsaturated preferential flow in isolation from other flow modes. The chalk matrix has low hydraulic conductivity and stays saturated, owing to its fine uniform pores and the wet climate of the region. Therefore the substantial fluxes observed in the unsaturated chalk must be within fractures and interact minimally with matrix material. Price et al. [2000] showed that irregularities on fracture surfaces provide a significant storage capacity in the chalk unsaturated zone, likely accounting for volumes of water required to explain unexpected dry-season water-table stability during substantial continuing streamflow observed by Lewis et al. [1993] In this presentation we discuss and quantify the dynamics of replenishment and drainage of this unsaturated zone fracture-face storage domain using a modification of the source-responsive model of Nimmo [2010]. This model explains the processes in terms of two interacting flow regimes: a film or rivulet preferential flow regime on rough fracture faces, active on an individual-storm timescale, and a regime of adsorptive and surface-tension influences, resembling traditional diffuse formulations of unsaturated flow, effective mainly on a seasonal timescale. The modified model identifies hydraulic parameters for an unsaturated fracture-facial domain lining the fractures. Besides helping to quantify the unsaturated zone storage described by Price et al., these results highlight the importance of research on the topic of unsaturated-flow relations within a near-fracture-surface domain. This model can also facilitate understanding of mechanisms for reinitiation of preferential flow after temporary cessation, which is important in multi-year preferential flow through deep

  10. Virus movement in soil during saturated and unsaturated flow.

    Science.gov (United States)

    Lance, J C; Gerba, C P

    1984-02-01

    Virus movement in soil during saturated and unsaturated flow was compared by adding poliovirus to sewage water and applying the water at different rates to a 250-cm-long soil column equipped with ceramic samplers at different depths. Movement of viruses during unsaturated flow of sewage through soil columns was much less than during saturated flow. Viruses did not move below the 40-cm level when sewage water was applied at less than the maximum infiltration rate; virus penetration in columns flooded with sewage was at least 160 cm. Therefore, virus movement in soils irrigated with sewage should be less than in flooded groundwater recharge basins or in saturated soil columns. Management of land treatment systems to provide unsaturated flow through the soil should minimize the depth of virus penetration. Differences in virus movement during saturated and unsaturated flow must be considered in the development of any model used to simulate virus movement in soils.

  11. Glutamine supplementation suppresses herpes simplex virus reactivation.

    Science.gov (United States)

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  12. Waste migration in shallow burial sites under unsaturated flow conditions

    International Nuclear Information System (INIS)

    Eicholz, G.G.; Whang, J.

    1987-01-01

    Unsaturated conditions prevail in many shallow-land burial sites, both in arid and humid regions. Unless a burial site is allowed to flood and possibly overflow, a realistic assessment of any migration scenario must take into account the conditions of unsaturated flow. These are more difficult to observe and to model, but introduce significant changes into projected rates of waste leaching and waste migration. Column tests have been performed using soils from the Southeastern coastal plain to observe the effects of varying degrees of ''unsaturation'' on the movement of radioactive tracers. The moisture content in the columns was controlled by maintaining various levels of hydrostatic suction on soil columns whose hydrodynamic characteristics had been determined carefully. Tracer tests, employing Cs-137, I-131 and Ba-133 were used to determine migration profiles and to follow their movement down the column for different suction values. A calculational model has been developed for unsaturated flow and seems to match the observations fairly well. It is evident that a full description of migration processes must take into account the reduced migration rates under unsaturated conditions and the hysteresis effects associated with wetting-drying cycles

  13. Analyzing Unsaturated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach

    International Nuclear Information System (INIS)

    Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

    2006-01-01

    Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems

  14. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    Science.gov (United States)

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  15. A framework for the behaviour of unsaturated expansive clays

    International Nuclear Information System (INIS)

    Gens, A.; Alonso, E.E.

    1992-01-01

    The paper presents a framework for describing the mechanical behaviour of unsaturated expansive clays. It is an extension of an existing formulation developed for unsaturated soils of low activity. The extended framework is based on the distinction within the material of a microstructural level where the basic swelling of the active minerals takes place, and a macrostructural level responsible for major structural rearrangements. Bu adopting simple assumptions concerning the coupling between the two levels, it is possible to reproduce major features of the behaviour of unsaturated expansive clays. Some selected qualitative comparisons between model predictions and experimental results reported in the literature are presented. Despite the simplified hypotheses made, a very encouraging agreement is obtained

  16. Effect of Unsaturated Flow on Delayed Response of Unconfined Aquifiers to Pumping

    Science.gov (United States)

    Tartakovsky, G.; Neuman, S. P.

    2005-12-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman [1972, 1974] by accounting for unsaturated flow above the water table. Axially symmetric three-dimensional flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length and a dimensionless exponent κD = κb where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan [1975] who however have ignored internal (artesian) aquifer storage. It has been suggested by Boulton [1954, 1963, 1970] and Neuman [1972, 1974], and is confirmed by our solution, that internal storage is required to reproduce the early increase in drawdown characterizing delayed response to pumping in typical aquifers. According to our new solution such aquifers are characterized by relatively large κ_ D values, typically 10 or larger; in the limit as κD tends to infinity (the soil unsaturated water retention capacity becomes insignificant and/or aquifer thickness become large), unsaturated flow becomes unimportant and our solution reduces to that of Neuman. In typical cases corresponding to κD larger than or equal to 10, unsaturated flow is found to have little impact on early and late dimensionless time behaviors of drawdown measured wholly or in part at some distance below the water table; unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian dominated to a late water-table dominated flow regime. The increase in drawdown

  17. Stochastic analysis of radionuclide migration in saturated-unsaturated soils

    International Nuclear Information System (INIS)

    Kawanishi, Moto

    1988-01-01

    In Japan, LLRW (low level radioactive wastes) generated from nuclear power plants shall be started to store concentrically in the Shimokita site from 1990, and those could be transformed into land disposal if the positive safety is confirmed. Therefore, it is hoped that the safety assessment method shall be successed for the land disposal of LLRW. In this study, a stochastic model to analyze the radionuclide migration in saturated-unsaturated soils was constructed. The principal results are summarized as follows. 1) We presented a generalized idea for the modeling of the radionuclide migration in saturated-unsaturated soils as an advective-dispersion phenomena followed by the decay of radionuclides and those adsorption/desorption in soils. 2) Based on the radionuclide migration model mentioned above, we developed a stochastic analysis model on radionuclide migration in saturated-unsaturated soils. 3) From the comparison between the simulated results and the exact solution on a few simple one-dimensional advective-dispersion problems of radionuclides, the good validity of this model was confirmed. 4) From the comparison between the simulated results by this model and the experimental results of radionuclide migration in a one-dimensional unsaturated soil column with rainfall, the good applicability was shown. 5) As the stochastic model such as this has several advantages that it is easily able to represent the image of physical phenomena and has basically no numerical dissipation, this model should be more applicable to the analysis of the complicated radionuclide migration in saturated-unsaturated soils. (author)

  18. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-ling; WEN Liang; CHEN Yan-jiong; ZHU Yi

    2009-01-01

    Background The vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.Methods Bovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).Results Western blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.Conclusion ROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.

  19. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima; Callens, Emmanuel; Talbi, Karima; Basset, Jean-Marie

    2015-01-01

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate

  20. Unsaturated zone investigation at the radioactive waste storage facility site

    Energy Technology Data Exchange (ETDEWEB)

    Skuratovic, Zana; Mazeika, Jonas; Petrosius, Rimantas; Jakimaviciute-Maseliene, Vaidote [Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius (Lithuania); Klizas, Petras; Mokrik, Robert [Vilnius University, M.K. Ciurlionio St. 21/27, LT-03101 Vilnius (Lithuania)

    2014-07-01

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis ({sup 3}H, {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium ({sup 3}H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily

  1. Isotope Investigations of Groundwater Movement in a Coarse Gravel Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    Mali, N. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Kozar-Logar, J. [Jozef Stefan Institute, Ljubljana (Slovenia); Leis, A. [Institute of Water Resources Management, Hydrogeology and Geophysics, Joanneum Research Forschungsgesellschaft mbH, Graz (Austria)

    2013-07-15

    The unsaturated zone above an aquifer serves as a water reservoir which discharges water and possible pollution to the saturated zone. This paper presents the application of oxygen-18 and tritium isotope methods in the study of groundwater transport processes in the unsaturated zone of Selniska Dobrava coarse gravel aquifer. The Selniska Dobrava gravel aquifer is an important water resource for Maribor and its surroundings, therefore the determination of transport processes in the unsaturated zone is important regarding its protection. Groundwater flow characteristics were estimated using isotopes and based on experimental work in a lysimeter. Tritium investigation results were compared with the results of long term oxygen-18 isotope investigation. In this paper the analytical approach, results and interpretation of {delta}{sup 18}O and tritium measurements in the unsaturated zone are presented. (author)

  2. Multiplexed Thiol Reactivity Profiling for Target Discovery of Electrophilic Natural Products.

    Science.gov (United States)

    Tian, Caiping; Sun, Rui; Liu, Keke; Fu, Ling; Liu, Xiaoyu; Zhou, Wanqi; Yang, Yong; Yang, Jing

    2017-11-16

    Electrophilic groups, such as Michael acceptors, expoxides, are common motifs in natural products (NPs). Electrophilic NPs can act through covalent modification of cysteinyl thiols on functional proteins, and exhibit potent cytotoxicity and anti-inflammatory/cancer activities. Here we describe a new chemoproteomic strategy, termed multiplexed thiol reactivity profiling (MTRP), and its use in target discovery of electrophilic NPs. We demonstrate the utility of MTRP by identifying cellular targets of gambogic acid, an electrophilic NP that is currently under evaluation in clinical trials as anticancer agent. Moreover, MTRP enables simultaneous comparison of seven structurally diversified α,β-unsaturated γ-lactones, which provides insights into the relative proteomic reactivity and target preference of diverse structural scaffolds coupled to a common electrophilic motif and reveals various potential druggable targets with liganded cysteines. We anticipate that this new method for thiol reactivity profiling in a multiplexed manner will find broad application in redox biology and drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Science.gov (United States)

    Kumahor, Samuel; Hron, Pavel; Metreveli, George; Schaumann, Gabriele; Vogel, Hans-Jörg

    2015-04-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Unlike for saturated transport, studies on unsaturated transport as typical for soil are currently scarce. We investigated the mobility of citrate-coated Ag NPs in unsaturated sand (grain diameter: 0.1-0.3 mm). For three flux rates and a given pore-water ionic strength (1 mM KNO3), the citrate-coated Ag NPs were less mobile at pH = 5 compared to pH = 9. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggests unfavorable deposition conditions at both, the air-water interface and solid-water interface. Breakthrough curves measured under quasi-steady state unsaturated flow showed retardation of the citrate-coated Ag NPs compared to inert solute (KBr). After flushing with nanoparticle-free 1 mM KNO3 solution (pH-adjusted), retention was much lower in deeper depths compared to the surface where the particles entered the flow field. The results show a non-linear dependence of nanoparticle (NP) mobility on flux rate and water content. Especially the observed retardation similar to equilibrium sorption is in contrast to observations under saturated flow conditions. A convection-dispersion and reaction model that combines a reversible equilibrium process and a non-equilibrium interaction process reproduced the measured breakthrough curves reasonably well. From comparison between saturated and unsaturated experiments we conclude that the air-water interface is responsible for the reversible equilibrium process while the water-solid interface accounts for irreversible soption.

  4. Acrolein—an α,ß-Unsaturated Aldehyde: A Review of Oral Cavity Exposure and Oral Pathology Effects

    Directory of Open Access Journals (Sweden)

    Dror Aizenbud

    2016-07-01

    Full Text Available Acrolein is a highly reactive unsaturated aldehyde widely present in the environment, particularly as a product of tobacco smoke. Our previous studies indicated the adverse consequences of even short-term acrolein exposure and proposed a molecular mechanism of its potential harmful effect on oral cavity keratinocytic cells. In this paper we chose to review the broad spectrum of acrolein sources such as pollution, food, and smoking. Consequently, in this paper we consider a high level of oral exposure to acrolein through these sources and discuss the noxious effects it has on the oral cavity including on salivary quality and contents, oral resistance to oxidative stress, and stress mechanism activation in a variety of oral cells.

  5. Surface reactivity of Ge[111] for organic functionalization by means of a radical-initiated reaction: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Pereda, Pamela, E-mail: rubio.pereda@gmail.com [Centro de Investigación Científica y de Educación Superior de Ensenada 3918, Código Postal 22860, Ensenada, Baja California (Mexico); Takeuchi, Noboru, E-mail: takeuchi@cnyn.unam.mx [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 14, Código Postal 22800, Ensenada, Baja California (Mexico)

    2016-08-30

    Highlights: • The surface reactivity of the Ge [111] surface is studied with DFT for the attachment of organic molecules by means of a radical-initiated reaction. • A hydrogen vacancy in the hydrogen terminated Ge [111] surface exhibits an accumulation of charge and electron pairing. • These characteristics make the hydrogen vacancy less reactive for the attachment of unsaturated organic molecules. • The adsorption of acetylene is probable to occur while the adsorption of ethylene and styrene is substantially less probable to occur. • The hydrogen terminated Ge [111] surface is found to be less reactive than its two-dimensional analogue, the hydrogen-terminated germanene. - Abstract: The study of interfacial chemistry at semiconductor surfaces has become an important area of research. Functionalities such as molecular recognition, biocompatibility of surfaces, and molecular computing, could be achieved by the combinations of organic chemistry with the semiconductor technology. One way to accomplish this goal is by means of organic functionalization of semiconductor surfaces such as the bulk-terminated germanium surfaces, more specifically the Ge[111]. In this work, we theoretically study, by applying density functional theory, the surface reactivity of the bulk-terminated Ge[111] surface for organic functionalization by means of a radical-initiated reaction of unsaturated molecules such as acetylene, ethylene and styrene with a hydrogen vacancy on a previously hydrogen-terminated Ge[111] surface. Results derived from this work are compared with those obtained in our previous calculations on the germanene surface, following the same chemical route. Our calculations show an accumulation of electronic charge at the H-vacancy having as a result electron pairing due to strong lattice-electron coupling and therefore a diminished surface reactivity. Calculation of the transition states for acetylene and ethylene indicates that the surface reactivity of the

  6. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels

    International Nuclear Information System (INIS)

    Zhong, Linlin; Liu, Ziwen; Yan, Ruilan; Johnson, Stephen; Zhao, Yupei; Fang, Xiubin; Cao, Deliang

    2009-01-01

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 μM, 4-hydroxynonenal (HNE) at 0.10 μM, trans-2-hexanal at 0.10 μM, and trans-2,4-hexadienal at 0.05 μM, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 μM (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  7. A mathematical model in charactering chloride diffusivity in unsaturated cementitious material

    NARCIS (Netherlands)

    Zhang, Y.; Ye, G.; Pecur, I.B.; Baricevic, A.; Stirmer, N; Bjegovic, D.

    2017-01-01

    In this paper, a new analytic model for predicting chloride diffusivity in unsaturated cementitious materials is developed based on conductivity theory and Nernst-Einstein equation. The model specifies that chloride diffusivity in unsaturated cementitious materials can be mathematically described as

  8. Delocalization model of regioselectivity and reactivity of free radicals in reactions of addition to olefins

    International Nuclear Information System (INIS)

    Volovik, S.V.; Dyadyusha, G.G.; Staninets, V.I.

    1987-01-01

    On the basis of the concept of polarity (philicity) of free radicals as proposed by the authors, within the framework of methods of qualitative surfaces of potential energy (linear combinations of configurations of fragments) and stabilization energy, an effective model has been developed for the regioselectivity and reactivity of radicals in processes of addition. A critical examination is made of certain key aspects of the change in regiochemistry and reactivity with changes in the electronic structure of the free radical and substrate. The dominant trends in regioselectivity and reactivity in processes of free-radical addition to olefins are controlled by electronic effects and can be predicted by analyzing interactions of diabatic potential energy surfaces or orbital interactions for a system consisting of a free radical and an unsaturated substrate

  9. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    Science.gov (United States)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  10. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  11. Dietary saturated fat/cholesterol, but not unsaturated fat or starch, induces C-reactive protein associated early atherosclerosis and ectopic fat deposition in diabetic pigs

    Directory of Open Access Journals (Sweden)

    Serlie Mireille J

    2011-07-01

    Full Text Available Abstract Background Diabetes is thought to accelerate cardiovascular disease depending on the type of diet. This study in diabetic subjects was performed to investigate the metabolic, inflammatory and cardiovascular effects of nutritional components typically present in a Western, Mediterranean or high glycaemic diet. Methods Streptozotocin-diabetic pigs (~45 kg were fed for 10 weeks supplemental (40% of dietary energy saturated fat/cholesterol (SFC, unsaturated fat (UF or starch (S in an eucaloric dietary intervention study. Results Fasting plasma total, LDL and HDL cholesterol concentrations were 3-5 fold higher (p 2 = 0.95. Retroperitoneal fat depot weight (g was intermediate in SFC (260 ± 72, lowest in S (135 ± 51 and highest (p Conclusion Dietary saturated fat/cholesterol induces inflammation, atherosclerosis and ectopic fat deposition whereas an equally high dietary unsaturated fat load does not induce these abnormalities and shows beneficial effects on postprandial glycaemia in diabetic pigs.

  12. Sensitivity Analysis of Unsaturated Flow and Contaminant Transport with Correlated Parameters

    Science.gov (United States)

    Relative contributions from uncertainties in input parameters to the predictive uncertainties in unsaturated flow and contaminant transport are investigated in this study. The objectives are to: (1) examine the effects of input parameter correlations on the sensitivity of unsaturated flow and conta...

  13. Unsaturated fatty acids show clear elicitation responses in a modified local lymph node assay with an elicitation phase, and test positive in the direct peptide reactivity assay.

    Science.gov (United States)

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Miyazaki, Hiroshi; Itagaki, Hiroshi

    2015-12-01

    The Organisation for Economic Co-operation and Development (OECD) Test Guidelines (TG) adopted the murine local lymph node assay (LLNA) and guinea pig maximization test (GPMT) as stand-alone skin sensitization test methods. However, unsaturated carbon-carbon double-bond and/or lipid acids afforded false-positive results more frequently in the LLNA compared to those in the GPMT and/or in human subjects. In the current study, oleic, linoleic, linolenic, undecylenic, fumaric, maleic, and succinic acid and squalene were tested in a modified LLNA with an elicitation phase (LLNA:DAE), and in a direct peptide reactivity assay (DPRA) to evaluate their skin-sensitizing potential. Oleic, linoleic, linolenic, undecylenic and maleic acid were positive in the LLNA:DAE, of which three, linoleic, linolenic, and maleic acid were positive in the DPRA. Furthermore, the results of the cross-sensitizing tests using four LLNA:DAE-positive chemicals were negative, indicating a chemical-specific elicitation response. In a previous report, the estimated concentration needed to produce a stimulation index of 3 (EC3) of linolenic acid, squalene, and maleic acid in the LLNA was LLNA. However, the skin-sensitizing potential of all LLNA:DAE-positive chemicals was estimated as weak. These results suggested that oleic, linoleic, linolenic, undecylenic, and maleic acid had skin-sensitizing potential, and that the LLNA overestimated the skin-sensitizing potential compared to that estimated by the LLNA:DAE.

  14. Oxygenated gasoline release in the unsaturated zone - Part 1: Source zone behavior.

    Science.gov (United States)

    Freitas, Juliana G; Barker, James F

    2011-11-01

    Oxygenates present in gasoline, such as ethanol and MTBE, are a concern in subsurface contamination related to accidental spills. While gasoline hydrocarbon compounds have low solubility, MTBE and ethanol are more soluble, ethanol being completely miscible with water. Consequently, their fate in the subsurface is likely to differ from that of gasoline. To evaluate the fate of gasoline containing oxygenates following a release in the unsaturated zone shielded from rainfall/recharge, a controlled field test was performed at Canadian Forces Base Borden, in Ontario. 200L of a mixture composed of gasoline with 10% ethanol and 4.5% MTBE was released in the unsaturated zone, into a trench 20cm deep, about 32cm above the water table. Based on soil cores, most of the ethanol was retained in the source, above the capillary fringe, and remained there for more than 100 days. Ethanol partitioned from the gasoline to the unsaturated pore-water and was retained, despite the thin unsaturated zone at the site (~35cm from the top of the capillary fringe to ground surface). Due to its lower solubility, most of the MTBE remained within the NAPL as it infiltrated deeper into the unsaturated zone and accumulated with the gasoline on top of the depressed capillary fringe. Only minor changes in the distribution of ethanol were noted following oscillations in the water table. Two methods to estimate the capacity of the unsaturated zone to retain ethanol are explored. It is clear that conceptual models for sites impacted by ethanol-fuels must consider the unsaturated zone. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Ionic liquids as precatalysts in the highly stereoselective conjugate addition of α,β-unsaturated aldehydes to chalcones.

    Science.gov (United States)

    Ta, Linda; Axelsson, Anton; Bijl, Joachim; Haukka, Matti; Sundén, Henrik

    2014-10-20

    Imidazolium-based ionic liquids (ILs) serve both as recyclable reaction media and as precatalysts for the N-heterocyclic carbene-catalyzed conjugate addition of α,β-unsaturated aldehydes to chalcones. The reaction produces a broad scope of 1,6-ketoesters incorporating an anti-diphenyl moiety in high yields and with high stereoselectivity. In recycling experiments, the IL can be reused up to five times with retained reactivity and selectivity. Moreover, the 1,6-ketoesters form self-assembled organogels in aliphatic hydrocarbons. The reaction protocol is robust, easily operated, scalable and highly functionalized compounds can be obtained from inexpensive and readily accessible starting materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Saturated versus unsaturated hydrocarbon interactions with carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Deivasigamani eUmadevi

    2014-09-01

    Full Text Available The interactions of various acyclic and cyclic hydrocarbons in both saturated and unsaturated forms with the carbon nanostructures (CNSs have been explored by using density functional theory (DFT calculations. Model systems representing armchair and zigzag carbon nanotubes (CNTs and graphene have been considered to investigate the effect of chirality and curvature of the CNSs towards these interactions. Results of this study reveal contrasting binding nature of the acyclic and cyclic hydrocarbons towards CNSs. While the saturated molecules show stronger binding affinity in acyclic hydrocarbons; the unsaturated molecules exhibit higher binding affinity in cyclic hydrocarbons. In addition, acyclic hydrocarbons exhibit stronger binding affinity towards the CNSs when compared to their corresponding cyclic counterparts. The computed results excellently corroborate the experimental observations. The interaction of hydrocarbons with graphene is more favourable when compared with CNTs. Bader’s theory of atoms in molecules has been invoked to characterize the noncovalent interactions of saturated and unsaturated hydrocarbons. Our results are expected to provide useful insights towards the development of rational strategies for designing complexes with desired noncovalent interaction involving CNSs.

  17. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    Science.gov (United States)

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  18. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    Science.gov (United States)

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  19. Influence of transient flow on the mobility of strontium in unsaturated sand column

    International Nuclear Information System (INIS)

    Mazet, P.

    2008-10-01

    The reactive transport of 85 Sr was studied on laboratory columns, focusing on the influence of transient unsaturated flow (cycles of infiltration and redistribution) associated with controlled geochemistry (constant concentrations of major elements and stable strontium in water). An original experimental tool (gamma attenuation system) allows us to follow at the same time the variations of humidity of the soil and the migration of radionuclide, in a non-destroying and definite way. First stage of this study concerned the implementation of the experimental tool to measure transient hydraulic events within the columns of sand. Several experiments of transport of 85 Sr were then performed with different water condition (saturated, unsaturated, permanent and transient flow). Experimental results were simulated using the computer codes HYDRUS-1D (phenomenological approach with partition coefficient K d ) and HYTEC (mechanistic geochemical/transport approach). Confrontation between experience and modelling shows that, for our operating conditions, transfer of 85 Sr can be predicted with an 'operational' approach using: 1) simplified geochemical model with partition coefficient K d concerning interactive reaction with the soil (K d value determined independently on saturated column, with the same water geochemistry), 2) permanent saturated (or unsaturated) flow, taking into account the cumulated infiltrated water during unsaturated transient hydraulic events concerning hydrodynamic. Generalization of these results (area of validity) suggests that the 'cumulated infiltrated water + K d ' approach can be use, for controlled water geochemistry, when the numerical value of K d is fairly strong (K d ≥≥1), and that it is insensitive to the value of the water content. Moreover, the presence of immobile water (∼10%) recorded with tritium transport, is undetectable with strontium. Explanation of this result is allocated to the different characteristic time residence

  20. Second European Conference on Unsaturated Soils, E-UNSAT 2012

    CERN Document Server

    Jommi, Cristina; D’Onza, Francesca; Unsaturated Soils: Research and Applications

    2012-01-01

    These volumes contain the contributions to the Second European Conference on Unsaturated Soils, E-UNSAT 2012, held in Napoli, Italy, in June 2012. The event is the second of a series of European conferences, and follows the first successful one, organised in Durham, UK, in 2008. The conference series is supported by Technical Committee 106 of the International Society of Soil Mechanics and Geotechnical Engineering on Unsaturated Soils. The published contributions were selected after a careful peer-review process. A collection of more than one hundred papers is included, addressing the three thematic areas experimental, including advances in testing techniques and soil behaviour, modelling, covering theoretical and constitutive issues together with numerical and physical modelling, and engineering, focusing on approaches, case histories and geo-environmental themes. The areas of application of the papers embrace most of the geotechnical problems related to unsaturated soils. Increasing interest in geo-environm...

  1. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  2. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kumahor, Samuel K., E-mail: samuel.kumahor@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Hron, Pavel, E-mail: pavel.hron@iwr.uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, Raum 422, 69120 Heidelberg (Germany); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Vogel, Hans-Jörg, E-mail: hans-joerg.vogel@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Institute of Soil Science and Plant Nutrition, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle-Saale (Germany)

    2015-12-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO{sub 3} as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the

  3. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1

    DEFF Research Database (Denmark)

    Yang, Jenq-Lin; Tadokoro, Takashi; Keijzers, Guido

    2010-01-01

    inhibitor (KN-93) blocked the ability of glutamate to induce CREB phosphorylation and APE1 expression. Selective depletion of CREB using RNA interference prevented glutamate-induced up-regulation of APE1. Thus, glutamate receptor stimulation triggers Ca(2+)- and mitochondrial reactive oxygen species...

  4. Uncertainty analyses of unsaturated zone travel time at Yucca Mountain

    International Nuclear Information System (INIS)

    Nichols, W.E.; Freshley, M.D.

    1993-01-01

    Uncertainty analysis method can be applied to numerical models of ground-water flow to estimate the relative importance of physical and hydrologic input variables with respect to ground-water travel time. Monte Carlo numerical simulations of unsaturated flow in the Calico Hills nonwelded zeolitic (CHnz) layer at Yucca Mountain, Nevada, indicate that variability in recharge, and to a lesser extent in matrix porosity, explains most of the variability in predictions of water travel time through the unsaturated zone. Variations in saturated hydraulic conductivity and unsaturated curve-fitting parameters were not statistically significant in explaining variability in water travel time through the unsaturated CHnz unit. The results of this study suggest that the large uncertainty associated with recharge rate estimates for the Yucca Mountain site is of concern because the performance of the potential repository would be more sensitive to uncertainty in recharge than to any other parameter evaluated. These results are not exhaustive because of the limited site characterization data available and because of the preliminary nature of this study, which is limited to a single stratigraphic unit, one dimension, and does not account for fracture flow or other potential fast pathways at Yucca Mountain

  5. Electrokinetic remediation of anionic contaminants from unsaturated soils

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1992-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in the DOE weapons complex, and for the nation as a whole. Electrokinetic remediation is one possible technique for in situ removal of such contaminants from unsaturated soils. In previous studies at Sandia National Laboratories, the electromigration of chromate ions and anionic dye ions have been demonstrated. This paper reports on a series of experiments that were conducted to study the effect of moisture content on the electromigration rate of anionic contaminants in unsaturated soil and determine the limiting moisture content for which electromigration occurs

  6. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  7. High Glucose Promotes Tumor Invasion and Increases Metastasis-Associated Protein Expression in Human Lung Epithelial Cells by Upregulating Heme Oxygenase-1 via Reactive Oxygen Species or the TGF-β1/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaowen Kang

    2015-02-01

    Full Text Available Background: Growing evidence indicates that heme oxygenase-1 (HO-1 is up-regulated in malignancies and subsequently alters tumor aggressiveness and various cancer-related factors, such as high glucose (HG levels. HO-1 expression can be induced when glucose concentrations are above 25 mM; however, the role of HO-1 in lung cancer patients with diabetes remains unknown. Therefore, in this study we investigated the promotion of tumor cell invasion and the expression of metastasis-associated proteins by inducing the up-regulation of HO-1 expression by HG treatment in A549 human lung epithelial cells. Methods: The expression of HO-1and metastasis-associated protein expression was explored by western blot analysis. HO-1 enzymatic activity, reactive oxygen species (ROS production and TGF-β1 production were examined by ELISA. Invasiveness was analyzed using a Transwell chamber. Results: HG treatment of A549 cells induced an increase in HO-1 expression, which was mediated by the HG-induced generation of reactive oxygen species (ROS and transforming growth factor-β1 (TGF-β1 in a concentration- and time-dependent manner. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in HG-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC or with phosphatidylinositol 3-kinase (PI3K/Akt inhibitors attenuated the HG-induced increase in HO-1 expression. HG treatment of A549 cells enhanced the invasion potential of these cells, as shown with a Transwell assay, and increased metastasis-associated protein expression. However, HO-1 siRNA transfection significantly decreased these capabilities. Conclusion: this study is the first to demonstrate that HG treatment of A549 human lung epithelial cells promotes tumor cell invasion and increases metastasis-associated protein expression by up-regulating HO-1 expression via ROS or the TGF-β1/PI3K/Akt signaling pathway.

  8. Up-regulation of cytosolic phospholipase A2α expression by N,N-diethyldithiocarbamate in PC12 cells; involvement of reactive oxygen species and nitric oxide

    International Nuclear Information System (INIS)

    Akiyama, Nobuteru; Nabemoto, Maiko; Hatori, Yoshio; Nakamura, Hiroyuki; Hirabayashi, Tetsuya; Fujino, Hiromichi; Saito, Takeshi; Murayama, Toshihiko

    2006-01-01

    Disulfiram (an alcohol-aversive drug) and related compounds are known to provoke several side effects involving behavioral and neurological complications. N,N-diethyldithiocarbamate (DDC) is considered as one of the main toxic species of disulfiram and acts as an inhibitor of superoxide dismutase. Since arachidonic acid (AA) formation is regulated by reactive oxygen species (ROS) and related to toxicity in neuronal cells, we investigated the effects of DDC on AA release and expression of the α type of cytosolic phospholipase A 2 (cPLA 2 α) in PC12 cells. Treatment with 80-120 μM DDC that causes a moderate increase in ROS levels without cell toxicity stimulated cPLA 2 α mRNA and its protein expression. The expression was mediated by extracellular-signal-regulated kinase (ERK1/2), one of the mitogen-activated protein kinases. Treatment with N G nitro-L-arginine methyl ester (an inhibitor of nitric oxide synthase, 1 mM) and oxy-hemoglobin (a scavenger of nitric oxide, 2 mg/mL) abolished the DDC-induced responses (ERK1/2 phosphorylation and cPLA 2 α expression). We also showed DDC-induced up-regulation of the mRNA expression of lipocortin 1, an inhibitor of PLA 2 . Furthermore, DDC treatment of the cells enhanced Ca 2+ -ionophore-induced AA release in 30 min, although the effect was limited. Changes in AA metabolism in DDC-treated cells may have a potential role in mediating neurotoxic actions of disulfiram. In this study, we show the first to demonstrate the up-regulation of cPLA 2 α expression by DDC treatment in neuronal cells

  9. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  10. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  11. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    Science.gov (United States)

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that

  12. Investigating Unsaturated Zone Travel Times with Tritium and Stable Isotopes

    Science.gov (United States)

    Visser, A.; Thaw, M.; Van der Velde, Y.

    2017-12-01

    Travel times in the unsaturated zone are notoriously difficult to assess. Travel time tracers relying on the conservative transport of dissolved (noble) gases (tritium-helium, CFCs or SF6) are not applicable. Large water volume requirements of other cosmogenic radioactive isotopes (sulfur-35, sodium-22) preclude application in the unsaturated zone. Prior investigations have relied on models, introduced tracers, profiles of stable isotopes or tritium, or a combination of these techniques. Significant unsaturated zone travel times (UZTT) complicate the interpretation of stream water travel time tracers by ranked StorAge Selection (rSAS) functions. Close examination of rSAS functions in a sloping soil lysimeter[1] show the effect of the UZTT on the shape of the rSAS cumulative distribution function. We studied the UZTT at the Southern Sierra Critical Zone Observatory (SS-CZO) using profiles of tritium and stable isotopes (18O and 2H) in the unsaturated zone, supported by soil water content data. Tritium analyses require 100-500 mL of soil water and therefore large soil samples (1-5L), and elaborate laboratory procedures (oven drying, degassing and noble gas mass spectrometry). The high seasonal and interannual variability in precipitation of the Mediterranean climate, variable snow pack and high annual ET/P ratios lead to a dynamic hydrology in the deep unsaturated soils and regolith and highly variable travel time distributions. Variability of the tritium concentration in precipitation further complicates direct age estimates. Observed tritium profiles (>3 m deep) are interpreted in terms of advective and dispersive vertical transport of the input variability and radioactive decay of tritium. Significant unsaturated zone travel times corroborate previously observed low activities of short-lived cosmogenic radioactive nuclides in stream water. Under these conditions, incorporating the UZTT is critical to adequately reconstruct stream water travel time distributions. 1

  13. Degradation behavior of polymer blend of isotactic polypropylenes with and without unsaturated chain end group

    International Nuclear Information System (INIS)

    Nakatani, Hisayuki; Kurniawan, Dodik; Taniike, Toshiaki; Terano, Minoru

    2008-01-01

    In this work, the relationship between the unsaturated chain end group content and the thermal oxidative degradation rate was systematically studied with binary polymer blends of isotactic polypropylene (iPP) with and without the unsaturated chain end group. The iPPs with and without the unsaturated chain end group were synthesized by a metallocene catalyst in the absence of hydrogen and by a Ziegler catalyst in the presence of one, respectively. The thermal oxidative degradation rate of the binary iPP blends was estimated from the molecular weight and the apparent activation energy (ΔE), which were obtained through size exclusion chromatography (SEC) and thermogravimetric analysis (TGA) measurements, respectively. These values exhibited a negative correlation against the mole content of the unsaturated chain end group. The thermal oxidative degradation rate apparently depends on the content of the unsaturated chain end group. This tendency suggests that the unsaturated chain end acts as a radical initiator of the iPP degradation reaction.

  14. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    Directory of Open Access Journals (Sweden)

    Gofar Nurly

    2017-01-01

    Full Text Available This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–pore-water pressure analysis to evaluate the effect of rainfall infiltration on the deformation and transient pore-water pressure on slope stability. Slope stability analyses were performed at some times during and after rainfall infiltration. Results show that the critical condition for slope made by sandy material was at the end of rainfall while for clayey material was at some specified times after the rainfall ceased. Unsaturated stability analysis on sandy soil gives higher factor of safety because the soil never reached saturation. Transient analysis using unsaturated soil concept could predict more critical condition of delayed failure of slopes made up of clayey soil.

  15. Determination of Polybutadiene Unsaturation Content in Thermal and Thermo-Oxidative Degradation Processes by NMR

    Directory of Open Access Journals (Sweden)

    Farshid Ziaee

    2013-01-01

    Full Text Available The unsaturation content of various polybutadiene (PBD types of 1,4-cis, 1,4-trans and 1,2-vinyl isomers with different molecular weights was investigated. An important parameter for unsaturation content of polybutadiene would be the determination of olefnic and aliphatic contents for three types of isomers. For this purpose, proton and carbon nuclear magnetic resonance spectroscopy methods were employed for determination of 1,4-cis, 1,4-trans and 1,2-vinyl contents. A change of adjustable parameter of NMR software was made for accurate integrals giving better results. The accuracy in calculation of low molecular weight PBD, surface area of chain end group decreased in aliphatic region. Furthermore, the changing of unsaturation content versus time was considered for 1,2-PBD and 1,4-PBD in thermal degradation conditions at 250°C. NMR results showed that during heating, the unsaturation content decreased for 1,2-PBD and was not changed for 1,4-PBD. In fact, the basic factor responsible for changing of unsaturation content in thermal degradation of PBD may be due to the presence of 1,2-vinyl isomer. Finally, changing in unsaturation content versus time was observed for 1,2-PBD and 1,4-PBD in thermo-oxidative degradation conditions at 100°C. The NMR results showed that at extended time, the unsaturation content decreased for 1,4-PBD and was not changed for 1,2-PBD. Moreover, the basic factor for changes in unsaturation content in thermo-oxidative degradation of PBD is due to the presence of 1,4-cis and 1,4-trans isomers.

  16. Geostatistical and Stochastic Study of Flow and Tracer Transport in the Unsaturated Zone at Yucca Mountain

    International Nuclear Information System (INIS)

    Ye, Ming; Pan, Feng; Hu, Xiaolong; Zhu, Jianting

    2007-01-01

    Yucca Mountain has been proposed by the U.S. Department of Energy as the nation's long-term, permanent geologic repository for spent nuclear fuel or high-level radioactive waste. The potential repository would be located in Yucca Mountain's unsaturated zone (UZ), which acts as a critical natural barrier delaying arrival of radionuclides to the water table. Since radionuclide transport in groundwater can pose serious threats to human health and the environment, it is important to understand how much and how fast water and radionuclides travel through the UZ to groundwater. The UZ system consists of multiple hydrogeologic units whose hydraulic and geochemical properties exhibit systematic and random spatial variation, or heterogeneity, at multiple scales. Predictions of radionuclide transport under such complicated conditions are uncertain, and the uncertainty complicates decision making and risk analysis. This project aims at using geostatistical and stochastic methods to assess uncertainty of unsaturated flow and radionuclide transport in the UZ at Yucca Mountain. Focus of this study is parameter uncertainty of hydraulic and transport properties of the UZ. The parametric uncertainty arises since limited parameter measurements are unable to deterministically describe spatial variability of the parameters. In this project, matrix porosity, permeability and sorption coefficient of the reactive tracer (neptunium) of the UZ are treated as random variables. Corresponding propagation of parametric uncertainty is quantitatively measured using mean, variance, 5th and 95th percentiles of simulated state variables (e.g., saturation, capillary pressure, percolation flux, and travel time). These statistics are evaluated using a Monte Carlo method, in which a three-dimensional flow and transport model implemented using the TOUGH2 code is executed with multiple parameter realizations of the random model parameters. The project specifically studies uncertainty of unsaturated flow

  17. Modelling the effects of pore-water chemistry on the behaviour of unsaturated clays

    Directory of Open Access Journals (Sweden)

    Lei Xiaoqin

    2016-01-01

    Full Text Available Due to their various applications in geo-environmental engineering, such as in landfill and nuclear waste disposals, the coupled chemo-hydro-mechanical analysis of expansive soils has gained more and more attention recently. These expansive soils are usually unsaturated under field conditions; therefore the capillary effects need to be taken into account appropriately. For this purpose, based on a rigorous thermodynamic framework (Lei et al., 2014, the authors have extended the chemo-mechanical model of Loret el al. (2002 for saturated homoionic expansive soils to the unsaturated case (Lei, 2015. In this paper, this chemo-mechanical unsaturated model is adopted to simulate the chemo-elastic-plastic consolidation process of an unsaturated expansive soil layer. Logical tendencies of changes in the chemical, mechanical and hydraulic field quantities are obtained.

  18. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Whelan, Joseph F.; Neymark, Leonid A.; Moscati, Richard J.; Marshall, Brian D.; Roedder, Edwin

    2008-01-01

    Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (T h ) up to ∼80 deg. C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite δ 18 O values, and depositional timing is constrained by the 207 Pb/ 235 U ages of chalcedony or opal in the deposits. Fluid inclusion T h from 50 samples of calcite and four samples of fluorite range from ∼35 to ∼90 deg. C. Calcite δ 18 O values range from ∼0 to ∼22 per mille (SMOW) but most fall between 12 and 20 per mille . The highest T h and the lowest δ 18 O values are found in the older calcite. Calcite T h and δ 18 O values indicate that most calcite precipitated from water with δ 18 O values between -13 and -7 per mille , similar to modern meteoric waters. Twenty-two 207 Pb/ 235 U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from ∼9.5 to 1.9 Ma. New and published 207 Pb/ 235 U and 230 Th/Uages coupled with the T h values and estimates of temperature from calcite δ 18 O values indicate that maximum unsaturated zone temperatures probably predate ∼10 Ma and that the unsaturated zone had cooled to near-present-day temperatures

  19. Intensification of polyester synthesis by continuous reactive distillation

    NARCIS (Netherlands)

    Shah, M.R.

    2011-01-01

    The thesis starts with a brief overview of unsaturated polyesters. In particular, the usage of raw materials, the application of unsaturated polyester resins, and, the worldwide supply and demand of the unsaturated polyester resins are discussed. Unsaturated polyester is traditionally produced in a

  20. Flame Retardance and Physical Properties of Novel Cured Blends of Unsaturated Polyester and Furan Resins

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur Kandola

    2015-02-01

    Full Text Available Novel blends of two furan resins with an unsaturated polyester have been prepared and cured by parallel free radical (for the unsaturated polyester and acid-catalysed crosslinking (for the furan resin to give co-cured composite materials. Although these materials have inferior physical properties, such as low Tg and low storage modulus compared with those of unsaturated polyester and furan resins alone, they show markedly improved flame retardance compared with that of the normally highly flammable unsaturated polyester. This increased flame retardance arises from a condensed phase mechanism in which the furanic component forms a semi-protective char, reducing rates of thermal degradation and total heat release and heat of combustion. The blends also burn with reduced smoke output compared with that from unsaturated polyester alone.

  1. Waste package performance in unsaturated rock

    International Nuclear Information System (INIS)

    Pigford, T.H.; Lee, W.W.-L.

    1989-03-01

    The unsaturated rock and near-atmospheric pressure of the potential nuclear waste repository at Yucca Mountain present new problems of predicting waste package performance. In this paper we present some illustrations of predictions of waste package performance and discuss important data needs. 11 refs., 9 figs., 1 tab

  2. Hydrocarbons biodegradation in unsaturated porous medium

    International Nuclear Information System (INIS)

    Gautier, C.

    2007-12-01

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  3. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  4. Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2010-07-01

    We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.

  5. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  6. The foam drainage equation for drainage dynamics in unsaturated porous media

    Science.gov (United States)

    Lehmann, P.; Hoogland, F.; Assouline, S.; Or, D.

    2017-07-01

    Similarity in liquid-phase configuration and drainage dynamics of wet foam and gravity drainage from unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation—SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. The study provides new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions. Two novel analytical solutions for saturation profile evolution were derived and tested in good agreement with a numerical solution of the SFDE. The study and the proposed solutions rectify the original formulation of foam drainage dynamics of Or and Assouline (2013). The new framework broadens the scope of methods available for quantifying unsaturated flow in porous media, where the intrinsic conductivity and geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches.

  7. Study on the concentration of unsaturated fatty acid methyl esters by urea complexation

    International Nuclear Information System (INIS)

    Jiang, B.; Liu, Y.

    2014-01-01

    This study was done to obtain concentrated unsaturated fatty acid methyl esters (FAME) by urea complexation from soybean derived FAME. Effects of urea-to-FAME ratio, 95% ethanol-to-FAME ratio, crystallization temperature and time on the purification of unsaturated FAME were investigated through single factor experiments. Optimum conditions to obtain maximum FAME yield of NUCF with the purity of unsaturated FAME greater than 98% were established using Box-Behnken design (BBD) method and response surface methodology (RSM). Under optimal conditions, the FAME yield was 58.08%, and the purity of unsaturated FAME was 98% at a urea-to-FAME ratio of 1.23, 95% ethanol-to-FAME ratio of 7 and crystallization temperature of 0 degree C. Verification results revealed that the predicted values were reasonably close to experimentally observed values of 56.93% and 98.01%. (author)

  8. C-reactive protein expression is up-regulated in apical lesions of endodontic origin in association with interleukin-6.

    Science.gov (United States)

    Garrido, Mauricio; Dezerega, Andrea; Bordagaray, María José; Reyes, Montserrat; Vernal, Rolando; Melgar-Rodríguez, Samantha; Ciuchi, Pía; Paredes, Rodolfo; García-Sesnich, Jocelyn; Ahumada-Montalva, Pablo; Hernández, Marcela

    2015-04-01

    C-reactive protein (CRP) is the prototype component of acute-phase proteins induced ultimately by interleukin (IL)-6 in the liver, but it is unknown whether periradicular tissues locally express CRP. The present study aimed to identify whether CRP messenger RNA synthesis occurs in situ within apical lesions of endodontic origin (ALEOs) and healthy periodontal ligament and its association with IL-6 and to determine their protein levels and tissue localization. Patients with asymptomatic apical periodontitis and healthy volunteers presenting at the School of Dentistry, University of Chile, Santiago, Chile, were enrolled. ALEOs and healthy teeth were obtained and processed for either immunohistochemistry and double immunofluorescence to assess IL-6 and CRP tissue localization, whereas healthy periodontal ligaments were processed as controls for real-time reverse-transcription polymerase chain reaction for their RNA expression levels and multiplex assay to determine their protein levels. Statistic analysis was performed using the unpaired t test or Mann-Whitney test according to data distribution and Pearson correlation. IL-6 and CRP were synthesized in ALEOs, whereas their RNA expression and protein levels were significantly higher when compared with healthy periodontal ligament. IL-6 and CRP immunolocalized to the inflammatory cells, vascular endothelial cells, and mesenchymal cells. Both, IL-6 and CRP colocalized in ALEOs, and a positive correlation was found between their expression levels (P periodontal ligament and up-regulated in ALEOs along with higher protein levels. Given their pleiotropic effects, IL-6 and CRP protein levels in apical tissues might partially explain the development and progression of ALEOs as well as potentially asymptomatic apical periodontitis-associated systemic low-grade inflammation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. C-reactive protein collaborates with plasma lectins to boost immune response against bacteria

    DEFF Research Database (Denmark)

    Ng, Patricia M L; Le Saux, Agnès; Lee, Chia M

    2007-01-01

    Although human C-reactive protein (CRP) becomes upregulated during septicemia, its role remains unclear, since purified CRP showed no binding to many common pathogens. Contrary to previous findings, we show that purified human CRP (hCRP) binds to Salmonella enterica, and that binding is enhanced ...

  10. Process for making unsaturated hydrocarbons using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Yuschak, Thomas [Lewis Center, OH; LaPlante, Timothy J [Columbus, OH; Rankin, Scott [Columbus, OH; Perry, Steven T [Galloway, OH; Fitzgerald, Sean Patrick [Columbus, OH; Simmons, Wayne W [Dublin, OH; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  11. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Joseph F. [U.S. Geological Survey, Box 25046, M.S. 963, Denver Federal Center, Denver, CO 80225 (United States)], E-mail: jfwhelan@usgs.gov; Neymark, Leonid A.; Moscati, Richard J.; Marshall, Brian D. [U.S. Geological Survey, Box 25046, M.S. 963, Denver Federal Center, Denver, CO 80225 (United States); Roedder, Edwin [Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 (United States)

    2008-05-15

    Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (T{sub h}) up to {approx}80 deg. C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite {delta}{sup 18}O values, and depositional timing is constrained by the {sup 207}Pb/{sup 235}U ages of chalcedony or opal in the deposits. Fluid inclusion T{sub h} from 50 samples of calcite and four samples of fluorite range from {approx}35 to {approx}90 deg. C. Calcite {delta}{sup 18}O values range from {approx}0 to {approx}22 per mille (SMOW) but most fall between 12 and 20 per mille . The highest T{sub h} and the lowest {delta}{sup 18}O values are found in the older calcite. Calcite T{sub h} and {delta}{sup 18}O values indicate that most calcite precipitated from water with {delta}{sup 18}O values between -13 and -7 per mille , similar to modern meteoric waters. Twenty-two {sup 207}Pb/{sup 235}U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from {approx}9.5 to 1.9 Ma. New and published {sup 207}Pb/{sup 235}U and {sup 230}Th/Uages coupled with the T{sub h} values and estimates of temperature from calcite {delta}{sup 18}O values indicate

  12. Growth of Synthrophomonas wolfei on unsaturated short chain fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, D.A.; McInerney, M.J. (Univ. of Oklahoma, Norman, OK (United States))

    1990-01-01

    The anaerobic fatty acid-degrading syntrophic bacterium, Syntrophomonas wolfei, was grown in pure culture with either trans-2-pentenoate, trans-2-hexenoate, trans-3-hexenoate, or trans, trans-2, 4-hexadienoate as the substrate. Trans-2-pentenoate was fermented to acetate, propionate, butyrate, and valerate. Acetate, butyrate and hexanoate were produced from the six-carbon mono- and di-unsaturated acids. Propionate was also product from the trans, trans-2, 4-hexadienoate which suggested that compound was degraded by another pathway in addition to [beta]-oxidation. The transient production of trans-2-hexenoate from trans-3-hexenoate suggested that the position of the double bound shifted from carbon-3 to carbon-2 prior to [beta]-oxidation. The specific growth rate decreased with increasing carbon length and degree of unsaturation. Molar growth yields ranged from 8.4 to 17.5 mg (dry wt.) per mmol and suggested that energy was conserved not only from substrate-level phosphorylation, but also from the reduction of unsaturated substrate.

  13. Unsaturated flow characterization utilizing water content data collected within the capillary fringe

    Science.gov (United States)

    Baehr, Arthur; Reilly, Timothy J.

    2014-01-01

    An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.

  14. In-situ arsenic removal during groundwater recharge through unsaturated alluvium

    Science.gov (United States)

    O'Leary, David; Izbicki, John; T.J. Kim,; Clark Ajawani,; Suarez, Donald; Barnes, Thomas; Thomas Kulp,; Burgess, Matthew K.; Tseng, Iwen

    2015-01-01

    surface geophysical data to evaluate the lateral spreading of water as it moved downward through the unsaturated zone. Three laboratory studies were undertaken. Sequential extraction was used to evaluate the abundance of iron, aluminum, and manganese oxides and selected trace elements on operationally defined sites on the surfaces of mineral grains collected before and after infiltration from the pond. Secondly, radio-labeled arsenic-73 microcosm experiments evaluated the potential for incorporation of arsenic sorbed to exchange sites on mineral grains into less reactive crystalline mineral structures with time. Finally, column studies evaluated arsenic sorption and the pH dependence of sorption for selected unsaturated zone materials.RESULTS/CONCLUSIONS Between December 2010 and July 2012, more than 120,000 cubic meters (m3 ) (about 97 acre-feet) of high-arsenic groundwater was pumped from the deep aquifer into a 0.11 hectare (about 0.27 acres) pond and infiltrated though an 80-meter (about 260 feet) thick unsaturated zone to recharge a water-table aquifer. Arsenic concentrations were lowered from 30 to 2 g/L as water infiltrated though the unsaturated zone at the site. Some uranium, possibly associated with past agricultural land use at the site, was mobilized to concentrations as high as 66 g/L within the unsaturated zone during the experiment. Uranium was resorbed and the high uranium concentrations did not reach the water table at the site. Concentrations of other trace elements, including antimony, chromium, vanadium, and selenium were low throughout the study. Infiltration rates from the pond were as high as 0.4 meters per day (1.1 feet per day, ft/d), and the wetting front moved downward about 25 centimeters per day (cm/d) (0.8 ft/d) to a depth of about 50 m (about 165 feet). Clay layers at that depth slowed the downward movement of the wetting front to about 5 cm/d (0.16 ft/d). Lateral movement of the wetting front was monitored using sequential direct

  15. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    OpenAIRE

    Gofar Nurly; Rahardjo Harianto

    2017-01-01

    This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–...

  16. Coordination behavior of bis-phenolate saturated and unsaturated N-heterocyclic carbene ligands to zirconium: reactivity and activity in the copolymerization of cyclohexene oxide with CO2.

    Science.gov (United States)

    Lalrempuia, Ralte; Breivik, Frida; Törnroos, Karl W; Le Roux, Erwan

    2017-06-27

    Tetravalent zirconium complexes supported by tridentate bis-phenolate imidazolidin-2-ylidene (L1), imidazol-2-ylidene (L2) and benzimidazol-2-ylidene (L3) NHC ligands were synthesized and evaluated as precursors for the copolymerization of cyclohexene oxide (CHO) with CO 2 . While the reactivity of the imidazolidinium [H 3 L1] chloride salt with Zr(OiPr) 4 (HOiPr), and subsequent ligand exchanges with either (CH 3 ) 3 SiCl or LiOiPr lead to a series of heteroleptic compounds (κ 3 -O,C,O-L1)Zr(X) 2 (THF) (X = Cl, OiPr), both imidazolium [H 3 L2] and benzimidazolium [H 3 L3] chloride salts give a mixture of homoleptic (κ 3 -O,C,O-NHC) 2 Zr and zwitterionic (κ 2 -O,O-HL)ZrCl 2 (OiPr) compounds along with traces or the absence of the heteroleptic intermediate (κ 3 -O,C,O-NHC)Zr(Cl)(OiPr)(THF). Such dissimilar reactivity between the unsaturated and saturated NHC ligands is predominantly ascribed to the increased acidity of azolium salts along with the π-donor strength of the C carbene in L2 and L3-Zr moieties. The reactivity with the more acidic azolium salts (H 3 L2/3) and the destabilized Zr-X trans to NHC carbene bond results in a significant increase in the amount of homoleptic compounds generating HCl. The released HCl reacts preferentially with the heteroleptic intermediates having non-planar NHC ligands (i.e. L2/3) promoting the formation of zwitterionic complexes. The in situ deprotonation of the isolated zwitterionic (κ 2 -O,O-HL3)ZrCl 2 (OiPr) compound by using Ag 2 O gives the homoleptic complex as the major component along with a bimetallic hydroxo-bridged [(κ 3 -O,C,O-L3)Zr(μ-OH)(OiPr)] 2 compound. Of particular interest is that only the heteroleptic NHC-Zr(iv) complexes were identified to be active and highly selective towards the copolymerization of CHO with CO 2 independently of the co-catalysts used (both anionic and neutral) under mild conditions (P CO 2 < 1 bar, T = 60 °C), and gave atactic and completely alternating copolymers in a

  17. Chaetocin reactivates the lytic replication of Epstein-Barr virus from latency via reactive oxygen species.

    Science.gov (United States)

    Zhang, Shilun; Yin, Juan; Zhong, Jiang

    2017-01-01

    Oxidative stress, regarded as a negative effect of free radicals in vivo, takes place when organisms suffer from harmful stimuli. Some viruses can induce the release of reactive oxygen species (ROS) in infected cells, which may be closely related with their pathogenicity. In this report, chaetocin, a fungal metabolite reported to have antimicrobial and cytostatic activity, was studied for its effect on the activation of latent Epstein-Barr virus (EBV) in B95-8 cells. We found that chaetocin remarkably up-regulated EBV lytic transcription and DNA replication at a low concentration (50 nmol L -1 ). The activation of latent EBV was accompanied by an increased cellular ROS level. N-acetyl-L-cysteine (NAC), an ROS inhibitor, suppressed chaetocin-induced EBV activation. Chaetocin had little effect on histone H3K9 methylation, while NAC also significantly reduced H3K9 methylation. These results suggested that chaetocin reactivates latent EBV primarily via ROS pathways.

  18. Creep model of unsaturated sliding zone soils and long-term deformation analysis of landslides

    Science.gov (United States)

    Zou, Liangchao; Wang, Shimei; Zhang, Yeming

    2015-04-01

    Sliding zone soil is a special soil layer formed in the development of a landslide. Its creep behavior plays a significant role in long-term deformation of landslides. Due to rainfall infiltration and reservoir water level fluctuation, the soils in the slide zone are often in unsaturated state. Therefore, the investigation of creep behaviors of the unsaturated sliding zone soils is of great importance for understanding the mechanism of the long-term deformation of a landslide in reservoir areas. In this study, the full-process creep curves of the unsaturated soils in the sliding zone in different net confining pressure, matric suctions and stress levels were obtained from a large number of laboratory triaxial creep tests. A nonlinear creep model for unsaturated soils and its three-dimensional form was then deduced based on the component model theory and unsaturated soil mechanics. This creep model was validated with laboratory creep data. The results show that this creep model can effectively and accurately describe the nonlinear creep behaviors of the unsaturated sliding zone soils. In order to apply this creep model to predict the long-term deformation process of landslides, a numerical model for simulating the coupled seepage and creep deformation of unsaturated sliding zone soils was developed based on this creep model through the finite element method (FEM). By using this numerical model, we simulated the deformation process of the Shuping landslide located in the Three Gorges reservoir area, under the cycling reservoir water level fluctuation during one year. The simulation results of creep displacement were then compared with the field deformation monitoring data, showing a good agreement in trend. The results show that the creeping deformations of landslides have strong connections with the changes of reservoir water level. The creep model of unsaturated sliding zone soils and the findings obtained by numerical simulations in this study are conducive to

  19. The Vertical Flux Method (VFM) for regional estimates of temporally and spatially varying nitrate fluxes in unsaturated zone and groundwater

    Science.gov (United States)

    Green, C. T.; Liao, L.; Nolan, B. T.; Juckem, P. F.; Ransom, K.; Harter, T.

    2017-12-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality. Measurements of atmospheric tracers of groundwater age and dissolved-gas indicators of denitrification progress have potential to improve estimates of NO3- reactive transport processes. This presentation introduces a regionalized version of a vertical flux method (VFM) that uses simple mathematical estimates of advective-dispersive reactive transport with regularization procedures to calibrate estimated tracer concentrations to observed equivalents. The calibrated VFM provides estimates of chemical, hydrologic and reaction parameters (source concentration time series, recharge, effective porosity, dispersivity, reaction rate coefficients) and derived values (e.g. mean unsaturated zone travel time, eventual depth of the NO3- front) for individual wells. Statistical learning methods are used to extrapolate parameters and predictions from wells to continuous areas. The regional VFM was applied to 473 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and triogiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with independent estimates. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) fractions of N leached to groundwater have changed over time, with increasing fractions from manure and decreasing fractions from fertilizer, and (3) under current practices and conditions, 60% of the shallow aquifer will eventually be affected by NO3- contamination. Based on GIS coverages of variables related to soils, land use and hydrology, the VFM results at individual wells were extrapolated regionally using boosted regression trees, a statistical learning approach, that related

  20. Chemo-hydro-mechanical behaviour of unsaturated clays

    International Nuclear Information System (INIS)

    Mokni, N.; Olivella, S.; Alonso, E.E.; Romero, E.

    2010-01-01

    Document available in extended abstract form only. Understanding of the chemical effects on clays is essential for many problems ranging from pollution studies and waste-containment. Several studies examined the effect of changes in pore fluid composition on the mechanical and hydraulic properties. Volume changes (contraction/ expansion) have been measured on clay specimens upon exposure to salt solutions or permeation with organic liquids. Moreover, it was shown that permeation of clay with brine induces an increase of the shear strength. In addition, several models have been proposed to describe the chemo-mechanical behaviour of saturated clays under saturated conditions. A new chemo-hydro-mechanical model for unsaturated clays is under development. The chemo-mechanical effects are described within an elasto-plastic framework using the concept that chemical effects act on the plastic properties by increasing or decreasing the pre-consolidation stress. The model is based on the distinction within the material of a microstructural and a macro-structural levels. Chemical loading has a significant effect on the microstructure. The negative pressure associated with the capillary water plays its role in the interconnected macro pores. By adopting simple assumptions concerning the coupling between the two levels it is intended to reproduce the features of the behaviour of unsaturated clays when there is a change in pore fluid composition (increase or decrease of concentration). A yield surface which defines the set of yield pre-consolidation stress values, for each associated capillary suction and concentration of pore fluid should be defined. In addition, the behaviour of clays under unsaturated condition and the behaviour at full saturation under chemical loading represent two limiting cases of the framework. Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest on the

  1. Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters

    KAUST Repository

    Hong, Miao

    2016-01-18

    This contribution presents a full account of experimental and theoretical/computational investigations into the N-heterocyclic carbene (NHC)-catalyzed proton-transfer polymerization (HTP) that converts common dimethacrylates (DMAs) containing no protic groups into unsaturated polyesters. This new HTP proceeds through the step-growth propagation cycles via enamine intermediates, consisting of the proposed conjugate addition–proton transfer–NHC release fundamental steps. This study examines the monomer and catalyst scopes as well as the fundamental steps involved in the overall HTP mechanism. DMAs having six different types of linkages connecting the two methacrylates have been polymerized into the corresponding unsaturated polyesters. The most intriguing unsaturated polyester of the series is that based on the biomass-derived furfuryl dimethacrylate, which showed a unique self-curing ability Four MeO– and Cl–substituted TPT (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) derivatives as methanol insertion products, RxTPT(MeO/H) (R = MeO, Cl; x = 2, 3), and two free carbenes (catalysts), OMe2TPT and OMe3TPT, have been synthesized, while OMe2TPT(MeO/H) and OMe2TPT have also been structurally characterized. The structure/reactivity relationship study revealed that OMe2TPT, being both a strong nucleophile and a good leaving group, exhibits the highest HTP activity and also produced the polyester with the highest Mn, while the Cl–substituted TPT derivatives are least active and efficient. Computational studies have provided mechanistic insights into the tail-to-tail dimerization coupling step as a suitable model for the propagation cycle of the HTP. The extensive energy profile was mapped out and the experimentally observed unicity of the TPT-based catalysts was satisfactorily explained with the thermodynamic formation of key spirocyclic species.

  2. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Reactivity of vinyl ethers and vinyl ribosides in UV-initiated free radical copolymerization with acceptor monomers.

    Science.gov (United States)

    Pichavant, Loic; Guillermain, Céline; Coqueret, Xavier

    2010-09-13

    The reactivity of various vinyl ethers and vinyloxy derivatives of ribose in the presence of diethyl fumarate or diethyl maleate was investigated for evaluating the potential of donor-acceptor-type copolymerization applied to unsaturated monomers derived from renewable feedstock. The photochemically induced polymerization of model monomer blends in the bulk state was monitored by infrared spectroscopy. The method allowed us to examine the influence of monomer pair structure on the kinetic profiles. The simultaneous consumption of both monomers was observed, supporting an alternating copolymerization mechanism. A lower reactivity of the blends containing maleates compared with fumarates was confirmed. The obtained kinetic data revealed a general correlation between the initial polymerization rate and the Hansen parameter δ(H) associated with the H-bonding aptitude of the donor monomer.

  4. Strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions

    International Nuclear Information System (INIS)

    Szenknect, St.

    2003-10-01

    This work is devoted to the quantification and the identification of the predominant processes involved in strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions. The transport and fate of radionuclides in the subsurface is affected by various physical and chemical processes including advective and diffusive transport as well as chemical and biological transformations. Laboratory experiments and the use of a multiple tracer approach allow to isolate the contributions of each elementary process and to control the physico-chemical conditions in the system. To be more representative of the field conditions, we decided to perform column miscible displacement experiments. We perform batch and flow-through reactor experiments to characterize the radionuclides sorption mechanisms. Miscible displacement experiments within homogeneous columns and modeling allow to characterize the hydrodynamic properties of the soil and to describe the radionuclides behaviour under dynamic conditions at different water contents. We show that the water content of porous media affect the transport behaviour of inert and strongly sorbing radionuclides. Our results demonstrate that a parametrized transport model that was calibrated under completely saturated conditions was not able to describe the advective-dispersive transport of reactive solutes under unsaturated steady state conditions. Under our experimental conditions, there is no effect of a decrease of the mean water content on the sorption model parameters, but the transport parameters are modified. We established for the studied soil the relation between hydrodynamic dispersion and water content and the relation between pore water velocity and water content. (author)

  5. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    B. Bullard

    1999-05-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4.

  6. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    International Nuclear Information System (INIS)

    B. Bullard

    1999-01-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4

  7. Oxygenation of saturated and unsaturated hydrocarbons with ...

    Indian Academy of Sciences (India)

    Unknown

    Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate. 431. Table 1. Competitive oxygenation of tetralin and cyclooctene with sodium periodate catalyzed by different manga- .... Teacher Education University. My grateful thanks also extend to Dr D Mohajer for his useful sugges- tions. References. 1.

  8. Organocatalytic Asymmetric Michael Addition of 4-Hydroxycoumarin to β,γ-Unsaturated α-Keto Esters

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang Won; Han, Tae Hyun; Kim, Dae Young [Soonchunhyang Univ., Asan (Korea, Republic of)

    2013-06-15

    In conclusion, we have developed organocatalytic enantioselective conjugate addition reaction of 4-hydroxycoumarin (1) to β,γ-unsaturated α-keto esters 2 to afford biologically valuable warfarin derivatives 3. The process is efficiently catalyzed by a binaphthyl-modified thiourea organocatalyst. The coumarin core is present as a characteristic structural motif in a large number of natural products and biologically active molecules.1 Particularly, many of these naturally occurring 4-hydroxycoumarin and their synthetic analogues are important precursors for the synthesis of natural products and pharmaceuticals. Enantioselective organocatalytic conjugate addition of 4-hydroxycoumarin to α,β-unsaturated ketones is a straightforward method to access warfarin which is an effective anticoagulants. Although a number of reactions of α,β-unsaturated ketones as Michael acceptors have been reported, the corresponding β,γ-unsaturated α-keto esters have received relatively little attention as Michael acceptors. Recently, several groups have reported the asymmetric Michael addition of 4-hydroxycoumarin to β,γ-unsaturated α-keto esters catalyzed by Cu(II)-bisoxazoline, N,N'-dioxide-Ni(II) complexes, thiourea catalysts. Although several efficient methods have been achieved by these systems, an effective method for the synthesis of warfarin analogues is still a challenge.

  9. Organocatalytic Asymmetric Michael Addition of 4-Hydroxycoumarin to β,γ-Unsaturated α-Keto Esters

    International Nuclear Information System (INIS)

    Suh, Chang Won; Han, Tae Hyun; Kim, Dae Young

    2013-01-01

    In conclusion, we have developed organocatalytic enantioselective conjugate addition reaction of 4-hydroxycoumarin (1) to β,γ-unsaturated α-keto esters 2 to afford biologically valuable warfarin derivatives 3. The process is efficiently catalyzed by a binaphthyl-modified thiourea organocatalyst. The coumarin core is present as a characteristic structural motif in a large number of natural products and biologically active molecules.1 Particularly, many of these naturally occurring 4-hydroxycoumarin and their synthetic analogues are important precursors for the synthesis of natural products and pharmaceuticals. Enantioselective organocatalytic conjugate addition of 4-hydroxycoumarin to α,β-unsaturated ketones is a straightforward method to access warfarin which is an effective anticoagulants. Although a number of reactions of α,β-unsaturated ketones as Michael acceptors have been reported, the corresponding β,γ-unsaturated α-keto esters have received relatively little attention as Michael acceptors. Recently, several groups have reported the asymmetric Michael addition of 4-hydroxycoumarin to β,γ-unsaturated α-keto esters catalyzed by Cu(II)-bisoxazoline, N,N'-dioxide-Ni(II) complexes, thiourea catalysts. Although several efficient methods have been achieved by these systems, an effective method for the synthesis of warfarin analogues is still a challenge

  10. Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2010-12-01

    Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.

  11. Quantification of groundwater recharge through application of pilot techniques in the unsaturated zone.

    Science.gov (United States)

    Kallioras, Andreas; Piepenbrink, Matthias; Schuth, Christoph; Pfletschinger, Heike; Dietrich, Peter; Koeniger, Franz; Rausch, Randolf

    2010-05-01

    Accurate determination of groundwater recharge is a key issue for the "smart mining" of groundwater resources. Groundwater recharge estimation techniques depend on the investigated hydrologic zone, and therefore main approaches are based on (a) unsaturated zone, (b) saturated zone and (c) surface water studies. This research contributes to the determination of groundwater recharge by investigating the infiltration of groundwater through the unsaturated zone. The investigations are conducted through the application of a combination of different pilot field as well as lab techniques. The field techniques include the installation of specially designed Time Domain Reflectometry (TDR) sensors, at different depths within the unsaturated zone for in-situ and continuous measurements of the volumetric pore water content. Additionally, the extraction of pore water -for analysis of its isotopic composition- from multilevel undisturbed soil samples through significant depths within the unsaturated zone column, enables the dating of the groundwater age through the determination of its isotopic composition. The in-situ investigation of the unsaturated zone is complemented by the determination of high resolution temperature profiles. The installation of the pilot TDR sensors is achieved by using direct push methods at significant depths within the unsaturated zone, providing continuous readings of the soil moisture content. The direct push methods are also ideal for multilevel sampling of undisturbed -without using any drilling fluids which affect the isotopic composition of the containing pore water- soil and consequent extraction of the included pore water for further isotopic determination. The pore water is extracted by applying the method of azeotropic distillation; a method which has the least isotopic fractionation effects on groundwater samples. The determination of different isotopic signals such as 18O, 2H, 3H, and 36Cl, aims to the investigation of groundwater transit

  12. Complex Binding of the FabR Repressor of Bacterial Unsaturated Fatty Acid Biosynthesis to its Cognate Promoters

    OpenAIRE

    Feng, Youjun; Cronan, John E.

    2011-01-01

    Two transcriptional regulators, the FadR activator and the FabR repressor control biosynthesis of unsaturated fatty acids in Escherichia coli. FabR represses expression of the two genes, fabA and fabB, required for unsaturated fatty acid synthesis and has been reported to require the presence of an unsaturated thioester (of either acyl carrier protein or CoA) in order to bind the fabA and fabB promoters in vitro. We report in vivo experiments in which unsaturated fatty acid synthesis was bloc...

  13. Improved solution for saturated-unsaturated flow to a partially penetrating well in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2009-12-01

    Tartakovsky and Neuman [2007] developed an analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering an unsaturated zone of infinite thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a linearized version of Richards’ equation in which both relative hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value. Both exponential functions were characterized by a common exponent. We present an improved solution in which relative hydraulic conductivity and water content are characterized by separate parameters and the unsaturated zone has finite thickness. Our four-parameter representation of these functions is more flexible than the three-parameter version of Mathias and Butler [2006], who consider flow in the unsaturated zone to be strictly vertical and the pumping well to be fully penetrating. We investigate the effects of unsaturated zone thickness and constitutive parameters on drawdown in the unsaturated and saturated zones as functions of position and time. We then use our new solution to analyze data from synthetic and real pumping tests.

  14. Enhanced Attenuation of Unsaturated Chlorinated Solvent Source Zones using Direct Hydrogen Delivery

    Science.gov (United States)

    2013-01-01

    solvents. This approach for bioremediation of unsaturated soils containing chlorinated solvents was originally proposed in a patent by Hughes et al...have been conducted on the use of hydrogen as an electron donor for the anaerobic bioremediation of saturated and unsaturated porous media (Evans and...proven to be very effective in remediating releases of petroleum products including gasoline, jet fuels, kerosene, and diesel fuel. Several field

  15. Water transport monitoring in an unsaturated zone – Case study: lysimeter Selniška dobrava (Slovenia

    Directory of Open Access Journals (Sweden)

    Nina Mali

    2002-12-01

    Full Text Available Pollution transport in an aquifer depends on its structure, upper unsaturated zone and lower saturated zone. In order to understand processes in the unsaturated zone, several hydrogeological field measurements must be done. A field laboratory- lysimeter in Selni{kadobrava was installed for the improvement of field measurements, and explanation of the parameters and processes in the unsaturated zone. The problems, which can be solved by means of investigations in a lysimeter, are defined in this paper. Described are also:concept of investigation planning, construction and equipment of the lysimeter, measurements of unsaturated zone parameters and processes, water sampling for physical, chemical and isotope analysis.

  16. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Kazutaka Sawada

    2016-01-01

    Full Text Available Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus. Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  17. Thioredoxin reductase 1 upregulates MCP-1 release in human endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen-Bo [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China); Shen, Xun, E-mail: shenxun@sun5.ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China)

    2009-09-04

    To know if thioredoxin reductase 1 (TrxR1) plays a role in antioxidant defense mechanisms against atherosclerosis, effect of TrxR1 on expression/release of monocyte chemoattractant protein (MCP-1) was investigated in activated human endothelial-like EAhy926 cells. The MCP-1 release and expression, cellular generation of reactive oxygen species (ROS), nuclear translocation and DNA-binding activity of NF-{kappa}B subunit p65 were assayed in cells either overexpressing recombinant TrxR1 or having their endogenous TrxR1 knocked down. It was found that overexpression of TrxR1 enhanced, while knockdown of TrxR1 reduced MCP-1 release and expression. Upregulation of MCP-1 by TrxR1 was associated with increasing generation of intracellular ROS generation, enhanced nuclear translocation and DNA-binding activity of NF-{kappa}B. Assay using NF-{kappa}B reporter revealed that TrxR1 upregulated transcriptional activity of NF-{kappa}B. This study suggests that TrxR1 enhances ROS generation, NF-{kappa}B activity and subsequent MCP-1 expression in endothelial cells, and may promote rather than prevent vascular endothelium from forming atherosclerotic plaque.

  18. Volatile organic compounds in the unsaturated zone from radioactive wastes

    Science.gov (United States)

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  19. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1.

    Science.gov (United States)

    Banerjee, Camellia; Archin, Nancie; Michaels, Daniel; Belkina, Anna C; Denis, Gerald V; Bradner, James; Sebastiani, Paola; Margolis, David M; Montano, Monty

    2012-12-01

    The persistence of latent HIV-1 remains a major challenge in therapeutic efforts to eradicate infection. We report the capacity for HIV reactivation by a selective small molecule inhibitor of BET family bromodomains, JQ1, a promising therapeutic agent with antioncogenic properties. JQ1 reactivated HIV transcription in models of latent T cell infection and latent monocyte infection. We also tested the effect of exposure to JQ1 to allow recovery of replication-competent HIV from pools of resting CD4(+) T cells isolated from HIV-infected, ART-treated patients. In one of three patients, JQ1 allowed recovery of virus at a frequency above unstimulated conditions. JQ1 potently suppressed T cell proliferation with minimal cytotoxic effect. Transcriptional profiling of T cells with JQ1 showed potent down-regulation of T cell activation genes, including CD3, CD28, and CXCR4, similar to HDAC inhibitors, but JQ1 also showed potent up-regulation of chromatin modification genes, including SIRT1, HDAC6, and multiple lysine demethylases (KDMs). Thus, JQ1 reactivates HIV-1 while suppressing T cell activation genes and up-regulating histone modification genes predicted to favor increased Tat activity. Thus, JQ1 may be useful in studies of potentially novel mechanisms for transcriptional control as well as in translational efforts to identify therapeutic molecules to achieve viral eradication.

  20. Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes

    International Nuclear Information System (INIS)

    Chen Xiao-Jie; Liang Qing

    2017-01-01

    Lateral organization and dynamics of lipids in plasma membranes are crucial for several cellular processes such as signal transduction across the membrane and still remain elusive. In this paper, using coarse-grained molecular dynamics simulation, we theoretically study the combined effects of headgroup charge and tail unsaturation of lipids on the lateral organization and diffusion of lipids in ternary lipid bilayers. In neutral ternary lipid bilayers composed of saturated lipids, unsaturated lipids, and cholesterols, under the conditions of given temperature and components, the main factor for the phase separation is the unsaturation of unsaturated lipids and the bilayers can be separated into liquid-ordered domains enriched in saturated lipids and cholesterols and liquid-disordered domains enriched in unsaturated lipids. Once the headgroup charge is introduced, the electrostatic repulsion between the negatively charged lipid headgroups will increase the distance between the charged lipids. We find that the lateral organization and diffusion of the lipids in the (partially) charged ternary lipid bilayers are determined by the competition between the headgroup charge and the unsaturation of the unsaturated lipids. In the bilayers containing unsaturated lipids with lower unsaturation, the headgroup charge plays a crucial role in the lateral organization and diffusion of lipids. The headgroup charge may make the lipid domains unstable and even can suppress phase separation of the lipids in some systems. However, in the bilayers containing highly unsaturated lipids, the lateral organization and diffusion of lipids are mainly dominated by the unsaturation of the unsaturated lipids. This work may provide some theoretical insights into understanding the formation of nanosized domains and lateral diffusion of lipids in plasma membranes. (paper)

  1. Reactivity of group IV (100) semiconductor surfaces towards organic compounds

    Science.gov (United States)

    Wang, George T.

    The reactions of simple and multifunctional organic compounds with the clean silicon, germanium, and diamond (100)-2 x 1 semiconductor surfaces have been investigated using a combination of multiple internal reflection infrared spectroscopy and quantum chemistry density functional theory calculations. From these studies, an improved understanding of the atomic level reactivity of these semiconductor surfaces has been obtained, along with insights into how to achieve their selective coupling with organics of desired and varied functionality. In addition to the Si(100) and Ge(100) surfaces, our results show that cycloaddition chemistry can also be extended to the diamond (100) surface. At room temperature, 1,3-butadiene was found to form a Diels-Alder product with the diamond (100) surface, as evidenced by isotopic substitution experiments and comparison of the surface adduct with its direct molecular analogue, cyclohexene. The reactions of other classes of molecules in addition to alkenes on the Si(100) and Ge(100) surfaces, including a series of five-membered cyclic amines, were also examined. For tertiary aliphatic amines on Si(100) and both secondary and tertiary aliphatic amines on Ge(100), a majority of the molecules were observed to become stably trapped in dative-bonded precursor states rather than form energetically favorable dissociation products. For pyrrole, aromaticity was found to play a defining role in its reactivity, and a comparison of its molecular and surface reactivity reveals interesting similarities. To probe the factors controlling the selectivity of organic reactions on clean semiconductor surfaces, the adsorption of acetone and a series of unsaturated ketones was also investigated. The reaction of acetone on Ge(100) was found to be under thermodynamic control at room temperature, resulting in the formation of an "ene" product rather than the kinetically favored [2+2] C=O cycloaddition product previously observed on the Si(100) surface. In

  2. Thermo-hydro mechanical modeling in unsaturated hard clay: application to nuclear waste storage

    International Nuclear Information System (INIS)

    Jia, Y.

    2006-07-01

    This work presents an elastoplastic damage model for argillite in unsaturated conditions. A short resume of experimental investigations is presented in the first part. The results obtained show an important plastic deformation coupled with damage induced by initiation and growth of microcracks. Influences of water content on the mechanical behaviour are also investigated. Based on experimental data and micro-mechanical considerations, a general constitutive model is proposed for the poro-mechanical behavior of argillite in unsaturated conditions. The time dependent creep has also been incorporated in they model. The performance of the model is examined by comparing numerical simulation with experimental data in various load paths under saturated and unsaturated conditions. Finally, the model is applied to hydro-mechanical coupling study of the REP experiment and thermo-hydro-mechanical coupling study of the HE-D experiment. A good agreement is obtained between experimental data and numerical predictions. It has been shown that the proposed model describe correctly the main features of the mechanical behaviour of unsaturated rocks. (author)

  3. Review and selection of unsaturated flow models

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)

    1994-04-04

    Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

  4. Review and selection of unsaturated flow models

    International Nuclear Information System (INIS)

    Reeves, M.; Baker, N.A.; Duguid, J.O.

    1994-01-01

    Since the 1960's, ground-water flow models have been used for analysis of water resources problems. In the 1970's, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970's and well into the 1980's focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M ampersand O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M ampersand O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing

  5. A quasilinear model for solute transport under unsaturated flow

    International Nuclear Information System (INIS)

    Houseworth, J.E.; Leem, J.

    2009-01-01

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  6. Analysis of pumping-induced unsaturated regions beneath aperennial river

    Energy Technology Data Exchange (ETDEWEB)

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.; Zhou, Q.

    2007-05-15

    The presence of an unsaturated region beneath a streambedduring groundwater pumping near streams reduces the pumping capacity whenit reaches the well screens, changes flow paths, and alters the types ofbiological transformations in the streambed sediments. Athree-dimensional, multi-phase flow model of two horizontal collectorwells along the Russian River near Forestville, California was developedto investigate the impact of varying the ratio of the aquifer tostreambed permeability on (1) the formation of an unsaturated regionbeneath the stream, (2) the pumping capacity, (3) stream-water fluxesthrough the streambed, and (4) stream-water travel times to the collectorwells. The aquifer to streambed permeability ratio at which theunsaturated region was initially observed ranged from 10 to 100. The sizeof the unsaturated region beneath the streambed increased as the aquiferto streambed permeability ratio increased. The simulations also indicatedthat for a particular aquifer permeability, decreasing the streambedpermeability by only a factor of 2-3 from the permeability wheredesaturation initially occurred resulted in reducing the pumpingcapacity. In some cases, the stream-water fluxes increased as thestreambed permeability decreased. However, the stream water residencetimes increased and the fraction of stream water that reached that thewells decreased as the streambed permeability decreased, indicating thata higher streambed flux does not necessarily correlate to greaterrecharge of stream water around the wells.

  7. Unsaturated flow and transport through fractured rock related to high-level waste repositories

    International Nuclear Information System (INIS)

    Evans, D.D.; Rasmussen, T.C.

    1991-01-01

    Research results are summarized for a US Nuclear Regulatory Commission contract with the University of Arizona focusing on field and laboratory methods for characterizing unsaturated fluid flow and solute transport related to high-level radioactive waste repositories. Characterization activities are presented for the Apache Leap Tuff field site. The field site is located in unsaturated, fractured tuff in central Arizona. Hydraulic, pneumatic, and thermal characteristics of the tuff are summarized, along with methodologies employed to monitor and sample hydrologic and geochemical processes at the field site. Thermohydrologic experiments are reported which provide laboratory and field data related to the effects conditions and flow and transport in unsaturated, fractured rock. 29 refs., 17 figs., 21 tabs

  8. BUILDING CONCEPTUAL AND MATHEMATICAL MODEL FOR WATER FLOW AND SOLUTE TRANSPORT IN THE UNSATURATED ZONE AT KOSNICA SITE

    Directory of Open Access Journals (Sweden)

    Stanko Ružičić

    2012-12-01

    Full Text Available Conceptual model of flow and solute transport in unsaturated zone at Kosnica site, which is the basis for modeling pollution migration through the unsaturated zone to groundwater, is set up. The main characteristics of the unsaturated zone of the Kosnica site are described. Detailed description of investigated profile of unsaturated zone, with all necessary analytical results performed and used in building of conceptual models, is presented. Experiments that are in progress and processes which are modeled are stated. Monitoring of parameters necessary for calibration of models is presented. The ultimate goal of research is risk assessment of groundwater contamination at Kosnica site that has its source in or on unsaturated zone.

  9. Unsaturated polyester resin composition curable with ionizing radiations

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu; Murata, Koichiro.

    1971-01-01

    An unsaturated polyester resin composition curable with ionizing radiations and excellent in weather resistance is provided. The composition is obtained by reacting 10-12 moles of a polyhydric alcohol (e.g. ethylene glycol) with 10 moles of an acid mixture (25.45% by mole of endo-cis-bicyclo (2,2,1)-5-heptene-2-3-dicarboxylic acid (A), 20-40% of unsaturated dibasic acid and 15-55% of saturated dibasic acid) so that the acid value reaches 4-11. The composition is useful as coating, laminating and molding materials. As a coating material it is excellent in surface hardening property. The ionizing radiation used is preferably β-, α-rays or electron beams. In one example, and unsaturated polyester was prepared by reacting 3 moles of fumaric acid, 2 moles of phthalic anhydride, 3 moles of adipic acid 3, moles of (A), 10 moles of neopentyl glycol and 1 mole of trimethylolpropane. The resin was dissolved into a mixture of styrene, methyl methacrylate and butyl acrylate (50:8:42) and incorporated with titanium white. An ABS plate was coated with the enamel thus obtained and irradiated with electron beams (12 Mrad). In exposure test at 60 0 C, luster of the film was 92 before exposure and 83 after 30 months. In a comparative run in which (A) was not used, luster of the film decreased from 90 to 45 in 30 months. (Sakaichi, S.)

  10. HYDROBIOGEOCHEM: A coupled model of HYDROlogic transport and mixed BIOGEOCHEMical kinetic/equilibrium reactions in saturated-unsaturated media

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Salvage, K.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering; Gwo, J.P. [Oak Ridge National Lab., TN (United States); Zachara, J.M.; Szecsody, J.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-07-01

    The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.

  11. Unsaturated Zone Effects in Predicting Landslide and Debris-Flow Initiation

    Science.gov (United States)

    Baum, R. L.; Godt, J. W.; Savage, W. Z.

    2006-12-01

    Many destructive debris flows begin as shallow landslides induced by direct infiltration of intense rainfall and storm runoff into hillside materials. Predicting the timing and location of debris-flow initiation is needed to assess the debris-flow hazard of an area. Theoretical models and real-time monitoring of rainfall infiltration into unsaturated hillside materials provide useful insights into the mechanisms and timing of rainfall-induced landslides. We modeled the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone, and then implemented this model in a GIS framework. The model couples analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil- water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in slope-stability computations to estimate the timing and locations of slope failures. Preliminary model results indicate that the unsaturated layer attenuates and delays the rainfall-induced pore- pressure response at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation reduces the area of false-positive predictions (when compared with results of linear models for suction-saturated initial conditions) in distributed application of the model over an area. Modeling indicates that initial wetness of the hillside materials affects the intensity and duration of rainfall required to trigger shallow landslides and consequently the timing of their occurrence, a result that is also consistent with observations of

  12. Effects of Unsaturated Zones on Baseflow Recession: Analytical Solution and Application

    Science.gov (United States)

    Zhan, H.; Liang, X.; Zhang, Y. K.

    2017-12-01

    Unsaturated flow is an important process in baseflow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. Semi-analytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. The result indicates that a larger dimensionless constitutive exponent κD of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. For late times, the power index b of the recession curve-dQ/dt aQb, is 1 and independent of κD, where Q is the baseflow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→1. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  13. Characterization of unsaturated hydraulic parameters for homogeneous and heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Wildenschild, Dorthe

    1997-09-01

    Application of numerical models for predicting future spreading of contaminants into ground water aquifers is dependent on appropriate characterization of the soil hydraulic properties controlling flow and transport in the unsaturated zone. This thesis reviews the current knowledge on two aspects of characterization of unsaturated hydraulic parameters; estimation of the basic hydraulic parameters for homogeneous soils and statistical representation of heterogeneity for spatially variable soils. The retention characteristic is traditionally measured using steady-state procedures, but new ideas based on dynamic techniques have been developed that reduce experimental efforts and that produce retention curves which compare to those measured by traditional techniques. The unsaturated hydraulic conductivity is difficult to establish by steady-state procedures, and extensive research efforts have been focused on alternative methods that are based on inverse estimation. The inverse methods have commonly been associated with problems of numerical instability and ill-posedness of the parameter estimates, but recent investigations have shown that the uniqueness of parameter estimates can be improved by including additional, independent information on, for instance, the retention characteristic. Also, uniqueness may be improved by careful selection of experimental conditions are parametric functions. (au) 234 refs.

  14. A study on in-situ measuring method and modeling technique of an unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Hisashi [Hazama Corp., Tsukuba, Ibaraki (Japan). Technical Research Inst.; Amemiya, Kiyoshi; Nishida, Kaoru; Lin, Weiren; Lei, Xinglin

    1997-03-01

    It is generally considered that an unsaturated zone is generated in the vicinity of a drift after excavation. In such a zone, invasion of air containing oxygen possibly changes geochemical environment (redox condition) of the rock mass. However, no measurement technique for quantitative understanding of this unsaturated zone is currently available. This study has been started to develop the measuring method in the several years. This year, fundamental information has been obtained through analysis, laboratory experiments using homogeneous rock samples and field measurement described below. (1) experiments on the mechanism of undersaturation in rock. (2) experiments on the measuring method of the extend of unsaturated zone. (author)

  15. 36Cl measurements of the unsaturated zone flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Norris, A.E.; Wolfsberg, K.; Gifford, S.K.

    1985-01-01

    Determining the unsaturated zone percolation rate, or flux, is an extremely important site characterization issue for the proposed Yucca Mountain nuclear waste repository. A new technique that measures the 36 Cl content of tuff from the Exploratory Shaft will be used to calculate flux through the unsaturated zone over longer times than could be measured by the more conventional 14 C method. Measurements of the 36 Cl ''bomb pulse'' in soil samples from Yucca Mountain have been used to confirm that infiltration is not an important recharge mechanism. 5 refs., 3 figs

  16. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    International Nuclear Information System (INIS)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-01-01

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  17. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Chen, R., E-mail: chenrui1005@hotmail.com [Shenzhen Key Laboratory of Urban and Civil Engineering for Disaster Prevention and Mitigation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China); Zhou, C. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  18. Aquifer Recharge Estimation In Unsaturated Porous Rock Using Darcian And Geophysical Methods.

    Science.gov (United States)

    Nimmo, J. R.; De Carlo, L.; Masciale, R.; Turturro, A. C.; Perkins, K. S.; Caputo, M. C.

    2016-12-01

    Within the unsaturated zone a constant downward gravity-driven flux of water commonly exists at depths ranging from a few meters to tens of meters depending on climate, medium, and vegetation. In this case a steady-state application of Darcy's law can provide recharge rate estimates.We have applied an integrated approach that combines field geophysical measurements with laboratory hydraulic property measurements on core samples to produce accurate estimates of steady-state aquifer recharge, or, in cases where episodic recharge also occurs, the steady component of recharge. The method requires (1) measurement of the water content existing in the deep unsaturated zone at the location of a core sample retrieved for lab measurements, and (2) measurement of the core sample's unsaturated hydraulic conductivity over a range of water content that includes the value measured in situ. Both types of measurements must be done with high accuracy. Darcy's law applied with the measured unsaturated hydraulic conductivity and gravitational driving force provides recharge estimates.Aquifer recharge was estimated using Darcian and geophysical methods at a deep porous rock (calcarenite) experimental site in Canosa, southern Italy. Electrical Resistivity Tomography (ERT) and Vertical Electrical Sounding (VES) profiles were collected from the land surface to water table to provide data for Darcian recharge estimation. Volumetric water content was estimated from resistivity profiles using a laboratory-derived calibration function based on Archie's law for rock samples from the experimental site, where electrical conductivity of the rock was related to the porosity and water saturation. Multiple-depth core samples were evaluated using the Quasi-Steady Centrifuge (QSC) method to obtain hydraulic conductivity (K), matric potential (ψ), and water content (θ) estimates within this profile. Laboratory-determined unsaturated hydraulic conductivity ranged from 3.90 x 10-9 to 1.02 x 10-5 m

  19. Reactivity of silicon and germanium doped CNTs toward aromatic sulfur compounds: A theoretical approach

    International Nuclear Information System (INIS)

    Galano, Annia; Francisco-Marquez, Misaela

    2008-01-01

    Adsorption processes of thiophene and benzothiophene on pristine carbon nanotubes (CNTs), and on CNTs doped with Si or Ge, have been modeled with Density Functional. This is the first study on the chemical reactivity of such doped tubes. The calculated data suggest that the presence of silicon or germanium atoms in CNTs increases their reactivity toward thiophene, and benzothiophene. The adsorption of these species on pristine CNTs seems very unlikely to occur, while the addition products involving doped CNTs were found to be very stable, with respect to the isolated reactants, in terms of Gibbs free energy. Several of these adsorption processes were found to be significantly exergonic (ΔG < 0) in non-polar liquid phase. The results reported in this work suggest that Si and Ge defects on CNTs increase their reactivity toward unsaturated species, and could make them useful in the removal processes of aromatic sulfur compounds from oil-hydrocarbons. However, according to our results, CNTs doped with Si atoms are expected to be more efficient as aromatic sulfur compounds scavengers than those doped with Ge. These results also suggest that the presence of silicon and germanium atoms in the CNTs structures enhances their reactivity toward nucleophilic molecules, compared to pristine carbon nanotubes

  20. Role of unsaturated soil in a waste containment system

    Energy Technology Data Exchange (ETDEWEB)

    Lim, P.C.; Tay, J.H. [Nanyang Technological Univ. (Singapore)

    1996-12-31

    The role of the unsaturated properties of sand as a drainage layer in a composite liner system for landfills is investigated. The effect of the unsaturated properties of coarse-grained soil on contaminant migration was evaluated by means of a series of simulations using a one-dimensional model of a two- and a three-layer soil liner system for advection and diffusion, respectively. The results showed that under seepage conditions, the effect of an unsaturated sand layer on the advancement of the concentration front was quite insignificant. The arrival time of the C/C{sub o} = 0.5 concentration front increased from 651 days for the case with no sand layer to approximately 951 days for the case with a 1.0-m sand layer. A steady-state flow condition was ultimately established in the sand, and this fact suggests that the capillary action might not be effective. For diffusion, the arrival time of the concentration front increased nonlinearly with a decrease in the degree of saturation and linearly with increasing depths of the sand layer. At a residual degree of saturation, the arrival times of the C/C{sub o} = 0.01 and 0.5 concentration front at the base of the 1-m sand layer were 26.9 and 877.4 years as compared to 1.52 and 2.62 years by advection, respectively. 17 refs., 11 figs.

  1. Discrete Element Method for Modeling the Mechanical Behavior of Unsaturated Granular Material

    Directory of Open Access Journals (Sweden)

    K. Tourani

    2016-09-01

    Full Text Available Although a significant portion of conditions encountered in geotechnical engineering, for investigating engineering behavior of soil, involves unsaturated soils; the traditional analysis and design approach has been to assume the limiting conditions of soils being either completely dry or completely saturated. In unsaturated soils the capillary force produce attractive forces between particles. Discrete Element Method (DEM is an appropriate tool to consider the capillary effects. The calculations performed in DEM is based on iterative application of Newton’s second law to the particles and force-displacement law at the contacts. In the present study, the behavior of unsaturated soils in pendular regime is simulated utilizing DEM. Triaxial  compression tests were modeled as two-dimensional, considering capillary force effects. Finally, capillary effects on Macro parameters of a simulated granular soil (stress, axial strain, volumetric strain and void ratio and Mohr Coulomb failure criteria parameters were studied.

  2. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-01-01

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as ''physical-property stratigraphy'' as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs

  3. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-12-31

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as "physical-property stratigraphy" as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs.

  4. Conceptual hydrologic model of flow in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1984-01-01

    The purpose of this report is to propose a conceptual hydrologic model that reasonably describes the flow of fluids through the unsaturated zone at Yucca Mountain, for use as a basis for preliminary site-performance assessment and as a guide to further investigations. Scott and others (1983) presented an initial conceptual hydrogeologic model for the unsaturated zone at Yucca Mountain, based on detailed geologic, but very limited hydrologic, information. In this report, some of their concepts are examined and either supported or modified, and new concepts are developed. The model describes the manner in which flow probably occurs at Yucca Mountain and is based on: (1) current understanding of the hydrogeologic framework; (2) application of the principles of unsaturated flow; and (3) interpretation of some preliminary data from ongoing field and laboratory investigations. Included are extensive geologic information but relatively few hydrologic data that currently exist from the unsaturated zone in the Yucca Mountain area. Many uncertainties remain to be resolved concerning hydrologic conditions and processes. As a result, most of the concepts presented are intentionally descriptive and conjectural, with little quantitative basis provided. However, for the sake of directness and simplicity of expression, the model is presented as if it were a true expression of the facts. The authors recognize, and the reader should be aware, that the proposed model probably is not the only reasonable description that could be made at this point, and it certainly is subject to revision and quantification as more data become available. Although various alternative models probably could be developed, the one described in this report seems to fit current understanding of the unsaturated flow through a section of layered, fractured-rock formations with contrasting hydrologic properties, such as occurs at Yucca Mountain. 41 refs., 14 figs., 1 tab

  5. Rhodium-catalyzed asymmetric hydroboration of γ,δ-unsaturated amide derivatives: δ-borylated amides.

    Science.gov (United States)

    Hoang, G L; Zhang, S; Takacs, J M

    2018-05-08

    γ,δ-Unsaturated amides in which the alkene moiety bears an aryl or heteroaryl substituent undergo regioselective rhodium-catalyzed δ-borylation by pinacolborane to afford chiral secondary benzylic boronic esters. The results contrast the γ-borylation of γ,δ-unsaturated amides in which the disubstituted alkene moiety bears only alkyl substituents; the reversal in regiochemistry is coupled with a reversal in the sense of π-facial selectivity.

  6. Application of Stochastic Unsaturated Flow Theory, Numerical Simulations, and Comparisons to Field Observations

    DEFF Research Database (Denmark)

    Jensen, Karsten Høgh; Mantoglou, Aristotelis

    1992-01-01

    unsaturated flow equation representing the mean system behavior is solved using a finite difference numerical solution technique. The effective parameters are evaluated from the stochastic theory formulas before entering them into the numerical solution for each iteration. The stochastic model is applied...... seems to offer a rational framework for modeling large-scale unsaturated flow and estimating areal averages of soil-hydrological processes in spatially variable soils....

  7. REACTIVITY OF ANIONS IN INTERSTELLAR MEDIA: DETECTABILITY AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L. [Departamento de Quimica y Fisica Teoricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid E-28006 (Spain); Hochlaf, M., E-mail: senent@iem.cfmac.csic.es, E-mail: hochlaf@univ-mlv.fr [Laboratoire de Modelisation et Simulation Multi Echelle, Universite Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, F-77454 Marne-la-Vallee (France)

    2013-05-01

    We propose a general rule to distinguish between detectable and undetectable astronomical anions. We believe that only few anions live long enough in the interstellar medium and thus can be detected. Our method is based on quantum mechanical calculations capable of describing accurately the evolution of electronic states during chemical processes. The still not fully understood reactivity at low temperatures is discussed considering non-adiabatic effects. The role of excited states has usually been neglected in previous works which basically focused on the ground electronic state for interpretations of experimental observations. Here, we deal with unsaturated carbon chains (e.g., C{sub n} H{sup -}), which show a high density of electronic states close to their corresponding ground electronic states, complex molecular dynamics, and non-adiabatic phenomena. Our general rule shows that it is not sufficient that anions exist in the gas phase (in the laboratory) to be present in media such as astrophysical media, since formation and decomposition reactions of these anions may allow the population of anionic electronic states to autodetach, forming neutrals. For C{sub n} H, reactivity depends strongly on n, where long and short chains behave differently. Formation of linear chains is relevant.

  8. Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils

    International Nuclear Information System (INIS)

    Jerden, James L. Jr.

    2007-01-01

    A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group

  9. Focused Flow During Infiltration Into Ethanol-Contaminated Unsaturated Porous Media

    Science.gov (United States)

    Jazwiec, A.; Smith, J. E.

    2017-12-01

    The increasing commercial and industrial use of ethanol, e.g. in biofuels, has generated increased incidents of vadose zone contamination by way of ethanol spills and releases. This has increased the interest in better understanding behaviors of ethanol in unsaturated porous media and it's multiphase interactions in the vadose zone. This study uses highly controlled laboratory experiments in a 2-D (0.6mx0.6mx0.01m) flow cell to investigate water infiltration behaviors into ethanol-contaminated porous media. Ethanol and water were applied by either constant head or constant flux methods onto the surface of sands homogenously packed into the flow cell. The constant flux experiments at both low and high application rates were conducted using a rainulator with a row of hypodermic needles connected to a peristaltic pump. The constant head experiments were conducted using an 8cm diameter tension disk infiltrometer set to both low and high tensions. The presence of ethanol contamination generated solute-dependent capillarity induced focused flow (SCIFF) of water infiltration, which was primarily due to decreases in interfacial tensions at the air-liquid interfaces in the unsaturated sands as a function of ethanol concentration. SCIFF was clearly expressed as an unsaturated water flow phenomenon comprised of narrowly focused vertical flow fingers of water within the initially ethanol contaminated porous media. Using analyses of photos and video, comparisons were made between constant flux and constant head application methods. Further comparisons were made between low and high infiltration rates and the two sand textures used. A high degree of sensitivity to minor heterogeneity in relatively homogeneous sands was also observed. The results of this research have implications for rainfall infiltration into ethanol contaminated vadose zones expressing SCIFF, including implications for associated mass fluxes and the nature of flushing of ethanol from the unsaturated zone to

  10. Hydrochemical investigations in characterizing the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Rattray, G.W.; Ferarese, J.S.; Yu, P.; Ryan, J.N.

    1998-01-01

    Hydrochemical and isotopic investigations of ground water at Yucca Mountain, Nevada, site of a potential permanent national nuclear-waste repository, demonstrate that younger rocks are dominated by calcium-sulfate or calcium-chloride water and that older rocks contain sodium-carbonate or sodium-bicarbonate water. Furthermore, unsaturated-zone pore water has significantly larger concentrations of major ions and dissolved solids than does the saturated-zone water. Recharge of perched or saturated-zone water, therefore, requires rapid flow through fractures or permeable regions in the unsaturated zone to avoid mixing with the chemically concentrated water in the unsaturated zone. This conceptual model is consistent with observations of rapidly moved post-bomb (post-1954) tritium and chlorine-36 in the deep unsaturated zone at Yucca Mountain. Presence of post-bomb tritium in matrix water away from fracture zones further indicates that parts of the fast-flow water that moves through fractures have been diverted laterally into nonwelded units. Experimental data show that different lithologic units require specific water-extraction methods for stable-isotope analyses of hydrogen and oxygen to ensure accurate characterization. Vacuum-distillation and compression-extraction methods both can yield accurate data but must be used with specific lithologies. Column experiments demonstrate that percolating water can exchange with pore water of the core as well as water held in zeolite minerals in the core. Exchange rates range from days to months. Pore-water samples from core, therefore, reflect the most recently infiltrated water but do not reflect percolating water of the distant past

  11. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  12. High throughput assay for evaluation of reactive carbonyl scavenging capacity.

    Science.gov (United States)

    Vidal, N; Cavaille, J P; Graziani, F; Robin, M; Ouari, O; Pietri, S; Stocker, P

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  13. High throughput assay for evaluation of reactive carbonyl scavenging capacity

    Directory of Open Access Journals (Sweden)

    N. Vidal

    2014-01-01

    Full Text Available Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  14. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales

    International Nuclear Information System (INIS)

    Limousin, G.

    2006-10-01

    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10 -4 mol.L -1 , cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10 -6 mol.L -1 , cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements at equilibrium do

  15. Quasi‐steady centrifuge method for unsaturated hydraulic properties

    Science.gov (United States)

    Caputo, Maria C.; Nimmo, John R.

    2005-01-01

    We have developed the quasi‐steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi‐steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  16. Quasi-steady centrifuge method for unsaturated hydraulic properties

    Science.gov (United States)

    Caputo, Maria C.; Nimmo, John R.

    2005-11-01

    We have developed the quasi-steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi-steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  17. Thermal conductivity measurements in unsaturated hydrate-bearing sediments

    Science.gov (United States)

    Dai, Sheng; Cha, Jong-Ho; Rosenbaum, Eilis J.; Zhang, Wu; Seol, Yongkoo

    2015-08-01

    Current database on the thermal properties of hydrate-bearing sediments remains limited and has not been able to capture their consequential changes during gas production where vigorous phase changes occur in this unsaturated system. This study uses the transient plane source (TPS) technique to measure the thermal conductivity of methane hydrate-bearing sediments with various hydrate/water/gas saturations. We propose a simplified method to obtain thermal properties from single-sided TPS signatures. Results reveal that both volume fraction and distribution of the pore constituents govern the thermal conductivity of unsaturated specimens. Thermal conductivity hysteresis is observed due to water redistribution and fabric change caused by hydrate formation and dissociation. Measured thermal conductivity increases evidently when hydrate saturation Sh > 30-40%, shifting upward from the geometric mean model prediction to a Pythagorean mixing model. These observations envisage a significant drop in sediment thermal conductivity when residual hydrate/water saturation falls below ~40%, hindering further gas production.

  18. Simulation of groundwater flows in unsaturated porous media

    International Nuclear Information System (INIS)

    Musy, A.

    1976-01-01

    Groundwater flow in unsaturated porous media is caused by a potential gradient where the total potential consists of the sum of a gravitational and a suction component. The partial differential equations which result from the general analysis of groundwater flow in unsaturated soil are solved by succesive approximations with the finite-element method. General boundary and initial conditions, linear or curvilinear shaped elements (isoparametric elements) and steady-state or transient flow can be introduced into the numerical computer program. The results of this mathematical model are compared with experimental data established in the laboratory with a physical groundwater model. This is a rectangular testing tank of dimension 3 x 1.5 x 0.15 m and contains a silty clay loam. The variation of the bulk density and the volumetric moisture of the soil as a function of time and space are measured by gamma absorption from a 137 Cs source with 300 mCi intensity

  19. Metal-Free Catalytic Enantioselective C–B Bond Formation: (Pinacolato)boron Conjugate Additions to α,β-Unsaturated Ketones, Esters, Weinreb Amides and Aldehydes Promoted by Chiral N-Heterocyclic Carbenes

    Science.gov (United States)

    Wu, Hao; Radomkit, Suttipol; O’Brien, Jeannette M.; Hoveyda, Amir H.

    2012-01-01

    The first broadly applicable metal-free enantioselective method for boron conjugate addition (BCA) to α,β-unsaturated carbonyls is presented. The C–B bond forming reactions are promoted in the presence of 2.5–7.5 mol % of a readily accessible C1-symmetric chiral imidazolinium salt, which is converted, in situ, to the catalytically active diastereo- and enantiomerically pure N-heterocyclic carbene (NHC) by the common organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu). In addition to the commercially available bis(pinacolato)diboron [B2(pin)2], and in contrast to reactions with the less sterically demanding achiral NHCs, the presence of MeOH is required for high efficiency. Acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, Weinreb amides and aldehydes can serve as suitable substrates; the desired β-boryl carbonyls are isolated in up to 94% yield and >98:2 enantiomer ratio (er). Transformations are often carried out at ambient temperature. In certain cases, such as when the relatively less reactive unsaturated amides are used, elevated temperatures are required (50–66 °C); nonetheless, reactions remain highly enantioselective. The utility of the NHC-catalyzed method is demonstrated through comparison with the alternative Cu-catalyzed protocols; in cases involving a polyfunctional substrate, unique profiles in chemoselectivity are exhibited by the metal-free approach (e.g., conjugate addition vs reaction with an alkyne, allene or aldehyde). PMID:22559866

  20. Visualization of microscale phase displacement proceses in retention and outflow experiments: nonuniquensess of unsaturated flow properties

    DEFF Research Database (Denmark)

    Mortensen, Annette Pia; Glass, R.J.; Hollenbeck, K.J.

    2001-01-01

    -scale heterogeneities. Because the mixture of these microscale processes yields macroscale effective behavior, measured unsaturated flow properties are also a function of these controls. Such results suggest limitations on the current definitions and uniqueness of unsaturated hydraulic properties....

  1. Damping Effect of an Unsaturated-Saturated System on Tempospatial Variations of Pressure Head and Specific Flux

    Science.gov (United States)

    Yang, C.; Zhang, Y. K.; Liang, X.

    2014-12-01

    Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.

  2. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    Science.gov (United States)

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  3. A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain

    International Nuclear Information System (INIS)

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-01-01

    This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, the proposed underground repository site for storing high-level radioactive waste. The modeling study is conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in Yucca Mountain's highly heterogeneous, unsaturated, fractured porous rock. The modeling approach is based on a dual-continuum formulation. Using different conceptual models of unsaturated flow, various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the repository's system performance. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed

  4. Introduction of damage in an elasto-plastic model for unsaturated geo-materials

    International Nuclear Information System (INIS)

    Le Pense, S.; Pouya, A.; Gatmiri, B.

    2012-01-01

    Document available in extended abstract form only. During the excavation of nuclear waste repository galleries, the surrounding soil is suspected to undergo structural changes as well as modification of its stress state. The desaturation due to ventilation of galleries during this stage makes it necessary to consider the unsaturated state of the host geo-material. The decompression occurring after the excavation leads to a modification of the stress state. The purpose of our work is to develop a mechanical model to simulate the non-linear stress-strain behaviour of geo-materials which will have to contain radioactivity of nuclear waste for a very long time. Two irreversible phenomena can explain the non-linear behaviour of geo-materials. Plasticity leads to irrecoverable strains. Damage, linked to the appearance and extension of microcracks, results in a deterioration of elastic and hydraulic properties. We will present here the bases of a new model coupling damage and plasticity for the stress-strain behaviour of unsaturated geo-materials. This model should be thermodynamically consistent and use only a reasonable number of parameters. Based on the work of Houlsby, (Houlsby 1997), we choose to use as constitutive variables for unsaturated soils Bishop's stress and suction. This choice as the advantage to allow for continuity at the transition between saturated and unsaturated states. Damage is taken into account by defining a damaged constitutive stress, which is similar to the effective stress principle defined by Kachanov (Kachanov 1958). A simple damage criterion is proposed and an associative flow rule is assumed. We choose to follow the principle of strain equivalence defined by Lemaitre (Lemaitre 1996). This leads to the following elasticity law giving the damaged constitutive stress as a function of elastic strain. If non-linear elasticity is considered, a pressure-dependent bulk modulus and a constant shear modulus can be chosen in order to fit

  5. Modeling field scale unsaturated flow and transport processes

    International Nuclear Information System (INIS)

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data

  6. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L. [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  7. Core2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    International Nuclear Information System (INIS)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L.

    2000-01-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  8. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J; Juncosa, R; Delgado, J; Montenegro, L [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  9. Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts

    OpenAIRE

    Tourchi, Saeed; Hamidi, Amir

    2015-01-01

    A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rul...

  10. Impact of long-term meditation practice on cardiovascular reactivity during perception and reappraisal of affective images.

    Science.gov (United States)

    Pavlov, Sergei V; Reva, Natalia V; Loktev, Konstantin V; Korenyok, Vladimir V; Aftanas, Lyubomir I

    2015-03-01

    Meditation has been found to be an efficient strategy for coping with stress in healthy individuals and in patients with psychosomatic disorders. The main objective of the present study was to investigate the psychophysiological mechanisms of beneficial effects of meditation on cardiovascular reactivity. We examined effects of long-term Sahaja Yoga meditation on cardiovascular reactivity during affective image processing under "unregulated" and "emotion regulation" conditions. Twenty two experienced meditators and 20 control subjects participated in the study. Under "unregulated" conditions participants were shown neutral and affective images and were asked to attend to them. Under "emotion regulation" conditions they down-regulated negative affect through reappraisal of negative images or up-regulated positive affect through reappraisal of positive images. Under "unregulated" conditions while anticipating upcoming images meditators vs. controls did not show larger pre-stimulus total peripheral resistance and greater cardiac output for negative images in comparison with neutral and positive ones. Control subjects showed TPR decrease for negative images only when they consciously intended to reappraise them (i.e. in the "emotion regulation" condition). Both meditators and controls showed comparable cardiovascular reactivity during perception of positive stimuli, whereas up-regulating of positive affect was associated with more pronounced cardiac activation in meditators. The findings provide some insight into understanding the beneficial influence of meditation on top-down control of emotion and cardiovascular reactivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Analysis of monoclonal antibodies reactive with molecules upregulated or expressed only on activated lymphocytes.

    Science.gov (United States)

    Davis, W C; Naessens, J; Brown, W C; Ellis, J A; Hamilton, M J; Cantor, G H; Barbosa, J I; Ferens, W; Bohach, G A

    1996-08-01

    Monoclonal antibodies potentially specific for antigens expressed or upregulated on activated leukocytes were selected for further analysis from the panel submitted to the third international workshop on ruminant leukocyte antigens. The kinetics of expression of these activation antigens on resting peripheral mononuclear cells (PBMC) and PBMC stimulated with concanavalin A or staphylococcal superantigen SECI for 4, 24 or 96 h were compared, as well as their appearance on various subsets of cells. For some of them, a molecular mass could be determined after immunoprecipitation from radio-labeled, lectin-stimulated cells. Based on the results from the clustering, kinetic studies and biochemical data, evidence was gathered for assigning two additional mAbs to cluster BoCD25 (IL-2 receptor) and two mAbs to cluster BoCD71 (transferrin receptor). Four mAbs recognized an early activation antigen predominantly expressed on gamma delta T cells in short-term cultures. A number of other activation antigens were further characterized.

  12. Estimate of dispersion in an unsaturated aquifer

    Science.gov (United States)

    Stephenson, D.; De Jesus, A. S. M.

    1985-10-01

    The Nuclear Development Corporation of South Africa (Pty) Ltd. (NUCOR) is constructing a low-level radioactive waste disposal site near Springbok in Namaqualand, an arid region to the west of South Africa. A groundwater model was developed which required site-specific data and this work describes procedures developed to assess the dispersivity of the soil in the vicinity of the proposed site. Preliminary laboratory tests, carried out using a sodium chloride solution, indicated the order of magnitude of the dispersivity for saturated soil at various levels. This enabled site tests to be designed. The site tests were done by injecting a pulse of scandium-46 into a hole and monitoring the displacement of the radioactive cloud as it moved down under gravity and spread laterally. A mathematical model was developed to predict the behaviour of the cloud and calibration of the model yielded vertical and horizontal dispersivities. The dispersion of radioactivity at the cloud front was assumed to occur in unsaturated medium while the continuously injected water behind the radioactivity was assumed to disperse in a saturated medium. Thus monitoring the concentration of both yielded approximate values for the effective dispersivities in unsaturated and saturated media.

  13. Development and validation of mechanical model for saturated/unsaturated bentonite buffer

    International Nuclear Information System (INIS)

    Yamamoto, S.; Komine, H.; Kato, S.

    2010-01-01

    Document available in extended abstract form only. Development and validation of mechanical models for bentonite buffer and backfill materials are one of important subjects to appropriately evaluate long term behaviour or condition of the EBS in radioactive waste disposal. The Barcelona Basic Model (BBM), which is one of extensions of the modified Cam-Clay model for unsaturated and expansive soil, has been developed and widely applied to several problems by using the coupled THM code, Code B right. Advantage of the model is that mechanical characteristics of buffer and backfill materials under not only saturated condition but also unsaturated one are taken account as well as swelling characteristics due to wetting. In this study the BBM is compared with already existing experimental data and already developed another model in terms of swelling characteristics of Japanese bentonite Kunigel-V1, and is validated in terms of consolidation characteristics based on newly performed controlled-suction oedometer tests for the Kunigel-V1 bentonite. Komine et al. (2003) have proposed a model (set of equations) for predicting swelling characteristics based on the diffuse double layer concept and the van der Waals force concept etc. They performed a lot of swelling deformation tests of bentonite and sand-bentonite mixture to confirm the applicability of the model. The BBM well agrees with the model proposed by Komine et al. and the experimental data in terms of swelling characteristics. Compression index and swelling index depending on suction are introduced in the BBM. Controlled-suction consolidation tests (oedometer tests) were performed to confirm the applicability of the suction dependent indexes to unsaturated bentonite. Compacted bentonite with initial dry density of 1.0 Mg/m 3 was tested. Constant suction, 80 kPa, 280 kPa and 480 kPa was applied and kept during the consolidation tests. Applicability of the BBM to consolidation and swelling behaviour of saturated and

  14. Continuum model for water movement in an unsaturated fractured rock mass

    International Nuclear Information System (INIS)

    Peters, R.R.; Klavetter, E.A.

    1988-01-01

    The movement of fluids in a fractured, porous medium has been the subject of considerable study. This paper presents a continuum model that may be used to evaluate the isothermal movement of water in an unsaturated, fractured, porous medium under slowly changing conditions. This continuum model was developed for use in evaluating the unsaturated zone at the Yucca Mountain site as a potential repository for high-level nuclear waste. Thus its development has been influenced by the conditions thought to be present at Yucca Mountain. A macroscopic approach and a microscopic approach are used to develop a continuum model to evaluate water movement in a fractured rock mass. Both approaches assume that the pressure head in the fractures and the matrix are identical in a plane perpendicular to flow. Both approaches lead to a single-flow equation for a fractured rock mass. The two approaches are used to calculate unsaturated hydrologic properties, i.e., relative permeability and saturation as a function of pressure head, for several types of tuff underlying Yucca Mountain, using the best available hydrologic data for the matrix and the fractures. Rock mass properties calculated by both approaches are similar

  15. Synthesis and study of novel silicon-based unsaturated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jibing [Iowa State Univ., Ames, IA (United States)

    1995-06-19

    Novel unsaturated polymers have been synthesized and studied as precursors to silicon carbide and third order nonlinear optical materials. X ray structures were obtained. Kinetic and mechanistic studies of the unique thermal isomerization of dimethylenedisilacyclobutane to a carbene were conducted.

  16. A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope

    Science.gov (United States)

    Hsu, H.-H.

    2012-04-01

    The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.

  17. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone

    Science.gov (United States)

    Kennedy, Jeffrey R.; Ferre, Ty P.A.; Creutzfeldt, Benjamin

    2016-01-01

    Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).

  18. A Computational Study of Structure and Reactivity of N-Substitued-4-Piperidones Curcumin Analogues and Their Radical Anions

    Directory of Open Access Journals (Sweden)

    Maximiliano Martínez-Cifuentes

    2016-12-01

    Full Text Available In this work, a computational study of a series of N-substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N-substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA and vertical electron affinities (VEA, as well as vertical detachment energy (VDE. To study electrophilic properties of these structures, local reactivity indices, such as Fukui (f+ and Parr (P+ functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity.

  19. Innovative reactive layer to enhance soil aquifer treatment: successful installation in the Llobregat aquifer (Catalonia, ne Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.; Gilbert, O.; Bernat, X.; Valhondo, C.; Kock-Schulmeyer, M.; Huerta-Fontela, M.; Colomer, M. V.

    2014-10-01

    The Life+ ENSAT project has demonstrated the effectiveness of a reactive organic layer on the improvement of recharge water quality in an aquifer recharge system. The vegetal compost layer was installed at the bottom of an existing infiltration pond in the Llobregat Lower Valley (Barcelona region) with the purpose of promoting biodegradation and improving the removal emerging micro-pollutants from Llobregat River water. A comprehensive monitoring of water quality including bulk chemistry, emerging micro-pollutants and priority substances indicated that hydro biochemical changes within the organic layer enhance denitrification processes and reduce the levels of gemfibrozil and carbamazepine TP. This effect is due to the release of dissolved organic carbon which promotes biodegradation processes at local scale in the unsaturated zones, without affecting the furthest piezometers. The reactive layer is still active more than 3 years after its installation. The economic assessment of this innovative reactive layer shows that it is a promising solution for the improvement of aquifer recharge with low quality waters, not only technically but also from the economic sustainability standpoint. (Author)

  20. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    International Nuclear Information System (INIS)

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-01-01

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load

  1. Comparison of strongly heat-driven flow codes for unsaturated media

    International Nuclear Information System (INIS)

    Updegraff, C.D.

    1989-08-01

    Under the sponsorship of the US Nuclear Regulatory Commission, Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal of high-level radioactive waste (HLW) in unsaturated welded tuff. As part of this effort, SNL evaluated existing strongly heat-driven flow computer codes for simulating ground-water flow in unsaturated media. The three codes tested, NORIA, PETROS, and TOUGH, were compared against a suite of problems for which analytical and numerical solutions or experimental results exist. The problems were selected to test the abilities of the codes to simulate situations ranging from simple, uncoupled processes, such as two-phase flow or heat transfer, to fully coupled processes, such as vaporization caused by high temperatures. In general, all three codes were found to be difficult to use because of (1) built-in time stepping criteria, (2) the treatment of boundary conditions, and (3) handling of evaporation/condensation problems. A drawback of the study was that adequate problems related to expected repository conditions were not available in the literature. Nevertheless, the results of this study suggest the need for thorough investigations of the impact of heat on the flow field in the vicinity of an unsaturated HLW repository. Recommendations are to develop a new flow code combining the best features of these three codes and eliminating the worst ones. 19 refs., 49 figs

  2. Dsc cure kinetics of an unsaturated polyester resin using empirical kinetic model

    International Nuclear Information System (INIS)

    Abdullah, I.

    2015-01-01

    In this paper, the kinetics of curing of unsaturated polyester resin initiated with benzoyl peroxide was studied. In case of unsaturated polyester (UP) resin, isothermal test alone could not predict correctly the curing time of UP resin. Therefore, isothermal kinetic analysis through isoconventional adjustment was used to correctly predict the curing time and temperature of UP resin. Isothermal kinetic analysis through isoconversional adjustment indicated that 97% of UP resin cures in 33 min at 120 degree C. Curing of UP resin through microwaves was also studied and found that 67% of UP resin cures in 1 min at 120 degree C. The crosslinking reaction of UP resin is so fast at 120 degree C that it becomes impossible to predict correctly the curing time of UP resin using isothermal test and the burial of C=C bonds in microgels makes it impossible to be fully cured by microwaves at 120 degree C. The rheological behaviour of unsaturated polyester resin was also studied to observe the change in viscosity with respect to time and temperature. (author)

  3. Determination of Matric Suction and Saturation Degree for Unsaturated Soils, Comparative Study - Numerical Method versus Analytical Method

    Science.gov (United States)

    Chiorean, Vasile-Florin

    2017-10-01

    Matric suction is a soil parameter which influences the behaviour of unsaturated soils in both terms of shear strength and permeability. It is a necessary aspect to know the variation of matric suction in unsaturated soil zone for solving geotechnical issues like unsaturated soil slopes stability or bearing capacity for unsaturated foundation ground. Mathematical expression of the dependency between soil moisture content and it’s matric suction (soil water characteristic curve) has a powerful character of nonlinearity. This paper presents two methods to determine the variation of matric suction along the depth included between groundwater level and soil level. First method is an analytical approach to emphasize one direction steady state unsaturated infiltration phenomenon that occurs between the groundwater level and the soil level. There were simulated three different situations in terms of border conditions: precipitations (inflow conditions on ground surface), evaporation (outflow conditions on ground surface), and perfect equilibrium (no flow on ground surface). Numerical method is finite element method used for steady state, two-dimensional, unsaturated infiltration calculus. Regarding boundary conditions there were simulated identical situations as in analytical approach. For both methods, was adopted the equation proposed by van Genuchten-Mualen (1980) for mathematical expression of soil water characteristic curve. Also for the unsaturated soil permeability prediction model was adopted the equation proposed by van Genuchten-Mualen. The fitting parameters of these models were adopted according to RETC 6.02 software in function of soil type. The analyses were performed in both methods for three major soil types: clay, silt and sand. For each soil type were concluded analyses for three situations in terms of border conditions applied on soil surface: inflow, outflow, and no flow. The obtained results are presented in order to highlight the differences

  4. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    Energy Technology Data Exchange (ETDEWEB)

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  5. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    International Nuclear Information System (INIS)

    Conca, J.

    2000-01-01

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion

  6. The transport and behaviour of isoproturon in unsaturated chalk cores

    Science.gov (United States)

    Besien, T. J.; Williams, R. J.; Johnson, A. C.

    2000-04-01

    A batch sorption study, a microcosm degradation study, and two separate column leaching studies were used to investigate the transport and fate of isoproturon in unsaturated chalk. The column leaching studies used undisturbed core material obtained from the field by dry percussion drilling. Each column leaching study used 25 cm long, 10 cm wide unsaturated chalk cores through which a pulse of isoproturon and bromide was eluted. The cores were set-up to simulate conditions in the unsaturated zone of the UK Chalk aquifer by applying a suction of 1 kPa (0.1 m H 2O) to the base of each column, and eluting at a rate corresponding to an average recharge rate through the unsaturated Chalk. A dye tracer indicated that the flow was through the matrix under these conditions. The results from the first column study showed high recovery rates for both isoproturon (73-92%) and bromide (93-96%), and that isoproturon was retarded by a factor of about 1.23 relative to bromide. In the second column study, two of the four columns were eluted with non-sterile groundwater in place of the sterile groundwater used on all other columns, and this study showed high recovery rates for bromide (85-92%) and lower recovery rates for isoproturon (66-79% — sterile groundwater, 48-61% — non-sterile groundwater). The enhanced degradation in the columns eluted with non-sterile groundwater indicated that groundwater microorganisms had increased the degradation rate within these columns. Overall, the reduced isoproturon recovery in the second column study was attributed to increased microbial degradation as a result of the longer study duration (162 vs. 105 days). The breakthrough curves (BTCs) for bromide had a characteristic convection-dispersion shape and were accurately simulated with the minimum of calibration using a simple convection-dispersion model (LEACHP). However, the isoproturon BTCs had an unusual shape and could not be accurately simulated.

  7. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Mower, T.E.; Higgins, J.D.; Yang, In C.; Peters, C.A.

    1994-01-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone water on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site

  8. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Compounds

    Science.gov (United States)

    George, C.; Passananti, M.; Kong, L.; Shang, J.; Perrier, S.; Jianmin, C.; Donaldson, D. J.

    2016-12-01

    The atmospheric formation of organosulfur derivatives through reaction with SO2 is generally mediated by oxidants such as O3, OH; recently we have proposed a direct reaction between SO2 and unsaturated compounds as another possible pathway for organosulfate formation in the troposphere. For the first time it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds on various unsaturated compounds, and may therefore have a general environmental impact. We used different experimental strategies i.e., a coated flow tube (CFT), an aerosol flow tube (AFT) and a DRIFT (diffuse reflectance infrared Fourier transform) cell. The reaction products were analyzed by means of liquid chromatography coupled to a high resolution mass spectrometer (LC-HR-MS). We report indeed that SO2 reacts with large variety of C=C unsaturations and that even in the presence of ozone, SO2 reacts with OA leading to organosulfur products. A strong enhancement in product formation is observed under actinic illumination, increases the atmospheric significance of this chemical pathway. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%. The detection in atmospheric aerosols of organosulfur compounds with the same chemical formulae as the products identified here seems to confirm the importance of this reaction in the atmosphere.

  9. Conceptual Model and Numerical Approaches for Unsaturated Zone Flow and Transport

    International Nuclear Information System (INIS)

    H.H. Liu

    2004-01-01

    The purpose of this model report is to document the conceptual and numerical models used for modeling unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This work was planned in ''Technical Work Plan for: Unsaturated Zone Flow Model and Analysis Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.5, 2.1.1, 2.1.2 and 2.2.1). The conceptual and numerical modeling approaches described in this report are mainly used for models of UZ flow and transport in fractured, unsaturated rock under ambient conditions. Developments of these models are documented in the following model reports: (1) UZ Flow Model and Submodels; (2) Radionuclide Transport Models under Ambient Conditions. Conceptual models for flow and transport in unsaturated, fractured media are discussed in terms of their applicability to the UZ at Yucca Mountain. The rationale for selecting the conceptual models used for modeling of UZ flow and transport is documented. Numerical approaches for incorporating these conceptual models are evaluated in terms of their representation of the selected conceptual models and computational efficiency; and the rationales for selecting the numerical approaches used for modeling of UZ flow and transport are discussed. This report also documents activities to validate the active fracture model (AFM) based on experimental observations and theoretical developments. The AFM is a conceptual model that describes the fracture-matrix interaction in the UZ of Yucca Mountain. These validation activities are documented in Section 7 of this report regarding use of an independent line of evidence to provide additional confidence in the use of the AFM in the UZ models. The AFM has been used in UZ flow and transport models under both ambient and thermally disturbed conditions. Developments of these models are documented

  10. Modification of unsaturated polyester resins using nano-size core ...

    African Journals Online (AJOL)

    Modification of unsaturated polyester resins using nano-size core-shell particles. MO Munyati, PA Lovell. Abstract. No Abstract Available Journal of Science and Technology Special Edition 2004: 24-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  11. Numerical modeling of isothermal and nonisothermal flow in unsaturated fractured rock: A review

    International Nuclear Information System (INIS)

    Pruess, K.; Wang, J.S.Y.

    1986-01-01

    The tuff formations at and near the Nevada Test Site are comprised of fractured-porous material, with hydrologic properties quite different from those encountered in most previous unsaturated flow studies dealing with soils. In the vicinity of the waste packages, flow is driven by high temperatures (exceeding 100 0 C) and large temperature gradients. The approximations developed in soil science for weakly nonisothermal flow are not applicable to this situation, and a multiphase description of flow is required, similar to approaches used in modeling of geothermal reservoirs and thermally enhance oil recovery. The conventional approach to unsaturated flow is applicable, however, to a variety of problems relating to natural (undisturbed) and far-field flow conditions. This paper reviews recent work on numerical modeling of unsaturated flow undertaken in the context of nuclear waste isolation studies. Concepts and applications of broader interest are summarized, and important issues are identified that have not been adequately explored. 84 refs, 8 figs

  12. Method of polymerizing ethylenically unsaturated materials by irradiation and composition for use therein

    International Nuclear Information System (INIS)

    Nemcek, J.; Heap, N.

    1976-01-01

    This patent concerns photopolymerizable compositions consisting essentially of at least one polymerizable ethylenically unsaturated material and a photosensitive catalyst comprising (a) from 0.5 to 5 percent based on the ethylenically unsaturated material of at least one photosensitizer having the structure Ph(CO)C 2 A(CO)Ph, where Ph is phenyl, halogen-substituted phenyl, phenylene or halogen-substituted phenylene and A is a cyclic hydrocarbyl group, a halogen-substituted cyclic hydrocarbyl group, or a group of the formula X(NR)COCONRY, where X and Y each is hydrogen, a hydrocarbyl, or a halogen-substituted hydrocarbyl group, and (b) from 1 to 5 percent by weight based on the ethylenically unsaturated material of a reducing agent capable of reducing the photosensitizer when the photosensitizer is in an excited state. Also described is a process of preparing polymeric materials by irradiating the foregoing polymerizable composition at a wavelength capable of exciting the photosensitizer to an excited state

  13. Review of Upscaling Methods for Describing Unsaturated Flow

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian D.

    2000-09-26

    Representing samll-scale features can be a challenge when one wants to model unsaturated flow in large domains. In this report, the various upscaling techniques are reviewed. The following upscaling methods have been identified from the literature: stochastic methods, renormalization methods, volume averaging and homogenization methods. In addition, a final technique, full resolution numerical modeling, is also discussed.

  14. Numerical convergence improvements for porflow unsaturated flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Section 3.6 of SRNL (2016) discusses various PORFLOW code improvements to increase modeling efficiency, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision. This memorandum documents interaction with Analytic & Computational Research, Inc. (http://www.acricfd.com/default.htm) to improve numerical convergence efficiency using PORFLOW version 6.42 for unsaturated flow simulations.

  15. Role of the unsaturated zone in radioactive and hazardous waste disposal

    International Nuclear Information System (INIS)

    Mercer, J.W.; Marine, I.W.; Rao, P.S.C.

    1983-01-01

    The problems of hazardous and low-level radioactive waste disposal caused by the physical and chemical processes active in the unsaturated zone are explored in this book. The focus is on the use of laboratory analyses, field observations, and numerical and analytical calculations to create a clear picture of both problems and potential solutions. Topics include policy modeling, statistical techniques, liners, and field applications. Contents include: Modeling of Moisture Movement through Layered Trench Covers; Role of Partially Saturated Soil in Liner Design for Hazardous Waste Disposal Sites; Field Experiments to Determine Saturated Hydraulic Conductivity in the Vadose Zone; Role of Desaturation on Transport through Fractured Rock; Nuclear Waste Isolation in the Unsaturated Zone of Arid Regions

  16. The measurement of unsaturated hydraulic conductivity from one-step outflow method

    International Nuclear Information System (INIS)

    Lee, S. H.; Hwang, J. H.; Lee, J. M.; Kim, C. R.

    2003-01-01

    One of the most important parts in constructing radioactive waste repository may be its safety aspect. The fundamental function of the repository is to isolate completely and forever the radioactive wastes disposed of in it. However, since either normally or abnormally nuclides are to be released from the repository with a certain causes. The hydraulic conductivity is related to transportation of nuclide in soil. However, hydraulic characteristics research in unsaturated soil is not enough at present time. A fast and easy procedure for estimating unsaturated flow parameters is presented. The estimation is based on direct measurement of the retention characteristics combined with inverse estimation of the hydraulic conductivity characteristics from one-step outflow experiment

  17. Fourier transform infrared imaging showing reduced unsaturated lipid content in the hippocampus of a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Leskovjan, Andreana C; Kretlow, Ariane; Miller, Lisa M

    2010-04-01

    Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic =CH stretching mode at 3012 cm(-1). The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p avoiding progression of the disease.

  18. Unsaturated zone flow modeling for GWTT-95

    International Nuclear Information System (INIS)

    Ho, C.K.; Altman, S.J.; McKenna, S.A.; Arnold, B.W.

    1995-01-01

    In accordance with the Nuclear Regulatory Commission regulation regarding groundwater travel times at geologic repositories, various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially nonuniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated

  19. Effect Of Intraruminal Infussion Of Saturated And Unsaturated Fatty ...

    African Journals Online (AJOL)

    This study describes the effect of intraruminal infusion of diferent proportions of palmitic (saturated fatty acid) and linolenic (unsaturated fatty acid) on rumen degradability of organic matter fraction of Pennisetium purpureum, total volatile fatty acid and total methane productions in West African Dwarf sheep. Five combination ...

  20. NaturAnalogs for the Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    A. Simmons; A. Unger; M. Murrell

    2000-03-08

    The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model.

  1. Natural Analogs for the Unsaturated Zone

    International Nuclear Information System (INIS)

    Simmons, A.; Unger, A.; Murrell, M.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model

  2. Chum salmon egg extracts induce upregulation of collagen type I and exert antioxidative effects on human dermal fibroblast cultures

    Directory of Open Access Journals (Sweden)

    Yoshino A

    2016-08-01

    Full Text Available Atsushi Yoshino,1 Natalia Polouliakh,1–3 Akira Meguro,1 Masaki Takeuchi,1,4 Tatsukata Kawagoe,1 Nobuhisa Mizuki1 1Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 2Sony Computer Science Laboratories Inc., Fundamental Research Laboratories, 3Systems Biology Institute, Tokyo, Japan; 4Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA Abstract: Components of fish roe possess antioxidant and antiaging activities, making them potentially very beneficial natural resources. Here, we investigated chum salmon eggs (CSEs as a source of active ingredients, including vitamins, unsaturated fatty acids, and proteins. We incubated human dermal fibroblast cultures for 48 hours with high and low concentrations of CSE extracts and analyzed changes in gene expression. Cells treated with CSE extract showed concentration-dependent upregulation of collagen type I genes and of multiple antioxidative genes, including OXR1, TXNRD1, and PRDX family genes. We further conducted in silico phylogenetic footprinting analysis of promoter regions. These results suggested that transcription factors such as acute myeloid leukemia-1a and cyclic adenosine monophosphate response element-binding protein may be involved in the observed upregulation of antioxidative genes. Our results support the idea that CSEs are strong candidate sources of antioxidant materials and cosmeceutically effective ingredients. Keywords: fish egg, antiaging, gene expression analysis, antioxidative gene, phylogenetic footprinting analysis

  3. Changes of the water isotopic composition in unsaturated soils

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2001-01-01

    Based on the spatial and temporal variations of the stable isotope content in precipitation - as input in subsurface - and the mixing processes, the deuterium content in the water that moves in unsaturated zones was used to determine the most conducive season to recharge, the mechanisms for infiltration of snow or rain precipitation in humid, semi-arid or arid conditions, the episodic cycles of infiltration water mixing with the already present soil water and water vapor and whether infiltration water is or is not from local precipitation. Oscillations in the isotopic profiles of soil moisture can be used to estimate the following aspects: where piston or diffusive flow is the dominant mechanisms of water infiltration; the average velocities of the water movement in vadose zone; the influence of vegetation cover, soil type and slope exposure on the dynamics of water movement in soil; the conditions required for infiltration such as: the matrix, gravity, pressure and osmotic potentials during drainage in unsaturated soil. (authors)

  4. AN ACTIVE FRACTURE MODEL FOR UNSATURATED FLOW AND TRANSPORT

    International Nuclear Information System (INIS)

    HUI-HAI LIU, GUDMUNDUR S. BODVARSSON AND CHRISTINE DOUGHTY

    1999-01-01

    Fracture/matrix (F/M) interaction is a key factor affecting flow and transport in unsaturated fractured rocks. In classic continuum approaches (Warren and Root, 1963), it is assumed that flow occurs through all the connected fractures and is uniformly distributed over the entire fracture area, which generally gives a relatively large F/M interaction. However, fractures seem to have limited interaction with the surrounding matrix at Yucca Mountain, Nevada, as suggested by geochemical nonequilibrium between the perched water (resulting mainly from fracture flow) and pore water in the rock matrix. Because of the importance of the F/M interaction and related issues, there is a critical need to develop new approaches to accurately consider the interaction reduction inferred from field data at the Yucca Mountain site. Motivated by this consideration, they have developed an active fracture model based on the hypothesis that not all connected fractures actively conduct water in unsaturated fractured rocks

  5. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Kyoung-jin Min

    2017-08-01

    Full Text Available Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose polymerase (PARP, which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5 expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  6. Analysis of gaseous-phase stable and radioactive isotopes in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Haas, H.H.; Weeks, E.P.; Thorstenson, D.C.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy provides that agency with data for evaluating volcanic tuff beneath Yucca Mountain, Nevada, to determine its suitability for a potential repository of high-level radioactive waste. Thickness of the unsaturated zone, which consists of fractured, welded and nonwelded tuff, is about 1640 to 2460 feet (500 to 750 meters). One question to be resolved is an estimate of minimum ground-water traveltime from the disturbed zone of the potentail repository to the accessible environment. Another issue is the potential for diffusive or convective gaseous transport of radionuclides from an underground facility in the unsaturated zone to the accessible environment. Gas samples were collected at intervals to a depth of 1200 feet from the unsaturated zone at Yucca Mountain, Nevada. Samples were analyzed for major atmospheric gases; carbon dioxide in the samples was analyzed for carbon-14 activity and for delta 13 C; water vapor in the samples was analyzed for deuterium and oxygen-18. These data could provide insight into the nature of unsaturated zone transport processes. 15 refs., 4 figs., 4 tabs

  7. Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation

    International Nuclear Information System (INIS)

    Dennis, K.J.; Shibamoto, T.

    1990-01-01

    Peroxidation of lipids produces carbonyl compounds; some of these, e.g., malonaldehyde and 4-hydroxynonenal, are genotoxic because of their reactivity with biological nucleophiles. Analysis of the reactive carbonyl compounds is often difficult. The methylhydrazine method developed for malonaldehyde analysis was applied to simultaneously measure the products formed from linoleic acid, linolenic acid, arachidonic acid, and squalene upon ultraviolet-irradiation (UV-irradiation). The photoreaction products, saturated monocarbonyl, alpha,beta-unsaturated carbonyls, and beta-dicarbonyls, were derivatized with methylhydrazine to give hydrazones, pyrazolines, and pyrazoles, respectively. The derivatives were analyzed by gas chromatography and gas chromatography-mass spectrometry. Lipid peroxidation products identified included formaldehyde, acetaldehyde, acrolein, malonaldehyde, n-hexanal, and 4-hydroxy-2-nonenal. Malonaldehyde levels formed upon 4 hr of irradiation were 0.06 micrograms/mg from squalene, 2.4 micrograms/mg from linolenic acid, and 5.7 micrograms/mg from arachidonic acid. Significant levels of acrolein (2.5 micrograms/mg) and 4-hydroxy-2-nonenal (0.17 micrograms/mg) were also produced from arachidonic acid upon 4 hr irradiation

  8. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease.

    Science.gov (United States)

    Jo, Seonmi; Yarishkin, Oleg; Hwang, Yu Jin; Chun, Ye Eun; Park, Mijeong; Woo, Dong Ho; Bae, Jin Young; Kim, Taekeun; Lee, Jaekwang; Chun, Heejung; Park, Hyun Jung; Lee, Da Yong; Hong, Jinpyo; Kim, Hye Yun; Oh, Soo-Jin; Park, Seung Ju; Lee, Hyo; Yoon, Bo-Eun; Kim, YoungSoo; Jeong, Yong; Shim, Insop; Bae, Yong Chul; Cho, Jeiwon; Kowall, Neil W; Ryu, Hoon; Hwang, Eunmi; Kim, Daesoo; Lee, C Justin

    2014-08-01

    In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.

  9. Beaded Fiber Mats of PVA Containing Unsaturated Heteropoly Salt

    Institute of Scientific and Technical Information of China (English)

    Guo Cheng YANG; Yan PAN; Jian GONG; Chang Lu SHAO; Shang Bin WEN; Chen SHAO; Lun Yu QU

    2004-01-01

    Poly(vinyl alcohol) (PVA) fiber mats containing unsaturated heteropoly salt was prepared for the first time. IR, X-ray diffraction and SEM photographs characterized the beaded fiber mats.The viscoelasticity and the conductivity of the solution were the key factors that influence the formation of the beaded fiber mats.

  10. The synthesis of some unsaturated 4-substituted-g-lactones

    Directory of Open Access Journals (Sweden)

    SUREN HUSINEC

    2000-02-01

    Full Text Available The synthesis of conjugated and nonconjugated unsaturated 4-substituted lactones of type 1 and 2 are described. The type 1 lactone was prepared by a two step procedure employing Bredereck's reagent. The type 2 lactone was synthesised by combining the Claisen-Ireland rearrangement and selenolactonisation.

  11. Reactivity of Biliatresone, a Natural Biliary Toxin, with Glutathione, Histamine, and Amino Acids.

    Science.gov (United States)

    Koo, Kyung A; Waisbourd-Zinman, Orith; Wells, Rebecca G; Pack, Michael; Porter, John R

    2016-02-15

    In our previous work, we identified a natural toxin, biliatresone, from Dysphania glomulifera and D. littoralis, endemic plants associated with outbreaks of biliary atresia in Australian neonatal livestock. Biliatresone is a very rare isoflavonoid with an α-methylene ketone between two phenyls, 1,2-diaryl-2-propenone, along with methylenedioxy, dimethoxyl, and hydroxyl functional groups, that causes extrahepatic biliary toxicity in zebrafish. The toxic core of biliatresone is a methylene in the α-position relative to the ketone of 1,2-diaryl-2-propenone that serves as an electrophilic Michael acceptor. The α-methylene of biliatresone spontaneously conjugated with water and methanol (MeOH), respectively, via Michael addition in a reverse phase high-performance liquid chromatography (RP-HPLC) analysis. We here report the reactivity of biliatresone toward glutathione (GSH), several amino acids, and other thiol- or imidazole-containing biomolecules. LC-MS and HPLC analysis of the conjugation reaction showed the reactivity of biliatresone to be in the order histidine > N-acetyl-d-cysteine (D-NAC) = N-acetyl-l-cysteine (L-NAC) > histamine > glutathione ≥ cysteine ≫ glycine > glutamate > phenylalanine, while serine and adenine had no reactivity due to intramolecular hydrogen bonding in the protic solvents. The reactivity of ethyl vinyl ketone (EVK, 1-penten-3-one), an example of a highly reactive α,ß-unsaturated ketone, toward GSH gave a 6.7-fold lower reaction rate constant than that of biliatresone. The reaction rate constant of synthetic 1,2-diaryl-2-propen-1-one (DP), a core structure of the toxic molecule, was 10-fold and 1.5-fold weaker in potency compared to the reaction rate constants of biliatresone and EVK, respectively. These results demostrated that the methylenedioxy, dimethoxyl, and hydroxyl functional groups of biliatresone contribute to the stronger reactivity of the Michael acceptor α-methylene ketone toward nucleophiles compared to that of DP

  12. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS OF YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Wu, Y.S.; Zhang, W.; Pan, L.; Hinds, J.; Bodvarsson, G.

    2000-01-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow

  13. Quantifying the Effects of Biofilm on the Hydraulic Properties of Unsaturated Soils

    Science.gov (United States)

    Volk, E.; Iden, S.; Furman, A.; Durner, W.; Rosenzweig, R.

    2017-12-01

    Quantifying the effects of biofilms on hydraulic properties of unsaturated soils is necessary for predicting water and solute flow in soil with extensive microbial presence. This can be relevant to bioremediation processes, soil aquifer treatment and effluent irrigation. Previous works showed a reduction in the hydraulic conductivity and an increase in water content due to the addition of biofilm analogue materials. The objective of this research is to quantify soil hydraulic properties of unsaturated soil (water retention and hydraulic conductivity) using real soil biofilm. In this work, Hamra soil was incubated with Luria Broth (LB) and biofilm-producing bacteria (Pseudomonas Putida F1). Hydraulic conductivity and water retention were measured by the evaporation method, Dewpoint method and a constant head permeameter. Biofilm was quantified using viable counts and the deficit of TOC. The results show that the presence of biofilms increases soil retention in the `dry' range of the curve and reduces the hydraulic conductivity (see figure). This research shows that biofilms may have a non-negligible effect on flow and transport in unsaturated soils. These findings contribute to modeling water flow in biofilm amended soil.

  14. Flow and transport in unsaturated fractured rock: Effects of multiscale heterogeneity of hydrogeologic properties

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S.; Oldenburg, Curtis M.

    2002-01-01

    The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20 percent tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain

  15. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates.

    Science.gov (United States)

    Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O

    2014-12-01

    The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding

  16. Estimation of folate binding capacity (unsaturated and total) in normal human serum and in β-thalassaemia

    International Nuclear Information System (INIS)

    Moulopoulos, S.; Mantzos, J.; Gyftaki, E.; Kesse-Elias, M.; Alevizou-Terzaki, V.; Souli-Tsimili, E.

    1978-01-01

    A method is described for measuring the total serum folate binding capacity (TBC) after treating the serum with urea at pH5.5, the unsaturated serum folate binding capacity (UBC) being determined without treatment with urea. The method was applied to 50 normal controls and 20 patients with homozygous β-thalassaemia. The results show an increase in folate binding capacity after treating the serum with urea in all cases studied. There is no correlation between serum folic acid level and total or unsaturated folate binding capacity or per cent saturation. The method described is a simple and rapid one for screening the different groups studied for saturated and unsaturated specific folate-binding proteins. (author)

  17. Migrations of 60-Co and 137-Cs in Saturated and unsaturated Soil at Serpong Nuclear Research Center

    International Nuclear Information System (INIS)

    Lubis, E; Untara

    1996-01-01

    The migrations of 60-Co and 137-Cs in saturated and unsaturated soil at Serpong Nuclear Research Center was investigated. The objectives of this investigation are to find the geological and hydrological parameters, especially for estimating the migrations of radionuclides in porous media with advection-dispersion equations. The result showed that the porosity (η) and density (ρ ) of saturated soil are 27.6% and 1.35 g/cm3, and in the unsaturated soil are 18.9% and 1.41 g/cm3. The coefficients distributions (Kd) of 60-Co and 137-Cs in saturated and unsaturated soil are 1.6 - 8.9 and 3.2 - 7.7 respectively. The hydrodinamic coefficients (Dx) and dispersivity (αx) of C0-60 in saturated and unsaturated soil are 0.85 cm2/second and 2.4 x 10-3 cm, and for 137-Cs are 0.91 cm2/second and 2.54 x 10E3 cm

  18. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor.

    Science.gov (United States)

    Sousa, Marcelo R; Jones, Jon P; Frind, Emil O; Rudolph, David L

    2013-01-01

    In contaminant travel from ground surface to groundwater receptors, the time taken in travelling through the unsaturated zone is known as the unsaturated zone time lag. Depending on the situation, this time lag may or may not be significant within the context of the overall problem. A method is presented for assessing the importance of the unsaturated zone in the travel time from source to receptor in terms of estimates of both the absolute and the relative advective times. A choice of different techniques for both unsaturated and saturated travel time estimation is provided. This method may be useful for practitioners to decide whether to incorporate unsaturated processes in conceptual and numerical models and can also be used to roughly estimate the total travel time between points near ground surface and a groundwater receptor. This method was applied to a field site located in a glacial aquifer system in Ontario, Canada. Advective travel times were estimated using techniques with different levels of sophistication. The application of the proposed method indicates that the time lag in the unsaturated zone is significant at this field site and should be taken into account. For this case, sophisticated and simplified techniques lead to similar assessments when the same knowledge of the hydraulic conductivity field is assumed. When there is significant uncertainty regarding the hydraulic conductivity, simplified calculations did not lead to a conclusive decision. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Transient Point Infiltration In The Unsaturated Zone

    Science.gov (United States)

    Buecker-Gittel, M.; Mohrlok, U.

    The risk assessment of leaking sewer pipes gets more and more important due to urban groundwater management and environmental as well as health safety. This requires the quantification and balancing of transport and transformation processes based on the water flow in the unsaturated zone. The water flow from a single sewer leakage could be described as a point infiltration with time varying hydraulic conditions externally and internally. External variations are caused by the discharge in the sewer pipe as well as the state of the leakage itself. Internal variations are the results of microbiological clogging effects associated with the transformation processes. Technical as well as small scale laboratory experiments were conducted in order to investigate the water transport from an transient point infiltration. From the technical scale experiment there was evidence that the water flow takes place under transient conditions when sewage infiltrates into an unsaturated soil. Whereas the small scale experiments investigated the hydraulics of the water transport and the associated so- lute and particle transport in unsaturated soils in detail. The small scale experiment was a two-dimensional representation of such a point infiltration source where the distributed water transport could be measured by several tensiometers in the soil as well as by a selective measurement of the discharge at the bottom of the experimental setup. Several series of experiments were conducted varying the boundary and initial con- ditions in order to derive the important parameters controlling the infiltration of pure water from the point source. The results showed that there is a significant difference between the infiltration rate in the point source and the discharge rate at the bottom, that could be explained by storage processes due to an outflow resistance at the bottom. This effect is overlayn by a decreasing water content decreases over time correlated with a decreasing infiltration

  20. Antiprotozoal Activity of α,β-Unsaturated δ-Lactones: Promising ...

    African Journals Online (AJOL)

    The parasite resistance and side effects of drugs used to treat protozoal diseases have led to the search for new therapies, both natural and synthetic. Studies have shown that various α,β-unsaturated δ-lactones displayed high antiprotozoal activity and thus are promising compounds for new drug discovery and ...

  1. Ceramide-induced TCR up-regulation

    DEFF Research Database (Denmark)

    Menné, C; Lauritsen, Jens Peter Holst; Dietrich, J

    2000-01-01

    to increase T cell responsiveness. The purpose of this study was to identify and characterize potential pathways for TCR up-regulation. We found that ceramide affected TCR recycling dynamics and induced TCR up-regulation in a concentration- and time-dependent manner. Experiments applying phosphatase......The TCR is a constitutively recycling receptor meaning that a constant fraction of TCR from the plasma membrane is transported inside the cell at the same time as a constant fraction of TCR from the intracellular pool is transported to the plasma membrane. TCR recycling is affected by protein...... kinase C activity. Thus, an increase in protein kinase C activity affects TCR recycling kinetics leading to a new TCR equilibrium with a reduced level of TCR expressed at the T cell surface. Down-regulation of TCR expression compromises T cell activation. Conversely, TCR up-regulation is expected...

  2. Unsaturated aldehydes as alkene equivalents in the Diels-Alder reaction

    DEFF Research Database (Denmark)

    Taarning, Esben; Madsen, Robert

    2008-01-01

    A one-pot procedure is described for using alpha,beta-unsaturated aldehydes as olefin equivalents in the Diels-Alder reaction. The method combines the normal electron demand cycloaddition with aldehyde dienophiles and the rhodium-catalyzed decarbonylation of aldehydes to afford cyclohexenes...

  3. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  4. Behavior of nine selected emerging trace organic contaminants in an artificial recharge system supplemented with a reactive barrier.

    Science.gov (United States)

    Valhondo, Cristina; Carrera, Jesús; Ayora, Carlos; Barbieri, Manuela; Nödler, Karsten; Licha, Tobias; Huerta, Maria

    2014-10-01

    Artificial recharge improves several water quality parameters, but has only minor effects on recalcitrant pollutants. To improve the removal of these pollutants, we added a reactive barrier at the bottom of an infiltration basin. This barrier contained aquifer sand, vegetable compost, and clay and was covered with iron oxide dust. The goal of the compost was to sorb neutral compounds and release dissolved organic carbon. The release of dissolved organic carbon should generate a broad range of redox conditions to promote the transformation of emerging trace organic contaminants (EOCs). Iron oxides and clay increase the range of sorption site types. In the present study, we examined the effectiveness of this barrier by analyzing the fate of nine EOCs. Water quality was monitored before and after constructing the reactive barrier. Installation of the reactive barrier led to nitrate-, iron-, and manganese-reducing conditions in the unsaturated zone below the basin and within the first few meters of the saturated zone. Thus, the behavior of most EOCs changed after installing the reactive barrier. The reactive barrier enhanced the removal of some EOCs, either markedly (sulfamethoxazole, caffeine, benzoylecgonine) or slightly (trimethoprim) and decreased the removal rates of compounds that are easily degradable under aerobic conditions (ibuprofen, paracetamol). The barrier had no remarkable effect on 1H-benzotriazole and tolyltriazole.

  5. Stereoselective synthesis of unsaturated α-amino acids.

    Science.gov (United States)

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  6. Review of Upscaling Methods for Describing Unsaturated Flow

    Energy Technology Data Exchange (ETDEWEB)

    BD Wood

    2000-09-26

    The representation of small-scale features can be a challenge when attempting to model unsaturated flow in large domains. Upscaling methods offer the possibility of reducing the amount of resolution required to adequately simulate such a problem. In this report, the various upscaling techniques that are discussed in the literature are reviewed. The following upscaling methods have been identified from the literature: (1) stochastic methods, (2) renormalization methods, and (3) volume averaging and homogenization methods; in addition, a final technique, full resolution numerical modeling, is also discussed. Each of these techniques has its advantages and disadvantages. The trade-off is a reduction in accuracy in favor of a method that is easier to employ. For practical applications, the most reasonable approach appears to be one in which any of the upscaling methods identified above maybe suitable for upscaling in regions where the variations in the parameter fields are small. For regions where the subsurface structure is more complex, only the homogenization and volume averaging methods are probably suitable. With the continual increases in computational capacity, fill-resolution numerical modeling may in many instances provide a tractable means of solving the flow problem in unsaturated systems.

  7. Measurement of unsaturated hydraulic properties and evaluation of property-transfer models for deep sedimentary interbeds, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Perkins, Kimberlie; Johnson, Brittany D.; Mirus, Benjamin B.

    2014-01-01

    Operations at the Idaho National Laboratory (INL) have the potential to contaminate the underlying Eastern Snake River Plain (ESRP) aquifer. Methods to quantitatively characterize unsaturated flow and recharge to the ESRP aquifer are needed to inform water-resources management decisions at INL. In particular, hydraulic properties are needed to parameterize distributed hydrologic models of unsaturated flow and transport at INL, but these properties are often difficult and costly to obtain for large areas. The unsaturated zone overlying the ESRP aquifer consists of alternating sequences of thick fractured volcanic rocks that can rapidly transmit water flow and thinner sedimentary interbeds that transmit water much more slowly. Consequently, the sedimentary interbeds are of considerable interest because they primarily restrict the vertical movement of water through the unsaturated zone. Previous efforts by the U.S. Geological Survey (USGS) have included extensive laboratory characterization of the sedimentary interbeds and regression analyses to develop property-transfer models, which relate readily available physical properties of the sedimentary interbeds (bulk density, median particle diameter, and uniformity coefficient) to water retention and unsaturated hydraulic conductivity curves.

  8. Inflammatory lipid sphingosine-1-phosphate upregulates C-reactive protein via C/EBPβ and potentiates breast cancer progression

    NARCIS (Netherlands)

    Kim, E.S.; Cha, Y.; Ham, M.; Jung, J.; Kim, S.G.; Hwang, S.; Kleemann, R.; Moon, A.

    2014-01-01

    A crucial role of the inflammatory lipid sphingosine-1-phosphate (S1P) in breast cancer aggressiveness has been reported. Recent clinical studies have suggested that C-reactive protein (CRP) has a role in breast cancer development. However, limited information is available on the molecular basis for

  9. Up-regulation of P-glycoprotein expression by catalase via JNK activation in HepG2 cells.

    Science.gov (United States)

    Li, Lin; Xu, Jianfeng; Min, Taishan; Huang, Weida

    2006-01-01

    Overexpression of the MDR1 gene is one of the reasons for multidrug resistance (MDR). Some studies suggested that antioxidants could down-regulate MDR1 expression as a possible cancer treatment. In this report, we try to determine the effects of antioxidants (catalase or N-acetylcysteine [NAC]) on the regulation of intrinsic MDR1 overexpression in HepG2 cells. Adding catalase or N-acetylcysteine to the HepG2 culture led to a significant increase of MDR1 mRNA and P-glycoprotein drug transporter activity. After catalase or NAC treatment, a reduced intracellular reactive oxygen species (ROS) was observed. The JNK inhibitor SP600125 abolished the positive effects of catalase on drug transporter activity in a dose-dependent manner. Furthermore, the up-regulation of P-glycoprotein functions by catalase was only observed in HepG2 cells but not in other cell lines tested (MCF-7, A549, A431). These data suggested that catalase can up-regulate P-glycoprotein expression in HepG2 cells via reducing intracellular ROS, and JNK may mediate this process.

  10. Reactive Transport Modeling of the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    G. Bodvarsson

    2004-01-01

    The Yucca Mountain site has a dry climate and deep water table, with the repository located in the middle of an unsaturated zone approximately 600 m thick. Radionuclide transport processes from the repository to the water table are sensitive to the unsaturated zone flow field, as well as to sorption, matrix diffusion, radioactive decay, and colloid transport mechanisms. The unsaturated zone flow and transport models are calibrated against both physical and chemical data, including pneumatic pressure, liquid saturation, water potential, temperature, chloride, and calcite. The transport model predictions are further compared with testing specific to unsaturated zone transport: at Alcove 1 in the Exploratory Studies Facility (ESF), at Alcove 8 and Niche 3 of the ESF, and at the Busted Butte site. The models are applied to predict the breakthroughs at the water table for nonsorbing and sorbing radionuclides, with faults shown as the important paths for radionuclide transport. Daughter products of some important radionuclides, such as 239 Pu and 241 Am, have faster transport than the parents and must be considered in the unsaturated zone transport model. Colloid transport is significantly affected by colloid size, but only negligibly affected by lunetic declogging (reverse filtering) mechanisms. Unsaturated zone model uncertainties are discussed, including the sensitivity of breakthrough to the active fracture model parameter, as an example of uncertainties related to detailed flow characteristics and fracture-matrix interaction. It is expected that additional benefits from the unsaturated zone barrier for transport can be achieved by full implementation of the shadow zone concept immediately below the radionuclide release points in the waste emplacement drifts

  11. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation*

    Science.gov (United States)

    Gopinath, Vipin; Raghunandanan, Sajith; Gomez, Roshna Lawrence; Jose, Leny; Surendran, Arun; Ramachandran, Ranjit; Pushparajan, Akhil Raj; Mundayoor, Sathish; Jaleel, Abdul; Kumar, Ramakrishnan Ajay

    2015-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic

  12. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    Science.gov (United States)

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.

  13. (Bio-)remediation of VCHC contaminants in a Technosol under unsaturated conditions.

    Science.gov (United States)

    Baumgarten, W; Fleige, H; Peth, S; Horn, R

    2013-07-01

    The remediation of dense non-aqueous phase liquids has always been a concern of both public and scientific interest groups. In this research work a modified physical concept of (bio)remediation of a volatile chlorinated hydrocarbon (VCHC) contamination was elaborated under laboratory conditions and modeled with HYDRUS-2D. In field dechlorination is influenced by both physicochemical and hydraulic properties of the substrate, e.g. texture, pore size distribution, pore liquid characteristics, e.g. viscosity, pH, surface tension, and dependent on the degree of saturation of the vadose zone. Undisturbed soil cores (100 cm³) were sampled from a Spolic Technosol. Considering hydraulic properties and functions, unsaturated percolation was performed with vertically and horizontally structured samples. VCHC concentrations were calculated prior, during, and after each percolation cycle. According to laboratory findings, microemulsion showed the most efficient results with regard to flow behavior in the unsaturated porous media and its accessibility for bacteria as nutrient. The efficiency of VCHC remediation could be increased by the application of a modified pump-and-treat system: the injection of bacteria Dehalococcoides ethanogenes with microemulsion, and extraction at a constant matric potential level of -6 kPa. Achieved data was used for HYDRUS-2D simulations, modeling in situ conditions, demonstrating the practical relevance (field scale) of performed unsaturated percolation (core scale), and in order to exclude capillary barrier effects.

  14. Low temperature irradiation of vitrifiable mixtures of unsaturated monomers

    International Nuclear Information System (INIS)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1975-01-01

    A specific mixture containing at least one polymerizable unsaturated monomer which is not vitrifiable by itself can advantageously be polymerized by irradiating the mixture at a temperature not higher than 100 0 C above glass transition temperature of the mixture with an ionizing radiation and/or a light. 12 claims, 6 drawings, figures

  15. Movement of pentachlorophenol in unsaturated soil by electrokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Harbottle, M.; Sills, G. [Dept. of Engineering Science, Oxford (United Kingdom); Jackman, S. [Dept. of Engineering Science, Oxford (United Kingdom)]|[NERC Centre for Ecology and Hydrology, Oxford (United Kingdom); Thompson, I. [NERC Centre for Ecology and Hydrology, Oxford (United Kingdom)

    2001-07-01

    Electrokinetic experiments have been performed on unsaturated natural soil specimens artificially contaminated with pentachlorophenol. Movement of pentachlorophenol within the soil mass has been demonstrated, but no contaminant was discovered in any effluent fluids. The results indicate that it may be possible to improve the bioavailability of the pollutant to degradative microorganisms using electrokinetics, by moving the chemical and microbes relative to each others. (orig.)

  16. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments

    International Nuclear Information System (INIS)

    Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton A.; Serne, R. Jeffrey; Thompson, Aaron; Perdrial, Nicolas; Steefel, Carl I.; Chorover, Jon

    2011-01-01

    Leaching behavior of Sr and Cs in the vadose zone of Hanford site (WA, USA) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10-5 and 10-3 molal representative of LO- and HI-sediment, respectively) as surrogates for 90Sr and 137Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.

  17. Screening of Chlorinated Paraffins and Unsaturated Analogues in Commercial Mixtures: Confirmation of Their Occurrences in the Atmosphere.

    Science.gov (United States)

    Li, Tong; Gao, Shixiong; Ben, Yujie; Zhang, Hong; Kang, Qiyue; Wan, Yi

    2018-02-20

    Characterizing the detailed compositions of chlorinated paraffins (CPs) commercial mixtures is crucial to understand their environmental sources, fates, and potential risks. In this study, dichloromethane (DCM)-enhanced UPLC-ESI-QTOFMS analysis combined with characteristic isotope chlorine peaks is applied to screen all CPs and their structural analogues in the three most commonly produced CP commercial mixtures (CP-42, CP-52, and CP-70). Mass fractions of total short-chain CPs (SCCPs), medium-chain CPs (MCCPs) and long-chain CPs (LCCPs) ranged from 0.64 to 31.9%, 0.64 to 21.8%, and 0.04 to 43.9%, respectively, in the three commercial mixtures. 113 unsaturated SCCPs, MCCPs, and LCCPs were identified in the commercial mixtures. The detailed mass percentages of saturated and unsaturated CPs with carbon numbers of 10-30, chlorine numbers of 5-28, and unsaturated degrees of 0-7 were characterized in all commercial mixtures. Occurrences of the predominant saturated and unsaturated CPs were further confirmed in air samples collected in Guangdong Province, one of the major CP production areas in China, over one year. The profiles of the detected compounds indicated that LCCPs in air samples might come mainly from the production and usage of CP-52, and unsaturated C 24-29 -LCCPs were specifically originated from CP-70 used in the area.

  18. Electrokinetic remediation of anionic contamination from unsaturated soil: Field application

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Mattson, E.D.

    1995-01-01

    Electrokinetic remediation is an in situ technique under development at Sandia National Laboratories for removal of ionic contaminants from soil. While to date most other studies of this technique have focused on saturated soils, usually clays, the work at Sandia has been to extend the process to unsaturated sandy soils typical of arid regions. The impetus for this study is a chromate plume located beneath an old Sandia chemical waste landfill. Working in unsaturated soils is complicated by moisture control requirements, both to prevent undesired hydraulic transport of contamination outside the treatment zone and to optimize soil properties for efficient electrokinetic remediation. Two field tests will be discussed. First, a field test in clean soil is in progress to demonstrate moisture control with the Sandia electrode system. The second field demonstration, planned to begin the Fall of 1995, involves chromate removal from a in a chemical waste landfill

  19. Chemical Kinetic Influences of Alkyl Chain Structure on the High Pressure and Temperature Oxidation of a Representative Unsaturated Biodiesel: Methyl Nonenoate.

    Science.gov (United States)

    Fridlyand, Aleksandr; Goldsborough, S Scott; Brezinsky, Kenneth

    2015-07-16

    The high pressure and temperature oxidation of methyl trans-2-nonenoate, methyl trans-3-nonenoate, 1-octene, and trans-2-octene are investigated experimentally to probe the influence of the double bond position on the chemical kinetics of long esters and alkenes. Single pulse shock tube experiments are performed in the ranges p = 3.8-6.2 MPa and T = 850-1500 K, with an average reaction time of 2 ms. Gas chromatographic measurements indicate increased reactivity for trans-2-octene compared to 1-octene, whereas both methyl nonenoate isomers have reactivities similar to that of 1-octene. A difference in the yield of stable intermediates is observed for the octenes when compared to the methyl nonenoates. Chemical kinetic models are developed with the aid of the Reaction Mechanism Generator to interpret the experimental results. The models are created using two different base chemistry submodels to investigate the influence of the foundational chemistry (i.e., C0-C4), whereas Monte Carlo simulations are performed to examine the quality of agreement with the experimental results. Significant uncertainties are found in the chemistry of unsaturated esters with the double bonds located close to the ester groups. This work highlights the importance of the foundational chemistry in predictive chemical kinetics of biodiesel combustion at engine relevant conditions.

  20. Relating shear strength of unsaturated soils with capillary water retention curve

    Directory of Open Access Journals (Sweden)

    Zhou Annan

    2016-01-01

    Full Text Available This paper proposes a new water retention model for unsaturated soils, which takes into account capillary condensation of adsorbed water. In the proposed water retention model, the degree of saturation of a soil is separated into that based on capillary water and that based on adsorbed water. Through the analysis of a partially saturated two-cylinder system, a new shear strength criterion for unsaturated soils is proposed, in which only the degree of saturation based on capillary water contributes to the variation of shear strength with suction. The proposed shear strength criterion is justified against thermodynamic principles. The proposed strength criterion is compared against existing criteria in the literature, which shows that it provides a much improved prediction of the experimental data, for a wide range of suction values.

  1. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.

    Science.gov (United States)

    Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja

    2011-03-01

    The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.

  2. Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer

    Science.gov (United States)

    Tartakovsky, Guzel D.; Neuman, Shlomo P.

    2007-01-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman (1972, 1974) by accounting for unsaturated flow above the water table. Three-dimensional, axially symmetric flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length or, equivalently, a dimensionless exponent κD = κb, where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan (1975), who, however, have ignored internal (artesian) aquifer storage. According to Kroszynski and Dagan, aquifers that are not excessively shallow have values of κD (their parameter a) much greater than 10. We find that in such typical cases, unsaturated flow has little impact on early and late dimensionless time drawdown a short distance below the water table. Unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian-dominated to a late water-table-dominated flow regime. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as κD → ∞, this effect dies out, and drawdown is controlled entirely by delayed decline in the water table as in the model of Neuman. The unsaturated zone has a major impact on drawdown at intermediate time and a significant impact at early and late times, in the atypical case of κD ≤ 1, becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant). Our

  3. Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites

    Science.gov (United States)

    Nurazzi, N. Mohd; Khalina, A.; Sapuan, S. Mohd; Rahmah, M.

    2018-04-01

    This study investigates the effect of fibre hybridization for sugar palm yarn fibre with glass fibre reinforced with unsaturated polyester composites. In this work, unsaturated polyester resin are reinforced with fibre at a ratio of 70:30 wt% and 60:40 wt%. The hybrid composites were characterized in terms of physical (density and water absorption), mechanical (tensile, flexural and compression) and thermal properties through thermal gravimetry analysis (TGA). Density determination showed that density increased with higher wt% of glass fibre. The inherently higher density of glass fibre increased the density of hybrid composite. Resistance to water absorption is improved upon the incorporation of glass fibre and the hybrid composites were found to reach equilibrium absorption at days 4 and 5. As for mechanical performance, the highest tensile strength, tensile modulus, flexural strength, flexural modulus and compression strength were obtained from 40 wt% of fibres reinforcement with ratio of 50:50 wt% of sugar palm yarn fibre and glass fibre reinforced unsaturated polyester composites. The increase of glass fibre loading had a synergistic effect on the mechanical properties to the composites structure due to its superior strength and modulus. The thermal stability of hybrid composites was improved by the increase of onset temperature and the reduction of residues upon increase in temperature.

  4. Lactate up-regulates the expression of lactate oxidation complex-related genes in left ventricular cardiac tissue of rats.

    Directory of Open Access Journals (Sweden)

    Daniele Gabriel-Costa

    Full Text Available Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex.Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2●-/H2O2 levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2●-/H2O2.Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of the lactate oxidation complex in

  5. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Fareez Edzuan

    2017-01-01

    Full Text Available As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM emissions however nitrogen oxides (NOx emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coconut oils are selected as the feedstock based on their unsaturation degree. Biodiesel blends of B20 were used to fuel a single cylinder diesel engine and exhaust emissions were sampled directly at exhaust tailpipe with a flue gas analyser. Biodiesel flame temperature was measured from a cotton wick burned in simple atmospheric conditions using a thermocouple. Fourier transform infrared (FTIR spectrometer was also used to identify the functional groups presence in the biodiesel blends. Oxygen content in biodiesel may promote complete combustion as the NOx emissions and flame temperatures were increased while the carbon monoxide (CO emissions were decreased for all biodiesel blends. It is interesting to note that the NOx emissions and flame temperatures were directly proportional with biodiesel unsaturation degree. It might be suggested that apart from excess oxygen and free radical formation, higher NOx emissions can also be caused by the elevated flame temperatures due to the presence of double bonds in unsaturated biodiesel.

  6. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    Science.gov (United States)

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  7. Upregulation of cytosolic NADP+-dependent isocitrate dehydrogenase by hyperglycemia protects renal cells against oxidative stress.

    Science.gov (United States)

    Lee, Soh-Hyun; Ha, Sun-Ok; Koh, Ho-Jin; Kim, KilSoo; Jeon, Seon-Min; Choi, Myung-Sook; Kwon, Oh-Shin; Huh, Tae-Lin

    2010-02-28

    Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.

  8. SYNTHESIS OF 2,3-UNSATURATED FURANIC HEX- AND PENT ...

    African Journals Online (AJOL)

    a

    [12] and reduction in two steps of 3-(2-furyl)-acrolein[13] in good yields. The reaction of alcohols 2a-e with glucal 1, carried out in presence of boron trifluoride [7]. (method A), ferric chloride [11] (method B) and CAN [10] (method C), afforded the corresponding 2,3-unsaturated glucopyranosides 3a-e (Table 1). Table 1.

  9. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    International Nuclear Information System (INIS)

    Kan-o, Keiko; Matsumoto, Koichiro; Asai-Tajiri, Yukari; Fukuyama, Satoru; Hamano, Saaka; Seki, Nanae; Nakanishi, Yoichi; Inoue, Hiromasa

    2013-01-01

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB

  10. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  11. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  12. Production of highly unsaturated fatty acids using agro-processing by-products

    CSIR Research Space (South Africa)

    Jacobs, A

    2008-11-01

    Full Text Available The South African agro-processing industry generates millions of tons of cereal derived by-products annually. The by-products from biofuel production are expected to increase these volumes dramatically. Highly unsaturated fatty acids (HUFA...

  13. Role of Unsaturated Lipid and Ergosterol in Ethanol Tolerance of Model Yeast Biomembranes

    KAUST Repository

    Vanegas, Juan M.

    2012-02-07

    We present a combined atomic force microscopy and fluorescence microscopy study of the behavior of a ternary supported lipid bilayer system containing a saturated lipid (DPPC), an unsaturated lipid (DOPC), and ergosterol in the presence of high ethanol (20 vol %). We find that the fluorescent probe Texas Red DHPE preferentially partitions into the ethanol-induced interdigitated phase, which allows the use of fluorescence imaging to investigate the phase behavior of the system. Atomic force microscopy and fluorescence images of samples with the same lipid mixture show good agreement in sample morphology and area fractions of the observed phases. Using area fractions obtained from fluorescence images over a broad range of compositions, we constructed a phase diagram of the DPPC/DOPC/ergosterol system at 20 vol % ethanol. The phase diagram clearly shows that increasing unsaturated lipid and/or ergosterol protects the membrane by preventing the formation of the interdigitated phase. This result supports the hypothesis that yeast cells increase ergosterol and unsaturated lipid content to prevent interdigitation and maintain an optimal membrane thickness as ethanol concentration increases during anaerobic fermentations. Changes in plasma membrane composition provide an important survival factor for yeast cells to deter ethanol toxicity.

  14. Role of Unsaturated Lipid and Ergosterol in Ethanol Tolerance of Model Yeast Biomembranes

    KAUST Repository

    Vanegas, Juan  M.; Contreras, Maria F.; Faller, Roland; Longo, Marjorie  L.

    2012-01-01

    We present a combined atomic force microscopy and fluorescence microscopy study of the behavior of a ternary supported lipid bilayer system containing a saturated lipid (DPPC), an unsaturated lipid (DOPC), and ergosterol in the presence of high ethanol (20 vol %). We find that the fluorescent probe Texas Red DHPE preferentially partitions into the ethanol-induced interdigitated phase, which allows the use of fluorescence imaging to investigate the phase behavior of the system. Atomic force microscopy and fluorescence images of samples with the same lipid mixture show good agreement in sample morphology and area fractions of the observed phases. Using area fractions obtained from fluorescence images over a broad range of compositions, we constructed a phase diagram of the DPPC/DOPC/ergosterol system at 20 vol % ethanol. The phase diagram clearly shows that increasing unsaturated lipid and/or ergosterol protects the membrane by preventing the formation of the interdigitated phase. This result supports the hypothesis that yeast cells increase ergosterol and unsaturated lipid content to prevent interdigitation and maintain an optimal membrane thickness as ethanol concentration increases during anaerobic fermentations. Changes in plasma membrane composition provide an important survival factor for yeast cells to deter ethanol toxicity.

  15. Lithological Effects on Evaporation and Direct Infiltration Through the Unsaturated Zone in Damascus Oasis (Syria)

    International Nuclear Information System (INIS)

    Abou zakhem, B.

    2004-01-01

    Soil water movement is directly affected by the lithology and texture of soil profile. The objective of this study is to determine water movement mechanism through the unsaturated zone, by estimating the direct infiltration rate and evaporation process in Damascus Oasis, using isotope techniques. Two soil profiles were drilled using a hand-auger. Soil samples were subjected to granulometry, mineralogy, chemical and isotopic analysis. Isotopic measurements indicate that the evaporation front is located at shallow depth between 0 and 2 m. Variations in isotopic content indicate to the alternation of wet and dry periods corresponding to infiltration and evaporation processes respectively. Results show considerable difference in isotopic content between the unsaturated zone and the groundwater, which is mainly attributed to limited recharge of the aquifer through the unsaturated. Whereas the indirect groundwater recharge is considered to be more predominant. Chloride concentration correspond to stable isotopes in the unsaturated zone, it increases proportionally with the evaporation rate. Using chemical balance of Chloride, it was possible to estimate the effective recharge average rate which is ranging between 1.8 mm/y and 0.45 mm/y. The calculated mean evaporation rate according to Barnes and Allison model is 18.1 mm/y at water table level of 3 m depth. This rate decreases to 2.4 mm/y at 6 m depth. (author)

  16. Method of coupling 1-D unsaturated flow with 3-D saturated flow on large scale

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2011-12-01

    Full Text Available A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regarding the Dirichlet boundary condition, the Neumann boundary condition, the atmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-1D, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation.

  17. Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species

    Directory of Open Access Journals (Sweden)

    Elisa Couto Gomes

    2012-01-01

    Full Text Available This review offers an overview of the influence of reactive species produced during exercise and their effect on exercise adaptation. Reactive species and free radicals are unstable molecules that oxidize other molecules in order to become stable. Although they play important roles in our body, they can also lead to oxidative stress impairing diverse cellular functions. During exercise, reactive species can be produced mainly, but not exclusively, by the following mechanisms: electron leak at the mitochondrial electron transport chain, ischemia/reperfusion and activation of endothelial xanthine oxidase, inflammatory response, and autooxidation of catecholamines. Chronic exercise also leads to the upregulation of the body's antioxidant defence mechanism, which helps minimize the oxidative stress that may occur after an acute bout of exercise. Recent studies show a beneficial role of the reactive species, produced during a bout of exercise, that lead to important training adaptations: angiogenesis, mitochondria biogenesis, and muscle hypertrophy. The adaptations occur depending on the mechanic, and consequently biochemical, stimulus within the muscle. This is a new area of study that promises important findings in the sphere of molecular and cellular mechanisms involved in the relationship between oxidative stress and exercise.

  18. Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species

    Science.gov (United States)

    Gomes, Elisa Couto; Silva, Albená Nunes; de Oliveira, Marta Rubino

    2012-01-01

    This review offers an overview of the influence of reactive species produced during exercise and their effect on exercise adaptation. Reactive species and free radicals are unstable molecules that oxidize other molecules in order to become stable. Although they play important roles in our body, they can also lead to oxidative stress impairing diverse cellular functions. During exercise, reactive species can be produced mainly, but not exclusively, by the following mechanisms: electron leak at the mitochondrial electron transport chain, ischemia/reperfusion and activation of endothelial xanthine oxidase, inflammatory response, and autooxidation of catecholamines. Chronic exercise also leads to the upregulation of the body's antioxidant defence mechanism, which helps minimize the oxidative stress that may occur after an acute bout of exercise. Recent studies show a beneficial role of the reactive species, produced during a bout of exercise, that lead to important training adaptations: angiogenesis, mitochondria biogenesis, and muscle hypertrophy. The adaptations occur depending on the mechanic, and consequently biochemical, stimulus within the muscle. This is a new area of study that promises important findings in the sphere of molecular and cellular mechanisms involved in the relationship between oxidative stress and exercise. PMID:22701757

  19. Particle tracking for unsaturated-zone groundwater travel time analysis at Yucca Mountain

    International Nuclear Information System (INIS)

    Arnold, B.W.; Skinner, L.H.; Zieman, N.B.

    1995-01-01

    A particle tracking code developed to link numerical modeling of groundwater flow in the unsaturated zone to the analysis of groundwater travel times was used to produce preliminary estimates of the distribution of groundwater-travel time from a potential repository at Yucca Mountain, Nevada to the water table. Compliance with 10CFR960 requires the demonstration that pre-waste-emplacement groundwater travel time from the disturbed zone to the accessible environment is expected to exceed 1,000 years along any path of likely and significant radionuclide travel. The use of multiple particles and multiple realizations of the geology and parameter distributions in the unsaturated zone allows a probabilistic analysis of groundwater travel times that may be applied for evaluating compliance

  20. Intrinsic gas-phase reactivity toward methanol of trinuclear tungsten W(3)S(4) complexes bearing W-X (X = Br, OH) groups.

    Science.gov (United States)

    Vicent, Cristian; Feliz, Marta; Llusar, Rosa

    2008-12-11

    Electrospray ionization (ESI) tandem mass spectrometry is used to investigate the gas-phase dissociation of trinuclear sulfide W(3)S(4) complexes containing three diphosphane ligands and three terminal bromine atoms, namely, [W(3)S(4)(dmpe)(3)(Br)(3)](+) (1(+)) or hydroxo groups, [W(3)S(4)(dmpe)(3)(OH)(3)](+) (2(+)) (dmpe = 1,2-bis(dimethylphosphanyl)ethane). Sequential evaporation of two diphosphane ligands is the sole fragmentation channel for the 1(+) cation that yields product ions with one or two unsaturated W-Br functional groups, respectively. Conversely, evaporation of one diphosphane ligand followed by two water molecules is observed for cation 2(+). Complementary deuterium-labeling experiments in conjunction with computational studies provide deep insight into the thermodynamically favored product ion structures found along the fragmentation pathways. From these results, the formation of a series of cluster cations with WBr, WOH, and WO functional groups either on saturated or unsaturated metal sites is proposed. The effect of the properties of these cluster cations, among them chemical composition and coordinative saturation, on their reactivity toward methanol is discussed.

  1. Barriers to bacterial motility on unsaturated surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Smets, Barth F.

    2013-01-01

    Our knowledge of the spatial organization and spatial dynamics of microbial populations in soil at a scale close to that of the microorganisms is scarce. While passive dispersal via water ow or soil biota is probably a major dispersal route, it is reasonable to consider that active dispersal also...... and their isogenic mutants unable to express various type of motility we aimed to quantify the physical limits of bacterial motility. Our results demonstrate how hydration controls bacterial motility under unsaturated conditions. They can form the base of improved biodegradation models that include microbial...

  2. High performances unsaturated polyester based nanocomposites: Effect of vinyl modified nanosilica on mechanical properties

    Directory of Open Access Journals (Sweden)

    J. D. Rusmirovic

    2016-02-01

    Full Text Available Influences of the vinyl modified nanosilica Aerosil® 380, i.e./i>, vinyl and methacryloyl silane coupling agent and linseed oil fatty acids (BD reactive residues, on the mechanical properties of the unsaturated polyester resins (UPes based nanocomposites, was studied. The polycondensation of maleic anhydride and products of poly(ethylene terephthalate (PET depolymerization with propylene glycol, with and without separation of ethylene glycol, yields UPe1 and UPe2 resin, respectively. The hydroxyl terminated PET depolymerization products (glycolyzates and UPes were characterized by acid and hydroxyl values, Fourier Transform Infrared (FTIR and nuclear magneti resonance (NMR spectroscopies. Transmission electron microscopy (TEM confirmed that silica nanoparticles formed domains of aggregates in the polymer matrix. An increase from 195 to 247% of stress at break (σb, and from 109 to 131% of impact strength (σi of UPes based nanocomposites was obtained for 1 wt% addition of vinyl modified silica. Flexural strength (σf increase from 106 to 156% for both UPes based nanocomposites with 1 wt% addition of BD modified silica. Cross-linking density (ν, storage modulus (G', tanδ and Tg of the nanocomposite were determined from the dynamic mechanical testing and discussed in relation to the structure of silica modification.

  3. Transport of elemental mercury in the unsaturated zone from a waste disposal site in an arid region

    Science.gov (United States)

    Walvoord, Michelle Ann; Andraski, Brian J.; Krabbenhoft, D.P.; Striegl, Robert G.

    2008-01-01

    Mercury contained in buried landfill waste may be released via upward emission to the atmosphere or downward leaching to groundwater. Data from the US Geological Survey’s Amargosa Desert Research Site (ADRS) in arid southwestern Nevada reveal another potential pathway of Hg release: long-distance (102 m) lateral migration of elemental Hg (Hg0) through the unsaturated zone. Gas collected from multiple depths from two instrumented boreholes that sample the entire 110-m unsaturated zone thickness and are located 100 and 160 m away from the closest waste burial trench exhibit gaseous Hg concentrations of up to 33 and 11 ng m−3, respectively. The vertical distribution of gaseous Hg in the borehole closest to the disposal site shows distinct subsurface peaks in concentration at depths of 1.5 and 24 m that cannot be explained by radial diffusive transport through a heterogeneous layered unsaturated zone. The inability of current models to explain gaseous Hg distribution at the ADRS highlights the need to advance the understanding of gas-phase contaminant transport in unsaturated zones to attain a comprehensive model of landfill Hg release.

  4. Ultralow concentrations of bupivacaine exert anti-inflammatory effects on inflammation-reactive astrocytes

    Science.gov (United States)

    Block, Linda; Jörneberg, Per; Björklund, Ulrika; Westerlund, Anna; Biber, Björn; Hansson, Elisabeth

    2013-01-01

    Bupivacaine is a widely used, local anesthetic agent that blocks voltage-gated Na+ channels when used for neuro-axial blockades. Much lower concentrations of bupivacaine than in normal clinical use, bupivacaine exerts an influence on the Ca2+ signaling and interleukin-1β (IL-1β) secretion in inflammation-reactive astrocytes when used at ultralow concentrations, bupivacaine interacts with the opioid-, 5-hydroxytryptamine- (5-HT) and glutamate-receptor systems. With respect to the μ-opioid- and 5-HT-receptor systems, bupivacaine restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. With respect to the glutamate-receptor system, bupivacaine, in combination with an ultralow concentration of the μ-opioid receptor antagonist naloxone and μ-opioid receptor agonists, restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. Ultralow concentrations of bupivacaine attenuated the inflammation-induced upregulation of IL-1β secretion. The results indicate that bupivacaine interacts with the opioid-, 5-HT- and glutamate-receptor systems by affecting Ca2+ signaling and IL-1β release in inflammation-reactive astrocytes. These results suggest that bupivacaine may be used at ultralow concentrations as an anti-inflammatory drug, either alone or in combination with opioid agonists and ultralow concentrations of an opioid antagonist. PMID:24083665

  5. The Role of Surface Infiltration in Hydromechanical Coupling Effects in an Unsaturated Porous Medium of Semi-Infinite Extent

    Directory of Open Access Journals (Sweden)

    L. Z. Wu

    2017-01-01

    Full Text Available Rainfall infiltration into an unsaturated region of the earth’s surface is a pervasive natural phenomenon. During the rainfall-induced seepage process, the soil skeleton can deform and the permeability can change with the water content in the unsaturated porous medium. A coupled water infiltration and deformation formulation is used to examine a problem related to the mechanics of a two-dimensional region of semi-infinite extent. The van Genuchten model is used to represent the soil-water characteristic curve. The model, incorporating coupled infiltration and deformation, was developed to resolve the coupled problem in a semi-infinite domain based on numerical methods. The numerical solution is verified by the analytical solution when the coupled effects in an unsaturated medium of semi-infinite extent are considered. The computational results show that a numerical procedure can be employed to examine the semi-infinite unsaturated seepage incorporating coupled water infiltration and deformation. The analysis indicates that the coupling effect is significantly influenced by the boundary conditions of the problem and varies with the duration of water infiltration.

  6. Proteomic Profiling of a Primary CD4+ T Cell Model of HIV-1 Latency Identifies Proteins Whose Differential Expression Correlates with Reactivation of Latent HIV-1.

    Science.gov (United States)

    Saha, Jamaluddin Md; Liu, Hongbing; Hu, Pei-Wen; Nikolai, Bryan C; Wu, Hulin; Miao, Hongyu; Rice, Andrew P

    2018-01-01

    The latent HIV-1 reservoir of memory CD4 + T cells that persists during combination antiviral therapy prevents a cure of infection. Insight into mechanisms of latency and viral reactivation are essential for the rational design of strategies to reduce the latent reservoir. In this study, we quantified the levels of >2,600 proteins in the CCL19 primary CD4 + T cell model of HIV-1 latency. We profiled proteins under conditions that promote latent infection and after cells were treated with phorbol 12-myristate 13-acetate (PMA) + ionomycin, which is known to efficiently induce reactivation of latent HIV-1. In an analysis of cells from two healthy blood donors, we identified 61 proteins that were upregulated ≥2-fold, and 36 proteins that were downregulated ≥2-fold under conditions in which latent viruses were reactivated. These differentially expressed proteins are, therefore, candidates for cellular factors that regulate latency or viral reactivation. Two unexpected findings were obtained from the proteomic data: (1) the interactions among the majority of upregulated proteins are largely undetermined in published protein-protein interaction networks and (2) downregulated proteins are strongly associated with Gene Ontology terms related to mitochondrial protein synthesis. This proteomic data set provides a useful resource for future mechanistic studies of HIV-1 latency.

  7. Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing

    Science.gov (United States)

    Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.

    2014-12-01

    In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.

  8. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration

    Science.gov (United States)

    Baum, Rex L.; Godt, Jonathan W.; Savage, William Z.

    2010-01-01

    Shallow rainfall-induced landslides commonly occur under conditions of transient infiltration into initially unsaturated soils. In an effort to predict the timing and location of such landslides, we developed a model of the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone and implemented this model in a geographic information system (GIS) framework. The model links analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil-water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in one-dimensional slope-stability computations to estimate the timing and locations of slope failures. Applied over a digital landscape near Seattle, Washington, for an hourly rainfall history known to trigger shallow landslides, the model computes a factor of safety for each grid cell at any time during a rainstorm. The unsaturated layer attenuates and delays the rainfall-induced pore-pressure response of the model at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation results in realistic estimates of timing for the onset of slope instability (7 h earlier than observed landslides, on average). By considering the spatial distribution of physical properties, the model predicts the primary source areas of landslides.

  9. New Class of Solutions for Water Infiltration Problems in Unsaturated Soils

    DEFF Research Database (Denmark)

    Barari, Amin; Omidvar, M; Momeni, M

    2010-01-01

    This paper presents the results of approximate analytical solutions to Richards’ equation, which governs the problem of unsaturated flow in porous media. The existing methods generally fall within the category of numerical and analytical methods, often having many restrictions for practical situa...

  10. Design of dry barriers for containment of contaminants in unsaturated soils

    International Nuclear Information System (INIS)

    Morris, C.E.; Thomson, B.M.; Stormont, J.C.

    1997-01-01

    A dry barrier is a region of very dry conditions in unsaturated soil that prevents vertical migration of water created by circulating dry air through the formation. Dry soil creates a barrier to vertical water movement by decreasing the soil's hydraulic conductivity, a concept also used in capillary barriers. A dry barrier may be a viable method for providing containment of a contaminant plume in a setting with a thick unsaturated zone and dry climate. The principal factors which determine the feasibility of a dry barrier include: (1) an and environment, (2) thick vadose zone, and (3) the ability to circulate air through the vadose zone. This study investigated the technical and economic considerations associated with creating a dry barrier to provide containment of a hypothetical 1 ha aqueous contaminant plume. The concept appears to be competitive with other interim containment methods such as ground freezing

  11. Development of methods to evaluate uranium distribution coefficients in unsaturated media

    International Nuclear Information System (INIS)

    Sautman, M.T.; Simonson, S.A.

    1993-01-01

    To date, batch sorption and dynamic column experiments have been performed for many elements as part of site characterization programs. These experiments were often conducted with samples having relatively high liquid/solid ratios (in some cases the solid volume was much smaller than the solution volume). The development of methods for measuring sorption parameters at low liquid/solid ratios was undertaken to attempt to judge whether or not results of saturated experiments are valid for use in performance assessments of sites located in unsaturated rocks. The amount of hydrologic saturation can affect the ionic strength, pH, and redox potential which can in turn affect sorption. In addition, the presence of the gas phase may affect the amount of wetting occurring on the solid's surface. This paper describes experimental procedures which were developed to evaluate the sorption of uranium by silica sand at predetermined levels of unsaturation

  12. Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential

    Science.gov (United States)

    HUbbell, Joel M.

    2014-08-19

    The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.

  13. Studies of reaction difference between γ-ray and glow discharge on hydrogenation of unsaturated fatty acid esters

    International Nuclear Information System (INIS)

    Sakoda, Tatsuya; Nieda, Hiroshi; Kitahara, Kazuta; Ando, Kiyomi

    2000-01-01

    Hydrogenation of unsaturated fatty acid esters using an inductively coupled plasma at low pressure was performed, and electron temperature and density were measured using a double-probe in order to investigate the reaction difference between γ-ray and glow discharge on hydrogenation. In this experiment, unsaturated fatty acid esters were partly hydrogenated by the hydrogen plasma that had electron temperature of 3.5 eV, which was more efficient than γ-ray irradiation method. As a result, it was found that the plasma can effectively supply electrons that had the optimum energy for hydrogenation at the interface of fatty acids as well as excited atoms and ions. Also, the plasma generated at low pressure would be possible to convert unsaturated fatty acids into saturated fatty acids without breaking the starting monomer. (author)

  14. Going greener: Synthesis of fully biobased unsaturated polyesters for styrene crosslinked resins with enhanced thermomechanical properties

    Directory of Open Access Journals (Sweden)

    C. S. M. F. Costa

    2017-11-01

    Full Text Available The main goal of this work was the development of fully biobased unsaturated polyesters (UPs that upon crosslinking with unsaturated monomers (UM could lead to greener unsaturated polyester resins (UPRs with similar thermomechanical properties to commercial fossil based UPR. After the successful synthesis of the biobased UPs, those were crosslinked with styrene (Sty, the most commonly used monomer, and the influence of the chemical structure of the UPs on the thermomechanical characteristics of UPRs were evaluated. The properties were compared with those of a commercial resin (Resipur 9837©. The BioUPRs presented high gel contents and contact angles that are similar to the commercial resin. The thermomechanical properties were evaluated by dynamic mechanical thermal analysis (DMTA and it was found that the UPR synthesized using propylene glycol (PG, succinic acid (SuAc and itaconic acid (ItAc presented very close thermomechanical properties compared to the commercial resin.

  15. A free boundary problem describing the saturated-unsaturated flow in a porous medium

    Directory of Open Access Journals (Sweden)

    Gabriela Marinoschi

    2004-01-01

    Full Text Available This paper presents a functional approach to a nonlinear model describing the complete physical process of water infiltration into an unsaturated soil, including the saturation occurrence and the advance of the wetting front. The model introduced in this paper involves a multivalued operator covering the simultaneous saturated and unsaturated flow behaviors and enhances the study of the displacement of the free boundary between these two flow regimes. The model resides in Richards' equation written in pressure form with an initial condition and boundary conditions which in this work express the inflow due to the rain on the soil surface on the one hand, and characterize a certain permeability corresponding to the underground boundary, on the other hand. Existence, uniqueness, and regularity results for the transformed model in diffusive form, that is, for the moisture of the soil, and the existence of the weak solution for the pressure form are proved in the 3D case. The main part of the paper focuses on the existence of the free boundary between the saturated and unsaturated parts of the soil, and this is proved, in the 1D case, for certain stronger assumptions on the initial data and boundary conditions.

  16. The Unsaturated Hydromechanical Coupling Model of Rock Slope Considering Rainfall Infiltration Using DDA

    Directory of Open Access Journals (Sweden)

    Xianshan Liu

    2017-01-01

    Full Text Available Water flow and hydromechanical coupling process in fractured rocks is more different from that in general porous media because of heterogeneous spatial fractures and possible fracture-dominated flow; a saturated-unsaturated hydromechanical coupling model using a discontinuous deformation analysis (DDA similar to FEM and DEM was employed to analyze water movement in saturated-unsaturated deformed rocks, in which the Van-Genuchten model differently treated the rock and fractures permeable properties to describe the constitutive relationships. The calibrating results for the dam foundation indicated the validation and feasibility of the proposed model and are also in good agreement with the calculations based on DEM still demonstrating its superiority. And then, the rainfall infiltration in a reservoir rock slope was detailedly investigated to describe the water pressure on the fault surface and inside the rocks, displacement, and stress distribution under hydromechanical coupling conditions and uncoupling conditions. It was observed that greater rainfall intensity and longer rainfall time resulted in lower stability of the rock slope, and larger difference was very obvious between the hydromechanical coupling condition and uncoupling condition, demonstrating that rainfall intensity, rainfall time, and hydromechanical coupling effect had great influence on the saturated-unsaturated water flow behavior and mechanical response of the fractured rock slopes.

  17. Full-field dye concentration measurement within saturated/unsaturated thin slabs of porous media

    International Nuclear Information System (INIS)

    Norton, D.L.; Glass, R.J.

    1993-01-01

    This paper presents a full-field dye concentration measurement technique that extends our experimental capabilities to the measurement of transient dye concentration fields within steady state flow fields under unsaturated or saturated conditions. Simple light absorption theory provides a basis for translating images into high resolution dye concentration fields. A series of dye pulse experiments that demonstrate the combined use of the full-field saturation and dye concentration techniques was conducted at four different degrees of saturation. Each of these experimental sequences was evaluated with respect to mass balance, the results being within 5% of the known dye mass input. An image windowing technique allowed us to see increased dispersion due to decreasing moisture content, tailing of concentration at the rear of the dye pulse and slight velocity changes of the dispersive front due to changes in moisture content. The exceptional resolution of dye concentration in space and time provided by this laboratory technique allows systematic experimentation for examining basic processes affecting solute transport within saturated/unsaturated porous media. Future challenges for this work will be to use these techniques to analyze more complex systems involving heterogeneities, scaling laws, and detailed investigations of the relationship between transverse and longitudinal dispersion in unsaturated media

  18. α,β-Unsaturated monoterpene acid glucose esters: structural diversity, bioactivities and functional roles.

    Science.gov (United States)

    Goodger, Jason Q D; Woodrow, Ian E

    2011-12-01

    The glycosylation of lipophilic small molecules produces many important plant secondary metabolites. The majority of these are O-glycosides with relatively fewer occurring as glucose esters of aromatic or aliphatic acids. In particular, monoterpene acid glucose esters have much lower structural diversity and distribution compared to monoterpene glycosides. Nevertheless, there have been over 20 monoterpene acid glucose esters described from trees in the genus Eucalyptus (Myrtaceae) in recent years, all based on oleuropeic acid, menthiafolic acid or both. Here we review all of the glucose esters containing these monoterpenoids identified in plants to date. Many of the compounds contain phenolic aglycones and all contain at least one α,β-unsaturated carbonyl, affording a number of important potential therapeutic reactivities such as anti-tumor promotion, carcinogenesis suppression, and anti-oxidant and anti-inflammatory activities. Additional properties such as cytotoxicity, bitterness, and repellency are suggestive of a role in plant defence, but we also discuss their localization to the exterior of foliar secretory cavity lumina, and suggest they may also protect secretory cells from toxic terpenes housed within these structures. Finally we discuss how the use of a recently developed protocol to isolate secretory cavities in a functional state could be used in conjunction with systems biology approaches to help characterize their biosynthesis and roles in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Differential activation of Fyn kinase distinguishes saturated and unsaturated fats in mouse macrophages.

    Science.gov (United States)

    Tarabra, Elena; An Lee, Ting-Wen; Zammit, Victor A; Vatish, Manu; Yamada, Eijiro; Pessin, Jeffrey E; Bastie, Claire C

    2017-10-17

    Diet-induced obesity is associated with increased adipose tissue activated macrophages. Yet, how macrophages integrate fatty acid (FA) signals remains unclear. We previously demonstrated that Fyn deficiency ( fynKO ) protects against high fat diet-induced adipose tissue macrophage accumulation. Herein, we show that inflammatory markers and reactive oxygen species are not induced in fynKO bone marrow-derived macrophages exposed to the saturated FA palmitate, suggesting that Fyn regulates macrophage function in response to FA signals. Palmitate activates Fyn and re-localizes Fyn into the nucleus of RAW264.7, J774 and wild-type bone marrow-derived macrophages. Similarly, Fyn activity is increased in cells of adipose tissue stromal vascular fraction of high fat-fed control mice, with Fyn protein being located in the nucleus of these cells. We demonstrate that Fyn modulates palmitate-dependent oxidative stress in macrophages. Moreover, Fyn catalytic activity is necessary for its nuclear re-localization and downstream effects, as Fyn pharmacological inhibition abolishes palmitate-induced Fyn nuclear redistribution and palmitate-dependent increase of oxidative stress markers. Importantly, mono-or polyunsaturated FAs do not activate Fyn, and fail to re-localize Fyn to the nucleus. Together these data demonstrate that macrophages integrate nutritional FA signals via a differential activation of Fyn that distinguishes, at least partly, the effects of saturated versus unsaturated fats.

  20. Preferential flow occurs in unsaturated conditions

    Science.gov (United States)

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  1. The Effect of Intra-Ruminal Infusion of Saturated and Unsaturated ...

    African Journals Online (AJOL)

    This study investigated the effect of different proportional combinations of a saturated fatty acid (Palmitic acid, PA) and unsaturated fatty acid (Linolenic acid, LA) on rumen outflow rate (r) in West African dwarf (WAD) sheep. A 5x5 Latin square experimental model of five sheep and five combination proportions of palmitic and ...

  2. Accumulation of macular xanthophylls in unsaturated membrane domains.

    Science.gov (United States)

    Wisniewska, Anna; Subczynski, Witold K

    2006-05-15

    The distribution of macular xanthophylls, lutein and zeaxanthin, between domains formed in membranes made from an equimolar ternary mixture of dioleoylphosphatidylcholine/sphingomyelin/cholesterol, called a raft-forming mixture, was investigated. In these membranes, two domains are formed: the raft domain enriched in saturated lipids and cholesterol (detergent-resistant membranes, DRM), and the bulk domain enriched in unsaturated lipids (detergent-soluble membranes, DSM). These membrane domains have been separated using cold Triton X-100 extraction from membranes containing 1 mol% of either lutein or zeaxanthin. The results indicated that xanthophylls are substantially excluded from DRM and remain concentrated in DSM. Concentrations of xanthophylls in DRM and DSM calculated as the mole ratio of either xanthophyll to phospholipid were 0.005 and 0.03, respectively, and calculated as the mole ratio of either xanthophyll to total lipid (phospholipid + cholesterol) were 0.003 and 0.025, respectively. Thus, xanthophylls are over eight times more concentrated in DSM than in DRM. No significant difference in the distribution of lutein and zeaxanthin was found. It was also demonstrated using saturation-recovery EPR that at 1 mol%, neither lutein nor zeaxanthin affect the formation of membrane domains. The location of xanthophylls in domains formed from unsaturated lipids is ideal if they are to act as a lipid antioxidant, which is the most accepted mechanism through which lutein and zeaxanthin protect the retina from age-related macular diseases.

  3. The CYP2E1 inhibitor DDC up-regulates MMP-1 expression in hepatic stellate cells via an ERK1/2- and Akt-dependent mechanism.

    Science.gov (United States)

    Liu, Tianhui; Wang, Ping; Cong, Min; Xu, Youqing; Jia, Jidong; You, Hong

    2013-06-05

    DDC (diethyldithiocarbamate) could block collagen synthesis in HSC (hepatic stellate cells) through the inhibition of ROS (reactive oxygen species) derived from hepatocyte CYP2E1 (cytochrome P450 2E1). However, the effect of DDC on MMP-1 (matrix metalloproteinase-1), which is the main collagen degrading matrix metalloproteinase, has not been reported. In co-culture experiments, we found that DDC significantly enhanced MMP-1 expression in human HSC (LX-2) that were cultured with hepatocyte C3A cells either expressing or not expressing CYP2E1. The levels of both proenzyme and active MMP-1 enzyme were up-regulated in LX-2 cells, accompanied by elevated enzyme activity of MMP-1 and decreased collagen I, in both LX-2 cells and the culture medium. H2O2 treatment abrogated DDC-induced MMP-1 up-regulation and collagen I decrease, while catalase treatment slightly up-regulated MMP-1 expression. These data suggested that the decrease in ROS by DDC was partially responsible for the MMP-1 up-regulation. ERK1/2 (extracellular signal-regulated kinase 1/2), Akt (protein kinase B) and p38 were significantly activated by DDC. The ERK1/2 inhibitor (U0126) and Akt inhibitor (T3830) abrogated the DDC-induced MMP-1 up-regulation. In addition, a p38 inhibitor (SB203580) improved MMP-1 up-regulation through the stimulation of ERK1/2. Our data indicate that DDC significantly up-regulates the expression of MMP-1 in LX-2 cells which results in greater MMP-1 enzyme activity and decreased collagen I. The enhancement of MMP-1 expression by DDC was associated with H2O2 inhibition and coordinated regulation by the ERK1/2 and Akt pathways. These data provide some new insights into treatment strategies for hepatic fibrosis.

  4. Lattice Boltzmann simulation of CO2 reactive transport in network fractured media

    Science.gov (United States)

    Tian, Zhiwei; Wang, Junye

    2017-08-01

    Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well-known, difficult process in simulating the dynamic interaction of fracture-matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture-matrix interactions using multilayer bounce-back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well-matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.

  5. Multitracing Experiment With Solved and Particulate Tracers In An Unsaturated Field Soil

    Science.gov (United States)

    Burkhardt, M.; Kasteel, R.; Vereecken, H.

    Solute movement and colloid migration follow preferential flow paths in structured soils at the field scale. The use of microsphreres is a possible option to mimic colloid transport through the vadose zone into the groundwater. We present results of multi- tracing experiments conducted in an Orthic Luvisol using bromide (Br-), the reactive dye tracer Brilliant Blue (BB) and microspheres. The fluorescent microspheres (1 and 10 µm in diameter) were functionalized with a negative surface charge. Eight field plots (about 2 m2) were irrigated with 10 mm and 40 mm during 6 h. Four field plots were sampled directly after the irrgation, the others were exposed for 90 days to natural wheather conditions. Photographs of horizontal cross-sections and disturbed soil sam- ples were taken every 5 to 10 cm down to a depth of 160 cm. Image analysis was used to derive concentration distributions of BB using a calibration relationship between concentration and color spectra. The microspheres were quantified after desorption of the soil samples by fluorescent microscopy and image analysis. We used moment analysis to characterize transport phenomena. We found that transport through the soil matrix was affected by sorption, but all of the applied compounds were transported through preferential flow paths (earthworm burrows) down to a depth of 160 cm irre- spective of their chemical properties. Furthermore, this study shows that microspheres can be used to mimic colloid facilitated transport under unsaturated conditions in a field soil.

  6. An exploration of unsaturated zone during in-situ heating test in sedimentary soft rocks

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2011-01-01

    In-situ heating test has been conducted to evaluate the influence of high temperature in an underground facility at a depth of 50 m. Resistivity monitoring is thought to be effective to map the extent of the high temperature and unsaturated zone. So we have conducted resistivity tomography during the heating test. As a result, the resistivity of the rock mass around the heating well was decreased and this area was gradually expanded from the heated area during the heating. This suggests that high temperature zone is detected by resistivity tomography. The results also suggested that resistivity was increased by unsaturation of rock mass around the heating well. (author)

  7. Reduction of , -Unsaturated Ketones Using a Zn/NiCl System in ...

    African Journals Online (AJOL)

    NJD

    Reduction of , -Unsaturated Ketones Using a Zn/NiCl. 2. System in Aqueous Media in the Presence of Anionic and. Cationic Surfactants. Hocine Ilikti*, Tayeb Benabdallah, Kamel Bentayeb, Adil A. Othman and Zoubir Derriche. Organic Chemistry and Electrochemistry Laboratory, Department of Chemistry, Faculty of Science, ...

  8. Trauma-induced reactive gliosis is reduced after treatment with octanol and carbenoxolone.

    Science.gov (United States)

    Andersson, Heléne C; Anderson, Michelle F; Porritt, Michelle J; Nodin, Christina; Blomstrand, Fredrik; Nilsson, Michael

    2011-07-01

    Reactive gliosis and scar formation after brain injury can inhibit the recovery process. As many glial cells utilize gap junctions for intercellular signaling, this study investigated whether two commonly used gap junction blockers, octanol and carbenoxolone, could attenuate reactive gliosis following a minor traumatic brain injury. Octanol (710 mg/kg) or carbenoxolone (90 mg/kg) was administered 30 minutes before or after a needle track injury in adult male Sprague-Dawley rats. To mark dividing cells, animals were injected with bromodeoxyuridine (BrdU; 150 mg/kg) intraperitoneally two times per day, 8 hours apart and killed 2 days later. Immunohistochemistry for BrdU and markers for reactive glial cells [glial fibrillary acidic protein (GFAP), ED1, and NG2] were investigated using immunohistochemistry and western blot techniques. Two days after injury, increased cellular proliferation, activated astrocytes and microglia, and upregulation of NG2 expression were observed surrounding the injury site. Octanol and carbenoxolone administrated prior to injury significantly decreased cell proliferation by 60 and 70% respectively. The distance of GFAP immunoreactive astrocytes from the wound margin was decreased by 32 and 18% when octanol was administrated prior to or post injury respectively. Treatment with octanol also decreased the number of reactive microglia by 55% and, when administrated prior to injury, octanol reduced the distance of NG2 expression from the wound by 48%. The present study demonstrates that two important components of reactive gliosis, cellular activation and proliferation, can be attenuated by octanol and carbenoxolone.

  9. Elastoplastic model for unsaturated, quasi-saturated and fully saturated fine soils

    Directory of Open Access Journals (Sweden)

    Lai Ba Tien

    2016-01-01

    Full Text Available In unsaturated soils, the gaseous phase is commonly assumed to be continuous. This assumption is no more valid at high saturation ratio. In that case, air bubbles and pockets can be trapped in the porous network by the liquid phase and the gas phase becomes discontinuous. This trapped air reduces the apparent compressibility of the pore fluid and affect the mechanical behavior of the soil. Although it is trapped in the pores, its dissolution can take place. Dissolved air can migrate through the pore space, either by following the flow of the fluid or by diffusion. In this context, this paper present a hydro mechanical model that separately considers the kinematics and the mechanical behavior of each fluid species (eg liquid water, dissolved air, gaseous air and the solid matrix. This new model was implemented in a C++ code. Some numerical simulations are performed to demonstrate the ability of this model to reproduce a continuous transition of unsaturated to saturated states.

  10. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    Science.gov (United States)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  11. Prediction of unsaturated flow and water backfill during infiltration in layered soils

    Science.gov (United States)

    Cui, Guotao; Zhu, Jianting

    2018-02-01

    We develop a new analytical infiltration model to determine water flow dynamics around layer interfaces during infiltration process in layered soils. The model mainly involves the analytical solutions to quadratic equations to determine the flux rates around the interfaces. Active water content profile behind the wetting front is developed based on the solution of steady state flow to dynamically update active parameters in sharp wetting front infiltration equations and to predict unsaturated flow in coarse layers before the front reaches an impeding fine layer. The effect of water backfill to saturate the coarse layers after the wetting front encounters the impeding fine layer is analytically expressed based on the active water content profiles. Comparison to the numerical solutions of the Richards equation shows that the new model can well capture water dynamics in relation to the arrangement of soil layers. The steady state active water content profile can be used to predict the saturation state of all layers when the wetting front first passes through these layers during the unsteady infiltration process. Water backfill effect may occur when the unsaturated wetting front encounters a fine layer underlying a coarse layer. Sensitivity analysis shows that saturated hydraulic conductivity is the parameter dictating the occurrence of unsaturated flow and water backfill and can be used to represent the coarseness of soil layers. Water backfill effect occurs in coarse layers between upper and lower fine layers when the lower layer is not significantly coarser than the upper layer.

  12. Solutes transport in unsaturated double-porosity medium. Modelling by homogenization and applications

    International Nuclear Information System (INIS)

    Tran Ngoc, T.D.

    2008-07-01

    This Ph.D thesis presents the development of the solute transport models in unsaturated double-porosity medium, by using the asymptotic homogenization method. The obtained macroscopic models concern diffusion, diffusion-convection and dispersion-convection, according to the transport regime which is characterized by the non-dimensional numbers. The models consist of two coupled equations that show the local non-equilibrium of concentrations. The double-porosity transport models were numerically implemented using the code COMSOL Multiphysics (finite elements method), and compared with the solution of the same problem at the fine scale. The implementation allows solving the coupled equations in the macro- and micro-porosity domains (two-scale computations). The calculations of the dispersion tensor as a solution of the local boundary value problems, were also conducted. It was shown that the dispersivity depends on the saturation, the physical properties of the macro-porosity domain and the internal structure of the double-porosity medium. Finally, two series of experiments were performed on a physical model of double-porosity that is composed of a periodic assemblage of sintered clay spheres in Hostun sand HN38. The first experiment was a drainage experiment, which was conducted in order to validate the unsaturated flow model. The second series was a dispersion experiment in permanent unsaturated water flow condition (water content measured by gamma ray attenuation technique). A good agreement between the numerical simulations and the experimental observations allows the validation of the developed models. (author)

  13. Supplementation with bypass fat in silvopastoral systems diminishes the ratio of milk saturated/unsaturated fatty acids.

    Science.gov (United States)

    Mahecha, L; Angulo, J; Salazar, B; Cerón, M; Gallo, J; Molina, C H; Molina, E J; Suárez, J F; Lopera, J J; Olivera, M

    2008-04-01

    This study was conducted to evaluate if supplementing bypass fat to cows under silvopastoral systems, increases the concentration of unsaturated fatty acids in milk, thus improving the saturated/ unsaturated ratio without a negative effect on total milk yield in fat or protein. Two concentrations of two different sources of bypass fat were evaluated for 40 days, each in a group of 24 multiparous Lucerna (Colombian breed) cows. A cross-over design of 8 Latin squares 3 x 3 was used. The variables submitted to analysis were body condition, daily milk production and milk composition. Body condition, milk yield and milk quality were not different but there was a significant decrease in the amount of saturated fatty acid in both experiments while the unsaturated fat increased significantly in experiment 1 and remained stable in experiment 2. Results, such as these have as far as we know, not been reported previously and they provide an approach for the improvement of milk as a "functional food".

  14. Reactivation of latent HIV-1 by new semi-synthetic ingenol esters

    Energy Technology Data Exchange (ETDEWEB)

    Pandeló José, Diego [Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902 (Brazil); Bartholomeeusen, Koen [Department of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143-0703 (United States); Delveccio da Cunha, Rodrigo; Abreu, Celina Monteiro [Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902 (Brazil); Glinski, Jan [PlantaAnalytica LLC, Danbury, CT 06810 (United States); Barbizan Ferreira da Costa, Thais; Bacchi Rabay, Ana Flávia Mello; Pianowski Filho, Luiz Francisco [Kyolab Laboratories, Valinhos, São Paulo 13273-105 (Brazil); Dudycz, Lech W. [Lex Company Research Laboratories, Shirley 01464, MA (United States); Ranga, Udaykumar [Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064 (India); Peterlin, Boris Matija [Department of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143-0703 (United States); Pianowski, Luiz Francisco [Kyolab Laboratories, Valinhos, São Paulo 13273-105 (Brazil); Tanuri, Amilcar [Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902 (Brazil); Aguiar, Renato Santana, E-mail: santana@biologia.ufrj.br [Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902 (Brazil)

    2014-08-15

    The ability of HIV to establish long-lived latent infection is mainly due to transcriptional silencing of viral genome in resting memory T lymphocytes. Here, we show that new semi-synthetic ingenol esters reactivate latent HIV reservoirs. Amongst the tested compounds, 3-caproyl-ingenol (ING B) was more potent in reactivating latent HIV than known activators such as SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. ING B activated PKC isoforms followed by NF-κB nuclear translocation. As virus reactivation is dependent on intact NF-κB binding sites in the LTR promoter region ING B, we have shown that. ING B was able to reactivate virus transcription in primary HIV-infected resting cells up to 12 fold and up to 25 fold in combination with SAHA. Additionally, ING B promoted up-regulation of P-TEFb subunits CDK9/Cyclin T1. The role of ING B on promoting both transcription initiation and elongation makes this compound a strong candidate for an anti-HIV latency drug combined with suppressive HAART. - Highlights: • 3-caproyl-ingenol (ING B) reactivates latent HIV better than SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. • ING B promotes PKC activation and NF-kB translocation to the nucleus. • ING B activates virus transcription of B and non-B subtypes of HIV-1. • ING B activates HIV transcription in infected primary resting CD4+ T cells. • ING B induces higher levels of P-TEFb components in human primary cells.

  15. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C.R.; van Rij, A.M.

    1988-01-01

    The effects of Fe/sup 3 +/, lipid peroxy radicals and the antioxidant butylated hydroxytoluene on the 2-thiobarbituric (TBA) acid quantitation of plasma lipid peroxides were investigated. Whole plasma and plasma fractions prepared by trichloroacetic acid (TCA) protein precipitation and lipid extraction, demonstrated markedly differing TBA reactivities in the presence or absence of added Fe/sup 3 +/. Examination of the spectral profiles of the TBA reacted whole plasma and TCA precipitated fractions demonstrated the presence of interfering compounds which gave rise to an artifactual increase in lipid peroxide concentrations. In contrast the TBA reacted lipid extracts had low levels of interfering compounds that could be removed by our previously described high pressure liquid chromatographic method. Further characterization of the TBA reactivity of the lipid extract showed that Fe/sup 3 +/ at an optimal concentration of 0.5 mM was necessary for the quantitative decomposition of the lipid peroxides to the TBA reactive product malondialdehyde (MDA). However the presence of Fe/sup 3 +/ resulted in further peroxidation of any unsaturated lipids present.

  16. Freezing process in unsaturated packed beds; Fuhowa ryushi sonai ni okeru suibun toketsu

    Energy Technology Data Exchange (ETDEWEB)

    Akahori, M; Aoki, K; Hattori, M [Nagaoka University of Technology, Niigata (Japan); Tani, T [Oji Paper Co. Ltd., Tokyo (Japan)

    1998-04-25

    The freezing process in unsaturated packed beds has been investigated experimentally and theoretically. Water transport to the frozen front plays an important part on freezing. The rate of the absorption of water into frozen layer depended on the freezing heat flux and the water saturation at the freezing front. As a result, ice content in the frozen layer was related to the rate of the absorption of water and the freezing heat flux. A one-dimensional freezing model in unsaturated packed beds has been presented, accounting for the water transport. The predicted water saturation and temperature distributions in the body and the thickness of frozen layer were compared with the experimental results using a porous bed composed of glass beads. 12 refs., 10 figs., 1 tab.

  17. Pathogen-Reactive T Helper Cell Analysis in the Pig

    Directory of Open Access Journals (Sweden)

    Friederike Ebner

    2017-05-01

    Full Text Available There is growing interest in studying host–pathogen interactions in human-relevant large animal models such as the pig. Despite the progress in developing immunological reagents for porcine T cell research, there is an urgent need to directly assess pathogen-specific T cells—an extremely rare population of cells, but of upmost importance in orchestrating the host immune response to a given pathogen. Here, we established that the activation marker CD154 (CD40L, known from human and mouse studies, identifies also porcine antigen-reactive CD4+ T lymphocytes. CD154 expression was upregulated early after antigen encounter and CD4+CD154+ antigen-reactive T cells coexpressed cytokines. Antigen-induced expansion and autologous restimulation enabled a time- and dose-resolved analysis of CD154 regulation and a significantly increased resolution in phenotypic profiling of antigen-responsive cells. CD154 expression identified T cells responding to staphylococcal Enterotoxin B superantigen stimulation as well as T cells responding to the fungus Candida albicans and T cells specific for a highly prevalent intestinal parasite, the nematode Ascaris suum during acute and trickle infection. Antigen-reactive T cells were further detected after immunization of pigs with a single recombinant bacterial antigen of Streptococcus suis only. Thus, our study offers new ways to study antigen-specific T lymphocytes in the pig and their contribution to host–pathogen interactions.

  18. Effect of Structure Change on Radiation Crosslinking of Unsaturated Polyesters

    International Nuclear Information System (INIS)

    Ranogajec, F.

    2006-01-01

    During the course of crosslinking of unsaturated polyesters reacting system, that was liquid prior to reaction, gels, and becomes solid. Crosslinking reaction begins to be controlled by the change of the physical state of the system at an early stage of reaction. The kinetics can not be studied by the usual kinetical methods. In-source 60 C o gamma rays induced crosslinking of unsaturated polyester with styrene was followed directly and continuously by measuring electrical conductivity change. The results of extraction analysis proved good correlation between the change of electrical conductivity and the extent of curing. The gel content was inversely proportional to conductivity and free styrene content directly proportional to conductivity. DC-electrical conductivity has shown high sensitivity toward structural changes and enabled us to detect liquid-liquid transitions in unsaturated polyester. The upper liquid-liquid transition (T l ρ) is less known transition caused by a stepwise decrease of intramolecular short-range local order that remains above the glass and lower liquid-liquid transitions. The local order is based on secondary valent interactions and is enhanced by hydrogen bonding. The linear temperature dependence of the viscosity and dc electrical conductivity of unsaturated polyesters showed a change of slope caused by the (T l ρ). Those changes were the result of the diminishing of the local order (which includes several bond lengths) caused by breaking of the intramolecular interactions. The intramolecular nature of the (T l ρ) in the polyesters under consideration was proved by its insensitivity to crosslinking and dilution with solvents. In the corresponding temperature range, DSC thermograms shoved expected endothermic changes. The structure changes related to the (T l ρ) in the investigated polyesters were determined by 1 H NMR and NIR spectroscopy. The proton NMR indicated that the stepwise change in hydrogen bonding occurred in the

  19. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones.

    Science.gov (United States)

    Delin, Geoffrey N; Herkelrath, William N

    2017-05-01

    A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites. Published by Elsevier B.V.

  20. Molecular Determinants of Dissolved Organic Matter Reactivity in Lake Water

    Directory of Open Access Journals (Sweden)

    Alina Mostovaya

    2017-12-01

    Full Text Available Lakes in the boreal region have been recognized as the biogeochemical hotspots, yet many questions regarding the regulators of organic matter processing in these systems remain open. Molecular composition can be an important determinant of dissolved organic matter (DOM fate in freshwater systems, but many aspects of this relationship remain unclear due to the complexity of DOM and its interactions in the natural environment. Here, we combine ultrahigh resolution mass spectrometry (FT-ICR-MS with kinetic modeling of decay of >1,300 individual DOM molecular formulae identified by mass spectrometry, to evaluate the role of specific molecular characteristics in decomposition of lake water DOM. Our data is derived from a 4 months microbial decomposition experiment, carried out on water from three Swedish lakes, with the set-up including natural lake water, as well as the lake water pretreated with UV light. The relative decay rate of every molecular formula was estimated by fitting a single exponential model to the change in FT-ICR-MS signal intensities over decomposition time. We found a continuous range of exponential decay coefficients (kexp within different groups of compounds and show that for highly unsaturated and phenolic compounds the distribution of kexp was shifted toward the lowest values. Contrary to this general trend, plant-derived polyphenols and polycondensed aromatics were on average more reactive than compounds with an intermediate aromaticity. The decay rate of aromatic compounds increased with increasing nominal oxidation state of carbon, and molecular mass in some cases showed an inverse relationship with kexp in the UV-manipulated treatment. Further, we observe an increase in formulae-specific kexp as a result of the UV pretreatment. General trends in reactivity identified among major compound groups emphasize the importance of the intrinsic controllers of lake water DOM decay. However, we additionally indicate that each

  1. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats.

    Directory of Open Access Journals (Sweden)

    Gloria E Hoffman

    Full Text Available A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC, would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.

  2. Stable and radioactive isotopes in the study of the unsaturated soil zone

    International Nuclear Information System (INIS)

    1985-11-01

    This publication brings together the main results with conclusions and recommendations on the usefulness of studies of the oxygen 18, deuterium and tritium in water in the unsaturated zone. A separate abstract was prepared for each of the 9 papers

  3. Processing of Unsaturated Organic Acid Aerosols by Ozone

    Science.gov (United States)

    Aloisio, S.; Donaldson, D. J.; Eliason, T. L.; Cziczo, D.; Vaida, V.

    2002-05-01

    We present results of in-situ studies of the oxidative "processing" of organic aerosols composed of unsaturated organic compounds. Aerosol samples of 2-octenoic acid and undecylenic acid were exposed to approx. 10 mbar ozone in a room temperature, atmospheric pressure flow tube reactor. In-situ spectroscopic probing of the reaction mixture, as well as GC-MS analysis of the flow tube effluent, shows evidence of efficient oxidation of double bonds in the organic species, with production of gas-phase and aerosol phase ozonolysis products.

  4. Chemical and Isotopes study of pollutants transport through unsaturated zone in Damascus oasis (Syria)

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2011-08-01

    The primary objectives of this study were to determine the hydrochemical and isotopic characteristics of groundwater and to study vertical transport processes for trace elements through the unsaturated zone, from the surface water into the groundwater system. A third objective is to identifying the importance of the unsaturated zone in protecting groundwater from contamination. Distribution of trace elements, including Cu, Pb, Cr, Cd, Zn and As in the soil with depth were studied. Mineralogy was investigated using X-Ray diffraction techniques and granulometry in three drilled soil profile (KA, KB and KS) in Damascus Oasis, which indicated that the soil consists mainly of calcite, a mineral that has the ability to bind some of the trace elements. Measurement of nitrate concentrations in groundwater permitted an investigation of the urban, industrial and agricultural pollution in the Oasis, in particular, in the eastern part of Damascus city and in the north of Oasis where the irrigation by treated wastewater is applied. Depending on the chemical characteristics of the studied trace elements and soil conditions, these elements have high concentrations in the upper part of the soil (20-30 cm depth), due to absorption by clay minerals and organic matter. These high concentrations represent pollution by leather industries (tannery) in the area. The trace element concentrations decrease towards the east in parallel with river flow direction. The lower part of profiles show low trace element concentrations, below the international permitted limit. The low concentrations of trace elements in groundwater which are also below the international limit, indicates no pollution is presented. The isotopic composition of shallow groundwater indicates the underground recharge, originated from the Anti-Lebanon Mountain, is more significant than the direct recharge through unsaturated zone. It is concluded the unsaturated zone and the decrease of groundwater levels have played an

  5. Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone

    Science.gov (United States)

    Milly, Paul C.D.

    1996-01-01

    The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field observations, regarding the seasonal variations of matric potential at a given depth. The conceptual model of unsaturated zone water transport developed here implies the possibility of near‐surface trapping of any aqueous constituent introduced at the surface.

  6. Novel α, β-Unsaturated Sophoridinic Derivatives: Design, Synthesis, Molecular Docking and Anti-Cancer Activities

    Directory of Open Access Journals (Sweden)

    Yiming Xu

    2017-11-01

    Full Text Available Using sophoridine 1 and chalcone 3 as the lead compounds, a series of novel α, β-unsaturated sophoridinic derivatives were designed, synthesized, and evaluated for their in vitro cytotoxicity. Structure-activity relationship (SAR analysis indicated that introduction of α, β-unsaturated ketone moiety and heterocyclic group might significantly enhance anticancer activity. Among the compounds, 2f and 2m exhibited potential effects against HepG-2 and CNE-2 human cancer cell lines. Furthermore, molecular docking studies were performed to understand possible docking sites of the molecules on the target proteins and the mode of binding. This work provides a theoretical basis for structural optimizations and exploring anticancer pathways of this kind of compound.

  7. Predicting unsaturated zone nitrogen mass balances in agricultural settings of the United States

    Science.gov (United States)

    Nolan, Bernard T.; Puckett, Larry J.; Ma, Liwang; Green, Christopher T.; Bayless, E. Randall; Malone, Robert W.

    2009-01-01

    Unsaturated zone N fate and transport were evaluated at four sites to identify the predominant pathways of N cycling: an almond [Prunus dulcis (Mill.) D.A. Webb] orchard and cornfield (Zea mays L.) in the lower Merced River study basin, California; and corn–soybean [Glycine max (L.) Merr.] rotations in study basins at Maple Creek, Nebraska, and at Morgan Creek, Maryland. We used inverse modeling with a new version of the Root Zone Water Quality Model (RZWQM2) to estimate soil hydraulic and nitrogen transformation parameters throughout the unsaturated zone; previous versions were limited to 3-m depth and relied on manual calibration. The overall goal of the modeling was to derive unsaturated zone N mass balances for the four sites. RZWQM2 showed promise for deeper simulation profiles. Relative root mean square error (RRMSE) values for predicted and observed nitrate concentrations in lysimeters were 0.40 and 0.52 for California (6.5 m depth) and Nebraska (10 m), respectively, and index of agreement (d) values were 0.60 and 0.71 (d varies between 0 and 1, with higher values indicating better agreement). For the shallow simulation profile (1 m) in Maryland, RRMSE and d for nitrate were 0.22 and 0.86, respectively. Except for Nebraska, predictions of average nitrate concentration at the bottom of the simulation profile agreed reasonably well with measured concentrations in monitoring wells. The largest additions of N were predicted to come from inorganic fertilizer (153–195 kg N ha−1 yr−1 in California) and N fixation (99 and 131 kg N ha−1 yr−1 in Maryland and Nebraska, respectively). Predicted N losses occurred primarily through plant uptake (144–237 kg N ha−1 yr−1) and deep seepage out of the profile (56–102 kg N ha−1 yr−1). Large reservoirs of organic N (up to 17,500 kg N ha−1 m−1 at Nebraska) were predicted to reside in the unsaturated zone, which has implications for potential future transfer of nitrate to groundwater.

  8. Busted Butte report on laboratory radionuclide migration experiments in non-welded tuff under unsaturated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T.T.; Drew, D.J.; Ticknor, K.V

    2002-11-01

    Three blocks of non-welded tuff, one nominally one cubic foot (trial block) and the other two, nominally one cubic metre (1 m{sup 3}), were excavated from the Busted Butte Test Facility on the Nevada Test Site and transported to the Atomic Energy of Canada Limited Whiteshell Laboratories in Pinawa, Manitoba. The trial block and one of the 1-m{sup 3} blocks were used for unsaturated flow experiments. The remaining 1-m{sup 3} block is being used for saturated flow experiments and will be reported on separately. After a vertical flow of synthetic transport solution was set up under unsaturated conditions, a suite of conservative and chemically reactive radionuclide tracers was injected at volumetric flow rates of 20 mL/hr in the trial block, and 10 mL/hr in the 1-m{sup 3} block. The duration of the migration experiment in the trial block was 87 days, while the migration experiment in the 1-m{sup 3} block was continuing after 600 days. Results obtained from the migration experiment in the trial block showed that transport of {sup 95m+99}Tc, injected as the pertechnetate (an)ion, was slightly faster than that of the transport solution, using tritiated water ({sup 3}H{sub 2}O) as a flow indicator. Retardation of {sup 237}Np was consistent with that predicted from results obtained in supporting static batch sorption studies. Post-migration analysis of the flow field in the trial block showed that the front of the {sup 22}Na had migrated about half the distance through the block, and that {sup 60}Co and {sup 137}Cs had been retained near the inlet. This observation agrees qualitatively with that predicted from the results from static batch sorption studies. In the larger scale experiment, the transport behavior of Tc is very similar to that of the transport solution at this point in time. None of the other radionuclide tracers have been detected in water collected from this block. This observation is consistent with the observations for the smaller block. (author)

  9. Transcriptional and physiological changes during Mycobacterium tuberculosis reactivation from non-replicating persistence

    Directory of Open Access Journals (Sweden)

    Peicheng Du

    2016-08-01

    Full Text Available Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process.

  10. Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction

    International Nuclear Information System (INIS)

    Liu Moubin; Meakin, Paul; Huang Hai

    2007-01-01

    Multiphase fluid motion in unsaturated fractures and fracture networks involves complicated fluid dynamics, which is difficult to model using grid-based continuum methods. In this paper, the application of dissipative particle dynamics (DPD), a relatively new mesoscale method to simulate fluid motion in unsaturated fractures is described. Unlike the conventional DPD method that employs a purely repulsive conservative (non-dissipative) particle-particle interaction to simulate the behavior of gases, we used conservative particle-particle interactions that combine short-range repulsive and long-range attractive interactions. This new conservative particle-particle interaction allows the behavior of multiphase systems consisting of gases, liquids and solids to be simulated. Our simulation results demonstrate that, for a fracture with flat parallel walls, the DPD method with the new interaction potential function is able to reproduce the hydrodynamic behavior of fully saturated flow, and various unsaturated flow modes including thin film flow, wetting and non-wetting flow. During simulations of flow through a fracture junction, the fracture junction can be fully or partially saturated depending on the wetting property of the fluid, the injection rate and the geometry of the fracture junction. Flow mode switching from a fully saturated flow to a thin film flow can also be observed in the fracture junction

  11. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    International Nuclear Information System (INIS)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P.

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information

  12. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P. [Sandia National Labs., Albuquerque, NM (USA)

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information.

  13. Graphene oxide-facilitated transport of levofloxacin and ciprofloxacin in saturated and unsaturated porous media.

    Science.gov (United States)

    Sun, Kaixuan; Dong, Shunan; Sun, Yuanyuan; Gao, Bin; Du, Wenchao; Xu, Hongxia; Wu, Jichun

    2018-04-15

    In this work, effects of graphene oxide (GO) on the co-transport of the two typical Fluoroquinolones (FQs) - levofloxacin (LEV) and ciprofloxacin (CIP) in saturated and unsaturated quartz sand media were studied. The adsorption isotherms showed that GO had much larger sorption capacities to LEV and CIP than sand with the largest Langmuir adsorption capacity of 409 mg g -1 (CIP-GO); while the sorption affinity of the two FQs onto the two adsorbents might follow the order of CIP-sand > LEV-sand > LEV-GO > CIP-GO. GO promoted the mobility of the two FQs in both saturated and unsaturated porous media due to its strong mobility and sorption capacity. The GO-bound LEV/CIP was responsible for the LEV/CIP transport in the porous media, and transport of GO-bound FQs increased with the increasing of initial GO concentration. Under unsaturated conditions, moisture showed little effect on the transport of GO-bound CIP; however, the mobility of GO-bound LEV reduced with the decreasing of moisture content, suggesting the transport of adsorbed LEV from GO to air-water interface. GO sorption reduced the antibacterial ability of the two FQs, but they were still effective in inhibiting E. coli growth. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Caspase 1 activation is protective against hepatocyte cell death by up-regulating beclin 1 protein and mitochondrial autophagy in the setting of redox stress.

    Science.gov (United States)

    Sun, Qian; Gao, Wentao; Loughran, Patricia; Shapiro, Rick; Fan, Jie; Billiar, Timothy R; Scott, Melanie J

    2013-05-31

    Caspase 1 activation can be induced by oxidative stress, which leads to the release of the proinflammatory cytokines IL1β and IL18 in myeloid cells and a potentially damaging inflammatory response. However, little is known about the role of caspase 1 in non-immune cells, such as hepatocytes, that express and activate the inflammasome but do not produce a significant amount of IL1β/IL18. Here we demonstrate that caspase 1 activation protects against cell death after redox stress induced by hypoxia/reoxygenation in hepatocytes. Mechanistically, we show that caspase 1 reduces mitochondrial respiration and reactive oxygen species by increasing mitochondrial autophagy and subsequent clearance of mitochondria in hepatocytes after hypoxia/reoxygenation. Caspase 1 increases autophagic flux through up-regulating autophagy initiator beclin 1 during redox stress and is an important cell survival factor in hepatocytes. We find that during hemorrhagic shock with resuscitation, an in vivo mouse model associated with severe hepatic redox stress, caspase 1 activation is also protective against liver injury and excessive oxidative stress through the up-regulation of beclin 1. Our findings suggest an alternative role for caspase 1 activation in promoting adaptive responses to oxidative stress and, more specifically, in limiting reactive oxygen species production and damage in cells and tissues where IL1β/IL18 are not highly expressed.

  15. Caspase 1 Activation Is Protective against Hepatocyte Cell Death by Up-regulating Beclin 1 Protein and Mitochondrial Autophagy in the Setting of Redox Stress*

    Science.gov (United States)

    Sun, Qian; Gao, Wentao; Loughran, Patricia; Shapiro, Rick; Fan, Jie; Billiar, Timothy R.; Scott, Melanie J.

    2013-01-01

    Caspase 1 activation can be induced by oxidative stress, which leads to the release of the proinflammatory cytokines IL1β and IL18 in myeloid cells and a potentially damaging inflammatory response. However, little is known about the role of caspase 1 in non-immune cells, such as hepatocytes, that express and activate the inflammasome but do not produce a significant amount of IL1β/IL18. Here we demonstrate that caspase 1 activation protects against cell death after redox stress induced by hypoxia/reoxygenation in hepatocytes. Mechanistically, we show that caspase 1 reduces mitochondrial respiration and reactive oxygen species by increasing mitochondrial autophagy and subsequent clearance of mitochondria in hepatocytes after hypoxia/reoxygenation. Caspase 1 increases autophagic flux through up-regulating autophagy initiator beclin 1 during redox stress and is an important cell survival factor in hepatocytes. We find that during hemorrhagic shock with resuscitation, an in vivo mouse model associated with severe hepatic redox stress, caspase 1 activation is also protective against liver injury and excessive oxidative stress through the up-regulation of beclin 1. Our findings suggest an alternative role for caspase 1 activation in promoting adaptive responses to oxidative stress and, more specifically, in limiting reactive oxygen species production and damage in cells and tissues where IL1β/IL18 are not highly expressed. PMID:23589298

  16. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Science.gov (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  17. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    Science.gov (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  18. Numerical study of damage in unsaturated Geological and Engineered barriers

    International Nuclear Information System (INIS)

    Arson, C.; Gatmiri, B.

    2011-01-01

    The theoretical framework of a damage model dedicated to non-isothermal unsaturated porous media is presented. The damage variable is a second-order tensor, and the model is formulated in independent state variables. The behavior laws are derived from a postulated expression of Helmholtz free energy. The damaged rigidities are computed by applying the Principle of Equivalent Elastic Energy (PEEE). Internal length parameters are introduced in the expressions of liquid water and vapor conductivities, to account for cracking effects on fluid flows. The damage model has been implemented in Θ-Stock Finite Element program. The mechanical aspect of the damage model is validated by simulating a triaxial compression test on a dry isothermal brittle material. Then, a sophisticated model of nuclear waste disposal, involving two non-isothermal unsaturated porous media, is reproduced. The results obtained in elasticity are in good agreement with the results presented in the corresponding reference article. A parametric study on initial damage is then performed to assess the influence of the Excavated Damaged Zone (EDZ) on the response of the nuclear waste repository during the heating phase. The trends meet the theoretical expectations. (authors)

  19. Adaptive probabilistic collocation based Kalman filter for unsaturated flow problem

    Science.gov (United States)

    Man, J.; Li, W.; Zeng, L.; Wu, L.

    2015-12-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the Polynomial Chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so called "cure of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF is even more computationally expensive than EnKF. Motivated by recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problem. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to alleviate the inconsistency between model parameters and states. The performance of RAPCKF is tested by unsaturated flow numerical cases. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.

  20. Nuclear-waste isolation in the unsaturated zone of arid regions

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

    1982-05-01

    The vadose zone in arid regions is considered as a possible environment for geologic isolation of nuclear waste. There are several topographic and lithologic combinations in the vadose zone of arid regions that may lend themselves to waste isolation considerations. In some cases, topographic highs such as mesas and interbasin ranges - comprised of several rock types, may contain essentially dry or partially saturated conditions favorable for isolation. The adjacent basins, especially in the far western and southwestern US, may have no surface or subsurface hydrologic connections with systems ultimately leading to the ocean. Some rock types may have the favorable characteristics of very low permeability and contain appropriate minerals for the strong chemical retardation of radionuclides. Environments exhibiting these hydrologic and geochemical attributes are the areas underlain by tuffaceous rocks, relatively common in the Basin and Range geomorphic province. Adjacent valley areas, where tuffaceous debris makes up a significant component of valley fill alluvium, may also contain thick zones of unsaturated material, and as such also lend themselves to strong consideration as respository environments. This paper summarizes the aspects of nuclear waste isolation in unsaturated regimes in alluvial-filled valleys and tuffaceous rocks of the Basin and Range province

  1. A borehole instrumentation program for characterization of unsaturated-zone percolation

    International Nuclear Information System (INIS)

    Kume, J.; Rousseau, J.P.

    1994-01-01

    A borehole instrumentation and monitoring program has been designed by the US Geological Survey to support site characterization of unsaturated-zone percolation at Yucca Mountain, Nye County, Nevada. This program provides a means of defining the unsaturated-zone fluid flow (liquid and gas) potential field in a setting that incorporates large-scale stratigraphic and structural features, and the influences of geothermal heat flow and atmospheric pressure changes. Data derived from this program will be used to evaluate the suitability of Yucca Mountain as a mined geologic-repository for the storage of high-level, radioactive waste. These data include in-situ temperature, pneumatic pressure, and water potential. In addition, the instrumentation program provides facilities for gas-sampling, gas-tracer diffusion testing, water-injection testing, water-level monitoring, neutron moisture-meter monitoring, temperature profiling, and in-situ recalibration of the downhole sensors. The program included testing and development of: (1) precision sensors for measurement; (2) a downhole instrumentation-station-apparatus to house the sensors, recalibrate sensors in-situ, and allow access to instrument stations for other testing purposes; and (3) surface-based support and instrumentation facilities

  2. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    Science.gov (United States)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  3. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    Science.gov (United States)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  4. Drift Scale Modeling: Study of Unsaturated Flow into a Drift Using a Stochastic Continuum Model

    International Nuclear Information System (INIS)

    Birkholzer, J.T.; Tsang, C.F.; Tsang, Y.W.; Wang, J.S

    1996-01-01

    Unsaturated flow in heterogeneous fractured porous rock was simulated using a stochastic continuum model (SCM). In this model, both the more conductive fractures and the less permeable matrix are generated within the framework of a single continuum stochastic approach, based on non-parametric indicator statistics. High-permeable fracture zones are distinguished from low-permeable matrix zones in that they have assigned a long range correlation structure in prescribed directions. The SCM was applied to study small-scale flow in the vicinity of an access tunnel, which is currently being drilled in the unsaturated fractured tuff formations at Yucca Mountain, Nevada. Extensive underground testing is underway in this tunnel to investigate the suitability of Yucca Mountain as an underground nuclear waste repository. Different flow scenarios were studied in the present paper, considering the flow conditions before and after the tunnel emplacement, and assuming steady-state net infiltration as well as episodic pulse infiltration. Although the capability of the stochastic continuum model has not yet been fully explored, it has been demonstrated that the SCM is a good alternative model feasible of describing heterogeneous flow processes in unsaturated fractured tuff at Yucca Mountain

  5. Modeling one-dimensional unsaturated flow at the Rocky Flats Environmental Technology Site near Golden, Colorado

    International Nuclear Information System (INIS)

    Thompson, J.S.; Zeiler, R.M.

    1995-01-01

    A field investigation characterizing contamination at the Rocky Flats Plant (Rocky Flats Environmental Technology Site) near Golden, Colorado revealed unexpectedly high moisture contents in the unsaturated soil column (vadose zone) beneath several of the Plant's Waste Water Treatment Plant (WWTP) sludge drying beds. Because these beds were seldom in use, researchers had hypothesized that the water required to maintain the saturated conditions observed beneath several of the sludge drying beds was coming from sources other than the beds themselves. In an effort to substantiate this hypothesis, a one-dimensional physically-based unsaturated flow model was utilized to simulate the vertical movement of moisture from the sludge drying beds into the unsaturated soil column below. The model was run to simulate vertical flow over a two-year period and results indicated that no significant changes from initial conditions were apparent. This evidence supports the hypothesis that the high moisture contents found beneath the sludge drying beds are being fed by sources other than infiltration of sludge applied to the beds themselves. This paper presents the details of the simulation and provides further evidence of the hypothesized flow regime

  6. A novel definition of the overall hyper-wiener index for unsaturated hydrocarbons.

    Science.gov (United States)

    Li, Xinhua; Hu, Maolin; Xiao, Hongping

    2004-01-01

    By replacing the distances between pairs of vertices with the relative distances, we define a novel overall hyper-Wiener index (NOR); the novel overall hyper-Wiener index extends the usefulness of the hyper-Wiener index and the overall hyper-Wiener index to unsaturated hydrocarbons.

  7. TRPA1-dependent reversible opening of tight junction by natural compounds with an α,β-unsaturated moiety and capsaicin.

    Science.gov (United States)

    Kanda, Yusuke; Yamasaki, Youhei; Sasaki-Yamaguchi, Yoshie; Ida-Koga, Noriko; Kamisuki, Shinji; Sugawara, Fumio; Nagumo, Yoko; Usui, Takeo

    2018-02-02

    The delivery of hydrophilic macromolecules runs into difficulties such as penetration of the cell membrane lipid bilayer. Our prior experiment demonstrated that capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. Herein, we screened paracellular permeability enhancers other than capsaicin. As TJ opening by capsaicin is associated with Ca 2+ influx, we first screened the compounds that induce Ca 2+ influx in layered MDCK II cells, and then we determined the compounds' abilities to open TJs. Our results identified several natural compounds with α,β-unsaturated moiety. A structure-activity relationship (SAR) analysis and the results of pretreatment with reducing reagent DTT suggested the importance of α,β-unsaturated moiety. We also examined the underlying mechanisms, and our findings suggest that the actin reorganization seen in capsaicin treatment is important for the reversibility of TJ opening. Furthermore, our analyses revealed that TRPA1 is involved in the Ca 2+ influx and TJ permeability increase not only by an α,β-unsaturated compound but also by capsaicin. Our results indicate that the α,β-unsaturated moiety can be a potent pharmacophore for TJ opening.

  8. Sample size choices for XRCT scanning of highly unsaturated soil mixtures

    Directory of Open Access Journals (Sweden)

    Smith Jonathan C.

    2016-01-01

    Full Text Available Highly unsaturated soil mixtures (clay, sand and gravel are used as building materials in many parts of the world, and there is increasing interest in understanding their mechanical and hydraulic behaviour. In the laboratory, x-ray computed tomography (XRCT is becoming more widely used to investigate the microstructures of soils, however a crucial issue for such investigations is the choice of sample size, especially concerning the scanning of soil mixtures where there will be a range of particle and void sizes. In this paper we present a discussion (centred around a new set of XRCT scans on sample sizing for scanning of samples comprising soil mixtures, where a balance has to be made between realistic representation of the soil components and the desire for high resolution scanning, We also comment on the appropriateness of differing sample sizes in comparison to sample sizes used for other geotechnical testing. Void size distributions for the samples are presented and from these some hypotheses are made as to the roles of inter- and intra-aggregate voids in the mechanical behaviour of highly unsaturated soils.

  9. Fully Biobased Unsaturated Aliphatic Polyesters from Renewable Resources : Enzymatic Synthesis, Characterization, and Properties

    NARCIS (Netherlands)

    Jiang, Yi; Alberda van Ekenstein, Gerhard; Woortman, Albert J. J.; Loos, Katja

    2014-01-01

    Fully biobased saturated and unsaturated aliphatic polyesters and oligoesters are successfully prepared by Candida antarctica lipase B (CALB)-catalyzed polycondensations of succinate, itaconate, and 1,4-butanediol. The effects of monomer substrates and polymerization methods on enzymatic

  10. A Mass Conservative Numerical Solution for Two-Phase Flow in Porous Media With Application to Unsaturated Flow

    DEFF Research Database (Denmark)

    Celia, Michael A.; Binning, Philip John

    1992-01-01

    that the algorithm produces solutions that are essentially mass conservative and oscillation free, even in the presence of steep infiltrating fronts. When the algorithm is applied to the case of air and water flow in unsaturated soils, numerical results confirm the conditions under which Richards's equation is valid....... Numerical results also demonstrate the potential importance of air phase advection when considering contaminant transport in unsaturated soils. Comparison to several other numerical algorithms shows that the modified Picard approach offers robust, mass conservative solutions to the general equations...

  11. Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts

    Directory of Open Access Journals (Sweden)

    Saeed Tourchi

    2015-04-01

    Full Text Available A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rule and yield criterion to take into account the role of suction. Also, according to previous studies, an increase in temperature causes a reduction in specific volume. A reduction in suction (wetting for a given confining stress may induce an irreversible volumetric compression (collapse. Thus an increase in suction (drying raises a specific volume i.e. the movement of normal consolidation line (NCL to higher values of void ratio. However, some experimental data confirm the assumption that this reduction is dependent on the stress level of soil element. A generalized approach considering the effect of stress level on the magnitude of clays thermal dependency in compression plane is proposed in this study. The number of modeling parameters is kept to a minimum, and they all have clear physical interpretations, to facilitate the usefulness of model for practical applications. A step-by-step procedure used for parameter calibration is also described. The model is finally evaluated using a comprehensive set of experimental data for the thermo-mechanical behavior of unsaturated soils.

  12. α,β-Unsaturated imines via Ru-catalyzed coupling of allylic alcohols and amines.

    Science.gov (United States)

    Rigoli, Jared W; Moyer, Sara A; Pearce, Simon D; Schomaker, Jennifer M

    2012-03-07

    A convenient synthesis of α,β-unsaturated imines requiring only an allylic alcohol, an amine and a Ru catalyst has been developed. The use of large excesses of oxidant and the purification of sensitive intermediates can be avoided.

  13. Film thinning in unsaturated superfluid 4He films during persistent flow

    International Nuclear Information System (INIS)

    Ekholm, D.T.; Hallock, R.B.

    1979-01-01

    We report measurements of the thickness of unsaturated superfluid 4 He films in persistent flow as a function of persistent current velocity. Our results are in quantitative agreement with the predictions of Kontorovich, and thus disagree with the conclusion of Rudnick and coworkers that rho/sub s//rho has an enhanced velocity dependence in these films

  14. Upregulation of Interleukin-33 in obstructive renal injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Yu, E-mail: wychen624@cgmh.org.tw [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Chang, Ya-Jen [Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (China); Su, Chia-Hao [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Tsai, Tzu-Hsien [Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Chen, Shang-Der [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan (China); Yang, Jenq-Lin, E-mail: jyang@adm.cgmh.org.tw [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China)

    2016-05-13

    Interstitial fibrosis and loss of parenchymal tubular cells are the common outcomes of progressive renal diseases. Pro-inflammatory cytokines have been known contributing to the damage of tubular cells and fibrosis responses after renal injury. Interleukin (IL)-33 is a tissue-derived nucleus alarmin that drives inflammatory responses. The regulation and function of IL-33 in renal injury, however, is not well understood. To investigate the involvement of cytokines in the pathogenesis of renal injury and fibrosis, we performed the mouse renal injury model induced by unilateral urinary obstruction (UUO) and analyze the differentially upregulated genes between the obstructed and the contralateral unobstructed kidneys using RNA sequencing (RNAseq). Our RNAseq data identified IL33 and its receptor ST2 were upregulated in the UUO kidney. Quantitative analysis confirmed that transcripts of IL33 and ST2 were upregulated in the obstructed kidneys. Immunofluorescent staining revealed that IL-33 was upregulated in Vimentin- and alpha-SMA-positive interstitial cells. By using genetically knockout mice, deletion of IL33 reduced UUO-induced renal fibrosis. Moreover, in combination with BrdU labeling technique, we observed that the numbers of proliferating tubular epithelial cells were increased in the UUO kidneys from IL33-or ST2-deficient mice compared to wild type mice. Collectively, our study demonstrated the upregulation of IL-33/ST2 signaling in the obstructed kidney may promote tubular cell injury and interstitial fibrosis. IL-33 may serve as a biomarker to detect renal injury and that IL-33/ST2 signaling may represent a novel target for treating renal diseases. -- Highlights: •Interleukin (IL)-33 was upregulated in obstructed kidneys. •Interstitial myofibroblasts expressed IL-33 after UUO-induced renal injury. •Deficiency of IL33 reduced interstitial fibrosis and promoted tubular cell proliferation.

  15. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Or, D.; Gulez, Gamze

    2008-01-01

    Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experim....... The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments.......Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless......, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations...

  16. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.

    Science.gov (United States)

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F

    2012-07-15

    Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not

  17. Optimality and Conductivity for Water Flow: From Landscapes, to Unsaturated Soils, to Plant Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.

    2012-02-23

    Optimality principles have been widely used in many areas. Based on an optimality principle that any flow field will tend toward a minimum in the energy dissipation rate, this work shows that there exists a unified form of conductivity relationship for three different flow systems: landscapes, unsaturated soils and plant leaves. The conductivity, the ratio of water flux to energy gradient, is a power function of water flux although the power value is system dependent. This relationship indicates that to minimize energy dissipation rate for a whole system, water flow has a small resistance (or a large conductivity) at a location of large water flux. Empirical evidence supports validity of the relationship for landscape and unsaturated soils (under gravity dominated conditions). Numerical simulation results also show that the relationship can capture the key features of hydraulic structure for a plant leaf, although more studies are needed to further confirm its validity. Especially, it is of interest that according to this relationship, hydraulic conductivity for gravity-dominated unsaturated flow, unlike that defined in the classic theories, depends on not only capillary pressure (or saturation), but also the water flux. Use of the optimality principle allows for determining useful results that are applicable to a broad range of areas involving highly non-linear processes and may not be possible to obtain from classic theories describing water flow processes.

  18. Evolution of strain localization in variable-width three-dimensional unsaturated laboratory-scale cut slopes

    Science.gov (United States)

    Morse, Michael S.; Lu, Ning; Wayllace, Alexandra; Godt, Jonathan W.

    2017-01-01

    To experimentally validate a recently developed theory for predicting the stability of cut slopes under unsaturated conditions, the authors measured increasing strain localization in unsaturated slope cuts prior to abrupt failure. Cut slope width and moisture content were controlled and varied in a laboratory, and a sliding door that extended the height of the free face of the slope was lowered until the cut slope failed. A particle image velocimetry tool was used to quantify soil displacement in the x-y">x-y (horizontal) and x-z">x-z (vertical) planes, and strain was calculated from the displacement. Areas of maximum strain localization prior to failure were shown to coincide with the location of the eventual failure plane. Experimental failure heights agreed with the recently developed stability theory for unsaturated cut slopes (within 14.3% relative error) for a range of saturation and cut slope widths. A theoretical threshold for sidewall influence on cut slope failures was also proposed to quantify the relationship between normalized sidewall width and critical height. The proposed relationship was consistent with the cut slope experiment results, and is intended for consideration in future geotechnical experiment design. The experimental data of evolution of strain localization presented herein provide a physical basis from which future numerical models of strain localization can be validated.

  19. Semi-analytical treatment of fracture/matrix flow in a dual-porosity simulator for unsaturated fractured rock masses

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1992-04-01

    A semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses has been developed. Fluid flow between the fracture network and the matrix blocks is described by analytical expressions that have been derived from approximate solutions to the imbibition equation. These expressions have been programmed into the unsaturated flow simulator, TOUGH, as a source/sink term. Flow processes are then simulated using only fracture elements in the computational grid. The modified code is used to simulate flow along single fractures, and infiltration into pervasively fractured formations

  20. Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks?

    International Nuclear Information System (INIS)

    Smyl, Danny; Rashetnia, Reza; Seppänen, Aku; Pour-Ghaz, Mohammad

    2017-01-01

    Previously, it has been shown that Electrical Resistance Tomography (ERT) can be used for monitoring moisture flow in undamaged cement-based materials. In this work, we investigate whether ERT could be used for imaging three-dimensional (3D) unsaturated moisture flow in cement-based materials that contain discrete cracks. Novel computational methods based on the so-called absolute imaging framework are developed and used in ERT image reconstructions, aiming at a better tolerance of the reconstructed images with respect to the complexity of the conductivity distribution in cracked material. ERT is first tested using specimens with physically simulated cracks of known geometries, and corroborated with numerical simulations of unsaturated moisture flow. Next, specimens with loading-induced cracks are imaged; here, ERT reconstructions are evaluated qualitatively based on visual observations and known properties of unsaturated moisture flow. Results indicate that ERT is a viable method of visualizing 3D unsaturated moisture flow in cement-based materials with discrete cracks. - Highlights: • 3D EIT is developed to visualize water ingress in cracked mortar. • Mortar with different size discrete cracks are used. • The EIT results are corroborated with numerical simulations. • EIT results accurately show the temporal and spatial variation of water content. • EIT is shown to be a viable method to monitor flow in cracks and matrix.

  1. Web-based reactive transport modeling using PFLOTRAN

    Science.gov (United States)

    Zhou, H.; Karra, S.; Lichtner, P. C.; Versteeg, R.; Zhang, Y.

    2017-12-01

    Actionable understanding of system behavior in the subsurface is required for a wide spectrum of societal and engineering needs by both commercial firms and government entities and academia. These needs include, for example, water resource management, precision agriculture, contaminant remediation, unconventional energy production, CO2 sequestration monitoring, and climate studies. Such understanding requires the ability to numerically model various coupled processes that occur across different temporal and spatial scales as well as multiple physical domains (reservoirs - overburden, surface-subsurface, groundwater-surface water, saturated-unsaturated zone). Currently, this ability is typically met through an in-house approach where computational resources, model expertise, and data for model parameterization are brought together to meet modeling needs. However, such an approach has multiple drawbacks which limit the application of high-end reactive transport codes such as the Department of Energy funded[?] PFLOTRAN code. In addition, while many end users have a need for the capabilities provided by high-end reactive transport codes, they do not have the expertise - nor the time required to obtain the expertise - to effectively use these codes. We have developed and are actively enhancing a cloud-based software platform through which diverse users are able to easily configure, execute, visualize, share, and interpret PFLOTRAN models. This platform consists of a web application and available on-demand HPC computational infrastructure. The web application consists of (1) a browser-based graphical user interface which allows users to configure models and visualize results interactively, and (2) a central server with back-end relational databases which hold configuration, data, modeling results, and Python scripts for model configuration, and (3) a HPC environment for on-demand model execution. We will discuss lessons learned in the development of this platform, the

  2. Saturated-unsaturated flow to a well with storage in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2011-05-01

    Mishra and Neuman (2010) developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or unsaturated zones. Their solution accounts for horizontal as well as vertical flows in each zone. It represents unsaturated zone constitutive properties in a manner that is at once mathematically tractable and sufficiently flexible to provide much improved fits to standard constitutive models. In this paper we extend the solution of [2010] to the case of a finite diameter pumping well with storage; investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the [1980]- [1976] model; use our solution to analyze 11 transducer-measured drawdown records from a seven-day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada; validate our parameter estimates against manually-measured drawdown records in 14 other piezometers at Borden; and compare (a) our estimates of aquifer parameters with those obtained on the basis of all these records by [2008], (b) on the basis of 11 transducer-measured drawdown records by [2007], (c) our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by [1992], and (d) our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well. We also use our solution to analyze 11 transducer-measured drawdown

  3. Enhanced Reactive Oxygen Species Production, Acidic Cytosolic pH and Upregulated Na+/H+ Exchanger (NHE) in Dicer Deficient CD4+ T Cells.

    Science.gov (United States)

    Singh, Yogesh; Zhou, Yuetao; Zhang, Shaqiu; Abdelazeem, Khalid N M; Elvira, Bernat; Salker, Madhuri S; Lang, Florian

    2017-01-01

    MicroRNAs (miRNAs) negatively regulate gene expression at a post-transcriptional level. Dicer, a cytoplasmic RNase III enzyme, is required for the maturation of miRNAs from precursor miRNAs. Dicer, therefore, is a critical enzyme involved in the biogenesis and processing of miRNAs. Several biological processes are controlled by miRNAs, including the regulation of T cell development and function. T cells generate reactive oxygen species (ROS) with parallel H+ extrusion accomplished by the Na+/H+-exchanger 1 (NHE1). The present study explored whether ROS production, as well as NHE1 expression and function are sensitive to the lack of Dicer (miRNAs deficient) and could be modified by individual miRNAs. CD4+ T cells were isolated from CD4 specific Dicer deficient (DicerΔ/Δ) mice and the respective control mice (Dicerfl/fl). Transcript and protein levels were quantified with RT-PCR and Western blotting, respectively. For determination of intracellular pH (pHi) cells were incubated with the pH sensitive dye bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) and Na+/H+ exchanger (NHE) activity was calculated from re-alkalinization after an ammonium pulse. Changes in cell volume were measured using the forward scatter in flow cytometry, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. Transfection of miRNA-control and mimics in T cells was performed using DharmaFECT3 reagent. ROS production, cytosolic H+ concentration, NHE1 transcript and protein levels, NHE activity, and cell volume were all significantly higher in CD4+ T cells from DicerΔ/Δ mice than in CD4+ T cells from Dicerfl/fl mice. Furthermore, individual miR-200b and miR-15b modify pHi and NHE activity in Dicerfl/fl and DicerΔ/Δ CD4+ T cells, respectively. Lack of Dicer leads to oxidative stress, cytosolic acidification, upregulated NHE1 expression and activity as well as swelling of CD4+ T cells, functions all reversed by miR-15b or miR-200b. © 2017 The Author

  4. Investigation of isotopic signals in the unsaturated zone with the use of direct push technology and azaeotropic distillation

    Directory of Open Access Journals (Sweden)

    Andreas Kallioras

    2012-09-01

    Full Text Available This paper contributes to the investigation of the unsaturated zone, through the application of combined field and lab techniques. The results show that direct push methods, which are considered ideal for multilevel sampling of undisturbed soil in the unsaturated zone, proved to be effective also for the consequent extraction of the pore water for further isotopic determination. This ultimate goal can be achieved thank to the application of azaetropic distillation, which has the least isotopic fractionation effects on groundwater samples.

  5. Users' manual for LEHGC: A Lagrangian-Eulerian Finite-Element Model of Hydrogeochemical Transport Through Saturated-Unsaturated Media. Version 1.1

    International Nuclear Information System (INIS)

    Yeh, Gour-Tsyh

    1995-11-01

    The computer program LEHGC is a Hybrid Lagrangian-Eulerian Finite-Element Model of HydroGeo-Chemical (LEHGC) Transport Through Saturated-Unsaturated Media. LEHGC iteratively solves two-dimensional transport and geochemical equilibrium equations and is a descendant of HYDROGEOCHEM, a strictly Eulerian finite-element reactive transport code. The hybrid Lagrangian-Eulerian scheme improves on the Eulerian scheme by allowing larger time steps to be used in the advection-dominant transport calculations. This causes less numerical dispersion and alleviates the problem of calculated negative concentrations at sharp concentration fronts. The code also is more computationally efficient than the strictly Eulerian version. LEHGC is designed for generic application to reactive transport problems associated with contaminant transport in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical element concentrations as a function of time and space and the chemical speciation at user-specified nodes. LEHGC Version 1.1 is a modification of LEHGC Version 1.0. The modification includes: (1) devising a tracking algorithm with the computational effort proportional to N where N is the number of computational grid nodes rather than N 2 as in LEHGC Version 1.0, (2) including multiple adsorbing sites and multiple ion-exchange sites, (3) using four preconditioned conjugate gradient methods for the solution of matrix equations, and (4) providing a model for some features of solute transport by colloids

  6. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity

    OpenAIRE

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-01-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, mono-esterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeab...

  7. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    Science.gov (United States)

    Ji, Youjun; Zhang, Linzhi; Yue, Jiannan

    2014-01-01

    Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199

  8. Plant adaptation to frequent alterations between high and low temperatures: remodeling of membrane lipids and maintenance of unsaturation levels

    OpenAIRE

    Zheng, Guowei; Tian, Bo; Zhang, Fujuan; Tao, Faqing; Li, Weiqi

    2011-01-01

    One major strategy by which plants adapt to temperature change is to decrease the degree of unsaturation of membrane lipids under high temperature and increase it under low temperature. We hypothesize that this strategy cannot be adopted by plants in ecosystems and environments with frequent alterations between high and low temperatures, because changes in lipid unsaturation are complex and require large energy inputs. To test this hypothesis, we used a lipidomics approach to profile changes ...

  9. Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media

    International Nuclear Information System (INIS)

    Ababou, R.

    1991-08-01

    This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs

  10. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, J.P.; Kwicklis, E.M.; Gillies, D.C. [eds.

    1999-03-01

    Yucca Mountain, in southern Nevada, is being investigated by the US Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the US Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Shallow infiltration is not discussed in detail in this report because the focus in on three major aspects of the deep unsaturated-zone system: geologic framework, the gaseous-phase system, and the aqueous-phase system. However, because the relation between shallow infiltration and deep percolation is important to an overall understanding of the unsaturated-zone flow system, a summary of infiltration studies conducted to date at Yucca Mountain is provided in the section titled Shallow Infiltration. This report describes results of several Site Characterization Plan studies that were ongoing at the time excavation of the ESF North Ramp began and that continued as excavation proceeded.

  11. Antioxidant Opuntia ficus-indica Extract Activates AHR-NRF2 Signaling and Upregulates Filaggrin and Loricrin Expression in Human Keratinocytes.

    Science.gov (United States)

    Nakahara, Takeshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Takahara, Masakazu; Tsuji, Gaku; Uchi, Hiroshi; Yan, Xianghong; Hachisuka, Junichi; Chiba, Takahito; Esaki, Hitokazu; Kido-Nakahara, Makiko; Furue, Masutaka

    2015-10-01

    Opuntia ficus-indica (OFI) is a cactus species widely used as an anti-inflammatory, antilipidemic, and hypoglycemic agent. It has been shown that OFI extract (OFIE) inhibits oxidative stress in animal models of diabetes and hepatic disease; however, its antioxidant mechanism remains largely unknown. In this study, we demonstrated that OFIE exhibited potent antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and the downstream antioxidant enzyme quinone oxidoreductase 1 (NQO1), which inhibited the generation of reactive oxygen species in keratinocytes challenged with tumor necrosis factor α or benzo[α]pyrene. The antioxidant capacity of OFIE was canceled in NRF2 knockdown keratinocytes. OFIE exerted this NRF2-NQO1 upregulation through activation of the aryl hydrocarbon receptor (AHR). Moreover, the ligation of AHR by OFIE upregulated the expression of epidermal barrier proteins: filaggrin and loricrin. OFIE also prevented TH2 cytokine-mediated downregulation of filaggrin and loricrin expression in an AHR-dependent manner because it was canceled in AHR knockdown keratinocytes. Antioxidant OFIE is a potent activator of AHR-NRF2-NQO1 signaling and may be beneficial in treating barrier-disrupted skin disorders.

  12. Highly Functionalised Cyclopentanes by Radical Cyclisation of Unsaturated Bromolactones III. Preparation of Carbaaldohexofuranoses. - Determination of the Relative Configuration at C-4/C-5 of 2,3-Unsaturated heptono-1,4-lactones by Means of 1-H NMR Spectroscopy

    DEFF Research Database (Denmark)

    Lundt, Inge; Horneman, Anne Marie

    1999-01-01

    Two new carbaaldohexofuranoses, carba--D-glucofuranose and carba--L-mannofuranose have been prepared using 5,6-O-isopropylidene-D-glycero-L-galacto-heptono-1,4-lactone (6) as the starting material. The key step was a highly stereoselective intramolecular 5-exo-trig radical cyclisation of C-2......-substituted 2,3-unsaturated 7-bromo-7-deoxy-heptono-1,4-lactones promoted by tributyltin hydride. Assignment of the configuration of the unsaturated lactones was based upon NMR data of related compounds. The starting material, compound 6, was obtained by chain elongation of D-gulose, and a facile method...

  13. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  14. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  15. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  16. Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States

    Science.gov (United States)

    Green, C.T.; Fisher, L.H.; Bekins, B.A.

    2008-01-01

    The main physical and chemical controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Indiana, Maryland, Nebraska, and Washington from 2004 to 2005. Sites included irrigated and nonirrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 1 to 22 m. Chemical analyses of water from lysimeters and shallow wells indicate that advective transport of nitrate is the dominant process affecting the flux of N below the root zone. Vertical profiles of (i) nitrogen species, (ii) stable isotopes of nitrogen and oxygen, and (iii) oxygen, N, and argon in unsaturated zone air and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. As a result, physical factors, such as N application rate, water inputs, and evapotranspiration, control the differences in concentrations among the sites. Concentrations of N in shallow lysimeters exhibit seasonal variation, whereas concentrations in lysimeters deeper than a few meters are relatively stable. Based on concentration and recharge estimates, fluxes of N through the deep unsaturated zone range from 7 to 99 kg ha-1 yr-1. Vertical fluxes of N in ground water are lower due to spatial and historical changes in N inputs. High N fluxes are associated with coarse sediments and high N application rates. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  17. Nitrate transport and transformation processes in unsaturated porous media

    Science.gov (United States)

    Tindall, James A.; Petrusak, Robin L.; McMahon, Peter B.

    1995-01-01

    A series of experiments was conducted on two contrasting agricultural soils to observe the influence of soil texture, preferential flow, and plants on nitrate transport and denitrification under unsaturated conditions. Calcium nitrate fertilizer was applied to the surface of four large undisturbed soil cores (30 cm diameter by 40 cm height). Two of the cores were a structured clay obtained from central Missouri and two were an unstructured fine sand obtained from central Florida. The cores were irrigated daily and maintained at a matric potential of -20 kPa, representative of soil tension in the rooting zone of irrigated agricultural fields. Volumetric water content (θ), concentration of nitrate-N in the soil solution, and nitrous oxide flux at the surface, 10, 20, and 30 cm were monitored daily. Leaching loss of surface-applied N03− -N was significant in both the sand and the clay. In unplanted sand cores, almost all of the applied nitrate was leached below 30 cm within 10 days. Gaseous N loss owing to denitrification was no greater than 2% of the nitrate-N applied to the unplanted sand cores and, in general, was less than 1 %. Although leaching was somewhat retarded in the clay cores, about 60% of the applied nitrate-N was leached from the unplanted clay soil in 5–6 weeks. Under unsaturated conditions, the clay had little to no tendency to denitrify despite the greater moisture content of the clay and retarded leaching of nitrate in the clay. The planted sand cores had surprisingly large gaseous N loss owing to denitrification, as much as 17% of the nitrate-N. Results from both the clay and sand experiments show that the dynamics of nitrate transport and transformation in unsaturated soils are affected by small, localized variations in the soil moisture content profile, the gaseous diffusion coefficient of the soil, the rate at which the nitrate pulse passes through the soil, the solubility of N2O and N2 and the diffusion of the gasses through the soil

  18. Field determination of vertical permeability to air in the unsaturated zone

    Science.gov (United States)

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  19. Colloid suspension stability and transport through unsaturated porous media

    International Nuclear Information System (INIS)

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media

  20. Reactions of carbonyl compounds with α,β-unsaturated nitriles as a convenient pathway to carbo- and heterocycles

    International Nuclear Information System (INIS)

    Sharanin, Yu A; Goncharenko, M P; Litvinov, Victor P

    1998-01-01

    Published data on the methods for synthesis of carbo- and heterocyclic compounds based on reactions of α,β-unsaturated nitriles with carbonyl compounds and activated phenols are surveyed. It is demonstrated that all these reactions occur via nucleophilic addition of the carbanion generated from a carbonyl compound to the double bond of an unsaturated nitrile (the Michael reaction). The main routes of transformation of the adducts into carbo- and heterocyclic compounds are considered. The methods for regioselective preparation of fused 4H-pyrans or 1,4-dihydropyridines by varying conditions of cyclisation of Michael adducts are discussed. The bibliography includes 249 references.

  1. Estimating unsaturated hydraulic conductivity from soil moisture-tim function

    International Nuclear Information System (INIS)

    El Gendy, R.W.

    2002-01-01

    The unsaturated hydraulic conductivity for soil can be estimated from o(t) function, and the dimensionless soil water content parameter (Se)Se (β - βr)/ (φ - θ)), where θ, is the soil water content at any time (from soil moisture depletion curve l; θ is the residual water content and θ, is the total soil porosity (equals saturation point). Se can be represented as a time function (Se = a t b ), where t, is the measurement time and (a and b) are the regression constants. The recommended equation in this method is given by

  2. Products and mechanism of the reaction of Cl atoms with unsaturated alcohols

    Science.gov (United States)

    Rodríguez, Ana; Rodríguez, Diana; Soto, Amparo; Bravo, Iván; Diaz-de-Mera, Yolanda; Notario, Alberto; Aranda, Alfonso

    2012-04-01

    The products of the chlorine atom initiated oxidation of different unsaturated alcohols were determined at atmospheric pressure and ambient temperature, in a 400 L teflon reaction chamber using GC-FID and GC-MS for the analysis. The major products detected (with molar yields in brackets) are: chloroacetaldehyde (50 ± 8%) and acrolein (27 ± 2%) from allyl alcohol; acetaldehyde (77 ± 11%), chloroacetaldehyde (75 ± 18%), and methyl vinyl ketone (17 ± 2%) from 3-buten-2-ol; acetone (55 ± 4%) and chloroacetaldehyde (59 ± 8%) from 2-methyl-3-buten-2-ol; chloroacetone (18 ± 1%) and methacrolein (8 ± 1%) from 2-methyl-2-propen-1-ol; acetaldehyde (20 ± 1%), crotonaldehyde (6 ± 3%), 3-choloro-4-hydroxy-2-butanone (2 ± 2%) and 2-chloro-propanal (4 ± 5%) from crotyl alcohol; and acetone (24 ± 3%) from 3-methyl-2-buten-1-ol. The experimental data suggests that addition of Cl to the double bond of the unsaturated alcohol is the dominant reaction pathway compared to the H-abstraction channel.

  3. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    Siltanen, P.

    1999-01-01

    This paper discussed in depth the point kinetic equations and the characteristics of the point kinetic reactivity meter, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. (Author)

  4. The role of unsaturations in the Gamma irradiation of crosslinkable polymers

    International Nuclear Information System (INIS)

    Satti, Angel J.; Ciolino, Andrés E.; Andreucetti, Noemí A.; Vallés, Enrique M.

    2015-01-01

    Nowadays, the understanding of the interaction of ionizing radiations with polymeric materials is becoming increasingly important. It is well known that many parameters regarding the synthesis of the polymers noticeably affect the irradiation process. In this work, an analysis of the effect of the type and the position of unsaturations in the molecular structure of crosslinkable polymers is performed. For such purpose, two solid semycristalline metallocenic ethylene 1-olefin copolymers (mEOC) which contain a low concentration of unsaturations from the synthesis, and their hydrogenated samples, were irradiated along with liquid poly(dimethylsiloxane) (PDMS) homo and copolymers containing different location and concentration of vinyl groups, which were structurally tailored through anionic synthesis. The source of irradiation was 60 Co, under vacuum at room temperature, in all the cases. The results indicated that terminal vinyls drastically accelerate the crosslinking to lower doses, even at much lower concentrations than other type and location of unsaturations for both, mEOC and PDMS, type of polymers. - Graphical abstract: Irradiated PEX # (ethylene copolymers with an # amount of 1-hexene -H- or 1-octadecene -OD) and their non-vinyl containing hidrogenated samples (PEX #h), along with irradiated vinyl functionalized siloxane polymers. Numbers within parentheses correspond to the number of vinyl groups per polymer chain for each irradiated polymer. Note that PDVi have been crosslinked with the lower dose of irradiation, although it has only one vinyl group. However, that is a terminal vinyl, while for the other polydimethylsiloxane derivatives, vinyls are within the main chain. - Highlights: • Terminal vinyls from metallocenic synthesis accelerate radioinduced crosslinking. • Trans vinyl structures are generated during irradiation, but vinyldenes are reluctant to react. • The position of the vinyl groups noticeably affects the irradiation process.

  5. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    Directory of Open Access Journals (Sweden)

    Youjun Ji

    2014-01-01

    Full Text Available Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today.

  6. Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, M D [Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa (Russian Federation)

    2013-07-31

    This paper describes a new algorithm for constructing lattice cubature formulae with bounded boundary layer. These formulae are unsaturated (in the sense of Babenko) both with respect to the order and in regard to the property of asymptotic optimality on W{sub 2}{sup m}-spaces, m element of (n/2,∞). Most of the results obtained apply also to W{sub 2}{sup μ}(R{sup n})-spaces with a hypoelliptic multiplier of smoothness μ. Bibliography: 6 titles.

  7. Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules.

    Science.gov (United States)

    Chaudhari, Ashvini U; Paul, Dhiraj; Dhotre, Dhiraj; Kodam, Kisan M

    2017-10-01

    Treatment of textile wastewater containing anthraquinone dye is quite a huge challenge due to its complex aromatic structure and toxicity. Present study deals with the degradation and detoxification of anthraquinone dye reactive blue 4 using aerobic bacterial granules. Bacterial granules effectively decolorized reactive blue 4 at wide range of pH (4.0-11.0) and temperature (20-55 °C) as well as decolorized and tolerated high concentration of reactive blue 4 dye upto 1000 mg l -1 with V max 6.16 ± 0.82 mg l -1 h -1 and K m 227 ± 41 mg l -1 . Metagenomics study evaluates important role of Clostridia, Actinobacteria, and Proteobacterial members in biotransformation and tolerance of high concentrations of reactive blue 4 dye. Up-regulation of xenobiotic degradation and environmental information processing pathways during dye exposure signifies their noteworthy role in dye degradation. Biotransformation of dye was confirmed by significant decrease in the values of total suspended solids, biological and chemical oxygen demand. The metabolites formed after biotransformation was characterized by FT-IR and GC-MS analysis. The reactive blue 4 dye was found to be phytotoxic, cytotoxic and genotoxic whereas its biotransformed product were non-toxic. This study comprehensively illustrates that, bacterial aerobic granules can be used for eco-friendly remediation and detoxification of wastewater containing high organic load of anthraquinone dye. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Unsaturated medium hydrocarbons pollution evaluation

    International Nuclear Information System (INIS)

    Di Luise, G.

    1991-01-01

    When the so called porous unsaturated medium, that's the vertical subsoil section between both the ground and water-table level, is interested by a hydrocarbons spill, the problem to evaluate the pollution becomes difficult: considering, essentially, the natural coexistence in it of two fluids, air and water, and the interactions between them. This paper reports that the problems tend to increase when a third fluid, the pollutant, immiscible with water, is introduced into the medium: a three-phases flow, which presents several analogies with the flow conditions present in an oil-reservoir, will be established. In such a situation, it would be very useful to handle the matter by the commonly used parameters in the oil reservoirs studies such as: residual saturation, relative permeability, phases mobility, to derive a first semiquantitative estimation of the pollution. The subsoil pollution form hydrocarbons agents is one of the worldwide more diffused causes of contamination: such events are generally referable to two main effects: accidental (oil pipeline breakdowns, e.g.), and continuous (underground tanks breaks, industrial plants leakages, e.g.)

  9. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment

    Science.gov (United States)

    Han, Dongmei; Zhou, Tiantian

    2018-04-01

    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  10. Annual report on monitoring of the unsaturated zone and recharge areas at INEL to the state of Idaho INEL Oversight Committee

    International Nuclear Information System (INIS)

    King, B.; Bloomsburg, G.; Horn, D.; Liou, J.; Finnie, J.

    1992-01-01

    During the early years of the INEL, the USGS conducted extensive studies (sitewide drilling program) of the geology and hydrology of the area collecting varied data over the years. The unsaturated zone has not received much attention until recently. The studies that have been done are a result of problems or concerns arising from liquid radioactive waste disposal. The TRA facility has the most information published about its waste disposal activities. The ICPP has less data about the unsaturated zone due to the fact that most waste water disposal has been to a well. Little is known about the effect of waste water disposal at the NRF on the unsaturated zone. Essentially no information was found about waste disposal activities at other facilities, primarily because there does not appear to be any reported problems associated with waste water disposal at these locations. The RWMC has received much attention in the last few years as the result of being priority No. 1 in the superfund clean up of the INEL. A considerable amount of data are available describing the unsaturated zone at the RWMC. These data have been collected to field calibrate a radionuclide migration model for the RWMC

  11. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun

    2017-02-15

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha,beta-unsaturated acyl azoliums. High yields and broad scope as well as the investigation of reaction mechanism are reported.

  12. Stereochemical features of unsaturated aminodiesters - intermediates in the synthesis of Richlocaine

    Directory of Open Access Journals (Sweden)

    Meyrambek Ospanov

    2014-10-01

    Full Text Available The article provides information on the methods for synthesis of unsaturated aminodiesters, which are the key intermediates in the synthesis of N-substituted 2,5-dimethyl-piperidin-4-ones, including 1,2,5-trimetilpieridin-3-one. The developed method includes reaction of methyl ester of methacrylic acid with alkyl (alkenyl amines. The obtained N-alkyl(alkenyl-(2-methyl-2- carbmetoxyethyl methylamine are attached to acetoacetic ester being in the enol form. The optimal conditions for synthesis of N-alkyl(alkenyl-(2-methyl-2-carbethoxyethenemethylamines have been established. Results of gas chromatographic analysis has showed that, at room temperature, the reaction in polar solvents is delayed for two days. In non-polar solvents, the reaction runs with simultaneous distillation of water as an azeotrope with the solvent. Increase of the radical size at N atom has little effect on the reaction rate. Introduction of allyl radical at the nitrogen atom, apparently due to steric hindrance, resulted in lower reactivity of the monoester with allyl radical by condensation with acetoacetic ester. The structure of (1-methyl-2-carbethoxyethene-(2-methyl-2-carbmethoxyethyl methylamine has been studied by PMR spectroscopy. Study of the effect of chirality on the NMR spectra showed that, if the molecule of the organic compound has an asymmetric carbon atom, it may lead to the disappearance of the magnetic equivalence of neighboring protons or group of protons. Presence of an asymmetric carbon atom in b-position to the amino group of enamine leads to the disappearance of the magnetic equivalence of the neighboring protons is observed in the form of two quartets. For enaminodiesters, equilibrium is shifted toward the trans-S-cis conformer where less steric hindrance is pronounced.

  13. Isotope studies of a thick unsaturated zone in a semi-arid area of Southern Africa

    International Nuclear Information System (INIS)

    Butler, M.J.; Verhagen, B.Th.

    2001-01-01

    Unsaturated zone profiles ranging in depth from 8 m to 22 m were obtained by hand augering an aeolian sand cover in the southern reaches of the semi-arid Kalahari thirstland. Moisture contents were rather low (<3 wt.%); in situ moisture chloride concentrations, measured by selective ion electrode following elutriation, are generally <500 ppm. Deuterium in the moisture was measured mass spectrometrically by direct quantitative conversion to hydrogen on zinc metal of moist soil samples. A novel technique of direct equilibration was developed for oxygen-18 analysis. Neither a thermonuclear tritium peak nor a stable isotope evaporation inversion near the surface could be observed in any of the profiles. Remarkable differences both laterally and vertically are observed in most parameters measured between profiles taken a few tens of metres apart. At greater depths, these differences become less pronounced. Recharge estimates based on chloride differ markedly from those obtained from tritium. Although the stable isotope values of the underlying saturated zone are similar to moisture in the deeper sections of the unsaturated zone profiles, the markedly lower chloride concentrations point towards preferential or bypass flow as an important mechanism of ground water recharge in the area. This can be regarded as a benchmark site on account of the wealth of unsaturated zone data as well as the detailed and ongoing rainfall record. (author)

  14. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    Science.gov (United States)

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  15. Alkaline Ceramidase 3 (ACER3) Hydrolyzes Unsaturated Long-chain Ceramides, and Its Down-regulation Inhibits Both Cell Proliferation and Apoptosis*

    OpenAIRE

    Hu, Wei; Xu, Ruijuan; Sun, Wei; Szulc, Zdzislaw M.; Bielawski, Jacek; Obeid, Lina M.; Mao, Cungui

    2010-01-01

    Ceramides with different fatty acyl chains may vary in their physiological or pathological roles; however, it remains unclear how cellular levels of individual ceramide species are regulated. Here, we demonstrate that our previously cloned human alkaline ceramidase 3 (ACER3) specifically controls the hydrolysis of ceramides carrying unsaturated long acyl chains, unsaturated long-chain (ULC) ceramides. In vitro, ACER3 only hydrolyzed C18:1-, C20:1-, C20:4-ceramides, dihydroceramides, and phyto...

  16. A New Mechanism of Canopy Effect in Unsaturated Freezing Soils

    Directory of Open Access Journals (Sweden)

    Teng Jidong

    2016-01-01

    Full Text Available Canopy effect refers to the phenomenon where moisture accumulates underneath an impervious cover. Field observation reveals that canopy effect can take place in relatively dry soils where the groundwater table is deep and can lead to full saturation of the soil immediately underneath the impervious cover. On the other hand, numerical analysis based on existing theories of heat and mass transfer in unsaturated soils can only reproduce a minor amount of moisture accumulation due to an impervious cover, particularly when the groundwater table is relatively deep. In attempt to explain the observed canopy effect in field, this paper proposes a new mechanism of moisture accumulation in unsaturated freezing soils: vapour transfer in such a soil is accelerated by the process of vapour-ice desublimation. A new approach for modelling moisture and heat movements is proposed, in which the phase change of evaporation, condensation and de-sublimation of vapor flow are taken into account. The computed results show that the proposed model can indeed reproduce the unusual moisture accumulation observed in relatively dry soils. The results also demonstrate that soil freezing fed by vapour transfer can result in a water content close to full saturation. Since vapour transfer is seldom considered in geotechnical design, the canopy effect deserves more attention during construction and earth works in cold and arid regions.

  17. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  18. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  19. Hydrocarbons biodegradation in unsaturated porous medium; Biodegradation des hydrocarbures en milieu poreux insature

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C

    2007-12-15

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  20. Modeling aerobic biodegradation in the capillary fringe.

    Science.gov (United States)

    Luo, Jian; Kurt, Zohre; Hou, Deyi; Spain, Jim C

    2015-02-03

    Vapor intrusion from volatile subsurface contaminants can be mitigated by aerobic biodegradation. Laboratory column studies with contaminant sources of chlorobenzene and a mixture of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene showed that contaminants were rapidly degraded in thin reactive zones with high biomass and low substrate concentrations in the vicinity of the capillary fringe. Such behavior was well characterized by a model that includes oxygen-, substrate-, and biomass-dependent biodegradation kinetics along with diffusive transport processes. An analytical solution was derived to provide theoretical support for the simplification of reaction kinetics and the approximation of reactive zone location and mass flux relationships at steady state. Results demonstrate the potential of aerobic natural attenuation in the capillary fringe for preventing contaminant migration in the unsaturated zone. The solution indicates that increasing contaminant mass flux into the column creates a thinner reactive zone and pushes it toward the oxygen boundary, resulting in a shorter distance to the oxygen source and a larger oxygen mass flux that balances the contaminant mass flux. As a consequence, the aerobic biodegradation can reduce high contaminant concentrations to low levels within the capillary fringe and unsaturated zone. The results are consistent with the observations of thin reactive layers at the interface in unsaturated zones. The model considers biomass while including biodegradation in the capillary fringe and unsaturated zone and clearly demonstrates that microbial communities capable of using the contaminants as electron donors may lead to instantaneous degradation kinetics in the capillary fringe and unsaturated zone.

  1. Inhibition of Rho Kinase Induces Antioxidative Molecules and Suppresses Reactive Oxidative Species in Trabecular Meshwork Cells

    Directory of Open Access Journals (Sweden)

    Tomokazu Fujimoto

    2017-01-01

    Full Text Available Purpose. To investigate the effect of rho kinase inhibitors on oxidative stress in trabecular meshwork (TM cells. Methods. TM cells were isolated from the eyes of cynomolgus monkeys. Y-27632 and menadione were used to inhibit rho kinase and induce production of reactive oxygen species (ROS, respectively. The cynomolgus monkey array and 12,613 probes were used in DNA microarray analysis, and the affected genes were categorized using gene ontology analysis. The mRNA levels of the target genes were confirmed by real-time RT-PCR. Intracellular oxidative stress was detected using a fluorescent reagent sensitive to ROS. Cell viability was assessed by the WST-8 assay. Results. Gene ontology analysis revealed upregulation of genes involved in antioxidant activity, and upregulation of catalase was confirmed by real-time RT-PCR after 30 min treatment with Y-27632. Production of ROS was increased by menadione, and the effect was partly suppressed by pretreatment with Y-27632. At a lower dose of menadione, Y-27632 stimulated TM cells and significantly increased their viability following menadione treatment compared to control cells. Conclusion. Using microarray analysis, Y-27632 was shown to upregulate antioxidative genes including catalase and partially reduce ROS production and cell death by oxidative stress caused by menadione.

  2. Polymerization of unsaturated monomers with radiation in the presence of salts

    International Nuclear Information System (INIS)

    Phalangas, C.J.; Restaino, A.J.; Yun, H.B.

    1977-01-01

    Improved process is claimed for the preparation of water-soluble, substantially linear, high molecular weight polymers, comprising irradiating an aqueous solution of an ethylenically unsaturated monomer and a water-soluble salt under controlled conditions of concentration, radiation intensity, conversion, and total radiation dose. The polymers may be obtained in aqueous gel form or recovered in the form of powder. The polymers are useful as flocculating, thickening, and mobility control agents

  3. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    Science.gov (United States)

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  4. Preparation of Acetylated Guar Gum – Unsaturated Polyester Composites & Effect of Water on Their Properties

    Directory of Open Access Journals (Sweden)

    David D’Melo

    2012-07-01

    Full Text Available Guar gum has seen extensive use in blends, however, its application as a filler in thermoset composites has as yet not been investigated. The effect of the addition of guar gum and its acetyl derivatives on the kinetics of water diffusion in unsaturated polyester composites was studied. The effect of water on the mechanical properties of the composites was studied with respect to the nature of filler, filler concentration and time of immersion. All the mechanical properties were observed to decrease on exposure to water. Further, it was observed that acetylated guar gum, with a degree of substitution of 0.21, showed the best mechanical properties, surpassing the other filled composites and that of the pure unsaturated polyester. Thus, acetylated guar gum showed promise as eco-friendly filler in composite formulation.

  5. Electron bombardment cross-linking of coating materials. Pt.2. Analysis of patent literature on formulating radiation-hardenable binders

    International Nuclear Information System (INIS)

    Mileo, J.-C.

    1976-01-01

    The process of drying paints and varnishes by electron irradiation is analyzed from the chemical standpoint. A review is made of the different methods of producing radiation hardenable resins that have resulted in abundant patent literature. These resins are classified according to the nature of the reactive unsaturations they contain: unsaturations of the maleic ester type; simple (meth)acrylic esters and amides; β-hydroxyl (meth)acrylic esters, their (un)saturated esters and other derivatives; siloxanes; maleimides; allylic unsaturations; saturated resins [fr

  6. Solid radiation curable polyene compositions containing liquid polythiols and solid styrene-allyl copolymer based polyenes

    International Nuclear Information System (INIS)

    Morgan, C.R.

    1977-01-01

    Novel styrene-allyl alcohol copolymer based solid polyene compositions which when mixed with liquid polythiols can form solid curable polyene-polythiol systems are claimed. These solid polyenes, containing at least two reactive carbon-to-carbon unsaturated bonds, are urethane or ester derivatives of styrene-allyl alcohol copolymers. The solid polyenes are prepared by treating the hydroxyl groups of a styrene-allyl alcohol copolymer with a reactive unsaturated isocyanate, e.g., allyl isocyanate or a reactive unsaturated carboxylic acid, e.g., acrylic acid. Upon exposure to a free radical generator, e.g., actinic radiation, the solid polyene-polythiol compositions cure to solid, insoluble, chemically resistant, cross-linked polythioether products. Since the solid polyene-liquid polythiol composition can be cured in a solid state, such a curable system finds particular use in preparation of coatings, imaged surfaces such as photoresists, particularly solder-resistant photoresists, printing plates, etc

  7. The resistance of titanium to pitting, microbially induced corrosion and corrosion in unsaturated conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Ikeda, B.M.

    1997-04-01

    Titanium and its alloys (Grades-2, -12, -16) are candidate materials for Canadian nuclear waste containers on the basis of their apparent immunity to many localized corrosion processes. This simplifies markedly the effort needed to justify the use of these materials and to develop models to predict the lifetimes of containers. Here we review the pitting, microbially influenced corrosion (MIC), and corrosion under unsaturated conditions, of titanium. For all these processes, the properties of the passive oxide film are paramount in determining the metal's resistance to corrosion. A review of these oxide properties is included and the conditions to which the metal must be exposed if localized corrosion is to occur are defined. Since these conditions cannot be achieved under Canadian waste vault conditions, it can be concluded that pitting and MIC will not occur and that corrosion under unsaturated conditions is extremely unlikely. (author)

  8. Determination of Transport Properties From Flowing Fluid Temperature Logging In Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-01-01

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper (Mukhopadhyay et al., 2008), we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks

  9. Fourier Transform Infrared Imaging Shows Reduced Unsaturated Lipid Content in the Hippocampus of a Mouse Model of Alzheimer’s Disease

    OpenAIRE

    Leskovjan, Andreana C.; Kretlow, Ariane; Miller, Lisa M.

    2010-01-01

    Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer’s disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier Transform Infrared Imaging ...

  10. Experimental Determination of Hydraulic Properties of Unsaturated Calcarenites

    Science.gov (United States)

    Turturro, Antonietta Celeste; Andriani, Gioacchino Francesco; Clementina Caputo, Maria; Maggi, Sabino

    2013-04-01

    Understanding hydraulic properties is essential in the modeling of flow and solute transport through the vadose zone, to which problems of soil and groundwater pollution are related. The vadose zone, in fact, is of great importance in controlling groundwater recharge and transport of contaminants into and through the subsoil. The aim of this work is to determine experimentally in laboratory the hydraulic properties of unsaturated calcarenites using an approach including petrophysical determinations and methods for measuring water retention. For this purpose, samples of calcarenites belonging to the Calcarenite di Gravina Fm.(Pliocene-early Pleistocene), came from two different quarry districts located in Southern Italy (Canosa di Puglia and Massafra), were utilized. The water retention function, θ(h), which binds the water content, θ, to water potential, h, was determined in the laboratory by means two different experimental methods: the WP4-T psychrometer and the suction table. At last, a simple mathematical equation represented by van Genuchten's model is fitted to the experimental data and the unknown empirical parameters of this model are determined. Textural analysis on thin sections using optical petrographic microscopy and evaluation of total and effective porosity by means of standard geotechnical laboratory tests, mercury intrusion porosimetry and image analysis were also performed. In particular, a comparison between mercury porosimetry data and results of photomicrograph computer analysis through the methods of quantitative stereology was employed for providing pore size distributions. The results of this study identify the relationship between the hydraulic behavior, described by the water retention function, and pore size distribution for the calcarenites that are not easy to hydraulically characterize. This relationship could represent a useful tool to infer the unsaturated hydraulic properties of calcarenites and in general this approach could be

  11. Validation studies for assessing unsaturated flow and transport through fractured rock

    International Nuclear Information System (INIS)

    Bassett, R.L.; Neuman, S.P.; Rasmussen, T.C.; Guzman, A.; Davidson, G.R.; Lohrstorfer, C.F.

    1994-08-01

    *The objectives of this contract are to examine hypotheses and conceptual models concerning unsaturated flow and transport through heterogeneous fractured rock and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models. Important new information is presented such as the application and evaluation of procedures for estimating hydraulic, pneumatic, and solute transport coefficients for a range of thermal regimes. A field heater experiment was designed that focused on identifying the suitability of existing monitoring equipment to obtain required data. A reliable method was developed for conducting and interpreting tests for air permeability using a straddle-packer arrangement. Detailed studies of fracture flow from Queen Creek into the Magina Copper Company ore haulage tunnel have been initiated. These studies will provide data on travel time for transport of water and solute in unsaturated tuff. The collection of rainfall runoff, and infiltration data at two small watersheds at the Apache Leap Tuff Site enabled us to evaluate the quantity and rate of water infiltrating into the subsurface via either fractures or matrix. Characterization methods for hydraulic parameters relevant to Weigh-level waste transport, including fracture apertures, transmissivity, matrix porosity, and fracture wetting front propagation velocities, were developed

  12. Validation studies for assessing unsaturated flow and transport through fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, R.L.; Neuman, S.P.; Rasmussen, T.C.; Guzman, A.; Davidson, G.R.; Lohrstorfer, C.F. [Arizona Univ., Tucson, AZ (United States). Dept. of Hydrology and Water Resources

    1994-08-01

    *The objectives of this contract are to examine hypotheses and conceptual models concerning unsaturated flow and transport through heterogeneous fractured rock and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models. Important new information is presented such as the application and evaluation of procedures for estimating hydraulic, pneumatic, and solute transport coefficients for a range of thermal regimes. A field heater experiment was designed that focused on identifying the suitability of existing monitoring equipment to obtain required data. A reliable method was developed for conducting and interpreting tests for air permeability using a straddle-packer arrangement. Detailed studies of fracture flow from Queen Creek into the Magina Copper Company ore haulage tunnel have been initiated. These studies will provide data on travel time for transport of water and solute in unsaturated tuff. The collection of rainfall runoff, and infiltration data at two small watersheds at the Apache Leap Tuff Site enabled us to evaluate the quantity and rate of water infiltrating into the subsurface via either fractures or matrix. Characterization methods for hydraulic parameters relevant to Weigh-level waste transport, including fracture apertures, transmissivity, matrix porosity, and fracture wetting front propagation velocities, were developed.

  13. MECHANICAL AND THERMAL PROPERTIES OF COMPOSITES FROM UNSATURATED POLYESTER FILLED WITH OIL PALM ASH

    Directory of Open Access Journals (Sweden)

    M.S. Ibrahim

    2012-06-01

    Full Text Available Oil palm ash (OPA is available in abundance, is renewable, can be obtained at no cost and shows good performance at high thermal conditions. Combinations of the unsaturated polyester with natural fillers have been reported to improve the mechanical and thermal properties of composites. Utilisation of oil palm ash as a filler in the manufacture of polymer composites can significantly reduce the requirement for other binders or matrixes of composite materials. This research uses oil palm ash as a filler to form composites through the investigation of the effect of different contents of filler on the properties of OPA-filled unsaturated polyester (UP/OPA composites. The effect of different volume fractions, i.e., 0, 10, 20 and 30 vol.% of oil palm ash introduced into 100, 90, 80 and 70 vol.% of an unsaturated polyester matrix on the composite mechanical properties, i.e., tensile and flexural, has been studied, together with thermal gravimetric analysis (TGA and differential scanning calorimetric (DSC. Specimens were prepared using compression moulding techniques based on the ASTM D790 and D5083 standards for flexural and tensile tests, respectively. The tensile and flexural mechanical properties of UP/OPA composites were improved in modulus by increasing the filler content. Thermal stability of the composites increased as the OPA filler content was increased, which was a logical consequence because of the high thermal stability of the silica compound of the OPA filler compared with that of the UP matrix. The results from the surface electron microscope (SEM analysis were the extension of mechanical and thermal tests.

  14. Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage.

    Science.gov (United States)

    Premkumar, Daniel R; Jane, Esther P; Agostino, Naomi R; DiDomenico, Joseph D; Pollack, Ian F

    2013-02-01

    Glioblastomas are invasive tumors with poor prognosis despite current therapies. Histone deacetylase inhibitors (HDACIs) represent a class of agents that can modulate gene expression to reduce tumor growth, and we and others have noted some antiglioma activity from HDACIs, such as vorinostat, although insufficient to warrant use as monotherapy. We have recently demonstrated that proteasome inhibitors, such as bortezomib, dramatically sensitized highly resistant glioma cells to apoptosis induction, suggesting that proteasomal inhibition may be a promising combination strategy for glioma therapeutics. In this study, we examined whether bortezomib could enhance response to HDAC inhibition in glioma cells. Although primary cells from glioblastoma multiforme (GBM) patients and established glioma cell lines did not show significant induction of apoptosis with vorinostat treatment alone, the combination of vorinostat plus bortezomib significantly enhanced apoptosis. The enhanced efficacy was due to proapoptotic mitochondrial injury and increased generation of reactive oxygen species. Our results also revealed that combination of bortezomib with vorinostat enhanced apoptosis by increasing Mcl-1 cleavage, Noxa upregulation, Bak and Bax activation, and cytochrome c release. Further downregulation of Mcl-1 using shRNA enhanced cell killing by the bortezomib/vorinostat combination. Vorinostat induced a rapid and sustained phosphorylation of histone H2AX in primary GBM and T98G cells, and this effect was significantly enhanced by co-administration of bortezomib. Vorinostat/bortezomib combination also induced Rad51 downregulation, which plays an important role in the synergistic enhancement of DNA damage and apoptosis. The significantly enhanced antitumor activity that results from the combination of bortezomib and HDACIs offers promise as a novel treatment for glioma patients. Copyright © 2011 Wiley Periodicals, Inc.

  15. Combined impact of branching and unsaturation on the autoignition of binary blends in a motored engine

    KAUST Repository

    Kang, Dongil

    2014-11-20

    The impact of a branched and unsaturated compound (diisobutylene) mixed with simple hydrocarbons such as n-heptane and isooctane in binary blends on the autoignition behavior were investigated in a modified cooperative fuel research (CFR) engine at an equivlanece ratio of 0.5 and intake temperature of 120 °C. From this test condition, a homogeneous charge of fuel and intake air can be achieved. The test fuels were prepared by addition of 5-20 vol % diisobutylene into n-heptane and isooctane. The engine compression ratio (CR) was gradually increased from the lowest point to the point where significant high temperature heat release (HTHR) was observed, and this point is also referred to as the critical compression ratio (CCR). Heat release analysis showed that each n-heptane blend had a noticeable low temperature heat release (LTHR), which was not observed in the isooctane blends. The gradual addition of diisobutylene into each primary reference fuel contributed to retarded high temperature heat release in these binary blends, increasing the in-cylinder temperature and decreasing formation of CO. The 15 and 20 vol % blends of diisobutylene in isooctane were not able to reach high temperature heat release in the CFR engine system under these test conditions. The fundamental ignition behavior such as CCR and calculated % LTHR show the impact of the presence of the C-C double bond on ignition reactivity. Species concentration profiles obtained in condensed products from the engine exhaust were measured via gas chromatrography-mass spectrometry and -flame ionization detector. The major intermediate species for each blend were captured at a compression ratio selected just before the high temperature heat release was observed. Most intermediate species were derived from n-heptane and isooctane, while diisobutylene rarely participated in forming any major species, with the exception of the formation of 4,4-dimethyl-2-pentanone. Addition of diisobutylene exhibited opposite

  16. Combined impact of branching and unsaturation on the autoignition of binary blends in a motored engine

    KAUST Repository

    Kang, Dongil; Kirby, Stephen R.; Agudelo, John Ramiro; Lapuerta, Magí n; Al-Qurashi, Khalid; Boehman, André Louis

    2014-01-01

    The impact of a branched and unsaturated compound (diisobutylene) mixed with simple hydrocarbons such as n-heptane and isooctane in binary blends on the autoignition behavior were investigated in a modified cooperative fuel research (CFR) engine at an equivlanece ratio of 0.5 and intake temperature of 120 °C. From this test condition, a homogeneous charge of fuel and intake air can be achieved. The test fuels were prepared by addition of 5-20 vol % diisobutylene into n-heptane and isooctane. The engine compression ratio (CR) was gradually increased from the lowest point to the point where significant high temperature heat release (HTHR) was observed, and this point is also referred to as the critical compression ratio (CCR). Heat release analysis showed that each n-heptane blend had a noticeable low temperature heat release (LTHR), which was not observed in the isooctane blends. The gradual addition of diisobutylene into each primary reference fuel contributed to retarded high temperature heat release in these binary blends, increasing the in-cylinder temperature and decreasing formation of CO. The 15 and 20 vol % blends of diisobutylene in isooctane were not able to reach high temperature heat release in the CFR engine system under these test conditions. The fundamental ignition behavior such as CCR and calculated % LTHR show the impact of the presence of the C-C double bond on ignition reactivity. Species concentration profiles obtained in condensed products from the engine exhaust were measured via gas chromatrography-mass spectrometry and -flame ionization detector. The major intermediate species for each blend were captured at a compression ratio selected just before the high temperature heat release was observed. Most intermediate species were derived from n-heptane and isooctane, while diisobutylene rarely participated in forming any major species, with the exception of the formation of 4,4-dimethyl-2-pentanone. Addition of diisobutylene exhibited opposite

  17. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous

  18. Hypolipidemic action of garlic unsaturated oils in irradiated mice

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1988-01-01

    Adult male Swiss albino mice were injected with 74 KBq g -1 body weight of radiocalcium 45 Ca in the presence and absence of unsaturated oils of garlic, and changes in the total lipids and triglycerides contents of liver were observed at various intervals from 1 to 14 days. The results obtained indic ate that the garlic oils prevented rapid increase in hepatic total lipids and triglycerides induced by radiocalcium and the values reached normal values earlier in garlic-treated than in irradiated animals. Possible mechanism(s) underlying hypolipidemic action of garlic oil have been discussed. (author). 22 refs

  19. Thermal conductivity of unsaturated clay-rocks

    Directory of Open Access Journals (Sweden)

    D. Jougnot

    2010-01-01

    Full Text Available The parameters used to describe the electrical conductivity of a porous material can be used to describe also its thermal conductivity. A new relationship is developed to connect the thermal conductivity of an unsaturated porous material to the thermal conductivity of the different phases of the composite, and two electrical parameters called the first and second Archie's exponents. A good agreement is obtained between the new model and thermal conductivity measurements performed using packs of glass beads and core samples of the Callovo-Oxfordian clay-rocks at different saturations of the water phase. We showed that the three model parameters optimised to fit the new model against experimental data (namely the thermal conductivity of the solid phase and the two Archie's exponents are consistent with independent estimates. We also observed that the anisotropy of the effective thermal conductivity of the Callovo-Oxfordian clay-rock was mainly due to the anisotropy of the thermal conductivity of the solid phase.

  20. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    Science.gov (United States)

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  1. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Ekhtear [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Ota, Akinobu, E-mail: aota@aichi-med-u.ac.jp [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Karnan, Sivasundaram; Damdindorj, Lkhagvasuren [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Takahashi, Miyuki [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Konishi, Yuko; Konishi, Hiroyuki; Hosokawa, Yoshitaka [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan)

    2013-12-15

    Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, an anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.

  2. Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss

    Science.gov (United States)

    Golubev, V.; Whittington, P.

    2018-04-01

    Due to the non-vascular nature of Sphagnum mosses, the capitula (growing surface) of the moss must rely solely on capillary action to receive water from beneath. Moss subsides and swells in accordance with water table levels, an effect called "mire-breathing", which has been thought to be a self-preservation mechanism, although no systematic studies have been done to demonstrate exactly how volume change affects hydrophysical properties of moss. In this study, the unsaturated hydraulic conductivity (Kunsat) and water content of two different species of Sphagnum moss were measured at different compression rates, up to the maximum of 77%. The findings show that the Kunsat increases by up to an order of magnitude (10×) with compression up to a certain bulk density of the moss, after which higher levels of compression result in lowered unsaturated hydraulic conductivity. This was coupled with an increase in soil water retention with increased compression. The increase of the Kunsat with compression suggests that the mire-breathing effect should be considered a self-preservation mechanism to provide sufficient amount of water to growing moss in times of low water availability.

  3. Physiologically based in silico modelling to examine DNA adduct formation by different food-borne a,ß-unsaturated aldehydes at realistic low dietary exposure levels

    NARCIS (Netherlands)

    Kiwamoto, R.

    2015-01-01

    Abstract (R.Kiwamoto ISBN 978-94-6257-284-3)

    Various α,β-unsaturated aldehydes are present in fruits, vegetables, spices, or processed products containing these items as natural constituents or as added food flavouring agents. Because of the α,β-unsaturated aldehyde moiety the β carbon in

  4. Reactive transport modelling to infer changes in soil hydraulic properties induced by non-conventional water irrigation

    Science.gov (United States)

    Valdes-Abellan, Javier; Jiménez-Martínez, Joaquín; Candela, Lucila; Jacques, Diederik; Kohfahl, Claus; Tamoh, Karim

    2017-06-01

    The use of non-conventional water (e.g., treated wastewater, desalinated water) for different purposes is increasing in many water scarce regions of the world. Its use for irrigation may have potential drawbacks, because of mineral dissolution/precipitation processes, such as changes in soil physical and hydraulic properties (e.g., porosity, permeability), modifying infiltration and aquifer recharge processes or blocking root growth. Prediction of soil and groundwater impacts is essential for achieving sustainable agricultural practices. A numerical model to solve unsaturated water flow and non-isothermal multicomponent reactive transport has been modified implementing the spatio-temporal evolution of soil physical and hydraulic properties. A long-term process simulation (30 years) of agricultural irrigation with desalinated water, based on a calibrated/validated 1D numerical model in a semi-arid region, is presented. Different scenarios conditioning reactive transport (i.e., rainwater irrigation, lack of gypsum in the soil profile, and lower partial pressure of CO2 (pCO2)) have also been considered. Results show that although boundary conditions and mineral soil composition highly influence the reactive processes, dissolution/precipitation of carbonate species is triggered mainly by pCO2, closely related to plant roots. Calcite dissolution occurs in the root zone, precipitation takes place under it and at the soil surface, which will lead a root growth blockage and a direct soil evaporation decrease, respectively. For the studied soil, a gypsum dissolution up to 40 cm depth is expected at long-term, with a general increase of porosity and hydraulic conductivity.

  5. A set of constitutive relationships accounting for residual NAPL in the unsaturated zone.

    Science.gov (United States)

    Wipfler, E L; van der Zee, S E

    2001-07-01

    Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.

  6. Multicomponent synthesis of unsymmetrical unsaturated N-heterocyclic carbene precursors and their related transition-metal complexes

    KAUST Repository

    Queval, Pierre

    2013-12-04

    A low-cost, modular, and easily scalable multicomponent procedure affording access in good yields and excellent selectivity (up to 93 %) to a wide range of (a)chiral unsymmetrical 1-aryl-3-cycloalkyl-imidazolium salts is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands were evaluated and evidenced strong electron donor ability, high steric discrimination, and modular steric demand. A low-cost, modular, and easily scalable multicomponent procedure, affording access to a wide range of (a)chiral unsymmetrical 1-aryl-3-cycloalkyl- imidazolium salts in good yields and excellent selectivities, is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands were evaluated and evidenced strong electron-donor ability, high steric discrimination, and modular steric demand. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Experimental evidence of lateral flow in unsaturated homogeneous isotropic sloping soil due to rainfall

    NARCIS (Netherlands)

    Sinai, G.; Dirksen, C.

    2006-01-01

    This paper describes laboratory experimental evidence for lateral flow in the top layer of unsaturated sloping soil due to rainfall. Water was applied uniformly on horizontal and V-shaped surfaces of fine sand, at rates about 100 times smaller than the saturated hydraulic conductivity. Flow regimes

  8. The p53-reactivating small-molecule RITA enhances cisplatin-induced cytotoxicity and apoptosis in head and neck cancer.

    Science.gov (United States)

    Roh, Jong-Lyel; Ko, Jung Ho; Moon, Soo Jin; Ryu, Chang Hwan; Choi, Jun Young; Koch, Wayne M

    2012-12-01

    We evaluated whether the restoration of p53 function by the p53-reactivating small molecule RITA (reactivation of p53 and induction of tumor cell apoptosis enhances cisplatin-induced cytotoxicity and apoptosis in head-and-neck cancer (HNC). RITA induced prominent accumulation and reactivation of p53 in a wild-type TP53-bearing HNC cell line. RITA showed maximal growth suppression in tumor cells showing MDM2-dependent p53 degradation. RITA promoted apoptosis in association with upregulation of p21, BAX, and cleaved caspase-3; notably, the apoptotic response was blocked by pifithrin-α, demonstrating its p53 dependence. With increasing concentrations, RITA strongly induced apoptosis rather than G2-phase arrest. In combination therapy, RITA enhanced cisplatin-induced growth inhibition and apoptosis of HNC cells invitro and in vivo. Our data suggest that the restoration of p53 tumor-suppressive function by RITA enhances the cytotoxicity and apoptosis of cisplatin, an action that may offer an attractive strategy for treating HNC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. The resistance of titanium to pitting, microbially induced corrosion and corrosion in unsaturated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D W; Ikeda, B M

    1997-04-01

    Titanium and its alloys (Grades-2, -12, -16) are candidate materials for Canadian nuclear waste containers on the basis of their apparent immunity to many localized corrosion processes. This simplifies markedly the effort needed to justify the use of these materials and to develop models to predict the lifetimes of containers. Here we review the pitting, microbially influenced corrosion (MIC), and corrosion under unsaturated conditions, of titanium. For all these processes, the properties of the passive oxide film are paramount in determining the metal`s resistance to corrosion. A review of these oxide properties is included and the conditions to which the metal must be exposed if localized corrosion is to occur are defined. Since these conditions cannot be achieved under Canadian waste vault conditions, it can be concluded that pitting and MIC will not occur and that corrosion under unsaturated conditions is extremely unlikely. (author) 114 refs., 1 tab., 18 figs.

  10. Radiation-induced polymerization of unsaturated phospholipid mixtures for the synthesis of artificial red cells

    Science.gov (United States)

    Hosoi, F.; Omichi, H.; Akama, K.; Awai, K.; Endo, S.; Nakano, Y.

    1997-08-01

    Radiation induced polymerization of phospholipid containing unsaturated acyl chains was applied to the synthesis of artificial red cells. Vesicles of 1,2-bis-(2,4-octadecadienoyl)-phosphatidylcholine (DODPC) and 1-stearoyl-2-(2,4-octadecadienoyl)-phosphatidylcholine (AODPC) were irradiated by 60Co γ-rays to obtain polymerized bilayer structure of these monomers. It was found that the polymerization of unsaturated groups located at 2-acyl chain of DODPC polymerized faster than those of AODPC. The difference was explained by the packed state of these monomers in the bilayer vesicles. The artificial red cell was obtained by irradiating the mixture of DODPC or AODPC with hemoglobin, cholesterol and palmitic acid sodium salt. The integrity of the irradiated hemoglobin in the vesicle was maintained by keeping the suspended solution at low temperature. On the other hand, oxidation of heme part became remarkable when the vesicle was kept at 37°C. The presence of extra hemoglobin outside the vesicle was found useful to prevent this oxidation.

  11. A semi-analytical solution for slug tests in an unconfined aquifer considering unsaturated flow

    Science.gov (United States)

    Sun, Hongbing

    2016-01-01

    A semi-analytical solution considering the vertical unsaturated flow is developed for groundwater flow in response to a slug test in an unconfined aquifer in Laplace space. The new solution incorporates the effects of partial penetrating, anisotropy, vertical unsaturated flow, and a moving water table boundary. Compared to the Kansas Geological Survey (KGS) model, the new solution can significantly improve the fittings of the modeled to the measured hydraulic heads at the late stage of slug tests in an unconfined aquifer, particularly when the slug well has a partially submerged screen and moisture drainage above the water table is significant. The radial hydraulic conductivities estimated with the new solution are comparable to those from the KGS, Bouwer and Rice, and Hvorslev methods. In addition, the new solution also can be used to examine the vertical conductivity, specific storage, specific yield, and the moisture retention parameters in an unconfined aquifer based on slug test data.

  12. Parametric analysis of a TOUGH2 model for the unsaturated zone at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y.; Mishra, S.; Dunlap, B. [CRWMS M& O/INTERA, Inc., Las Vegas, NV (United States)

    1995-03-01

    Yucca Mountain in Nevada is currently being investigated for suitability as a potential site for the disposal of high-level radioactive waste and spent nuclear fuel. As the most important natural barrier against radionuclide migration to the accessible environment, the unsaturated zone at Yucca mountain is a key constituent in assessing the ambient geohydrology. A three-dimensional site-scale TOUGH2 model of the unsaturated zone is currently under development by Lawrence Berkeley Laboratory (LBL) and the United States Geological Survey (USGS) consists of six hydrogeologic units - TCw (Tiva Canyon welded), PTn (Paintbrush nonwelded), TSw (Topopah Spring welded), TSv (Topopah Spring welded-vitrophyre), CHnz (Calico Hills nonwelded-vitric), and CHnz (Calico Hills nonwelded-zeolitic), which are further subdivided into seventeen layers to represent additional lithologic detail. Based on the work of Klavetter and Peters, the fractured units TCw and TSw are treated as equivalent continua with specified threshold saturation for triggering fracture flow.

  13. Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel

    Science.gov (United States)

    Zilberbrand, M.; Rosenthal, E.; Shachnai, E.

    2001-08-01

    The coastal city of Tel Aviv was founded at the beginning of the 20th century. The number of its inhabitants and its water consumption increased rapidly. This study analyses a 15-year record (1934-1948) of pre-industrial development of groundwater chemistry in the urban area. Archive data on concentrations of major ions, dissolved gases (CO 2 and O 2), organic matter, and pH were available for each half-year during the period of 1934-1948. The major factors causing changes in the chemistry of groundwater flowing in three sandy sub-aquifers have been seawater encroachment due to overpumping, and infiltration of effluents from pit-latrine collectors. Influence of these factors decreases with depth. Landward-penetrating seawater passed through clayey coastal sediments, interbedded among sands and calcareous sandstones, and spread into the Kurkar Group aquifer. This has led to exchange of sodium (dominant in seawater) with calcium adsorbed on clay particles, enriching groundwater with calcium. Intensity of cation exchange decreases inland and with depth. Infiltration of pit-latrine effluents has introduced large amounts of ammonium into the unsaturated zone. Its rapid oxidation in unsaturated sediments has caused massive nitrate production, accompanied by pore-water acidification. This process induces dissolution of vadose carbonate, resulting in enrichment of groundwater recharge in calcium. Anthropogenically induced dissolution of calcite in the unsaturated zone has been the major factor for the increase of Ca 2+ concentration in groundwater, accounting for about 80% of this increase. In the interface zone, an additional 20% of calcium has been supplied by cation exchange. Owing to pH increase caused by denitrification in the aquifer, Ca 2+-rich waters supersaturated with calcite could be formed, especially in the capillary fringe of the uppermost sub-aquifer, which could induce calcite precipitation and ultimately lead to the cementation of sandy aquifers. Urban

  14. Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2016-05-01

    Full Text Available Due to the high nonlinearity of the three-dimensional (3-D unsaturated-saturated water flow equation, using a fully 3-D numerical model is computationally expensive for large scale applications. A new unsaturated-saturated water flow model is developed in this paper based on the vertical/horizontal splitting (VHS concept to split the 3-D unsaturated-saturated Richards’ equation into a two-dimensional (2-D horizontal equation and a one-dimensional (1-D vertical equation. The horizontal plane of average head gradient in the triangular prism element is derived to split the 3-D equation into the 2-D equation. The lateral flow in the horizontal plane of average head gradient represented by the 2-D equation is then calculated by the water balance method. The 1-D vertical equation is discretized by the finite difference method. The two equations are solved simultaneously by coupling them into a unified nonlinear system with a single matrix. Three synthetic cases are used to evaluate the developed model code by comparing the modeling results with those of Hydrus1D, SWMS2D and FEFLOW. We further apply the model to regional-scale modeling to simulate groundwater table fluctuations for assessing the model applicability in complex conditions. The proposed modeling method is found to be accurate with respect to measurements.

  15. Inhibition of steroid 5 alpha-reductase by specific aliphatic unsaturated fatty acids.

    Science.gov (United States)

    Liang, T; Liao, S

    1992-01-01

    Human or rat microsomal 5 alpha-reductase activity, as measured by enzymic conversion of testosterone into 5 alpha-dihydrotestosterone or by binding of a competitive inhibitor, [3H]17 beta-NN-diethulcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA) to the reductase, is inhibited by low concentrations (less than 10 microM) of certain polyunsaturated fatty acids. The relative inhibitory potencies of unsaturated fatty acids are, in decreasing order: gamma-linolenic acid greater than cis-4,7,10,13,16,19-docosahexaenoic acid = cis-6,9,12,15-octatetraenoic acid = arachidonic acid = alpha-linolenic acid greater than linoleic acid greater than palmitoleic acid greater than oleic acid greater than myristoleic acid. Other unsaturated fatty acids such as undecylenic acid, erucic acid and nervonic acid, are inactive. The methyl esters and alcohol analogues of these compounds, glycerols, phospholipids, saturated fatty acids, retinoids and carotenes were inactive even at 0.2 mM. The results of the binding assay and the enzymic assay correlated well except for elaidic acid and linolelaidic acid, the trans isomers of oleic acid and linoleic acid respectively, which were much less active than their cis isomers in the binding assay but were as potent in the enzymic assay. gamma-Linolenic acid had no effect on the activities of two other rat liver microsomal enzymes: NADH:menadione reductase and glucuronosyl transferase. gamma-Linolenic acid, the most potent inhibitor tested, decreased the Vmax. and increased Km values of substrates, NADPH and testosterone, and promoted dissociation of [3H]4-MA from the microsomal reductase. gamma-Linolenic acid, but not the corresponding saturated fatty acid (stearic acid), inhibited the 5 alpha-reductase activity, but not the 17 beta-dehydrogenase activity, of human prostate cancer cells in culture. These results suggest that unsaturated fatty acids may play an important role in regulating androgen action in target cells. PMID:1637346

  16. Hypoxia promotes Mycobacterium tuberculosis-specific up-regulation of granulysin in human T cells.

    Science.gov (United States)

    Zenk, Sebastian F; Vollmer, Michael; Schercher, Esra; Kallert, Stephanie; Kubis, Jan; Stenger, Steffen

    2016-06-01

    Oxygen tension affects local immune responses in inflammation and infection. In tuberculosis mycobacteria avoid hypoxic areas and preferentially persist and reactivate in the oxygen-rich apex of the lung. Oxygen restriction activates antimicrobial effector mechanisms in macrophages and restricts growth of intracellular Mycobacterium tuberculosis (M.Tb). The effect of oxygen restriction on T cell-mediated antimicrobial effector mechanisms is unknown. Therefore we determined the influence of hypoxia on the expression of granulysin, an antimicrobial peptide of lymphocytes. Hypoxia increased the antigen-specific up-regulation of granulysin mRNA and protein in human CD4(+) and CD8(+) T lymphocytes. This observation was functionally relevant, because oxygen restriction supported the growth-limiting effect of antigen-specific T cells against virulent M.Tb residing in primary human macrophages. Our results provide evidence that oxygen restriction promotes the expression of granulysin and suggest that this effect-in conjunction with additional T cell-mediated immune responses-supports protection against mycobacteria. The therapeutic modulation of oxygen availability may offer a new strategy for the host-directed therapy of infectious diseases with intracellular pathogens.

  17. Unsaturated flow dynamics during irrigation with wastewater: field and modelling study

    Science.gov (United States)

    Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.

    2012-04-01

    To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters

  18. Plutonium-239 sorption and transport on/in unsaturated sediments. Comparison of batch and column experiments for determining sorption coefficients

    International Nuclear Information System (INIS)

    Jinchuan Xie; Jiachun Lu; Xiaohua Zhou; Xuhui Wang; Mei Li; Lili Du; Yueheng Liu; Guoqing Zhou

    2013-01-01

    Sorption (distribution) coefficients of plutonium were most often derived by static batch experiments. However, it is not clear how unsaturated flow conditions including moisture content and pore water velocity change the sorption coefficients. Transport experiments of plutonium through the unsaturated sediments packed into the columns were then performed in order to determine the sorption coefficients (column-K ds ). Static batch experiments were also conducted to obtain batch-K ds and then compare the differences between batch-K ds and column-K ds . The results show that unsaturated flow conditions had no significant effect on column-K ds , and the average column-K d value was 1.74 ± 0.02 m 3 /kg. By comparison, batch-K d values spanned several orders of magnitude, regardless of the specified liquid-solid conditions. Moreover, the batch-K d (22.7 m 3 /kg) at the standard L/S (4 mL/g) recommended by ASTM D 4319 was over an order of magnitude larger than the average column-K d . (author)

  19. Exploration of a mechanism for the production of highly unsaturated fatty acids in Scenedesmus sp. at low temperature grown on oil crop residue based medium.

    Science.gov (United States)

    Lu, Qian; Li, Jun; Wang, Jinghan; Li, Kun; Li, Jingjing; Han, Pei; Chen, Paul; Zhou, Wenguang

    2017-11-01

    The ability of algae to produce lipids comprising of unsaturated fatty acids varies with strains and culture conditions. This study investigates the effect of temperature on the production of unsaturated fatty acids in Scenedesmus sp. grown on oil crop residue based medium. At low temperature (10°C), synthesis of lipids compromising of high contents of unsaturated fatty acids took place primarily in the early stage while protein accumulation mainly occurred in the late stage. This stepwise lipid-protein synthesis process was found to be associated with the contents of acetyl-CoA and α-KG in the algal cells. A mechanism was proposed and tested through simulation experiments which quantified the carbon flux allocation in algal cells at different cultivation stages. It is concluded that low culture temperature such as 10°C is suitable for the production of lipids comprising of unsaturated fatty acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A framework for sourcing of evaporation between saturated and unsaturated zone in bare soil condition

    NARCIS (Netherlands)

    Balugani, E.; Lubczynski, M.; Metselaar, K.A.

    2016-01-01

    Sourcing subsurface evaporation (Ess) into groundwater (Eg) and unsaturated zone (Eu) components has received little scientific attention so far, despite its importance in water management and agriculture. We propose a novel sourcing framework, with its implementation in dedicated post-processing

  1. Unsaturated long-chain fatty acids induce the respiratory burst of human neutrophils and monocytes in whole blood

    Directory of Open Access Journals (Sweden)

    Osthaus Wilhelm A

    2008-07-01

    Full Text Available Abstract Background It is increasingly recognized that infectious complications in patients treated with total parenteral nutrition (TPN may be caused by altered immune responses. Neutrophils and monocytes are the first line of defence against bacterial and fungal infection through superoxide anion production during the respiratory burst. To characterize the impact of three different types of lipid solutions that are applied as part of TPN formulations, we investigated the unstimulated respiratory burst activation of neutrophils and monocytes in whole blood. Methods Whole blood samples were incubated with LCT (Intralipid®, LCT/MCT (Lipofundin® and LCT-MUFA (ClinOleic® in three concentrations (0.06, 0.3 and 0.6 mg ml-1 for time periods up to one hour. Hydrogen peroxide production during the respiratory burst of neutrophils and monocytes was measured by flow cytometry. Results LCT and LCT-MUFA induced a hydrogen peroxide production in neutrophils and monocytes without presence of a physiological stimulus in contrast to LCT/MCT. Conclusion We concluded that parenteral nutrition containing unsaturated oleic (C18:1 and linoleic (C18:2 acid can induce respiratory burst of neutrophils and monocytes, resulting in an elevated risk of tissue damage by the uncontrolled production of reactive oxygen species. Contradictory observations reported in previous studies may in part be the result of different methods used to determine hydrogen peroxide production.

  2. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    Science.gov (United States)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic

  3. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    Science.gov (United States)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  4. Suitability of parametric models to describe the hydraulic properties of an unsaturated coarse sand and gravel

    Science.gov (United States)

    Mace, Andy; Rudolph, David L.; Kachanoski , R. Gary

    1998-01-01

    The performance of parametric models used to describe soil water retention (SWR) properties and predict unsaturated hydraulic conductivity (K) as a function of volumetric water content (θ) is examined using SWR and K(θ) data for coarse sand and gravel sediments. Six 70 cm long, 10 cm diameter cores of glacial outwash were instrumented at eight depths with porous cup ten-siometers and time domain reflectometry probes to measure soil water pressure head (h) and θ, respectively, for seven unsaturated and one saturated steady-state flow conditions. Forty-two θ(h) and K(θ) relationships were measured from the infiltration tests on the cores. Of the four SWR models compared in the analysis, the van Genuchten (1980) equation with parameters m and n restricted according to the Mualem (m = 1 - 1/n) criterion is best suited to describe the θ(h) relationships. The accuracy of two models that predict K(θ) using parameter values derived from the SWR models was also evaluated. The model developed by van Genuchten (1980) based on the theoretical expression of Mualem (1976) predicted K(θ) more accurately than the van Genuchten (1980) model based on the theory of Burdine (1953). A sensitivity analysis shows that more accurate predictions of K(θ) are achieved using SWR model parameters derived with residual water content (θr) specified according to independent measurements of θ at values of h where θ/h ∼ 0 rather than model-fit θr values. The accuracy of the model K(θ) function improves markedly when at least one value of unsaturated K is used to scale the K(θ) function predicted using the saturated K. The results of this investigation indicate that the hydraulic properties of coarse-grained sediments can be accurately described using the parametric models. In addition, data collection efforts should focus on measuring at least one value of unsaturated hydraulic conductivity and as complete a set of SWR data as possible, particularly in the dry range.

  5. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress.

    Science.gov (United States)

    Jarc, Eva; Kump, Ana; Malavašič, Petra; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-03-01

    Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A 2 (hGX sPLA 2 ) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA 2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA 2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA 2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA 2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA 2 -induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Unsaturated free fatty acids increase benzodiazepine receptor agonist binding depending on the subunit composition of the GABAA receptor complex.

    Science.gov (United States)

    Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M

    1996-11-01

    It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.

  7. A two-stage procedure for determining unsaturated hydraulic characteristics using a syringe pump and outflow observations

    DEFF Research Database (Denmark)

    Wildenschild, Dorthe; Jensen, Karsten Høgh; Hollenbeck, Karl-Josef

    1997-01-01

    A fast two-stage methodology for determining unsaturated flow characteristics is presented. The procedure builds on direct measurement of the retention characteristic using a syringe pump technique, combined with inverse estimation of the hydraulic conductivity characteristic based on one......-step outflow experiments. The direct measurements are obtained with a commercial syringe pump, which continuously withdraws fluid from a soil sample at a very low and accurate how rate, thus providing the water content in the soil sample. The retention curve is then established by simultaneously monitoring......-step outflow data and the independently measured retention data are included in the objective function of a traditional least-squares minimization routine, providing unique estimates of the unsaturated hydraulic characteristics by means of numerical inversion of Richards equation. As opposed to what is often...

  8. Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column

    Directory of Open Access Journals (Sweden)

    Moreira Paulo H. S.

    2016-03-01

    Full Text Available In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical non-equilibrium dual-porosity type formulation for solute transport. A Bayesian parameter estimation approach was used in which the unknown parameters were estimated with the Markov Chain Monte Carlo (MCMC method through implementation of the Metropolis-Hastings algorithm. Sensitivity coefficients were examined in order to determine the most meaningful measurements for identifying the unknown hydraulic and transport parameters. Results obtained using the measured pressure head and solute concentration data collected during the unsaturated soil column experiment revealed the robustness of the proposed approach.

  9. The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hari Selvi Viswanathan

    1999-01-01

    Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone

  10. Crossed-molecular-beams reactive scattering of oxygen atoms

    International Nuclear Information System (INIS)

    Baseman, R.J.

    1982-11-01

    The reactions of O( 3 P) with six prototypical unsaturated hydrocarbons, and the reaction of O( 1 D) with HD, have been studied in high-resolution crossed-molecular-beams scattering experiments with mass-spectrometric detection. The observed laboratory-product angular and velocity distributions unambiguously identify parent-daughter ion pairs, distinguish different neutral sources of the same ion, and have been used to identify the primary products of the reactions. The derived center-of-mass product angular and translational energy distributions have been used to elucidate the detailed reaction dynamics. These results demonstrate that O( 3 P)-unsaturated hydrocarbon chemistry is dominated by single bond cleavages, leading to radical products exclusively

  11. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.

    Science.gov (United States)

    Soe, Cho Z; Codd, Rachel

    2014-04-18

    To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical

  12. NNWSI waste form test method for unsaturated disposal conditions

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-03-01

    A test method has been developed to measure the release of radionuclides from the waste package under simulated NNWSI repository conditions, and to provide information concerning materials interactions that may occur in the repository. Data are presented from Unsaturated testing of simulated Savannah River Laboratory 165 glass completed through 26 weeks. The relationship between these results and those from parametric and analog testing are described. The data indicate that the waste form test is capable of producing consistent, reproducible results that will be useful in evaluating the role of the waste package in the long-term performance of the repository. 6 refs., 7 figs., 5 tabs

  13. Study of transport in unsaturated sands using radioactive tracers

    International Nuclear Information System (INIS)

    Merritt, W.F.; Pickens, J.F.; Allison, G.B.

    1979-01-01

    A laboratory experiment was conducted to investigate the mixing that occurs as a series of labelled pulses of water are transported by gravity drainage down through a sand filled column having a water table imposed at the bottom. It also demonstrated the utility of gamma-ray emitting radioactive tracers in studying transport in unsaturated or saturated porous media. The motivation for pursuing this topic was developed from observing that the content of oxygen-18, deuterium and tritium in rainwater shows marked temporal variations whereas their concentrations below the water table in shallow ground water flow systems are generally found to show much less variation. (auth)

  14. Unsaturated hydraulic conductivity of sandy soil columns packed to different bulk densities and water uptake by plantroots

    NARCIS (Netherlands)

    Rossi-Pisa, P.

    1978-01-01

    This paper describes a laboratory metbod used to determine both the soil moisture retention curve and the unsaturated hydraulic conductivity in soil columns under transient flow conditions during evaporation.

  15. Unsaturated hydraulic properties of xerophilous mosses: towards implementation of moss covered soils in hydrological models

    NARCIS (Netherlands)

    Voortman, B.R.; Bartholomeus, R.P.; Bodegom, van P.M.; Gooren, H.P.A.; Zee, van der S.E.A.T.M.; Witte, J.P.M.

    2014-01-01

    Evaporation from mosses and lichens can form a major component of the water balance, especially in ecosystems where mosses and lichens often grow abundantly, such as tundra, deserts and bogs. To facilitate moss representation in hydrological models, we parameterized the unsaturated hydraulic

  16. Sediment properties and water movement through shallow unsaturated alluvium at an arid site for disposal of low-level radioactive waste near Beatty, Nye County, Nevada

    Science.gov (United States)

    Fischer, Jeffrey M.

    1992-01-01

    A commercial disposal facility for low-level radioactive waste has been in operation near Beatty, Nevada, since 1962. The facility is in the arid Amargosa Desert where wastes are buried in trenches excavated into unsaturated alluvial sediments. Thick unsaturated zones in arid environments offer many potential advantages for disposal of radioactive wastes, but little is known about the natural movement of water near such facilities. Thus, a study was begun in 1982 to better define the direction and rates of water movement through the unsaturated zone in undisturbed sediments near the disposal facility. This report discusses the analyses of data collected between 1983 and 1988.

  17. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    Science.gov (United States)

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning.

  18. Licochalcone A Upregulates Nrf2 Antioxidant Pathway and Thereby Alleviates Acetaminophen-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2018-03-01

    Full Text Available Acetaminophen (APAP overdose-induced fatal hepatotoxicity is majorly characterized by overwhelmingly increased oxidative stress while enhanced nuclear factor-erythroid 2-related factor 2 (Nrf2 is involved in prevention of hepatotoxicity. Although Licochalcone A (Lico A upregulates Nrf2 signaling pathway against oxidative stress-triggered cell injury, whether it could protect from APAP-induced hepatotoxicity by directly inducing Nrf2 activation is still poorly elucidated. This study aims to explore the protective effect of Lico A against APAP-induced hepatotoxicity and its underlying molecular mechanisms. Our findings indicated that Lico A effectively decreased tert-butyl hydroperoxide (t-BHP- and APAP-stimulated cell apoptosis, mitochondrial dysfunction and reactive oxygen species generation and increased various anti-oxidative enzymes expression, which is largely dependent on upregulating Nrf2 nuclear translocation, reducing the Keap1 protein expression, and strengthening the antioxidant response element promoter activity. Meanwhile, Lico A dramatically protected against APAP-induced acute liver failure by lessening the lethality; alleviating histopathological liver changes; decreasing the alanine transaminase and aspartate aminotransferase levels, malondialdehyde formation, myeloperoxidase level and superoxide dismutase depletion, and increasing the GSH-to-GSSG ratio. Furthermore, Lico A not only significantly modulated apoptosis-related protein by increasing Bcl-2 expression, and decreasing Bax and caspase-3 cleavage expression, but also efficiently alleviated mitochondrial dysfunction by reducing c-jun N-terminal kinase phosphorylation and translocation, inhibiting Bax mitochondrial translocation, apoptosis-inducing factor and cytochrome c release. However, Lico A-inhibited APAP-induced the lethality, histopathological changes, hepatic apoptosis, and mitochondrial dysfunction in WT mice were evidently abrogated in Nrf2-/- mice. These

  19. Effects of sand compaction and mixing on pore structure and the unsaturated soil hydraulic properties

    NARCIS (Netherlands)

    Mahmoodlu, Mojtaba Ghareh; Raoof, A.; Sweijen, T.; van Genuchten, M. Th

    2016-01-01

    The hydraulic properties of unsaturated porous media very much depend on their pore structure as defined by the size, arrangement, and connectivity of pores. Several empirical and quasi-empirical approaches have been used over the years to derive pore structure information from the particle size

  20. A framework for sourcing of evaporation between saturated and unsaturated zone in bare soil condition

    NARCIS (Netherlands)

    Balugani, E.; Lubczynski, M.W.; Metselaar, Klaas

    2016-01-01

    Sourcing subsurface evaporation (Ess) into groundwater (Eg) and unsaturated zone (Eu) components has received little scientific attention so far, despite its importance in water management and agriculture. We propose a novel sourcing framework, with its

  1. The biofiltration permeable reactive barrier: Practical experience from Synthesia

    Energy Technology Data Exchange (ETDEWEB)

    Vesela, L.; Nemecek, J.; Siglova, M.; Kubal, M. [DEKONTA, Prague (Czech Republic)

    2006-10-15

    The paper refers to utilization of biological elements within permeable reactive barriers. The concept of a biofiltration permeable barrier has been tested in the laboratory and in pilot-scale. Oxyhumolite (oxidized young lignite) was examined as an absorption material and a biofilm carrier. Laboratory tests performed before the pilot verification confirmed that oxyhumolite adsorbs organic pollutants at a minimum value, but that it can be used for biofilm attachment. An experimental barrier was built on premises of a chemical factory contaminated mainly by various organic pollutants (benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorobenzenes, naphthalene, nitro-derivatives, phenols, trichloroethylene (TCE), and total petroleum hydrocarbon (TPH)). Before the barrier was installed, a preliminary survey of the unsaturated zone, hydrogeological investigation, and a microbiological survey had been performed. The barrier was designed as a trench-and-gate system with an in situ bioreactor. During the year 2004, measurements of groundwater flux and retention time under current hydrological conditions, together with chemical and microbiological monitoring, were carried out on the site. The results showed high effectiveness of organic contamination removal. Average elimination varied from 57.3% (naphthalene) to 99.9% (nitro-derivatives, BTEX); microbial density in the bioreactor was approx. 10{sup 5} CFU mL{sup -1}.

  2. Study on the response of unsaturated soil slope based on the effects of rainfall intensity and slope angle

    Science.gov (United States)

    Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza

    2017-07-01

    Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.

  3. Development of models for fast fluid pathways through unsaturated heterogeneous porous media

    International Nuclear Information System (INIS)

    Robey, T.H.

    1994-11-01

    The pre-waste-emplacement ground water travel time requirement is a regulatory criterion that specifies ground water travel time to the accessible environment shall be greater than 1,000 years. Satisfying the ground water travel time criterion for the potential repository at Yucca Mountain requires the study of fast travel path formation in the unsaturated zone and development of models that simulate the formation of fast paths. Conceptual models for unsaturated flow that have been used for total-systems performance assessment generally fall into the categories of composite-porosity or fracture models. The actual hydrologic conditions at Yucca Mountain are thought to lie somewhere between the extremes of these two types of models. The current study considers the effects of heterogeneities on composite-porosity models and seeks to develop numerical methods (and models) that can produce locally saturated zones where fracture flow can occur. The credibility of the model and numerical methods is investigated by using test data from the INTRAVAL project (Swedish Nuclear Inspectorate, 1992) to attempt to predict in-situ volumetric water content at specific locations in Yucca Mountain. Work based on the numerical methods presented in this study is eventually intended to allow the calculation of ground water travel times in heterogeneous media. 60 refs

  4. Regional coupling of unsaturated and saturated flow and transport modeling - implementation at an alpine foothill aquifer in Austria

    Science.gov (United States)

    Klammler, G.; Rock, G.; Kupfersberger, H.; Fank, J.

    2012-04-01

    For many European countries nitrate leaching from the soil zone into the aquifer due to surplus application of mineral fertilizer and animal manure by farmers constitutes the most important threat to groundwater quality. Since this is a diffuse pollution situation measures to change agricultural production have to be investigated at the aquifer scale. In principal, the problem could be solved by the 3 dimensional equation describing variable saturated groundwater flow and solute transport. However, this is computationally prohibitive due to the temporal and spatial scope of the task, particularly in the framework of running numerous simulations to compromise between conflicting interests (i.e. good groundwater status and high agricultural yield). For the aquifer 'Westliches Leibnitzer Feld' we break down this task into 1d vertical movement of water and nitrate mass in the unsaturated zone and 2d horizontal flow of water and solutes in the saturated compartment. The aquifer is located within the Mur Valley about 20 km south of Graz and consists of early Holocene gravel with varying amounts of sand and some silt. The unsaturated flow and nitrate leaching package SIMWASER/STOTRASIM (Stenitzer, 1988; Feichtinger, 1998) is calibrated to the lysimeter data sets and further on applied to so called hydrotopes which are unique combinations of soil type and agricultural management. To account for the unknown regional distribution of crops grown and amount, timing and kind of fertilizers used a stochastic tool (Klammler et al, 2011) is developed that generates sequences of crop rotations derived from municipal statistical data. To match the observed nitrate concentrations in groundwater with a saturated nitrate transport model it is of utmost importance to apply a realistic input distribution of nitrate mass in terms of spatial and temporal characteristics. A table is generated by running SIMWASER/STOTRASIM that consists of unsaturated water and nitrate fluxes for each 10 cm

  5. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  6. Simulation of unsaturated flow and nonreactive solute transport in a heterogeneous soil at the field scale

    International Nuclear Information System (INIS)

    Rockhold, M.L.

    1993-02-01

    A field-scale, unsaturated flow and solute transport experiment at the Las Cruces trench site in New Mexico was simulated as part of a ''blind'' modeling exercise to demonstrate the ability or inability of uncalibrated models to predict unsaturated flow and solute transport in spatially variable porous media. Simulations were conducted using a recently developed multiphase flow and transport simulator. Uniform and heterogeneous soil models were tested, and data from a previous experiment at the site were used with an inverse procedure to estimate water retention parameters. A spatial moment analysis was used to provide a quantitative basis for comparing the mean observed and simulated flow and transport behavior. The results of this study suggest that defensible predictions of waste migration and fate at low-level waste sites will ultimately require site-specific data for model calibration

  7. NADPH oxidase-mediated generation of reactive oxygen species: A new mechanism for X-ray-induced HeLa cell death

    International Nuclear Information System (INIS)

    Liu Qing; He Xiaoqing; Liu Yongsheng; Du Bingbing; Wang Xiaoyan; Zhang Weisheng; Jia Pengfei; Dong Jingmei; Ma Jianxiu; Wang Xiaohu; Li Sha; Zhang Hong

    2008-01-01

    Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91 phox was dose-dependent. Meanwhile, the cytoplasmic subunit p47 phox was translocated to the cell membrane and localized with p22 phox and gp91 phox to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.

  8. Synthesis of Phosphatidylcholine Containing Highly Unsaturated Fatty Acid by Phospholipase A2 and Effect on Retinoic Acid Induced Differentiation of HL-60 Cells

    OpenAIRE

    細川, 雅史; 大島, 宏哲; 甲野, 裕之; 高橋, 是太郎; 羽田野, 六男; 小田島, 粛夫

    1993-01-01

    Phosphatidylcholine containing highly unsaturated fatty acid (HUFA-PC) was prepared by porcine pancreatic phospholipase A2, which catalyzed esterification between lysophosphatidylcholine (LPC) and highly unsaturated fatty acid (HUFA), under a scaled-up reaction system. Fatty acid mixture prepared from sardine oil, purified eicosapentaenoic acid (EPA), and purified docosahexaenoic acid (DHA) were used as the substrates of HUFA. The yield of HUFA-PC was 17.0-19.9%. Synthesized phosphatidylcholi...

  9. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    NARCIS (Netherlands)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a

  10. Mechanical properties of composites based on unsaturated polyester resins obtained by chemical recycling of poly(ethylene terephthalate

    Directory of Open Access Journals (Sweden)

    Marinković Aleksandar D.

    2013-01-01

    Full Text Available Composites based on unsaturated polyester (UPe resins and fumed silica AEROSIL® RY 50, NY 50, RX 50 and NAX 50, as well as graphite, TiO2 or organically modified clay CLOISITE 30B were prepared in order to investigate the influence of reinforcing agents on the mechanical properties of composites. Unsaturated polyester resins were synthesized from maleic anhydride and products of glycolysis, obtained by depolymerization of poly(ethylene terephthalate with dipropylene glycol (UPe1 resin and triethylene glycol (UPe2 resin in the presence of tetrabutyl titanate catalyst. The obtained unsaturated polyesters were characterized by FTIR spectroscopy, acid and hydroxyl values, and their mechanical properties were also examined. Significant increase of the tensile modulus, tensile strength and decrease of the elongation at break was observed for composites prepared after addition of 10 wt.% of graphite or 10 wt.% of TiO2 to the UPe resins, indicating strong interaction between matrix and filler particles. On the other hand, nanocomposites prepared using UPe2 and hydrophobically modified silica nanoparticles showed lower tensile strength and tensile modulus than polymer matrix. The presence of CLOISITE 30B had no significant influence on the mechanical properties of UPe1, while tensile strength and tensile modulus of UPe2 increased after adding 10 wt.% of clay. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  11. In situ crystallization and transformation kinetics of polymorphic forms of saturated-unsaturated-unsaturated triacylglycerols: 1-palmitoyl-2,3-dioleoyl glycerol, 1-stearoyl-2,3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol.

    Science.gov (United States)

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2016-07-01

    We examined the influence of dynamic thermal treatment (variation of cooling/heating rates) on the polymorphic crystallization and transformation pathways of 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1-stearoyl-2,3-dioleoyl glycerol (SOO), and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), which are major saturated-unsaturated-unsaturated (SUU) triacylglycerols (TAGs) of vegetable oils and animal fats (e.g., palm oil, olive oil, and Iberian ham fat). Using mainly a combination of differential scanning calorimetry (DSC) and synchrotron radiation X-ray diffraction (SR-XRD), we analyzed the polymorphic behavior of TAGs when high (15°Cmin -1 ), intermediate (2°Cmin -1 ), and low (0.5°Cmin -1 ) cooling and heating rates were applied. Multiple polymorphic forms were detected in POO, SOO, and POL (sub-α, α, β' 2 , and β' 1 ). Transient disordered phases, defined as kinetic liquid crystal (KLC) phases, were determined in POO and SOO for the first time. The results demonstrated that more stable forms were directly obtained from the melt by decreasing the cooling rates, whereas less stable forms predominated at high cooling rates, as confirmed in our previous work. Regarding heating rate variation, we confirmed that the nature of the polymorphic transformations observed (solid-state, transformation through KLC phase, or melt-mediation) depended largely on the heating rate. These results were discussed considering the activation energies involved in each process and compared with previous studies on TAGs with different saturated-unsaturated structures (1,3-dioleoyl-2-palmitoylglycerol, 1,3-dipalmitoyl-2-oleoyl-glycerol, trioleoyl glycerol, and 1,2-dioleoyl-3-linoleoyl glycerol). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    Science.gov (United States)

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  13. An experimental program for testing the validity of flow and transport models in unsaturated tuff: The Yucca Mountain Project

    International Nuclear Information System (INIS)

    Shephard, L.E.; Glass, R.J.; Siegel, M.D.; Tidwell, V.C.

    1990-01-01

    Groundwater flow and contaminant transport through the unsaturated zone are receiving increased attention as options for waste disposal in saturated media continue to be considered as a potential means for resolving the nation's waste management concerns. An experimental program is being developed to test the validity of conceptual flow and transport models that are being formulated to predict the long-term performance at Yucca Mountain. This program is in the developmental stage and will continue to evolve as information is acquired and knowledge is improved with reference to flow and transport in unsaturated fractured media. The general approach for directing the validation effort entails identifying those processes which may cause the site to fail relative to imposed regulatory requirements, evaluating the key assumptions underlying the conceptual models used or developed to describe these processes, and developing new conceptual models as needed. Emphasis is currently being placed in four general areas: flow and transport in unsaturated fractures; fracture-matrix interactions; infiltration flow instability; and evaluation of scale effects in heterogeneous fractured media. Preliminary results and plans or each of these areas for both the laboratory and field investigation components will be presented in the manuscript. 1 ref

  14. Disposal of high-level radioactive wastes in the unsaturated zone: technical considerations and response to comments. Final report

    International Nuclear Information System (INIS)

    Hackbarth, C.J.; Nicholson, T.J.; Evans, D.D.

    1985-10-01

    On July 22, 1985, the US Nuclear Regulatory Commission (NRC) promulgated amendments to 10 CFR Part 60 concerning disposal of high-level radioactive waste (HLW) in geologic repositories in the unsaturated zone (50 FR 29641). This report contains a discussion of the principal technical issues considered by the NRC staff during the development of these amendments. It expands or revises certain technical discussions originally presented in draft NUREG-1046 (February 1984) based on public comment letters and an increasing understanding of the physical, geochemical, and hydrogeologic processes operative in unsaturated geologic media. The following issues related to disposal of HLW within the unsaturated zone are discussed: hydrogeologic properties and conditions, heat dissipation and temperature, geochemisty, retrievability, potential for exhumation of the radioactive waste by natural causes and by human intrusion, the effects of future climatic changes on the level of the regional water table, and transport of radionuclides in the gaseous state. The changes to 10 CFR Part 60 in definitions, siting criteria, and design criteria for the geologic repository operations area are discussed. Other criteria examined by the NRC staff but which were not changed in rule are the minimum 300-meter depth for waste emplacement, limitations on exploratory boreholes, backfill requirements, waste package design criteria, and provisions for ventilation

  15. Proceedings of workshop 5: Flow and transport through unsaturated fractured rock -- related to high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Evans, D.D.; Nicholson, T.J.

    1993-06-01

    The ''Workshop on Flow and Transport Through Unsaturated Fractured Rock Related to High-Level Radioactive Waste Disposal'' was cosponsored by the NRC, the Center for Nuclear Waste Regulatory Analyses, and the University of Arizona (UAZ) and was held in Tucson, Arizona, on January 7--10, 1991. The focus of this workshop, similar to the earlier four (the first being in 1982), related to hydrogeologic technical issues associated with possible disposal of commercial high-level nuclear waste (HLW) in a geologic repository within an unsaturated fractured rock system which coincides with the UAZ field studies on HLW disposal. The presentations and discussions centered on flow and transport processes and conditions, relevant parameters, as well as state-of-the-art measurement techniques, and modeling capabilities. The workshop consisted of: four half-day technical meetings, a one day field visit to the Apache Leap test site to review ongoing field studies that are examining site characterization techniques and developing data sets for model validation studies, and a final half-day session devoted to examining research needs related to modeling groundwater flow and radionuclide transport in unsaturated, fractured rock. These proceedings provide extended abstracts of the technical presentations and short summaries of the research group reports

  16. Crossed-molecular-beams reactive scattering of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Baseman, R.J.

    1982-11-01

    The reactions of O(/sup 3/P) with six prototypical unsaturated hydrocarbons, and the reaction of O(/sup 1/D) with HD, have been studied in high-resolution crossed-molecular-beams scattering experiments with mass-spectrometric detection. The observed laboratory-product angular and velocity distributions unambiguously identify parent-daughter ion pairs, distinguish different neutral sources of the same ion, and have been used to identify the primary products of the reactions. The derived center-of-mass product angular and translational energy distributions have been used to elucidate the detailed reaction dynamics. These results demonstrate that O(/sup 3/P)-unsaturated hydrocarbon chemistry is dominated by single bond cleavages, leading to radical products exclusively.

  17. Unsaturated flow and transport research questions and priorities

    International Nuclear Information System (INIS)

    Chery, D.L.

    1993-01-01

    A little over two years ago, a similar meeting (Workshop IV - Flow and Transport through Unsaturated Fractured Rock; Related to High-Level Radioactive Waste Disposal) was held her in Tucson, Arizona, to discuss the same issues discussed here the past 4 days. This presentation revisits what was said 2 years ago, reviews research needs that have been articulated by the licensing staff of the Division of High-Level Waste Management, Nuclear Regulatory Commission, and presents some of the thoughts on research needs resulting from the deliberations of a special committee of the National Research Council. After considering these aspects the questions of what has been accomplished in the past 2 years and where attention and energies should be focused in the coming few years, can be asked. 3 refs

  18. Single-Step Access to Long-Chain α,ω-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids

    KAUST Repository

    Goldbach, Verena

    2016-11-09

    Dicarboxylic acids are compounds of high value, but to date long-chain alpha,omega-dicarboxylic acids have been difficult to access in a direct way. Unsaturated fatty acids are ideal starting materials with their molecular structure of long methylene sequences and a carboxylate functionality, in addition to a double bond that offers itself for functionalization. Within this paper, we established a direct access to alpha,omega-dicarboxylic acids by combining isomerization and selective terminal carbonylation of the internal double bond with water as a nucleophile on unsaturated fatty acids. We identified the key elements of this reaction: a homogeneous reaction mixture ensuring sufficient contact between all reactants and a catalyst system allowing for activation of the Pd precursor under aqueous conditions. Experiments under pressure reactor conditions with [(dtbpx)Pd(OTf)(2)] as catalyst precursor revealed the importance of nucleophile and reactant concentrations and the addition of the diprotonated diphosphine ligand (dtbpxH(2))(OTf)(2) to achieve turnover numbers >120. A variety of unsaturated fatty acids, including a triglyceride, were converted to valuable long-chain dicarboxylic acids with high turnover numbers and selectivities for the linear product of >90%. We unraveled the activation pathway of the Pd-II precursor, which proceeds via a reductive elimination step forming a Pd species and oxidative addition of the diprotonated diphosphine ligand, resulting in the formation of the catalytically active Pd hydride species. Theoretical calculations identified the hydrolysis as the rate-determining step. A low nucleophile concentration in the reaction mixture in combination with this high energetic barrier limits the potential of this reaction. In conclusion, water can be utilized as a nucleophile in isomerizing functionalization reactions and gives access to long-chain dicarboxylic acids from a variety of unsaturated substrates. The activity of the catalytic

  19. Maximum likelihood Bayesian averaging of airflow models in unsaturated fractured tuff using Occam and variance windows

    NARCIS (Netherlands)

    Morales-Casique, E.; Neuman, S.P.; Vesselinov, V.V.

    2010-01-01

    We use log permeability and porosity data obtained from single-hole pneumatic packer tests in six boreholes drilled into unsaturated fractured tuff near Superior, Arizona, to postulate, calibrate and compare five alternative variogram models (exponential, exponential with linear drift, power,

  20. FEMA expert panel review of p-mentha-1,8-dien-7-al genotoxicity testing results

    NARCIS (Netherlands)

    Cohen, Samuel M.; Fukushima, Shoji; Gooderham, Nigel J.; Guengerich, F.P.; Hecht, Stephen S.; Rietjens, Ivonne M.C.M.; Smith, Robert L.; Bastaki, Maria; Harman, Christie L.; McGowen, Margaret M.; Taylor, Sean V.

    2016-01-01

    p-Mentha-1,8-dien-7-al is a naturally occurring cyclic alpha,beta-unsaturated aldehyde that is used as a flavoring substance throughout the world. Due to the chemical structure and the potential DNA reactivity of the alpha,beta-unsaturated carbonyl moiety, a battery of genotoxicity assays was